aix: Fix _STDC_FORMAT_MACROS in inttypes.h [PR97044]
[official-gcc.git] / gcc / tree-switch-conversion.c
blobe6a2c7a6a841ddfc2ea02d24371e6286789fc75c
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2020 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "insn-codes.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "cfghooks.h"
34 #include "tree-pass.h"
35 #include "ssa.h"
36 #include "optabs-tree.h"
37 #include "cgraph.h"
38 #include "gimple-pretty-print.h"
39 #include "fold-const.h"
40 #include "varasm.h"
41 #include "stor-layout.h"
42 #include "cfganal.h"
43 #include "gimplify.h"
44 #include "gimple-iterator.h"
45 #include "gimplify-me.h"
46 #include "gimple-fold.h"
47 #include "tree-cfg.h"
48 #include "cfgloop.h"
49 #include "alloc-pool.h"
50 #include "target.h"
51 #include "tree-into-ssa.h"
52 #include "omp-general.h"
54 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
55 type in the GIMPLE type system that is language-independent? */
56 #include "langhooks.h"
58 #include "tree-switch-conversion.h"
60 using namespace tree_switch_conversion;
62 /* Constructor. */
64 switch_conversion::switch_conversion (): m_final_bb (NULL),
65 m_constructors (NULL), m_default_values (NULL),
66 m_arr_ref_first (NULL), m_arr_ref_last (NULL),
67 m_reason (NULL), m_default_case_nonstandard (false), m_cfg_altered (false)
71 /* Collection information about SWTCH statement. */
73 void
74 switch_conversion::collect (gswitch *swtch)
76 unsigned int branch_num = gimple_switch_num_labels (swtch);
77 tree min_case, max_case;
78 unsigned int i;
79 edge e, e_default, e_first;
80 edge_iterator ei;
82 m_switch = swtch;
84 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
85 is a default label which is the first in the vector.
86 Collect the bits we can deduce from the CFG. */
87 m_index_expr = gimple_switch_index (swtch);
88 m_switch_bb = gimple_bb (swtch);
89 e_default = gimple_switch_default_edge (cfun, swtch);
90 m_default_bb = e_default->dest;
91 m_default_prob = e_default->probability;
93 /* Get upper and lower bounds of case values, and the covered range. */
94 min_case = gimple_switch_label (swtch, 1);
95 max_case = gimple_switch_label (swtch, branch_num - 1);
97 m_range_min = CASE_LOW (min_case);
98 if (CASE_HIGH (max_case) != NULL_TREE)
99 m_range_max = CASE_HIGH (max_case);
100 else
101 m_range_max = CASE_LOW (max_case);
103 m_contiguous_range = true;
104 tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : m_range_min;
105 for (i = 2; i < branch_num; i++)
107 tree elt = gimple_switch_label (swtch, i);
108 if (wi::to_wide (last) + 1 != wi::to_wide (CASE_LOW (elt)))
110 m_contiguous_range = false;
111 break;
113 last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt);
116 if (m_contiguous_range)
117 e_first = gimple_switch_edge (cfun, swtch, 1);
118 else
119 e_first = e_default;
121 /* See if there is one common successor block for all branch
122 targets. If it exists, record it in FINAL_BB.
123 Start with the destination of the first non-default case
124 if the range is contiguous and default case otherwise as
125 guess or its destination in case it is a forwarder block. */
126 if (! single_pred_p (e_first->dest))
127 m_final_bb = e_first->dest;
128 else if (single_succ_p (e_first->dest)
129 && ! single_pred_p (single_succ (e_first->dest)))
130 m_final_bb = single_succ (e_first->dest);
131 /* Require that all switch destinations are either that common
132 FINAL_BB or a forwarder to it, except for the default
133 case if contiguous range. */
134 if (m_final_bb)
135 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
137 if (e->dest == m_final_bb)
138 continue;
140 if (single_pred_p (e->dest)
141 && single_succ_p (e->dest)
142 && single_succ (e->dest) == m_final_bb)
143 continue;
145 if (e == e_default && m_contiguous_range)
147 m_default_case_nonstandard = true;
148 continue;
151 m_final_bb = NULL;
152 break;
155 m_range_size
156 = int_const_binop (MINUS_EXPR, m_range_max, m_range_min);
158 /* Get a count of the number of case labels. Single-valued case labels
159 simply count as one, but a case range counts double, since it may
160 require two compares if it gets lowered as a branching tree. */
161 m_count = 0;
162 for (i = 1; i < branch_num; i++)
164 tree elt = gimple_switch_label (swtch, i);
165 m_count++;
166 if (CASE_HIGH (elt)
167 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
168 m_count++;
171 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
172 block. Assume a CFG cleanup would have already removed degenerate
173 switch statements, this allows us to just use EDGE_COUNT. */
174 m_uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
177 /* Checks whether the range given by individual case statements of the switch
178 switch statement isn't too big and whether the number of branches actually
179 satisfies the size of the new array. */
181 bool
182 switch_conversion::check_range ()
184 gcc_assert (m_range_size);
185 if (!tree_fits_uhwi_p (m_range_size))
187 m_reason = "index range way too large or otherwise unusable";
188 return false;
191 if (tree_to_uhwi (m_range_size)
192 > ((unsigned) m_count * param_switch_conversion_branch_ratio))
194 m_reason = "the maximum range-branch ratio exceeded";
195 return false;
198 return true;
201 /* Checks whether all but the final BB basic blocks are empty. */
203 bool
204 switch_conversion::check_all_empty_except_final ()
206 edge e, e_default = find_edge (m_switch_bb, m_default_bb);
207 edge_iterator ei;
209 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
211 if (e->dest == m_final_bb)
212 continue;
214 if (!empty_block_p (e->dest))
216 if (m_contiguous_range && e == e_default)
218 m_default_case_nonstandard = true;
219 continue;
222 m_reason = "bad case - a non-final BB not empty";
223 return false;
227 return true;
230 /* This function checks whether all required values in phi nodes in final_bb
231 are constants. Required values are those that correspond to a basic block
232 which is a part of the examined switch statement. It returns true if the
233 phi nodes are OK, otherwise false. */
235 bool
236 switch_conversion::check_final_bb ()
238 gphi_iterator gsi;
240 m_phi_count = 0;
241 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
243 gphi *phi = gsi.phi ();
244 unsigned int i;
246 if (virtual_operand_p (gimple_phi_result (phi)))
247 continue;
249 m_phi_count++;
251 for (i = 0; i < gimple_phi_num_args (phi); i++)
253 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
255 if (bb == m_switch_bb
256 || (single_pred_p (bb)
257 && single_pred (bb) == m_switch_bb
258 && (!m_default_case_nonstandard
259 || empty_block_p (bb))))
261 tree reloc, val;
262 const char *reason = NULL;
264 val = gimple_phi_arg_def (phi, i);
265 if (!is_gimple_ip_invariant (val))
266 reason = "non-invariant value from a case";
267 else
269 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
270 if ((flag_pic && reloc != null_pointer_node)
271 || (!flag_pic && reloc == NULL_TREE))
273 if (reloc)
274 reason
275 = "value from a case would need runtime relocations";
276 else
277 reason
278 = "value from a case is not a valid initializer";
281 if (reason)
283 /* For contiguous range, we can allow non-constant
284 or one that needs relocation, as long as it is
285 only reachable from the default case. */
286 if (bb == m_switch_bb)
287 bb = m_final_bb;
288 if (!m_contiguous_range || bb != m_default_bb)
290 m_reason = reason;
291 return false;
294 unsigned int branch_num = gimple_switch_num_labels (m_switch);
295 for (unsigned int i = 1; i < branch_num; i++)
297 if (gimple_switch_label_bb (cfun, m_switch, i) == bb)
299 m_reason = reason;
300 return false;
303 m_default_case_nonstandard = true;
309 return true;
312 /* The following function allocates default_values, target_{in,out}_names and
313 constructors arrays. The last one is also populated with pointers to
314 vectors that will become constructors of new arrays. */
316 void
317 switch_conversion::create_temp_arrays ()
319 int i;
321 m_default_values = XCNEWVEC (tree, m_phi_count * 3);
322 /* ??? Macros do not support multi argument templates in their
323 argument list. We create a typedef to work around that problem. */
324 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
325 m_constructors = XCNEWVEC (vec_constructor_elt_gc, m_phi_count);
326 m_target_inbound_names = m_default_values + m_phi_count;
327 m_target_outbound_names = m_target_inbound_names + m_phi_count;
328 for (i = 0; i < m_phi_count; i++)
329 vec_alloc (m_constructors[i], tree_to_uhwi (m_range_size) + 1);
332 /* Populate the array of default values in the order of phi nodes.
