* configure.in: Add --enable-libssp and --disable-libssp.
[official-gcc.git] / gcc / reg-stack.c
blobd1d8b9894bde2308378153e42940d1d393b53e45
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
173 #include "timevar.h"
174 #include "tree-pass.h"
176 /* We use this array to cache info about insns, because otherwise we
177 spend too much time in stack_regs_mentioned_p.
179 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
180 the insn uses stack registers, two indicates the insn does not use
181 stack registers. */
182 static GTY(()) varray_type stack_regs_mentioned_data;
184 #ifdef STACK_REGS
186 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
188 /* This is the basic stack record. TOP is an index into REG[] such
189 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
191 If TOP is -2, REG[] is not yet initialized. Stack initialization
192 consists of placing each live reg in array `reg' and setting `top'
193 appropriately.
195 REG_SET indicates which registers are live. */
197 typedef struct stack_def
199 int top; /* index to top stack element */
200 HARD_REG_SET reg_set; /* set of live registers */
201 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
202 } *stack;
204 /* This is used to carry information about basic blocks. It is
205 attached to the AUX field of the standard CFG block. */
207 typedef struct block_info_def
209 struct stack_def stack_in; /* Input stack configuration. */
210 struct stack_def stack_out; /* Output stack configuration. */
211 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
212 int done; /* True if block already converted. */
213 int predecessors; /* Number of predecessors that need
214 to be visited. */
215 } *block_info;
217 #define BLOCK_INFO(B) ((block_info) (B)->aux)
219 /* Passed to change_stack to indicate where to emit insns. */
220 enum emit_where
222 EMIT_AFTER,
223 EMIT_BEFORE
226 /* The block we're currently working on. */
227 static basic_block current_block;
229 /* In the current_block, whether we're processing the first register
230 stack or call instruction, i.e. the the regstack is currently the
231 same as BLOCK_INFO(current_block)->stack_in. */
232 static bool starting_stack_p;
234 /* This is the register file for all register after conversion. */
235 static rtx
236 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
238 #define FP_MODE_REG(regno,mode) \
239 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
241 /* Used to initialize uninitialized registers. */
242 static rtx not_a_num;
244 /* Forward declarations */
246 static int stack_regs_mentioned_p (rtx pat);
247 static void pop_stack (stack, int);
248 static rtx *get_true_reg (rtx *);
250 static int check_asm_stack_operands (rtx);
251 static int get_asm_operand_n_inputs (rtx);
252 static rtx stack_result (tree);
253 static void replace_reg (rtx *, int);
254 static void remove_regno_note (rtx, enum reg_note, unsigned int);
255 static int get_hard_regnum (stack, rtx);
256 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
257 static void swap_to_top(rtx, stack, rtx, rtx);
258 static bool move_for_stack_reg (rtx, stack, rtx);
259 static bool move_nan_for_stack_reg (rtx, stack, rtx);
260 static int swap_rtx_condition_1 (rtx);
261 static int swap_rtx_condition (rtx);
262 static void compare_for_stack_reg (rtx, stack, rtx);
263 static bool subst_stack_regs_pat (rtx, stack, rtx);
264 static void subst_asm_stack_regs (rtx, stack);
265 static bool subst_stack_regs (rtx, stack);
266 static void change_stack (rtx, stack, stack, enum emit_where);
267 static void print_stack (FILE *, stack);
268 static rtx next_flags_user (rtx);
270 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
272 static int
273 stack_regs_mentioned_p (rtx pat)
275 const char *fmt;
276 int i;
278 if (STACK_REG_P (pat))
279 return 1;
281 fmt = GET_RTX_FORMAT (GET_CODE (pat));
282 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
284 if (fmt[i] == 'E')
286 int j;
288 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
289 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
290 return 1;
292 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
293 return 1;
296 return 0;
299 /* Return nonzero if INSN mentions stacked registers, else return zero. */
302 stack_regs_mentioned (rtx insn)
304 unsigned int uid, max;
305 int test;
307 if (! INSN_P (insn) || !stack_regs_mentioned_data)
308 return 0;
310 uid = INSN_UID (insn);
311 max = VARRAY_SIZE (stack_regs_mentioned_data);
312 if (uid >= max)
314 /* Allocate some extra size to avoid too many reallocs, but
315 do not grow too quickly. */
316 max = uid + uid / 20;
317 VARRAY_GROW (stack_regs_mentioned_data, max);
320 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
321 if (test == 0)
323 /* This insn has yet to be examined. Do so now. */
324 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
325 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
328 return test == 1;
331 static rtx ix86_flags_rtx;
333 static rtx
334 next_flags_user (rtx insn)
336 /* Search forward looking for the first use of this value.
337 Stop at block boundaries. */
339 while (insn != BB_END (current_block))
341 insn = NEXT_INSN (insn);
343 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
344 return insn;
346 if (CALL_P (insn))
347 return NULL_RTX;
349 return NULL_RTX;
352 /* Reorganize the stack into ascending numbers, before this insn. */
354 static void
355 straighten_stack (rtx insn, stack regstack)
357 struct stack_def temp_stack;
358 int top;
360 /* If there is only a single register on the stack, then the stack is
361 already in increasing order and no reorganization is needed.
363 Similarly if the stack is empty. */
364 if (regstack->top <= 0)
365 return;
367 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
369 for (top = temp_stack.top = regstack->top; top >= 0; top--)
370 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
372 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
375 /* Pop a register from the stack. */
377 static void
378 pop_stack (stack regstack, int regno)
380 int top = regstack->top;
382 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
383 regstack->top--;
384 /* If regno was not at the top of stack then adjust stack. */
385 if (regstack->reg [top] != regno)
387 int i;
388 for (i = regstack->top; i >= 0; i--)
389 if (regstack->reg [i] == regno)
391 int j;
392 for (j = i; j < top; j++)
393 regstack->reg [j] = regstack->reg [j + 1];
394 break;
399 /* Return a pointer to the REG expression within PAT. If PAT is not a
400 REG, possible enclosed by a conversion rtx, return the inner part of
401 PAT that stopped the search. */
403 static rtx *
404 get_true_reg (rtx *pat)
406 for (;;)
407 switch (GET_CODE (*pat))
409 case SUBREG:
410 /* Eliminate FP subregister accesses in favor of the
411 actual FP register in use. */
413 rtx subreg;
414 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
416 int regno_off = subreg_regno_offset (REGNO (subreg),
417 GET_MODE (subreg),
418 SUBREG_BYTE (*pat),
419 GET_MODE (*pat));
420 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
421 GET_MODE (subreg));
422 default:
423 return pat;
426 case FLOAT:
427 case FIX:
428 case FLOAT_EXTEND:
429 pat = & XEXP (*pat, 0);
430 break;
432 case FLOAT_TRUNCATE:
433 if (!flag_unsafe_math_optimizations)
434 return pat;
435 pat = & XEXP (*pat, 0);
436 break;
440 /* Set if we find any malformed asms in a block. */
441 static bool any_malformed_asm;
443 /* There are many rules that an asm statement for stack-like regs must
444 follow. Those rules are explained at the top of this file: the rule
445 numbers below refer to that explanation. */
447 static int
448 check_asm_stack_operands (rtx insn)
450 int i;
451 int n_clobbers;
452 int malformed_asm = 0;
453 rtx body = PATTERN (insn);
455 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
456 char implicitly_dies[FIRST_PSEUDO_REGISTER];
457 int alt;
459 rtx *clobber_reg = 0;
460 int n_inputs, n_outputs;
462 /* Find out what the constraints require. If no constraint
463 alternative matches, this asm is malformed. */
464 extract_insn (insn);
465 constrain_operands (1);
466 alt = which_alternative;
468 preprocess_constraints ();
470 n_inputs = get_asm_operand_n_inputs (body);
471 n_outputs = recog_data.n_operands - n_inputs;
473 if (alt < 0)
475 malformed_asm = 1;
476 /* Avoid further trouble with this insn. */
477 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
478 return 0;
481 /* Strip SUBREGs here to make the following code simpler. */
482 for (i = 0; i < recog_data.n_operands; i++)
483 if (GET_CODE (recog_data.operand[i]) == SUBREG
484 && REG_P (SUBREG_REG (recog_data.operand[i])))
485 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
487 /* Set up CLOBBER_REG. */
489 n_clobbers = 0;
491 if (GET_CODE (body) == PARALLEL)
493 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
495 for (i = 0; i < XVECLEN (body, 0); i++)
496 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
498 rtx clobber = XVECEXP (body, 0, i);
499 rtx reg = XEXP (clobber, 0);
501 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
502 reg = SUBREG_REG (reg);
504 if (STACK_REG_P (reg))
506 clobber_reg[n_clobbers] = reg;
507 n_clobbers++;
512 /* Enforce rule #4: Output operands must specifically indicate which
513 reg an output appears in after an asm. "=f" is not allowed: the
514 operand constraints must select a class with a single reg.
516 Also enforce rule #5: Output operands must start at the top of
517 the reg-stack: output operands may not "skip" a reg. */
519 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
520 for (i = 0; i < n_outputs; i++)
521 if (STACK_REG_P (recog_data.operand[i]))
523 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
525 error_for_asm (insn, "output constraint %d must specify a single register", i);
526 malformed_asm = 1;
528 else
530 int j;
532 for (j = 0; j < n_clobbers; j++)
533 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
535 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
536 i, reg_names [REGNO (clobber_reg[j])]);
537 malformed_asm = 1;
538 break;
540 if (j == n_clobbers)
541 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
546 /* Search for first non-popped reg. */
547 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
548 if (! reg_used_as_output[i])
549 break;
551 /* If there are any other popped regs, that's an error. */
552 for (; i < LAST_STACK_REG + 1; i++)
553 if (reg_used_as_output[i])
554 break;
556 if (i != LAST_STACK_REG + 1)
558 error_for_asm (insn, "output regs must be grouped at top of stack");
559 malformed_asm = 1;
562 /* Enforce rule #2: All implicitly popped input regs must be closer
563 to the top of the reg-stack than any input that is not implicitly
564 popped. */
566 memset (implicitly_dies, 0, sizeof (implicitly_dies));
567 for (i = n_outputs; i < n_outputs + n_inputs; i++)
568 if (STACK_REG_P (recog_data.operand[i]))
570 /* An input reg is implicitly popped if it is tied to an
571 output, or if there is a CLOBBER for it. */
572 int j;
574 for (j = 0; j < n_clobbers; j++)
575 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
576 break;
578 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
579 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
582 /* Search for first non-popped reg. */
583 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
584 if (! implicitly_dies[i])
585 break;
587 /* If there are any other popped regs, that's an error. */
588 for (; i < LAST_STACK_REG + 1; i++)
589 if (implicitly_dies[i])
590 break;
592 if (i != LAST_STACK_REG + 1)
594 error_for_asm (insn,
595 "implicitly popped regs must be grouped at top of stack");
596 malformed_asm = 1;
599 /* Enforce rule #3: If any input operand uses the "f" constraint, all
600 output constraints must use the "&" earlyclobber.
