c++: ICE with alias in pack expansion [PR103769]
[official-gcc.git] / gcc / tree-vect-data-refs.cc
blob09223baf71890b34ebed004560fafbd60691530d
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2022 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "predict.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "ssa.h"
34 #include "optabs-tree.h"
35 #include "cgraph.h"
36 #include "dumpfile.h"
37 #include "alias.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
40 #include "tree-eh.h"
41 #include "gimplify.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop.h"
47 #include "cfgloop.h"
48 #include "tree-scalar-evolution.h"
49 #include "tree-vectorizer.h"
50 #include "expr.h"
51 #include "builtins.h"
52 #include "tree-cfg.h"
53 #include "tree-hash-traits.h"
54 #include "vec-perm-indices.h"
55 #include "internal-fn.h"
56 #include "gimple-fold.h"
58 /* Return true if load- or store-lanes optab OPTAB is implemented for
59 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
61 static bool
62 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
63 tree vectype, unsigned HOST_WIDE_INT count)
65 machine_mode mode, array_mode;
66 bool limit_p;
68 mode = TYPE_MODE (vectype);
69 if (!targetm.array_mode (mode, count).exists (&array_mode))
71 poly_uint64 bits = count * GET_MODE_BITSIZE (mode);
72 limit_p = !targetm.array_mode_supported_p (mode, count);
73 if (!int_mode_for_size (bits, limit_p).exists (&array_mode))
75 if (dump_enabled_p ())
76 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
77 "no array mode for %s[%wu]\n",
78 GET_MODE_NAME (mode), count);
79 return false;
83 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
85 if (dump_enabled_p ())
86 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
87 "cannot use %s<%s><%s>\n", name,
88 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
89 return false;
92 if (dump_enabled_p ())
93 dump_printf_loc (MSG_NOTE, vect_location,
94 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
95 GET_MODE_NAME (mode));
97 return true;
101 /* Return the smallest scalar part of STMT_INFO.
102 This is used to determine the vectype of the stmt. We generally set the
103 vectype according to the type of the result (lhs). For stmts whose
104 result-type is different than the type of the arguments (e.g., demotion,
105 promotion), vectype will be reset appropriately (later). Note that we have
106 to visit the smallest datatype in this function, because that determines the
107 VF. If the smallest datatype in the loop is present only as the rhs of a
108 promotion operation - we'd miss it.
109 Such a case, where a variable of this datatype does not appear in the lhs
110 anywhere in the loop, can only occur if it's an invariant: e.g.:
111 'int_x = (int) short_inv', which we'd expect to have been optimized away by
112 invariant motion. However, we cannot rely on invariant motion to always
113 take invariants out of the loop, and so in the case of promotion we also
114 have to check the rhs.
115 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
116 types. */
118 tree
119 vect_get_smallest_scalar_type (stmt_vec_info stmt_info, tree scalar_type)
121 HOST_WIDE_INT lhs, rhs;
123 /* During the analysis phase, this function is called on arbitrary
124 statements that might not have scalar results. */
125 if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (scalar_type)))
126 return scalar_type;
128 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
130 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
131 if (assign)
133 scalar_type = TREE_TYPE (gimple_assign_lhs (assign));
134 if (gimple_assign_cast_p (assign)
135 || gimple_assign_rhs_code (assign) == DOT_PROD_EXPR
136 || gimple_assign_rhs_code (assign) == WIDEN_SUM_EXPR
137 || gimple_assign_rhs_code (assign) == WIDEN_MULT_EXPR
138 || gimple_assign_rhs_code (assign) == WIDEN_LSHIFT_EXPR
139 || gimple_assign_rhs_code (assign) == WIDEN_PLUS_EXPR
140 || gimple_assign_rhs_code (assign) == WIDEN_MINUS_EXPR
141 || gimple_assign_rhs_code (assign) == FLOAT_EXPR)
143 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
145 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
146 if (rhs < lhs)
147 scalar_type = rhs_type;
150 else if (gcall *call = dyn_cast <gcall *> (stmt_info->stmt))
152 unsigned int i = 0;
153 if (gimple_call_internal_p (call))
155 internal_fn ifn = gimple_call_internal_fn (call);
156 if (internal_load_fn_p (ifn))
157 /* For loads the LHS type does the trick. */
158 i = ~0U;
159 else if (internal_store_fn_p (ifn))
161 /* For stores use the tyep of the stored value. */
162 i = internal_fn_stored_value_index (ifn);
163 scalar_type = TREE_TYPE (gimple_call_arg (call, i));
164 i = ~0U;
166 else if (internal_fn_mask_index (ifn) == 0)
167 i = 1;
169 if (i < gimple_call_num_args (call))
171 tree rhs_type = TREE_TYPE (gimple_call_arg (call, i));
172 if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (rhs_type)))
174 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
175 if (rhs < lhs)
176 scalar_type = rhs_type;
181 return scalar_type;
185 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
186 tested at run-time. Return TRUE if DDR was successfully inserted.
187 Return false if versioning is not supported. */
189 static opt_result
190 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
192 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
194 if ((unsigned) param_vect_max_version_for_alias_checks == 0)
195 return opt_result::failure_at (vect_location,
196 "will not create alias checks, as"
197 " --param vect-max-version-for-alias-checks"
198 " == 0\n");
200 opt_result res
201 = runtime_alias_check_p (ddr, loop,
202 optimize_loop_nest_for_speed_p (loop));
203 if (!res)
204 return res;
206 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
207 return opt_result::success ();
210 /* Record that loop LOOP_VINFO needs to check that VALUE is nonzero. */
212 static void
213 vect_check_nonzero_value (loop_vec_info loop_vinfo, tree value)
215 const vec<tree> &checks = LOOP_VINFO_CHECK_NONZERO (loop_vinfo);
216 for (unsigned int i = 0; i < checks.length(); ++i)
217 if (checks[i] == value)
218 return;
220 if (dump_enabled_p ())
221 dump_printf_loc (MSG_NOTE, vect_location,
222 "need run-time check that %T is nonzero\n",
223 value);
224 LOOP_VINFO_CHECK_NONZERO (loop_vinfo).safe_push (value);
227 /* Return true if we know that the order of vectorized DR_INFO_A and
228 vectorized DR_INFO_B will be the same as the order of DR_INFO_A and
229 DR_INFO_B. At least one of the accesses is a write. */
231 static bool
232 vect_preserves_scalar_order_p (dr_vec_info *dr_info_a, dr_vec_info *dr_info_b)
234 stmt_vec_info stmtinfo_a = dr_info_a->stmt;
235 stmt_vec_info stmtinfo_b = dr_info_b->stmt;
237 /* Single statements are always kept in their original order. */
238 if (!STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
239 && !STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
240 return true;
242 /* STMT_A and STMT_B belong to overlapping groups. All loads are
243 emitted at the position of the first scalar load.
244 Stores in a group are emitted at the position of the last scalar store.
245 Compute that position and check whether the resulting order matches
246 the current one. */
247 stmt_vec_info il_a = DR_GROUP_FIRST_ELEMENT (stmtinfo_a);
248 if (il_a)
250 if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmtinfo_a)))
251 for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_a); s;
252 s = DR_GROUP_NEXT_ELEMENT (s))
253 il_a = get_later_stmt (il_a, s);
254 else /* DR_IS_READ */
255 for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_a); s;
256 s = DR_GROUP_NEXT_ELEMENT (s))
257 if (get_later_stmt (il_a, s) == il_a)
258 il_a = s;
260 else
261 il_a = stmtinfo_a;
262 stmt_vec_info il_b = DR_GROUP_FIRST_ELEMENT (stmtinfo_b);
263 if (il_b)
265 if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmtinfo_b)))
266 for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_b); s;
267 s = DR_GROUP_NEXT_ELEMENT (s))
268 il_b = get_later_stmt (il_b, s);
269 else /* DR_IS_READ */
270 for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_b); s;
271 s = DR_GROUP_NEXT_ELEMENT (s))
272 if (get_later_stmt (il_b, s) == il_b)
273 il_b = s;
275 else
276 il_b = stmtinfo_b;
277 bool a_after_b = (get_later_stmt (stmtinfo_a, stmtinfo_b) == stmtinfo_a);
278 return (get_later_stmt (il_a, il_b) == il_a) == a_after_b;
281 /* A subroutine of vect_analyze_data_ref_dependence. Handle
282 DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence
283 distances. These distances are conservatively correct but they don't
284 reflect a guaranteed dependence.
286 Return true if this function does all the work necessary to avoid
287 an alias or false if the caller should use the dependence distances
288 to limit the vectorization factor in the usual way. LOOP_DEPTH is
289 the depth of the loop described by LOOP_VINFO and the other arguments
290 are as for vect_analyze_data_ref_dependence. */
292 static bool
293 vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr,
294 loop_vec_info loop_vinfo,
295 int loop_depth, unsigned int *max_vf)
297 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
298 for (lambda_vector &dist_v : DDR_DIST_VECTS (ddr))
300 int dist = dist_v[loop_depth];
301 if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)))
303 /* If the user asserted safelen >= DIST consecutive iterations
304 can be executed concurrently, assume independence.
306 ??? An alternative would be to add the alias check even
307 in this case, and vectorize the fallback loop with the
308 maximum VF set to safelen. However, if the user has
309 explicitly given a length, it's less likely that that
310 would be a win. */
311 if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen)
313 if ((unsigned int) loop->safelen < *max_vf)
314 *max_vf = loop->safelen;
315 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
316 continue;
319 /* For dependence distances of 2 or more, we have the option
320 of limiting VF or checking for an alias at runtime.
321 Prefer to check at runtime if we can, to avoid limiting
322 the VF unnecessarily when the bases are in fact independent.
324 Note that the alias checks will be removed if the VF ends up
325 being small enough. */
326 dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (DDR_A (ddr));
327 dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (DDR_B (ddr));
328 return (!STMT_VINFO_GATHER_SCATTER_P (dr_info_a->stmt)
329 && !STMT_VINFO_GATHER_SCATTER_P (dr_info_b->stmt)
330 && vect_mark_for_runtime_alias_test (ddr, loop_vinfo));
333 return true;
337 /* Function vect_analyze_data_ref_dependence.
339 FIXME: I needed to change the sense of the returned flag.
341 Return FALSE if there (might) exist a dependence between a memory-reference
342 DRA and a memory-reference DRB. When versioning for alias may check a
343 dependence at run-time, return TRUE. Adjust *MAX_VF according to
344 the data dependence. */
346 static opt_result
347 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
348 loop_vec_info loop_vinfo,
349 unsigned int *max_vf)
351 unsigned int i;
352 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
353 struct data_reference *dra = DDR_A (ddr);
354 struct data_reference *drb = DDR_B (ddr);
355 dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (dra);
356 dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (drb);
357 stmt_vec_info stmtinfo_a = dr_info_a->stmt;
358 stmt_vec_info stmtinfo_b = dr_info_b->stmt;
359 lambda_vector dist_v;
360 unsigned int loop_depth;
362 /* If user asserted safelen consecutive iterations can be
363 executed concurrently, assume independence. */
364 auto apply_safelen = [&]()
366 if (loop->safelen >= 2)
368 if ((unsigned int) loop->safelen < *max_vf)
369 *max_vf = loop->safelen;
370 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
371 return true;
373 return false;
376 /* In loop analysis all data references should be vectorizable. */
377 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
378 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
379 gcc_unreachable ();
381 /* Independent data accesses. */
382 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
383 return opt_result::success ();
385 if (dra == drb
386 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
387 return opt_result::success ();
389 /* We do not have to consider dependences between accesses that belong
390 to the same group, unless the stride could be smaller than the
391 group size. */
392 if (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)
393 && (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)
394 == DR_GROUP_FIRST_ELEMENT (stmtinfo_b))
395 && !STMT_VINFO_STRIDED_P (stmtinfo_a))
396 return opt_result::success ();
398 /* Even if we have an anti-dependence then, as the vectorized loop covers at
399 least two scalar iterations, there is always also a true dependence.
400 As the vectorizer does not re-order loads and stores we can ignore
401 the anti-dependence if TBAA can disambiguate both DRs similar to the
402 case with known negative distance anti-dependences (positive
403 distance anti-dependences would violate TBAA constraints). */
404 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
405 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
406 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
407 get_alias_set (DR_REF (drb))))
408 return opt_result::success ();
410 if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
411 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
413 if (apply_safelen ())
414 return opt_result::success ();
416 return opt_result::failure_at
417 (stmtinfo_a->stmt,
418 "possible alias involving gather/scatter between %T and %T\n",
419 DR_REF (dra), DR_REF (drb));
422 /* Unknown data dependence. */
423 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
425 if (apply_safelen ())
426 return opt_result::success ();
428 if (dump_enabled_p ())
429 dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmtinfo_a->stmt,
430 "versioning for alias required: "
431 "can't determine dependence between %T and %T\n",
432 DR_REF (dra), DR_REF (drb));
434 /* Add to list of ddrs that need to be tested at run-time. */
435 return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
438 /* Known data dependence. */
439 if (DDR_NUM_DIST_VECTS (ddr) == 0)
441 if (apply_safelen ())
442 return opt_result::success ();
444 if (dump_enabled_p ())
445 dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmtinfo_a->stmt,
446 "versioning for alias required: "
447 "bad dist vector for %T and %T\n",
448 DR_REF (dra), DR_REF (drb));
449 /* Add to list of ddrs that need to be tested at run-time. */
450 return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
453 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
455 if (DDR_COULD_BE_INDEPENDENT_P (ddr)
456 && vect_analyze_possibly_independent_ddr (ddr, loop_vinfo,
457 loop_depth, max_vf))
458 return opt_result::success ();
460 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
462 int dist = dist_v[loop_depth];
464 if (dump_enabled_p ())
465 dump_printf_loc (MSG_NOTE, vect_location,
466 "dependence distance = %d.\n", dist);
468 if (dist == 0)
470 if (dump_enabled_p ())
471 dump_printf_loc (MSG_NOTE, vect_location,
472 "dependence distance == 0 between %T and %T\n",
473 DR_REF (dra), DR_REF (drb));
475 /* When we perform grouped accesses and perform implicit CSE
476 by detecting equal accesses and doing disambiguation with
477 runtime alias tests like for
478 .. = a[i];
479 .. = a[i+1];
480 a[i] = ..;
481 a[i+1] = ..;
482 *p = ..;
483 .. = a[i];
484 .. = a[i+1];
485 where we will end up loading { a[i], a[i+1] } once, make
486 sure that inserting group loads before the first load and
487 stores after the last store will do the right thing.
