Makefile.in: Add dummy "install-info" target.
[official-gcc.git] / gcc / tree-vrp.c
blobb137628c975411209ef46cd393cc9122ca68ce40
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "intl.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-chrec.h"
42 /* Set of SSA names found during the dominator traversal of a
43 sub-graph in find_assert_locations. */
44 static sbitmap found_in_subgraph;
46 /* Local functions. */
47 static int compare_values (tree val1, tree val2);
48 static int compare_values_warnv (tree val1, tree val2, bool *);
49 static void vrp_meet (value_range_t *, value_range_t *);
50 static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
52 /* Location information for ASSERT_EXPRs. Each instance of this
53 structure describes an ASSERT_EXPR for an SSA name. Since a single
54 SSA name may have more than one assertion associated with it, these
55 locations are kept in a linked list attached to the corresponding
56 SSA name. */
57 struct assert_locus_d
59 /* Basic block where the assertion would be inserted. */
60 basic_block bb;
62 /* Some assertions need to be inserted on an edge (e.g., assertions
63 generated by COND_EXPRs). In those cases, BB will be NULL. */
64 edge e;
66 /* Pointer to the statement that generated this assertion. */
67 block_stmt_iterator si;
69 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
70 enum tree_code comp_code;
72 /* Value being compared against. */
73 tree val;
75 /* Next node in the linked list. */
76 struct assert_locus_d *next;
79 typedef struct assert_locus_d *assert_locus_t;
81 /* If bit I is present, it means that SSA name N_i has a list of
82 assertions that should be inserted in the IL. */
83 static bitmap need_assert_for;
85 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
86 holds a list of ASSERT_LOCUS_T nodes that describe where
87 ASSERT_EXPRs for SSA name N_I should be inserted. */
88 static assert_locus_t *asserts_for;
90 /* Set of blocks visited in find_assert_locations. Used to avoid
91 visiting the same block more than once. */
92 static sbitmap blocks_visited;
94 /* Value range array. After propagation, VR_VALUE[I] holds the range
95 of values that SSA name N_I may take. */
96 static value_range_t **vr_value;
99 /* Return whether TYPE should use an overflow infinity distinct from
100 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
101 represent a signed overflow during VRP computations. An infinity
102 is distinct from a half-range, which will go from some number to
103 TYPE_{MIN,MAX}_VALUE. */
105 static inline bool
106 needs_overflow_infinity (tree type)
108 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
111 /* Return whether TYPE can support our overflow infinity
112 representation: we use the TREE_OVERFLOW flag, which only exists
113 for constants. If TYPE doesn't support this, we don't optimize
114 cases which would require signed overflow--we drop them to
115 VARYING. */
117 static inline bool
118 supports_overflow_infinity (tree type)
120 #ifdef ENABLE_CHECKING
121 gcc_assert (needs_overflow_infinity (type));
122 #endif
123 return (TYPE_MIN_VALUE (type) != NULL_TREE
124 && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
125 && TYPE_MAX_VALUE (type) != NULL_TREE
126 && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
129 /* VAL is the maximum or minimum value of a type. Return a
130 corresponding overflow infinity. */
132 static inline tree
133 make_overflow_infinity (tree val)
135 #ifdef ENABLE_CHECKING
136 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
137 #endif
138 val = copy_node (val);
139 TREE_OVERFLOW (val) = 1;
140 return val;
143 /* Return a negative overflow infinity for TYPE. */
145 static inline tree
146 negative_overflow_infinity (tree type)
148 #ifdef ENABLE_CHECKING
149 gcc_assert (supports_overflow_infinity (type));
150 #endif
151 return make_overflow_infinity (TYPE_MIN_VALUE (type));
154 /* Return a positive overflow infinity for TYPE. */
156 static inline tree
157 positive_overflow_infinity (tree type)
159 #ifdef ENABLE_CHECKING
160 gcc_assert (supports_overflow_infinity (type));
161 #endif
162 return make_overflow_infinity (TYPE_MAX_VALUE (type));
165 /* Return whether VAL is a negative overflow infinity. */
167 static inline bool
168 is_negative_overflow_infinity (tree val)
170 return (needs_overflow_infinity (TREE_TYPE (val))
171 && CONSTANT_CLASS_P (val)
172 && TREE_OVERFLOW (val)
173 && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
176 /* Return whether VAL is a positive overflow infinity. */
178 static inline bool
179 is_positive_overflow_infinity (tree val)
181 return (needs_overflow_infinity (TREE_TYPE (val))
182 && CONSTANT_CLASS_P (val)
183 && TREE_OVERFLOW (val)
184 && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
187 /* Return whether VAL is a positive or negative overflow infinity. */
189 static inline bool
190 is_overflow_infinity (tree val)
192 return (needs_overflow_infinity (TREE_TYPE (val))
193 && CONSTANT_CLASS_P (val)
194 && TREE_OVERFLOW (val)
195 && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
196 || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
200 /* Return true if ARG is marked with the nonnull attribute in the
201 current function signature. */
203 static bool
204 nonnull_arg_p (tree arg)
206 tree t, attrs, fntype;
207 unsigned HOST_WIDE_INT arg_num;
209 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
211 /* The static chain decl is always non null. */
212 if (arg == cfun->static_chain_decl)
213 return true;
215 fntype = TREE_TYPE (current_function_decl);
216 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
218 /* If "nonnull" wasn't specified, we know nothing about the argument. */
219 if (attrs == NULL_TREE)
220 return false;
222 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
223 if (TREE_VALUE (attrs) == NULL_TREE)
224 return true;
226 /* Get the position number for ARG in the function signature. */
227 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
229 t = TREE_CHAIN (t), arg_num++)
231 if (t == arg)
232 break;
235 gcc_assert (t == arg);
237 /* Now see if ARG_NUM is mentioned in the nonnull list. */
238 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
240 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
241 return true;
244 return false;
248 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
250 static void
251 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
252 tree max, bitmap equiv)
254 #if defined ENABLE_CHECKING
255 /* Check the validity of the range. */
256 if (t == VR_RANGE || t == VR_ANTI_RANGE)
258 int cmp;
260 gcc_assert (min && max);
262 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
263 gcc_assert ((min != TYPE_MIN_VALUE (TREE_TYPE (min))
264 && !is_negative_overflow_infinity (min))
265 || (max != TYPE_MAX_VALUE (TREE_TYPE (max))
266 && !is_positive_overflow_infinity (max)));
268 cmp = compare_values (min, max);
269 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
272 if (t == VR_UNDEFINED || t == VR_VARYING)
273 gcc_assert (min == NULL_TREE && max == NULL_TREE);
275 if (t == VR_UNDEFINED || t == VR_VARYING)
276 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
277 #endif
279 vr->type = t;
280 vr->min = min;
281 vr->max = max;
283 /* Since updating the equivalence set involves deep copying the
284 bitmaps, only do it if absolutely necessary. */
285 if (vr->equiv == NULL)
286 vr->equiv = BITMAP_ALLOC (NULL);
288 if (equiv != vr->equiv)
290 if (equiv && !bitmap_empty_p (equiv))
291 bitmap_copy (vr->equiv, equiv);
292 else
293 bitmap_clear (vr->equiv);
298 /* Copy value range FROM into value range TO. */
300 static inline void
301 copy_value_range (value_range_t *to, value_range_t *from)
303 set_value_range (to, from->type, from->min, from->max, from->equiv);
307 /* Set value range VR to VR_VARYING. */
309 static inline void
310 set_value_range_to_varying (value_range_t *vr)
312 vr->type = VR_VARYING;
313 vr->min = vr->max = NULL_TREE;
314 if (vr->equiv)
315 bitmap_clear (vr->equiv);
318 /* Set value range VR to a non-negative range of type TYPE.
319 OVERFLOW_INFINITY indicates whether to use a overflow infinity
320 rather than TYPE_MAX_VALUE; this should be true if we determine
321 that the range is nonnegative based on the assumption that signed
322 overflow does not occur. */
324 static inline void
325 set_value_range_to_nonnegative (value_range_t *vr, tree type,
326 bool overflow_infinity)
328 tree zero;
330 if (overflow_infinity && !supports_overflow_infinity (type))
332 set_value_range_to_varying (vr);
333 return;
336 zero = build_int_cst (type, 0);
337 set_value_range (vr, VR_RANGE, zero,
338 (overflow_infinity
339 ? positive_overflow_infinity (type)
340 : TYPE_MAX_VALUE (type)),
341 vr->equiv);
344 /* Set value range VR to a non-NULL range of type TYPE. */
346 static inline void
347 set_value_range_to_nonnull (value_range_t *vr, tree type)
349 tree zero = build_int_cst (type, 0);
350 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
354 /* Set value range VR to a NULL range of type TYPE. */
356 static inline void
357 set_value_range_to_null (value_range_t *vr, tree type)
359 tree zero = build_int_cst (type, 0);
360 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
364 /* Set value range VR to a range of a truthvalue of type TYPE. */
366 static inline void
367 set_value_range_to_truthvalue (value_range_t *vr, tree type)
369 if (TYPE_PRECISION (type) == 1)
370 set_value_range_to_varying (vr);
371 else
372 set_value_range (vr, VR_RANGE,
373 build_int_cst (type, 0), build_int_cst (type, 1),
374 vr->equiv);
378 /* Set value range VR to VR_UNDEFINED. */
380 static inline void
381 set_value_range_to_undefined (value_range_t *vr)
383 vr->type = VR_UNDEFINED;
384 vr->min = vr->max = NULL_TREE;
385 if (vr->equiv)
386 bitmap_clear (vr->equiv);
390 /* Return value range information for VAR.
392 If we have no values ranges recorded (ie, VRP is not running), then
393 return NULL. Otherwise create an empty range if none existed for VAR. */
395 static value_range_t *
396 get_value_range (tree var)
398 value_range_t *vr;
399 tree sym;
400 unsigned ver = SSA_NAME_VERSION (var);
402 /* If we have no recorded ranges, then return NULL. */
403 if (! vr_value)
404 return NULL;
406 vr = vr_value[ver];
407 if (vr)
408 return vr;
410 /* Create a default value range. */
411 vr_value[ver] = vr = XCNEW (value_range_t);
413 /* Allocate an equivalence set. */
414 vr->equiv = BITMAP_ALLOC (NULL);
416 /* If VAR is a default definition, the variable can take any value
417 in VAR's type. */
418 sym = SSA_NAME_VAR (var);
419 if (SSA_NAME_IS_DEFAULT_DEF (var))
421 /* Try to use the "nonnull" attribute to create ~[0, 0]
422 anti-ranges for pointers. Note that this is only valid with
423 default definitions of PARM_DECLs. */
424 if (TREE_CODE (sym) == PARM_DECL
425 && POINTER_TYPE_P (TREE_TYPE (sym))
426 && nonnull_arg_p (sym))
427 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
428 else
429 set_value_range_to_varying (vr);
432 return vr;
435 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
437 static inline bool
438 vrp_operand_equal_p (tree val1, tree val2)
440 if (val1 == val2)
441 return true;
442 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
443 return false;
444 if (is_overflow_infinity (val1))
445 return is_overflow_infinity (val2);
446 return true;
449 /* Return true, if the bitmaps B1 and B2 are equal. */
451 static inline bool
452 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
454 return (b1 == b2
455 || (b1 && b2
456 && bitmap_equal_p (b1, b2)));
459 /* Update the value range and equivalence set for variable VAR to
460 NEW_VR. Return true if NEW_VR is different from VAR's previous
461 value.
463 NOTE: This function assumes that NEW_VR is a temporary value range
464 object created for the sole purpose of updating VAR's range. The
465 storage used by the equivalence set from NEW_VR will be freed by
466 this function. Do not call update_value_range when NEW_VR
467 is the range object associated with another SSA name. */
469 static inline bool
470 update_value_range (tree var, value_range_t *new_vr)
472 value_range_t *old_vr;
473 bool is_new;
475 /* Update the value range, if necessary. */
476 old_vr = get_value_range (var);
477 is_new = old_vr->type != new_vr->type
478 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
479 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
480 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
482 if (is_new)
483 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
484 new_vr->equiv);
486 BITMAP_FREE (new_vr->equiv);
487 new_vr->equiv = NULL;
489 return is_new;
493 /* Add VAR and VAR's equivalence set to EQUIV. */
495 static void
496 add_equivalence (bitmap equiv, tree var)
498 unsigned ver = SSA_NAME_VERSION (var);
499 value_range_t *vr = vr_value[ver];
501 bitmap_set_bit (equiv, ver);
502 if (vr && vr->equiv)
503 bitmap_ior_into (equiv, vr->equiv);
507 /* Return true if VR is ~[0, 0]. */
509 static inline bool
510 range_is_nonnull (value_range_t *vr)
512 return vr->type == VR_ANTI_RANGE
513 && integer_zerop (vr->min)
514 && integer_zerop (vr->max);
518 /* Return true if VR is [0, 0]. */
520 static inline bool
521 range_is_null (value_range_t *vr)
523 return vr->type == VR_RANGE
524 && integer_zerop (vr->min)
525 && integer_zerop (vr->max);
529 /* Return true if value range VR involves at least one symbol. */
531 static inline bool
532 symbolic_range_p (value_range_t *vr)
534 return (!is_gimple_min_invariant (vr->min)
535 || !is_gimple_min_invariant (vr->max));
538 /* Return true if value range VR uses a overflow infinity. */
540 static inline bool
541 overflow_infinity_range_p (value_range_t *vr)
543 return (vr->type == VR_RANGE
544 && (is_overflow_infinity (vr->min)
545 || is_overflow_infinity (vr->max)));
548 /* Return false if we can not make a valid comparison based on VR;
549 this will be the case if it uses an overflow infinity and overflow
550 is not undefined (i.e., -fno-strict-overflow is in effect).
551 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
552 uses an overflow infinity. */
554 static bool
555 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
557 gcc_assert (vr->type == VR_RANGE);
558 if (is_overflow_infinity (vr->min))
560 *strict_overflow_p = true;
561 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
562 return false;
564 if (is_overflow_infinity (vr->max))
566 *strict_overflow_p = true;
567 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
568 return false;
570 return true;
574 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
575 ranges obtained so far. */
577 static bool
578 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
580 return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
583 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
584 obtained so far. */
586 static bool
587 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
589 if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
590 return true;
592 /* If we have an expression of the form &X->a, then the expression
593 is nonnull if X is nonnull. */
594 if (TREE_CODE (expr) == ADDR_EXPR)
596 tree base = get_base_address (TREE_OPERAND (expr, 0));
598 if (base != NULL_TREE
599 && TREE_CODE (base) == INDIRECT_REF
600 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
602 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
603 if (range_is_nonnull (vr))
604 return true;
608 return false;
611 /* Returns true if EXPR is a valid value (as expected by compare_values) --
612 a gimple invariant, or SSA_NAME +- CST. */
614 static bool
615 valid_value_p (tree expr)
617 if (TREE_CODE (expr) == SSA_NAME)
618 return true;
620 if (TREE_CODE (expr) == PLUS_EXPR
621 || TREE_CODE (expr) == MINUS_EXPR)
622 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
623 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
625 return is_gimple_min_invariant (expr);
628 /* Return
629 1 if VAL < VAL2
630 0 if !(VAL < VAL2)
631 -2 if those are incomparable. */
632 static inline int
633 operand_less_p (tree val, tree val2)
635 /* LT is folded faster than GE and others. Inline the common case. */
636 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
638 if (TYPE_UNSIGNED (TREE_TYPE (val)))
639 return INT_CST_LT_UNSIGNED (val, val2);
640 else
642 if (INT_CST_LT (val, val2))
643 return 1;
646 else
648 tree tcmp;
650 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
651 if (!tcmp)
652 return -2;
654 if (!integer_zerop (tcmp))
655 return 1;
658 /* val >= val2, not considering overflow infinity. */
659 if (is_negative_overflow_infinity (val))
660 return is_negative_overflow_infinity (val2) ? 0 : 1;
661 else if (is_positive_overflow_infinity (val2))
662 return is_positive_overflow_infinity (val) ? 0 : 1;
664 return 0;
667 /* Compare two values VAL1 and VAL2. Return
669 -2 if VAL1 and VAL2 cannot be compared at compile-time,
670 -1 if VAL1 < VAL2,
671 0 if VAL1 == VAL2,
672 +1 if VAL1 > VAL2, and
673 +2 if VAL1 != VAL2
675 This is similar to tree_int_cst_compare but supports pointer values
676 and values that cannot be compared at compile time.
678 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
679 true if the return value is only valid if we assume that signed
680 overflow is undefined. */
682 static int
683 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
685 if (val1 == val2)
686 return 0;
688 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
689 both integers. */
690 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
691 == POINTER_TYPE_P (TREE_TYPE (val2)));
693 if ((TREE_CODE (val1) == SSA_NAME
694 || TREE_CODE (val1) == PLUS_EXPR
695 || TREE_CODE (val1) == MINUS_EXPR)
696 && (TREE_CODE (val2) == SSA_NAME
697 || TREE_CODE (val2) == PLUS_EXPR
698 || TREE_CODE (val2) == MINUS_EXPR))
700 tree n1, c1, n2, c2;
701 enum tree_code code1, code2;
703 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
704 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
705 same name, return -2. */
706 if (TREE_CODE (val1) == SSA_NAME)
708 code1 = SSA_NAME;
709 n1 = val1;
710 c1 = NULL_TREE;
712 else
714 code1 = TREE_CODE (val1);
715 n1 = TREE_OPERAND (val1, 0);
716 c1 = TREE_OPERAND (val1, 1);
717 if (tree_int_cst_sgn (c1) == -1)
719 if (is_negative_overflow_infinity (c1))
720 return -2;
721 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
722 if (!c1)
723 return -2;
724 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
728 if (TREE_CODE (val2) == SSA_NAME)
730 code2 = SSA_NAME;
731 n2 = val2;
732 c2 = NULL_TREE;
734 else
736 code2 = TREE_CODE (val2);
737 n2 = TREE_OPERAND (val2, 0);
738 c2 = TREE_OPERAND (val2, 1);
739 if (tree_int_cst_sgn (c2) == -1)
741 if (is_negative_overflow_infinity (c2))
742 return -2;
743 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
744 if (!c2)
745 return -2;
746 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
750 /* Both values must use the same name. */
751 if (n1 != n2)
752 return -2;
754 if (code1 == SSA_NAME
755 && code2 == SSA_NAME)
756 /* NAME == NAME */
757 return 0;
759 /* If overflow is defined we cannot simplify more. */
760 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
761 return -2;
763 if (strict_overflow_p != NULL)
764 *strict_overflow_p = true;
766 if (code1 == SSA_NAME)
768 if (code2 == PLUS_EXPR)
769 /* NAME < NAME + CST */
770 return -1;
771 else if (code2 == MINUS_EXPR)
772 /* NAME > NAME - CST */
773 return 1;
775 else if (code1 == PLUS_EXPR)
777 if (code2 == SSA_NAME)
778 /* NAME + CST > NAME */
779 return 1;
780 else if (code2 == PLUS_EXPR)
781 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
782 return compare_values_warnv (c1, c2, strict_overflow_p);
783 else if (code2 == MINUS_EXPR)
784 /* NAME + CST1 > NAME - CST2 */
785 return 1;
787 else if (code1 == MINUS_EXPR)
789 if (code2 == SSA_NAME)
790 /* NAME - CST < NAME */
791 return -1;
792 else if (code2 == PLUS_EXPR)
793 /* NAME - CST1 < NAME + CST2 */
794 return -1;
795 else if (code2 == MINUS_EXPR)
796 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
797 C1 and C2 are swapped in the call to compare_values. */
798 return compare_values_warnv (c2, c1, strict_overflow_p);
801 gcc_unreachable ();
804 /* We cannot compare non-constants. */
805 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
806 return -2;
808 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
810 /* We cannot compare overflowed values, except for overflow
811 infinities. */
812 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
814 if (strict_overflow_p != NULL)
815 *strict_overflow_p = true;
816 if (is_negative_overflow_infinity (val1))
817 return is_negative_overflow_infinity (val2) ? 0 : -1;
818 else if (is_negative_overflow_infinity (val2))
819 return 1;
820 else if (is_positive_overflow_infinity (val1))
821 return is_positive_overflow_infinity (val2) ? 0 : 1;
822 else if (is_positive_overflow_infinity (val2))
823 return -1;
824 return -2;
827 return tree_int_cst_compare (val1, val2);
829 else
831 tree t;
833 /* First see if VAL1 and VAL2 are not the same. */
834 if (val1 == val2 || operand_equal_p (val1, val2, 0))
835 return 0;
837 /* If VAL1 is a lower address than VAL2, return -1. */
838 if (operand_less_p (val1, val2) == 1)
839 return -1;
841 /* If VAL1 is a higher address than VAL2, return +1. */
842 if (operand_less_p (val2, val1) == 1)
843 return 1;
845 /* If VAL1 is different than VAL2, return +2.