602 ??? Detect this more deterministically by having constrain_asm_operands
603 record any earlyclobber. */
605 for (i = n_outputs; i < n_outputs + n_inputs; i++)
606 if (recog_op_alt[i][alt].matches == -1)
608 int j;
610 for (j = 0; j < n_outputs; j++)
611 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
613 error_for_asm (insn,
614 "output operand %d must use %<&%> constraint", j);
615 malformed_asm = 1;
619 if (malformed_asm)
621 /* Avoid further trouble with this insn. */
622 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
623 any_malformed_asm = true;
624 return 0;
627 return 1;
630 /* Calculate the number of inputs and outputs in BODY, an
631 asm_operands. N_OPERANDS is the total number of operands, and
632 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
633 placed. */
635 static int
636 get_asm_operand_n_inputs (rtx body)
638 switch (GET_CODE (body))
640 case SET:
641 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
642 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
644 case ASM_OPERANDS:
645 return ASM_OPERANDS_INPUT_LENGTH (body);
647 case PARALLEL:
648 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
650 default:
651 gcc_unreachable ();
655 /* If current function returns its result in an fp stack register,
656 return the REG. Otherwise, return 0. */
658 static rtx
659 stack_result (tree decl)
661 rtx result;
663 /* If the value is supposed to be returned in memory, then clearly
664 it is not returned in a stack register. */
665 if (aggregate_value_p (DECL_RESULT (decl), decl))
666 return 0;
668 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
669 if (result != 0)
671 #ifdef FUNCTION_OUTGOING_VALUE
672 result
673 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
674 #else
675 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
676 #endif
679 return result != 0 && STACK_REG_P (result) ? result : 0;
684 * This section deals with stack register substitution, and forms the second
685 * pass over the RTL.
688 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
689 the desired hard REGNO. */
691 static void
692 replace_reg (rtx *reg, int regno)
694 gcc_assert (regno >= FIRST_STACK_REG);
695 gcc_assert (regno <= LAST_STACK_REG);
696 gcc_assert (STACK_REG_P (*reg));
698 gcc_assert (GET_MODE_CLASS (GET_MODE (*reg)) == MODE_FLOAT
699 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
701 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
704 /* Remove a note of type NOTE, which must be found, for register
705 number REGNO from INSN. Remove only one such note. */
707 static void
708 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
710 rtx *note_link, this;
712 note_link = &REG_NOTES (insn);
713 for (this = *note_link; this; this = XEXP (this, 1))
714 if (REG_NOTE_KIND (this) == note
715 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
717 *note_link = XEXP (this, 1);
718 return;
720 else
721 note_link = &XEXP (this, 1);
723 gcc_unreachable ();
726 /* Find the hard register number of virtual register REG in REGSTACK.
727 The hard register number is relative to the top of the stack. -1 is
728 returned if the register is not found. */
730 static int
731 get_hard_regnum (stack regstack, rtx reg)
733 int i;
735 gcc_assert (STACK_REG_P (reg));
737 for (i = regstack->top; i >= 0; i--)
738 if (regstack->reg[i] == REGNO (reg))
739 break;
741 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
744 /* Emit an insn to pop virtual register REG before or after INSN.
745 REGSTACK is the stack state after INSN and is updated to reflect this
746 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
747 is represented as a SET whose destination is the register to be popped
748 and source is the top of stack. A death note for the top of stack
749 cases the movdf pattern to pop. */
751 static rtx
752 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
754 rtx pop_insn, pop_rtx;
755 int hard_regno;
757 /* For complex types take care to pop both halves. These may survive in
758 CLOBBER and USE expressions. */
759 if (COMPLEX_MODE_P (GET_MODE (reg)))
761 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
762 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
764 pop_insn = NULL_RTX;
765 if (get_hard_regnum (regstack, reg1) >= 0)
766 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
767 if (get_hard_regnum (regstack, reg2) >= 0)
768 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
769 gcc_assert (pop_insn);
770 return pop_insn;
773 hard_regno = get_hard_regnum (regstack, reg);
775 gcc_assert (hard_regno >= FIRST_STACK_REG);
777 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
778 FP_MODE_REG (FIRST_STACK_REG, DFmode));
780 if (where == EMIT_AFTER)
781 pop_insn = emit_insn_after (pop_rtx, insn);
782 else
783 pop_insn = emit_insn_before (pop_rtx, insn);
785 REG_NOTES (pop_insn)
786 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
787 REG_NOTES (pop_insn));
789 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
790 = regstack->reg[regstack->top];
791 regstack->top -= 1;
792 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
794 return pop_insn;
797 /* Emit an insn before or after INSN to swap virtual register REG with
798 the top of stack. REGSTACK is the stack state before the swap, and
799 is updated to reflect the swap. A swap insn is represented as a
800 PARALLEL of two patterns: each pattern moves one reg to the other.
802 If REG is already at the top of the stack, no insn is emitted. */
804 static void
805 emit_swap_insn (rtx insn, stack regstack, rtx reg)
807 int hard_regno;
808 rtx swap_rtx;
809 int tmp, other_reg; /* swap regno temps */
810 rtx i1; /* the stack-reg insn prior to INSN */
811 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
813 hard_regno = get_hard_regnum (regstack, reg);
815 gcc_assert (hard_regno >= FIRST_STACK_REG);
816 if (hard_regno == FIRST_STACK_REG)
817 return;
819 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
821 tmp = regstack->reg[other_reg];
822 regstack->reg[other_reg] = regstack->reg[regstack->top];
823 regstack->reg[regstack->top] = tmp;
825 /* Find the previous insn involving stack regs, but don't pass a
826 block boundary. */
827 i1 = NULL;
828 if (current_block && insn != BB_HEAD (current_block))
830 rtx tmp = PREV_INSN (insn);
831 rtx limit = PREV_INSN (BB_HEAD (current_block));
832 while (tmp != limit)
834 if (LABEL_P (tmp)
835 || CALL_P (tmp)
836 || NOTE_INSN_BASIC_BLOCK_P (tmp)
837 || (NONJUMP_INSN_P (tmp)
838 && stack_regs_mentioned (tmp)))
840 i1 = tmp;
841 break;
843 tmp = PREV_INSN (tmp);
847 if (i1 != NULL_RTX
848 && (i1set = single_set (i1)) != NULL_RTX)
850 rtx i1src = *get_true_reg (&SET_SRC (i1set));
851 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
853 /* If the previous register stack push was from the reg we are to
854 swap with, omit the swap. */
856 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
857 && REG_P (i1src)
858 && REGNO (i1src) == (unsigned) hard_regno - 1
859 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
860 return;
862 /* If the previous insn wrote to the reg we are to swap with,
863 omit the swap. */
865 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
866 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
867 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
868 return;
871 /* Avoid emitting the swap if this is the first register stack insn
872 of the current_block. Instead update the current_block's stack_in
873 and let compensate edges take care of this for us. */
874 if (current_block && starting_stack_p)
876 BLOCK_INFO (current_block)->stack_in = *regstack;
877 starting_stack_p = false;
878 return;
881 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
882 FP_MODE_REG (FIRST_STACK_REG, XFmode));
884 if (i1)
885 emit_insn_after (swap_rtx, i1);
886 else if (current_block)
887 emit_insn_before (swap_rtx, BB_HEAD (current_block));
888 else
889 emit_insn_before (swap_rtx, insn);
892 /* Emit an insns before INSN to swap virtual register SRC1 with
893 the top of stack and virtual register SRC2 with second stack
894 slot. REGSTACK is the stack state before the swaps, and
895 is updated to reflect the swaps. A swap insn is represented as a
896 PARALLEL of two patterns: each pattern moves one reg to the other.
898 If SRC1 and/or SRC2 are already at the right place, no swap insn
899 is emitted. */
901 static void
902 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
904 struct stack_def temp_stack;
905 int regno, j, k, temp;
907 temp_stack = *regstack;
909 /* Place operand 1 at the top of stack. */
910 regno = get_hard_regnum (&temp_stack, src1);
911 gcc_assert (regno >= 0);
912 if (regno != FIRST_STACK_REG)
914 k = temp_stack.top - (regno - FIRST_STACK_REG);
915 j = temp_stack.top;
917 temp = temp_stack.reg[k];
918 temp_stack.reg[k] = temp_stack.reg[j];
919 temp_stack.reg[j] = temp;
922 /* Place operand 2 next on the stack. */
923 regno = get_hard_regnum (&temp_stack, src2);
924 gcc_assert (regno >= 0);
925 if (regno != FIRST_STACK_REG + 1)
927 k = temp_stack.top - (regno - FIRST_STACK_REG);
928 j = temp_stack.top - 1;
930 temp = temp_stack.reg[k];
931 temp_stack.reg[k] = temp_stack.reg[j];
932 temp_stack.reg[j] = temp;
935 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
938 /* Handle a move to or from a stack register in PAT, which is in INSN.