488 Similar for groups like
489 a[i] = ...;
490 ... = a[i];
491 a[i+1] = ...;
492 where loads from the group interleave with the store. */
493 if (!vect_preserves_scalar_order_p (dr_info_a, dr_info_b))
494 return opt_result::failure_at (stmtinfo_a->stmt,
495 "READ_WRITE dependence"
496 " in interleaving.\n");
498 if (loop->safelen < 2)
500 tree indicator = dr_zero_step_indicator (dra);
501 if (!indicator || integer_zerop (indicator))
502 return opt_result::failure_at (stmtinfo_a->stmt,
503 "access also has a zero step\n");
504 else if (TREE_CODE (indicator) != INTEGER_CST)
505 vect_check_nonzero_value (loop_vinfo, indicator);
507 continue;
510 if (dist > 0 && DDR_REVERSED_P (ddr))
512 /* If DDR_REVERSED_P the order of the data-refs in DDR was
513 reversed (to make distance vector positive), and the actual
514 distance is negative. */
515 if (dump_enabled_p ())
516 dump_printf_loc (MSG_NOTE, vect_location,
517 "dependence distance negative.\n");
518 /* When doing outer loop vectorization, we need to check if there is
519 a backward dependence at the inner loop level if the dependence
520 at the outer loop is reversed. See PR81740. */
521 if (nested_in_vect_loop_p (loop, stmtinfo_a)
522 || nested_in_vect_loop_p (loop, stmtinfo_b))
524 unsigned inner_depth = index_in_loop_nest (loop->inner->num,
525 DDR_LOOP_NEST (ddr));
526 if (dist_v[inner_depth] < 0)
527 return opt_result::failure_at (stmtinfo_a->stmt,
528 "not vectorized, dependence "
529 "between data-refs %T and %T\n",
530 DR_REF (dra), DR_REF (drb));
532 /* Record a negative dependence distance to later limit the
533 amount of stmt copying / unrolling we can perform.
534 Only need to handle read-after-write dependence. */
535 if (DR_IS_READ (drb)
536 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
537 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
538 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
539 continue;
542 unsigned int abs_dist = abs (dist);
543 if (abs_dist >= 2 && abs_dist < *max_vf)
545 /* The dependence distance requires reduction of the maximal
546 vectorization factor. */
547 *max_vf = abs_dist;
548 if (dump_enabled_p ())
549 dump_printf_loc (MSG_NOTE, vect_location,
550 "adjusting maximal vectorization factor to %i\n",
551 *max_vf);
554 if (abs_dist >= *max_vf)
556 /* Dependence distance does not create dependence, as far as
557 vectorization is concerned, in this case. */
558 if (dump_enabled_p ())
559 dump_printf_loc (MSG_NOTE, vect_location,
560 "dependence distance >= VF.\n");
561 continue;
564 return opt_result::failure_at (stmtinfo_a->stmt,
565 "not vectorized, possible dependence "
566 "between data-refs %T and %T\n",
567 DR_REF (dra), DR_REF (drb));
570 return opt_result::success ();
573 /* Function vect_analyze_data_ref_dependences.
575 Examine all the data references in the loop, and make sure there do not
576 exist any data dependences between them. Set *MAX_VF according to
577 the maximum vectorization factor the data dependences allow. */
579 opt_result
580 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
581 unsigned int *max_vf)
583 unsigned int i;
584 struct data_dependence_relation *ddr;
586 DUMP_VECT_SCOPE ("vect_analyze_data_ref_dependences");
588 if (!LOOP_VINFO_DDRS (loop_vinfo).exists ())
590 LOOP_VINFO_DDRS (loop_vinfo)
591 .create (LOOP_VINFO_DATAREFS (loop_vinfo).length ()
592 * LOOP_VINFO_DATAREFS (loop_vinfo).length ());
593 /* We do not need read-read dependences. */
594 bool res = compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
595 &LOOP_VINFO_DDRS (loop_vinfo),
596 LOOP_VINFO_LOOP_NEST (loop_vinfo),
597 false);
598 gcc_assert (res);
601 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
603 /* For epilogues we either have no aliases or alias versioning
604 was applied to original loop. Therefore we may just get max_vf
605 using VF of original loop. */
606 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
607 *max_vf = LOOP_VINFO_ORIG_MAX_VECT_FACTOR (loop_vinfo);
608 else
609 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
611 opt_result res
612 = vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf);
613 if (!res)
614 return res;
617 return opt_result::success ();
621 /* Function vect_slp_analyze_data_ref_dependence.
623 Return TRUE if there (might) exist a dependence between a memory-reference
624 DRA and a memory-reference DRB for VINFO. When versioning for alias
625 may check a dependence at run-time, return FALSE. Adjust *MAX_VF
626 according to the data dependence. */
628 static bool
629 vect_slp_analyze_data_ref_dependence (vec_info *vinfo,
630 struct data_dependence_relation *ddr)
632 struct data_reference *dra = DDR_A (ddr);
633 struct data_reference *drb = DDR_B (ddr);
634 dr_vec_info *dr_info_a = vinfo->lookup_dr (dra);
635 dr_vec_info *dr_info_b = vinfo->lookup_dr (drb);
637 /* We need to check dependences of statements marked as unvectorizable
638 as well, they still can prohibit vectorization. */
640 /* Independent data accesses. */
641 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
642 return false;
644 if (dra == drb)
645 return false;
647 /* Read-read is OK. */
648 if (DR_IS_READ (dra) && DR_IS_READ (drb))
649 return false;
651 /* If dra and drb are part of the same interleaving chain consider
652 them independent. */
653 if (STMT_VINFO_GROUPED_ACCESS (dr_info_a->stmt)
654 && (DR_GROUP_FIRST_ELEMENT (dr_info_a->stmt)
655 == DR_GROUP_FIRST_ELEMENT (dr_info_b->stmt)))
656 return false;
658 /* Unknown data dependence. */
659 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
661 if (dump_enabled_p ())
662 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
663 "can't determine dependence between %T and %T\n",
664 DR_REF (dra), DR_REF (drb));
666 else if (dump_enabled_p ())
667 dump_printf_loc (MSG_NOTE, vect_location,
668 "determined dependence between %T and %T\n",
669 DR_REF (dra), DR_REF (drb));
671 return true;
675 /* Analyze dependences involved in the transform of SLP NODE. STORES
676 contain the vector of scalar stores of this instance if we are
677 disambiguating the loads. */
679 static bool
680 vect_slp_analyze_node_dependences (vec_info *vinfo, slp_tree node,
681 vec<stmt_vec_info> stores,
682 stmt_vec_info last_store_info)
684 /* This walks over all stmts involved in the SLP load/store done
685 in NODE verifying we can sink them up to the last stmt in the
686 group. */
687 if (DR_IS_WRITE (STMT_VINFO_DATA_REF (SLP_TREE_REPRESENTATIVE (node))))
689 stmt_vec_info last_access_info = vect_find_last_scalar_stmt_in_slp (node);
690 for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (node).length (); ++k)
692 stmt_vec_info access_info
693 = vect_orig_stmt (SLP_TREE_SCALAR_STMTS (node)[k]);
694 if (access_info == last_access_info)
695 continue;
696 data_reference *dr_a = STMT_VINFO_DATA_REF (access_info);
697 ao_ref ref;
698 bool ref_initialized_p = false;
699 for (gimple_stmt_iterator gsi = gsi_for_stmt (access_info->stmt);
700 gsi_stmt (gsi) != last_access_info->stmt; gsi_next (&gsi))
702 gimple *stmt = gsi_stmt (gsi);
703 if (! gimple_vuse (stmt))
704 continue;
706 /* If we couldn't record a (single) data reference for this
707 stmt we have to resort to the alias oracle. */
708 stmt_vec_info stmt_info = vinfo->lookup_stmt (stmt);
709 data_reference *dr_b = STMT_VINFO_DATA_REF (stmt_info);
710 if (!dr_b)
712 /* We are moving a store - this means
713 we cannot use TBAA for disambiguation. */
714 if (!ref_initialized_p)
715 ao_ref_init (&ref, DR_REF (dr_a));
716 if (stmt_may_clobber_ref_p_1 (stmt, &ref, false)
717 || ref_maybe_used_by_stmt_p (stmt, &ref, false))
718 return false;
719 continue;
722 bool dependent = false;
723 /* If we run into a store of this same instance (we've just
724 marked those) then delay dependence checking until we run
725 into the last store because this is where it will have
726 been sunk to (and we verify if we can do that as well). */
727 if (gimple_visited_p (stmt))
729 if (stmt_info != last_store_info)
730 continue;
732 for (stmt_vec_info &store_info : stores)
734 data_reference *store_dr
735 = STMT_VINFO_DATA_REF (store_info);
736 ddr_p ddr = initialize_data_dependence_relation
737 (dr_a, store_dr, vNULL);
738 dependent
739 = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
740 free_dependence_relation (ddr);
741 if (dependent)
742 break;
745 else
747 ddr_p ddr = initialize_data_dependence_relation (dr_a,
748 dr_b, vNULL);
749 dependent = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
750 free_dependence_relation (ddr);
752 if (dependent)
753 return false;
757 else /* DR_IS_READ */
759 stmt_vec_info first_access_info
760 = vect_find_first_scalar_stmt_in_slp (node);
761 for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (node).length (); ++k)
763 stmt_vec_info access_info
764 = vect_orig_stmt (SLP_TREE_SCALAR_STMTS (node)[k]);
765 if (access_info == first_access_info)
766 continue;
767 data_reference *dr_a = STMT_VINFO_DATA_REF (access_info);
768 ao_ref ref;
769 bool ref_initialized_p = false;
770 for (gimple_stmt_iterator gsi = gsi_for_stmt (access_info->stmt);
771 gsi_stmt (gsi) != first_access_info->stmt; gsi_prev (&gsi))
773 gimple *stmt = gsi_stmt (gsi);
774 if (! gimple_vdef (stmt))
775 continue;
777 /* If we couldn't record a (single) data reference for this
778 stmt we have to resort to the alias oracle. */
779 stmt_vec_info stmt_info = vinfo->lookup_stmt (stmt);
780 data_reference *dr_b = STMT_VINFO_DATA_REF (stmt_info);
782 /* We are hoisting a load - this means we can use
783 TBAA for disambiguation. */
784 if (!ref_initialized_p)
785 ao_ref_init (&ref, DR_REF (dr_a));
786 if (stmt_may_clobber_ref_p_1 (stmt, &ref, true))
788 if (!dr_b)
789 return false;
790 /* Resort to dependence checking below. */
792 else
793 /* No dependence. */
794 continue;
796 bool dependent = false;
797 /* If we run into a store of this same instance (we've just
798 marked those) then delay dependence checking until we run
799 into the last store because this is where it will have
800 been sunk to (and we verify if we can do that as well). */
801 if (gimple_visited_p (stmt))
803 if (stmt_info != last_store_info)
804 continue;
806 for (stmt_vec_info &store_info : stores)
808 data_reference *store_dr
809 = STMT_VINFO_DATA_REF (store_info);
810 ddr_p ddr = initialize_data_dependence_relation
811 (dr_a, store_dr, vNULL);
812 dependent
813 = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
814 free_dependence_relation (ddr);
815 if (dependent)
816 break;
819 else
821 ddr_p ddr = initialize_data_dependence_relation (dr_a,
822 dr_b, vNULL);
823 dependent = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
824 free_dependence_relation (ddr);
826 if (dependent)
827 return false;
831 return true;
835 /* Function vect_analyze_data_ref_dependences.