846 For integer constants we either have already returned -1 or 1
847 or they are equivalent. We still might succeed in proving
848 something about non-trivial operands. */
849 if (TREE_CODE (val1) != INTEGER_CST
850 || TREE_CODE (val2) != INTEGER_CST)
852 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
853 if (t && tree_expr_nonzero_p (t))
854 return 2;
857 return -2;
861 /* Compare values like compare_values_warnv, but treat comparisons of
862 nonconstants which rely on undefined overflow as incomparable. */
864 static int
865 compare_values (tree val1, tree val2)
867 bool sop;
868 int ret;
870 sop = false;
871 ret = compare_values_warnv (val1, val2, &sop);
872 if (sop
873 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
874 ret = -2;
875 return ret;
879 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
880 0 if VAL is not inside VR,
881 -2 if we cannot tell either way.
883 FIXME, the current semantics of this functions are a bit quirky
884 when taken in the context of VRP. In here we do not care
885 about VR's type. If VR is the anti-range ~[3, 5] the call
886 value_inside_range (4, VR) will return 1.
888 This is counter-intuitive in a strict sense, but the callers
889 currently expect this. They are calling the function
890 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
891 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
892 themselves.
894 This also applies to value_ranges_intersect_p and
895 range_includes_zero_p. The semantics of VR_RANGE and
896 VR_ANTI_RANGE should be encoded here, but that also means
897 adapting the users of these functions to the new semantics.
899 Benchmark compile/20001226-1.c compilation time after changing this
900 function. */
902 static inline int
903 value_inside_range (tree val, value_range_t * vr)
905 int cmp1, cmp2;
907 cmp1 = operand_less_p (val, vr->min);
908 if (cmp1 == -2)
909 return -2;
910 if (cmp1 == 1)
911 return 0;
913 cmp2 = operand_less_p (vr->max, val);
914 if (cmp2 == -2)
915 return -2;
917 return !cmp2;
921 /* Return true if value ranges VR0 and VR1 have a non-empty
922 intersection.
924 Benchmark compile/20001226-1.c compilation time after changing this
925 function.
928 static inline bool
929 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
931 /* The value ranges do not intersect if the maximum of the first range is
932 less than the minimum of the second range or vice versa.
933 When those relations are unknown, we can't do any better. */
934 if (operand_less_p (vr0->max, vr1->min) != 0)
935 return false;
936 if (operand_less_p (vr1->max, vr0->min) != 0)
937 return false;
938 return true;
942 /* Return true if VR includes the value zero, false otherwise. FIXME,
943 currently this will return false for an anti-range like ~[-4, 3].
944 This will be wrong when the semantics of value_inside_range are
945 modified (currently the users of this function expect these
946 semantics). */
948 static inline bool
949 range_includes_zero_p (value_range_t *vr)
951 tree zero;
953 gcc_assert (vr->type != VR_UNDEFINED
954 && vr->type != VR_VARYING
955 && !symbolic_range_p (vr));
957 zero = build_int_cst (TREE_TYPE (vr->min), 0);
958 return (value_inside_range (zero, vr) == 1);
961 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
962 false otherwise or if no value range information is available. */
964 bool
965 ssa_name_nonnegative_p (tree t)
967 value_range_t *vr = get_value_range (t);
969 if (!vr)
970 return false;
972 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
973 which would return a useful value should be encoded as a VR_RANGE. */
974 if (vr->type == VR_RANGE)
976 int result = compare_values (vr->min, integer_zero_node);
978 return (result == 0 || result == 1);
980 return false;
983 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
984 false otherwise or if no value range information is available. */
986 bool
987 ssa_name_nonzero_p (tree t)
989 value_range_t *vr = get_value_range (t);
991 if (!vr)
992 return false;
994 /* A VR_RANGE which does not include zero is a nonzero value. */
995 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
996 return ! range_includes_zero_p (vr);
998 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
999 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1000 return range_includes_zero_p (vr);
1002 return false;
1006 /* Extract value range information from an ASSERT_EXPR EXPR and store
1007 it in *VR_P. */
1009 static void
1010 extract_range_from_assert (value_range_t *vr_p, tree expr)
1012 tree var, cond, limit, min, max, type;
1013 value_range_t *var_vr, *limit_vr;
1014 enum tree_code cond_code;
1016 var = ASSERT_EXPR_VAR (expr);
1017 cond = ASSERT_EXPR_COND (expr);
1019 gcc_assert (COMPARISON_CLASS_P (cond));
1021 /* Find VAR in the ASSERT_EXPR conditional. */
1022 if (var == TREE_OPERAND (cond, 0))
1024 /* If the predicate is of the form VAR COMP LIMIT, then we just
1025 take LIMIT from the RHS and use the same comparison code. */
1026 limit = TREE_OPERAND (cond, 1);
1027 cond_code = TREE_CODE (cond);
1029 else
1031 /* If the predicate is of the form LIMIT COMP VAR, then we need
1032 to flip around the comparison code to create the proper range
1033 for VAR. */
1034 limit = TREE_OPERAND (cond, 0);
1035 cond_code = swap_tree_comparison (TREE_CODE (cond));
1038 type = TREE_TYPE (limit);
1039 gcc_assert (limit != var);
1041 /* For pointer arithmetic, we only keep track of pointer equality
1042 and inequality. */
1043 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1045 set_value_range_to_varying (vr_p);
1046 return;
1049 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1050 try to use LIMIT's range to avoid creating symbolic ranges
1051 unnecessarily. */
1052 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1054 /* LIMIT's range is only interesting if it has any useful information. */
1055 if (limit_vr
1056 && (limit_vr->type == VR_UNDEFINED
1057 || limit_vr->type == VR_VARYING
1058 || symbolic_range_p (limit_vr)))
1059 limit_vr = NULL;
1061 /* Initially, the new range has the same set of equivalences of
1062 VAR's range. This will be revised before returning the final
1063 value. Since assertions may be chained via mutually exclusive
1064 predicates, we will need to trim the set of equivalences before
1065 we are done. */
1066 gcc_assert (vr_p->equiv == NULL);
1067 vr_p->equiv = BITMAP_ALLOC (NULL);
1068 add_equivalence (vr_p->equiv, var);
1070 /* Extract a new range based on the asserted comparison for VAR and
1071 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1072 will only use it for equality comparisons (EQ_EXPR). For any
1073 other kind of assertion, we cannot derive a range from LIMIT's
1074 anti-range that can be used to describe the new range. For
1075 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1076 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1077 no single range for x_2 that could describe LE_EXPR, so we might
1078 as well build the range [b_4, +INF] for it. */
1079 if (cond_code == EQ_EXPR)
1081 enum value_range_type range_type;
1083 if (limit_vr)
1085 range_type = limit_vr->type;
1086 min = limit_vr->min;
1087 max = limit_vr->max;
1089 else
1091 range_type = VR_RANGE;
1092 min = limit;
1093 max = limit;
1096 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1098 /* When asserting the equality VAR == LIMIT and LIMIT is another
1099 SSA name, the new range will also inherit the equivalence set
1100 from LIMIT. */
1101 if (TREE_CODE (limit) == SSA_NAME)
1102 add_equivalence (vr_p->equiv, limit);
1104 else if (cond_code == NE_EXPR)
1106 /* As described above, when LIMIT's range is an anti-range and
1107 this assertion is an inequality (NE_EXPR), then we cannot
1108 derive anything from the anti-range. For instance, if
1109 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1110 not imply that VAR's range is [0, 0]. So, in the case of
1111 anti-ranges, we just assert the inequality using LIMIT and
1112 not its anti-range.
1114 If LIMIT_VR is a range, we can only use it to build a new
1115 anti-range if LIMIT_VR is a single-valued range. For
1116 instance, if LIMIT_VR is [0, 1], the predicate
1117 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1118 Rather, it means that for value 0 VAR should be ~[0, 0]
1119 and for value 1, VAR should be ~[1, 1]. We cannot
1120 represent these ranges.
1122 The only situation in which we can build a valid
1123 anti-range is when LIMIT_VR is a single-valued range
1124 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1125 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1126 if (limit_vr
1127 && limit_vr->type == VR_RANGE
1128 && compare_values (limit_vr->min, limit_vr->max) == 0)
1130 min = limit_vr->min;
1131 max = limit_vr->max;
1133 else
1135 /* In any other case, we cannot use LIMIT's range to build a
1136 valid anti-range. */
1137 min = max = limit;
1140 /* If MIN and MAX cover the whole range for their type, then
1141 just use the original LIMIT. */
1142 if (INTEGRAL_TYPE_P (type)
1143 && (min == TYPE_MIN_VALUE (type)
1144 || is_negative_overflow_infinity (min))
1145 && (max == TYPE_MAX_VALUE (type)
1146 || is_positive_overflow_infinity (max)))
1147 min = max = limit;
1149 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1151 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1153 min = TYPE_MIN_VALUE (type);
1155 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1156 max = limit;
1157 else
1159 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1160 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1161 LT_EXPR. */
1162 max = limit_vr->max;
1165 /* If the maximum value forces us to be out of bounds, simply punt.
1166 It would be pointless to try and do anything more since this
1167 all should be optimized away above us. */
1168 if ((cond_code == LT_EXPR
1169 && compare_values (max, min) == 0)
1170 || is_overflow_infinity (max))
1171 set_value_range_to_varying (vr_p);
1172 else
1174 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1175 if (cond_code == LT_EXPR)
1177 tree one = build_int_cst (type, 1);
1178 max = fold_build2 (MINUS_EXPR, type, max, one);
1181 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1184 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1186 max = TYPE_MAX_VALUE (type);
1188 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1189 min = limit;
1190 else
1192 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1193 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1194 GT_EXPR. */
1195 min = limit_vr->min;
1198 /* If the minimum value forces us to be out of bounds, simply punt.
1199 It would be pointless to try and do anything more since this
1200 all should be optimized away above us. */
1201 if ((cond_code == GT_EXPR
1202 && compare_values (min, max) == 0)
1203 || is_overflow_infinity (min))
1204 set_value_range_to_varying (vr_p);
1205 else
1207 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1208 if (cond_code == GT_EXPR)
1210 tree one = build_int_cst (type, 1);
1211 min = fold_build2 (PLUS_EXPR, type, min, one);
1214 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1217 else
1218 gcc_unreachable ();
1220 /* If VAR already had a known range, it may happen that the new
1221 range we have computed and VAR's range are not compatible. For
1222 instance,
1224 if (p_5 == NULL)
1225 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1226 x_7 = p_6->fld;
1227 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1229 While the above comes from a faulty program, it will cause an ICE
1230 later because p_8 and p_6 will have incompatible ranges and at
1231 the same time will be considered equivalent. A similar situation
1232 would arise from
1234 if (i_5 > 10)
1235 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1236 if (i_5 < 5)
1237 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1239 Again i_6 and i_7 will have incompatible ranges. It would be
1240 pointless to try and do anything with i_7's range because
1241 anything dominated by 'if (i_5 < 5)' will be optimized away.
1242 Note, due to the wa in which simulation proceeds, the statement
1243 i_7 = ASSERT_EXPR <...> we would never be visited because the
1244 conditional 'if (i_5 < 5)' always evaluates to false. However,
1245 this extra check does not hurt and may protect against future
1246 changes to VRP that may get into a situation similar to the
1247 NULL pointer dereference example.
1249 Note that these compatibility tests are only needed when dealing
1250 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1251 are both anti-ranges, they will always be compatible, because two
1252 anti-ranges will always have a non-empty intersection. */
1254 var_vr = get_value_range (var);
1256 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1257 ranges or anti-ranges. */
1258 if (vr_p->type == VR_VARYING
1259 || vr_p->type == VR_UNDEFINED
1260 || var_vr->type == VR_VARYING
1261 || var_vr->type == VR_UNDEFINED
1262 || symbolic_range_p (vr_p)
1263 || symbolic_range_p (var_vr))
1264 return;
1266 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1268 /* If the two ranges have a non-empty intersection, we can
1269 refine the resulting range. Since the assert expression
1270 creates an equivalency and at the same time it asserts a
1271 predicate, we can take the intersection of the two ranges to
1272 get better precision. */
1273 if (value_ranges_intersect_p (var_vr, vr_p))
1275 /* Use the larger of the two minimums. */
1276 if (compare_values (vr_p->min, var_vr->min) == -1)
1277 min = var_vr->min;
1278 else
1279 min = vr_p->min;
1281 /* Use the smaller of the two maximums. */
1282 if (compare_values (vr_p->max, var_vr->max) == 1)
1283 max = var_vr->max;
1284 else
1285 max = vr_p->max;
1287 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1289 else
1291 /* The two ranges do not intersect, set the new range to
1292 VARYING, because we will not be able to do anything
1293 meaningful with it. */
1294 set_value_range_to_varying (vr_p);
1297 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1298 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1300 /* A range and an anti-range will cancel each other only if
1301 their ends are the same. For instance, in the example above,
1302 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1303 so VR_P should be set to VR_VARYING. */
1304 if (compare_values (var_vr->min, vr_p->min) == 0
1305 && compare_values (var_vr->max, vr_p->max) == 0)
1306 set_value_range_to_varying (vr_p);
1307 else
1309 tree min, max, anti_min, anti_max, real_min, real_max;
1310 int cmp;
1312 /* We want to compute the logical AND of the two ranges;
1313 there are three cases to consider.
1316 1. The VR_ANTI_RANGE range is completely within the
1317 VR_RANGE and the endpoints of the ranges are
1318 different. In that case the resulting range
1319 should be whichever range is more precise.
1320 Typically that will be the VR_RANGE.
1322 2. The VR_ANTI_RANGE is completely disjoint from
1323 the VR_RANGE. In this case the resulting range
1324 should be the VR_RANGE.
1326 3. There is some overlap between the VR_ANTI_RANGE
1327 and the VR_RANGE.
1329 3a. If the high limit of the VR_ANTI_RANGE resides
1330 within the VR_RANGE, then the result is a new
1331 VR_RANGE starting at the high limit of the
1332 the VR_ANTI_RANGE + 1 and extending to the
1333 high limit of the original VR_RANGE.
1335 3b. If the low limit of the VR_ANTI_RANGE resides
1336 within the VR_RANGE, then the result is a new
1337 VR_RANGE starting at the low limit of the original
1338 VR_RANGE and extending to the low limit of the
1339 VR_ANTI_RANGE - 1. */
1340 if (vr_p->type == VR_ANTI_RANGE)
1342 anti_min = vr_p->min;
1343 anti_max = vr_p->max;
1344 real_min = var_vr->min;
1345 real_max = var_vr->max;
1347 else
1349 anti_min = var_vr->min;
1350 anti_max = var_vr->max;
1351 real_min = vr_p->min;
1352 real_max = vr_p->max;
1356 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1357 not including any endpoints. */
1358 if (compare_values (anti_max, real_max) == -1
1359 && compare_values (anti_min, real_min) == 1)
1361 set_value_range (vr_p, VR_RANGE, real_min,
1362 real_max, vr_p->equiv);
1364 /* Case 2, VR_ANTI_RANGE completely disjoint from
1365 VR_RANGE. */
1366 else if (compare_values (anti_min, real_max) == 1
1367 || compare_values (anti_max, real_min) == -1)
1369 set_value_range (vr_p, VR_RANGE, real_min,
1370 real_max, vr_p->equiv);
1372 /* Case 3a, the anti-range extends into the low
1373 part of the real range. Thus creating a new
1374 low for the real range. */
1375 else if (((cmp = compare_values (anti_max, real_min)) == 1
1376 || cmp == 0)
1377 && compare_values (anti_max, real_max) == -1)
1379 gcc_assert (!is_positive_overflow_infinity (anti_max));
1380 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1381 && anti_max == TYPE_MAX_VALUE (TREE_TYPE (anti_max)))
1383 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1385 set_value_range_to_varying (vr_p);
1386 return;
1388 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1390 else
1391 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1392 anti_max,
1393 build_int_cst (TREE_TYPE (var_vr->min), 1));
1394 max = real_max;
1395 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1397 /* Case 3b, the anti-range extends into the high
1398 part of the real range. Thus creating a new
1399 higher for the real range. */
1400 else if (compare_values (anti_min, real_min) == 1
1401 && ((cmp = compare_values (anti_min, real_max)) == -1
1402 || cmp == 0))
1404 gcc_assert (!is_negative_overflow_infinity (anti_min));
1405 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1406 && anti_min == TYPE_MIN_VALUE (TREE_TYPE (anti_min)))
1408 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1410 set_value_range_to_varying (vr_p);
1411 return;
1413 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1415 else
1416 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1417 anti_min,
1418 build_int_cst (TREE_TYPE (var_vr->min), 1));
1419 min = real_min;
1420 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1427 /* Extract range information from SSA name VAR and store it in VR. If
1428 VAR has an interesting range, use it. Otherwise, create the
1429 range [VAR, VAR] and return it. This is useful in situations where
1430 we may have conditionals testing values of VARYING names. For
1431 instance,
1433 x_3 = y_5;
1434 if (x_3 > y_5)
1437 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1438 always false. */
1440 static void
1441 extract_range_from_ssa_name (value_range_t *vr, tree var)
1443 value_range_t *var_vr = get_value_range (var);
1445 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1446 copy_value_range (vr, var_vr);
1447 else
1448 set_value_range (vr, VR_RANGE, var, var, NULL);
1450 add_equivalence (vr->equiv, var);
1454 /* Wrapper around int_const_binop. If the operation overflows and we
1455 are not using wrapping arithmetic, then adjust the result to be
1456 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1457 NULL_TREE if we need to use an overflow infinity representation but
1458 the type does not support it. */
1460 static tree
1461 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1463 tree res;
1465 res = int_const_binop (code, val1, val2, 0);
1467 /* If we are not using wrapping arithmetic, operate symbolically
1468 on -INF and +INF. */
1469 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1471 int checkz = compare_values (res, val1);
1472 bool overflow = false;
1474 /* Ensure that res = val1 [+*] val2 >= val1
1475 or that res = val1 - val2 <= val1. */
1476 if ((code == PLUS_EXPR
1477 && !(checkz == 1 || checkz == 0))
1478 || (code == MINUS_EXPR
1479 && !(checkz == 0 || checkz == -1)))
1481 overflow = true;
1483 /* Checking for multiplication overflow is done by dividing the
1484 output of the multiplication by the first input of the
1485 multiplication. If the result of that division operation is
1486 not equal to the second input of the multiplication, then the
1487 multiplication overflowed. */
1488 else if (code == MULT_EXPR && !integer_zerop (val1))
1490 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1491 res,
1492 val1, 0);
1493 int check = compare_values (tmp, val2);
1495 if (check != 0)
1496 overflow = true;
1499 if (overflow)
1501 res = copy_node (res);
1502 TREE_OVERFLOW (res) = 1;
1506 else if ((TREE_OVERFLOW (res)
1507 && !TREE_OVERFLOW (val1)
1508 && !TREE_OVERFLOW (val2))
1509 || is_overflow_infinity (val1)
1510 || is_overflow_infinity (val2))
1512 /* If the operation overflowed but neither VAL1 nor VAL2 are
1513 overflown, return -INF or +INF depending on the operation
1514 and the combination of signs of the operands. */
1515 int sgn1 = tree_int_cst_sgn (val1);
1516 int sgn2 = tree_int_cst_sgn (val2);
1518 if (needs_overflow_infinity (TREE_TYPE (res))
1519 && !supports_overflow_infinity (TREE_TYPE (res)))
1520 return NULL_TREE;
1522 /* We have to punt on adding infinities of different signs,
1523 since we can't tell what the sign of the result should be.