939 REGSTACK is the current stack. Return whether a control flow insn
940 was deleted in the process. */
942 static bool
943 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
945 rtx *psrc = get_true_reg (&SET_SRC (pat));
946 rtx *pdest = get_true_reg (&SET_DEST (pat));
947 rtx src, dest;
948 rtx note;
949 bool control_flow_insn_deleted = false;
951 src = *psrc; dest = *pdest;
953 if (STACK_REG_P (src) && STACK_REG_P (dest))
955 /* Write from one stack reg to another. If SRC dies here, then
956 just change the register mapping and delete the insn. */
958 note = find_regno_note (insn, REG_DEAD, REGNO (src));
959 if (note)
961 int i;
963 /* If this is a no-op move, there must not be a REG_DEAD note. */
964 gcc_assert (REGNO (src) != REGNO (dest));
966 for (i = regstack->top; i >= 0; i--)
967 if (regstack->reg[i] == REGNO (src))
968 break;
970 /* The destination must be dead, or life analysis is borked. */
971 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
973 /* If the source is not live, this is yet another case of
974 uninitialized variables. Load up a NaN instead. */
975 if (i < 0)
976 return move_nan_for_stack_reg (insn, regstack, dest);
978 /* It is possible that the dest is unused after this insn.
979 If so, just pop the src. */
981 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
982 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
983 else
985 regstack->reg[i] = REGNO (dest);
986 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
987 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
990 control_flow_insn_deleted |= control_flow_insn_p (insn);
991 delete_insn (insn);
992 return control_flow_insn_deleted;
995 /* The source reg does not die. */
997 /* If this appears to be a no-op move, delete it, or else it
998 will confuse the machine description output patterns. But if
999 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1000 for REG_UNUSED will not work for deleted insns. */
1002 if (REGNO (src) == REGNO (dest))
1004 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1005 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1007 control_flow_insn_deleted |= control_flow_insn_p (insn);
1008 delete_insn (insn);
1009 return control_flow_insn_deleted;
1012 /* The destination ought to be dead. */
1013 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1015 replace_reg (psrc, get_hard_regnum (regstack, src));
1017 regstack->reg[++regstack->top] = REGNO (dest);
1018 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1019 replace_reg (pdest, FIRST_STACK_REG);
1021 else if (STACK_REG_P (src))
1023 /* Save from a stack reg to MEM, or possibly integer reg. Since
1024 only top of stack may be saved, emit an exchange first if
1025 needs be. */
1027 emit_swap_insn (insn, regstack, src);
1029 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1030 if (note)
1032 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1033 regstack->top--;
1034 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1036 else if ((GET_MODE (src) == XFmode)
1037 && regstack->top < REG_STACK_SIZE - 1)
1039 /* A 387 cannot write an XFmode value to a MEM without
1040 clobbering the source reg. The output code can handle
1041 this by reading back the value from the MEM.
1042 But it is more efficient to use a temp register if one is
1043 available. Push the source value here if the register
1044 stack is not full, and then write the value to memory via
1045 a pop. */
1046 rtx push_rtx;
1047 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1049 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1050 emit_insn_before (push_rtx, insn);
1051 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1052 REG_NOTES (insn));
1055 replace_reg (psrc, FIRST_STACK_REG);
1057 else
1059 gcc_assert (STACK_REG_P (dest));
1061 /* Load from MEM, or possibly integer REG or constant, into the
1062 stack regs. The actual target is always the top of the
1063 stack. The stack mapping is changed to reflect that DEST is
1064 now at top of stack. */
1066 /* The destination ought to be dead. */
1067 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1069 gcc_assert (regstack->top < REG_STACK_SIZE);
1071 regstack->reg[++regstack->top] = REGNO (dest);
1072 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1073 replace_reg (pdest, FIRST_STACK_REG);
1076 return control_flow_insn_deleted;
1079 /* A helper function which replaces INSN with a pattern that loads up
1080 a NaN into DEST, then invokes move_for_stack_reg. */
1082 static bool
1083 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1085 rtx pat;
1087 dest = FP_MODE_REG (REGNO (dest), SFmode);
1088 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1089 PATTERN (insn) = pat;
1090 INSN_CODE (insn) = -1;
1092 return move_for_stack_reg (insn, regstack, pat);
1095 /* Swap the condition on a branch, if there is one. Return true if we
1096 found a condition to swap. False if the condition was not used as
1097 such. */
1099 static int
1100 swap_rtx_condition_1 (rtx pat)
1102 const char *fmt;
1103 int i, r = 0;
1105 if (COMPARISON_P (pat))
1107 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1108 r = 1;
1110 else
1112 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1113 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1115 if (fmt[i] == 'E')
1117 int j;
1119 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1120 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1122 else if (fmt[i] == 'e')
1123 r |= swap_rtx_condition_1 (XEXP (pat, i));
1127 return r;
1130 static int
1131 swap_rtx_condition (rtx insn)
1133 rtx pat = PATTERN (insn);
1135 /* We're looking for a single set to cc0 or an HImode temporary. */
1137 if (GET_CODE (pat) == SET
1138 && REG_P (SET_DEST (pat))
1139 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1141 insn = next_flags_user (insn);
1142 if (insn == NULL_RTX)
1143 return 0;
1144 pat = PATTERN (insn);
1147 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1148 with the cc value right now. We may be able to search for one
1149 though. */
1151 if (GET_CODE (pat) == SET
1152 && GET_CODE (SET_SRC (pat)) == UNSPEC
1153 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1155 rtx dest = SET_DEST (pat);
1157 /* Search forward looking for the first use of this value.
1158 Stop at block boundaries. */
1159 while (insn != BB_END (current_block))
1161 insn = NEXT_INSN (insn);
1162 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1163 break;
1164 if (CALL_P (insn))
1165 return 0;
1168 /* We haven't found it. */
1169 if (insn == BB_END (current_block))
1170 return 0;
1172 /* So we've found the insn using this value. If it is anything
1173 other than sahf or the value does not die (meaning we'd have
1174 to search further), then we must give up. */
1175 pat = PATTERN (insn);
1176 if (GET_CODE (pat) != SET
1177 || GET_CODE (SET_SRC (pat)) != UNSPEC
1178 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1179 || ! dead_or_set_p (insn, dest))
1180 return 0;
1182 /* Now we are prepared to handle this as a normal cc0 setter. */
1183 insn = next_flags_user (insn);
1184 if (insn == NULL_RTX)
1185 return 0;
1186 pat = PATTERN (insn);
1189 if (swap_rtx_condition_1 (pat))
1191 int fail = 0;
1192 INSN_CODE (insn) = -1;
1193 if (recog_memoized (insn) == -1)
1194 fail = 1;
1195 /* In case the flags don't die here, recurse to try fix
1196 following user too. */
1197 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1199 insn = next_flags_user (insn);
1200 if (!insn || !swap_rtx_condition (insn))
1201 fail = 1;
1203 if (fail)
1205 swap_rtx_condition_1 (pat);
1206 return 0;
1208 return 1;
1210 return 0;
1213 /* Handle a comparison. Special care needs to be taken to avoid
1214 causing comparisons that a 387 cannot do correctly, such as EQ.
1216 Also, a pop insn may need to be emitted. The 387 does have an
1217 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1218 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1219 set up. */
1221 static void
1222 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1224 rtx *src1, *src2;
1225 rtx src1_note, src2_note;
1227 src1 = get_true_reg (&XEXP (pat_src, 0));
1228 src2 = get_true_reg (&XEXP (pat_src, 1));
1230 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1231 registers that die in this insn - move those to stack top first. */
1232 if ((! STACK_REG_P (*src1)
1233 || (STACK_REG_P (*src2)
1234 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1235 && swap_rtx_condition (insn))
1237 rtx temp;
1238 temp = XEXP (pat_src, 0);
1239 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1240 XEXP (pat_src, 1) = temp;
1242 src1 = get_true_reg (&XEXP (pat_src, 0));
1243 src2 = get_true_reg (&XEXP (pat_src, 1));
1245 INSN_CODE (insn) = -1;
1248 /* We will fix any death note later. */
1250 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1252 if (STACK_REG_P (*src2))
1253 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1254 else
1255 src2_note = NULL_RTX;
1257 emit_swap_insn (insn, regstack, *src1);
1259 replace_reg (src1, FIRST_STACK_REG);
1261 if (STACK_REG_P (*src2))
1262 replace_reg (src2, get_hard_regnum (regstack, *src2));
1264 if (src1_note)
1266 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1267 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1270 /* If the second operand dies, handle that. But if the operands are
1271 the same stack register, don't bother, because only one death is
1272 needed, and it was just handled. */
1274 if (src2_note
1275 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1276 && REGNO (*src1) == REGNO (*src2)))
1278 /* As a special case, two regs may die in this insn if src2 is
1279 next to top of stack and the top of stack also dies. Since
1280 we have already popped src1, "next to top of stack" is really
1281 at top (FIRST_STACK_REG) now. */
1283 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1284 && src1_note)
1286 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1287 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1289 else
1291 /* The 386 can only represent death of the first operand in
1292 the case handled above. In all other cases, emit a separate
1293 pop and remove the death note from here. */
1295 /* link_cc0_insns (insn); */
1297 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1299 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1300 EMIT_AFTER);
1305 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1306 is the current register layout. Return whether a control flow insn
1307 was deleted in the process. */
1309 static bool
1310 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1312 rtx *dest, *src;
1313 bool control_flow_insn_deleted = false;
1315 switch (GET_CODE (pat))
1317 case USE:
1318 /* Deaths in USE insns can happen in non optimizing compilation.
1319 Handle them by popping the dying register. */
1320 src = get_true_reg (&XEXP (pat, 0));
1321 if (STACK_REG_P (*src)
1322 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1324 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1325 return control_flow_insn_deleted;
1327 /* ??? Uninitialized USE should not happen. */
1328 else
1329 gcc_assert (get_hard_regnum (regstack, *src) != -1);
1330 break;
1332 case CLOBBER:
1334 rtx note;
1336 dest = get_true_reg (&XEXP (pat, 0));
1337 if (STACK_REG_P (*dest))
1339 note = find_reg_note (insn, REG_DEAD, *dest);
1341 if (pat != PATTERN (insn))
1343 /* The fix_truncdi_1 pattern wants to be able to allocate
1344 its own scratch register. It does this by clobbering
1345 an fp reg so that it is assured of an empty reg-stack
1346 register. If the register is live, kill it now.