837 Examine all the data references in the basic-block, and make sure there
838 do not exist any data dependences between them. Set *MAX_VF according to
839 the maximum vectorization factor the data dependences allow. */
841 bool
842 vect_slp_analyze_instance_dependence (vec_info *vinfo, slp_instance instance)
844 DUMP_VECT_SCOPE ("vect_slp_analyze_instance_dependence");
846 /* The stores of this instance are at the root of the SLP tree. */
847 slp_tree store = NULL;
848 if (SLP_INSTANCE_KIND (instance) == slp_inst_kind_store)
849 store = SLP_INSTANCE_TREE (instance);
851 /* Verify we can sink stores to the vectorized stmt insert location. */
852 stmt_vec_info last_store_info = NULL;
853 if (store)
855 if (! vect_slp_analyze_node_dependences (vinfo, store, vNULL, NULL))
856 return false;
858 /* Mark stores in this instance and remember the last one. */
859 last_store_info = vect_find_last_scalar_stmt_in_slp (store);
860 for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (store).length (); ++k)
861 gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k]->stmt, true);
864 bool res = true;
866 /* Verify we can sink loads to the vectorized stmt insert location,
867 special-casing stores of this instance. */
868 for (slp_tree &load : SLP_INSTANCE_LOADS (instance))
869 if (! vect_slp_analyze_node_dependences (vinfo, load,
870 store
871 ? SLP_TREE_SCALAR_STMTS (store)
872 : vNULL, last_store_info))
874 res = false;
875 break;
878 /* Unset the visited flag. */
879 if (store)
880 for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (store).length (); ++k)
881 gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k]->stmt, false);
883 return res;
886 /* Return the misalignment of DR_INFO accessed in VECTYPE with OFFSET
887 applied. */
890 dr_misalignment (dr_vec_info *dr_info, tree vectype, poly_int64 offset)
892 HOST_WIDE_INT diff = 0;
893 /* Alignment is only analyzed for the first element of a DR group,
894 use that but adjust misalignment by the offset of the access. */
895 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
897 dr_vec_info *first_dr
898 = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
899 /* vect_analyze_data_ref_accesses guarantees that DR_INIT are
900 INTEGER_CSTs and the first element in the group has the lowest
901 address. */
902 diff = (TREE_INT_CST_LOW (DR_INIT (dr_info->dr))
903 - TREE_INT_CST_LOW (DR_INIT (first_dr->dr)));
904 gcc_assert (diff >= 0);
905 dr_info = first_dr;
908 int misalign = dr_info->misalignment;
909 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
910 if (misalign == DR_MISALIGNMENT_UNKNOWN)
911 return misalign;
913 /* If the access is only aligned for a vector type with smaller alignment
914 requirement the access has unknown misalignment. */
915 if (maybe_lt (dr_info->target_alignment * BITS_PER_UNIT,
916 targetm.vectorize.preferred_vector_alignment (vectype)))
917 return DR_MISALIGNMENT_UNKNOWN;
919 /* Apply the offset from the DR group start and the externally supplied
920 offset which can for example result from a negative stride access. */
921 poly_int64 misalignment = misalign + diff + offset;
923 /* vect_compute_data_ref_alignment will have ensured that target_alignment
924 is constant and otherwise set misalign to DR_MISALIGNMENT_UNKNOWN. */
925 unsigned HOST_WIDE_INT target_alignment_c
926 = dr_info->target_alignment.to_constant ();
927 if (!known_misalignment (misalignment, target_alignment_c, &misalign))
928 return DR_MISALIGNMENT_UNKNOWN;
929 return misalign;
932 /* Record the base alignment guarantee given by DRB, which occurs
933 in STMT_INFO. */
935 static void
936 vect_record_base_alignment (vec_info *vinfo, stmt_vec_info stmt_info,
937 innermost_loop_behavior *drb)
939 bool existed;
940 std::pair<stmt_vec_info, innermost_loop_behavior *> &entry
941 = vinfo->base_alignments.get_or_insert (drb->base_address, &existed);
942 if (!existed || entry.second->base_alignment < drb->base_alignment)
944 entry = std::make_pair (stmt_info, drb);
945 if (dump_enabled_p ())
946 dump_printf_loc (MSG_NOTE, vect_location,
947 "recording new base alignment for %T\n"
948 " alignment: %d\n"
949 " misalignment: %d\n"
950 " based on: %G",
951 drb->base_address,
952 drb->base_alignment,
953 drb->base_misalignment,
954 stmt_info->stmt);
958 /* If the region we're going to vectorize is reached, all unconditional
959 data references occur at least once. We can therefore pool the base
960 alignment guarantees from each unconditional reference. Do this by
961 going through all the data references in VINFO and checking whether
962 the containing statement makes the reference unconditionally. If so,
963 record the alignment of the base address in VINFO so that it can be
964 used for all other references with the same base. */
966 void
967 vect_record_base_alignments (vec_info *vinfo)
969 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
970 class loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
971 for (data_reference *dr : vinfo->shared->datarefs)
973 dr_vec_info *dr_info = vinfo->lookup_dr (dr);
974 stmt_vec_info stmt_info = dr_info->stmt;
975 if (!DR_IS_CONDITIONAL_IN_STMT (dr)
976 && STMT_VINFO_VECTORIZABLE (stmt_info)
977 && !STMT_VINFO_GATHER_SCATTER_P (stmt_info))
979 vect_record_base_alignment (vinfo, stmt_info, &DR_INNERMOST (dr));
981 /* If DR is nested in the loop that is being vectorized, we can also
982 record the alignment of the base wrt the outer loop. */
983 if (loop && nested_in_vect_loop_p (loop, stmt_info))
984 vect_record_base_alignment
985 (vinfo, stmt_info, &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info));
990 /* Function vect_compute_data_ref_alignment
992 Compute the misalignment of the data reference DR_INFO when vectorizing
993 with VECTYPE.
995 Output:
996 1. initialized misalignment info for DR_INFO
998 FOR NOW: No analysis is actually performed. Misalignment is calculated
999 only for trivial cases. TODO. */
1001 static void
1002 vect_compute_data_ref_alignment (vec_info *vinfo, dr_vec_info *dr_info,
1003 tree vectype)
1005 stmt_vec_info stmt_info = dr_info->stmt;
1006 vec_base_alignments *base_alignments = &vinfo->base_alignments;
1007 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
1008 class loop *loop = NULL;
1009 tree ref = DR_REF (dr_info->dr);
1011 if (dump_enabled_p ())
1012 dump_printf_loc (MSG_NOTE, vect_location,
1013 "vect_compute_data_ref_alignment:\n");
1015 if (loop_vinfo)
1016 loop = LOOP_VINFO_LOOP (loop_vinfo);
1018 /* Initialize misalignment to unknown. */
1019 SET_DR_MISALIGNMENT (dr_info, DR_MISALIGNMENT_UNKNOWN);
1021 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
1022 return;
1024 innermost_loop_behavior *drb = vect_dr_behavior (vinfo, dr_info);
1025 bool step_preserves_misalignment_p;
1027 poly_uint64 vector_alignment
1028 = exact_div (targetm.vectorize.preferred_vector_alignment (vectype),
1029 BITS_PER_UNIT);
1030 SET_DR_TARGET_ALIGNMENT (dr_info, vector_alignment);
1032 /* If the main loop has peeled for alignment we have no way of knowing
1033 whether the data accesses in the epilogues are aligned. We can't at
1034 compile time answer the question whether we have entered the main loop or
1035 not. Fixes PR 92351. */
1036 if (loop_vinfo)
1038 loop_vec_info orig_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
1039 if (orig_loop_vinfo
1040 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (orig_loop_vinfo) != 0)
1041 return;
1044 unsigned HOST_WIDE_INT vect_align_c;
1045 if (!vector_alignment.is_constant (&vect_align_c))
1046 return;
1048 /* No step for BB vectorization. */
1049 if (!loop)
1051 gcc_assert (integer_zerop (drb->step));
1052 step_preserves_misalignment_p = true;
1055 /* In case the dataref is in an inner-loop of the loop that is being
1056 vectorized (LOOP), we use the base and misalignment information
1057 relative to the outer-loop (LOOP). This is ok only if the misalignment
1058 stays the same throughout the execution of the inner-loop, which is why
1059 we have to check that the stride of the dataref in the inner-loop evenly
1060 divides by the vector alignment. */
1061 else if (nested_in_vect_loop_p (loop, stmt_info))
1063 step_preserves_misalignment_p
1064 = (DR_STEP_ALIGNMENT (dr_info->dr) % vect_align_c) == 0;
1066 if (dump_enabled_p ())
1068 if (step_preserves_misalignment_p)
1069 dump_printf_loc (MSG_NOTE, vect_location,
1070 "inner step divides the vector alignment.\n");
1071 else
1072 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1073 "inner step doesn't divide the vector"
1074 " alignment.\n");
1078 /* Similarly we can only use base and misalignment information relative to
1079 an innermost loop if the misalignment stays the same throughout the
1080 execution of the loop. As above, this is the case if the stride of
1081 the dataref evenly divides by the alignment. */
1082 else
1084 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1085 step_preserves_misalignment_p
1086 = multiple_p (DR_STEP_ALIGNMENT (dr_info->dr) * vf, vect_align_c);
1088 if (!step_preserves_misalignment_p && dump_enabled_p ())
1089 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1090 "step doesn't divide the vector alignment.\n");
1093 unsigned int base_alignment = drb->base_alignment;
1094 unsigned int base_misalignment = drb->base_misalignment;
1096 /* Calculate the maximum of the pooled base address alignment and the
1097 alignment that we can compute for DR itself. */
1098 std::pair<stmt_vec_info, innermost_loop_behavior *> *entry
1099 = base_alignments->get (drb->base_address);
1100 if (entry
1101 && base_alignment < (*entry).second->base_alignment
1102 && (loop_vinfo
1103 || (dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt_info->stmt),
1104 gimple_bb (entry->first->stmt))
1105 && (gimple_bb (stmt_info->stmt) != gimple_bb (entry->first->stmt)
1106 || (entry->first->dr_aux.group <= dr_info->group)))))
1108 base_alignment = entry->second->base_alignment;
1109 base_misalignment = entry->second->base_misalignment;
1112 if (drb->offset_alignment < vect_align_c
1113 || !step_preserves_misalignment_p
1114 /* We need to know whether the step wrt the vectorized loop is
1115 negative when computing the starting misalignment below. */
1116 || TREE_CODE (drb->step) != INTEGER_CST)
1118 if (dump_enabled_p ())
1119 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1120 "Unknown alignment for access: %T\n", ref);
1121 return;
1124 if (base_alignment < vect_align_c)
1126 unsigned int max_alignment;
1127 tree base = get_base_for_alignment (drb->base_address, &max_alignment);
1128 if (max_alignment < vect_align_c
1129 || !vect_can_force_dr_alignment_p (base,
1130 vect_align_c * BITS_PER_UNIT))
1132 if (dump_enabled_p ())
1133 dump_printf_loc (MSG_NOTE, vect_location,
1134 "can't force alignment of ref: %T\n", ref);
1135 return;
1138 /* Force the alignment of the decl.
1139 NOTE: This is the only change to the code we make during
1140 the analysis phase, before deciding to vectorize the loop. */
1141 if (dump_enabled_p ())
1142 dump_printf_loc (MSG_NOTE, vect_location,
1143 "force alignment of %T\n", ref);
1145 dr_info->base_decl = base;
1146 dr_info->base_misaligned = true;
1147 base_misalignment = 0;
1149 poly_int64 misalignment
1150 = base_misalignment + wi::to_poly_offset (drb->init).force_shwi ();
1152 unsigned int const_misalignment;
1153 if (!known_misalignment (misalignment, vect_align_c, &const_misalignment))
1155 if (dump_enabled_p ())
1156 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1157 "Non-constant misalignment for access: %T\n", ref);
1158 return;
1161 SET_DR_MISALIGNMENT (dr_info, const_misalignment);
1163 if (dump_enabled_p ())
1164 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1165 "misalign = %d bytes of ref %T\n",
1166 const_misalignment, ref);
1168 return;
1171 /* Return whether DR_INFO, which is related to DR_PEEL_INFO in
1172 that it only differs in DR_INIT, is aligned if DR_PEEL_INFO
1173 is made aligned via peeling. */
1175 static bool
1176 vect_dr_aligned_if_related_peeled_dr_is (dr_vec_info *dr_info,
1177 dr_vec_info *dr_peel_info)
1179 if (multiple_p (DR_TARGET_ALIGNMENT (dr_peel_info),
1180 DR_TARGET_ALIGNMENT (dr_info)))
1182 poly_offset_int diff
1183 = (wi::to_poly_offset (DR_INIT (dr_peel_info->dr))
1184 - wi::to_poly_offset (DR_INIT (dr_info->dr)));
1185 if (known_eq (diff, 0)
1186 || multiple_p (diff, DR_TARGET_ALIGNMENT (dr_info)))
1187 return true;
1189 return false;
1192 /* Return whether DR_INFO is aligned if DR_PEEL_INFO is made
1193 aligned via peeling. */
1195 static bool
1196 vect_dr_aligned_if_peeled_dr_is (dr_vec_info *dr_info,
1197 dr_vec_info *dr_peel_info)
1199 if (!operand_equal_p (DR_BASE_ADDRESS (dr_info->dr),
1200 DR_BASE_ADDRESS (dr_peel_info->dr), 0)
1201 || !operand_equal_p (DR_OFFSET (dr_info->dr),
1202 DR_OFFSET (dr_peel_info->dr), 0)
1203 || !operand_equal_p (DR_STEP (dr_info->dr),
1204 DR_STEP (dr_peel_info->dr), 0))
1205 return false;
1207 return vect_dr_aligned_if_related_peeled_dr_is (dr_info, dr_peel_info);
1210 /* Compute the value for dr_info->misalign so that the access appears
1211 aligned. This is used by peeling to compensate for dr_misalignment
1212 applying the offset for negative step. */
1215 vect_dr_misalign_for_aligned_access (dr_vec_info *dr_info)
1217 if (tree_int_cst_sgn (DR_STEP (dr_info->dr)) >= 0)
1218 return 0;
1220 tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
1221 poly_int64 misalignment
1222 = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
1223 * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
1225 unsigned HOST_WIDE_INT target_alignment_c;
1226 int misalign;
1227 if (!dr_info->target_alignment.is_constant (&target_alignment_c)
1228 || !known_misalignment (misalignment, target_alignment_c, &misalign))
1229 return DR_MISALIGNMENT_UNKNOWN;
1230 return misalign;
1233 /* Function vect_update_misalignment_for_peel.
1234 Sets DR_INFO's misalignment
1235 - to 0 if it has the same alignment as DR_PEEL_INFO,
1236 - to the misalignment computed using NPEEL if DR_INFO's salignment is known,
1237 - to -1 (unknown) otherwise.
1239 DR_INFO - the data reference whose misalignment is to be adjusted.
1240 DR_PEEL_INFO - the data reference whose misalignment is being made
1241 zero in the vector loop by the peel.