333 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
334 if the range is non-contiguous or the default case has standard
335 structure, otherwise it is the first non-default case instead. */
337 void
338 switch_conversion::gather_default_values (tree default_case)
340 gphi_iterator gsi;
341 basic_block bb = label_to_block (cfun, CASE_LABEL (default_case));
342 edge e;
343 int i = 0;
345 gcc_assert (CASE_LOW (default_case) == NULL_TREE
346 || m_default_case_nonstandard);
348 if (bb == m_final_bb)
349 e = find_edge (m_switch_bb, bb);
350 else
351 e = single_succ_edge (bb);
353 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
355 gphi *phi = gsi.phi ();
356 if (virtual_operand_p (gimple_phi_result (phi)))
357 continue;
358 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
359 gcc_assert (val);
360 m_default_values[i++] = val;
364 /* The following function populates the vectors in the constructors array with
365 future contents of the static arrays. The vectors are populated in the
366 order of phi nodes. */
368 void
369 switch_conversion::build_constructors ()
371 unsigned i, branch_num = gimple_switch_num_labels (m_switch);
372 tree pos = m_range_min;
373 tree pos_one = build_int_cst (TREE_TYPE (pos), 1);
375 for (i = 1; i < branch_num; i++)
377 tree cs = gimple_switch_label (m_switch, i);
378 basic_block bb = label_to_block (cfun, CASE_LABEL (cs));
379 edge e;
380 tree high;
381 gphi_iterator gsi;
382 int j;
384 if (bb == m_final_bb)
385 e = find_edge (m_switch_bb, bb);
386 else
387 e = single_succ_edge (bb);
388 gcc_assert (e);
390 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
392 int k;
393 for (k = 0; k < m_phi_count; k++)
395 constructor_elt elt;
397 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
398 elt.value
399 = unshare_expr_without_location (m_default_values[k]);
400 m_constructors[k]->quick_push (elt);
403 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
405 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
407 j = 0;
408 if (CASE_HIGH (cs))
409 high = CASE_HIGH (cs);
410 else
411 high = CASE_LOW (cs);
412 for (gsi = gsi_start_phis (m_final_bb);
413 !gsi_end_p (gsi); gsi_next (&gsi))
415 gphi *phi = gsi.phi ();
416 if (virtual_operand_p (gimple_phi_result (phi)))
417 continue;
418 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
419 tree low = CASE_LOW (cs);
420 pos = CASE_LOW (cs);
424 constructor_elt elt;
426 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
427 elt.value = unshare_expr_without_location (val);
428 m_constructors[j]->quick_push (elt);
430 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
431 } while (!tree_int_cst_lt (high, pos)
432 && tree_int_cst_lt (low, pos));
433 j++;
438 /* If all values in the constructor vector are products of a linear function
439 a * x + b, then return true. When true, COEFF_A and COEFF_B and
440 coefficients of the linear function. Note that equal values are special
441 case of a linear function with a and b equal to zero. */
443 bool
444 switch_conversion::contains_linear_function_p (vec<constructor_elt, va_gc> *vec,
445 wide_int *coeff_a,
446 wide_int *coeff_b)
448 unsigned int i;
449 constructor_elt *elt;
451 gcc_assert (vec->length () >= 2);
453 /* Let's try to find any linear function a * x + y that can apply to
454 given values. 'a' can be calculated as follows:
456 a = (y2 - y1) / (x2 - x1) where x2 - x1 = 1 (consecutive case indices)
457 a = y2 - y1
461 b = y2 - a * x2
465 tree elt0 = (*vec)[0].value;
466 tree elt1 = (*vec)[1].value;
468 if (TREE_CODE (elt0) != INTEGER_CST || TREE_CODE (elt1) != INTEGER_CST)
469 return false;
471 wide_int range_min
472 = wide_int::from (wi::to_wide (m_range_min),
473 TYPE_PRECISION (TREE_TYPE (elt0)),
474 TYPE_SIGN (TREE_TYPE (m_range_min)));
475 wide_int y1 = wi::to_wide (elt0);
476 wide_int y2 = wi::to_wide (elt1);
477 wide_int a = y2 - y1;
478 wide_int b = y2 - a * (range_min + 1);
480 /* Verify that all values fulfill the linear function. */
481 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
483 if (TREE_CODE (elt->value) != INTEGER_CST)
484 return false;
486 wide_int value = wi::to_wide (elt->value);
487 if (a * range_min + b != value)
488 return false;
490 ++range_min;
493 *coeff_a = a;
494 *coeff_b = b;
496 return true;
499 /* Return type which should be used for array elements, either TYPE's
500 main variant or, for integral types, some smaller integral type
501 that can still hold all the constants. */
503 tree
504 switch_conversion::array_value_type (tree type, int num)
506 unsigned int i, len = vec_safe_length (m_constructors[num]);
507 constructor_elt *elt;
508 int sign = 0;
509 tree smaller_type;
511 /* Types with alignments greater than their size can reach here, e.g. out of
512 SRA. We couldn't use these as an array component type so get back to the
513 main variant first, which, for our purposes, is fine for other types as
514 well. */
516 type = TYPE_MAIN_VARIANT (type);
518 if (!INTEGRAL_TYPE_P (type))
519 return type;
521 scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
522 scalar_int_mode mode = get_narrowest_mode (type_mode);
523 if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode))
524 return type;
526 if (len < (optimize_bb_for_size_p (gimple_bb (m_switch)) ? 2 : 32))
527 return type;
529 FOR_EACH_VEC_SAFE_ELT (m_constructors[num], i, elt)
531 wide_int cst;
533 if (TREE_CODE (elt->value) != INTEGER_CST)
534 return type;
536 cst = wi::to_wide (elt->value);
537 while (1)
539 unsigned int prec = GET_MODE_BITSIZE (mode);
540 if (prec > HOST_BITS_PER_WIDE_INT)
541 return type;
543 if (sign >= 0 && cst == wi::zext (cst, prec))
545 if (sign == 0 && cst == wi::sext (cst, prec))
546 break;
547 sign = 1;
548 break;
550 if (sign <= 0 && cst == wi::sext (cst, prec))
552 sign = -1;
553 break;
556 if (sign == 1)
557 sign = 0;
559 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
560 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode))
561 return type;
565 if (sign == 0)
566 sign = TYPE_UNSIGNED (type) ? 1 : -1;
567 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
568 if (GET_MODE_SIZE (type_mode)
569 <= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type)))
570 return type;
572 return smaller_type;
575 /* Create an appropriate array type and declaration and assemble a static
576 array variable. Also create a load statement that initializes
577 the variable in question with a value from the static array. SWTCH is
578 the switch statement being converted, NUM is the index to
579 arrays of constructors, default values and target SSA names
580 for this particular array. ARR_INDEX_TYPE is the type of the index
581 of the new array, PHI is the phi node of the final BB that corresponds
582 to the value that will be loaded from the created array. TIDX
583 is an ssa name of a temporary variable holding the index for loads from the
584 new array. */
586 void
587 switch_conversion::build_one_array (int num, tree arr_index_type,
588 gphi *phi, tree tidx)
590 tree name;
591 gimple *load;
592 gimple_stmt_iterator gsi = gsi_for_stmt (m_switch);
593 location_t loc = gimple_location (m_switch);
595 gcc_assert (m_default_values[num]);
597 name = copy_ssa_name (PHI_RESULT (phi));
598 m_target_inbound_names[num] = name;
600 vec<constructor_elt, va_gc> *constructor = m_constructors[num];
601 wide_int coeff_a, coeff_b;
602 bool linear_p = contains_linear_function_p (constructor, &coeff_a, &coeff_b);
603 tree type;
604 if (linear_p
605 && (type = range_check_type (TREE_TYPE ((*constructor)[0].value))))
607 if (dump_file && coeff_a.to_uhwi () > 0)
608 fprintf (dump_file, "Linear transformation with A = %" PRId64
609 " and B = %" PRId64 "\n", coeff_a.to_shwi (),
610 coeff_b.to_shwi ());
612 /* We must use type of constructor values. */
613 gimple_seq seq = NULL;
614 tree tmp = gimple_convert (&seq, type, m_index_expr);
615 tree tmp2 = gimple_build (&seq, MULT_EXPR, type,
616 wide_int_to_tree (type, coeff_a), tmp);
617 tree tmp3 = gimple_build (&seq, PLUS_EXPR, type, tmp2,
618 wide_int_to_tree (type, coeff_b));
619 tree tmp4 = gimple_convert (&seq, TREE_TYPE (name), tmp3);
620 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
621 load = gimple_build_assign (name, tmp4);
623 else
625 tree array_type, ctor, decl, value_type, fetch, default_type;
627 default_type = TREE_TYPE (m_default_values[num]);
628 value_type = array_value_type (default_type, num);
629 array_type = build_array_type (value_type, arr_index_type);
630 if (default_type != value_type)
632 unsigned int i;
633 constructor_elt *elt;
635 FOR_EACH_VEC_SAFE_ELT (constructor, i, elt)
636 elt->value = fold_convert (value_type, elt->value);
638 ctor = build_constructor (array_type, constructor);
639 TREE_CONSTANT (ctor) = true;
640 TREE_STATIC (ctor) = true;
642 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
643 TREE_STATIC (decl) = 1;
644 DECL_INITIAL (decl) = ctor;
646 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