1524 Likewise for subtracting infinities of the same sign. */
1525 if (((code == PLUS_EXPR && sgn1 != sgn2)
1526 || (code == MINUS_EXPR && sgn1 == sgn2))
1527 && is_overflow_infinity (val1)
1528 && is_overflow_infinity (val2))
1529 return NULL_TREE;
1531 /* Don't try to handle division or shifting of infinities. */
1532 if ((code == TRUNC_DIV_EXPR
1533 || code == FLOOR_DIV_EXPR
1534 || code == CEIL_DIV_EXPR
1535 || code == EXACT_DIV_EXPR
1536 || code == ROUND_DIV_EXPR
1537 || code == RSHIFT_EXPR)
1538 && (is_overflow_infinity (val1)
1539 || is_overflow_infinity (val2)))
1540 return NULL_TREE;
1542 /* Notice that we only need to handle the restricted set of
1543 operations handled by extract_range_from_binary_expr.
1544 Among them, only multiplication, addition and subtraction
1545 can yield overflow without overflown operands because we
1546 are working with integral types only... except in the
1547 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1548 for division too. */
1550 /* For multiplication, the sign of the overflow is given
1551 by the comparison of the signs of the operands. */
1552 if ((code == MULT_EXPR && sgn1 == sgn2)
1553 /* For addition, the operands must be of the same sign
1554 to yield an overflow. Its sign is therefore that
1555 of one of the operands, for example the first. For
1556 infinite operands X + -INF is negative, not positive. */
1557 || (code == PLUS_EXPR
1558 && (sgn1 >= 0
1559 ? !is_negative_overflow_infinity (val2)
1560 : is_positive_overflow_infinity (val2)))
1561 /* For subtraction, non-infinite operands must be of
1562 different signs to yield an overflow. Its sign is
1563 therefore that of the first operand or the opposite of
1564 that of the second operand. A first operand of 0 counts
1565 as positive here, for the corner case 0 - (-INF), which
1566 overflows, but must yield +INF. For infinite operands 0
1567 - INF is negative, not positive. */
1568 || (code == MINUS_EXPR
1569 && (sgn1 >= 0
1570 ? !is_positive_overflow_infinity (val2)
1571 : is_negative_overflow_infinity (val2)))
1572 /* We only get in here with positive shift count, so the
1573 overflow direction is the same as the sign of val1.
1574 Actually rshift does not overflow at all, but we only
1575 handle the case of shifting overflowed -INF and +INF. */
1576 || (code == RSHIFT_EXPR
1577 && sgn1 >= 0)
1578 /* For division, the only case is -INF / -1 = +INF. */
1579 || code == TRUNC_DIV_EXPR
1580 || code == FLOOR_DIV_EXPR
1581 || code == CEIL_DIV_EXPR
1582 || code == EXACT_DIV_EXPR
1583 || code == ROUND_DIV_EXPR)
1584 return (needs_overflow_infinity (TREE_TYPE (res))
1585 ? positive_overflow_infinity (TREE_TYPE (res))
1586 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1587 else
1588 return (needs_overflow_infinity (TREE_TYPE (res))
1589 ? negative_overflow_infinity (TREE_TYPE (res))
1590 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1593 return res;
1597 /* Extract range information from a binary expression EXPR based on
1598 the ranges of each of its operands and the expression code. */
1600 static void
1601 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1603 enum tree_code code = TREE_CODE (expr);
1604 enum value_range_type type;
1605 tree op0, op1, min, max;
1606 int cmp;
1607 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1608 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1610 /* Not all binary expressions can be applied to ranges in a
1611 meaningful way. Handle only arithmetic operations. */
1612 if (code != PLUS_EXPR
1613 && code != MINUS_EXPR
1614 && code != MULT_EXPR
1615 && code != TRUNC_DIV_EXPR
1616 && code != FLOOR_DIV_EXPR
1617 && code != CEIL_DIV_EXPR
1618 && code != EXACT_DIV_EXPR
1619 && code != ROUND_DIV_EXPR
1620 && code != RSHIFT_EXPR
1621 && code != MIN_EXPR
1622 && code != MAX_EXPR
1623 && code != BIT_AND_EXPR
1624 && code != TRUTH_ANDIF_EXPR
1625 && code != TRUTH_ORIF_EXPR
1626 && code != TRUTH_AND_EXPR
1627 && code != TRUTH_OR_EXPR)
1629 set_value_range_to_varying (vr);
1630 return;
1633 /* Get value ranges for each operand. For constant operands, create
1634 a new value range with the operand to simplify processing. */
1635 op0 = TREE_OPERAND (expr, 0);
1636 if (TREE_CODE (op0) == SSA_NAME)
1637 vr0 = *(get_value_range (op0));
1638 else if (is_gimple_min_invariant (op0))
1639 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1640 else
1641 set_value_range_to_varying (&vr0);
1643 op1 = TREE_OPERAND (expr, 1);
1644 if (TREE_CODE (op1) == SSA_NAME)
1645 vr1 = *(get_value_range (op1));
1646 else if (is_gimple_min_invariant (op1))
1647 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1648 else
1649 set_value_range_to_varying (&vr1);
1651 /* If either range is UNDEFINED, so is the result. */
1652 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1654 set_value_range_to_undefined (vr);
1655 return;
1658 /* The type of the resulting value range defaults to VR0.TYPE. */
1659 type = vr0.type;
1661 /* Refuse to operate on VARYING ranges, ranges of different kinds
1662 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1663 because we may be able to derive a useful range even if one of
1664 the operands is VR_VARYING or symbolic range. TODO, we may be
1665 able to derive anti-ranges in some cases. */
1666 if (code != BIT_AND_EXPR
1667 && code != TRUTH_AND_EXPR
1668 && code != TRUTH_OR_EXPR
1669 && (vr0.type == VR_VARYING
1670 || vr1.type == VR_VARYING
1671 || vr0.type != vr1.type
1672 || symbolic_range_p (&vr0)
1673 || symbolic_range_p (&vr1)))
1675 set_value_range_to_varying (vr);
1676 return;
1679 /* Now evaluate the expression to determine the new range. */
1680 if (POINTER_TYPE_P (TREE_TYPE (expr))
1681 || POINTER_TYPE_P (TREE_TYPE (op0))
1682 || POINTER_TYPE_P (TREE_TYPE (op1)))
1684 /* For pointer types, we are really only interested in asserting
1685 whether the expression evaluates to non-NULL. FIXME, we used
1686 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1687 ivopts is generating expressions with pointer multiplication
1688 in them. */
1689 if (code == PLUS_EXPR)
1691 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1692 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1693 else if (range_is_null (&vr0) && range_is_null (&vr1))
1694 set_value_range_to_null (vr, TREE_TYPE (expr));
1695 else
1696 set_value_range_to_varying (vr);
1698 else
1700 /* Subtracting from a pointer, may yield 0, so just drop the
1701 resulting range to varying. */
1702 set_value_range_to_varying (vr);
1705 return;
1708 /* For integer ranges, apply the operation to each end of the
1709 range and see what we end up with. */
1710 if (code == TRUTH_ANDIF_EXPR
1711 || code == TRUTH_ORIF_EXPR
1712 || code == TRUTH_AND_EXPR
1713 || code == TRUTH_OR_EXPR)
1715 /* If one of the operands is zero, we know that the whole
1716 expression evaluates zero. */
1717 if (code == TRUTH_AND_EXPR
1718 && ((vr0.type == VR_RANGE
1719 && integer_zerop (vr0.min)
1720 && integer_zerop (vr0.max))
1721 || (vr1.type == VR_RANGE
1722 && integer_zerop (vr1.min)
1723 && integer_zerop (vr1.max))))
1725 type = VR_RANGE;
1726 min = max = build_int_cst (TREE_TYPE (expr), 0);
1728 /* If one of the operands is one, we know that the whole
1729 expression evaluates one. */
1730 else if (code == TRUTH_OR_EXPR
1731 && ((vr0.type == VR_RANGE
1732 && integer_onep (vr0.min)
1733 && integer_onep (vr0.max))
1734 || (vr1.type == VR_RANGE
1735 && integer_onep (vr1.min)
1736 && integer_onep (vr1.max))))
1738 type = VR_RANGE;
1739 min = max = build_int_cst (TREE_TYPE (expr), 1);
1741 else if (vr0.type != VR_VARYING
1742 && vr1.type != VR_VARYING
1743 && vr0.type == vr1.type
1744 && !symbolic_range_p (&vr0)
1745 && !overflow_infinity_range_p (&vr0)
1746 && !symbolic_range_p (&vr1)
1747 && !overflow_infinity_range_p (&vr1))
1749 /* Boolean expressions cannot be folded with int_const_binop. */
1750 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1751 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1753 else
1755 /* The result of a TRUTH_*_EXPR is always true or false. */
1756 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
1757 return;
1760 else if (code == PLUS_EXPR
1761 || code == MIN_EXPR
1762 || code == MAX_EXPR)
1764 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1765 VR_VARYING. It would take more effort to compute a precise
1766 range for such a case. For example, if we have op0 == 1 and
1767 op1 == -1 with their ranges both being ~[0,0], we would have
1768 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1769 Note that we are guaranteed to have vr0.type == vr1.type at
1770 this point. */
1771 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1773 set_value_range_to_varying (vr);
1774 return;
1777 /* For operations that make the resulting range directly
1778 proportional to the original ranges, apply the operation to
1779 the same end of each range. */
1780 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1781 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1783 else if (code == MULT_EXPR
1784 || code == TRUNC_DIV_EXPR
1785 || code == FLOOR_DIV_EXPR
1786 || code == CEIL_DIV_EXPR
1787 || code == EXACT_DIV_EXPR
1788 || code == ROUND_DIV_EXPR
1789 || code == RSHIFT_EXPR)
1791 tree val[4];
1792 size_t i;
1793 bool sop;
1795 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1796 drop to VR_VARYING. It would take more effort to compute a
1797 precise range for such a case. For example, if we have
1798 op0 == 65536 and op1 == 65536 with their ranges both being
1799 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1800 we cannot claim that the product is in ~[0,0]. Note that we
1801 are guaranteed to have vr0.type == vr1.type at this
1802 point. */
1803 if (code == MULT_EXPR
1804 && vr0.type == VR_ANTI_RANGE
1805 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
1807 set_value_range_to_varying (vr);
1808 return;
1811 /* If we have a RSHIFT_EXPR with a possibly negative shift
1812 count or an anti-range shift count drop to VR_VARYING.
1813 We currently cannot handle the overflow cases correctly. */
1814 if (code == RSHIFT_EXPR
1815 && (vr1.type == VR_ANTI_RANGE
1816 || !vrp_expr_computes_nonnegative (op1, &sop)))
1818 set_value_range_to_varying (vr);
1819 return;
1822 /* Multiplications and divisions are a bit tricky to handle,
1823 depending on the mix of signs we have in the two ranges, we
1824 need to operate on different values to get the minimum and
1825 maximum values for the new range. One approach is to figure
1826 out all the variations of range combinations and do the
1827 operations.
1829 However, this involves several calls to compare_values and it
1830 is pretty convoluted. It's simpler to do the 4 operations
1831 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1832 MAX1) and then figure the smallest and largest values to form
1833 the new range. */
1835 /* Divisions by zero result in a VARYING value. */
1836 if ((code != MULT_EXPR
1837 && code != RSHIFT_EXPR)
1838 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1840 set_value_range_to_varying (vr);
1841 return;
1844 /* Compute the 4 cross operations. */
1845 sop = false;
1846 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1847 if (val[0] == NULL_TREE)
1848 sop = true;
1850 if (vr1.max == vr1.min)
1851 val[1] = NULL_TREE;
1852 else
1854 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1855 if (val[1] == NULL_TREE)
1856 sop = true;
1859 if (vr0.max == vr0.min)
1860 val[2] = NULL_TREE;
1861 else
1863 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1864 if (val[2] == NULL_TREE)
1865 sop = true;
1868 if (vr0.min == vr0.max || vr1.min == vr1.max)
1869 val[3] = NULL_TREE;
1870 else
1872 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1873 if (val[3] == NULL_TREE)
1874 sop = true;
1877 if (sop)
1879 set_value_range_to_varying (vr);
1880 return;
1883 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1884 of VAL[i]. */
1885 min = val[0];
1886 max = val[0];
1887 for (i = 1; i < 4; i++)
1889 if (!is_gimple_min_invariant (min)
1890 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1891 || !is_gimple_min_invariant (max)
1892 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1893 break;
1895 if (val[i])
1897 if (!is_gimple_min_invariant (val[i])
1898 || (TREE_OVERFLOW (val[i])
1899 && !is_overflow_infinity (val[i])))
1901 /* If we found an overflowed value, set MIN and MAX
1902 to it so that we set the resulting range to
1903 VARYING. */
1904 min = max = val[i];
1905 break;
1908 if (compare_values (val[i], min) == -1)
1909 min = val[i];
1911 if (compare_values (val[i], max) == 1)
1912 max = val[i];
1916 else if (code == MINUS_EXPR)
1918 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1919 VR_VARYING. It would take more effort to compute a precise
1920 range for such a case. For example, if we have op0 == 1 and
1921 op1 == 1 with their ranges both being ~[0,0], we would have
1922 op0 - op1 == 0, so we cannot claim that the difference is in
1923 ~[0,0]. Note that we are guaranteed to have
1924 vr0.type == vr1.type at this point. */
1925 if (vr0.type == VR_ANTI_RANGE)
1927 set_value_range_to_varying (vr);
1928 return;
1931 /* For MINUS_EXPR, apply the operation to the opposite ends of
1932 each range. */
1933 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1934 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1936 else if (code == BIT_AND_EXPR)
1938 if (vr0.type == VR_RANGE
1939 && vr0.min == vr0.max
1940 && TREE_CODE (vr0.max) == INTEGER_CST
1941 && !TREE_OVERFLOW (vr0.max)
1942 && tree_int_cst_sgn (vr0.max) >= 0)
1944 min = build_int_cst (TREE_TYPE (expr), 0);
1945 max = vr0.max;
1947 else if (vr1.type == VR_RANGE
1948 && vr1.min == vr1.max
1949 && TREE_CODE (vr1.max) == INTEGER_CST
1950 && !TREE_OVERFLOW (vr1.max)
1951 && tree_int_cst_sgn (vr1.max) >= 0)
1953 type = VR_RANGE;
1954 min = build_int_cst (TREE_TYPE (expr), 0);
1955 max = vr1.max;
1957 else
1959 set_value_range_to_varying (vr);
1960 return;
1963 else
1964 gcc_unreachable ();
1966 /* If either MIN or MAX overflowed, then set the resulting range to
1967 VARYING. But we do accept an overflow infinity
1968 representation. */
1969 if (min == NULL_TREE
1970 || !is_gimple_min_invariant (min)
1971 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1972 || max == NULL_TREE
1973 || !is_gimple_min_invariant (max)
1974 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1976 set_value_range_to_varying (vr);
1977 return;
1980 if ((min == TYPE_MIN_VALUE (TREE_TYPE (min))
1981 || is_negative_overflow_infinity (min))
1982 && (max == TYPE_MAX_VALUE (TREE_TYPE (max))
1983 || is_positive_overflow_infinity (max)))
1985 set_value_range_to_varying (vr);
1986 return;
1989 cmp = compare_values (min, max);
1990 if (cmp == -2 || cmp == 1)
1992 /* If the new range has its limits swapped around (MIN > MAX),
1993 then the operation caused one of them to wrap around, mark
1994 the new range VARYING. */
1995 set_value_range_to_varying (vr);
1997 else
1998 set_value_range (vr, type, min, max, NULL);
2002 /* Extract range information from a unary expression EXPR based on
2003 the range of its operand and the expression code. */
2005 static void
2006 extract_range_from_unary_expr (value_range_t *vr, tree expr)
2008 enum tree_code code = TREE_CODE (expr);
2009 tree min, max, op0;
2010 int cmp;
2011 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2013 /* Refuse to operate on certain unary expressions for which we
2014 cannot easily determine a resulting range. */
2015 if (code == FIX_TRUNC_EXPR
2016 || code == FLOAT_EXPR
2017 || code == BIT_NOT_EXPR
2018 || code == NON_LVALUE_EXPR
2019 || code == CONJ_EXPR)
2021 set_value_range_to_varying (vr);
2022 return;
2025 /* Get value ranges for the operand. For constant operands, create
2026 a new value range with the operand to simplify processing. */
2027 op0 = TREE_OPERAND (expr, 0);
2028 if (TREE_CODE (op0) == SSA_NAME)
2029 vr0 = *(get_value_range (op0));
2030 else if (is_gimple_min_invariant (op0))
2031 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
2032 else
2033 set_value_range_to_varying (&vr0);
2035 /* If VR0 is UNDEFINED, so is the result. */
2036 if (vr0.type == VR_UNDEFINED)
2038 set_value_range_to_undefined (vr);
2039 return;
2042 /* Refuse to operate on symbolic ranges, or if neither operand is
2043 a pointer or integral type. */
2044 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2045 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2046 || (vr0.type != VR_VARYING
2047 && symbolic_range_p (&vr0)))
2049 set_value_range_to_varying (vr);
2050 return;
2053 /* If the expression involves pointers, we are only interested in
2054 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2055 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2057 bool sop;
2059 sop = false;
2060 if (range_is_nonnull (&vr0)
2061 || (tree_expr_nonzero_warnv_p (expr, &sop)
2062 && !sop))
2063 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2064 else if (range_is_null (&vr0))
2065 set_value_range_to_null (vr, TREE_TYPE (expr));
2066 else
2067 set_value_range_to_varying (vr);
2069 return;
2072 /* Handle unary expressions on integer ranges. */
2073 if (code == NOP_EXPR || code == CONVERT_EXPR)
2075 tree inner_type = TREE_TYPE (op0);
2076 tree outer_type = TREE_TYPE (expr);
2078 /* If VR0 represents a simple range, then try to convert
2079 the min and max values for the range to the same type
2080 as OUTER_TYPE. If the results compare equal to VR0's
2081 min and max values and the new min is still less than
2082 or equal to the new max, then we can safely use the newly
2083 computed range for EXPR. This allows us to compute
2084 accurate ranges through many casts. */
2085 if ((vr0.type == VR_RANGE
2086 && !overflow_infinity_range_p (&vr0))
2087 || (vr0.type == VR_VARYING
2088 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2090 tree new_min, new_max, orig_min, orig_max;
2092 /* Convert the input operand min/max to OUTER_TYPE. If
2093 the input has no range information, then use the min/max
2094 for the input's type. */
2095 if (vr0.type == VR_RANGE)
2097 orig_min = vr0.min;
2098 orig_max = vr0.max;
2100 else
2102 orig_min = TYPE_MIN_VALUE (inner_type);
2103 orig_max = TYPE_MAX_VALUE (inner_type);
2106 new_min = fold_convert (outer_type, orig_min);
2107 new_max = fold_convert (outer_type, orig_max);
2109 /* Verify the new min/max values are gimple values and
2110 that they compare equal to the original input's
2111 min/max values. */
2112 if (is_gimple_val (new_min)
2113 && is_gimple_val (new_max)
2114 && tree_int_cst_equal (new_min, orig_min)
2115 && tree_int_cst_equal (new_max, orig_max)
2116 && (cmp = compare_values (new_min, new_max)) <= 0
2117 && cmp >= -1)
2119 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2120 return;
2124 /* When converting types of different sizes, set the result to
2125 VARYING. Things like sign extensions and precision loss may
2126 change the range. For instance, if x_3 is of type 'long long
2127 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2128 is impossible to know at compile time whether y_5 will be
2129 ~[0, 0]. */
2130 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2131 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2133 set_value_range_to_varying (vr);
2134 return;
2138 /* Conversion of a VR_VARYING value to a wider type can result
2139 in a usable range. So wait until after we've handled conversions
2140 before dropping the result to VR_VARYING if we had a source
2141 operand that is VR_VARYING. */
2142 if (vr0.type == VR_VARYING)
2144 set_value_range_to_varying (vr);
2145 return;
2148 /* Apply the operation to each end of the range and see what we end
2149 up with. */
2150 if (code == NEGATE_EXPR
2151 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2153 /* NEGATE_EXPR flips the range around. We need to treat
2154 TYPE_MIN_VALUE specially. */
2155 if (is_positive_overflow_infinity (vr0.max))
2156 min = negative_overflow_infinity (TREE_TYPE (expr));
2157 else if (is_negative_overflow_infinity (vr0.max))
2158 min = positive_overflow_infinity (TREE_TYPE (expr));
2159 else if (vr0.max != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2160 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2161 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2163 if (supports_overflow_infinity (TREE_TYPE (expr)))
2164 min = positive_overflow_infinity (TREE_TYPE (expr));
2165 else
2167 set_value_range_to_varying (vr);
2168 return;
2171 else
2172 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2174 if (is_positive_overflow_infinity (vr0.min))
2175 max = negative_overflow_infinity (TREE_TYPE (expr));
2176 else if (is_negative_overflow_infinity (vr0.min))
2177 max = positive_overflow_infinity (TREE_TYPE (expr));
2178 else if (vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2179 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2180 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2182 if (supports_overflow_infinity (TREE_TYPE (expr)))
2183 max = positive_overflow_infinity (TREE_TYPE (expr));
2184 else
2186 set_value_range_to_varying (vr);
2187 return;
2190 else
