2005-04-09 Thomas Koenig <Thomas.Koenig@online.de>
[official-gcc.git] / libgfortran / generated / maxloc1_4_r4.c
blob4048d2bc65ac55bdf92225614965819906f28ba1
1 /* Implementation of the MAXLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include <limits.h>
36 #include "libgfortran.h"
39 extern void maxloc1_4_r4 (gfc_array_i4 *, gfc_array_r4 *, index_type *);
40 export_proto(maxloc1_4_r4);
42 void
43 maxloc1_4_r4 (gfc_array_i4 *retarray, gfc_array_r4 *array, index_type *pdim)
45 index_type count[GFC_MAX_DIMENSIONS - 1];
46 index_type extent[GFC_MAX_DIMENSIONS - 1];
47 index_type sstride[GFC_MAX_DIMENSIONS - 1];
48 index_type dstride[GFC_MAX_DIMENSIONS - 1];
49 GFC_REAL_4 *base;
50 GFC_INTEGER_4 *dest;
51 index_type rank;
52 index_type n;
53 index_type len;
54 index_type delta;
55 index_type dim;
57 /* Make dim zero based to avoid confusion. */
58 dim = (*pdim) - 1;
59 rank = GFC_DESCRIPTOR_RANK (array) - 1;
60 if (array->dim[0].stride == 0)
61 array->dim[0].stride = 1;
63 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
64 delta = array->dim[dim].stride;
66 for (n = 0; n < dim; n++)
68 sstride[n] = array->dim[n].stride;
69 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
71 for (n = dim; n < rank; n++)
73 sstride[n] = array->dim[n + 1].stride;
74 extent[n] =
75 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
78 if (retarray->data == NULL)
80 for (n = 0; n < rank; n++)
82 retarray->dim[n].lbound = 0;
83 retarray->dim[n].ubound = extent[n]-1;
84 if (n == 0)
85 retarray->dim[n].stride = 1;
86 else
87 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
90 retarray->data
91 = internal_malloc_size (sizeof (GFC_INTEGER_4)
92 * retarray->dim[rank-1].stride
93 * extent[rank-1]);
94 retarray->base = 0;
95 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
97 else
99 if (retarray->dim[0].stride == 0)
100 retarray->dim[0].stride = 1;
102 if (rank != GFC_DESCRIPTOR_RANK (retarray))
103 runtime_error ("rank of return array incorrect");
106 for (n = 0; n < rank; n++)
108 count[n] = 0;
109 dstride[n] = retarray->dim[n].stride;
110 if (extent[n] <= 0)
111 len = 0;
114 base = array->data;
115 dest = retarray->data;
117 while (base)
119 GFC_REAL_4 *src;
120 GFC_INTEGER_4 result;
121 src = base;
124 GFC_REAL_4 maxval;
125 maxval = -GFC_REAL_4_HUGE;
126 result = 1;
127 if (len <= 0)
128 *dest = 0;
129 else
131 for (n = 0; n < len; n++, src += delta)
134 if (*src > maxval)
136 maxval = *src;
137 result = (GFC_INTEGER_4)n + 1;
140 *dest = result;
143 /* Advance to the next element. */
144 count[0]++;
145 base += sstride[0];
146 dest += dstride[0];
147 n = 0;
148 while (count[n] == extent[n])
150 /* When we get to the end of a dimension, reset it and increment
151 the next dimension. */
152 count[n] = 0;
153 /* We could precalculate these products, but this is a less
154 frequently used path so proabably not worth it. */
155 base -= sstride[n] * extent[n];
156 dest -= dstride[n] * extent[n];
157 n++;
158 if (n == rank)
160 /* Break out of the look. */
161 base = NULL;
162 break;
164 else
166 count[n]++;
167 base += sstride[n];
168 dest += dstride[n];
175 extern void mmaxloc1_4_r4 (gfc_array_i4 *, gfc_array_r4 *, index_type *,
176 gfc_array_l4 *);
177 export_proto(mmaxloc1_4_r4);
179 void
180 mmaxloc1_4_r4 (gfc_array_i4 * retarray, gfc_array_r4 * array,
181 index_type *pdim, gfc_array_l4 * mask)