1347 Remove the DEAD/UNUSED note so we don't try to kill it
1348 later too. */
1350 if (note)
1351 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1352 else
1354 note = find_reg_note (insn, REG_UNUSED, *dest);
1355 gcc_assert (note);
1357 remove_note (insn, note);
1358 replace_reg (dest, FIRST_STACK_REG + 1);
1360 else
1362 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1363 indicates an uninitialized value. Because reload removed
1364 all other clobbers, this must be due to a function
1365 returning without a value. Load up a NaN. */
1367 if (!note)
1369 rtx t = *dest;
1370 if (get_hard_regnum (regstack, t) == -1)
1371 control_flow_insn_deleted
1372 |= move_nan_for_stack_reg (insn, regstack, t);
1373 if (COMPLEX_MODE_P (GET_MODE (t)))
1375 t = FP_MODE_REG (REGNO (t) + 1, DFmode);
1376 if (get_hard_regnum (regstack, t) == -1)
1377 control_flow_insn_deleted
1378 |= move_nan_for_stack_reg (insn, regstack, t);
1383 break;
1386 case SET:
1388 rtx *src1 = (rtx *) 0, *src2;
1389 rtx src1_note, src2_note;
1390 rtx pat_src;
1392 dest = get_true_reg (&SET_DEST (pat));
1393 src = get_true_reg (&SET_SRC (pat));
1394 pat_src = SET_SRC (pat);
1396 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1397 if (STACK_REG_P (*src)
1398 || (STACK_REG_P (*dest)
1399 && (REG_P (*src) || MEM_P (*src)
1400 || GET_CODE (*src) == CONST_DOUBLE)))
1402 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1403 break;
1406 switch (GET_CODE (pat_src))
1408 case COMPARE:
1409 compare_for_stack_reg (insn, regstack, pat_src);
1410 break;
1412 case CALL:
1414 int count;
1415 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1416 --count >= 0;)
1418 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1419 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1422 replace_reg (dest, FIRST_STACK_REG);
1423 break;
1425 case REG:
1426 /* This is a `tstM2' case. */
1427 gcc_assert (*dest == cc0_rtx);
1428 src1 = src;
1430 /* Fall through. */
1432 case FLOAT_TRUNCATE:
1433 case SQRT:
1434 case ABS:
1435 case NEG:
1436 /* These insns only operate on the top of the stack. DEST might
1437 be cc0_rtx if we're processing a tstM pattern. Also, it's
1438 possible that the tstM case results in a REG_DEAD note on the
1439 source. */
1441 if (src1 == 0)
1442 src1 = get_true_reg (&XEXP (pat_src, 0));
1444 emit_swap_insn (insn, regstack, *src1);
1446 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1448 if (STACK_REG_P (*dest))
1449 replace_reg (dest, FIRST_STACK_REG);
1451 if (src1_note)
1453 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1454 regstack->top--;
1455 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1458 replace_reg (src1, FIRST_STACK_REG);
1459 break;
1461 case MINUS:
1462 case DIV:
1463 /* On i386, reversed forms of subM3 and divM3 exist for
1464 MODE_FLOAT, so the same code that works for addM3 and mulM3
1465 can be used. */
1466 case MULT:
1467 case PLUS:
1468 /* These insns can accept the top of stack as a destination
1469 from a stack reg or mem, or can use the top of stack as a
1470 source and some other stack register (possibly top of stack)
1471 as a destination. */
1473 src1 = get_true_reg (&XEXP (pat_src, 0));
1474 src2 = get_true_reg (&XEXP (pat_src, 1));
1476 /* We will fix any death note later. */
1478 if (STACK_REG_P (*src1))
1479 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1480 else
1481 src1_note = NULL_RTX;
1482 if (STACK_REG_P (*src2))
1483 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1484 else
1485 src2_note = NULL_RTX;
1487 /* If either operand is not a stack register, then the dest
1488 must be top of stack. */
1490 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1491 emit_swap_insn (insn, regstack, *dest);
1492 else
1494 /* Both operands are REG. If neither operand is already
1495 at the top of stack, choose to make the one that is the dest
1496 the new top of stack. */
1498 int src1_hard_regnum, src2_hard_regnum;
1500 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1501 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1502 gcc_assert (src1_hard_regnum != -1);
1503 gcc_assert (src2_hard_regnum != -1);
1505 if (src1_hard_regnum != FIRST_STACK_REG
1506 && src2_hard_regnum != FIRST_STACK_REG)
1507 emit_swap_insn (insn, regstack, *dest);
1510 if (STACK_REG_P (*src1))
1511 replace_reg (src1, get_hard_regnum (regstack, *src1));
1512 if (STACK_REG_P (*src2))
1513 replace_reg (src2, get_hard_regnum (regstack, *src2));
1515 if (src1_note)
1517 rtx src1_reg = XEXP (src1_note, 0);
1519 /* If the register that dies is at the top of stack, then
1520 the destination is somewhere else - merely substitute it.
1521 But if the reg that dies is not at top of stack, then
1522 move the top of stack to the dead reg, as though we had
1523 done the insn and then a store-with-pop. */
1525 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1527 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1528 replace_reg (dest, get_hard_regnum (regstack, *dest));
1530 else
1532 int regno = get_hard_regnum (regstack, src1_reg);
1534 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1535 replace_reg (dest, regno);
1537 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1538 = regstack->reg[regstack->top];
1541 CLEAR_HARD_REG_BIT (regstack->reg_set,
1542 REGNO (XEXP (src1_note, 0)));
1543 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1544 regstack->top--;
1546 else if (src2_note)
1548 rtx src2_reg = XEXP (src2_note, 0);
1549 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1551 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1552 replace_reg (dest, get_hard_regnum (regstack, *dest));
1554 else
1556 int regno = get_hard_regnum (regstack, src2_reg);
1558 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1559 replace_reg (dest, regno);
1561 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1562 = regstack->reg[regstack->top];
1565 CLEAR_HARD_REG_BIT (regstack->reg_set,
1566 REGNO (XEXP (src2_note, 0)));
1567 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1568 regstack->top--;
1570 else
1572 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1573 replace_reg (dest, get_hard_regnum (regstack, *dest));
1576 /* Keep operand 1 matching with destination. */
1577 if (COMMUTATIVE_ARITH_P (pat_src)
1578 && REG_P (*src1) && REG_P (*src2)
1579 && REGNO (*src1) != REGNO (*dest))
1581 int tmp = REGNO (*src1);
1582 replace_reg (src1, REGNO (*src2));
1583 replace_reg (src2, tmp);
1585 break;
1587 case UNSPEC:
1588 switch (XINT (pat_src, 1))
1590 case UNSPEC_FIST:
1592 case UNSPEC_FIST_FLOOR:
1593 case UNSPEC_FIST_CEIL:
1595 /* These insns only operate on the top of the stack. */
1597 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1598 emit_swap_insn (insn, regstack, *src1);
1600 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1602 if (STACK_REG_P (*dest))
1603 replace_reg (dest, FIRST_STACK_REG);
1605 if (src1_note)
1607 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1608 regstack->top--;
1609 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1612 replace_reg (src1, FIRST_STACK_REG);
1613 break;
1615 case UNSPEC_SIN:
1616 case UNSPEC_COS:
1617 case UNSPEC_FRNDINT:
1618 case UNSPEC_F2XM1:
1620 case UNSPEC_FRNDINT_FLOOR:
1621 case UNSPEC_FRNDINT_CEIL:
1622 case UNSPEC_FRNDINT_TRUNC:
1623 case UNSPEC_FRNDINT_MASK_PM:
1625 /* These insns only operate on the top of the stack. */
1627 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1629 emit_swap_insn (insn, regstack, *src1);
1631 /* Input should never die, it is
1632 replaced with output. */
1633 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1634 gcc_assert (!src1_note);
1636 if (STACK_REG_P (*dest))
1637 replace_reg (dest, FIRST_STACK_REG);
1639 replace_reg (src1, FIRST_STACK_REG);
1640 break;
1642 case UNSPEC_FPATAN:
1643 case UNSPEC_FYL2X:
1644 case UNSPEC_FYL2XP1:
1645 /* These insns operate on the top two stack slots. */
1647 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1648 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1650 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1651 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1653 swap_to_top (insn, regstack, *src1, *src2);
1655 replace_reg (src1, FIRST_STACK_REG);
1656 replace_reg (src2, FIRST_STACK_REG + 1);
1658 if (src1_note)
1659 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1660 if (src2_note)
1661 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1663 /* Pop both input operands from the stack. */
1664 CLEAR_HARD_REG_BIT (regstack->reg_set,
1665 regstack->reg[regstack->top]);
1666 CLEAR_HARD_REG_BIT (regstack->reg_set,
1667 regstack->reg[regstack->top - 1]);
1668 regstack->top -= 2;
1670 /* Push the result back onto the stack. */
1671 regstack->reg[++regstack->top] = REGNO (*dest);
1672 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1673 replace_reg (dest, FIRST_STACK_REG);
1674 break;
1676 case UNSPEC_FSCALE_FRACT:
1677 case UNSPEC_FPREM_F:
1678 case UNSPEC_FPREM1_F:
1679 /* These insns operate on the top two stack slots.