2191 max = TYPE_MIN_VALUE (TREE_TYPE (expr));
2193 else if (code == NEGATE_EXPR
2194 && TYPE_UNSIGNED (TREE_TYPE (expr)))
2196 if (!range_includes_zero_p (&vr0))
2198 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2199 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2201 else
2203 if (range_is_null (&vr0))
2204 set_value_range_to_null (vr, TREE_TYPE (expr));
2205 else
2206 set_value_range_to_varying (vr);
2207 return;
2210 else if (code == ABS_EXPR
2211 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2213 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2214 useful range. */
2215 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
2216 && ((vr0.type == VR_RANGE
2217 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
2218 || (vr0.type == VR_ANTI_RANGE
2219 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
2220 && !range_includes_zero_p (&vr0))))
2222 set_value_range_to_varying (vr);
2223 return;
2226 /* ABS_EXPR may flip the range around, if the original range
2227 included negative values. */
2228 if (is_overflow_infinity (vr0.min))
2229 min = positive_overflow_infinity (TREE_TYPE (expr));
2230 else if (vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2231 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2232 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2233 min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2234 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2235 min = positive_overflow_infinity (TREE_TYPE (expr));
2236 else
2238 set_value_range_to_varying (vr);
2239 return;
2242 if (is_overflow_infinity (vr0.max))
2243 max = positive_overflow_infinity (TREE_TYPE (expr));
2244 else if (vr0.max != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2245 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2246 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2247 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2248 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2249 max = positive_overflow_infinity (TREE_TYPE (expr));
2250 else
2252 set_value_range_to_varying (vr);
2253 return;
2256 cmp = compare_values (min, max);
2258 /* If a VR_ANTI_RANGEs contains zero, then we have
2259 ~[-INF, min(MIN, MAX)]. */
2260 if (vr0.type == VR_ANTI_RANGE)
2262 if (range_includes_zero_p (&vr0))
2264 /* Take the lower of the two values. */
2265 if (cmp != 1)
2266 max = min;
2268 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2269 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2270 flag_wrapv is set and the original anti-range doesn't include
2271 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2272 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2274 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2276 min = (vr0.min != type_min_value
2277 ? int_const_binop (PLUS_EXPR, type_min_value,
2278 integer_one_node, 0)
2279 : type_min_value);
2281 else
2283 if (overflow_infinity_range_p (&vr0))
2284 min = negative_overflow_infinity (TREE_TYPE (expr));
2285 else
2286 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2289 else
2291 /* All else has failed, so create the range [0, INF], even for
2292 flag_wrapv since TYPE_MIN_VALUE is in the original
2293 anti-range. */
2294 vr0.type = VR_RANGE;
2295 min = build_int_cst (TREE_TYPE (expr), 0);
2296 if (needs_overflow_infinity (TREE_TYPE (expr)))
2298 if (supports_overflow_infinity (TREE_TYPE (expr)))
2299 max = positive_overflow_infinity (TREE_TYPE (expr));
2300 else
2302 set_value_range_to_varying (vr);
2303 return;
2306 else
2307 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2311 /* If the range contains zero then we know that the minimum value in the
2312 range will be zero. */
2313 else if (range_includes_zero_p (&vr0))
2315 if (cmp == 1)
2316 max = min;
2317 min = build_int_cst (TREE_TYPE (expr), 0);
2319 else
2321 /* If the range was reversed, swap MIN and MAX. */
2322 if (cmp == 1)
2324 tree t = min;
2325 min = max;
2326 max = t;
2330 else
2332 /* Otherwise, operate on each end of the range. */
2333 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2334 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2336 if (needs_overflow_infinity (TREE_TYPE (expr)))
2338 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2339 if (is_overflow_infinity (vr0.min))
2340 min = vr0.min;
2341 else if (TREE_OVERFLOW (min))
2343 if (supports_overflow_infinity (TREE_TYPE (expr)))
2344 min = (tree_int_cst_sgn (min) >= 0
2345 ? positive_overflow_infinity (TREE_TYPE (min))
2346 : negative_overflow_infinity (TREE_TYPE (min)));
2347 else
2349 set_value_range_to_varying (vr);
2350 return;
2354 if (is_overflow_infinity (vr0.max))
2355 max = vr0.max;
2356 else if (TREE_OVERFLOW (max))
2358 if (supports_overflow_infinity (TREE_TYPE (expr)))
2359 max = (tree_int_cst_sgn (max) >= 0
2360 ? positive_overflow_infinity (TREE_TYPE (max))
2361 : negative_overflow_infinity (TREE_TYPE (max)));
2362 else
2364 set_value_range_to_varying (vr);
2365 return;
2371 cmp = compare_values (min, max);
2372 if (cmp == -2 || cmp == 1)
2374 /* If the new range has its limits swapped around (MIN > MAX),
2375 then the operation caused one of them to wrap around, mark
2376 the new range VARYING. */
2377 set_value_range_to_varying (vr);
2379 else
2380 set_value_range (vr, vr0.type, min, max, NULL);
2384 /* Extract range information from a conditional expression EXPR based on
2385 the ranges of each of its operands and the expression code. */
2387 static void
2388 extract_range_from_cond_expr (value_range_t *vr, tree expr)
2390 tree op0, op1;
2391 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2392 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2394 /* Get value ranges for each operand. For constant operands, create
2395 a new value range with the operand to simplify processing. */
2396 op0 = COND_EXPR_THEN (expr);
2397 if (TREE_CODE (op0) == SSA_NAME)
2398 vr0 = *(get_value_range (op0));
2399 else if (is_gimple_min_invariant (op0))
2400 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
2401 else
2402 set_value_range_to_varying (&vr0);
2404 op1 = COND_EXPR_ELSE (expr);
2405 if (TREE_CODE (op1) == SSA_NAME)
2406 vr1 = *(get_value_range (op1));
2407 else if (is_gimple_min_invariant (op1))
2408 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
2409 else
2410 set_value_range_to_varying (&vr1);
2412 /* The resulting value range is the union of the operand ranges */
2413 vrp_meet (&vr0, &vr1);
2414 copy_value_range (vr, &vr0);
2418 /* Extract range information from a comparison expression EXPR based
2419 on the range of its operand and the expression code. */
2421 static void
2422 extract_range_from_comparison (value_range_t *vr, tree expr)
2424 bool sop = false;
2425 tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
2427 /* A disadvantage of using a special infinity as an overflow
2428 representation is that we lose the ability to record overflow
2429 when we don't have an infinity. So we have to ignore a result
2430 which relies on overflow. */
2432 if (val && !is_overflow_infinity (val) && !sop)
2434 /* Since this expression was found on the RHS of an assignment,
2435 its type may be different from _Bool. Convert VAL to EXPR's
2436 type. */
2437 val = fold_convert (TREE_TYPE (expr), val);
2438 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2440 else
2441 /* The result of a comparison is always true or false. */
2442 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
2446 /* Try to compute a useful range out of expression EXPR and store it
2447 in *VR. */
2449 static void
2450 extract_range_from_expr (value_range_t *vr, tree expr)
2452 enum tree_code code = TREE_CODE (expr);
2454 if (code == ASSERT_EXPR)
2455 extract_range_from_assert (vr, expr);
2456 else if (code == SSA_NAME)
2457 extract_range_from_ssa_name (vr, expr);
2458 else if (TREE_CODE_CLASS (code) == tcc_binary
2459 || code == TRUTH_ANDIF_EXPR
2460 || code == TRUTH_ORIF_EXPR
2461 || code == TRUTH_AND_EXPR
2462 || code == TRUTH_OR_EXPR
2463 || code == TRUTH_XOR_EXPR)
2464 extract_range_from_binary_expr (vr, expr);
2465 else if (TREE_CODE_CLASS (code) == tcc_unary)
2466 extract_range_from_unary_expr (vr, expr);
2467 else if (code == COND_EXPR)
2468 extract_range_from_cond_expr (vr, expr);
2469 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2470 extract_range_from_comparison (vr, expr);
2471 else if (is_gimple_min_invariant (expr))
2472 set_value_range (vr, VR_RANGE, expr, expr, NULL);
2473 else
2474 set_value_range_to_varying (vr);
2476 /* If we got a varying range from the tests above, try a final
2477 time to derive a nonnegative or nonzero range. This time
2478 relying primarily on generic routines in fold in conjunction
2479 with range data. */
2480 if (vr->type == VR_VARYING)
2482 bool sop = false;
2484 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2485 && vrp_expr_computes_nonnegative (expr, &sop))
2486 set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2487 sop || is_overflow_infinity (expr));
2488 else if (vrp_expr_computes_nonzero (expr, &sop)
2489 && !sop)
2490 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2494 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2495 would be profitable to adjust VR using scalar evolution information
2496 for VAR. If so, update VR with the new limits. */
2498 static void
2499 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2500 tree var)
2502 tree init, step, chrec, tmin, tmax, min, max, type;
2503 enum ev_direction dir;
2505 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2506 better opportunities than a regular range, but I'm not sure. */
2507 if (vr->type == VR_ANTI_RANGE)
2508 return;
2510 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2511 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2512 return;
2514 init = initial_condition_in_loop_num (chrec, loop->num);
2515 step = evolution_part_in_loop_num (chrec, loop->num);
2517 /* If STEP is symbolic, we can't know whether INIT will be the
2518 minimum or maximum value in the range. Also, unless INIT is
2519 a simple expression, compare_values and possibly other functions
2520 in tree-vrp won't be able to handle it. */
2521 if (step == NULL_TREE
2522 || !is_gimple_min_invariant (step)
2523 || !valid_value_p (init))
2524 return;
2526 dir = scev_direction (chrec);
2527 if (/* Do not adjust ranges if we do not know whether the iv increases
2528 or decreases, ... */
2529 dir == EV_DIR_UNKNOWN
2530 /* ... or if it may wrap. */
2531 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2532 true))
2533 return;
2535 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2536 negative_overflow_infinity and positive_overflow_infinity,
2537 because we have concluded that the loop probably does not
2538 wrap. */
2540 type = TREE_TYPE (var);
2541 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2542 tmin = lower_bound_in_type (type, type);
2543 else
2544 tmin = TYPE_MIN_VALUE (type);
2545 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2546 tmax = upper_bound_in_type (type, type);
2547 else
2548 tmax = TYPE_MAX_VALUE (type);
2550 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2552 min = tmin;
2553 max = tmax;
2555 /* For VARYING or UNDEFINED ranges, just about anything we get
2556 from scalar evolutions should be better. */
2558 if (dir == EV_DIR_DECREASES)
2559 max = init;
2560 else
2561 min = init;
2563 /* If we would create an invalid range, then just assume we
2564 know absolutely nothing. This may be over-conservative,
2565 but it's clearly safe, and should happen only in unreachable
2566 parts of code, or for invalid programs. */
2567 if (compare_values (min, max) == 1)
2568 return;
2570 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2572 else if (vr->type == VR_RANGE)
2574 min = vr->min;
2575 max = vr->max;
2577 if (dir == EV_DIR_DECREASES)
2579 /* INIT is the maximum value. If INIT is lower than VR->MAX
2580 but no smaller than VR->MIN, set VR->MAX to INIT. */
2581 if (compare_values (init, max) == -1)
2583 max = init;
2585 /* If we just created an invalid range with the minimum
2586 greater than the maximum, we fail conservatively.
2587 This should happen only in unreachable
2588 parts of code, or for invalid programs. */
2589 if (compare_values (min, max) == 1)
2590 return;
2593 else
2595 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2596 if (compare_values (init, min) == 1)
2598 min = init;
2600 /* Again, avoid creating invalid range by failing. */
2601 if (compare_values (min, max) == 1)
2602 return;
2606 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2611 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2613 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2614 all the values in the ranges.
2616 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2618 - Return NULL_TREE if it is not always possible to determine the
2619 value of the comparison.
2621 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2622 overflow infinity was used in the test. */
2625 static tree
2626 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2627 bool *strict_overflow_p)
2629 /* VARYING or UNDEFINED ranges cannot be compared. */
2630 if (vr0->type == VR_VARYING
2631 || vr0->type == VR_UNDEFINED
2632 || vr1->type == VR_VARYING
2633 || vr1->type == VR_UNDEFINED)
2634 return NULL_TREE;
2636 /* Anti-ranges need to be handled separately. */
2637 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2639 /* If both are anti-ranges, then we cannot compute any
2640 comparison. */
2641 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2642 return NULL_TREE;
2644 /* These comparisons are never statically computable. */
2645 if (comp == GT_EXPR
2646 || comp == GE_EXPR
2647 || comp == LT_EXPR
2648 || comp == LE_EXPR)
2649 return NULL_TREE;
2651 /* Equality can be computed only between a range and an
2652 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2653 if (vr0->type == VR_RANGE)
2655 /* To simplify processing, make VR0 the anti-range. */
2656 value_range_t *tmp = vr0;
2657 vr0 = vr1;
2658 vr1 = tmp;
2661 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2663 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2664 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
2665 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2667 return NULL_TREE;
2670 if (!usable_range_p (vr0, strict_overflow_p)
2671 || !usable_range_p (vr1, strict_overflow_p))
2672 return NULL_TREE;
2674 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2675 operands around and change the comparison code. */
2676 if (comp == GT_EXPR || comp == GE_EXPR)
2678 value_range_t *tmp;
2679 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2680 tmp = vr0;
2681 vr0 = vr1;
2682 vr1 = tmp;
2685 if (comp == EQ_EXPR)
2687 /* Equality may only be computed if both ranges represent
2688 exactly one value. */
2689 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2690 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
2692 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2693 strict_overflow_p);
2694 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2695 strict_overflow_p);
2696 if (cmp_min == 0 && cmp_max == 0)
2697 return boolean_true_node;
2698 else if (cmp_min != -2 && cmp_max != -2)
2699 return boolean_false_node;
2701 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2702 else if (compare_values_warnv (vr0->min, vr1->max,
2703 strict_overflow_p) == 1
2704 || compare_values_warnv (vr1->min, vr0->max,
2705 strict_overflow_p) == 1)
2706 return boolean_false_node;
2708 return NULL_TREE;
2710 else if (comp == NE_EXPR)
2712 int cmp1, cmp2;
2714 /* If VR0 is completely to the left or completely to the right
2715 of VR1, they are always different. Notice that we need to
2716 make sure that both comparisons yield similar results to
2717 avoid comparing values that cannot be compared at
2718 compile-time. */
2719 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2720 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2721 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2722 return boolean_true_node;
2724 /* If VR0 and VR1 represent a single value and are identical,
2725 return false. */
2726 else if (compare_values_warnv (vr0->min, vr0->max,
2727 strict_overflow_p) == 0
2728 && compare_values_warnv (vr1->min, vr1->max,
2729 strict_overflow_p) == 0
2730 && compare_values_warnv (vr0->min, vr1->min,
2731 strict_overflow_p) == 0
2732 && compare_values_warnv (vr0->max, vr1->max,
2733 strict_overflow_p) == 0)
2734 return boolean_false_node;
2736 /* Otherwise, they may or may not be different. */
2737 else
2738 return NULL_TREE;
2740 else if (comp == LT_EXPR || comp == LE_EXPR)
2742 int tst;
2744 /* If VR0 is to the left of VR1, return true. */
2745 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2746 if ((comp == LT_EXPR && tst == -1)
2747 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2749 if (overflow_infinity_range_p (vr0)
2750 || overflow_infinity_range_p (vr1))
2751 *strict_overflow_p = true;
2752 return boolean_true_node;
2755 /* If VR0 is to the right of VR1, return false. */
2756 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2757 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2758 || (comp == LE_EXPR && tst == 1))
2760 if (overflow_infinity_range_p (vr0)
2761 || overflow_infinity_range_p (vr1))
2762 *strict_overflow_p = true;
2763 return boolean_false_node;
2766 /* Otherwise, we don't know. */
2767 return NULL_TREE;
2770 gcc_unreachable ();
2774 /* Given a value range VR, a value VAL and a comparison code COMP, return
2775 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2776 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2777 always returns false. Return NULL_TREE if it is not always
2778 possible to determine the value of the comparison. Also set
2779 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2780 infinity was used in the test. */
2782 static tree
2783 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2784 bool *strict_overflow_p)
2786 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2787 return NULL_TREE;
2789 /* Anti-ranges need to be handled separately. */
2790 if (vr->type == VR_ANTI_RANGE)
2792 /* For anti-ranges, the only predicates that we can compute at
2793 compile time are equality and inequality. */
2794 if (comp == GT_EXPR
2795 || comp == GE_EXPR
2796 || comp == LT_EXPR
2797 || comp == LE_EXPR)
2798 return NULL_TREE;
2800 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2801 if (value_inside_range (val, vr) == 1)
2802 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2804 return NULL_TREE;
2807 if (!usable_range_p (vr, strict_overflow_p))
2808 return NULL_TREE;
2810 if (comp == EQ_EXPR)
2812 /* EQ_EXPR may only be computed if VR represents exactly
2813 one value. */
2814 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
2816 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
2817 if (cmp == 0)
2818 return boolean_true_node;
2819 else if (cmp == -1 || cmp == 1 || cmp == 2)
2820 return boolean_false_node;
2822 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
2823 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
2824 return boolean_false_node;
2826 return NULL_TREE;
2828 else if (comp == NE_EXPR)
2830 /* If VAL is not inside VR, then they are always different. */
2831 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
2832 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
2833 return boolean_true_node;
2835 /* If VR represents exactly one value equal to VAL, then return
2836 false. */
2837 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
2838 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
2839 return boolean_false_node;
2841 /* Otherwise, they may or may not be different. */
2842 return NULL_TREE;
2844 else if (comp == LT_EXPR || comp == LE_EXPR)
2846 int tst;
2848 /* If VR is to the left of VAL, return true. */
2849 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2850 if ((comp == LT_EXPR && tst == -1)
2851 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2853 if (overflow_infinity_range_p (vr))
2854 *strict_overflow_p = true;
2855 return boolean_true_node;
2858 /* If VR is to the right of VAL, return false. */
2859 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2860 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2861 || (comp == LE_EXPR && tst == 1))
2863 if (overflow_infinity_range_p (vr))
2864 *strict_overflow_p = true;
2865 return boolean_false_node;
2868 /* Otherwise, we don't know. */
2869 return NULL_TREE;
2871 else if (comp == GT_EXPR || comp == GE_EXPR)
2873 int tst;
2875 /* If VR is to the right of VAL, return true. */
2876 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2877 if ((comp == GT_EXPR && tst == 1)
2878 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2880 if (overflow_infinity_range_p (vr))
2881 *strict_overflow_p = true;
2882 return boolean_true_node;
2885 /* If VR is to the left of VAL, return false. */
2886 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2887 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2888 || (comp == GE_EXPR && tst == -1))
2890 if (overflow_infinity_range_p (vr))