183 index_type count[GFC_MAX_DIMENSIONS - 1];
184 index_type extent[GFC_MAX_DIMENSIONS - 1];
185 index_type sstride[GFC_MAX_DIMENSIONS - 1];
186 index_type dstride[GFC_MAX_DIMENSIONS - 1];
187 index_type mstride[GFC_MAX_DIMENSIONS - 1];
188 GFC_INTEGER_4 *dest;
189 GFC_REAL_4 *base;
190 GFC_LOGICAL_4 *mbase;
191 int rank;
192 int dim;
193 index_type n;
194 index_type len;
195 index_type delta;
196 index_type mdelta;
198 dim = (*pdim) - 1;
199 rank = GFC_DESCRIPTOR_RANK (array) - 1;
200 if (array->dim[0].stride == 0)
201 array->dim[0].stride = 1;
203 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
204 if (len <= 0)
205 return;
206 delta = array->dim[dim].stride;
207 mdelta = mask->dim[dim].stride;
209 for (n = 0; n < dim; n++)
211 sstride[n] = array->dim[n].stride;
212 mstride[n] = mask->dim[n].stride;
213 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
215 for (n = dim; n < rank; n++)
217 sstride[n] = array->dim[n + 1].stride;
218 mstride[n] = mask->dim[n + 1].stride;
219 extent[n] =
220 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
223 if (retarray->data == NULL)
225 for (n = 0; n < rank; n++)
227 retarray->dim[n].lbound = 0;
228 retarray->dim[n].ubound = extent[n]-1;
229 if (n == 0)
230 retarray->dim[n].stride = 1;
231 else
232 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
235 retarray->data
236 = internal_malloc_size (sizeof (GFC_INTEGER_4)
237 * retarray->dim[rank-1].stride
238 * extent[rank-1]);
239 retarray->base = 0;
240 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
242 else
244 if (retarray->dim[0].stride == 0)
245 retarray->dim[0].stride = 1;
247 if (rank != GFC_DESCRIPTOR_RANK (retarray))
248 runtime_error ("rank of return array incorrect");
251 for (n = 0; n < rank; n++)
253 count[n] = 0;
254 dstride[n] = retarray->dim[n].stride;
255 if (extent[n] <= 0)
256 return;
259 dest = retarray->data;
260 base = array->data;
261 mbase = mask->data;
263 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
265 /* This allows the same loop to be used for all logical types. */
266 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
267 for (n = 0; n < rank; n++)
268 mstride[n] <<= 1;
269 mdelta <<= 1;
270 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
273 while (base)
275 GFC_REAL_4 *src;
276 GFC_LOGICAL_4 *msrc;
277 GFC_INTEGER_4 result;
278 src = base;
279 msrc = mbase;
282 GFC_REAL_4 maxval;
283 maxval = -GFC_REAL_4_HUGE;
284 result = 1;
285 if (len <= 0)
286 *dest = 0;
287 else
289 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
292 if (*msrc && *src > maxval)
294 maxval = *src;
295 result = (GFC_INTEGER_4)n + 1;
298 *dest = result;
301 /* Advance to the next element. */
302 count[0]++;
303 base += sstride[0];
304 mbase += mstride[0];
305 dest += dstride[0];
306 n = 0;
307 while (count[n] == extent[n])
309 /* When we get to the end of a dimension, reset it and increment
310 the next dimension. */
311 count[n] = 0;
312 /* We could precalculate these products, but this is a less
313 frequently used path so proabably not worth it. */
314 base -= sstride[n] * extent[n];
315 mbase -= mstride[n] * extent[n];
316 dest -= dstride[n] * extent[n];
317 n++;
318 if (n == rank)
320 /* Break out of the look. */
321 base = NULL;
322 break;
324 else
326 count[n]++;
327 base += sstride[n];
328 mbase += mstride[n];
329 dest += dstride[n];