1242 NPEEL - the number of iterations in the peel loop if the misalignment
1243 of DR_PEEL_INFO is known at compile time. */
1245 static void
1246 vect_update_misalignment_for_peel (dr_vec_info *dr_info,
1247 dr_vec_info *dr_peel_info, int npeel)
1249 /* If dr_info is aligned of dr_peel_info is, then mark it so. */
1250 if (vect_dr_aligned_if_peeled_dr_is (dr_info, dr_peel_info))
1252 SET_DR_MISALIGNMENT (dr_info,
1253 vect_dr_misalign_for_aligned_access (dr_peel_info));
1254 return;
1257 unsigned HOST_WIDE_INT alignment;
1258 if (DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment)
1259 && known_alignment_for_access_p (dr_info,
1260 STMT_VINFO_VECTYPE (dr_info->stmt))
1261 && known_alignment_for_access_p (dr_peel_info,
1262 STMT_VINFO_VECTYPE (dr_peel_info->stmt)))
1264 int misal = dr_info->misalignment;
1265 misal += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr));
1266 misal &= alignment - 1;
1267 set_dr_misalignment (dr_info, misal);
1268 return;
1271 if (dump_enabled_p ())
1272 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment " \
1273 "to unknown (-1).\n");
1274 SET_DR_MISALIGNMENT (dr_info, DR_MISALIGNMENT_UNKNOWN);
1277 /* Return true if alignment is relevant for DR_INFO. */
1279 static bool
1280 vect_relevant_for_alignment_p (dr_vec_info *dr_info)
1282 stmt_vec_info stmt_info = dr_info->stmt;
1284 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1285 return false;
1287 /* For interleaving, only the alignment of the first access matters. */
1288 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1289 && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt_info)
1290 return false;
1292 /* Scatter-gather and invariant accesses continue to address individual
1293 scalars, so vector-level alignment is irrelevant. */
1294 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)
1295 || integer_zerop (DR_STEP (dr_info->dr)))
1296 return false;
1298 /* Strided accesses perform only component accesses, alignment is
1299 irrelevant for them. */
1300 if (STMT_VINFO_STRIDED_P (stmt_info)
1301 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1302 return false;
1304 return true;
1307 /* Given an memory reference EXP return whether its alignment is less
1308 than its size. */
1310 static bool
1311 not_size_aligned (tree exp)
1313 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
1314 return true;
1316 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
1317 > get_object_alignment (exp));
1320 /* Function vector_alignment_reachable_p
1322 Return true if vector alignment for DR_INFO is reachable by peeling
1323 a few loop iterations. Return false otherwise. */
1325 static bool
1326 vector_alignment_reachable_p (dr_vec_info *dr_info)
1328 stmt_vec_info stmt_info = dr_info->stmt;
1329 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1331 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1333 /* For interleaved access we peel only if number of iterations in
1334 the prolog loop ({VF - misalignment}), is a multiple of the
1335 number of the interleaved accesses. */
1336 int elem_size, mis_in_elements;
1338 /* FORNOW: handle only known alignment. */
1339 if (!known_alignment_for_access_p (dr_info, vectype))
1340 return false;
1342 poly_uint64 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1343 poly_uint64 vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
1344 elem_size = vector_element_size (vector_size, nelements);
1345 mis_in_elements = dr_misalignment (dr_info, vectype) / elem_size;
1347 if (!multiple_p (nelements - mis_in_elements, DR_GROUP_SIZE (stmt_info)))
1348 return false;
1351 /* If misalignment is known at the compile time then allow peeling
1352 only if natural alignment is reachable through peeling. */
1353 if (known_alignment_for_access_p (dr_info, vectype)
1354 && !aligned_access_p (dr_info, vectype))
1356 HOST_WIDE_INT elmsize =
1357 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1358 if (dump_enabled_p ())
1360 dump_printf_loc (MSG_NOTE, vect_location,
1361 "data size = %wd. misalignment = %d.\n", elmsize,
1362 dr_misalignment (dr_info, vectype));
1364 if (dr_misalignment (dr_info, vectype) % elmsize)
1366 if (dump_enabled_p ())
1367 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1368 "data size does not divide the misalignment.\n");
1369 return false;
1373 if (!known_alignment_for_access_p (dr_info, vectype))
1375 tree type = TREE_TYPE (DR_REF (dr_info->dr));
1376 bool is_packed = not_size_aligned (DR_REF (dr_info->dr));
1377 if (dump_enabled_p ())
1378 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1379 "Unknown misalignment, %snaturally aligned\n",
1380 is_packed ? "not " : "");
1381 return targetm.vectorize.vector_alignment_reachable (type, is_packed);
1384 return true;
1388 /* Calculate the cost of the memory access represented by DR_INFO. */
1390 static void
1391 vect_get_data_access_cost (vec_info *vinfo, dr_vec_info *dr_info,
1392 dr_alignment_support alignment_support_scheme,
1393 int misalignment,
1394 unsigned int *inside_cost,
1395 unsigned int *outside_cost,
1396 stmt_vector_for_cost *body_cost_vec,
1397 stmt_vector_for_cost *prologue_cost_vec)
1399 stmt_vec_info stmt_info = dr_info->stmt;
1400 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
1401 int ncopies;
1403 if (PURE_SLP_STMT (stmt_info))
1404 ncopies = 1;
1405 else
1406 ncopies = vect_get_num_copies (loop_vinfo, STMT_VINFO_VECTYPE (stmt_info));
1408 if (DR_IS_READ (dr_info->dr))
1409 vect_get_load_cost (vinfo, stmt_info, ncopies, alignment_support_scheme,
1410 misalignment, true, inside_cost,
1411 outside_cost, prologue_cost_vec, body_cost_vec, false);
1412 else
1413 vect_get_store_cost (vinfo,stmt_info, ncopies, alignment_support_scheme,
1414 misalignment, inside_cost, body_cost_vec);
1416 if (dump_enabled_p ())
1417 dump_printf_loc (MSG_NOTE, vect_location,
1418 "vect_get_data_access_cost: inside_cost = %d, "
1419 "outside_cost = %d.\n", *inside_cost, *outside_cost);
1423 typedef struct _vect_peel_info
1425 dr_vec_info *dr_info;
1426 int npeel;
1427 unsigned int count;
1428 } *vect_peel_info;
1430 typedef struct _vect_peel_extended_info
1432 vec_info *vinfo;
1433 struct _vect_peel_info peel_info;
1434 unsigned int inside_cost;
1435 unsigned int outside_cost;
1436 } *vect_peel_extended_info;
1439 /* Peeling hashtable helpers. */
1441 struct peel_info_hasher : free_ptr_hash <_vect_peel_info>
1443 static inline hashval_t hash (const _vect_peel_info *);
1444 static inline bool equal (const _vect_peel_info *, const _vect_peel_info *);
1447 inline hashval_t
1448 peel_info_hasher::hash (const _vect_peel_info *peel_info)
1450 return (hashval_t) peel_info->npeel;
1453 inline bool
1454 peel_info_hasher::equal (const _vect_peel_info *a, const _vect_peel_info *b)
1456 return (a->npeel == b->npeel);
1460 /* Insert DR_INFO into peeling hash table with NPEEL as key. */
1462 static void
1463 vect_peeling_hash_insert (hash_table<peel_info_hasher> *peeling_htab,
1464 loop_vec_info loop_vinfo, dr_vec_info *dr_info,
1465 int npeel, bool supportable_if_not_aligned)
1467 struct _vect_peel_info elem, *slot;
1468 _vect_peel_info **new_slot;
1470 elem.npeel = npeel;
1471 slot = peeling_htab->find (&elem);
1472 if (slot)
1473 slot->count++;
1474 else
1476 slot = XNEW (struct _vect_peel_info);
1477 slot->npeel = npeel;
1478 slot->dr_info = dr_info;
1479 slot->count = 1;
1480 new_slot = peeling_htab->find_slot (slot, INSERT);
1481 *new_slot = slot;
1484 /* If this DR is not supported with unknown misalignment then bias
1485 this slot when the cost model is disabled. */
1486 if (!supportable_if_not_aligned
1487 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1488 slot->count += VECT_MAX_COST;
1492 /* Traverse peeling hash table to find peeling option that aligns maximum
1493 number of data accesses. */
1496 vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1497 _vect_peel_extended_info *max)
1499 vect_peel_info elem = *slot;
1501 if (elem->count > max->peel_info.count
1502 || (elem->count == max->peel_info.count
1503 && max->peel_info.npeel > elem->npeel))
1505 max->peel_info.npeel = elem->npeel;
1506 max->peel_info.count = elem->count;
1507 max->peel_info.dr_info = elem->dr_info;
1510 return 1;
1513 /* Get the costs of peeling NPEEL iterations for LOOP_VINFO, checking
1514 data access costs for all data refs. If UNKNOWN_MISALIGNMENT is true,
1515 npeel is computed at runtime but DR0_INFO's misalignment will be zero
1516 after peeling. */
1518 static void
1519 vect_get_peeling_costs_all_drs (loop_vec_info loop_vinfo,
1520 dr_vec_info *dr0_info,
1521 unsigned int *inside_cost,
1522 unsigned int *outside_cost,
1523 stmt_vector_for_cost *body_cost_vec,
1524 stmt_vector_for_cost *prologue_cost_vec,
1525 unsigned int npeel)
1527 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1529 bool dr0_alignment_known_p
1530 = (dr0_info
1531 && known_alignment_for_access_p (dr0_info,
1532 STMT_VINFO_VECTYPE (dr0_info->stmt)));
1534 for (data_reference *dr : datarefs)
1536 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
1537 if (!vect_relevant_for_alignment_p (dr_info))
1538 continue;
1540 tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
1541 dr_alignment_support alignment_support_scheme;
1542 int misalignment;
1543 unsigned HOST_WIDE_INT alignment;
1545 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
1546 size_zero_node) < 0;
1547 poly_int64 off = 0;
1548 if (negative)
1549 off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
1550 * -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
1552 if (npeel == 0)
1553 misalignment = dr_misalignment (dr_info, vectype, off);
1554 else if (dr_info == dr0_info
1555 || vect_dr_aligned_if_peeled_dr_is (dr_info, dr0_info))
1556 misalignment = 0;
1557 else if (!dr0_alignment_known_p
1558 || !known_alignment_for_access_p (dr_info, vectype)
1559 || !DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment))
1560 misalignment = DR_MISALIGNMENT_UNKNOWN;
1561 else
1563 misalignment = dr_misalignment (dr_info, vectype, off);
1564 misalignment += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr));
1565 misalignment &= alignment - 1;
1567 alignment_support_scheme
1568 = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
1569 misalignment);
1571 vect_get_data_access_cost (loop_vinfo, dr_info,
1572 alignment_support_scheme, misalignment,
1573 inside_cost, outside_cost,
1574 body_cost_vec, prologue_cost_vec);
1578 /* Traverse peeling hash table and calculate cost for each peeling option.
1579 Find the one with the lowest cost. */
1582 vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1583 _vect_peel_extended_info *min)
1585 vect_peel_info elem = *slot;
1586 int dummy;
1587 unsigned int inside_cost = 0, outside_cost = 0;
1588 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (min->vinfo);
1589 stmt_vector_for_cost prologue_cost_vec, body_cost_vec,
1590 epilogue_cost_vec;
1592 prologue_cost_vec.create (2);
1593 body_cost_vec.create (2);
1594 epilogue_cost_vec.create (2);
1596 vect_get_peeling_costs_all_drs (loop_vinfo, elem->dr_info, &inside_cost,
1597 &outside_cost, &body_cost_vec,
1598 &prologue_cost_vec, elem->npeel);
1600 body_cost_vec.release ();
1602 outside_cost += vect_get_known_peeling_cost
1603 (loop_vinfo, elem->npeel, &dummy,
1604 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1605 &prologue_cost_vec, &epilogue_cost_vec);
1607 /* Prologue and epilogue costs are added to the target model later.