1680 first part of double input, double output insn. */
1682 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1683 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1685 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1686 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1688 /* Inputs should never die, they are
1689 replaced with outputs. */
1690 gcc_assert (!src1_note);
1691 gcc_assert (!src2_note);
1693 swap_to_top (insn, regstack, *src1, *src2);
1695 /* Push the result back onto stack. Empty stack slot
1696 will be filled in second part of insn. */
1697 if (STACK_REG_P (*dest)) {
1698 regstack->reg[regstack->top] = REGNO (*dest);
1699 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1700 replace_reg (dest, FIRST_STACK_REG);
1703 replace_reg (src1, FIRST_STACK_REG);
1704 replace_reg (src2, FIRST_STACK_REG + 1);
1705 break;
1707 case UNSPEC_FSCALE_EXP:
1708 case UNSPEC_FPREM_U:
1709 case UNSPEC_FPREM1_U:
1710 /* These insns operate on the top two stack slots./
1711 second part of double input, double output insn. */
1713 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1714 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1716 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1717 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1719 /* Inputs should never die, they are
1720 replaced with outputs. */
1721 gcc_assert (!src1_note);
1722 gcc_assert (!src2_note);
1724 swap_to_top (insn, regstack, *src1, *src2);
1726 /* Push the result back onto stack. Fill empty slot from
1727 first part of insn and fix top of stack pointer. */
1728 if (STACK_REG_P (*dest)) {
1729 regstack->reg[regstack->top - 1] = REGNO (*dest);
1730 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1731 replace_reg (dest, FIRST_STACK_REG + 1);
1734 replace_reg (src1, FIRST_STACK_REG);
1735 replace_reg (src2, FIRST_STACK_REG + 1);
1736 break;
1738 case UNSPEC_SINCOS_COS:
1739 case UNSPEC_TAN_ONE:
1740 case UNSPEC_XTRACT_FRACT:
1741 /* These insns operate on the top two stack slots,
1742 first part of one input, double output insn. */
1744 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1746 emit_swap_insn (insn, regstack, *src1);
1748 /* Input should never die, it is
1749 replaced with output. */
1750 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1751 gcc_assert (!src1_note);
1753 /* Push the result back onto stack. Empty stack slot
1754 will be filled in second part of insn. */
1755 if (STACK_REG_P (*dest)) {
1756 regstack->reg[regstack->top + 1] = REGNO (*dest);
1757 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1758 replace_reg (dest, FIRST_STACK_REG);
1761 replace_reg (src1, FIRST_STACK_REG);
1762 break;
1764 case UNSPEC_SINCOS_SIN:
1765 case UNSPEC_TAN_TAN:
1766 case UNSPEC_XTRACT_EXP:
1767 /* These insns operate on the top two stack slots,
1768 second part of one input, double output insn. */
1770 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1772 emit_swap_insn (insn, regstack, *src1);
1774 /* Input should never die, it is
1775 replaced with output. */
1776 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1777 gcc_assert (!src1_note);
1779 /* Push the result back onto stack. Fill empty slot from
1780 first part of insn and fix top of stack pointer. */
1781 if (STACK_REG_P (*dest)) {
1782 regstack->reg[regstack->top] = REGNO (*dest);
1783 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1784 replace_reg (dest, FIRST_STACK_REG + 1);
1786 regstack->top++;
1789 replace_reg (src1, FIRST_STACK_REG);
1790 break;
1792 case UNSPEC_SAHF:
1793 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1794 The combination matches the PPRO fcomi instruction. */
1796 pat_src = XVECEXP (pat_src, 0, 0);
1797 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1798 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1799 /* Fall through. */
1801 case UNSPEC_FNSTSW:
1802 /* Combined fcomp+fnstsw generated for doing well with
1803 CSE. When optimizing this would have been broken
1804 up before now. */
1806 pat_src = XVECEXP (pat_src, 0, 0);
1807 gcc_assert (GET_CODE (pat_src) == COMPARE);
1809 compare_for_stack_reg (insn, regstack, pat_src);
1810 break;
1812 default:
1813 gcc_unreachable ();
1815 break;
1817 case IF_THEN_ELSE:
1818 /* This insn requires the top of stack to be the destination. */
1820 src1 = get_true_reg (&XEXP (pat_src, 1));
1821 src2 = get_true_reg (&XEXP (pat_src, 2));
1823 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1824 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1826 /* If the comparison operator is an FP comparison operator,
1827 it is handled correctly by compare_for_stack_reg () who
1828 will move the destination to the top of stack. But if the
1829 comparison operator is not an FP comparison operator, we
1830 have to handle it here. */
1831 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1832 && REGNO (*dest) != regstack->reg[regstack->top])
1834 /* In case one of operands is the top of stack and the operands
1835 dies, it is safe to make it the destination operand by
1836 reversing the direction of cmove and avoid fxch. */
1837 if ((REGNO (*src1) == regstack->reg[regstack->top]
1838 && src1_note)
1839 || (REGNO (*src2) == regstack->reg[regstack->top]
1840 && src2_note))
1842 int idx1 = (get_hard_regnum (regstack, *src1)
1843 - FIRST_STACK_REG);
1844 int idx2 = (get_hard_regnum (regstack, *src2)
1845 - FIRST_STACK_REG);
1847 /* Make reg-stack believe that the operands are already
1848 swapped on the stack */
1849 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1850 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1852 /* Reverse condition to compensate the operand swap.
1853 i386 do have comparison always reversible. */
1854 PUT_CODE (XEXP (pat_src, 0),
1855 reversed_comparison_code (XEXP (pat_src, 0), insn));
1857 else
1858 emit_swap_insn (insn, regstack, *dest);
1862 rtx src_note [3];
1863 int i;
1865 src_note[0] = 0;
1866 src_note[1] = src1_note;
1867 src_note[2] = src2_note;
1869 if (STACK_REG_P (*src1))
1870 replace_reg (src1, get_hard_regnum (regstack, *src1));
1871 if (STACK_REG_P (*src2))
1872 replace_reg (src2, get_hard_regnum (regstack, *src2));
1874 for (i = 1; i <= 2; i++)
1875 if (src_note [i])
1877 int regno = REGNO (XEXP (src_note[i], 0));
1879 /* If the register that dies is not at the top of
1880 stack, then move the top of stack to the dead reg.
1881 Top of stack should never die, as it is the
1882 destination. */
1883 gcc_assert (regno != regstack->reg[regstack->top]);
1884 remove_regno_note (insn, REG_DEAD, regno);
1885 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1886 EMIT_AFTER);
1890 /* Make dest the top of stack. Add dest to regstack if
1891 not present. */
1892 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1893 regstack->reg[++regstack->top] = REGNO (*dest);
1894 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1895 replace_reg (dest, FIRST_STACK_REG);
1896 break;
1898 default:
1899 gcc_unreachable ();
1901 break;
1904 default:
1905 break;
1908 return control_flow_insn_deleted;
1911 /* Substitute hard regnums for any stack regs in INSN, which has
1912 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1913 before the insn, and is updated with changes made here.
1915 There are several requirements and assumptions about the use of
1916 stack-like regs in asm statements. These rules are enforced by
1917 record_asm_stack_regs; see comments there for details. Any
1918 asm_operands left in the RTL at this point may be assume to meet the
1919 requirements, since record_asm_stack_regs removes any problem asm. */
1921 static void
1922 subst_asm_stack_regs (rtx insn, stack regstack)
1924 rtx body = PATTERN (insn);
1925 int alt;
1927 rtx *note_reg; /* Array of note contents */
1928 rtx **note_loc; /* Address of REG field of each note */
1929 enum reg_note *note_kind; /* The type of each note */
1931 rtx *clobber_reg = 0;
1932 rtx **clobber_loc = 0;
1934 struct stack_def temp_stack;
1935 int n_notes;
1936 int n_clobbers;
1937 rtx note;
1938 int i;
1939 int n_inputs, n_outputs;
1941 if (! check_asm_stack_operands (insn))
1942 return;
1944 /* Find out what the constraints required. If no constraint
1945 alternative matches, that is a compiler bug: we should have caught
1946 such an insn in check_asm_stack_operands. */
1947 extract_insn (insn);
1948 constrain_operands (1);
1949 alt = which_alternative;
1951 preprocess_constraints ();
1953 n_inputs = get_asm_operand_n_inputs (body);
1954 n_outputs = recog_data.n_operands - n_inputs;
1956 gcc_assert (alt >= 0);
1958 /* Strip SUBREGs here to make the following code simpler. */
1959 for (i = 0; i < recog_data.n_operands; i++)
1960 if (GET_CODE (recog_data.operand[i]) == SUBREG
1961 && REG_P (SUBREG_REG (recog_data.operand[i])))
1963 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1964 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1967 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1969 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1970 i++;
1972 note_reg = alloca (i * sizeof (rtx));
1973 note_loc = alloca (i * sizeof (rtx *));
1974 note_kind = alloca (i * sizeof (enum reg_note));
1976 n_notes = 0;
1977 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1979 rtx reg = XEXP (note, 0);
1980 rtx *loc = & XEXP (note, 0);
1982 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
1984 loc = & SUBREG_REG (reg);
1985 reg = SUBREG_REG (reg);
1988 if (STACK_REG_P (reg)
1989 && (REG_NOTE_KIND (note) == REG_DEAD
1990 || REG_NOTE_KIND (note) == REG_UNUSED))
1992 note_reg[n_notes] = reg;
1993 note_loc[n_notes] = loc;
1994 note_kind[n_notes] = REG_NOTE_KIND (note);
1995 n_notes++;
1999 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2001 n_clobbers = 0;
2003 if (GET_CODE (body) == PARALLEL)
2005 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2006 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2008 for (i = 0; i < XVECLEN (body, 0); i++)
2009 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2011 rtx clobber = XVECEXP (body, 0, i);
2012 rtx reg = XEXP (clobber, 0);
2013 rtx *loc = & XEXP (clobber, 0);
2015 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2017 loc = & SUBREG_REG (reg);
2018 reg = SUBREG_REG (reg);
2021 if (STACK_REG_P (reg))
2023 clobber_reg[n_clobbers] = reg;
2024 clobber_loc[n_clobbers] = loc;
2025 n_clobbers++;
2030 temp_stack = *regstack;
2032 /* Put the input regs into the desired place in TEMP_STACK. */
2034 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2035 if (STACK_REG_P (recog_data.operand[i])
2036 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2037 FLOAT_REGS)
2038 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2040 /* If an operand needs to be in a particular reg in
2041 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2042 these constraints are for single register classes, and
2043 reload guaranteed that operand[i] is already in that class,
2044 we can just use REGNO (recog_data.operand[i]) to know which
2045 actual reg this operand needs to be in. */
2047 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2049 gcc_assert (regno >= 0);
2051 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2053 /* recog_data.operand[i] is not in the right place. Find
2054 it and swap it with whatever is already in I's place.