647 DECL_ARTIFICIAL (decl) = 1;
648 DECL_IGNORED_P (decl) = 1;
649 TREE_CONSTANT (decl) = 1;
650 TREE_READONLY (decl) = 1;
651 DECL_IGNORED_P (decl) = 1;
652 if (offloading_function_p (cfun->decl))
653 DECL_ATTRIBUTES (decl)
654 = tree_cons (get_identifier ("omp declare target"), NULL_TREE,
655 NULL_TREE);
656 varpool_node::finalize_decl (decl);
658 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
659 NULL_TREE);
660 if (default_type != value_type)
662 fetch = fold_convert (default_type, fetch);
663 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
664 true, GSI_SAME_STMT);
666 load = gimple_build_assign (name, fetch);
669 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
670 update_stmt (load);
671 m_arr_ref_last = load;
674 /* Builds and initializes static arrays initialized with values gathered from
675 the switch statement. Also creates statements that load values from
676 them. */
678 void
679 switch_conversion::build_arrays ()
681 tree arr_index_type;
682 tree tidx, sub, utype;
683 gimple *stmt;
684 gimple_stmt_iterator gsi;
685 gphi_iterator gpi;
686 int i;
687 location_t loc = gimple_location (m_switch);
689 gsi = gsi_for_stmt (m_switch);
691 /* Make sure we do not generate arithmetics in a subrange. */
692 utype = TREE_TYPE (m_index_expr);
693 if (TREE_TYPE (utype))
694 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
695 else
696 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
698 arr_index_type = build_index_type (m_range_size);
699 tidx = make_ssa_name (utype);
700 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
701 fold_convert_loc (loc, utype, m_index_expr),
702 fold_convert_loc (loc, utype, m_range_min));
703 sub = force_gimple_operand_gsi (&gsi, sub,
704 false, NULL, true, GSI_SAME_STMT);
705 stmt = gimple_build_assign (tidx, sub);
707 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
708 update_stmt (stmt);
709 m_arr_ref_first = stmt;
711 for (gpi = gsi_start_phis (m_final_bb), i = 0;
712 !gsi_end_p (gpi); gsi_next (&gpi))
714 gphi *phi = gpi.phi ();
715 if (!virtual_operand_p (gimple_phi_result (phi)))
716 build_one_array (i++, arr_index_type, phi, tidx);
717 else
719 edge e;
720 edge_iterator ei;
721 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
723 if (e->dest == m_final_bb)
724 break;
725 if (!m_default_case_nonstandard
726 || e->dest != m_default_bb)
728 e = single_succ_edge (e->dest);
729 break;
732 gcc_assert (e && e->dest == m_final_bb);
733 m_target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e);
738 /* Generates and appropriately inserts loads of default values at the position
739 given by GSI. Returns the last inserted statement. */
741 gassign *
742 switch_conversion::gen_def_assigns (gimple_stmt_iterator *gsi)
744 int i;
745 gassign *assign = NULL;
747 for (i = 0; i < m_phi_count; i++)
749 tree name = copy_ssa_name (m_target_inbound_names[i]);
750 m_target_outbound_names[i] = name;
751 assign = gimple_build_assign (name, m_default_values[i]);
752 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
753 update_stmt (assign);
755 return assign;
758 /* Deletes the unused bbs and edges that now contain the switch statement and
759 its empty branch bbs. BBD is the now dead BB containing
760 the original switch statement, FINAL is the last BB of the converted
761 switch statement (in terms of succession). */
763 void
764 switch_conversion::prune_bbs (basic_block bbd, basic_block final,
765 basic_block default_bb)
767 edge_iterator ei;
768 edge e;
770 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
772 basic_block bb;
773 bb = e->dest;
774 remove_edge (e);
775 if (bb != final && bb != default_bb)
776 delete_basic_block (bb);
778 delete_basic_block (bbd);
781 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
782 from the basic block loading values from an array and E2F from the basic
783 block loading default values. BBF is the last switch basic block (see the
784 bbf description in the comment below). */
786 void
787 switch_conversion::fix_phi_nodes (edge e1f, edge e2f, basic_block bbf)
789 gphi_iterator gsi;
790 int i;
792 for (gsi = gsi_start_phis (bbf), i = 0;
793 !gsi_end_p (gsi); gsi_next (&gsi))
795 gphi *phi = gsi.phi ();
796 tree inbound, outbound;
797 if (virtual_operand_p (gimple_phi_result (phi)))
798 inbound = outbound = m_target_vop;
799 else
801 inbound = m_target_inbound_names[i];
802 outbound = m_target_outbound_names[i++];
804 add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION);
805 if (!m_default_case_nonstandard)
806 add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION);
810 /* Creates a check whether the switch expression value actually falls into the
811 range given by all the cases. If it does not, the temporaries are loaded
812 with default values instead. */
814 void
815 switch_conversion::gen_inbound_check ()
817 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
818 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
819 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
820 glabel *label1, *label2, *label3;
821 tree utype, tidx;
822 tree bound;
824 gcond *cond_stmt;
826 gassign *last_assign = NULL;
827 gimple_stmt_iterator gsi;
828 basic_block bb0, bb1, bb2, bbf, bbd;
829 edge e01 = NULL, e02, e21, e1d, e1f, e2f;
830 location_t loc = gimple_location (m_switch);
832 gcc_assert (m_default_values);
834 bb0 = gimple_bb (m_switch);
836 tidx = gimple_assign_lhs (m_arr_ref_first);
837 utype = TREE_TYPE (tidx);
839 /* (end of) block 0 */
840 gsi = gsi_for_stmt (m_arr_ref_first);
841 gsi_next (&gsi);
843 bound = fold_convert_loc (loc, utype, m_range_size);
844 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
845 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
846 update_stmt (cond_stmt);
848 /* block 2 */
849 if (!m_default_case_nonstandard)
851 label2 = gimple_build_label (label_decl2);
852 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
853 last_assign = gen_def_assigns (&gsi);
856 /* block 1 */
857 label1 = gimple_build_label (label_decl1);
858 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
860 /* block F */
861 gsi = gsi_start_bb (m_final_bb);
862 label3 = gimple_build_label (label_decl3);
863 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
865 /* cfg fix */
866 e02 = split_block (bb0, cond_stmt);
867 bb2 = e02->dest;
869 if (m_default_case_nonstandard)
871 bb1 = bb2;
872 bb2 = m_default_bb;
873 e01 = e02;
874 e01->flags = EDGE_TRUE_VALUE;
875 e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE);
876 edge e_default = find_edge (bb1, bb2);
877 for (gphi_iterator gsi = gsi_start_phis (bb2);
878 !gsi_end_p (gsi); gsi_next (&gsi))
880 gphi *phi = gsi.phi ();
881 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default);
882 add_phi_arg (phi, arg, e02,
883 gimple_phi_arg_location_from_edge (phi, e_default));
885 /* Partially fix the dominator tree, if it is available. */
886 if (dom_info_available_p (CDI_DOMINATORS))
887 redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0);
889 else
891 e21 = split_block (bb2, last_assign);
892 bb1 = e21->dest;
893 remove_edge (e21);
896 e1d = split_block (bb1, m_arr_ref_last);
897 bbd = e1d->dest;
898 remove_edge (e1d);
900 /* Flags and profiles of the edge for in-range values. */
901 if (!m_default_case_nonstandard)
902 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
903 e01->probability = m_default_prob.invert ();
905 /* Flags and profiles of the edge taking care of out-of-range values. */
906 e02->flags &= ~EDGE_FALLTHRU;
907 e02->flags |= EDGE_FALSE_VALUE;
908 e02->probability = m_default_prob;
910 bbf = m_final_bb;
912 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
913 e1f->probability = profile_probability::always ();
915 if (m_default_case_nonstandard)
916 e2f = NULL;
917 else
919 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
920 e2f->probability = profile_probability::always ();
923 /* frequencies of the new BBs */
924 bb1->count = e01->count ();
925 bb2->count = e02->count ();
926 if (!m_default_case_nonstandard)
927 bbf->count = e1f->count () + e2f->count ();
929 /* Tidy blocks that have become unreachable. */
930 prune_bbs (bbd, m_final_bb,
931 m_default_case_nonstandard ? m_default_bb : NULL);
933 /* Fixup the PHI nodes in bbF. */
934 fix_phi_nodes (e1f, e2f, bbf);
936 /* Fix the dominator tree, if it is available. */
937 if (dom_info_available_p (CDI_DOMINATORS))
939 vec<basic_block> bbs_to_fix_dom;
941 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
942 if (!m_default_case_nonstandard)
943 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
944 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
945 /* If bbD was the immediate dominator ... */
946 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
948 bbs_to_fix_dom.create (3 + (bb2 != bbf));
949 bbs_to_fix_dom.quick_push (bb0);
950 bbs_to_fix_dom.quick_push (bb1);
951 if (bb2 != bbf)
952 bbs_to_fix_dom.quick_push (bb2);
953 bbs_to_fix_dom.quick_push (bbf);
955 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