1608 These costs depend only on the scalar iteration cost, the
1609 number of peeling iterations finally chosen, and the number of
1610 misaligned statements. So discard the information found here. */
1611 prologue_cost_vec.release ();
1612 epilogue_cost_vec.release ();
1614 if (inside_cost < min->inside_cost
1615 || (inside_cost == min->inside_cost
1616 && outside_cost < min->outside_cost))
1618 min->inside_cost = inside_cost;
1619 min->outside_cost = outside_cost;
1620 min->peel_info.dr_info = elem->dr_info;
1621 min->peel_info.npeel = elem->npeel;
1622 min->peel_info.count = elem->count;
1625 return 1;
1629 /* Choose best peeling option by traversing peeling hash table and either
1630 choosing an option with the lowest cost (if cost model is enabled) or the
1631 option that aligns as many accesses as possible. */
1633 static struct _vect_peel_extended_info
1634 vect_peeling_hash_choose_best_peeling (hash_table<peel_info_hasher> *peeling_htab,
1635 loop_vec_info loop_vinfo)
1637 struct _vect_peel_extended_info res;
1639 res.peel_info.dr_info = NULL;
1640 res.vinfo = loop_vinfo;
1642 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1644 res.inside_cost = INT_MAX;
1645 res.outside_cost = INT_MAX;
1646 peeling_htab->traverse <_vect_peel_extended_info *,
1647 vect_peeling_hash_get_lowest_cost> (&res);
1649 else
1651 res.peel_info.count = 0;
1652 peeling_htab->traverse <_vect_peel_extended_info *,
1653 vect_peeling_hash_get_most_frequent> (&res);
1654 res.inside_cost = 0;
1655 res.outside_cost = 0;
1658 return res;
1661 /* Return true if the new peeling NPEEL is supported. */
1663 static bool
1664 vect_peeling_supportable (loop_vec_info loop_vinfo, dr_vec_info *dr0_info,
1665 unsigned npeel)
1667 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1668 enum dr_alignment_support supportable_dr_alignment;
1670 bool dr0_alignment_known_p
1671 = known_alignment_for_access_p (dr0_info,
1672 STMT_VINFO_VECTYPE (dr0_info->stmt));
1674 /* Ensure that all data refs can be vectorized after the peel. */
1675 for (data_reference *dr : datarefs)
1677 if (dr == dr0_info->dr)
1678 continue;
1680 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
1681 if (!vect_relevant_for_alignment_p (dr_info)
1682 || vect_dr_aligned_if_peeled_dr_is (dr_info, dr0_info))
1683 continue;
1685 tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
1686 int misalignment;
1687 unsigned HOST_WIDE_INT alignment;
1688 if (!dr0_alignment_known_p
1689 || !known_alignment_for_access_p (dr_info, vectype)
1690 || !DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment))
1691 misalignment = DR_MISALIGNMENT_UNKNOWN;
1692 else
1694 misalignment = dr_misalignment (dr_info, vectype);
1695 misalignment += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr));
1696 misalignment &= alignment - 1;
1698 supportable_dr_alignment
1699 = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
1700 misalignment);
1701 if (supportable_dr_alignment == dr_unaligned_unsupported)
1702 return false;
1705 return true;
1708 /* Compare two data-references DRA and DRB to group them into chunks
1709 with related alignment. */
1711 static int
1712 dr_align_group_sort_cmp (const void *dra_, const void *drb_)
1714 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
1715 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
1716 int cmp;
1718 /* Stabilize sort. */
1719 if (dra == drb)
1720 return 0;
1722 /* Ordering of DRs according to base. */
1723 cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra),
1724 DR_BASE_ADDRESS (drb));
1725 if (cmp != 0)
1726 return cmp;
1728 /* And according to DR_OFFSET. */
1729 cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
1730 if (cmp != 0)
1731 return cmp;
1733 /* And after step. */
1734 cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb));
1735 if (cmp != 0)
1736 return cmp;
1738 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
1739 cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb));
1740 if (cmp == 0)
1741 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
1742 return cmp;
1745 /* Function vect_enhance_data_refs_alignment
1747 This pass will use loop versioning and loop peeling in order to enhance
1748 the alignment of data references in the loop.
1750 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1751 original loop is to be vectorized. Any other loops that are created by
1752 the transformations performed in this pass - are not supposed to be
1753 vectorized. This restriction will be relaxed.
1755 This pass will require a cost model to guide it whether to apply peeling
1756 or versioning or a combination of the two. For example, the scheme that
1757 intel uses when given a loop with several memory accesses, is as follows:
1758 choose one memory access ('p') which alignment you want to force by doing
1759 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1760 other accesses are not necessarily aligned, or (2) use loop versioning to
1761 generate one loop in which all accesses are aligned, and another loop in
1762 which only 'p' is necessarily aligned.
1764 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1765 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1766 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1768 Devising a cost model is the most critical aspect of this work. It will
1769 guide us on which access to peel for, whether to use loop versioning, how
1770 many versions to create, etc. The cost model will probably consist of
1771 generic considerations as well as target specific considerations (on
1772 powerpc for example, misaligned stores are more painful than misaligned
1773 loads).
1775 Here are the general steps involved in alignment enhancements:
1777 -- original loop, before alignment analysis:
1778 for (i=0; i<N; i++){
1779 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1780 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1783 -- After vect_compute_data_refs_alignment:
1784 for (i=0; i<N; i++){
1785 x = q[i]; # DR_MISALIGNMENT(q) = 3
1786 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1789 -- Possibility 1: we do loop versioning:
1790 if (p is aligned) {
1791 for (i=0; i<N; i++){ # loop 1A
1792 x = q[i]; # DR_MISALIGNMENT(q) = 3
1793 p[i] = y; # DR_MISALIGNMENT(p) = 0
1796 else {
1797 for (i=0; i<N; i++){ # loop 1B
1798 x = q[i]; # DR_MISALIGNMENT(q) = 3
1799 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1803 -- Possibility 2: we do loop peeling:
1804 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1805 x = q[i];
1806 p[i] = y;
1808 for (i = 3; i < N; i++){ # loop 2A
1809 x = q[i]; # DR_MISALIGNMENT(q) = 0
1810 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1813 -- Possibility 3: combination of loop peeling and versioning:
1814 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1815 x = q[i];
1816 p[i] = y;
1818 if (p is aligned) {
1819 for (i = 3; i<N; i++){ # loop 3A
1820 x = q[i]; # DR_MISALIGNMENT(q) = 0
1821 p[i] = y; # DR_MISALIGNMENT(p) = 0
1824 else {
1825 for (i = 3; i<N; i++){ # loop 3B
1826 x = q[i]; # DR_MISALIGNMENT(q) = 0
1827 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1831 These loops are later passed to loop_transform to be vectorized. The
1832 vectorizer will use the alignment information to guide the transformation
1833 (whether to generate regular loads/stores, or with special handling for
1834 misalignment). */
1836 opt_result
1837 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1839 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1840 dr_vec_info *first_store = NULL;
1841 dr_vec_info *dr0_info = NULL;
1842 struct data_reference *dr;
1843 unsigned int i;
1844 bool do_peeling = false;
1845 bool do_versioning = false;
1846 unsigned int npeel = 0;
1847 bool one_misalignment_known = false;
1848 bool one_misalignment_unknown = false;
1849 bool one_dr_unsupportable = false;
1850 dr_vec_info *unsupportable_dr_info = NULL;
1851 unsigned int dr0_same_align_drs = 0, first_store_same_align_drs = 0;
1852 hash_table<peel_info_hasher> peeling_htab (1);
1854 DUMP_VECT_SCOPE ("vect_enhance_data_refs_alignment");
1856 /* Reset data so we can safely be called multiple times. */
1857 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1858 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = 0;
1860 if (LOOP_VINFO_DATAREFS (loop_vinfo).is_empty ())
1861 return opt_result::success ();
1863 /* Sort the vector of datarefs so DRs that have the same or dependent
1864 alignment are next to each other. */
1865 auto_vec<data_reference_p> datarefs
1866 = LOOP_VINFO_DATAREFS (loop_vinfo).copy ();
1867 datarefs.qsort (dr_align_group_sort_cmp);
1869 /* Compute the number of DRs that become aligned when we peel
1870 a dataref so it becomes aligned. */
1871 auto_vec<unsigned> n_same_align_refs (datarefs.length ());
1872 n_same_align_refs.quick_grow_cleared (datarefs.length ());
1873 unsigned i0;
1874 for (i0 = 0; i0 < datarefs.length (); ++i0)
1875 if (DR_BASE_ADDRESS (datarefs[i0]))
1876 break;
1877 for (i = i0 + 1; i <= datarefs.length (); ++i)
1879 if (i == datarefs.length ()
1880 || !operand_equal_p (DR_BASE_ADDRESS (datarefs[i0]),
1881 DR_BASE_ADDRESS (datarefs[i]), 0)
1882 || !operand_equal_p (DR_OFFSET (datarefs[i0]),
1883 DR_OFFSET (datarefs[i]), 0)
1884 || !operand_equal_p (DR_STEP (datarefs[i0]),
1885 DR_STEP (datarefs[i]), 0))
1887 /* The subgroup [i0, i-1] now only differs in DR_INIT and
1888 possibly DR_TARGET_ALIGNMENT. Still the whole subgroup
1889 will get known misalignment if we align one of the refs
1890 with the largest DR_TARGET_ALIGNMENT. */
1891 for (unsigned j = i0; j < i; ++j)
1893 dr_vec_info *dr_infoj = loop_vinfo->lookup_dr (datarefs[j]);
1894 for (unsigned k = i0; k < i; ++k)
1896 if (k == j)
1897 continue;
1898 dr_vec_info *dr_infok = loop_vinfo->lookup_dr (datarefs[k]);
1899 if (vect_dr_aligned_if_related_peeled_dr_is (dr_infok,
1900 dr_infoj))
1901 n_same_align_refs[j]++;
1904 i0 = i;
1908 /* While cost model enhancements are expected in the future, the high level
1909 view of the code at this time is as follows:
1911 A) If there is a misaligned access then see if peeling to align
1912 this access can make all data references satisfy
1913 vect_supportable_dr_alignment. If so, update data structures
1914 as needed and return true.
1916 B) If peeling wasn't possible and there is a data reference with an
1917 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1918 then see if loop versioning checks can be used to make all data
1919 references satisfy vect_supportable_dr_alignment. If so, update
1920 data structures as needed and return true.
1922 C) If neither peeling nor versioning were successful then return false if
1923 any data reference does not satisfy vect_supportable_dr_alignment.
1925 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1927 Note, Possibility 3 above (which is peeling and versioning together) is not
1928 being done at this time. */
1930 /* (1) Peeling to force alignment. */
1932 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1933 Considerations:
1934 + How many accesses will become aligned due to the peeling
1935 - How many accesses will become unaligned due to the peeling,
1936 and the cost of misaligned accesses.
1937 - The cost of peeling (the extra runtime checks, the increase
1938 in code size). */
1940 FOR_EACH_VEC_ELT (datarefs, i, dr)
1942 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
1943 if (!vect_relevant_for_alignment_p (dr_info))
1944 continue;
1946 stmt_vec_info stmt_info = dr_info->stmt;
1947 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1948 do_peeling = vector_alignment_reachable_p (dr_info);
1949 if (do_peeling)
1951 if (known_alignment_for_access_p (dr_info, vectype))
1953 unsigned int npeel_tmp = 0;
1954 bool negative = tree_int_cst_compare (DR_STEP (dr),
1955 size_zero_node) < 0;
1957 /* If known_alignment_for_access_p then we have set
1958 DR_MISALIGNMENT which is only done if we know it at compiler
1959 time, so it is safe to assume target alignment is constant.
1961 unsigned int target_align =
1962 DR_TARGET_ALIGNMENT (dr_info).to_constant ();
1963 unsigned HOST_WIDE_INT dr_size = vect_get_scalar_dr_size (dr_info);
1964 poly_int64 off = 0;
1965 if (negative)
1966 off = (TYPE_VECTOR_SUBPARTS (vectype) - 1) * -dr_size;
1967 unsigned int mis = dr_misalignment (dr_info, vectype, off);
1968 mis = negative ? mis : -mis;
1969 if (mis != 0)
1970 npeel_tmp = (mis & (target_align - 1)) / dr_size;
1972 /* For multiple types, it is possible that the bigger type access
1973 will have more than one peeling option. E.g., a loop with two
1974 types: one of size (vector size / 4), and the other one of
1975 size (vector size / 8). Vectorization factor will 8. If both
1976 accesses are misaligned by 3, the first one needs one scalar
1977 iteration to be aligned, and the second one needs 5. But the
1978 first one will be aligned also by peeling 5 scalar
1979 iterations, and in that case both accesses will be aligned.
1980 Hence, except for the immediate peeling amount, we also want
1981 to try to add full vector size, while we don't exceed
1982 vectorization factor.
1983 We do this automatically for cost model, since we calculate
1984 cost for every peeling option. */
1985 poly_uint64 nscalars = npeel_tmp;
1986 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1988 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1989 nscalars = (STMT_SLP_TYPE (stmt_info)
1990 ? vf * DR_GROUP_SIZE (stmt_info) : vf);
1993 /* Save info about DR in the hash table. Also include peeling
1994 amounts according to the explanation above. Indicate
1995 the alignment status when the ref is not aligned.