2055 K is where recog_data.operand[i] is now. J is where it
2056 should be. */
2057 int j, k, temp;
2059 k = temp_stack.top - (regno - FIRST_STACK_REG);
2060 j = (temp_stack.top
2061 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2063 temp = temp_stack.reg[k];
2064 temp_stack.reg[k] = temp_stack.reg[j];
2065 temp_stack.reg[j] = temp;
2069 /* Emit insns before INSN to make sure the reg-stack is in the right
2070 order. */
2072 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2074 /* Make the needed input register substitutions. Do death notes and
2075 clobbers too, because these are for inputs, not outputs. */
2077 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2078 if (STACK_REG_P (recog_data.operand[i]))
2080 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2082 gcc_assert (regnum >= 0);
2084 replace_reg (recog_data.operand_loc[i], regnum);
2087 for (i = 0; i < n_notes; i++)
2088 if (note_kind[i] == REG_DEAD)
2090 int regnum = get_hard_regnum (regstack, note_reg[i]);
2092 gcc_assert (regnum >= 0);
2094 replace_reg (note_loc[i], regnum);
2097 for (i = 0; i < n_clobbers; i++)
2099 /* It's OK for a CLOBBER to reference a reg that is not live.
2100 Don't try to replace it in that case. */
2101 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2103 if (regnum >= 0)
2105 /* Sigh - clobbers always have QImode. But replace_reg knows
2106 that these regs can't be MODE_INT and will assert. Just put
2107 the right reg there without calling replace_reg. */
2109 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2113 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2115 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2116 if (STACK_REG_P (recog_data.operand[i]))
2118 /* An input reg is implicitly popped if it is tied to an
2119 output, or if there is a CLOBBER for it. */
2120 int j;
2122 for (j = 0; j < n_clobbers; j++)
2123 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2124 break;
2126 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2128 /* recog_data.operand[i] might not be at the top of stack.
2129 But that's OK, because all we need to do is pop the
2130 right number of regs off of the top of the reg-stack.
2131 record_asm_stack_regs guaranteed that all implicitly
2132 popped regs were grouped at the top of the reg-stack. */
2134 CLEAR_HARD_REG_BIT (regstack->reg_set,
2135 regstack->reg[regstack->top]);
2136 regstack->top--;
2140 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2141 Note that there isn't any need to substitute register numbers.
2142 ??? Explain why this is true. */
2144 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2146 /* See if there is an output for this hard reg. */
2147 int j;
2149 for (j = 0; j < n_outputs; j++)
2150 if (STACK_REG_P (recog_data.operand[j])
2151 && REGNO (recog_data.operand[j]) == (unsigned) i)
2153 regstack->reg[++regstack->top] = i;
2154 SET_HARD_REG_BIT (regstack->reg_set, i);
2155 break;
2159 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2160 input that the asm didn't implicitly pop. If the asm didn't
2161 implicitly pop an input reg, that reg will still be live.
2163 Note that we can't use find_regno_note here: the register numbers
2164 in the death notes have already been substituted. */
2166 for (i = 0; i < n_outputs; i++)
2167 if (STACK_REG_P (recog_data.operand[i]))
2169 int j;
2171 for (j = 0; j < n_notes; j++)
2172 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2173 && note_kind[j] == REG_UNUSED)
2175 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2176 EMIT_AFTER);
2177 break;
2181 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2182 if (STACK_REG_P (recog_data.operand[i]))
2184 int j;
2186 for (j = 0; j < n_notes; j++)
2187 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2188 && note_kind[j] == REG_DEAD
2189 && TEST_HARD_REG_BIT (regstack->reg_set,
2190 REGNO (recog_data.operand[i])))
2192 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2193 EMIT_AFTER);
2194 break;
2199 /* Substitute stack hard reg numbers for stack virtual registers in
2200 INSN. Non-stack register numbers are not changed. REGSTACK is the
2201 current stack content. Insns may be emitted as needed to arrange the
2202 stack for the 387 based on the contents of the insn. Return whether
2203 a control flow insn was deleted in the process. */
2205 static bool
2206 subst_stack_regs (rtx insn, stack regstack)
2208 rtx *note_link, note;
2209 bool control_flow_insn_deleted = false;
2210 int i;
2212 if (CALL_P (insn))
2214 int top = regstack->top;
2216 /* If there are any floating point parameters to be passed in
2217 registers for this call, make sure they are in the right
2218 order. */
2220 if (top >= 0)
2222 straighten_stack (insn, regstack);
2224 /* Now mark the arguments as dead after the call. */
2226 while (regstack->top >= 0)
2228 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2229 regstack->top--;
2234 /* Do the actual substitution if any stack regs are mentioned.
2235 Since we only record whether entire insn mentions stack regs, and
2236 subst_stack_regs_pat only works for patterns that contain stack regs,
2237 we must check each pattern in a parallel here. A call_value_pop could
2238 fail otherwise. */
2240 if (stack_regs_mentioned (insn))
2242 int n_operands = asm_noperands (PATTERN (insn));
2243 if (n_operands >= 0)
2245 /* This insn is an `asm' with operands. Decode the operands,
2246 decide how many are inputs, and do register substitution.
2247 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2249 subst_asm_stack_regs (insn, regstack);
2250 return control_flow_insn_deleted;
2253 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2254 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2256 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2258 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2259 XVECEXP (PATTERN (insn), 0, i)
2260 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2261 control_flow_insn_deleted
2262 |= subst_stack_regs_pat (insn, regstack,
2263 XVECEXP (PATTERN (insn), 0, i));
2266 else
2267 control_flow_insn_deleted
2268 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2271 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2272 REG_UNUSED will already have been dealt with, so just return. */
2274 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2275 return control_flow_insn_deleted;
2277 /* If there is a REG_UNUSED note on a stack register on this insn,
2278 the indicated reg must be popped. The REG_UNUSED note is removed,
2279 since the form of the newly emitted pop insn references the reg,
2280 making it no longer `unset'. */
2282 note_link = &REG_NOTES (insn);
2283 for (note = *note_link; note; note = XEXP (note, 1))
2284 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2286 *note_link = XEXP (note, 1);
2287 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2289 else
2290 note_link = &XEXP (note, 1);
2292 return control_flow_insn_deleted;
2295 /* Change the organization of the stack so that it fits a new basic
2296 block. Some registers might have to be popped, but there can never be
2297 a register live in the new block that is not now live.
2299 Insert any needed insns before or after INSN, as indicated by
2300 WHERE. OLD is the original stack layout, and NEW is the desired
2301 form. OLD is updated to reflect the code emitted, i.e., it will be
2302 the same as NEW upon return.
2304 This function will not preserve block_end[]. But that information
2305 is no longer needed once this has executed. */
2307 static void
2308 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2310 int reg;
2311 int update_end = 0;
2313 /* Stack adjustments for the first insn in a block update the
2314 current_block's stack_in instead of inserting insns directly.
2315 compensate_edges will add the necessary code later. */
2316 if (current_block
2317 && starting_stack_p
2318 && where == EMIT_BEFORE)
2320 BLOCK_INFO (current_block)->stack_in = *new;
2321 starting_stack_p = false;
2322 *old = *new;
2323 return;
2326 /* We will be inserting new insns "backwards". If we are to insert
2327 after INSN, find the next insn, and insert before it. */
2329 if (where == EMIT_AFTER)
2331 if (current_block && BB_END (current_block) == insn)
2332 update_end = 1;
2333 insn = NEXT_INSN (insn);
2336 /* Pop any registers that are not needed in the new block. */
2338 /* If the destination block's stack already has a specified layout
2339 and contains two or more registers, use a more intelligent algorithm
2340 to pop registers that minimizes the number number of fxchs below. */
2341 if (new->top > 0)
2343 bool slots[REG_STACK_SIZE];
2344 int pops[REG_STACK_SIZE];
2345 int next, dest, topsrc;
2347 /* First pass to determine the free slots. */
2348 for (reg = 0; reg <= new->top; reg++)
2349 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2351 /* Second pass to allocate preferred slots. */
2352 topsrc = -1;
2353 for (reg = old->top; reg > new->top; reg--)
2354 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2356 dest = -1;
2357 for (next = 0; next <= new->top; next++)
2358 if (!slots[next] && new->reg[next] == old->reg[reg])
2360 /* If this is a preference for the new top of stack, record
2361 the fact by remembering it's old->reg in topsrc. */
2362 if (next == new->top)
2363 topsrc = reg;
2364 slots[next] = true;
2365 dest = next;
2366 break;
2368 pops[reg] = dest;
2370 else
2371 pops[reg] = reg;
2373 /* Intentionally, avoid placing the top of stack in it's correct
2374 location, if we still need to permute the stack below and we
2375 can usefully place it somewhere else. This is the case if any
2376 slot is still unallocated, in which case we should place the
2377 top of stack there. */
2378 if (topsrc != -1)
2379 for (reg = 0; reg < new->top; reg++)
2380 if (!slots[reg])
2382 pops[topsrc] = reg;
2383 slots[new->top] = false;
2384 slots[reg] = true;
2385 break;
2388 /* Third pass allocates remaining slots and emits pop insns. */
2389 next = new->top;
2390 for (reg = old->top; reg > new->top; reg--)
2392 dest = pops[reg];
2393 if (dest == -1)
2395 /* Find next free slot. */
2396 while (slots[next])
2397 next--;
2398 dest = next--;
2400 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2401 EMIT_BEFORE);
2404 else
2406 /* The following loop attempts to maximize the number of times we
2407 pop the top of the stack, as this permits the use of the faster
2408 ffreep instruction on platforms that support it. */
2409 int live, next;
2411 live = 0;
2412 for (reg = 0; reg <= old->top; reg++)
2413 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2414 live++;
2416 next = live;
2417 while (old->top >= live)
2418 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2420 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2421 next--;
2422 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2423 EMIT_BEFORE);
2425 else
2426 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2427 EMIT_BEFORE);
2430 if (new->top == -2)
2432 /* If the new block has never been processed, then it can inherit
2433 the old stack order. */
2435 new->top = old->top;
2436 memcpy (new->reg, old->reg, sizeof (new->reg));
2438 else
2440 /* This block has been entered before, and we must match the
2441 previously selected stack order. */
2443 /* By now, the only difference should be the order of the stack,
2444 not their depth or liveliness. */
2446 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2447 gcc_unreachable ();
2448 win:
2449 gcc_assert (old->top == new->top);
2451 /* If the stack is not empty (new->top != -1), loop here emitting
2452 swaps until the stack is correct.