956 bbs_to_fix_dom.release ();
960 /* The following function is invoked on every switch statement (the current
961 one is given in SWTCH) and runs the individual phases of switch
962 conversion on it one after another until one fails or the conversion
963 is completed. On success, NULL is in m_reason, otherwise points
964 to a string with the reason why the conversion failed. */
966 void
967 switch_conversion::expand (gswitch *swtch)
969 /* Group case labels so that we get the right results from the heuristics
970 that decide on the code generation approach for this switch. */
971 m_cfg_altered |= group_case_labels_stmt (swtch);
973 /* If this switch is now a degenerate case with only a default label,
974 there is nothing left for us to do. */
975 if (gimple_switch_num_labels (swtch) < 2)
977 m_reason = "switch is a degenerate case";
978 return;
981 collect (swtch);
983 /* No error markers should reach here (they should be filtered out
984 during gimplification). */
985 gcc_checking_assert (TREE_TYPE (m_index_expr) != error_mark_node);
987 /* Prefer bit test if possible. */
988 if (tree_fits_uhwi_p (m_range_size)
989 && bit_test_cluster::can_be_handled (tree_to_uhwi (m_range_size), m_uniq)
990 && bit_test_cluster::is_beneficial (m_count, m_uniq))
992 m_reason = "expanding as bit test is preferable";
993 return;
996 if (m_uniq <= 2)
998 /* This will be expanded as a decision tree . */
999 m_reason = "expanding as jumps is preferable";
1000 return;
1003 /* If there is no common successor, we cannot do the transformation. */
1004 if (!m_final_bb)
1006 m_reason = "no common successor to all case label target blocks found";
1007 return;
1010 /* Check the case label values are within reasonable range: */
1011 if (!check_range ())
1013 gcc_assert (m_reason);
1014 return;
1017 /* For all the cases, see whether they are empty, the assignments they
1018 represent constant and so on... */
1019 if (!check_all_empty_except_final ())
1021 gcc_assert (m_reason);
1022 return;
1024 if (!check_final_bb ())
1026 gcc_assert (m_reason);
1027 return;
1030 /* At this point all checks have passed and we can proceed with the
1031 transformation. */
1033 create_temp_arrays ();
1034 gather_default_values (m_default_case_nonstandard
1035 ? gimple_switch_label (swtch, 1)
1036 : gimple_switch_default_label (swtch));
1037 build_constructors ();
1039 build_arrays (); /* Build the static arrays and assignments. */
1040 gen_inbound_check (); /* Build the bounds check. */
1042 m_cfg_altered = true;
1045 /* Destructor. */
1047 switch_conversion::~switch_conversion ()
1049 XDELETEVEC (m_constructors);
1050 XDELETEVEC (m_default_values);
1053 /* Constructor. */
1055 group_cluster::group_cluster (vec<cluster *> &clusters,
1056 unsigned start, unsigned end)
1058 gcc_checking_assert (end - start + 1 >= 1);
1059 m_prob = profile_probability::never ();
1060 m_cases.create (end - start + 1);
1061 for (unsigned i = start; i <= end; i++)
1063 m_cases.quick_push (static_cast<simple_cluster *> (clusters[i]));
1064 m_prob += clusters[i]->m_prob;
1066 m_subtree_prob = m_prob;
1069 /* Destructor. */
1071 group_cluster::~group_cluster ()
1073 for (unsigned i = 0; i < m_cases.length (); i++)
1074 delete m_cases[i];
1076 m_cases.release ();
1079 /* Dump content of a cluster. */
1081 void
1082 group_cluster::dump (FILE *f, bool details)
1084 unsigned total_values = 0;
1085 for (unsigned i = 0; i < m_cases.length (); i++)
1086 total_values += m_cases[i]->get_range (m_cases[i]->get_low (),
1087 m_cases[i]->get_high ());
1089 unsigned comparison_count = 0;
1090 for (unsigned i = 0; i < m_cases.length (); i++)
1092 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1093 comparison_count += sc->m_range_p ? 2 : 1;
1096 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1097 fprintf (f, "%s", get_type () == JUMP_TABLE ? "JT" : "BT");
1099 if (details)
1100 fprintf (f, "(values:%d comparisons:%d range:" HOST_WIDE_INT_PRINT_DEC
1101 " density: %.2f%%)", total_values, comparison_count, range,
1102 100.0f * comparison_count / range);
1104 fprintf (f, ":");
1105 PRINT_CASE (f, get_low ());
1106 fprintf (f, "-");
1107 PRINT_CASE (f, get_high ());
1108 fprintf (f, " ");
1111 /* Emit GIMPLE code to handle the cluster. */
1113 void
1114 jump_table_cluster::emit (tree index_expr, tree,
1115 tree default_label_expr, basic_block default_bb)
1117 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1118 unsigned HOST_WIDE_INT nondefault_range = 0;
1120 /* For jump table we just emit a new gswitch statement that will
1121 be latter lowered to jump table. */
1122 auto_vec <tree> labels;
1123 labels.create (m_cases.length ());
1125 make_edge (m_case_bb, default_bb, 0);
1126 for (unsigned i = 0; i < m_cases.length (); i++)
1128 labels.quick_push (unshare_expr (m_cases[i]->m_case_label_expr));
1129 make_edge (m_case_bb, m_cases[i]->m_case_bb, 0);
1132 gswitch *s = gimple_build_switch (index_expr,
1133 unshare_expr (default_label_expr), labels);
1134 gimple_stmt_iterator gsi = gsi_start_bb (m_case_bb);
1135 gsi_insert_after (&gsi, s, GSI_NEW_STMT);
1137 /* Set up even probabilities for all cases. */
1138 for (unsigned i = 0; i < m_cases.length (); i++)
1140 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1141 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1142 unsigned HOST_WIDE_INT case_range
1143 = sc->get_range (sc->get_low (), sc->get_high ());
1144 nondefault_range += case_range;
1146 /* case_edge->aux is number of values in a jump-table that are covered
1147 by the case_edge. */
1148 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + case_range);
1151 edge default_edge = gimple_switch_default_edge (cfun, s);
1152 default_edge->probability = profile_probability::never ();
1154 for (unsigned i = 0; i < m_cases.length (); i++)
1156 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1157 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1158 case_edge->probability
1159 = profile_probability::always ().apply_scale ((intptr_t)case_edge->aux,
1160 range);
1163 /* Number of non-default values is probability of default edge. */
1164 default_edge->probability
1165 += profile_probability::always ().apply_scale (nondefault_range,
1166 range).invert ();
1168 switch_decision_tree::reset_out_edges_aux (s);
1171 /* Find jump tables of given CLUSTERS, where all members of the vector
1172 are of type simple_cluster. New clusters are returned. */
1174 vec<cluster *>
1175 jump_table_cluster::find_jump_tables (vec<cluster *> &clusters)
1177 if (!is_enabled ())
1178 return clusters.copy ();
1180 unsigned l = clusters.length ();
1181 auto_vec<min_cluster_item> min;
1182 min.reserve (l + 1);
1184 min.quick_push (min_cluster_item (0, 0, 0));
1186 HOST_WIDE_INT attempts = 0;
1187 for (unsigned i = 1; i <= l; i++)
1189 /* Set minimal # of clusters with i-th item to infinite. */
1190 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1192 for (unsigned j = 0; j < i; j++)
1194 unsigned HOST_WIDE_INT s = min[j].m_non_jt_cases;
1195 if (i - j < case_values_threshold ())
1196 s += i - j;
1198 if (attempts++ == param_max_switch_clustering_attempts)
1200 if (dump_file)
1201 fprintf (dump_file, ";; Bail out: "
1202 "--param=max-switch-clustering-attempts reached\n");
1203 return clusters.copy ();
1206 /* Prefer clusters with smaller number of numbers covered. */
1207 if ((min[j].m_count + 1 < min[i].m_count
1208 || (min[j].m_count + 1 == min[i].m_count
1209 && s < min[i].m_non_jt_cases))
1210 && can_be_handled (clusters, j, i - 1))
1211 min[i] = min_cluster_item (min[j].m_count + 1, j, s);
1214 gcc_checking_assert (min[i].m_count != INT_MAX);
1217 /* No result. */
1218 if (min[l].m_count == l)
1219 return clusters.copy ();
1221 vec<cluster *> output;
1222 output.create (4);
1224 /* Find and build the clusters. */
1225 for (unsigned int end = l;;)
1227 int start = min[end].m_start;
1229 /* Do not allow clusters with small number of cases. */
1230 if (is_beneficial (clusters, start, end - 1))
1231 output.safe_push (new jump_table_cluster (clusters, start, end - 1));
1232 else
1233 for (int i = end - 1; i >= start; i--)
1234 output.safe_push (clusters[i]);
1236 end = start;
1238 if (start <= 0)
1239 break;
1242 output.reverse ();
1243 return output;
1246 /* Return true when cluster starting at START and ending at END (inclusive)
1247 can build a jump-table. */
1249 bool
1250 jump_table_cluster::can_be_handled (const vec<cluster *> &clusters,
1251 unsigned start, unsigned end)
1253 /* If the switch is relatively small such that the cost of one
1254 indirect jump on the target are higher than the cost of a
1255 decision tree, go with the decision tree.
1257 If range of values is much bigger than number of values,
1258 or if it is too large to represent in a HOST_WIDE_INT,
1259 make a sequence of conditional branches instead of a dispatch.
1261 The definition of "much bigger" depends on whether we are
1262 optimizing for size or for speed.