1996 ??? Rather than using unknown alignment here we should
1997 prune all entries from the peeling hashtable which cause
1998 DRs to be not supported. */
1999 bool supportable_if_not_aligned
2000 = vect_supportable_dr_alignment
2001 (loop_vinfo, dr_info, vectype, DR_MISALIGNMENT_UNKNOWN);
2002 while (known_le (npeel_tmp, nscalars))
2004 vect_peeling_hash_insert (&peeling_htab, loop_vinfo,
2005 dr_info, npeel_tmp,
2006 supportable_if_not_aligned);
2007 npeel_tmp += MAX (1, target_align / dr_size);
2010 one_misalignment_known = true;
2012 else
2014 /* If we don't know any misalignment values, we prefer
2015 peeling for data-ref that has the maximum number of data-refs
2016 with the same alignment, unless the target prefers to align
2017 stores over load. */
2018 unsigned same_align_drs = n_same_align_refs[i];
2019 if (!dr0_info
2020 || dr0_same_align_drs < same_align_drs)
2022 dr0_same_align_drs = same_align_drs;
2023 dr0_info = dr_info;
2025 /* For data-refs with the same number of related
2026 accesses prefer the one where the misalign
2027 computation will be invariant in the outermost loop. */
2028 else if (dr0_same_align_drs == same_align_drs)
2030 class loop *ivloop0, *ivloop;
2031 ivloop0 = outermost_invariant_loop_for_expr
2032 (loop, DR_BASE_ADDRESS (dr0_info->dr));
2033 ivloop = outermost_invariant_loop_for_expr
2034 (loop, DR_BASE_ADDRESS (dr));
2035 if ((ivloop && !ivloop0)
2036 || (ivloop && ivloop0
2037 && flow_loop_nested_p (ivloop, ivloop0)))
2038 dr0_info = dr_info;
2041 one_misalignment_unknown = true;
2043 /* Check for data refs with unsupportable alignment that
2044 can be peeled. */
2045 enum dr_alignment_support supportable_dr_alignment
2046 = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
2047 DR_MISALIGNMENT_UNKNOWN);
2048 if (supportable_dr_alignment == dr_unaligned_unsupported)
2050 one_dr_unsupportable = true;
2051 unsupportable_dr_info = dr_info;
2054 if (!first_store && DR_IS_WRITE (dr))
2056 first_store = dr_info;
2057 first_store_same_align_drs = same_align_drs;
2061 else
2063 if (!aligned_access_p (dr_info, vectype))
2065 if (dump_enabled_p ())
2066 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2067 "vector alignment may not be reachable\n");
2068 break;
2073 /* Check if we can possibly peel the loop. */
2074 if (!vect_can_advance_ivs_p (loop_vinfo)
2075 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop))
2076 || loop->inner)
2077 do_peeling = false;
2079 struct _vect_peel_extended_info peel_for_known_alignment;
2080 struct _vect_peel_extended_info peel_for_unknown_alignment;
2081 struct _vect_peel_extended_info best_peel;
2083 peel_for_unknown_alignment.inside_cost = INT_MAX;
2084 peel_for_unknown_alignment.outside_cost = INT_MAX;
2085 peel_for_unknown_alignment.peel_info.count = 0;
2087 if (do_peeling
2088 && one_misalignment_unknown)
2090 /* Check if the target requires to prefer stores over loads, i.e., if
2091 misaligned stores are more expensive than misaligned loads (taking
2092 drs with same alignment into account). */
2093 unsigned int load_inside_cost = 0;
2094 unsigned int load_outside_cost = 0;
2095 unsigned int store_inside_cost = 0;
2096 unsigned int store_outside_cost = 0;
2097 unsigned int estimated_npeels = vect_vf_for_cost (loop_vinfo) / 2;
2099 stmt_vector_for_cost dummy;
2100 dummy.create (2);
2101 vect_get_peeling_costs_all_drs (loop_vinfo, dr0_info,
2102 &load_inside_cost,
2103 &load_outside_cost,
2104 &dummy, &dummy, estimated_npeels);
2105 dummy.release ();
2107 if (first_store)
2109 dummy.create (2);
2110 vect_get_peeling_costs_all_drs (loop_vinfo, first_store,
2111 &store_inside_cost,
2112 &store_outside_cost,
2113 &dummy, &dummy,
2114 estimated_npeels);
2115 dummy.release ();
2117 else
2119 store_inside_cost = INT_MAX;
2120 store_outside_cost = INT_MAX;
2123 if (load_inside_cost > store_inside_cost
2124 || (load_inside_cost == store_inside_cost
2125 && load_outside_cost > store_outside_cost))
2127 dr0_info = first_store;
2128 dr0_same_align_drs = first_store_same_align_drs;
2129 peel_for_unknown_alignment.inside_cost = store_inside_cost;
2130 peel_for_unknown_alignment.outside_cost = store_outside_cost;
2132 else
2134 peel_for_unknown_alignment.inside_cost = load_inside_cost;
2135 peel_for_unknown_alignment.outside_cost = load_outside_cost;
2138 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2139 prologue_cost_vec.create (2);
2140 epilogue_cost_vec.create (2);
2142 int dummy2;
2143 peel_for_unknown_alignment.outside_cost += vect_get_known_peeling_cost
2144 (loop_vinfo, estimated_npeels, &dummy2,
2145 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
2146 &prologue_cost_vec, &epilogue_cost_vec);
2148 prologue_cost_vec.release ();
2149 epilogue_cost_vec.release ();
2151 peel_for_unknown_alignment.peel_info.count = dr0_same_align_drs + 1;
2154 peel_for_unknown_alignment.peel_info.npeel = 0;
2155 peel_for_unknown_alignment.peel_info.dr_info = dr0_info;
2157 best_peel = peel_for_unknown_alignment;
2159 peel_for_known_alignment.inside_cost = INT_MAX;
2160 peel_for_known_alignment.outside_cost = INT_MAX;
2161 peel_for_known_alignment.peel_info.count = 0;
2162 peel_for_known_alignment.peel_info.dr_info = NULL;
2164 if (do_peeling && one_misalignment_known)
2166 /* Peeling is possible, but there is no data access that is not supported
2167 unless aligned. So we try to choose the best possible peeling from
2168 the hash table. */
2169 peel_for_known_alignment = vect_peeling_hash_choose_best_peeling
2170 (&peeling_htab, loop_vinfo);
2173 /* Compare costs of peeling for known and unknown alignment. */
2174 if (peel_for_known_alignment.peel_info.dr_info != NULL
2175 && peel_for_unknown_alignment.inside_cost
2176 >= peel_for_known_alignment.inside_cost)
2178 best_peel = peel_for_known_alignment;
2180 /* If the best peeling for known alignment has NPEEL == 0, perform no
2181 peeling at all except if there is an unsupportable dr that we can
2182 align. */
2183 if (best_peel.peel_info.npeel == 0 && !one_dr_unsupportable)
2184 do_peeling = false;
2187 /* If there is an unsupportable data ref, prefer this over all choices so far
2188 since we'd have to discard a chosen peeling except when it accidentally
2189 aligned the unsupportable data ref. */
2190 if (one_dr_unsupportable)
2191 dr0_info = unsupportable_dr_info;
2192 else if (do_peeling)
2194 /* Calculate the penalty for no peeling, i.e. leaving everything as-is.
2195 TODO: Use nopeel_outside_cost or get rid of it? */
2196 unsigned nopeel_inside_cost = 0;
2197 unsigned nopeel_outside_cost = 0;
2199 stmt_vector_for_cost dummy;
2200 dummy.create (2);
2201 vect_get_peeling_costs_all_drs (loop_vinfo, NULL, &nopeel_inside_cost,
2202 &nopeel_outside_cost, &dummy, &dummy, 0);
2203 dummy.release ();
2205 /* Add epilogue costs. As we do not peel for alignment here, no prologue
2206 costs will be recorded. */
2207 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2208 prologue_cost_vec.create (2);
2209 epilogue_cost_vec.create (2);
2211 int dummy2;
2212 nopeel_outside_cost += vect_get_known_peeling_cost
2213 (loop_vinfo, 0, &dummy2,
2214 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
2215 &prologue_cost_vec, &epilogue_cost_vec);
2217 prologue_cost_vec.release ();
2218 epilogue_cost_vec.release ();
2220 npeel = best_peel.peel_info.npeel;
2221 dr0_info = best_peel.peel_info.dr_info;
2223 /* If no peeling is not more expensive than the best peeling we
2224 have so far, don't perform any peeling. */
2225 if (nopeel_inside_cost <= best_peel.inside_cost)
2226 do_peeling = false;
2229 if (do_peeling)
2231 stmt_vec_info stmt_info = dr0_info->stmt;
2232 if (known_alignment_for_access_p (dr0_info,
2233 STMT_VINFO_VECTYPE (stmt_info)))
2235 bool negative = tree_int_cst_compare (DR_STEP (dr0_info->dr),
2236 size_zero_node) < 0;
2237 if (!npeel)
2239 /* Since it's known at compile time, compute the number of
2240 iterations in the peeled loop (the peeling factor) for use in
2241 updating DR_MISALIGNMENT values. The peeling factor is the
2242 vectorization factor minus the misalignment as an element
2243 count. */
2244 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2245 poly_int64 off = 0;
2246 if (negative)
2247 off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
2248 * -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
2249 unsigned int mis
2250 = dr_misalignment (dr0_info, vectype, off);
2251 mis = negative ? mis : -mis;
2252 /* If known_alignment_for_access_p then we have set
2253 DR_MISALIGNMENT which is only done if we know it at compiler
2254 time, so it is safe to assume target alignment is constant.
2256 unsigned int target_align =
2257 DR_TARGET_ALIGNMENT (dr0_info).to_constant ();
2258 npeel = ((mis & (target_align - 1))
2259 / vect_get_scalar_dr_size (dr0_info));
2262 /* For interleaved data access every iteration accesses all the
2263 members of the group, therefore we divide the number of iterations
2264 by the group size. */
2265 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
2266 npeel /= DR_GROUP_SIZE (stmt_info);
2268 if (dump_enabled_p ())
2269 dump_printf_loc (MSG_NOTE, vect_location,
2270 "Try peeling by %d\n", npeel);
2273 /* Ensure that all datarefs can be vectorized after the peel. */
2274 if (!vect_peeling_supportable (loop_vinfo, dr0_info, npeel))
2275 do_peeling = false;
2277 /* Check if all datarefs are supportable and log. */
2278 if (do_peeling
2279 && npeel == 0
2280 && known_alignment_for_access_p (dr0_info,
2281 STMT_VINFO_VECTYPE (stmt_info)))
2282 return opt_result::success ();
2284 /* Cost model #1 - honor --param vect-max-peeling-for-alignment. */
2285 if (do_peeling)
2287 unsigned max_allowed_peel
2288 = param_vect_max_peeling_for_alignment;
2289 if (loop_cost_model (loop) <= VECT_COST_MODEL_CHEAP)
2290 max_allowed_peel = 0;
2291 if (max_allowed_peel != (unsigned)-1)
2293 unsigned max_peel = npeel;
2294 if (max_peel == 0)
2296 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr0_info);
2297 unsigned HOST_WIDE_INT target_align_c;
2298 if (target_align.is_constant (&target_align_c))
2299 max_peel =
2300 target_align_c / vect_get_scalar_dr_size (dr0_info) - 1;
2301 else
2303 do_peeling = false;
2304 if (dump_enabled_p ())
2305 dump_printf_loc (MSG_NOTE, vect_location,
2306 "Disable peeling, max peels set and vector"
2307 " alignment unknown\n");
2310 if (max_peel > max_allowed_peel)
2312 do_peeling = false;
2313 if (dump_enabled_p ())
2314 dump_printf_loc (MSG_NOTE, vect_location,
2315 "Disable peeling, max peels reached: %d\n", max_peel);
2320 /* Cost model #2 - if peeling may result in a remaining loop not
2321 iterating enough to be vectorized then do not peel. Since this
2322 is a cost heuristic rather than a correctness decision, use the
2323 most likely runtime value for variable vectorization factors. */
2324 if (do_peeling
2325 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2327 unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
2328 unsigned int max_peel = npeel == 0 ? assumed_vf - 1 : npeel;
2329 if ((unsigned HOST_WIDE_INT) LOOP_VINFO_INT_NITERS (loop_vinfo)
2330 < assumed_vf + max_peel)
2331 do_peeling = false;
2334 if (do_peeling)
2336 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
2337 If the misalignment of DR_i is identical to that of dr0 then set
2338 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
2339 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
2340 by the peeling factor times the element size of DR_i (MOD the
2341 vectorization factor times the size). Otherwise, the
2342 misalignment of DR_i must be set to unknown. */
2343 FOR_EACH_VEC_ELT (datarefs, i, dr)
2344 if (dr != dr0_info->dr)
2346 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
2347 if (!vect_relevant_for_alignment_p (dr_info))
2348 continue;
2350 vect_update_misalignment_for_peel (dr_info, dr0_info, npeel);
2353 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0_info;
2354 if (npeel)
2355 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
2356 else
2357 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = -1;
2358 SET_DR_MISALIGNMENT (dr0_info,
2359 vect_dr_misalign_for_aligned_access (dr0_info));
2360 if (dump_enabled_p ())
2362 dump_printf_loc (MSG_NOTE, vect_location,
2363 "Alignment of access forced using peeling.\n");
2364 dump_printf_loc (MSG_NOTE, vect_location,
2365 "Peeling for alignment will be applied.\n");
2368 /* The inside-loop cost will be accounted for in vectorizable_load
2369 and vectorizable_store correctly with adjusted alignments.
2370 Drop the body_cst_vec on the floor here. */
2371 return opt_result::success ();
2375 /* (2) Versioning to force alignment. */
2377 /* Try versioning if:
2378 1) optimize loop for speed and the cost-model is not cheap
2379 2) there is at least one unsupported misaligned data ref with an unknown
2380 misalignment, and
2381 3) all misaligned data refs with a known misalignment are supported, and
2382 4) the number of runtime alignment checks is within reason. */
2384 do_versioning
2385 = (optimize_loop_nest_for_speed_p (loop)
2386 && !loop->inner /* FORNOW */
2387 && loop_cost_model (loop) > VECT_COST_MODEL_CHEAP);
2389 if (do_versioning)
2391 FOR_EACH_VEC_ELT (datarefs, i, dr)
2393 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
2394 if (!vect_relevant_for_alignment_p (dr_info))
2395 continue;
2397 stmt_vec_info stmt_info = dr_info->stmt;
2398 if (STMT_VINFO_STRIDED_P (stmt_info))
2400 do_versioning = false;
2401 break;
2404 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2405 bool negative = tree_int_cst_compare (DR_STEP (dr),
2406 size_zero_node) < 0;
2407 poly_int64 off = 0;
2408 if (negative)
2409 off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
2410 * -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
2411 int misalignment;
2412 if ((misalignment = dr_misalignment (dr_info, vectype, off)) == 0)
2413 continue;
2415 enum dr_alignment_support supportable_dr_alignment
2416 = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
2417 misalignment);
2418 if (supportable_dr_alignment == dr_unaligned_unsupported)
2420 if (misalignment != DR_MISALIGNMENT_UNKNOWN
2421 || (LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
2422 >= (unsigned) param_vect_max_version_for_alignment_checks))
2424 do_versioning = false;
2425 break;
2428 /* At present we don't support versioning for alignment
2429 with variable VF, since there's no guarantee that the
2430 VF is a power of two. We could relax this if we added
2431 a way of enforcing a power-of-two size. */
2432 unsigned HOST_WIDE_INT size;
2433 if (!GET_MODE_SIZE (TYPE_MODE (vectype)).is_constant (&size))
2435 do_versioning = false;
2436 break;
2439 /* Forcing alignment in the first iteration is no good if
2440 we don't keep it across iterations. For now, just disable
2441 versioning in this case.