2454 The worst case number of swaps emitted is N + 2, where N is the
2455 depth of the stack. In some cases, the reg at the top of
2456 stack may be correct, but swapped anyway in order to fix
2457 other regs. But since we never swap any other reg away from
2458 its correct slot, this algorithm will converge. */
2460 if (new->top != -1)
2463 /* Swap the reg at top of stack into the position it is
2464 supposed to be in, until the correct top of stack appears. */
2466 while (old->reg[old->top] != new->reg[new->top])
2468 for (reg = new->top; reg >= 0; reg--)
2469 if (new->reg[reg] == old->reg[old->top])
2470 break;
2472 gcc_assert (reg != -1);
2474 emit_swap_insn (insn, old,
2475 FP_MODE_REG (old->reg[reg], DFmode));
2478 /* See if any regs remain incorrect. If so, bring an
2479 incorrect reg to the top of stack, and let the while loop
2480 above fix it. */
2482 for (reg = new->top; reg >= 0; reg--)
2483 if (new->reg[reg] != old->reg[reg])
2485 emit_swap_insn (insn, old,
2486 FP_MODE_REG (old->reg[reg], DFmode));
2487 break;
2489 } while (reg >= 0);
2491 /* At this point there must be no differences. */
2493 for (reg = old->top; reg >= 0; reg--)
2494 gcc_assert (old->reg[reg] == new->reg[reg]);
2497 if (update_end)
2498 BB_END (current_block) = PREV_INSN (insn);
2501 /* Print stack configuration. */
2503 static void
2504 print_stack (FILE *file, stack s)
2506 if (! file)
2507 return;
2509 if (s->top == -2)
2510 fprintf (file, "uninitialized\n");
2511 else if (s->top == -1)
2512 fprintf (file, "empty\n");
2513 else
2515 int i;
2516 fputs ("[ ", file);
2517 for (i = 0; i <= s->top; ++i)
2518 fprintf (file, "%d ", s->reg[i]);
2519 fputs ("]\n", file);
2523 /* This function was doing life analysis. We now let the regular live
2524 code do it's job, so we only need to check some extra invariants
2525 that reg-stack expects. Primary among these being that all registers
2526 are initialized before use.
2528 The function returns true when code was emitted to CFG edges and
2529 commit_edge_insertions needs to be called. */
2531 static int
2532 convert_regs_entry (void)
2534 int inserted = 0;
2535 edge e;
2536 edge_iterator ei;
2538 /* Load something into each stack register live at function entry.
2539 Such live registers can be caused by uninitialized variables or
2540 functions not returning values on all paths. In order to keep
2541 the push/pop code happy, and to not scrog the register stack, we
2542 must put something in these registers. Use a QNaN.
2544 Note that we are inserting converted code here. This code is
2545 never seen by the convert_regs pass. */
2547 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2549 basic_block block = e->dest;
2550 block_info bi = BLOCK_INFO (block);
2551 int reg, top = -1;
2553 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2554 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2556 rtx init;
2558 bi->stack_in.reg[++top] = reg;
2560 init = gen_rtx_SET (VOIDmode,
2561 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2562 not_a_num);
2563 insert_insn_on_edge (init, e);
2564 inserted = 1;
2567 bi->stack_in.top = top;
2570 return inserted;
2573 /* Construct the desired stack for function exit. This will either
2574 be `empty', or the function return value at top-of-stack. */
2576 static void
2577 convert_regs_exit (void)
2579 int value_reg_low, value_reg_high;
2580 stack output_stack;
2581 rtx retvalue;
2583 retvalue = stack_result (current_function_decl);
2584 value_reg_low = value_reg_high = -1;
2585 if (retvalue)
2587 value_reg_low = REGNO (retvalue);
2588 value_reg_high = value_reg_low
2589 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2592 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2593 if (value_reg_low == -1)
2594 output_stack->top = -1;
2595 else
2597 int reg;
2599 output_stack->top = value_reg_high - value_reg_low;
2600 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2602 output_stack->reg[value_reg_high - reg] = reg;
2603 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2608 /* Copy the stack info from the end of edge E's source block to the
2609 start of E's destination block. */
2611 static void
2612 propagate_stack (edge e)
2614 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2615 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2616 int reg;
2618 /* Preserve the order of the original stack, but check whether
2619 any pops are needed. */
2620 dest_stack->top = -1;
2621 for (reg = 0; reg <= src_stack->top; ++reg)
2622 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2623 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2627 /* Adjust the stack of edge E's source block on exit to match the stack
2628 of it's target block upon input. The stack layouts of both blocks
2629 should have been defined by now. */
2631 static bool
2632 compensate_edge (edge e, FILE *file)
2634 basic_block source = e->src, target = e->dest;
2635 stack target_stack = &BLOCK_INFO (target)->stack_in;
2636 stack source_stack = &BLOCK_INFO (source)->stack_out;
2637 struct stack_def regstack;
2638 int reg;
2640 if (file)
2641 fprintf (file, "Edge %d->%d: ", source->index, target->index);
2643 gcc_assert (target_stack->top != -2);
2645 /* Check whether stacks are identical. */
2646 if (target_stack->top == source_stack->top)
2648 for (reg = target_stack->top; reg >= 0; --reg)
2649 if (target_stack->reg[reg] != source_stack->reg[reg])
2650 break;
2652 if (reg == -1)
2654 if (file)
2655 fprintf (file, "no changes needed\n");
2656 return false;
2660 if (file)
2662 fprintf (file, "correcting stack to ");
2663 print_stack (file, target_stack);
2666 /* Abnormal calls may appear to have values live in st(0), but the
2667 abnormal return path will not have actually loaded the values. */
2668 if (e->flags & EDGE_ABNORMAL_CALL)
2670 /* Assert that the lifetimes are as we expect -- one value
2671 live at st(0) on the end of the source block, and no
2672 values live at the beginning of the destination block.
2673 For complex return values, we may have st(1) live as well. */
2674 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2675 gcc_assert (target_stack->top == -1);
2676 return false;
2679 /* Handle non-call EH edges specially. The normal return path have
2680 values in registers. These will be popped en masse by the unwind
2681 library. */
2682 if (e->flags & EDGE_EH)
2684 gcc_assert (target_stack->top == -1);
2685 return false;
2688 /* We don't support abnormal edges. Global takes care to
2689 avoid any live register across them, so we should never
2690 have to insert instructions on such edges. */
2691 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2693 /* Make a copy of source_stack as change_stack is destructive. */
2694 regstack = *source_stack;
2696 /* It is better to output directly to the end of the block
2697 instead of to the edge, because emit_swap can do minimal
2698 insn scheduling. We can do this when there is only one
2699 edge out, and it is not abnormal. */
2700 if (EDGE_COUNT (source->succs) == 1)
2702 current_block = source;
2703 change_stack (BB_END (source), &regstack, target_stack,
2704 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2706 else
2708 rtx seq, after;
2710 current_block = NULL;
2711 start_sequence ();
2713 /* ??? change_stack needs some point to emit insns after. */
2714 after = emit_note (NOTE_INSN_DELETED);
2716 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2718 seq = get_insns ();
2719 end_sequence ();
2721 insert_insn_on_edge (seq, e);
2722 return true;
2724 return false;
2727 /* Traverse all non-entry edges in the CFG, and emit the necessary
2728 edge compensation code to change the stack from stack_out of the
2729 source block to the stack_in of the destination block. */
2731 static bool
2732 compensate_edges (FILE *file)
2734 bool inserted = false;
2735 basic_block bb;
2737 starting_stack_p = false;
2739 FOR_EACH_BB (bb)
2740 if (bb != ENTRY_BLOCK_PTR)
2742 edge e;
2743 edge_iterator ei;
2745 FOR_EACH_EDGE (e, ei, bb->succs)
2746 inserted |= compensate_edge (e, file);
2748 return inserted;
2751 /* Select the better of two edges E1 and E2 to use to determine the
2752 stack layout for their shared destination basic block. This is
2753 typically the more frequently executed. The edge E1 may be NULL
2754 (in which case E2 is returned), but E2 is always non-NULL. */
2756 static edge
2757 better_edge (edge e1, edge e2)
2759 if (!e1)
2760 return e2;
2762 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2763 return e1;
2764 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2765 return e2;
2767 if (e1->count > e2->count)
2768 return e1;
2769 if (e1->count < e2->count)
2770 return e2;
2772 /* Prefer critical edges to minimize inserting compensation code on
2773 critical edges. */
2775 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2776 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2778 /* Avoid non-deterministic behaviour. */
2779 return (e1->src->index < e2->src->index) ? e1 : e2;
2782 /* Convert stack register references in one block. */
2784 static void
2785 convert_regs_1 (FILE *file, basic_block block)
2787 struct stack_def regstack;
2788 block_info bi = BLOCK_INFO (block);
2789 int reg;
2790 rtx insn, next;
2791 bool control_flow_insn_deleted = false;
2793 any_malformed_asm = false;
2795 /* Choose an initial stack layout, if one hasn't already been chosen. */
2796 if (bi->stack_in.top == -2)
2798 edge e, beste = NULL;
2799 edge_iterator ei;
2801 /* Select the best incoming edge (typically the most frequent) to
2802 use as a template for this basic block. */
2803 FOR_EACH_EDGE (e, ei, block->preds)
2804 if (BLOCK_INFO (e->src)->done)
2805 beste = better_edge (beste, e);
2807 if (beste)
2808 propagate_stack (beste);
2809 else
2811 /* No predecessors. Create an arbitrary input stack. */
2812 bi->stack_in.top = -1;
2813 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2814 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2815 bi->stack_in.reg[++bi->stack_in.top] = reg;
2819 if (file)
2821 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2822 print_stack (file, &bi->stack_in);
2825 /* Process all insns in this block. Keep track of NEXT so that we
2826 don't process insns emitted while substituting in INSN. */
2827 current_block = block;
2828 next = BB_HEAD (block);
2829 regstack = bi->stack_in;
2830 starting_stack_p = true;
2834 insn = next;
2835 next = NEXT_INSN (insn);
2837 /* Ensure we have not missed a block boundary. */
2838 gcc_assert (next);
2839 if (insn == BB_END (block))
2840 next = NULL;
2842 /* Don't bother processing unless there is a stack reg
2843 mentioned or if it's a CALL_INSN. */
2844 if (stack_regs_mentioned (insn)
2845 || CALL_P (insn))
2847 if (file)
2849 fprintf (file, " insn %d input stack: ",
2850 INSN_UID (insn));
2851 print_stack (file, &regstack);
2853 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2854 starting_stack_p = false;
2857 while (next);
2859 if (file)
2861 fprintf (file, "Expected live registers [");
2862 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2863 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2864 fprintf (file, " %d", reg);
2865 fprintf (file, " ]\nOutput stack: ");
2866 print_stack (file, &regstack);
2869 insn = BB_END (block);
2870 if (JUMP_P (insn))
2871 insn = PREV_INSN (insn);
2873 /* If the function is declared to return a value, but it returns one
2874 in only some cases, some registers might come live here. Emit
2875 necessary moves for them. */
2877 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2879 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2880 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2882 rtx set;
2884 if (file)
2885 fprintf (file, "Emitting insn initializing reg %d\n", reg);
2887 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2888 insn = emit_insn_after (set, insn);
2889 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2893 /* Amongst the insns possibly deleted during the substitution process above,
2894 might have been the only trapping insn in the block. We purge the now
2895 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2896 called at the end of convert_regs. The order in which we process the
2897 blocks ensures that we never delete an already processed edge.