1264 For algorithm correctness, jump table for a single case must return
1265 true. We bail out in is_beneficial if it's called just for
1266 a single case. */
1267 if (start == end)
1268 return true;
1270 unsigned HOST_WIDE_INT max_ratio
1271 = (optimize_insn_for_size_p ()
1272 ? param_jump_table_max_growth_ratio_for_size
1273 : param_jump_table_max_growth_ratio_for_speed);
1274 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1275 clusters[end]->get_high ());
1276 /* Check overflow. */
1277 if (range == 0)
1278 return false;
1280 unsigned HOST_WIDE_INT comparison_count = 0;
1281 for (unsigned i = start; i <= end; i++)
1283 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1284 comparison_count += sc->m_range_p ? 2 : 1;
1287 unsigned HOST_WIDE_INT lhs = 100 * range;
1288 if (lhs < range)
1289 return false;
1291 return lhs <= max_ratio * comparison_count;
1294 /* Return true if cluster starting at START and ending at END (inclusive)
1295 is profitable transformation. */
1297 bool
1298 jump_table_cluster::is_beneficial (const vec<cluster *> &,
1299 unsigned start, unsigned end)
1301 /* Single case bail out. */
1302 if (start == end)
1303 return false;
1305 return end - start + 1 >= case_values_threshold ();
1308 /* Find bit tests of given CLUSTERS, where all members of the vector
1309 are of type simple_cluster. New clusters are returned. */
1311 vec<cluster *>
1312 bit_test_cluster::find_bit_tests (vec<cluster *> &clusters)
1314 unsigned l = clusters.length ();
1315 auto_vec<min_cluster_item> min;
1316 min.reserve (l + 1);
1318 min.quick_push (min_cluster_item (0, 0, 0));
1320 HOST_WIDE_INT attempts = 0;
1321 for (unsigned i = 1; i <= l; i++)
1323 /* Set minimal # of clusters with i-th item to infinite. */
1324 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1326 for (unsigned j = 0; j < i; j++)
1328 if (attempts++ == param_max_switch_clustering_attempts)
1330 if (dump_file)
1331 fprintf (dump_file, ";; Bail out: "
1332 "--param=max-switch-clustering-attempts reached\n");
1333 return clusters.copy ();
1335 if (min[j].m_count + 1 < min[i].m_count
1336 && can_be_handled (clusters, j, i - 1))
1337 min[i] = min_cluster_item (min[j].m_count + 1, j, INT_MAX);
1340 gcc_checking_assert (min[i].m_count != INT_MAX);
1343 /* No result. */
1344 if (min[l].m_count == l)
1345 return clusters.copy ();
1347 vec<cluster *> output;
1348 output.create (4);
1350 /* Find and build the clusters. */
1351 for (unsigned end = l;;)
1353 int start = min[end].m_start;
1355 if (is_beneficial (clusters, start, end - 1))
1357 bool entire = start == 0 && end == clusters.length ();
1358 output.safe_push (new bit_test_cluster (clusters, start, end - 1,
1359 entire));
1361 else
1362 for (int i = end - 1; i >= start; i--)
1363 output.safe_push (clusters[i]);
1365 end = start;
1367 if (start <= 0)
1368 break;
1371 output.reverse ();
1372 return output;
1375 /* Return true when RANGE of case values with UNIQ labels
1376 can build a bit test. */
1378 bool
1379 bit_test_cluster::can_be_handled (unsigned HOST_WIDE_INT range,
1380 unsigned int uniq)
1382 /* Check overflow. */
1383 if (range == 0)
1384 return 0;
1386 if (range >= GET_MODE_BITSIZE (word_mode))
1387 return false;
1389 return uniq <= 3;
1392 /* Return true when cluster starting at START and ending at END (inclusive)
1393 can build a bit test. */
1395 bool
1396 bit_test_cluster::can_be_handled (const vec<cluster *> &clusters,
1397 unsigned start, unsigned end)
1399 /* For algorithm correctness, bit test for a single case must return
1400 true. We bail out in is_beneficial if it's called just for
1401 a single case. */
1402 if (start == end)
1403 return true;
1405 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1406 clusters[end]->get_high ());
1407 auto_bitmap dest_bbs;
1409 for (unsigned i = start; i <= end; i++)
1411 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1412 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
1415 return can_be_handled (range, bitmap_count_bits (dest_bbs));
1418 /* Return true when COUNT of cases of UNIQ labels is beneficial for bit test
1419 transformation. */
1421 bool
1422 bit_test_cluster::is_beneficial (unsigned count, unsigned uniq)
1424 return (((uniq == 1 && count >= 3)
1425 || (uniq == 2 && count >= 5)
1426 || (uniq == 3 && count >= 6)));
1429 /* Return true if cluster starting at START and ending at END (inclusive)
1430 is profitable transformation. */
1432 bool
1433 bit_test_cluster::is_beneficial (const vec<cluster *> &clusters,
1434 unsigned start, unsigned end)
1436 /* Single case bail out. */
1437 if (start == end)
1438 return false;
1440 auto_bitmap dest_bbs;
1442 for (unsigned i = start; i <= end; i++)
1444 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1445 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
1448 unsigned uniq = bitmap_count_bits (dest_bbs);
1449 unsigned count = end - start + 1;
1450 return is_beneficial (count, uniq);
1453 /* Comparison function for qsort to order bit tests by decreasing
1454 probability of execution. */
1457 case_bit_test::cmp (const void *p1, const void *p2)
1459 const case_bit_test *const d1 = (const case_bit_test *) p1;
1460 const case_bit_test *const d2 = (const case_bit_test *) p2;
1462 if (d2->bits != d1->bits)
1463 return d2->bits - d1->bits;
1465 /* Stabilize the sort. */
1466 return (LABEL_DECL_UID (CASE_LABEL (d2->label))
1467 - LABEL_DECL_UID (CASE_LABEL (d1->label)));
1470 /* Expand a switch statement by a short sequence of bit-wise
1471 comparisons. "switch(x)" is effectively converted into
1472 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
1473 integer constants.
1475 INDEX_EXPR is the value being switched on.
1477 MINVAL is the lowest case value of in the case nodes,
1478 and RANGE is highest value minus MINVAL. MINVAL and RANGE
1479 are not guaranteed to be of the same type as INDEX_EXPR
1480 (the gimplifier doesn't change the type of case label values,
1481 and MINVAL and RANGE are derived from those values).
1482 MAXVAL is MINVAL + RANGE.
1484 There *MUST* be max_case_bit_tests or less unique case
1485 node targets. */
1487 void
1488 bit_test_cluster::emit (tree index_expr, tree index_type,
1489 tree, basic_block default_bb)
1491 case_bit_test test[m_max_case_bit_tests] = { {} };
1492 unsigned int i, j, k;
1493 unsigned int count;
1495 tree unsigned_index_type = range_check_type (index_type);
1497 gimple_stmt_iterator gsi;
1498 gassign *shift_stmt;
1500 tree idx, tmp, csui;
1501 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
1502 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
1503 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
1504 int prec = TYPE_PRECISION (word_type_node);
1505 wide_int wone = wi::one (prec);
1507 tree minval = get_low ();
1508 tree maxval = get_high ();
1509 tree range = int_const_binop (MINUS_EXPR, maxval, minval);
1510 unsigned HOST_WIDE_INT bt_range = get_range (minval, maxval);
1512 /* Go through all case labels, and collect the case labels, profile
1513 counts, and other information we need to build the branch tests. */
1514 count = 0;
1515 for (i = 0; i < m_cases.length (); i++)
1517 unsigned int lo, hi;
1518 simple_cluster *n = static_cast<simple_cluster *> (m_cases[i]);
1519 for (k = 0; k < count; k++)
1520 if (n->m_case_bb == test[k].target_bb)
1521 break;
1523 if (k == count)
1525 gcc_checking_assert (count < m_max_case_bit_tests);
1526 test[k].mask = wi::zero (prec);
1527 test[k].target_bb = n->m_case_bb;
1528 test[k].label = n->m_case_label_expr;
1529 test[k].bits = 0;
1530 count++;
1533 test[k].bits += n->get_range (n->get_low (), n->get_high ());
1535 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_low (), minval));
1536 if (n->get_high () == NULL_TREE)
1537 hi = lo;
1538 else
1539 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_high (),
1540 minval));
1542 for (j = lo; j <= hi; j++)
1543 test[k].mask |= wi::lshift (wone, j);
1546 qsort (test, count, sizeof (*test), case_bit_test::cmp);
1548 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
1549 the minval subtractions, but it might make the mask constants more
1550 expensive. So, compare the costs. */
1551 if (compare_tree_int (minval, 0) > 0
1552 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
1554 int cost_diff;
1555 HOST_WIDE_INT m = tree_to_uhwi (minval);
1556 rtx reg = gen_raw_REG (word_mode, 10000);
1557 bool speed_p = optimize_insn_for_speed_p ();
1558 cost_diff = set_src_cost (gen_rtx_PLUS (word_mode, reg,
1559 GEN_INT (-m)),
1560 word_mode, speed_p);
1561 for (i = 0; i < count; i++)
1563 rtx r = immed_wide_int_const (test[i].mask, word_mode);
1564 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
1565 word_mode, speed_p);
1566 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
1567 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
1568 word_mode, speed_p);
1570 if (cost_diff > 0)
1572 for (i = 0; i < count; i++)
1573 test[i].mask = wi::lshift (test[i].mask, m);
1574 minval = build_zero_cst (TREE_TYPE (minval));
1575 range = maxval;
1579 /* Now build the test-and-branch code. */
1581 gsi = gsi_last_bb (m_case_bb);
1583 /* idx = (unsigned)x - minval. */
1584 idx = fold_convert (unsigned_index_type, index_expr);
1585 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
1586 fold_convert (unsigned_index_type, minval));
1587 idx = force_gimple_operand_gsi (&gsi, idx,
1588 /*simple=*/true, NULL_TREE,
1589 /*before=*/true, GSI_SAME_STMT);
1591 if (m_handles_entire_switch)
1593 /* if (idx > range) goto default */
1594 range
1595 = force_gimple_operand_gsi (&gsi,
1596 fold_convert (unsigned_index_type, range),
1597 /*simple=*/true, NULL_TREE,
1598 /*before=*/true, GSI_SAME_STMT);
1599 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
1600 basic_block new_bb
1601 = hoist_edge_and_branch_if_true (&gsi, tmp, default_bb,
1602 profile_probability::unlikely ());
1603 gsi = gsi_last_bb (new_bb);
1606 /* csui = (1 << (word_mode) idx) */
1607 csui = make_ssa_name (word_type_node);
1608 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
1609 fold_convert (word_type_node, idx));
1610 tmp = force_gimple_operand_gsi (&gsi, tmp,
1611 /*simple=*/false, NULL_TREE,
1612 /*before=*/true, GSI_SAME_STMT);
1613 shift_stmt = gimple_build_assign (csui, tmp);
1614 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
1615 update_stmt (shift_stmt);
1617 profile_probability prob = profile_probability::always ();
1619 /* for each unique set of cases:
1620 if (const & csui) goto target */
1621 for (k = 0; k < count; k++)
1623 prob = profile_probability::always ().apply_scale (test[k].bits,
1624 bt_range);
1625 bt_range -= test[k].bits;
1626 tmp = wide_int_to_tree (word_type_node, test[k].mask);
1627 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
1628 tmp = force_gimple_operand_gsi (&gsi, tmp,
1629 /*simple=*/true, NULL_TREE,
1630 /*before=*/true, GSI_SAME_STMT);
1631 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
1632 basic_block new_bb
1633 = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_bb, prob);
1634 gsi = gsi_last_bb (new_bb);
1637 /* We should have removed all edges now. */
1638 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
1640 /* If nothing matched, go to the default label. */
1641 edge e = make_edge (gsi_bb (gsi), default_bb, EDGE_FALLTHRU);
1642 e->probability = profile_probability::always ();
1645 /* Split the basic block at the statement pointed to by GSIP, and insert
1646 a branch to the target basic block of E_TRUE conditional on tree
1647 expression COND.
