2005-04-09 Thomas Koenig <Thomas.Koenig@online.de>
[official-gcc.git] / libgfortran / generated / sum_c4.c
blob74efd07c65baca8e4e14d45f07a194f09d69b927
1 /* Implementation of the SUM intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include "libgfortran.h"
37 extern void sum_c4 (gfc_array_c4 *, gfc_array_c4 *, index_type *);
38 export_proto(sum_c4);
40 void
41 sum_c4 (gfc_array_c4 *retarray, gfc_array_c4 *array, index_type *pdim)
43 index_type count[GFC_MAX_DIMENSIONS - 1];
44 index_type extent[GFC_MAX_DIMENSIONS - 1];
45 index_type sstride[GFC_MAX_DIMENSIONS - 1];
46 index_type dstride[GFC_MAX_DIMENSIONS - 1];
47 GFC_COMPLEX_4 *base;
48 GFC_COMPLEX_4 *dest;
49 index_type rank;
50 index_type n;
51 index_type len;
52 index_type delta;
53 index_type dim;
55 /* Make dim zero based to avoid confusion. */
56 dim = (*pdim) - 1;
57 rank = GFC_DESCRIPTOR_RANK (array) - 1;
58 if (array->dim[0].stride == 0)
59 array->dim[0].stride = 1;
61 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
62 delta = array->dim[dim].stride;
64 for (n = 0; n < dim; n++)
66 sstride[n] = array->dim[n].stride;
67 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
69 for (n = dim; n < rank; n++)
71 sstride[n] = array->dim[n + 1].stride;
72 extent[n] =
73 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
76 if (retarray->data == NULL)
78 for (n = 0; n < rank; n++)
80 retarray->dim[n].lbound = 0;
81 retarray->dim[n].ubound = extent[n]-1;
82 if (n == 0)
83 retarray->dim[n].stride = 1;
84 else
85 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
88 retarray->data
89 = internal_malloc_size (sizeof (GFC_COMPLEX_4)
90 * retarray->dim[rank-1].stride
91 * extent[rank-1]);
92 retarray->base = 0;
93 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
95 else
97 if (retarray->dim[0].stride == 0)
98 retarray->dim[0].stride = 1;
100 if (rank != GFC_DESCRIPTOR_RANK (retarray))
101 runtime_error ("rank of return array incorrect");
104 for (n = 0; n < rank; n++)
106 count[n] = 0;
107 dstride[n] = retarray->dim[n].stride;
108 if (extent[n] <= 0)
109 len = 0;
112 base = array->data;
113 dest = retarray->data;
115 while (base)
117 GFC_COMPLEX_4 *src;
118 GFC_COMPLEX_4 result;
119 src = base;
122 result = 0;
123 if (len <= 0)
124 *dest = 0;
125 else
127 for (n = 0; n < len; n++, src += delta)
130 result += *src;
132 *dest = result;
135 /* Advance to the next element. */
136 count[0]++;
137 base += sstride[0];
138 dest += dstride[0];
139 n = 0;
140 while (count[n] == extent[n])
142 /* When we get to the end of a dimension, reset it and increment
143 the next dimension. */
144 count[n] = 0;
145 /* We could precalculate these products, but this is a less
146 frequently used path so proabably not worth it. */
147 base -= sstride[n] * extent[n];
148 dest -= dstride[n] * extent[n];
149 n++;
150 if (n == rank)
152 /* Break out of the look. */
153 base = NULL;
154 break;
156 else
158 count[n]++;
159 base += sstride[n];
160 dest += dstride[n];
167 extern void msum_c4 (gfc_array_c4 *, gfc_array_c4 *, index_type *,
168 gfc_array_l4 *);
169 export_proto(msum_c4);
171 void
172 msum_c4 (gfc_array_c4 * retarray, gfc_array_c4 * array,
173 index_type *pdim, gfc_array_l4 * mask)
175 index_type count[GFC_MAX_DIMENSIONS - 1];
176 index_type extent[GFC_MAX_DIMENSIONS - 1];
177 index_type sstride[GFC_MAX_DIMENSIONS - 1];
178 index_type dstride[GFC_MAX_DIMENSIONS - 1];
179 index_type mstride[GFC_MAX_DIMENSIONS - 1];
180 GFC_COMPLEX_4 *dest;
181 GFC_COMPLEX_4 *base;
182 GFC_LOGICAL_4 *mbase;
183 int rank;
184 int dim;
185 index_type n;
186 index_type len;
187 index_type delta;
188 index_type mdelta;
190 dim = (*pdim) - 1;
191 rank = GFC_DESCRIPTOR_RANK (array) - 1;
192 if (array->dim[0].stride == 0)
193 array->dim[0].stride = 1;
195 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
196 if (len <= 0)
197 return;
198 delta = array->dim[dim].stride;
199 mdelta = mask->dim[dim].stride;
201 for (n = 0; n < dim; n++)
203 sstride[n] = array->dim[n].stride;
204 mstride[n] = mask->dim[n].stride;
205 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
207 for (n = dim; n < rank; n++)
209 sstride[n] = array->dim[n + 1].stride;
210 mstride[n] = mask->dim[n + 1].stride;
211 extent[n] =
212 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
215 if (retarray->data == NULL)
217 for (n = 0; n < rank; n++)
219 retarray->dim[n].lbound = 0;
220 retarray->dim[n].ubound = extent[n]-1;
221 if (n == 0)
222 retarray->dim[n].stride = 1;
223 else
224 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
227 retarray->data
228 = internal_malloc_size (sizeof (GFC_COMPLEX_4)
229 * retarray->dim[rank-1].stride
230 * extent[rank-1]);
231 retarray->base = 0;
232 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
234 else
236 if (retarray->dim[0].stride == 0)
237 retarray->dim[0].stride = 1;
239 if (rank != GFC_DESCRIPTOR_RANK (retarray))
240 runtime_error ("rank of return array incorrect");
243 for (n = 0; n < rank; n++)
245 count[n] = 0;
246 dstride[n] = retarray->dim[n].stride;
247 if (extent[n] <= 0)
248 return;
251 dest = retarray->data;
252 base = array->data;
253 mbase = mask->data;
255 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
257 /* This allows the same loop to be used for all logical types. */
258 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
259 for (n = 0; n < rank; n++)
260 mstride[n] <<= 1;
261 mdelta <<= 1;
262 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
265 while (base)
267 GFC_COMPLEX_4 *src;
268 GFC_LOGICAL_4 *msrc;
269 GFC_COMPLEX_4 result;
270 src = base;
271 msrc = mbase;
274 result = 0;
275 if (len <= 0)
276 *dest = 0;
277 else
279 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
282 if (*msrc)
283 result += *src;
285 *dest = result;
288 /* Advance to the next element. */
289 count[0]++;
290 base += sstride[0];
291 mbase += mstride[0];
292 dest += dstride[0];
293 n = 0;
294 while (count[n] == extent[n])
296 /* When we get to the end of a dimension, reset it and increment
297 the next dimension. */
298 count[n] = 0;
299 /* We could precalculate these products, but this is a less
300 frequently used path so proabably not worth it. */
301 base -= sstride[n] * extent[n];
302 mbase -= mstride[n] * extent[n];
303 dest -= dstride[n] * extent[n];
304 n++;
305 if (n == rank)
307 /* Break out of the look. */
308 base = NULL;
309 break;
311 else
313 count[n]++;
314 base += sstride[n];
315 mbase += mstride[n];
316 dest += dstride[n];