2891 *strict_overflow_p = true;
2892 return boolean_false_node;
2895 /* Otherwise, we don't know. */
2896 return NULL_TREE;
2899 gcc_unreachable ();
2903 /* Debugging dumps. */
2905 void dump_value_range (FILE *, value_range_t *);
2906 void debug_value_range (value_range_t *);
2907 void dump_all_value_ranges (FILE *);
2908 void debug_all_value_ranges (void);
2909 void dump_vr_equiv (FILE *, bitmap);
2910 void debug_vr_equiv (bitmap);
2913 /* Dump value range VR to FILE. */
2915 void
2916 dump_value_range (FILE *file, value_range_t *vr)
2918 if (vr == NULL)
2919 fprintf (file, "[]");
2920 else if (vr->type == VR_UNDEFINED)
2921 fprintf (file, "UNDEFINED");
2922 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2924 tree type = TREE_TYPE (vr->min);
2926 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2928 if (INTEGRAL_TYPE_P (type)
2929 && !TYPE_UNSIGNED (type)
2930 && vr->min == TYPE_MIN_VALUE (type))
2931 fprintf (file, "-INF");
2932 else if (needs_overflow_infinity (type)
2933 && is_negative_overflow_infinity (vr->min))
2934 fprintf (file, "-INF(OVF)");
2935 else
2936 print_generic_expr (file, vr->min, 0);
2938 fprintf (file, ", ");
2940 if (INTEGRAL_TYPE_P (type)
2941 && vr->max == TYPE_MAX_VALUE (type))
2942 fprintf (file, "+INF");
2943 else if (needs_overflow_infinity (type)
2944 && is_positive_overflow_infinity (vr->max))
2945 fprintf (file, "+INF(OVF)");
2946 else
2947 print_generic_expr (file, vr->max, 0);
2949 fprintf (file, "]");
2951 if (vr->equiv)
2953 bitmap_iterator bi;
2954 unsigned i, c = 0;
2956 fprintf (file, " EQUIVALENCES: { ");
2958 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2960 print_generic_expr (file, ssa_name (i), 0);
2961 fprintf (file, " ");
2962 c++;
2965 fprintf (file, "} (%u elements)", c);
2968 else if (vr->type == VR_VARYING)
2969 fprintf (file, "VARYING");
2970 else
2971 fprintf (file, "INVALID RANGE");
2975 /* Dump value range VR to stderr. */
2977 void
2978 debug_value_range (value_range_t *vr)
2980 dump_value_range (stderr, vr);
2981 fprintf (stderr, "\n");
2985 /* Dump value ranges of all SSA_NAMEs to FILE. */
2987 void
2988 dump_all_value_ranges (FILE *file)
2990 size_t i;
2992 for (i = 0; i < num_ssa_names; i++)
2994 if (vr_value[i])
2996 print_generic_expr (file, ssa_name (i), 0);
2997 fprintf (file, ": ");
2998 dump_value_range (file, vr_value[i]);
2999 fprintf (file, "\n");
3003 fprintf (file, "\n");
3007 /* Dump all value ranges to stderr. */
3009 void
3010 debug_all_value_ranges (void)
3012 dump_all_value_ranges (stderr);
3016 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3017 create a new SSA name N and return the assertion assignment
3018 'V = ASSERT_EXPR <V, V OP W>'. */
3020 static tree
3021 build_assert_expr_for (tree cond, tree v)
3023 tree n, assertion;
3025 gcc_assert (TREE_CODE (v) == SSA_NAME);
3026 n = duplicate_ssa_name (v, NULL_TREE);
3028 if (COMPARISON_CLASS_P (cond))
3030 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3031 assertion = build_gimple_modify_stmt (n, a);
3033 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3035 /* Given !V, build the assignment N = false. */
3036 tree op0 = TREE_OPERAND (cond, 0);
3037 gcc_assert (op0 == v);
3038 assertion = build_gimple_modify_stmt (n, boolean_false_node);
3040 else if (TREE_CODE (cond) == SSA_NAME)
3042 /* Given V, build the assignment N = true. */
3043 gcc_assert (v == cond);
3044 assertion = build_gimple_modify_stmt (n, boolean_true_node);
3046 else
3047 gcc_unreachable ();
3049 SSA_NAME_DEF_STMT (n) = assertion;
3051 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3052 operand of the ASSERT_EXPR. Register the new name and the old one
3053 in the replacement table so that we can fix the SSA web after
3054 adding all the ASSERT_EXPRs. */
3055 register_new_name_mapping (n, v);
3057 return assertion;
3061 /* Return false if EXPR is a predicate expression involving floating
3062 point values. */
3064 static inline bool
3065 fp_predicate (tree expr)
3067 return (COMPARISON_CLASS_P (expr)
3068 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3072 /* If the range of values taken by OP can be inferred after STMT executes,
3073 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3074 describes the inferred range. Return true if a range could be
3075 inferred. */
3077 static bool
3078 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3080 *val_p = NULL_TREE;
3081 *comp_code_p = ERROR_MARK;
3083 /* Do not attempt to infer anything in names that flow through
3084 abnormal edges. */
3085 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3086 return false;
3088 /* Similarly, don't infer anything from statements that may throw
3089 exceptions. */
3090 if (tree_could_throw_p (stmt))
3091 return false;
3093 /* If STMT is the last statement of a basic block with no
3094 successors, there is no point inferring anything about any of its
3095 operands. We would not be able to find a proper insertion point
3096 for the assertion, anyway. */
3097 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3098 return false;
3100 /* We can only assume that a pointer dereference will yield
3101 non-NULL if -fdelete-null-pointer-checks is enabled. */
3102 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3104 bool is_store;
3105 unsigned num_uses, num_derefs;
3107 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
3108 if (num_derefs > 0)
3110 *val_p = build_int_cst (TREE_TYPE (op), 0);
3111 *comp_code_p = NE_EXPR;
3112 return true;
3116 return false;
3120 void dump_asserts_for (FILE *, tree);
3121 void debug_asserts_for (tree);
3122 void dump_all_asserts (FILE *);
3123 void debug_all_asserts (void);
3125 /* Dump all the registered assertions for NAME to FILE. */
3127 void
3128 dump_asserts_for (FILE *file, tree name)
3130 assert_locus_t loc;
3132 fprintf (file, "Assertions to be inserted for ");
3133 print_generic_expr (file, name, 0);
3134 fprintf (file, "\n");
3136 loc = asserts_for[SSA_NAME_VERSION (name)];
3137 while (loc)
3139 fprintf (file, "\t");
3140 print_generic_expr (file, bsi_stmt (loc->si), 0);
3141 fprintf (file, "\n\tBB #%d", loc->bb->index);
3142 if (loc->e)
3144 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3145 loc->e->dest->index);
3146 dump_edge_info (file, loc->e, 0);
3148 fprintf (file, "\n\tPREDICATE: ");
3149 print_generic_expr (file, name, 0);
3150 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3151 print_generic_expr (file, loc->val, 0);
3152 fprintf (file, "\n\n");
3153 loc = loc->next;
3156 fprintf (file, "\n");
3160 /* Dump all the registered assertions for NAME to stderr. */
3162 void
3163 debug_asserts_for (tree name)
3165 dump_asserts_for (stderr, name);
3169 /* Dump all the registered assertions for all the names to FILE. */
3171 void
3172 dump_all_asserts (FILE *file)
3174 unsigned i;
3175 bitmap_iterator bi;
3177 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3178 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3179 dump_asserts_for (file, ssa_name (i));
3180 fprintf (file, "\n");
3184 /* Dump all the registered assertions for all the names to stderr. */
3186 void
3187 debug_all_asserts (void)
3189 dump_all_asserts (stderr);
3193 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3194 'NAME COMP_CODE VAL' at a location that dominates block BB or
3195 E->DEST, then register this location as a possible insertion point
3196 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3198 BB, E and SI provide the exact insertion point for the new
3199 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3200 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3201 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3202 must not be NULL. */
3204 static void
3205 register_new_assert_for (tree name,
3206 enum tree_code comp_code,
3207 tree val,
3208 basic_block bb,
3209 edge e,
3210 block_stmt_iterator si)
3212 assert_locus_t n, loc, last_loc;
3213 bool found;
3214 basic_block dest_bb;
3216 #if defined ENABLE_CHECKING
3217 gcc_assert (bb == NULL || e == NULL);
3219 if (e == NULL)
3220 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3221 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3222 #endif
3224 /* The new assertion A will be inserted at BB or E. We need to
3225 determine if the new location is dominated by a previously
3226 registered location for A. If we are doing an edge insertion,
3227 assume that A will be inserted at E->DEST. Note that this is not
3228 necessarily true.
3230 If E is a critical edge, it will be split. But even if E is
3231 split, the new block will dominate the same set of blocks that
3232 E->DEST dominates.
3234 The reverse, however, is not true, blocks dominated by E->DEST
3235 will not be dominated by the new block created to split E. So,
3236 if the insertion location is on a critical edge, we will not use
3237 the new location to move another assertion previously registered
3238 at a block dominated by E->DEST. */
3239 dest_bb = (bb) ? bb : e->dest;
3241 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3242 VAL at a block dominating DEST_BB, then we don't need to insert a new
3243 one. Similarly, if the same assertion already exists at a block
3244 dominated by DEST_BB and the new location is not on a critical
3245 edge, then update the existing location for the assertion (i.e.,
3246 move the assertion up in the dominance tree).
3248 Note, this is implemented as a simple linked list because there
3249 should not be more than a handful of assertions registered per
3250 name. If this becomes a performance problem, a table hashed by
3251 COMP_CODE and VAL could be implemented. */
3252 loc = asserts_for[SSA_NAME_VERSION (name)];
3253 last_loc = loc;
3254 found = false;
3255 while (loc)
3257 if (loc->comp_code == comp_code
3258 && (loc->val == val
3259 || operand_equal_p (loc->val, val, 0)))
3261 /* If the assertion NAME COMP_CODE VAL has already been
3262 registered at a basic block that dominates DEST_BB, then
3263 we don't need to insert the same assertion again. Note
3264 that we don't check strict dominance here to avoid
3265 replicating the same assertion inside the same basic
3266 block more than once (e.g., when a pointer is
3267 dereferenced several times inside a block).
3269 An exception to this rule are edge insertions. If the
3270 new assertion is to be inserted on edge E, then it will
3271 dominate all the other insertions that we may want to
3272 insert in DEST_BB. So, if we are doing an edge
3273 insertion, don't do this dominance check. */
3274 if (e == NULL
3275 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3276 return;
3278 /* Otherwise, if E is not a critical edge and DEST_BB
3279 dominates the existing location for the assertion, move
3280 the assertion up in the dominance tree by updating its
3281 location information. */
3282 if ((e == NULL || !EDGE_CRITICAL_P (e))
3283 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3285 loc->bb = dest_bb;
3286 loc->e = e;
3287 loc->si = si;
3288 return;
3292 /* Update the last node of the list and move to the next one. */
3293 last_loc = loc;
3294 loc = loc->next;
3297 /* If we didn't find an assertion already registered for
3298 NAME COMP_CODE VAL, add a new one at the end of the list of
3299 assertions associated with NAME. */
3300 n = XNEW (struct assert_locus_d);
3301 n->bb = dest_bb;
3302 n->e = e;
3303 n->si = si;
3304 n->comp_code = comp_code;
3305 n->val = val;
3306 n->next = NULL;
3308 if (last_loc)
3309 last_loc->next = n;
3310 else
3311 asserts_for[SSA_NAME_VERSION (name)] = n;
3313 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3316 /* COND is a predicate which uses NAME. Extract a suitable test code
3317 and value and store them into *CODE_P and *VAL_P so the predicate
3318 is normalized to NAME *CODE_P *VAL_P.
3320 If no extraction was possible, return FALSE, otherwise return TRUE.
3322 If INVERT is true, then we invert the result stored into *CODE_P. */
3324 static bool
3325 extract_code_and_val_from_cond (tree name, tree cond, bool invert,
3326 enum tree_code *code_p, tree *val_p)
3328 enum tree_code comp_code;
3329 tree val;
3331 /* Predicates may be a single SSA name or NAME OP VAL. */
3332 if (cond == name)
3334 /* If the predicate is a name, it must be NAME, in which
3335 case we create the predicate NAME == true or
3336 NAME == false accordingly. */
3337 comp_code = EQ_EXPR;
3338 val = invert ? boolean_false_node : boolean_true_node;
3340 else
3342 /* Otherwise, we have a comparison of the form NAME COMP VAL
3343 or VAL COMP NAME. */
3344 if (name == TREE_OPERAND (cond, 1))
3346 /* If the predicate is of the form VAL COMP NAME, flip
3347 COMP around because we need to register NAME as the
3348 first operand in the predicate. */
3349 comp_code = swap_tree_comparison (TREE_CODE (cond));
3350 val = TREE_OPERAND (cond, 0);
3352 else
3354 /* The comparison is of the form NAME COMP VAL, so the
3355 comparison code remains unchanged. */
3356 comp_code = TREE_CODE (cond);
3357 val = TREE_OPERAND (cond, 1);
3360 /* Invert the comparison code as necessary. */
3361 if (invert)
3362 comp_code = invert_tree_comparison (comp_code, 0);
3364 /* VRP does not handle float types. */
3365 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3366 return false;
3368 /* Do not register always-false predicates.
3369 FIXME: this works around a limitation in fold() when dealing with
3370 enumerations. Given 'enum { N1, N2 } x;', fold will not
3371 fold 'if (x > N2)' to 'if (0)'. */
3372 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3373 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3375 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3376 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3378 if (comp_code == GT_EXPR
3379 && (!max
3380 || compare_values (val, max) == 0))
3381 return false;
3383 if (comp_code == LT_EXPR
3384 && (!min
3385 || compare_values (val, min) == 0))
3386 return false;
3389 *code_p = comp_code;
3390 *val_p = val;
3391 return true;
3394 /* OP is an operand of a truth value expression which is known to have
3395 a particular value. Register any asserts for OP and for any
3396 operands in OP's defining statement.
3398 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3399 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3401 static bool
3402 register_edge_assert_for_1 (tree op, enum tree_code code,
3403 edge e, block_stmt_iterator bsi)
3405 bool retval = false;
3406 tree op_def, rhs, val;
3408 /* We only care about SSA_NAMEs. */
3409 if (TREE_CODE (op) != SSA_NAME)
3410 return false;
3412 /* We know that OP will have a zero or nonzero value. If OP is used
3413 more than once go ahead and register an assert for OP.
3415 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3416 it will always be set for OP (because OP is used in a COND_EXPR in
3417 the subgraph). */
3418 if (!has_single_use (op))
3420 val = build_int_cst (TREE_TYPE (op), 0);
3421 register_new_assert_for (op, code, val, NULL, e, bsi);
3422 retval = true;
3425 /* Now look at how OP is set. If it's set from a comparison,
3426 a truth operation or some bit operations, then we may be able
3427 to register information about the operands of that assignment. */
3428 op_def = SSA_NAME_DEF_STMT (op);
3429 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
3430 return retval;
3432 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
3434 if (COMPARISON_CLASS_P (rhs))
3436 bool invert = (code == EQ_EXPR ? true : false);
3437 tree op0 = TREE_OPERAND (rhs, 0);
3438 tree op1 = TREE_OPERAND (rhs, 1);
3440 /* Conditionally register an assert for each SSA_NAME in the
3441 comparison. */
3442 if (TREE_CODE (op0) == SSA_NAME
3443 && !has_single_use (op0)
3444 && extract_code_and_val_from_cond (op0, rhs,
3445 invert, &code, &val))
3447 register_new_assert_for (op0, code, val, NULL, e, bsi);
3448 retval = true;
3451 /* Similarly for the second operand of the comparison. */
3452 if (TREE_CODE (op1) == SSA_NAME
3453 && !has_single_use (op1)
3454 && extract_code_and_val_from_cond (op1, rhs,
3455 invert, &code, &val))
3457 register_new_assert_for (op1, code, val, NULL, e, bsi);
3458 retval = true;
3461 else if ((code == NE_EXPR
3462 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
3463 || TREE_CODE (rhs) == BIT_AND_EXPR))
3464 || (code == EQ_EXPR
3465 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
3466 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
3468 /* Recurse on each operand. */
3469 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3470 code, e, bsi);
3471 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
3472 code, e, bsi);
3474 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
3476 /* Recurse, flipping CODE. */
3477 code = invert_tree_comparison (code, false);
3478 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3479 code, e, bsi);
3481 else if (TREE_CODE (rhs) == SSA_NAME)
3483 /* Recurse through the copy. */
3484 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
3486 else if (TREE_CODE (rhs) == NOP_EXPR
3487 || TREE_CODE (rhs) == CONVERT_EXPR
3488 || TREE_CODE (rhs) == VIEW_CONVERT_EXPR
3489 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
3491 /* Recurse through the type conversion. */
3492 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3493 code, e, bsi);
3496 return retval;
3499 /* Try to register an edge assertion for SSA name NAME on edge E for
3500 the condition COND contributing to the conditional jump pointed to by SI.
3501 Return true if an assertion for NAME could be registered. */
3503 static bool
3504 register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
3506 tree val;
3507 enum tree_code comp_code;
3508 bool retval = false;
3509 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3511 /* Do not attempt to infer anything in names that flow through
3512 abnormal edges. */
3513 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3514 return false;
3516 if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
3517 &comp_code, &val))
3518 return false;
3520 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3521 reachable from E. */
3522 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3524 register_new_assert_for (name, comp_code, val, NULL, e, si);
3525 retval = true;
3528 /* If COND is effectively an equality test of an SSA_NAME against
3529 the value zero or one, then we may be able to assert values
3530 for SSA_NAMEs which flow into COND. */
3532 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
3533 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
3534 have nonzero value. */
3535 if (((comp_code == EQ_EXPR && integer_onep (val))
3536 || (comp_code == NE_EXPR && integer_zerop (val))))
3538 tree def_stmt = SSA_NAME_DEF_STMT (name);
3540 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3541 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
3542 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
3544 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3545 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3546 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
3547 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
3551 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
3552 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
3553 have zero value. */
3554 if (((comp_code == EQ_EXPR && integer_zerop (val))
3555 || (comp_code == NE_EXPR && integer_onep (val))))
3557 tree def_stmt = SSA_NAME_DEF_STMT (name);
3559 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3560 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
3561 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_IOR_EXPR))
3563 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3564 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3565 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
3566 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
3570 return retval;
3574 static bool find_assert_locations (basic_block bb);
3576 /* Determine whether the outgoing edges of BB should receive an
3577 ASSERT_EXPR for each of the operands of BB's LAST statement.
3578 The last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
3580 If any of the sub-graphs rooted at BB have an interesting use of
3581 the predicate operands, an assert location node is added to the
3582 list of assertions for the corresponding operands. */
3584 static bool
3585 find_conditional_asserts (basic_block bb, tree last)
3587 bool need_assert;
3588 block_stmt_iterator bsi;
3589 tree op;
3590 edge_iterator ei;
3591 edge e;
3592 ssa_op_iter iter;
3594 need_assert = false;
3595 bsi = bsi_for_stmt (last);
3597 /* Look for uses of the operands in each of the sub-graphs
3598 rooted at BB. We need to check each of the outgoing edges
3599 separately, so that we know what kind of ASSERT_EXPR to
3600 insert. */
3601 FOR_EACH_EDGE (e, ei, bb->succs)
3603 if (e->dest == bb)
3604 continue;
3606 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3607 Otherwise, when we finish traversing each of the sub-graphs, we
3608 won't know whether the variables were found in the sub-graphs or
3609 if they had been found in a block upstream from BB.