1649 It is assumed that there is already an edge from the to-be-split
1650 basic block to E_TRUE->dest block. This edge is removed, and the
1651 profile information on the edge is re-used for the new conditional
1652 jump.
1654 The CFG is updated. The dominator tree will not be valid after
1655 this transformation, but the immediate dominators are updated if
1656 UPDATE_DOMINATORS is true.
1658 Returns the newly created basic block. */
1660 basic_block
1661 bit_test_cluster::hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
1662 tree cond, basic_block case_bb,
1663 profile_probability prob)
1665 tree tmp;
1666 gcond *cond_stmt;
1667 edge e_false;
1668 basic_block new_bb, split_bb = gsi_bb (*gsip);
1670 edge e_true = make_edge (split_bb, case_bb, EDGE_TRUE_VALUE);
1671 e_true->probability = prob;
1672 gcc_assert (e_true->src == split_bb);
1674 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
1675 /*before=*/true, GSI_SAME_STMT);
1676 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
1677 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
1679 e_false = split_block (split_bb, cond_stmt);
1680 new_bb = e_false->dest;
1681 redirect_edge_pred (e_true, split_bb);
1683 e_false->flags &= ~EDGE_FALLTHRU;
1684 e_false->flags |= EDGE_FALSE_VALUE;
1685 e_false->probability = e_true->probability.invert ();
1686 new_bb->count = e_false->count ();
1688 return new_bb;
1691 /* Compute the number of case labels that correspond to each outgoing edge of
1692 switch statement. Record this information in the aux field of the edge. */
1694 void
1695 switch_decision_tree::compute_cases_per_edge ()
1697 reset_out_edges_aux (m_switch);
1698 int ncases = gimple_switch_num_labels (m_switch);
1699 for (int i = ncases - 1; i >= 1; --i)
1701 edge case_edge = gimple_switch_edge (cfun, m_switch, i);
1702 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1);
1706 /* Analyze switch statement and return true when the statement is expanded
1707 as decision tree. */
1709 bool
1710 switch_decision_tree::analyze_switch_statement ()
1712 unsigned l = gimple_switch_num_labels (m_switch);
1713 basic_block bb = gimple_bb (m_switch);
1714 auto_vec<cluster *> clusters;
1715 clusters.create (l - 1);
1717 basic_block default_bb = gimple_switch_default_bb (cfun, m_switch);
1718 m_case_bbs.reserve (l);
1719 m_case_bbs.quick_push (default_bb);
1721 compute_cases_per_edge ();
1723 for (unsigned i = 1; i < l; i++)
1725 tree elt = gimple_switch_label (m_switch, i);
1726 tree lab = CASE_LABEL (elt);
1727 basic_block case_bb = label_to_block (cfun, lab);
1728 edge case_edge = find_edge (bb, case_bb);
1729 tree low = CASE_LOW (elt);
1730 tree high = CASE_HIGH (elt);
1732 profile_probability p
1733 = case_edge->probability.apply_scale (1, (intptr_t) (case_edge->aux));
1734 clusters.quick_push (new simple_cluster (low, high, elt, case_edge->dest,
1735 p));
1736 m_case_bbs.quick_push (case_edge->dest);
1739 reset_out_edges_aux (m_switch);
1741 /* Find jump table clusters. */
1742 vec<cluster *> output = jump_table_cluster::find_jump_tables (clusters);
1744 /* Find bit test clusters. */
1745 vec<cluster *> output2;
1746 auto_vec<cluster *> tmp;
1747 output2.create (1);
1748 tmp.create (1);
1750 for (unsigned i = 0; i < output.length (); i++)
1752 cluster *c = output[i];
1753 if (c->get_type () != SIMPLE_CASE)
1755 if (!tmp.is_empty ())
1757 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp);
1758 output2.safe_splice (n);
1759 n.release ();
1760 tmp.truncate (0);
1762 output2.safe_push (c);
1764 else
1765 tmp.safe_push (c);
1768 /* We still can have a temporary vector to test. */
1769 if (!tmp.is_empty ())
1771 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp);
1772 output2.safe_splice (n);
1773 n.release ();
1776 if (dump_file)
1778 fprintf (dump_file, ";; GIMPLE switch case clusters: ");
1779 for (unsigned i = 0; i < output2.length (); i++)
1780 output2[i]->dump (dump_file, dump_flags & TDF_DETAILS);
1781 fprintf (dump_file, "\n");
1784 output.release ();
1786 bool expanded = try_switch_expansion (output2);
1788 for (unsigned i = 0; i < output2.length (); i++)
1789 delete output2[i];
1791 output2.release ();
1793 return expanded;
1796 /* Attempt to expand CLUSTERS as a decision tree. Return true when
1797 expanded. */
1799 bool
1800 switch_decision_tree::try_switch_expansion (vec<cluster *> &clusters)
1802 tree index_expr = gimple_switch_index (m_switch);
1803 tree index_type = TREE_TYPE (index_expr);
1804 basic_block bb = gimple_bb (m_switch);
1806 if (gimple_switch_num_labels (m_switch) == 1
1807 || range_check_type (index_type) == NULL_TREE)
1808 return false;
1810 /* Find the default case target label. */
1811 edge default_edge = gimple_switch_default_edge (cfun, m_switch);
1812 m_default_bb = default_edge->dest;
1814 /* Do the insertion of a case label into m_case_list. The labels are
1815 fed to us in descending order from the sorted vector of case labels used
1816 in the tree part of the middle end. So the list we construct is
1817 sorted in ascending order. */
1819 for (int i = clusters.length () - 1; i >= 0; i--)
1821 case_tree_node *r = m_case_list;
1822 m_case_list = m_case_node_pool.allocate ();
1823 m_case_list->m_right = r;
1824 m_case_list->m_c = clusters[i];
1827 record_phi_operand_mapping ();
1829 /* Split basic block that contains the gswitch statement. */
1830 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1831 edge e;
1832 if (gsi_end_p (gsi))
1833 e = split_block_after_labels (bb);
1834 else
1836 gsi_prev (&gsi);
1837 e = split_block (bb, gsi_stmt (gsi));
1839 bb = split_edge (e);
1841 /* Create new basic blocks for non-case clusters where specific expansion
1842 needs to happen. */
1843 for (unsigned i = 0; i < clusters.length (); i++)
1844 if (clusters[i]->get_type () != SIMPLE_CASE)
1846 clusters[i]->m_case_bb = create_empty_bb (bb);
1847 clusters[i]->m_case_bb->count = bb->count;
1848 clusters[i]->m_case_bb->loop_father = bb->loop_father;
1851 /* Do not do an extra work for a single cluster. */
1852 if (clusters.length () == 1
1853 && clusters[0]->get_type () != SIMPLE_CASE)
1855 cluster *c = clusters[0];
1856 c->emit (index_expr, index_type,
1857 gimple_switch_default_label (m_switch), m_default_bb);
1858 redirect_edge_succ (single_succ_edge (bb), c->m_case_bb);
1860 else
1862 emit (bb, index_expr, default_edge->probability, index_type);
1864 /* Emit cluster-specific switch handling. */
1865 for (unsigned i = 0; i < clusters.length (); i++)
1866 if (clusters[i]->get_type () != SIMPLE_CASE)
1867 clusters[i]->emit (index_expr, index_type,
1868 gimple_switch_default_label (m_switch),
1869 m_default_bb);
1872 fix_phi_operands_for_edges ();
1874 return true;
1877 /* Before switch transformation, record all SSA_NAMEs defined in switch BB
1878 and used in a label basic block. */
1880 void
1881 switch_decision_tree::record_phi_operand_mapping ()
1883 basic_block switch_bb = gimple_bb (m_switch);
1884 /* Record all PHI nodes that have to be fixed after conversion. */
1885 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1887 gphi_iterator gsi;
1888 basic_block bb = m_case_bbs[i];
1889 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1891 gphi *phi = gsi.phi ();
1893 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
1895 basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src;
1896 if (phi_src_bb == switch_bb)
1898 tree def = gimple_phi_arg_def (phi, i);
1899 tree result = gimple_phi_result (phi);
1900 m_phi_mapping.put (result, def);
1901 break;
1908 /* Append new operands to PHI statements that were introduced due to
1909 addition of new edges to case labels. */
1911 void
1912 switch_decision_tree::fix_phi_operands_for_edges ()
1914 gphi_iterator gsi;
1916 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1918 basic_block bb = m_case_bbs[i];
1919 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1921 gphi *phi = gsi.phi ();
1922 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
1924 tree def = gimple_phi_arg_def (phi, j);
1925 if (def == NULL_TREE)
1927 edge e = gimple_phi_arg_edge (phi, j);
1928 tree *definition
1929 = m_phi_mapping.get (gimple_phi_result (phi));
1930 gcc_assert (definition);
1931 add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION);
1938 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
1939 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
1941 We generate a binary decision tree to select the appropriate target
1942 code. */
1944 void
1945 switch_decision_tree::emit (basic_block bb, tree index_expr,
1946 profile_probability default_prob, tree index_type)
1948 balance_case_nodes (&m_case_list, NULL);
1950 if (dump_file)
1951 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1952 if (dump_file && (dump_flags & TDF_DETAILS))
1954 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
1955 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
1956 gcc_assert (m_case_list != NULL);
1957 dump_case_nodes (dump_file, m_case_list, indent_step, 0);
1960 bb = emit_case_nodes (bb, index_expr, m_case_list, default_prob, index_type,
1961 gimple_location (m_switch));
1963 if (bb)
1964 emit_jump (bb, m_default_bb);
1966 /* Remove all edges and do just an edge that will reach default_bb. */
1967 bb = gimple_bb (m_switch);
1968 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1969 gsi_remove (&gsi, true);
1971 delete_basic_block (bb);
1974 /* Take an ordered list of case nodes
1975 and transform them into a near optimal binary tree,
1976 on the assumption that any target code selection value is as
1977 likely as any other.