2442 ?? We could actually unroll the loop to achieve the required
2443 overall step alignment, and forcing the alignment could be
2444 done by doing some iterations of the non-vectorized loop. */
2445 if (!multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
2446 * DR_STEP_ALIGNMENT (dr),
2447 DR_TARGET_ALIGNMENT (dr_info)))
2449 do_versioning = false;
2450 break;
2453 /* The rightmost bits of an aligned address must be zeros.
2454 Construct the mask needed for this test. For example,
2455 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
2456 mask must be 15 = 0xf. */
2457 int mask = size - 1;
2459 /* FORNOW: use the same mask to test all potentially unaligned
2460 references in the loop. */
2461 if (LOOP_VINFO_PTR_MASK (loop_vinfo)
2462 && LOOP_VINFO_PTR_MASK (loop_vinfo) != mask)
2464 do_versioning = false;
2465 break;
2468 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
2469 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (stmt_info);
2473 /* Versioning requires at least one misaligned data reference. */
2474 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2475 do_versioning = false;
2476 else if (!do_versioning)
2477 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
2480 if (do_versioning)
2482 const vec<stmt_vec_info> &may_misalign_stmts
2483 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2484 stmt_vec_info stmt_info;
2486 /* It can now be assumed that the data references in the statements
2487 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
2488 of the loop being vectorized. */
2489 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
2491 dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
2492 SET_DR_MISALIGNMENT (dr_info,
2493 vect_dr_misalign_for_aligned_access (dr_info));
2494 if (dump_enabled_p ())
2495 dump_printf_loc (MSG_NOTE, vect_location,
2496 "Alignment of access forced using versioning.\n");
2499 if (dump_enabled_p ())
2500 dump_printf_loc (MSG_NOTE, vect_location,
2501 "Versioning for alignment will be applied.\n");
2503 /* Peeling and versioning can't be done together at this time. */
2504 gcc_assert (! (do_peeling && do_versioning));
2506 return opt_result::success ();
2509 /* This point is reached if neither peeling nor versioning is being done. */
2510 gcc_assert (! (do_peeling || do_versioning));
2512 return opt_result::success ();
2516 /* Function vect_analyze_data_refs_alignment
2518 Analyze the alignment of the data-references in the loop.
2519 Return FALSE if a data reference is found that cannot be vectorized. */
2521 opt_result
2522 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
2524 DUMP_VECT_SCOPE ("vect_analyze_data_refs_alignment");
2526 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2527 struct data_reference *dr;
2528 unsigned int i;
2530 vect_record_base_alignments (loop_vinfo);
2531 FOR_EACH_VEC_ELT (datarefs, i, dr)
2533 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
2534 if (STMT_VINFO_VECTORIZABLE (dr_info->stmt))
2536 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt)
2537 && DR_GROUP_FIRST_ELEMENT (dr_info->stmt) != dr_info->stmt)
2538 continue;
2539 vect_compute_data_ref_alignment (loop_vinfo, dr_info,
2540 STMT_VINFO_VECTYPE (dr_info->stmt));
2544 return opt_result::success ();
2548 /* Analyze alignment of DRs of stmts in NODE. */
2550 static bool
2551 vect_slp_analyze_node_alignment (vec_info *vinfo, slp_tree node)
2553 /* Alignment is maintained in the first element of the group. */
2554 stmt_vec_info first_stmt_info = SLP_TREE_SCALAR_STMTS (node)[0];
2555 first_stmt_info = DR_GROUP_FIRST_ELEMENT (first_stmt_info);
2556 dr_vec_info *dr_info = STMT_VINFO_DR_INFO (first_stmt_info);
2557 tree vectype = SLP_TREE_VECTYPE (node);
2558 poly_uint64 vector_alignment
2559 = exact_div (targetm.vectorize.preferred_vector_alignment (vectype),
2560 BITS_PER_UNIT);
2561 if (dr_info->misalignment == DR_MISALIGNMENT_UNINITIALIZED)
2562 vect_compute_data_ref_alignment (vinfo, dr_info, SLP_TREE_VECTYPE (node));
2563 /* Re-analyze alignment when we're facing a vectorization with a bigger
2564 alignment requirement. */
2565 else if (known_lt (dr_info->target_alignment, vector_alignment))
2567 poly_uint64 old_target_alignment = dr_info->target_alignment;
2568 int old_misalignment = dr_info->misalignment;
2569 vect_compute_data_ref_alignment (vinfo, dr_info, SLP_TREE_VECTYPE (node));
2570 /* But keep knowledge about a smaller alignment. */
2571 if (old_misalignment != DR_MISALIGNMENT_UNKNOWN
2572 && dr_info->misalignment == DR_MISALIGNMENT_UNKNOWN)
2574 dr_info->target_alignment = old_target_alignment;
2575 dr_info->misalignment = old_misalignment;
2578 /* When we ever face unordered target alignments the first one wins in terms
2579 of analyzing and the other will become unknown in dr_misalignment. */
2580 return true;
2583 /* Function vect_slp_analyze_instance_alignment
2585 Analyze the alignment of the data-references in the SLP instance.
2586 Return FALSE if a data reference is found that cannot be vectorized. */
2588 bool
2589 vect_slp_analyze_instance_alignment (vec_info *vinfo,
2590 slp_instance instance)
2592 DUMP_VECT_SCOPE ("vect_slp_analyze_instance_alignment");
2594 slp_tree node;
2595 unsigned i;
2596 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, node)
2597 if (! vect_slp_analyze_node_alignment (vinfo, node))
2598 return false;
2600 if (SLP_INSTANCE_KIND (instance) == slp_inst_kind_store
2601 && ! vect_slp_analyze_node_alignment
2602 (vinfo, SLP_INSTANCE_TREE (instance)))
2603 return false;
2605 return true;
2609 /* Analyze groups of accesses: check that DR_INFO belongs to a group of
2610 accesses of legal size, step, etc. Detect gaps, single element
2611 interleaving, and other special cases. Set grouped access info.
2612 Collect groups of strided stores for further use in SLP analysis.
2613 Worker for vect_analyze_group_access. */
2615 static bool
2616 vect_analyze_group_access_1 (vec_info *vinfo, dr_vec_info *dr_info)
2618 data_reference *dr = dr_info->dr;
2619 tree step = DR_STEP (dr);
2620 tree scalar_type = TREE_TYPE (DR_REF (dr));
2621 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2622 stmt_vec_info stmt_info = dr_info->stmt;
2623 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
2624 bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (vinfo);
2625 HOST_WIDE_INT dr_step = -1;
2626 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2627 bool slp_impossible = false;
2629 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2630 size of the interleaving group (including gaps). */
2631 if (tree_fits_shwi_p (step))
2633 dr_step = tree_to_shwi (step);
2634 /* Check that STEP is a multiple of type size. Otherwise there is
2635 a non-element-sized gap at the end of the group which we
2636 cannot represent in DR_GROUP_GAP or DR_GROUP_SIZE.
2637 ??? As we can handle non-constant step fine here we should
2638 simply remove uses of DR_GROUP_GAP between the last and first
2639 element and instead rely on DR_STEP. DR_GROUP_SIZE then would
2640 simply not include that gap. */
2641 if ((dr_step % type_size) != 0)
2643 if (dump_enabled_p ())
2644 dump_printf_loc (MSG_NOTE, vect_location,
2645 "Step %T is not a multiple of the element size"
2646 " for %T\n",
2647 step, DR_REF (dr));
2648 return false;
2650 groupsize = absu_hwi (dr_step) / type_size;
2652 else
2653 groupsize = 0;
2655 /* Not consecutive access is possible only if it is a part of interleaving. */
2656 if (!DR_GROUP_FIRST_ELEMENT (stmt_info))
2658 /* Check if it this DR is a part of interleaving, and is a single
2659 element of the group that is accessed in the loop. */
2661 /* Gaps are supported only for loads. STEP must be a multiple of the type
2662 size. */
2663 if (DR_IS_READ (dr)
2664 && (dr_step % type_size) == 0
2665 && groupsize > 0
2666 /* This could be UINT_MAX but as we are generating code in a very
2667 inefficient way we have to cap earlier.
2668 See PR91403 for example. */
2669 && groupsize <= 4096)
2671 DR_GROUP_FIRST_ELEMENT (stmt_info) = stmt_info;
2672 DR_GROUP_SIZE (stmt_info) = groupsize;
2673 DR_GROUP_GAP (stmt_info) = groupsize - 1;
2674 if (dump_enabled_p ())
2675 dump_printf_loc (MSG_NOTE, vect_location,
2676 "Detected single element interleaving %T"
2677 " step %T\n",
2678 DR_REF (dr), step);
2680 return true;
2683 if (dump_enabled_p ())
2684 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2685 "not consecutive access %G", stmt_info->stmt);
2687 if (bb_vinfo)
2689 /* Mark the statement as unvectorizable. */
2690 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
2691 return true;
2694 if (dump_enabled_p ())
2695 dump_printf_loc (MSG_NOTE, vect_location, "using strided accesses\n");
2696 STMT_VINFO_STRIDED_P (stmt_info) = true;
2697 return true;
2700 if (DR_GROUP_FIRST_ELEMENT (stmt_info) == stmt_info)
2702 /* First stmt in the interleaving chain. Check the chain. */
2703 stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (stmt_info);
2704 struct data_reference *data_ref = dr;
2705 unsigned int count = 1;
2706 tree prev_init = DR_INIT (data_ref);
2707 HOST_WIDE_INT diff, gaps = 0;
2709 /* By construction, all group members have INTEGER_CST DR_INITs. */
2710 while (next)
2712 /* We never have the same DR multiple times. */
2713 gcc_assert (tree_int_cst_compare (DR_INIT (data_ref),
2714 DR_INIT (STMT_VINFO_DATA_REF (next))) != 0);
2716 data_ref = STMT_VINFO_DATA_REF (next);
2718 /* All group members have the same STEP by construction. */
2719 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
2721 /* Check that the distance between two accesses is equal to the type
2722 size. Otherwise, we have gaps. */
2723 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2724 - TREE_INT_CST_LOW (prev_init)) / type_size;
2725 if (diff < 1 || diff > UINT_MAX)
2727 /* For artificial testcases with array accesses with large
2728 constant indices we can run into overflow issues which
2729 can end up fooling the groupsize constraint below so
2730 check the individual gaps (which are represented as
2731 unsigned int) as well. */
2732 if (dump_enabled_p ())
2733 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2734 "interleaved access with gap larger "
2735 "than representable\n");
2736 return false;
2738 if (diff != 1)
2740 /* FORNOW: SLP of accesses with gaps is not supported. */
2741 slp_impossible = true;
2742 if (DR_IS_WRITE (data_ref))
2744 if (dump_enabled_p ())
2745 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2746 "interleaved store with gaps\n");
2747 return false;
2750 gaps += diff - 1;
2753 last_accessed_element += diff;
2755 /* Store the gap from the previous member of the group. If there is no
2756 gap in the access, DR_GROUP_GAP is always 1. */
2757 DR_GROUP_GAP (next) = diff;
2759 prev_init = DR_INIT (data_ref);
2760 next = DR_GROUP_NEXT_ELEMENT (next);
2761 /* Count the number of data-refs in the chain. */
2762 count++;
2765 if (groupsize == 0)
2766 groupsize = count + gaps;
2768 /* This could be UINT_MAX but as we are generating code in a very
2769 inefficient way we have to cap earlier. See PR78699 for example. */
2770 if (groupsize > 4096)
2772 if (dump_enabled_p ())
2773 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2774 "group is too large\n");
2775 return false;
2778 /* Check that the size of the interleaving is equal to count for stores,
2779 i.e., that there are no gaps. */
2780 if (groupsize != count
2781 && !DR_IS_READ (dr))
2783 groupsize = count;
2784 STMT_VINFO_STRIDED_P (stmt_info) = true;
2787 /* If there is a gap after the last load in the group it is the
2788 difference between the groupsize and the last accessed
2789 element.
2790 When there is no gap, this difference should be 0. */
2791 DR_GROUP_GAP (stmt_info) = groupsize - last_accessed_element;
2793 DR_GROUP_SIZE (stmt_info) = groupsize;
2794 if (dump_enabled_p ())
2796 dump_printf_loc (MSG_NOTE, vect_location,
2797 "Detected interleaving ");
2798 if (DR_IS_READ (dr))
2799 dump_printf (MSG_NOTE, "load ");
2800 else if (STMT_VINFO_STRIDED_P (stmt_info))
2801 dump_printf (MSG_NOTE, "strided store ");
2802 else
2803 dump_printf (MSG_NOTE, "store ");
2804 dump_printf (MSG_NOTE, "of size %u\n",
2805 (unsigned)groupsize);
2806 dump_printf_loc (MSG_NOTE, vect_location, "\t%G", stmt_info->stmt);
2807 next = DR_GROUP_NEXT_ELEMENT (stmt_info);
2808 while (next)
2810 if (DR_GROUP_GAP (next) != 1)
2811 dump_printf_loc (MSG_NOTE, vect_location,
2812 "\t<gap of %d elements>\n",
2813 DR_GROUP_GAP (next) - 1);
2814 dump_printf_loc (MSG_NOTE, vect_location, "\t%G", next->stmt);
2815 next = DR_GROUP_NEXT_ELEMENT (next);
2817 if (DR_GROUP_GAP (stmt_info) != 0)
2818 dump_printf_loc (MSG_NOTE, vect_location,
2819 "\t<gap of %d elements>\n",
2820 DR_GROUP_GAP (stmt_info));
2823 /* SLP: create an SLP data structure for every interleaving group of
2824 stores for further analysis in vect_analyse_slp. */
2825 if (DR_IS_WRITE (dr) && !slp_impossible)
2827 if (loop_vinfo)
2828 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt_info);
2829 if (bb_vinfo)
2830 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt_info);
2834 return true;
2837 /* Analyze groups of accesses: check that DR_INFO belongs to a group of
2838 accesses of legal size, step, etc. Detect gaps, single element
2839 interleaving, and other special cases. Set grouped access info.