3611 This is actually a bad idea is some cases, particularly jump
3612 threading. Consider a CFG like the following:
3622 Assume that one or more operands in the conditional at the
3623 end of block 0 are used in a conditional in block 2, but not
3624 anywhere in block 1. In this case we will not insert any
3625 assert statements in block 1, which may cause us to miss
3626 opportunities to optimize, particularly for jump threading. */
3627 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3628 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3630 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3631 to determine if any of the operands in the conditional
3632 predicate are used. */
3633 if (e->dest != bb)
3634 need_assert |= find_assert_locations (e->dest);
3636 /* Register the necessary assertions for each operand in the
3637 conditional predicate. */
3638 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3639 need_assert |= register_edge_assert_for (op, e, bsi,
3640 COND_EXPR_COND (last));
3643 /* Finally, indicate that we have found the operands in the
3644 conditional. */
3645 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3646 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3648 return need_assert;
3652 /* Traverse all the statements in block BB looking for statements that
3653 may generate useful assertions for the SSA names in their operand.
3654 If a statement produces a useful assertion A for name N_i, then the
3655 list of assertions already generated for N_i is scanned to
3656 determine if A is actually needed.
3658 If N_i already had the assertion A at a location dominating the
3659 current location, then nothing needs to be done. Otherwise, the
3660 new location for A is recorded instead.
3662 1- For every statement S in BB, all the variables used by S are
3663 added to bitmap FOUND_IN_SUBGRAPH.
3665 2- If statement S uses an operand N in a way that exposes a known
3666 value range for N, then if N was not already generated by an
3667 ASSERT_EXPR, create a new assert location for N. For instance,
3668 if N is a pointer and the statement dereferences it, we can
3669 assume that N is not NULL.
3671 3- COND_EXPRs are a special case of #2. We can derive range
3672 information from the predicate but need to insert different
3673 ASSERT_EXPRs for each of the sub-graphs rooted at the
3674 conditional block. If the last statement of BB is a conditional
3675 expression of the form 'X op Y', then
3677 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3679 b) If the conditional is the only entry point to the sub-graph
3680 corresponding to the THEN_CLAUSE, recurse into it. On
3681 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3682 an ASSERT_EXPR is added for the corresponding variable.
3684 c) Repeat step (b) on the ELSE_CLAUSE.
3686 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3688 For instance,
3690 if (a == 9)
3691 b = a;
3692 else
3693 b = c + 1;
3695 In this case, an assertion on the THEN clause is useful to
3696 determine that 'a' is always 9 on that edge. However, an assertion
3697 on the ELSE clause would be unnecessary.
3699 4- If BB does not end in a conditional expression, then we recurse
3700 into BB's dominator children.
3702 At the end of the recursive traversal, every SSA name will have a
3703 list of locations where ASSERT_EXPRs should be added. When a new
3704 location for name N is found, it is registered by calling
3705 register_new_assert_for. That function keeps track of all the
3706 registered assertions to prevent adding unnecessary assertions.
3707 For instance, if a pointer P_4 is dereferenced more than once in a
3708 dominator tree, only the location dominating all the dereference of
3709 P_4 will receive an ASSERT_EXPR.
3711 If this function returns true, then it means that there are names
3712 for which we need to generate ASSERT_EXPRs. Those assertions are
3713 inserted by process_assert_insertions.
3715 TODO. Handle SWITCH_EXPR. */
3717 static bool
3718 find_assert_locations (basic_block bb)
3720 block_stmt_iterator si;
3721 tree last, phi;
3722 bool need_assert;
3723 basic_block son;
3725 if (TEST_BIT (blocks_visited, bb->index))
3726 return false;
3728 SET_BIT (blocks_visited, bb->index);
3730 need_assert = false;
3732 /* Traverse all PHI nodes in BB marking used operands. */
3733 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3735 use_operand_p arg_p;
3736 ssa_op_iter i;
3738 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3740 tree arg = USE_FROM_PTR (arg_p);
3741 if (TREE_CODE (arg) == SSA_NAME)
3743 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3744 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3749 /* Traverse all the statements in BB marking used names and looking
3750 for statements that may infer assertions for their used operands. */
3751 last = NULL_TREE;
3752 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3754 tree stmt, op;
3755 ssa_op_iter i;
3757 stmt = bsi_stmt (si);
3759 /* See if we can derive an assertion for any of STMT's operands. */
3760 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3762 tree value;
3763 enum tree_code comp_code;
3765 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
3766 the sub-graph of a conditional block, when we return from
3767 this recursive walk, our parent will use the
3768 FOUND_IN_SUBGRAPH bitset to determine if one of the
3769 operands it was looking for was present in the sub-graph. */
3770 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3772 /* If OP is used in such a way that we can infer a value
3773 range for it, and we don't find a previous assertion for
3774 it, create a new assertion location node for OP. */
3775 if (infer_value_range (stmt, op, &comp_code, &value))
3777 /* If we are able to infer a nonzero value range for OP,
3778 then walk backwards through the use-def chain to see if OP
3779 was set via a typecast.
3781 If so, then we can also infer a nonzero value range
3782 for the operand of the NOP_EXPR. */
3783 if (comp_code == NE_EXPR && integer_zerop (value))
3785 tree t = op;
3786 tree def_stmt = SSA_NAME_DEF_STMT (t);
3788 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3789 && TREE_CODE
3790 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
3791 && TREE_CODE
3792 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
3793 0)) == SSA_NAME
3794 && POINTER_TYPE_P
3795 (TREE_TYPE (TREE_OPERAND
3796 (GIMPLE_STMT_OPERAND (def_stmt,
3797 1), 0))))
3799 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3800 def_stmt = SSA_NAME_DEF_STMT (t);
3802 /* Note we want to register the assert for the
3803 operand of the NOP_EXPR after SI, not after the
3804 conversion. */
3805 if (! has_single_use (t))
3807 register_new_assert_for (t, comp_code, value,
3808 bb, NULL, si);
3809 need_assert = true;
3814 /* If OP is used only once, namely in this STMT, don't
3815 bother creating an ASSERT_EXPR for it. Such an
3816 ASSERT_EXPR would do nothing but increase compile time. */
3817 if (!has_single_use (op))
3819 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3820 need_assert = true;
3825 /* Remember the last statement of the block. */
3826 last = stmt;
3829 /* If BB's last statement is a conditional expression
3830 involving integer operands, recurse into each of the sub-graphs
3831 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3832 if (last
3833 && TREE_CODE (last) == COND_EXPR
3834 && !fp_predicate (COND_EXPR_COND (last))
3835 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3836 need_assert |= find_conditional_asserts (bb, last);
3838 /* Recurse into the dominator children of BB. */
3839 for (son = first_dom_son (CDI_DOMINATORS, bb);
3840 son;
3841 son = next_dom_son (CDI_DOMINATORS, son))
3842 need_assert |= find_assert_locations (son);
3844 return need_assert;
3848 /* Create an ASSERT_EXPR for NAME and insert it in the location
3849 indicated by LOC. Return true if we made any edge insertions. */
3851 static bool
3852 process_assert_insertions_for (tree name, assert_locus_t loc)
3854 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3855 tree stmt, cond, assert_expr;
3856 edge_iterator ei;
3857 edge e;
3859 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3860 assert_expr = build_assert_expr_for (cond, name);
3862 if (loc->e)
3864 /* We have been asked to insert the assertion on an edge. This
3865 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3866 #if defined ENABLE_CHECKING
3867 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3868 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3869 #endif
3871 bsi_insert_on_edge (loc->e, assert_expr);
3872 return true;
3875 /* Otherwise, we can insert right after LOC->SI iff the
3876 statement must not be the last statement in the block. */
3877 stmt = bsi_stmt (loc->si);
3878 if (!stmt_ends_bb_p (stmt))
3880 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3881 return false;
3884 /* If STMT must be the last statement in BB, we can only insert new
3885 assertions on the non-abnormal edge out of BB. Note that since
3886 STMT is not control flow, there may only be one non-abnormal edge
3887 out of BB. */
3888 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3889 if (!(e->flags & EDGE_ABNORMAL))
3891 bsi_insert_on_edge (e, assert_expr);
3892 return true;
3895 gcc_unreachable ();
3899 /* Process all the insertions registered for every name N_i registered
3900 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3901 found in ASSERTS_FOR[i]. */
3903 static void
3904 process_assert_insertions (void)
3906 unsigned i;
3907 bitmap_iterator bi;
3908 bool update_edges_p = false;
3909 int num_asserts = 0;
3911 if (dump_file && (dump_flags & TDF_DETAILS))
3912 dump_all_asserts (dump_file);
3914 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3916 assert_locus_t loc = asserts_for[i];
3917 gcc_assert (loc);
3919 while (loc)
3921 assert_locus_t next = loc->next;
3922 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3923 free (loc);
3924 loc = next;
3925 num_asserts++;
3929 if (update_edges_p)
3930 bsi_commit_edge_inserts ();
3932 if (dump_file && (dump_flags & TDF_STATS))
3933 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3934 num_asserts);
3938 /* Traverse the flowgraph looking for conditional jumps to insert range
3939 expressions. These range expressions are meant to provide information
3940 to optimizations that need to reason in terms of value ranges. They
3941 will not be expanded into RTL. For instance, given:
3943 x = ...
3944 y = ...
3945 if (x < y)
3946 y = x - 2;
3947 else
3948 x = y + 3;
3950 this pass will transform the code into:
3952 x = ...
3953 y = ...
3954 if (x < y)
3956 x = ASSERT_EXPR <x, x < y>
3957 y = x - 2
3959 else
3961 y = ASSERT_EXPR <y, x <= y>
3962 x = y + 3
3965 The idea is that once copy and constant propagation have run, other
3966 optimizations will be able to determine what ranges of values can 'x'
3967 take in different paths of the code, simply by checking the reaching
3968 definition of 'x'. */
3970 static void
3971 insert_range_assertions (void)
3973 edge e;
3974 edge_iterator ei;
3975 bool update_ssa_p;
3977 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3978 sbitmap_zero (found_in_subgraph);
3980 blocks_visited = sbitmap_alloc (last_basic_block);
3981 sbitmap_zero (blocks_visited);
3983 need_assert_for = BITMAP_ALLOC (NULL);
3984 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
3986 calculate_dominance_info (CDI_DOMINATORS);
3988 update_ssa_p = false;
3989 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3990 if (find_assert_locations (e->dest))
3991 update_ssa_p = true;
3993 if (update_ssa_p)
3995 process_assert_insertions ();
3996 update_ssa (TODO_update_ssa_no_phi);
3999 if (dump_file && (dump_flags & TDF_DETAILS))
4001 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4002 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4005 sbitmap_free (found_in_subgraph);
4006 free (asserts_for);
4007 BITMAP_FREE (need_assert_for);
4010 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4011 and "struct" hacks. If VRP can determine that the
4012 array subscript is a constant, check if it is outside valid
4013 range. If the array subscript is a RANGE, warn if it is
4014 non-overlapping with valid range.
4015 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4017 static void
4018 check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
4020 value_range_t* vr = NULL;
4021 tree low_sub, up_sub;
4022 tree low_bound, up_bound = array_ref_up_bound (ref);
4024 low_sub = up_sub = TREE_OPERAND (ref, 1);
4026 if (!up_bound || !locus || TREE_NO_WARNING (ref)
4027 || TREE_CODE (up_bound) != INTEGER_CST
4028 /* Can not check flexible arrays. */
4029 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4030 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4031 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4032 /* Accesses after the end of arrays of size 0 (gcc
4033 extension) and 1 are likely intentional ("struct
4034 hack"). */
4035 || compare_tree_int (up_bound, 1) <= 0)
4036 return;
4038 low_bound = array_ref_low_bound (ref);
4040 if (TREE_CODE (low_sub) == SSA_NAME)
4042 vr = get_value_range (low_sub);
4043 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4045 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4046 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4050 if (vr && vr->type == VR_ANTI_RANGE)
4052 if (TREE_CODE (up_sub) == INTEGER_CST
4053 && tree_int_cst_lt (up_bound, up_sub)
4054 && TREE_CODE (low_sub) == INTEGER_CST
4055 && tree_int_cst_lt (low_sub, low_bound))
4057 warning (OPT_Warray_bounds,
4058 "%Harray subscript is outside array bounds", locus);
4059 TREE_NO_WARNING (ref) = 1;
4062 else if (TREE_CODE (up_sub) == INTEGER_CST
4063 && tree_int_cst_lt (up_bound, up_sub)
4064 && !tree_int_cst_equal (up_bound, up_sub)
4065 && (!ignore_off_by_one
4066 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4067 up_bound,
4068 integer_one_node,
4070 up_sub)))
4072 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4073 locus);
4074 TREE_NO_WARNING (ref) = 1;
4076 else if (TREE_CODE (low_sub) == INTEGER_CST
4077 && tree_int_cst_lt (low_sub, low_bound))
4079 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4080 locus);
4081 TREE_NO_WARNING (ref) = 1;
4085 /* walk_tree() callback that checks if *TP is
4086 an ARRAY_REF inside an ADDR_EXPR (in which an array
4087 subscript one outside the valid range is allowed). Call
4088 check_array_ref for each ARRAY_REF found. The location is
4089 passed in DATA. */
4091 static tree
4092 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4094 tree t = *tp;
4095 tree stmt = (tree)data;
4096 location_t *location = EXPR_LOCUS (stmt);
4098 *walk_subtree = TRUE;
4100 if (TREE_CODE (t) == ARRAY_REF)
4101 check_array_ref (t, location, false /*ignore_off_by_one*/);
4102 else if (TREE_CODE (t) == ADDR_EXPR)
4104 use_operand_p op;
4105 tree use_stmt;
4106 t = TREE_OPERAND (t, 0);
4108 /* Don't warn on statements like
4110 ssa_name = 500 + &array[-200]
4114 ssa_name = &array[-200]
4115 other_name = ssa_name + 300;
4117 which are sometimes
4118 produced by other optimizing passes. */
4120 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4121 && BINARY_CLASS_P (GIMPLE_STMT_OPERAND (stmt, 1)))
4122 *walk_subtree = FALSE;
4124 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4125 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == SSA_NAME
4126 && single_imm_use (GIMPLE_STMT_OPERAND (stmt, 0), &op, &use_stmt)
4127 && TREE_CODE (use_stmt) == GIMPLE_MODIFY_STMT
4128 && BINARY_CLASS_P (GIMPLE_STMT_OPERAND (use_stmt, 1)))
4129 *walk_subtree = FALSE;
4131 while (*walk_subtree && handled_component_p (t))
4133 if (TREE_CODE (t) == ARRAY_REF)
4134 check_array_ref (t, location, true /*ignore_off_by_one*/);
4135 t = TREE_OPERAND (t, 0);
4137 *walk_subtree = FALSE;
4140 return NULL_TREE;
4143 /* Walk over all statements of all reachable BBs and call check_array_bounds
4144 on them. */
4146 static void
4147 check_all_array_refs (void)
4149 basic_block bb;
4150 block_stmt_iterator si;
4152 FOR_EACH_BB (bb)
4154 /* Skip bb's that are clearly unreachable. */
4155 if (single_pred_p (bb))
4157 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
4158 tree ls = NULL_TREE;
4160 if (!bsi_end_p (bsi_last (pred_bb)))
4161 ls = bsi_stmt (bsi_last (pred_bb));
4163 if (ls && TREE_CODE (ls) == COND_EXPR
4164 && ((COND_EXPR_COND (ls) == boolean_false_node
4165 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
4166 || (COND_EXPR_COND (ls) == boolean_true_node
4167 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
4168 continue;
4170 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4171 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
4172 bsi_stmt (si), NULL);
4176 /* Convert range assertion expressions into the implied copies and
4177 copy propagate away the copies. Doing the trivial copy propagation
4178 here avoids the need to run the full copy propagation pass after
4179 VRP.
4181 FIXME, this will eventually lead to copy propagation removing the
4182 names that had useful range information attached to them. For
4183 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4184 then N_i will have the range [3, +INF].
4186 However, by converting the assertion into the implied copy
4187 operation N_i = N_j, we will then copy-propagate N_j into the uses
4188 of N_i and lose the range information. We may want to hold on to
4189 ASSERT_EXPRs a little while longer as the ranges could be used in
4190 things like jump threading.