1979 The transformation is performed by splitting the ordered
1980 list into two equal sections plus a pivot. The parts are
1981 then attached to the pivot as left and right branches. Each
1982 branch is then transformed recursively. */
1984 void
1985 switch_decision_tree::balance_case_nodes (case_tree_node **head,
1986 case_tree_node *parent)
1988 case_tree_node *np;
1990 np = *head;
1991 if (np)
1993 int i = 0;
1994 int ranges = 0;
1995 case_tree_node **npp;
1996 case_tree_node *left;
1997 profile_probability prob = profile_probability::never ();
1999 /* Count the number of entries on branch. Also count the ranges. */
2001 while (np)
2003 if (!tree_int_cst_equal (np->m_c->get_low (), np->m_c->get_high ()))
2004 ranges++;
2006 i++;
2007 prob += np->m_c->m_prob;
2008 np = np->m_right;
2011 if (i > 2)
2013 /* Split this list if it is long enough for that to help. */
2014 npp = head;
2015 left = *npp;
2016 profile_probability pivot_prob = prob.apply_scale (1, 2);
2018 /* Find the place in the list that bisects the list's total cost,
2019 where ranges count as 2. */
2020 while (1)
2022 /* Skip nodes while their probability does not reach
2023 that amount. */
2024 prob -= (*npp)->m_c->m_prob;
2025 if ((prob.initialized_p () && prob < pivot_prob)
2026 || ! (*npp)->m_right)
2027 break;
2028 npp = &(*npp)->m_right;
2031 np = *npp;
2032 *npp = 0;
2033 *head = np;
2034 np->m_parent = parent;
2035 np->m_left = left == np ? NULL : left;
2037 /* Optimize each of the two split parts. */
2038 balance_case_nodes (&np->m_left, np);
2039 balance_case_nodes (&np->m_right, np);
2040 np->m_c->m_subtree_prob = np->m_c->m_prob;
2041 if (np->m_left)
2042 np->m_c->m_subtree_prob += np->m_left->m_c->m_subtree_prob;
2043 if (np->m_right)
2044 np->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2046 else
2048 /* Else leave this branch as one level,
2049 but fill in `parent' fields. */
2050 np = *head;
2051 np->m_parent = parent;
2052 np->m_c->m_subtree_prob = np->m_c->m_prob;
2053 for (; np->m_right; np = np->m_right)
2055 np->m_right->m_parent = np;
2056 (*head)->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2062 /* Dump ROOT, a list or tree of case nodes, to file. */
2064 void
2065 switch_decision_tree::dump_case_nodes (FILE *f, case_tree_node *root,
2066 int indent_step, int indent_level)
2068 if (root == 0)
2069 return;
2070 indent_level++;
2072 dump_case_nodes (f, root->m_left, indent_step, indent_level);
2074 fputs (";; ", f);
2075 fprintf (f, "%*s", indent_step * indent_level, "");
2076 root->m_c->dump (f);
2077 root->m_c->m_prob.dump (f);
2078 fputs (" subtree: ", f);
2079 root->m_c->m_subtree_prob.dump (f);
2080 fputs (")\n", f);
2082 dump_case_nodes (f, root->m_right, indent_step, indent_level);
2086 /* Add an unconditional jump to CASE_BB that happens in basic block BB. */
2088 void
2089 switch_decision_tree::emit_jump (basic_block bb, basic_block case_bb)
2091 edge e = single_succ_edge (bb);
2092 redirect_edge_succ (e, case_bb);
2095 /* Generate code to compare OP0 with OP1 so that the condition codes are
2096 set and to jump to LABEL_BB if the condition is true.
2097 COMPARISON is the GIMPLE comparison (EQ, NE, GT, etc.).
2098 PROB is the probability of jumping to LABEL_BB. */
2100 basic_block
2101 switch_decision_tree::emit_cmp_and_jump_insns (basic_block bb, tree op0,
2102 tree op1, tree_code comparison,
2103 basic_block label_bb,
2104 profile_probability prob,
2105 location_t loc)
2107 // TODO: it's once called with lhs != index.
2108 op1 = fold_convert (TREE_TYPE (op0), op1);
2110 gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE);
2111 gimple_set_location (cond, loc);
2112 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2113 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
2115 gcc_assert (single_succ_p (bb));
2117 /* Make a new basic block where false branch will take place. */
2118 edge false_edge = split_block (bb, cond);
2119 false_edge->flags = EDGE_FALSE_VALUE;
2120 false_edge->probability = prob.invert ();
2122 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2123 true_edge->probability = prob;
2125 return false_edge->dest;
2128 /* Generate code to jump to LABEL if OP0 and OP1 are equal.
2129 PROB is the probability of jumping to LABEL_BB.
2130 BB is a basic block where the new condition will be placed. */
2132 basic_block
2133 switch_decision_tree::do_jump_if_equal (basic_block bb, tree op0, tree op1,
2134 basic_block label_bb,
2135 profile_probability prob,
2136 location_t loc)
2138 op1 = fold_convert (TREE_TYPE (op0), op1);
2140 gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE);
2141 gimple_set_location (cond, loc);
2142 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2143 gsi_insert_before (&gsi, cond, GSI_SAME_STMT);
2145 gcc_assert (single_succ_p (bb));
2147 /* Make a new basic block where false branch will take place. */
2148 edge false_edge = split_block (bb, cond);
2149 false_edge->flags = EDGE_FALSE_VALUE;
2150 false_edge->probability = prob.invert ();
2152 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2153 true_edge->probability = prob;
2155 return false_edge->dest;
2158 /* Emit step-by-step code to select a case for the value of INDEX.
2159 The thus generated decision tree follows the form of the
2160 case-node binary tree NODE, whose nodes represent test conditions.
2161 DEFAULT_PROB is probability of cases leading to default BB.
2162 INDEX_TYPE is the type of the index of the switch. */
2164 basic_block
2165 switch_decision_tree::emit_case_nodes (basic_block bb, tree index,
2166 case_tree_node *node,
2167 profile_probability default_prob,
2168 tree index_type, location_t loc)
2170 profile_probability p;
2172 /* If node is null, we are done. */
2173 if (node == NULL)
2174 return bb;
2176 /* Single value case. */
2177 if (node->m_c->is_single_value_p ())
2179 /* Node is single valued. First see if the index expression matches
2180 this node and then check our children, if any. */
2181 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2182 bb = do_jump_if_equal (bb, index, node->m_c->get_low (),
2183 node->m_c->m_case_bb, p, loc);
2184 /* Since this case is taken at this point, reduce its weight from
2185 subtree_weight. */
2186 node->m_c->m_subtree_prob -= p;
2188 if (node->m_left != NULL && node->m_right != NULL)
2190 /* 1) the node has both children
2192 If both children are single-valued cases with no
2193 children, finish up all the work. This way, we can save
2194 one ordered comparison. */
2196 if (!node->m_left->has_child ()
2197 && node->m_left->m_c->is_single_value_p ()
2198 && !node->m_right->has_child ()
2199 && node->m_right->m_c->is_single_value_p ())
2201 p = (node->m_right->m_c->m_prob
2202 / (node->m_c->m_subtree_prob + default_prob));
2203 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2204 node->m_right->m_c->m_case_bb, p, loc);
2206 p = (node->m_left->m_c->m_prob
2207 / (node->m_c->m_subtree_prob + default_prob));
2208 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2209 node->m_left->m_c->m_case_bb, p, loc);
2211 else
2213 /* Branch to a label where we will handle it later. */
2214 basic_block test_bb = split_edge (single_succ_edge (bb));
2215 redirect_edge_succ (single_pred_edge (test_bb),
2216 single_succ_edge (bb)->dest);
2218 p = ((node->m_right->m_c->m_subtree_prob
2219 + default_prob.apply_scale (1, 2))
2220 / (node->m_c->m_subtree_prob + default_prob));
2221 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2222 GT_EXPR, test_bb, p, loc);
2223 default_prob = default_prob.apply_scale (1, 2);
2225 /* Handle the left-hand subtree. */
2226 bb = emit_case_nodes (bb, index, node->m_left,
2227 default_prob, index_type, loc);
2229 /* If the left-hand subtree fell through,
2230 don't let it fall into the right-hand subtree. */
2231 if (bb && m_default_bb)
2232 emit_jump (bb, m_default_bb);
2234 bb = emit_case_nodes (test_bb, index, node->m_right,
2235 default_prob, index_type, loc);
2238 else if (node->m_left == NULL && node->m_right != NULL)
2240 /* 2) the node has only right child. */
2242 /* Here we have a right child but no left so we issue a conditional
2243 branch to default and process the right child.