2899 Note that, at this point, the CFG may have been damaged by the emission
2900 of instructions after an abnormal call, which moves the basic block end
2901 (and is the reason why we call fixup_abnormal_edges later). So we must
2902 be sure that the trapping insn has been deleted before trying to purge
2903 dead edges, otherwise we risk purging valid edges.
2905 ??? We are normally supposed not to delete trapping insns, so we pretend
2906 that the insns deleted above don't actually trap. It would have been
2907 better to detect this earlier and avoid creating the EH edge in the first
2908 place, still, but we don't have enough information at that time. */
2910 if (control_flow_insn_deleted)
2911 purge_dead_edges (block);
2913 /* Something failed if the stack lives don't match. If we had malformed
2914 asms, we zapped the instruction itself, but that didn't produce the
2915 same pattern of register kills as before. */
2916 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2917 gcc_assert (any_malformed_asm);
2918 win:
2919 bi->stack_out = regstack;
2920 bi->done = true;
2923 /* Convert registers in all blocks reachable from BLOCK. */
2925 static void
2926 convert_regs_2 (FILE *file, basic_block block)
2928 basic_block *stack, *sp;
2930 /* We process the blocks in a top-down manner, in a way such that one block
2931 is only processed after all its predecessors. The number of predecessors
2932 of every block has already been computed. */
2934 stack = xmalloc (sizeof (*stack) * n_basic_blocks);
2935 sp = stack;
2937 *sp++ = block;
2941 edge e;
2942 edge_iterator ei;
2944 block = *--sp;
2946 /* Processing BLOCK is achieved by convert_regs_1, which may purge
2947 some dead EH outgoing edge after the deletion of the trapping
2948 insn inside the block. Since the number of predecessors of
2949 BLOCK's successors was computed based on the initial edge set,
2950 we check the necessity to process some of these successors
2951 before such an edge deletion may happen. However, there is
2952 a pitfall: if BLOCK is the only predecessor of a successor and
2953 the edge between them happens to be deleted, the successor
2954 becomes unreachable and should not be processed. The problem
2955 is that there is no way to preventively detect this case so we
2956 stack the successor in all cases and hand over the task of
2957 fixing up the discrepancy to convert_regs_1. */
2959 FOR_EACH_EDGE (e, ei, block->succs)
2960 if (! (e->flags & EDGE_DFS_BACK))
2962 BLOCK_INFO (e->dest)->predecessors--;
2963 if (!BLOCK_INFO (e->dest)->predecessors)
2964 *sp++ = e->dest;
2967 convert_regs_1 (file, block);
2969 while (sp != stack);
2971 free (stack);
2974 /* Traverse all basic blocks in a function, converting the register
2975 references in each insn from the "flat" register file that gcc uses,
2976 to the stack-like registers the 387 uses. */
2978 static void
2979 convert_regs (FILE *file)
2981 int inserted;
2982 basic_block b;
2983 edge e;
2984 edge_iterator ei;
2986 /* Initialize uninitialized registers on function entry. */
2987 inserted = convert_regs_entry ();
2989 /* Construct the desired stack for function exit. */
2990 convert_regs_exit ();
2991 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
2993 /* ??? Future: process inner loops first, and give them arbitrary
2994 initial stacks which emit_swap_insn can modify. This ought to
2995 prevent double fxch that often appears at the head of a loop. */
2997 /* Process all blocks reachable from all entry points. */
2998 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2999 convert_regs_2 (file, e->dest);
3001 /* ??? Process all unreachable blocks. Though there's no excuse
3002 for keeping these even when not optimizing. */
3003 FOR_EACH_BB (b)
3005 block_info bi = BLOCK_INFO (b);
3007 if (! bi->done)
3008 convert_regs_2 (file, b);
3011 inserted |= compensate_edges (file);
3013 clear_aux_for_blocks ();
3015 fixup_abnormal_edges ();
3016 if (inserted)
3017 commit_edge_insertions ();
3019 if (file)
3020 fputc ('\n', file);
3023 /* Convert register usage from "flat" register file usage to a "stack
3024 register file. FILE is the dump file, if used.
3026 Construct a CFG and run life analysis. Then convert each insn one
3027 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3028 code duplication created when the converter inserts pop insns on
3029 the edges. */
3031 bool
3032 reg_to_stack (FILE *file)
3034 basic_block bb;
3035 int i;
3036 int max_uid;
3038 /* Clean up previous run. */
3039 stack_regs_mentioned_data = 0;
3041 /* See if there is something to do. Flow analysis is quite
3042 expensive so we might save some compilation time. */
3043 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3044 if (regs_ever_live[i])
3045 break;
3046 if (i > LAST_STACK_REG)
3047 return false;
3049 /* Ok, floating point instructions exist. If not optimizing,
3050 build the CFG and run life analysis.
3051 Also need to rebuild life when superblock scheduling is done
3052 as it don't update liveness yet. */
3053 if (!optimize
3054 || (flag_sched2_use_superblocks
3055 && flag_schedule_insns_after_reload))
3057 count_or_remove_death_notes (NULL, 1);
3058 life_analysis (file, PROP_DEATH_NOTES);
3060 mark_dfs_back_edges ();
3062 /* Set up block info for each basic block. */
3063 alloc_aux_for_blocks (sizeof (struct block_info_def));
3064 FOR_EACH_BB (bb)
3066 block_info bi = BLOCK_INFO (bb);
3067 edge_iterator ei;
3068 edge e;
3069 int reg;
3071 FOR_EACH_EDGE (e, ei, bb->preds)
3072 if (!(e->flags & EDGE_DFS_BACK)
3073 && e->src != ENTRY_BLOCK_PTR)
3074 bi->predecessors++;
3076 /* Set current register status at last instruction `uninitialized'. */
3077 bi->stack_in.top = -2;
3079 /* Copy live_at_end and live_at_start into temporaries. */
3080 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3082 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_end, reg))
3083 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3084 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
3085 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3089 /* Create the replacement registers up front. */
3090 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3092 enum machine_mode mode;
3093 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3094 mode != VOIDmode;
3095 mode = GET_MODE_WIDER_MODE (mode))
3096 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3097 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3098 mode != VOIDmode;
3099 mode = GET_MODE_WIDER_MODE (mode))
3100 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3103 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3105 /* A QNaN for initializing uninitialized variables.
3107 ??? We can't load from constant memory in PIC mode, because
3108 we're inserting these instructions before the prologue and
3109 the PIC register hasn't been set up. In that case, fall back
3110 on zero, which we can get from `ldz'. */
3112 if (flag_pic)
3113 not_a_num = CONST0_RTX (SFmode);
3114 else
3116 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3117 not_a_num = force_const_mem (SFmode, not_a_num);
3120 /* Allocate a cache for stack_regs_mentioned. */
3121 max_uid = get_max_uid ();
3122 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
3123 "stack_regs_mentioned cache");
3125 convert_regs (file);
3127 free_aux_for_blocks ();
3128 return true;
3130 #endif /* STACK_REGS */
3132 static bool
3133 gate_handle_stack_regs (void)
3135 #ifdef STACK_REGS
3136 return 1;
3137 #else
3138 return 0;
3139 #endif
3142 /* Convert register usage from flat register file usage to a stack
3143 register file. */
3144 static void
3145 rest_of_handle_stack_regs (void)
3147 #ifdef STACK_REGS
3148 if (reg_to_stack (dump_file) && optimize)
3150 if (cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK
3151 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0))
3152 && (flag_reorder_blocks || flag_reorder_blocks_and_partition))
3154 reorder_basic_blocks (0);
3155 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK);
3158 #endif
3161 struct tree_opt_pass pass_stack_regs =
3163 "stack", /* name */
3164 gate_handle_stack_regs, /* gate */
3165 rest_of_handle_stack_regs, /* execute */
3166 NULL, /* sub */
3167 NULL, /* next */
3168 0, /* static_pass_number */
3169 TV_REG_STACK, /* tv_id */
3170 0, /* properties_required */
3171 0, /* properties_provided */
3172 0, /* properties_destroyed */
3173 0, /* todo_flags_start */
3174 TODO_dump_func |
3175 TODO_ggc_collect, /* todo_flags_finish */
3176 'k' /* letter */
3179 #include "gt-reg-stack.h"