4192 The problem with keeping ASSERT_EXPRs around is that passes after
4193 VRP need to handle them appropriately.
4195 Another approach would be to make the range information a first
4196 class property of the SSA_NAME so that it can be queried from
4197 any pass. This is made somewhat more complex by the need for
4198 multiple ranges to be associated with one SSA_NAME. */
4200 static void
4201 remove_range_assertions (void)
4203 basic_block bb;
4204 block_stmt_iterator si;
4206 /* Note that the BSI iterator bump happens at the bottom of the
4207 loop and no bump is necessary if we're removing the statement
4208 referenced by the current BSI. */
4209 FOR_EACH_BB (bb)
4210 for (si = bsi_start (bb); !bsi_end_p (si);)
4212 tree stmt = bsi_stmt (si);
4213 tree use_stmt;
4215 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4216 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
4218 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
4219 tree cond = fold (ASSERT_EXPR_COND (rhs));
4220 use_operand_p use_p;
4221 imm_use_iterator iter;
4223 gcc_assert (cond != boolean_false_node);
4225 /* Propagate the RHS into every use of the LHS. */
4226 var = ASSERT_EXPR_VAR (rhs);
4227 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
4228 GIMPLE_STMT_OPERAND (stmt, 0))
4229 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4231 SET_USE (use_p, var);
4232 gcc_assert (TREE_CODE (var) == SSA_NAME);
4235 /* And finally, remove the copy, it is not needed. */
4236 bsi_remove (&si, true);
4237 release_defs (stmt);
4239 else
4240 bsi_next (&si);
4243 sbitmap_free (blocks_visited);
4247 /* Return true if STMT is interesting for VRP. */
4249 static bool
4250 stmt_interesting_for_vrp (tree stmt)
4252 if (TREE_CODE (stmt) == PHI_NODE
4253 && is_gimple_reg (PHI_RESULT (stmt))
4254 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
4255 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
4256 return true;
4257 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4259 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4260 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4262 /* In general, assignments with virtual operands are not useful
4263 for deriving ranges, with the obvious exception of calls to
4264 builtin functions. */
4265 if (TREE_CODE (lhs) == SSA_NAME
4266 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4267 || POINTER_TYPE_P (TREE_TYPE (lhs)))
4268 && ((TREE_CODE (rhs) == CALL_EXPR
4269 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4270 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4271 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4272 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
4273 return true;
4275 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4276 return true;
4278 return false;
4282 /* Initialize local data structures for VRP. */
4284 static void
4285 vrp_initialize (void)
4287 basic_block bb;
4289 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
4291 FOR_EACH_BB (bb)
4293 block_stmt_iterator si;
4294 tree phi;
4296 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4298 if (!stmt_interesting_for_vrp (phi))
4300 tree lhs = PHI_RESULT (phi);
4301 set_value_range_to_varying (get_value_range (lhs));
4302 DONT_SIMULATE_AGAIN (phi) = true;
4304 else
4305 DONT_SIMULATE_AGAIN (phi) = false;
4308 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4310 tree stmt = bsi_stmt (si);
4312 if (!stmt_interesting_for_vrp (stmt))
4314 ssa_op_iter i;
4315 tree def;
4316 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4317 set_value_range_to_varying (get_value_range (def));
4318 DONT_SIMULATE_AGAIN (stmt) = true;
4320 else
4322 DONT_SIMULATE_AGAIN (stmt) = false;
4329 /* Visit assignment STMT. If it produces an interesting range, record
4330 the SSA name in *OUTPUT_P. */
4332 static enum ssa_prop_result
4333 vrp_visit_assignment (tree stmt, tree *output_p)
4335 tree lhs, rhs, def;
4336 ssa_op_iter iter;
4338 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4339 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4341 /* We only keep track of ranges in integral and pointer types. */
4342 if (TREE_CODE (lhs) == SSA_NAME
4343 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4344 /* It is valid to have NULL MIN/MAX values on a type. See
4345 build_range_type. */
4346 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4347 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4348 || POINTER_TYPE_P (TREE_TYPE (lhs))))
4350 struct loop *l;
4351 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4353 extract_range_from_expr (&new_vr, rhs);
4355 /* If STMT is inside a loop, we may be able to know something
4356 else about the range of LHS by examining scalar evolution
4357 information. */
4358 if (current_loops && (l = loop_containing_stmt (stmt)))
4359 adjust_range_with_scev (&new_vr, l, stmt, lhs);
4361 if (update_value_range (lhs, &new_vr))
4363 *output_p = lhs;
4365 if (dump_file && (dump_flags & TDF_DETAILS))
4367 fprintf (dump_file, "Found new range for ");
4368 print_generic_expr (dump_file, lhs, 0);
4369 fprintf (dump_file, ": ");
4370 dump_value_range (dump_file, &new_vr);
4371 fprintf (dump_file, "\n\n");
4374 if (new_vr.type == VR_VARYING)
4375 return SSA_PROP_VARYING;
4377 return SSA_PROP_INTERESTING;
4380 return SSA_PROP_NOT_INTERESTING;
4383 /* Every other statement produces no useful ranges. */
4384 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4385 set_value_range_to_varying (get_value_range (def));
4387 return SSA_PROP_VARYING;
4391 /* Compare all the value ranges for names equivalent to VAR with VAL
4392 using comparison code COMP. Return the same value returned by
4393 compare_range_with_value, including the setting of
4394 *STRICT_OVERFLOW_P. */
4396 static tree
4397 compare_name_with_value (enum tree_code comp, tree var, tree val,
4398 bool *strict_overflow_p)
4400 bitmap_iterator bi;
4401 unsigned i;
4402 bitmap e;
4403 tree retval, t;
4404 int used_strict_overflow;
4406 t = retval = NULL_TREE;
4408 /* Get the set of equivalences for VAR. */
4409 e = get_value_range (var)->equiv;
4411 /* Add VAR to its own set of equivalences so that VAR's value range
4412 is processed by this loop (otherwise, we would have to replicate
4413 the body of the loop just to check VAR's value range). */
4414 bitmap_set_bit (e, SSA_NAME_VERSION (var));
4416 /* Start at -1. Set it to 0 if we do a comparison without relying
4417 on overflow, or 1 if all comparisons rely on overflow. */
4418 used_strict_overflow = -1;
4420 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4422 bool sop;
4424 value_range_t equiv_vr = *(vr_value[i]);
4426 /* If name N_i does not have a valid range, use N_i as its own
4427 range. This allows us to compare against names that may
4428 have N_i in their ranges. */
4429 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
4431 equiv_vr.type = VR_RANGE;
4432 equiv_vr.min = ssa_name (i);
4433 equiv_vr.max = ssa_name (i);
4436 sop = false;
4437 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
4438 if (t)
4440 /* If we get different answers from different members
4441 of the equivalence set this check must be in a dead
4442 code region. Folding it to a trap representation
4443 would be correct here. For now just return don't-know. */
4444 if (retval != NULL
4445 && t != retval)
4447 retval = NULL_TREE;
4448 break;
4450 retval = t;
4452 if (!sop)
4453 used_strict_overflow = 0;
4454 else if (used_strict_overflow < 0)
4455 used_strict_overflow = 1;
4459 /* Remove VAR from its own equivalence set. */
4460 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
4462 if (retval)
4464 if (used_strict_overflow > 0)
4465 *strict_overflow_p = true;
4466 return retval;
4469 /* We couldn't find a non-NULL value for the predicate. */
4470 return NULL_TREE;
4474 /* Given a comparison code COMP and names N1 and N2, compare all the
4475 ranges equivalent to N1 against all the ranges equivalent to N2
4476 to determine the value of N1 COMP N2. Return the same value
4477 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
4478 whether we relied on an overflow infinity in the comparison. */
4481 static tree
4482 compare_names (enum tree_code comp, tree n1, tree n2,
4483 bool *strict_overflow_p)
4485 tree t, retval;
4486 bitmap e1, e2;
4487 bitmap_iterator bi1, bi2;
4488 unsigned i1, i2;
4489 int used_strict_overflow;
4491 /* Compare the ranges of every name equivalent to N1 against the
4492 ranges of every name equivalent to N2. */
4493 e1 = get_value_range (n1)->equiv;
4494 e2 = get_value_range (n2)->equiv;
4496 /* Add N1 and N2 to their own set of equivalences to avoid
4497 duplicating the body of the loop just to check N1 and N2
4498 ranges. */
4499 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4500 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4502 /* If the equivalence sets have a common intersection, then the two
4503 names can be compared without checking their ranges. */
4504 if (bitmap_intersect_p (e1, e2))
4506 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4507 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4509 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4510 ? boolean_true_node
4511 : boolean_false_node;
4514 /* Start at -1. Set it to 0 if we do a comparison without relying
4515 on overflow, or 1 if all comparisons rely on overflow. */
4516 used_strict_overflow = -1;
4518 /* Otherwise, compare all the equivalent ranges. First, add N1 and
4519 N2 to their own set of equivalences to avoid duplicating the body
4520 of the loop just to check N1 and N2 ranges. */
4521 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4523 value_range_t vr1 = *(vr_value[i1]);
4525 /* If the range is VARYING or UNDEFINED, use the name itself. */
4526 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
4528 vr1.type = VR_RANGE;
4529 vr1.min = ssa_name (i1);
4530 vr1.max = ssa_name (i1);
4533 t = retval = NULL_TREE;
4534 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4536 bool sop;
4538 value_range_t vr2 = *(vr_value[i2]);
4540 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
4542 vr2.type = VR_RANGE;
4543 vr2.min = ssa_name (i2);
4544 vr2.max = ssa_name (i2);
4547 t = compare_ranges (comp, &vr1, &vr2, &sop);
4548 if (t)
4550 /* If we get different answers from different members
4551 of the equivalence set this check must be in a dead
4552 code region. Folding it to a trap representation
4553 would be correct here. For now just return don't-know. */
4554 if (retval != NULL
4555 && t != retval)
4557 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4558 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4559 return NULL_TREE;
4561 retval = t;
4563 if (!sop)
4564 used_strict_overflow = 0;
4565 else if (used_strict_overflow < 0)
4566 used_strict_overflow = 1;
4570 if (retval)
4572 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4573 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4574 if (used_strict_overflow > 0)
4575 *strict_overflow_p = true;
4576 return retval;
4580 /* None of the equivalent ranges are useful in computing this
4581 comparison. */
4582 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4583 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4584 return NULL_TREE;
4588 /* Given a conditional predicate COND, try to determine if COND yields
4589 true or false based on the value ranges of its operands. Return
4590 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4591 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4592 NULL if the conditional cannot be evaluated at compile time.
4594 If USE_EQUIV_P is true, the ranges of all the names equivalent with
4595 the operands in COND are used when trying to compute its value.
4596 This is only used during final substitution. During propagation,
4597 we only check the range of each variable and not its equivalents.
4599 Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4600 infinity to produce the result. */
4602 static tree
4603 vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4604 bool *strict_overflow_p)
4606 gcc_assert (TREE_CODE (cond) == SSA_NAME
4607 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4609 if (TREE_CODE (cond) == SSA_NAME)
4611 value_range_t *vr;
4612 tree retval;
4614 if (use_equiv_p)
4615 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4616 strict_overflow_p);
4617 else
4619 value_range_t *vr = get_value_range (cond);
4620 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4621 strict_overflow_p);
4624 /* If COND has a known boolean range, return it. */
4625 if (retval)
4626 return retval;
4628 /* Otherwise, if COND has a symbolic range of exactly one value,
4629 return it. */
4630 vr = get_value_range (cond);
4631 if (vr->type == VR_RANGE && vr->min == vr->max)
4632 return vr->min;
4634 else
4636 tree op0 = TREE_OPERAND (cond, 0);
4637 tree op1 = TREE_OPERAND (cond, 1);
4639 /* We only deal with integral and pointer types. */
4640 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4641 && !POINTER_TYPE_P (TREE_TYPE (op0)))
4642 return NULL_TREE;
4644 if (use_equiv_p)
4646 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4647 return compare_names (TREE_CODE (cond), op0, op1,
4648 strict_overflow_p);
4649 else if (TREE_CODE (op0) == SSA_NAME)
4650 return compare_name_with_value (TREE_CODE (cond), op0, op1,
4651 strict_overflow_p);
4652 else if (TREE_CODE (op1) == SSA_NAME)
4653 return (compare_name_with_value
4654 (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
4655 strict_overflow_p));
4657 else
4659 value_range_t *vr0, *vr1;
4661 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
4662 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
4664 if (vr0 && vr1)
4665 return compare_ranges (TREE_CODE (cond), vr0, vr1,
4666 strict_overflow_p);
4667 else if (vr0 && vr1 == NULL)
4668 return compare_range_with_value (TREE_CODE (cond), vr0, op1,
4669 strict_overflow_p);
4670 else if (vr0 == NULL && vr1)
4671 return (compare_range_with_value
4672 (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
4673 strict_overflow_p));
4677 /* Anything else cannot be computed statically. */
4678 return NULL_TREE;
4681 /* Given COND within STMT, try to simplify it based on value range
4682 information. Return NULL if the conditional can not be evaluated.
4683 The ranges of all the names equivalent with the operands in COND
4684 will be used when trying to compute the value. If the result is
4685 based on undefined signed overflow, issue a warning if
4686 appropriate. */
4688 tree
4689 vrp_evaluate_conditional (tree cond, tree stmt)
4691 bool sop;
4692 tree ret;
4694 sop = false;
4695 ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
4697 if (ret && sop)
4699 enum warn_strict_overflow_code wc;
4700 const char* warnmsg;
4702 if (is_gimple_min_invariant (ret))
4704 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
4705 warnmsg = G_("assuming signed overflow does not occur when "
4706 "simplifying conditional to constant");
4708 else
4710 wc = WARN_STRICT_OVERFLOW_COMPARISON;
4711 warnmsg = G_("assuming signed overflow does not occur when "
4712 "simplifying conditional");
4715 if (issue_strict_overflow_warning (wc))
4717 location_t locus;
4719 if (!EXPR_HAS_LOCATION (stmt))
4720 locus = input_location;
4721 else
4722 locus = EXPR_LOCATION (stmt);
4723 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
4727 return ret;
4731 /* Visit conditional statement STMT. If we can determine which edge
4732 will be taken out of STMT's basic block, record it in
4733 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
4734 SSA_PROP_VARYING. */
4736 static enum ssa_prop_result
4737 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
4739 tree cond, val;
4740 bool sop;
4742 *taken_edge_p = NULL;
4744 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
4745 add ASSERT_EXPRs for them. */
4746 if (TREE_CODE (stmt) == SWITCH_EXPR)
4747 return SSA_PROP_VARYING;
4749 cond = COND_EXPR_COND (stmt);
4751 if (dump_file && (dump_flags & TDF_DETAILS))
4753 tree use;
4754 ssa_op_iter i;
4756 fprintf (dump_file, "\nVisiting conditional with predicate: ");
4757 print_generic_expr (dump_file, cond, 0);
4758 fprintf (dump_file, "\nWith known ranges\n");
4760 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4762 fprintf (dump_file, "\t");
4763 print_generic_expr (dump_file, use, 0);
4764 fprintf (dump_file, ": ");
4765 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
4768 fprintf (dump_file, "\n");
4771 /* Compute the value of the predicate COND by checking the known
4772 ranges of each of its operands.
4774 Note that we cannot evaluate all the equivalent ranges here
4775 because those ranges may not yet be final and with the current
4776 propagation strategy, we cannot determine when the value ranges
4777 of the names in the equivalence set have changed.
4779 For instance, given the following code fragment
4781 i_5 = PHI <8, i_13>
4783 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
4784 if (i_14 == 1)
4787 Assume that on the first visit to i_14, i_5 has the temporary
4788 range [8, 8] because the second argument to the PHI function is
4789 not yet executable. We derive the range ~[0, 0] for i_14 and the
4790 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
4791 the first time, since i_14 is equivalent to the range [8, 8], we
4792 determine that the predicate is always false.
4794 On the next round of propagation, i_13 is determined to be
4795 VARYING, which causes i_5 to drop down to VARYING. So, another
4796 visit to i_14 is scheduled. In this second visit, we compute the
4797 exact same range and equivalence set for i_14, namely ~[0, 0] and
4798 { i_5 }. But we did not have the previous range for i_5
4799 registered, so vrp_visit_assignment thinks that the range for
4800 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
4801 is not visited again, which stops propagation from visiting
4802 statements in the THEN clause of that if().
4804 To properly fix this we would need to keep the previous range
4805 value for the names in the equivalence set. This way we would've
4806 discovered that from one visit to the other i_5 changed from
4807 range [8, 8] to VR_VARYING.
4809 However, fixing this apparent limitation may not be worth the
4810 additional checking. Testing on several code bases (GCC, DLV,
4811 MICO, TRAMP3D and SPEC2000) showed that doing this results in
4812 4 more predicates folded in SPEC. */
4813 sop = false;
4814 val = vrp_evaluate_conditional_warnv (cond, false, &sop);
4815 if (val)
4817 if (!sop)
4818 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
4819 else
4821 if (dump_file && (dump_flags & TDF_DETAILS))
4822 fprintf (dump_file,
4823 "\nIgnoring predicate evaluation because "
4824 "it assumes that signed overflow is undefined");
4825 val = NULL_TREE;
4829 if (dump_file && (dump_flags & TDF_DETAILS))
4831 fprintf (dump_file, "\nPredicate evaluates to: ");
4832 if (val == NULL_TREE)
4833 fprintf (dump_file, "DON'T KNOW\n");
4834 else
4835 print_generic_stmt (dump_file, val, 0);
4838 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
4842 /* Evaluate statement STMT. If the statement produces a useful range,
4843 return SSA_PROP_INTERESTING and record the SSA name with the
4844 interesting range into *OUTPUT_P.
4846 If STMT is a conditional branch and we can determine its truth
4847 value, the taken edge is recorded in *TAKEN_EDGE_P.
4849 If STMT produces a varying value, return SSA_PROP_VARYING. */
4851 static enum ssa_prop_result
4852 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
4854 tree def;
4855 ssa_op_iter iter;
4856 stmt_ann_t ann;
4858 if (dump_file && (dump_flags & TDF_DETAILS))
4860 fprintf (dump_file, "\nVisiting statement:\n");
4861 print_generic_stmt (dump_file, stmt, dump_flags);
4862 fprintf (dump_file, "\n");
4865 ann = stmt_ann (stmt);
4866 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4868 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4870 /* In general, assignments with virtual operands are not useful
4871 for deriving ranges, with the obvious exception of calls to
4872 builtin functions. */
4873 if ((TREE_CODE (rhs) == CALL_EXPR
4874 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4875 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4876 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4877 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
4878 return vrp_visit_assignment (stmt, output_p);
4880 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4881 return vrp_visit_cond_stmt (stmt, taken_edge_p);
4883 /* All other statements produce nothing of interest for VRP, so mark
4884 their outputs varying and prevent further simulation. */
4885 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4886 set_value_range_to_varying (get_value_range (def));
4888 return SSA_PROP_VARYING;
4892 /* Meet operation for value ranges. Given two value ranges VR0 and
4893 VR1, store in VR0 a range that contains both VR0 and VR1. This
4894 may not be the smallest possible such range. */
4896 static void
4897 vrp_meet (value_range_t *vr0, value_range_t *vr1)
4899 if (vr0->type == VR_UNDEFINED)
4901 copy_value_range (vr0, vr1);
4902 return;
4905 if (vr1->type == VR_UNDEFINED)
4907 /* Nothing to do. VR0 already has the resulting range. */
4908 return;
4911 if (vr0->type == VR_VARYING)
4913 /* Nothing to do. VR0 already has the resulting range. */
4914 return;
4917 if (vr1->type == VR_VARYING)
4919 set_value_range_to_varying (vr0);
4920 return;
4923 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
4925 int cmp;
4926 tree min, max;
4928 /* Compute the convex hull of the ranges. The lower limit of
4929 the new range is the minimum of the two ranges. If they
4930 cannot be compared, then give up. */
4931 cmp = compare_values (vr0->min, vr1->min);
4932 if (cmp == 0 || cmp == 1)
4933 min = vr1->min;
4934 else if (cmp == -1)
4935 min = vr0->min;
4936 else
4937 goto give_up;
4939 /* Similarly, the upper limit of the new range is the maximum
4940 of the two ranges. If they cannot be compared, then
4941 give up. */
4942 cmp = compare_values (vr0->max, vr1->max);
4943 if (cmp == 0 || cmp == -1)
4944 max = vr1->max;
4945 else if (cmp == 1)
4946 max = vr0->max;
4947 else
4948 goto give_up;
4950 /* The resulting set of equivalences is the intersection of
4951 the two sets. */
4952 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4953 bitmap_and_into (vr0->equiv, vr1->equiv);
4954 else if (vr0->equiv && !vr1->equiv)
4955 bitmap_clear (vr0->equiv);
4957 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
4959 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4961 /* Two anti-ranges meet only if their complements intersect.
4962 Only handle the case of identical ranges. */
4963 if (compare_values (vr0->min, vr1->min) == 0
4964 && compare_values (vr0->max, vr1->max) == 0
4965 && compare_values (vr0->min, vr0->max) == 0)
4967 /* The resulting set of equivalences is the intersection of
4968 the two sets. */
4969 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4970 bitmap_and_into (vr0->equiv, vr1->equiv);
4971 else if (vr0->equiv && !vr1->equiv)
4972 bitmap_clear (vr0->equiv);
4974 else
4975 goto give_up;
4977 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4979 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
4980 only handle the case where the ranges have an empty intersection.