2245 Omit the conditional branch to default if the right child
2246 does not have any children and is single valued; it would
2247 cost too much space to save so little time. */
2249 if (node->m_right->has_child ()
2250 || !node->m_right->m_c->is_single_value_p ())
2252 p = (default_prob.apply_scale (1, 2)
2253 / (node->m_c->m_subtree_prob + default_prob));
2254 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2255 LT_EXPR, m_default_bb, p, loc);
2256 default_prob = default_prob.apply_scale (1, 2);
2258 bb = emit_case_nodes (bb, index, node->m_right, default_prob,
2259 index_type, loc);
2261 else
2263 /* We cannot process node->right normally
2264 since we haven't ruled out the numbers less than
2265 this node's value. So handle node->right explicitly. */
2266 p = (node->m_right->m_c->m_subtree_prob
2267 / (node->m_c->m_subtree_prob + default_prob));
2268 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2269 node->m_right->m_c->m_case_bb, p, loc);
2272 else if (node->m_left != NULL && node->m_right == NULL)
2274 /* 3) just one subtree, on the left. Similar case as previous. */
2276 if (node->m_left->has_child ()
2277 || !node->m_left->m_c->is_single_value_p ())
2279 p = (default_prob.apply_scale (1, 2)
2280 / (node->m_c->m_subtree_prob + default_prob));
2281 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2282 GT_EXPR, m_default_bb, p, loc);
2283 default_prob = default_prob.apply_scale (1, 2);
2285 bb = emit_case_nodes (bb, index, node->m_left, default_prob,
2286 index_type, loc);
2288 else
2290 /* We cannot process node->left normally
2291 since we haven't ruled out the numbers less than
2292 this node's value. So handle node->left explicitly. */
2293 p = (node->m_left->m_c->m_subtree_prob
2294 / (node->m_c->m_subtree_prob + default_prob));
2295 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2296 node->m_left->m_c->m_case_bb, p, loc);
2300 else
2302 /* Node is a range. These cases are very similar to those for a single
2303 value, except that we do not start by testing whether this node
2304 is the one to branch to. */
2305 if (node->has_child () || node->m_c->get_type () != SIMPLE_CASE)
2307 /* Branch to a label where we will handle it later. */
2308 basic_block test_bb = split_edge (single_succ_edge (bb));
2309 redirect_edge_succ (single_pred_edge (test_bb),
2310 single_succ_edge (bb)->dest);
2313 profile_probability right_prob = profile_probability::never ();
2314 if (node->m_right)
2315 right_prob = node->m_right->m_c->m_subtree_prob;
2316 p = ((right_prob + default_prob.apply_scale (1, 2))
2317 / (node->m_c->m_subtree_prob + default_prob));
2319 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2320 GT_EXPR, test_bb, p, loc);
2321 default_prob = default_prob.apply_scale (1, 2);
2323 /* Value belongs to this node or to the left-hand subtree. */
2324 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2325 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2326 GE_EXPR, node->m_c->m_case_bb, p, loc);
2328 /* Handle the left-hand subtree. */
2329 bb = emit_case_nodes (bb, index, node->m_left,
2330 default_prob, index_type, loc);
2332 /* If the left-hand subtree fell through,
2333 don't let it fall into the right-hand subtree. */
2334 if (bb && m_default_bb)
2335 emit_jump (bb, m_default_bb);
2337 bb = emit_case_nodes (test_bb, index, node->m_right,
2338 default_prob, index_type, loc);
2340 else
2342 /* Node has no children so we check low and high bounds to remove
2343 redundant tests. Only one of the bounds can exist,
2344 since otherwise this node is bounded--a case tested already. */
2345 tree lhs, rhs;
2346 generate_range_test (bb, index, node->m_c->get_low (),
2347 node->m_c->get_high (), &lhs, &rhs);
2348 p = default_prob / (node->m_c->m_subtree_prob + default_prob);
2350 bb = emit_cmp_and_jump_insns (bb, lhs, rhs, GT_EXPR,
2351 m_default_bb, p, loc);
2353 emit_jump (bb, node->m_c->m_case_bb);
2354 return NULL;
2358 return bb;
2361 /* The main function of the pass scans statements for switches and invokes
2362 process_switch on them. */
2364 namespace {
2366 const pass_data pass_data_convert_switch =
2368 GIMPLE_PASS, /* type */
2369 "switchconv", /* name */
2370 OPTGROUP_NONE, /* optinfo_flags */
2371 TV_TREE_SWITCH_CONVERSION, /* tv_id */
2372 ( PROP_cfg | PROP_ssa ), /* properties_required */
2373 0, /* properties_provided */
2374 0, /* properties_destroyed */
2375 0, /* todo_flags_start */
2376 TODO_update_ssa, /* todo_flags_finish */
2379 class pass_convert_switch : public gimple_opt_pass
2381 public:
2382 pass_convert_switch (gcc::context *ctxt)
2383 : gimple_opt_pass (pass_data_convert_switch, ctxt)
2386 /* opt_pass methods: */
2387 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
2388 virtual unsigned int execute (function *);
2390 }; // class pass_convert_switch
2392 unsigned int
2393 pass_convert_switch::execute (function *fun)
2395 basic_block bb;
2396 bool cfg_altered = false;
2398 FOR_EACH_BB_FN (bb, fun)
2400 gimple *stmt = last_stmt (bb);
2401 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
2403 if (dump_file)
2405 expanded_location loc = expand_location (gimple_location (stmt));
2407 fprintf (dump_file, "beginning to process the following "
2408 "SWITCH statement (%s:%d) : ------- \n",
2409 loc.file, loc.line);
2410 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2411 putc ('\n', dump_file);
2414 switch_conversion sconv;
2415 sconv.expand (as_a <gswitch *> (stmt));
2416 cfg_altered |= sconv.m_cfg_altered;
2417 if (!sconv.m_reason)
2419 if (dump_file)
2421 fputs ("Switch converted\n", dump_file);
2422 fputs ("--------------------------------\n", dump_file);
2425 /* Make no effort to update the post-dominator tree.
2426 It is actually not that hard for the transformations
2427 we have performed, but it is not supported
2428 by iterate_fix_dominators. */
2429 free_dominance_info (CDI_POST_DOMINATORS);
2431 else
2433 if (dump_file)
2435 fputs ("Bailing out - ", dump_file);
2436 fputs (sconv.m_reason, dump_file);
2437 fputs ("\n--------------------------------\n", dump_file);
2443 return cfg_altered ? TODO_cleanup_cfg : 0;;
2446 } // anon namespace
2448 gimple_opt_pass *
2449 make_pass_convert_switch (gcc::context *ctxt)
2451 return new pass_convert_switch (ctxt);
2454 /* The main function of the pass scans statements for switches and invokes
2455 process_switch on them. */
2457 namespace {
2459 template <bool O0> class pass_lower_switch: public gimple_opt_pass
2461 public:
2462 pass_lower_switch (gcc::context *ctxt) : gimple_opt_pass (data, ctxt) {}
2464 static const pass_data data;
2465 opt_pass *
2466 clone ()
2468 return new pass_lower_switch<O0> (m_ctxt);
2471 virtual bool
2472 gate (function *)
2474 return !O0 || !optimize;
2477 virtual unsigned int execute (function *fun);
2478 }; // class pass_lower_switch
2480 template <bool O0>
2481 const pass_data pass_lower_switch<O0>::data = {
2482 GIMPLE_PASS, /* type */
2483 O0 ? "switchlower_O0" : "switchlower", /* name */
2484 OPTGROUP_NONE, /* optinfo_flags */
2485 TV_TREE_SWITCH_LOWERING, /* tv_id */
2486 ( PROP_cfg | PROP_ssa ), /* properties_required */
2487 0, /* properties_provided */
2488 0, /* properties_destroyed */
2489 0, /* todo_flags_start */
2490 TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
2493 template <bool O0>
2494 unsigned int
2495 pass_lower_switch<O0>::execute (function *fun)
2497 basic_block bb;
2498 bool expanded = false;
2500 auto_vec<gimple *> switch_statements;
2501 switch_statements.create (1);
2503 FOR_EACH_BB_FN (bb, fun)
2505 gimple *stmt = last_stmt (bb);
2506 gswitch *swtch;
2507 if (stmt && (swtch = dyn_cast<gswitch *> (stmt)))
2509 if (!O0)
2510 group_case_labels_stmt (swtch);
2511 switch_statements.safe_push (swtch);
2515 for (unsigned i = 0; i < switch_statements.length (); i++)
2517 gimple *stmt = switch_statements[i];
2518 if (dump_file)
2520 expanded_location loc = expand_location (gimple_location (stmt));
2522 fprintf (dump_file, "beginning to process the following "
2523 "SWITCH statement (%s:%d) : ------- \n",
2524 loc.file, loc.line);
2525 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2526 putc ('\n', dump_file);
2529 gswitch *swtch = dyn_cast<gswitch *> (stmt);
2530 if (swtch)
2532 switch_decision_tree dt (swtch);
2533 expanded |= dt.analyze_switch_statement ();
2537 if (expanded)
2539 free_dominance_info (CDI_DOMINATORS);
2540 free_dominance_info (CDI_POST_DOMINATORS);
2541 mark_virtual_operands_for_renaming (cfun);
2544 return 0;
2547 } // anon namespace
2549 gimple_opt_pass *
2550 make_pass_lower_switch_O0 (gcc::context *ctxt)
2552 return new pass_lower_switch<true> (ctxt);
2554 gimple_opt_pass *
2555 make_pass_lower_switch (gcc::context *ctxt)
2557 return new pass_lower_switch<false> (ctxt);