4981 The result of the meet operation is the anti-range. */
4982 if (!symbolic_range_p (vr0)
4983 && !symbolic_range_p (vr1)
4984 && !value_ranges_intersect_p (vr0, vr1))
4986 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
4987 set. We need to compute the intersection of the two
4988 equivalence sets. */
4989 if (vr1->type == VR_ANTI_RANGE)
4990 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
4992 /* The resulting set of equivalences is the intersection of
4993 the two sets. */
4994 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4995 bitmap_and_into (vr0->equiv, vr1->equiv);
4996 else if (vr0->equiv && !vr1->equiv)
4997 bitmap_clear (vr0->equiv);
4999 else
5000 goto give_up;
5002 else
5003 gcc_unreachable ();
5005 return;
5007 give_up:
5008 /* Failed to find an efficient meet. Before giving up and setting
5009 the result to VARYING, see if we can at least derive a useful
5010 anti-range. FIXME, all this nonsense about distinguishing
5011 anti-ranges from ranges is necessary because of the odd
5012 semantics of range_includes_zero_p and friends. */
5013 if (!symbolic_range_p (vr0)
5014 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
5015 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
5016 && !symbolic_range_p (vr1)
5017 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
5018 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
5020 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
5022 /* Since this meet operation did not result from the meeting of
5023 two equivalent names, VR0 cannot have any equivalences. */
5024 if (vr0->equiv)
5025 bitmap_clear (vr0->equiv);
5027 else
5028 set_value_range_to_varying (vr0);
5032 /* Visit all arguments for PHI node PHI that flow through executable
5033 edges. If a valid value range can be derived from all the incoming
5034 value ranges, set a new range for the LHS of PHI. */
5036 static enum ssa_prop_result
5037 vrp_visit_phi_node (tree phi)
5039 int i;
5040 tree lhs = PHI_RESULT (phi);
5041 value_range_t *lhs_vr = get_value_range (lhs);
5042 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5043 bool all_const = true;
5045 copy_value_range (&vr_result, lhs_vr);
5047 if (dump_file && (dump_flags & TDF_DETAILS))
5049 fprintf (dump_file, "\nVisiting PHI node: ");
5050 print_generic_expr (dump_file, phi, dump_flags);
5053 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
5055 edge e = PHI_ARG_EDGE (phi, i);
5057 if (dump_file && (dump_flags & TDF_DETAILS))
5059 fprintf (dump_file,
5060 "\n Argument #%d (%d -> %d %sexecutable)\n",
5061 i, e->src->index, e->dest->index,
5062 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
5065 if (e->flags & EDGE_EXECUTABLE)
5067 tree arg = PHI_ARG_DEF (phi, i);
5068 value_range_t vr_arg;
5070 if (TREE_CODE (arg) == SSA_NAME)
5072 vr_arg = *(get_value_range (arg));
5073 all_const = false;
5075 else
5077 vr_arg.type = VR_RANGE;
5078 vr_arg.min = arg;
5079 vr_arg.max = arg;
5080 vr_arg.equiv = NULL;
5083 if (dump_file && (dump_flags & TDF_DETAILS))
5085 fprintf (dump_file, "\t");
5086 print_generic_expr (dump_file, arg, dump_flags);
5087 fprintf (dump_file, "\n\tValue: ");
5088 dump_value_range (dump_file, &vr_arg);
5089 fprintf (dump_file, "\n");
5092 vrp_meet (&vr_result, &vr_arg);
5094 if (vr_result.type == VR_VARYING)
5095 break;
5099 if (vr_result.type == VR_VARYING)
5100 goto varying;
5102 /* To prevent infinite iterations in the algorithm, derive ranges
5103 when the new value is slightly bigger or smaller than the
5104 previous one. */
5105 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
5106 && !all_const)
5108 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
5110 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
5111 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
5113 /* If the new minimum is smaller or larger than the previous
5114 one, go all the way to -INF. In the first case, to avoid
5115 iterating millions of times to reach -INF, and in the
5116 other case to avoid infinite bouncing between different
5117 minimums. */
5118 if (cmp_min > 0 || cmp_min < 0)
5120 /* If we will end up with a (-INF, +INF) range, set it
5121 to VARYING. */
5122 if (is_positive_overflow_infinity (vr_result.max)
5123 || (vr_result.max
5124 == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max))))
5125 goto varying;
5127 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min)))
5128 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
5129 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
5130 vr_result.min =
5131 negative_overflow_infinity (TREE_TYPE (vr_result.min));
5132 else
5133 goto varying;
5136 /* Similarly, if the new maximum is smaller or larger than
5137 the previous one, go all the way to +INF. */
5138 if (cmp_max < 0 || cmp_max > 0)
5140 /* If we will end up with a (-INF, +INF) range, set it
5141 to VARYING. */
5142 if (is_negative_overflow_infinity (vr_result.min)
5143 || (vr_result.min
5144 == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))))
5145 goto varying;
5147 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max)))
5148 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
5149 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
5150 vr_result.max =
5151 positive_overflow_infinity (TREE_TYPE (vr_result.max));
5152 else
5153 goto varying;
5158 /* If the new range is different than the previous value, keep
5159 iterating. */
5160 if (update_value_range (lhs, &vr_result))
5161 return SSA_PROP_INTERESTING;
5163 /* Nothing changed, don't add outgoing edges. */
5164 return SSA_PROP_NOT_INTERESTING;
5166 /* No match found. Set the LHS to VARYING. */
5167 varying:
5168 set_value_range_to_varying (lhs_vr);
5169 return SSA_PROP_VARYING;
5172 /* Simplify a division or modulo operator to a right shift or
5173 bitwise and if the first operand is unsigned or is greater
5174 than zero and the second operand is an exact power of two. */
5176 static void
5177 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
5179 tree val = NULL;
5180 tree op = TREE_OPERAND (rhs, 0);
5181 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5183 if (TYPE_UNSIGNED (TREE_TYPE (op)))
5185 val = integer_one_node;
5187 else
5189 bool sop = false;
5191 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node, &sop);
5193 if (val
5194 && sop
5195 && integer_onep (val)
5196 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5198 location_t locus;
5200 if (!EXPR_HAS_LOCATION (stmt))
5201 locus = input_location;
5202 else
5203 locus = EXPR_LOCATION (stmt);
5204 warning (OPT_Wstrict_overflow,
5205 ("%Hassuming signed overflow does not occur when "
5206 "simplifying / or %% to >> or &"),
5207 &locus);
5211 if (val && integer_onep (val))
5213 tree t;
5214 tree op0 = TREE_OPERAND (rhs, 0);
5215 tree op1 = TREE_OPERAND (rhs, 1);
5217 if (rhs_code == TRUNC_DIV_EXPR)
5219 t = build_int_cst (NULL_TREE, tree_log2 (op1));
5220 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
5222 else
5224 t = build_int_cst (TREE_TYPE (op1), 1);
5225 t = int_const_binop (MINUS_EXPR, op1, t, 0);
5226 t = fold_convert (TREE_TYPE (op0), t);
5227 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
5230 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5231 update_stmt (stmt);
5235 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
5236 ABS_EXPR. If the operand is <= 0, then simplify the
5237 ABS_EXPR into a NEGATE_EXPR. */
5239 static void
5240 simplify_abs_using_ranges (tree stmt, tree rhs)
5242 tree val = NULL;
5243 tree op = TREE_OPERAND (rhs, 0);
5244 tree type = TREE_TYPE (op);
5245 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5247 if (TYPE_UNSIGNED (type))
5249 val = integer_zero_node;
5251 else if (vr)
5253 bool sop = false;
5255 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
5256 if (!val)
5258 sop = false;
5259 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
5260 &sop);
5262 if (val)
5264 if (integer_zerop (val))
5265 val = integer_one_node;
5266 else if (integer_onep (val))
5267 val = integer_zero_node;
5271 if (val
5272 && (integer_onep (val) || integer_zerop (val)))
5274 tree t;
5276 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5278 location_t locus;
5280 if (!EXPR_HAS_LOCATION (stmt))
5281 locus = input_location;
5282 else
5283 locus = EXPR_LOCATION (stmt);
5284 warning (OPT_Wstrict_overflow,
5285 ("%Hassuming signed overflow does not occur when "
5286 "simplifying abs (X) to X or -X"),
5287 &locus);
5290 if (integer_onep (val))
5291 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5292 else
5293 t = op;
5295 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5296 update_stmt (stmt);
5301 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
5302 a known value range VR.
5304 If there is one and only one value which will satisfy the
5305 conditional, then return that value. Else return NULL. */
5307 static tree
5308 test_for_singularity (enum tree_code cond_code, tree op0,
5309 tree op1, value_range_t *vr)
5311 tree min = NULL;
5312 tree max = NULL;
5314 /* Extract minimum/maximum values which satisfy the
5315 the conditional as it was written. */
5316 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5318 /* This should not be negative infinity; there is no overflow
5319 here. */
5320 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5322 max = op1;
5323 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
5325 tree one = build_int_cst (TREE_TYPE (op0), 1);
5326 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
5329 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5331 /* This should not be positive infinity; there is no overflow
5332 here. */
5333 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5335 min = op1;
5336 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
5338 tree one = build_int_cst (TREE_TYPE (op0), 1);
5339 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
5343 /* Now refine the minimum and maximum values using any
5344 value range information we have for op0. */
5345 if (min && max)
5347 if (compare_values (vr->min, min) == -1)
5348 min = min;
5349 else
5350 min = vr->min;
5351 if (compare_values (vr->max, max) == 1)
5352 max = max;
5353 else
5354 max = vr->max;
5356 /* If the new min/max values have converged to a single value,
5357 then there is only one value which can satisfy the condition,
5358 return that value. */
5359 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
5360 return min;
5362 return NULL;
5365 /* Simplify a conditional using a relational operator to an equality
5366 test if the range information indicates only one value can satisfy
5367 the original conditional. */
5369 static void
5370 simplify_cond_using_ranges (tree stmt)
5372 tree cond = COND_EXPR_COND (stmt);
5373 tree op0 = TREE_OPERAND (cond, 0);
5374 tree op1 = TREE_OPERAND (cond, 1);
5375 enum tree_code cond_code = TREE_CODE (cond);
5377 if (cond_code != NE_EXPR
5378 && cond_code != EQ_EXPR
5379 && TREE_CODE (op0) == SSA_NAME
5380 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5381 && is_gimple_min_invariant (op1))
5383 value_range_t *vr = get_value_range (op0);
5385 /* If we have range information for OP0, then we might be
5386 able to simplify this conditional. */
5387 if (vr->type == VR_RANGE)
5389 tree new = test_for_singularity (cond_code, op0, op1, vr);
5391 if (new)
5393 if (dump_file)
5395 fprintf (dump_file, "Simplified relational ");
5396 print_generic_expr (dump_file, cond, 0);
5397 fprintf (dump_file, " into ");
5400 COND_EXPR_COND (stmt)
5401 = build2 (EQ_EXPR, boolean_type_node, op0, new);
5402 update_stmt (stmt);
5404 if (dump_file)
5406 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5407 fprintf (dump_file, "\n");
5409 return;
5413 /* Try again after inverting the condition. We only deal
5414 with integral types here, so no need to worry about
5415 issues with inverting FP comparisons. */
5416 cond_code = invert_tree_comparison (cond_code, false);
5417 new = test_for_singularity (cond_code, op0, op1, vr);
5419 if (new)
5421 if (dump_file)
5423 fprintf (dump_file, "Simplified relational ");
5424 print_generic_expr (dump_file, cond, 0);
5425 fprintf (dump_file, " into ");
5428 COND_EXPR_COND (stmt)
5429 = build2 (NE_EXPR, boolean_type_node, op0, new);
5430 update_stmt (stmt);
5432 if (dump_file)
5434 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5435 fprintf (dump_file, "\n");
5437 return;
5444 /* Simplify STMT using ranges if possible. */
5446 void
5447 simplify_stmt_using_ranges (tree stmt)
5449 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5451 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5452 enum tree_code rhs_code = TREE_CODE (rhs);
5454 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5455 and BIT_AND_EXPR respectively if the first operand is greater
5456 than zero and the second operand is an exact power of two. */
5457 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5458 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5459 && integer_pow2p (TREE_OPERAND (rhs, 1)))
5460 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5462 /* Transform ABS (X) into X or -X as appropriate. */
5463 if (rhs_code == ABS_EXPR
5464 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5465 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5466 simplify_abs_using_ranges (stmt, rhs);
5468 else if (TREE_CODE (stmt) == COND_EXPR
5469 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5471 simplify_cond_using_ranges (stmt);
5475 /* Stack of dest,src equivalency pairs that need to be restored after
5476 each attempt to thread a block's incoming edge to an outgoing edge.
5478 A NULL entry is used to mark the end of pairs which need to be
5479 restored. */
5480 static VEC(tree,heap) *stack;
5482 /* A trivial wrapper so that we can present the generic jump threading
5483 code with a simple API for simplifying statements. STMT is the
5484 statement we want to simplify, WITHIN_STMT provides the location
5485 for any overflow warnings. */
5487 static tree
5488 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
5490 /* We only use VRP information to simplify conditionals. This is
5491 overly conservative, but it's unclear if doing more would be
5492 worth the compile time cost. */
5493 if (TREE_CODE (stmt) != COND_EXPR)
5494 return NULL;
5496 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
5499 /* Blocks which have more than one predecessor and more than
5500 one successor present jump threading opportunities. ie,
5501 when the block is reached from a specific predecessor, we
5502 may be able to determine which of the outgoing edges will
5503 be traversed. When this optimization applies, we are able
5504 to avoid conditionals at runtime and we may expose secondary
5505 optimization opportunities.
5507 This routine is effectively a driver for the generic jump
5508 threading code. It basically just presents the generic code
5509 with edges that may be suitable for jump threading.
5511 Unlike DOM, we do not iterate VRP if jump threading was successful.
5512 While iterating may expose new opportunities for VRP, it is expected
5513 those opportunities would be very limited and the compile time cost
5514 to expose those opportunities would be significant.
5516 As jump threading opportunities are discovered, they are registered
5517 for later realization. */
5519 static void
5520 identify_jump_threads (void)
5522 basic_block bb;
5523 tree dummy;
5525 /* Ugh. When substituting values earlier in this pass we can
5526 wipe the dominance information. So rebuild the dominator
5527 information as we need it within the jump threading code. */
5528 calculate_dominance_info (CDI_DOMINATORS);
5530 /* We do not allow VRP information to be used for jump threading
5531 across a back edge in the CFG. Otherwise it becomes too
5532 difficult to avoid eliminating loop exit tests. Of course
5533 EDGE_DFS_BACK is not accurate at this time so we have to
5534 recompute it. */
5535 mark_dfs_back_edges ();
5537 /* Allocate our unwinder stack to unwind any temporary equivalences
5538 that might be recorded. */
5539 stack = VEC_alloc (tree, heap, 20);
5541 /* To avoid lots of silly node creation, we create a single
5542 conditional and just modify it in-place when attempting to
5543 thread jumps. */
5544 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5545 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5547 /* Walk through all the blocks finding those which present a
5548 potential jump threading opportunity. We could set this up
5549 as a dominator walker and record data during the walk, but
5550 I doubt it's worth the effort for the classes of jump
5551 threading opportunities we are trying to identify at this
5552 point in compilation. */
5553 FOR_EACH_BB (bb)
5555 tree last, cond;
5557 /* If the generic jump threading code does not find this block
5558 interesting, then there is nothing to do. */
5559 if (! potentially_threadable_block (bb))
5560 continue;
5562 /* We only care about blocks ending in a COND_EXPR. While there
5563 may be some value in handling SWITCH_EXPR here, I doubt it's
5564 terribly important. */
5565 last = bsi_stmt (bsi_last (bb));
5566 if (TREE_CODE (last) != COND_EXPR)
5567 continue;
5569 /* We're basically looking for any kind of conditional with
5570 integral type arguments. */
5571 cond = COND_EXPR_COND (last);
5572 if ((TREE_CODE (cond) == SSA_NAME
5573 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5574 || (COMPARISON_CLASS_P (cond)
5575 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5576 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5577 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5578 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5579 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5581 edge_iterator ei;
5582 edge e;
5584 /* We've got a block with multiple predecessors and multiple
5585 successors which also ends in a suitable conditional. For
5586 each predecessor, see if we can thread it to a specific
5587 successor. */
5588 FOR_EACH_EDGE (e, ei, bb->preds)
5590 /* Do not thread across back edges or abnormal edges
5591 in the CFG. */
5592 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
5593 continue;
5595 thread_across_edge (dummy, e, true,
5596 &stack,
5597 simplify_stmt_for_jump_threading);
5602 /* We do not actually update the CFG or SSA graphs at this point as
5603 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5604 handle ASSERT_EXPRs gracefully. */
5607 /* We identified all the jump threading opportunities earlier, but could
5608 not transform the CFG at that time. This routine transforms the
5609 CFG and arranges for the dominator tree to be rebuilt if necessary.
5611 Note the SSA graph update will occur during the normal TODO
5612 processing by the pass manager. */
5613 static void
5614 finalize_jump_threads (void)
5616 bool cfg_altered = false;
5617 cfg_altered = thread_through_all_blocks ();
5619 /* If we threaded jumps, then we need to recompute the dominance
5620 information. */
5621 if (cfg_altered)
5622 free_dominance_info (CDI_DOMINATORS);
5623 VEC_free (tree, heap, stack);
5627 /* Traverse all the blocks folding conditionals with known ranges. */
5629 static void
5630 vrp_finalize (void)
5632 size_t i;
5633 prop_value_t *single_val_range;
5634 bool do_value_subst_p;
5636 if (dump_file)
5638 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
5639 dump_all_value_ranges (dump_file);
5640 fprintf (dump_file, "\n");
5643 /* We may have ended with ranges that have exactly one value. Those
5644 values can be substituted as any other copy/const propagated
5645 value using substitute_and_fold. */
5646 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
5648 do_value_subst_p = false;
5649 for (i = 0; i < num_ssa_names; i++)
5650 if (vr_value[i]
5651 && vr_value[i]->type == VR_RANGE
5652 && vr_value[i]->min == vr_value[i]->max)
5654 single_val_range[i].value = vr_value[i]->min;
5655 do_value_subst_p = true;
5658 if (!do_value_subst_p)
5660 /* We found no single-valued ranges, don't waste time trying to
5661 do single value substitution in substitute_and_fold. */
5662 free (single_val_range);
5663 single_val_range = NULL;
5666 substitute_and_fold (single_val_range, true);
5668 if (warn_array_bounds)
5669 check_all_array_refs ();
5671 /* We must identify jump threading opportunities before we release
5672 the datastructures built by VRP. */
5673 identify_jump_threads ();
5675 /* Free allocated memory. */
5676 for (i = 0; i < num_ssa_names; i++)
5677 if (vr_value[i])
5679 BITMAP_FREE (vr_value[i]->equiv);
5680 free (vr_value[i]);
5683 free (single_val_range);
5684 free (vr_value);
5686 /* So that we can distinguish between VRP data being available
5687 and not available. */
5688 vr_value = NULL;
5692 /* Main entry point to VRP (Value Range Propagation). This pass is
5693 loosely based on J. R. C. Patterson, ``Accurate Static Branch
5694 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
5695 Programming Language Design and Implementation, pp. 67-78, 1995.
5696 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
5698 This is essentially an SSA-CCP pass modified to deal with ranges
5699 instead of constants.
5701 While propagating ranges, we may find that two or more SSA name
5702 have equivalent, though distinct ranges. For instance,
5704 1 x_9 = p_3->a;
5705 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
5706 3 if (p_4 == q_2)
5707 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
5708 5 endif
5709 6 if (q_2)
5711 In the code above, pointer p_5 has range [q_2, q_2], but from the
5712 code we can also determine that p_5 cannot be NULL and, if q_2 had
5713 a non-varying range, p_5's range should also be compatible with it.
5715 These equivalences are created by two expressions: ASSERT_EXPR and
5716 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
5717 result of another assertion, then we can use the fact that p_5 and
5718 p_4 are equivalent when evaluating p_5's range.
5720 Together with value ranges, we also propagate these equivalences
5721 between names so that we can take advantage of information from
5722 multiple ranges when doing final replacement. Note that this
5723 equivalency relation is transitive but not symmetric.
5725 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
5726 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
5727 in contexts where that assertion does not hold (e.g., in line 6).
5729 TODO, the main difference between this pass and Patterson's is that
5730 we do not propagate edge probabilities. We only compute whether
5731 edges can be taken or not. That is, instead of having a spectrum
5732 of jump probabilities between 0 and 1, we only deal with 0, 1 and
5733 DON'T KNOW. In the future, it may be worthwhile to propagate
5734 probabilities to aid branch prediction. */
5736 static unsigned int
5737 execute_vrp (void)
5739 insert_range_assertions ();
5741 loop_optimizer_init (LOOPS_NORMAL);
5742 if (current_loops)
5743 scev_initialize ();
5745 vrp_initialize ();
5746 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
5747 vrp_finalize ();
5749 if (current_loops)
5751 scev_finalize ();
5752 loop_optimizer_finalize ();
5755 /* ASSERT_EXPRs must be removed before finalizing jump threads
5756 as finalizing jump threads calls the CFG cleanup code which
5757 does not properly handle ASSERT_EXPRs. */
5758 remove_range_assertions ();
5760 /* If we exposed any new variables, go ahead and put them into
5761 SSA form now, before we handle jump threading. This simplifies
5762 interactions between rewriting of _DECL nodes into SSA form
5763 and rewriting SSA_NAME nodes into SSA form after block
5764 duplication and CFG manipulation. */
5765 update_ssa (TODO_update_ssa);
5767 finalize_jump_threads ();
5768 return 0;
5771 static bool
5772 gate_vrp (void)
5774 return flag_tree_vrp != 0;
5777 struct tree_opt_pass pass_vrp =
5779 "vrp", /* name */
5780 gate_vrp, /* gate */
5781 execute_vrp, /* execute */
5782 NULL, /* sub */
5783 NULL, /* next */
5784 0, /* static_pass_number */
5785 TV_TREE_VRP, /* tv_id */
5786 PROP_ssa | PROP_alias, /* properties_required */
5787 0, /* properties_provided */
5788 0, /* properties_destroyed */
5789 0, /* todo_flags_start */
5790 TODO_cleanup_cfg
5791 | TODO_ggc_collect
5792 | TODO_verify_ssa
5793 | TODO_dump_func
5794 | TODO_update_ssa, /* todo_flags_finish */
5795 0 /* letter */