2840 Collect groups of strided stores for further use in SLP analysis. */
2842 static bool
2843 vect_analyze_group_access (vec_info *vinfo, dr_vec_info *dr_info)
2845 if (!vect_analyze_group_access_1 (vinfo, dr_info))
2847 /* Dissolve the group if present. */
2848 stmt_vec_info stmt_info = DR_GROUP_FIRST_ELEMENT (dr_info->stmt);
2849 while (stmt_info)
2851 stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (stmt_info);
2852 DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
2853 DR_GROUP_NEXT_ELEMENT (stmt_info) = NULL;
2854 stmt_info = next;
2856 return false;
2858 return true;
2861 /* Analyze the access pattern of the data-reference DR_INFO.
2862 In case of non-consecutive accesses call vect_analyze_group_access() to
2863 analyze groups of accesses. */
2865 static bool
2866 vect_analyze_data_ref_access (vec_info *vinfo, dr_vec_info *dr_info)
2868 data_reference *dr = dr_info->dr;
2869 tree step = DR_STEP (dr);
2870 tree scalar_type = TREE_TYPE (DR_REF (dr));
2871 stmt_vec_info stmt_info = dr_info->stmt;
2872 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
2873 class loop *loop = NULL;
2875 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
2876 return true;
2878 if (loop_vinfo)
2879 loop = LOOP_VINFO_LOOP (loop_vinfo);
2881 if (loop_vinfo && !step)
2883 if (dump_enabled_p ())
2884 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2885 "bad data-ref access in loop\n");
2886 return false;
2889 /* Allow loads with zero step in inner-loop vectorization. */
2890 if (loop_vinfo && integer_zerop (step))
2892 DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
2893 if (!nested_in_vect_loop_p (loop, stmt_info))
2894 return DR_IS_READ (dr);
2895 /* Allow references with zero step for outer loops marked
2896 with pragma omp simd only - it guarantees absence of
2897 loop-carried dependencies between inner loop iterations. */
2898 if (loop->safelen < 2)
2900 if (dump_enabled_p ())
2901 dump_printf_loc (MSG_NOTE, vect_location,
2902 "zero step in inner loop of nest\n");
2903 return false;
2907 if (loop && nested_in_vect_loop_p (loop, stmt_info))
2909 /* Interleaved accesses are not yet supported within outer-loop
2910 vectorization for references in the inner-loop. */
2911 DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
2913 /* For the rest of the analysis we use the outer-loop step. */
2914 step = STMT_VINFO_DR_STEP (stmt_info);
2915 if (integer_zerop (step))
2917 if (dump_enabled_p ())
2918 dump_printf_loc (MSG_NOTE, vect_location,
2919 "zero step in outer loop.\n");
2920 return DR_IS_READ (dr);
2924 /* Consecutive? */
2925 if (TREE_CODE (step) == INTEGER_CST)
2927 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2928 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2929 || (dr_step < 0
2930 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2932 /* Mark that it is not interleaving. */
2933 DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
2934 return true;
2938 if (loop && nested_in_vect_loop_p (loop, stmt_info))
2940 if (dump_enabled_p ())
2941 dump_printf_loc (MSG_NOTE, vect_location,
2942 "grouped access in outer loop.\n");
2943 return false;
2947 /* Assume this is a DR handled by non-constant strided load case. */
2948 if (TREE_CODE (step) != INTEGER_CST)
2949 return (STMT_VINFO_STRIDED_P (stmt_info)
2950 && (!STMT_VINFO_GROUPED_ACCESS (stmt_info)
2951 || vect_analyze_group_access (vinfo, dr_info)));
2953 /* Not consecutive access - check if it's a part of interleaving group. */
2954 return vect_analyze_group_access (vinfo, dr_info);
2957 /* Compare two data-references DRA and DRB to group them into chunks
2958 suitable for grouping. */
2960 static int
2961 dr_group_sort_cmp (const void *dra_, const void *drb_)
2963 dr_vec_info *dra_info = *(dr_vec_info **)const_cast<void *>(dra_);
2964 dr_vec_info *drb_info = *(dr_vec_info **)const_cast<void *>(drb_);
2965 data_reference_p dra = dra_info->dr;
2966 data_reference_p drb = drb_info->dr;
2967 int cmp;
2969 /* Stabilize sort. */
2970 if (dra == drb)
2971 return 0;
2973 /* Different group IDs lead never belong to the same group. */
2974 if (dra_info->group != drb_info->group)
2975 return dra_info->group < drb_info->group ? -1 : 1;
2977 /* Ordering of DRs according to base. */
2978 cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra),
2979 DR_BASE_ADDRESS (drb));
2980 if (cmp != 0)
2981 return cmp;
2983 /* And according to DR_OFFSET. */
2984 cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2985 if (cmp != 0)
2986 return cmp;
2988 /* Put reads before writes. */
2989 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2990 return DR_IS_READ (dra) ? -1 : 1;
2992 /* Then sort after access size. */
2993 cmp = data_ref_compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2994 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2995 if (cmp != 0)
2996 return cmp;
2998 /* And after step. */
2999 cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb));
3000 if (cmp != 0)
3001 return cmp;
3003 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
3004 cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb));
3005 if (cmp == 0)
3006 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
3007 return cmp;
3010 /* If OP is the result of a conversion, return the unconverted value,
3011 otherwise return null. */
3013 static tree
3014 strip_conversion (tree op)
3016 if (TREE_CODE (op) != SSA_NAME)
3017 return NULL_TREE;
3018 gimple *stmt = SSA_NAME_DEF_STMT (op);
3019 if (!is_gimple_assign (stmt)
3020 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)))
3021 return NULL_TREE;
3022 return gimple_assign_rhs1 (stmt);
3025 /* Return true if vectorizable_* routines can handle statements STMT1_INFO
3026 and STMT2_INFO being in a single group. When ALLOW_SLP_P, masked loads can
3027 be grouped in SLP mode. */
3029 static bool
3030 can_group_stmts_p (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info,
3031 bool allow_slp_p)
3033 if (gimple_assign_single_p (stmt1_info->stmt))
3034 return gimple_assign_single_p (stmt2_info->stmt);
3036 gcall *call1 = dyn_cast <gcall *> (stmt1_info->stmt);
3037 if (call1 && gimple_call_internal_p (call1))
3039 /* Check for two masked loads or two masked stores. */
3040 gcall *call2 = dyn_cast <gcall *> (stmt2_info->stmt);
3041 if (!call2 || !gimple_call_internal_p (call2))
3042 return false;
3043 internal_fn ifn = gimple_call_internal_fn (call1);
3044 if (ifn != IFN_MASK_LOAD && ifn != IFN_MASK_STORE)
3045 return false;
3046 if (ifn != gimple_call_internal_fn (call2))
3047 return false;
3049 /* Check that the masks are the same. Cope with casts of masks,
3050 like those created by build_mask_conversion. */
3051 tree mask1 = gimple_call_arg (call1, 2);
3052 tree mask2 = gimple_call_arg (call2, 2);
3053 if (!operand_equal_p (mask1, mask2, 0)
3054 && (ifn == IFN_MASK_STORE || !allow_slp_p))
3056 mask1 = strip_conversion (mask1);
3057 if (!mask1)
3058 return false;
3059 mask2 = strip_conversion (mask2);
3060 if (!mask2)
3061 return false;
3062 if (!operand_equal_p (mask1, mask2, 0))
3063 return false;
3065 return true;
3068 return false;
3071 /* Function vect_analyze_data_ref_accesses.
3073 Analyze the access pattern of all the data references in the loop.
3075 FORNOW: the only access pattern that is considered vectorizable is a
3076 simple step 1 (consecutive) access.
3078 FORNOW: handle only arrays and pointer accesses. */
3080 opt_result
3081 vect_analyze_data_ref_accesses (vec_info *vinfo,
3082 vec<int> *dataref_groups)
3084 unsigned int i;
3085 vec<data_reference_p> datarefs = vinfo->shared->datarefs;
3087 DUMP_VECT_SCOPE ("vect_analyze_data_ref_accesses");
3089 if (datarefs.is_empty ())
3090 return opt_result::success ();
3092 /* Sort the array of datarefs to make building the interleaving chains
3093 linear. Don't modify the original vector's order, it is needed for
3094 determining what dependencies are reversed. */
3095 vec<dr_vec_info *> datarefs_copy;
3096 datarefs_copy.create (datarefs.length ());
3097 for (unsigned i = 0; i < datarefs.length (); i++)
3099 dr_vec_info *dr_info = vinfo->lookup_dr (datarefs[i]);
3100 /* If the caller computed DR grouping use that, otherwise group by
3101 basic blocks. */
3102 if (dataref_groups)
3103 dr_info->group = (*dataref_groups)[i];
3104 else
3105 dr_info->group = gimple_bb (DR_STMT (datarefs[i]))->index;
3106 datarefs_copy.quick_push (dr_info);
3108 datarefs_copy.qsort (dr_group_sort_cmp);
3109 hash_set<stmt_vec_info> to_fixup;
3111 /* Build the interleaving chains. */
3112 for (i = 0; i < datarefs_copy.length () - 1;)
3114 dr_vec_info *dr_info_a = datarefs_copy[i];
3115 data_reference_p dra = dr_info_a->dr;
3116 int dra_group_id = dr_info_a->group;
3117 stmt_vec_info stmtinfo_a = dr_info_a->stmt;
3118 stmt_vec_info lastinfo = NULL;
3119 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
3120 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a))
3122 ++i;
3123 continue;
3125 for (i = i + 1; i < datarefs_copy.length (); ++i)
3127 dr_vec_info *dr_info_b = datarefs_copy[i];
3128 data_reference_p drb = dr_info_b->dr;
3129 int drb_group_id = dr_info_b->group;
3130 stmt_vec_info stmtinfo_b = dr_info_b->stmt;
3131 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_b)
3132 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
3133 break;
3135 /* ??? Imperfect sorting (non-compatible types, non-modulo
3136 accesses, same accesses) can lead to a group to be artificially
3137 split here as we don't just skip over those. If it really
3138 matters we can push those to a worklist and re-iterate
3139 over them. The we can just skip ahead to the next DR here. */
3141 /* DRs in a different DR group should not be put into the same
3142 interleaving group. */
3143 if (dra_group_id != drb_group_id)
3144 break;
3146 /* Check that the data-refs have same first location (except init)
3147 and they are both either store or load (not load and store,
3148 not masked loads or stores). */
3149 if (DR_IS_READ (dra) != DR_IS_READ (drb)
3150 || data_ref_compare_tree (DR_BASE_ADDRESS (dra),
3151 DR_BASE_ADDRESS (drb)) != 0
3152 || data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb)) != 0
3153 || !can_group_stmts_p (stmtinfo_a, stmtinfo_b, true))
3154 break;
3156 /* Check that the data-refs have the same constant size. */
3157 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
3158 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
3159 if (!tree_fits_uhwi_p (sza)
3160 || !tree_fits_uhwi_p (szb)
3161 || !tree_int_cst_equal (sza, szb))
3162 break;
3164 /* Check that the data-refs have the same step. */
3165 if (data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb)) != 0)
3166 break;
3168 /* Check the types are compatible.
3169 ??? We don't distinguish this during sorting. */
3170 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
3171 TREE_TYPE (DR_REF (drb))))
3172 break;
3174 /* Check that the DR_INITs are compile-time constants. */
3175 if (!tree_fits_shwi_p (DR_INIT (dra))
3176 || !tree_fits_shwi_p (DR_INIT (drb)))
3177 break;
3179 /* Different .GOMP_SIMD_LANE calls still give the same lane,
3180 just hold extra information. */
3181 if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmtinfo_a)
3182 && STMT_VINFO_SIMD_LANE_ACCESS_P (stmtinfo_b)
3183 && data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb)) == 0)
3184 break;
3186 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
3187 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
3188 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
3189 HOST_WIDE_INT init_prev
3190 = TREE_INT_CST_LOW (DR_INIT (datarefs_copy[i-1]->dr));
3191 gcc_assert (init_a <= init_b
3192 && init_a <= init_prev
3193 && init_prev <= init_b);
3195 /* Do not place the same access in the interleaving chain twice. */
3196 if (init_b == init_prev)
3198 gcc_assert (gimple_uid (DR_STMT (datarefs_copy[i-1]->dr))
3199 < gimple_uid (DR_STMT (drb)));
3200 /* Simply link in duplicates and fix up the chain below. */
3202 else
3204 /* If init_b == init_a + the size of the type * k, we have an
3205 interleaving, and DRA is accessed before DRB. */
3206 unsigned HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
3207 if (type_size_a == 0
3208 || (((unsigned HOST_WIDE_INT)init_b - init_a)
3209 % type_size_a != 0))
3210 break;
3212 /* If we have a store, the accesses are adjacent. This splits
3213 groups into chunks we support (we don't support vectorization
3214 of stores with gaps). */
3215 if (!DR_IS_READ (dra)
3216 && (((unsigned HOST_WIDE_INT)init_b - init_prev)
3217 != type_size_a))
3218 break;
3220 /* If the step (if not zero or non-constant) is smaller than the
3221 difference between data-refs' inits this splits groups into
3222 suitable sizes. */
3223 if (tree_fits_shwi_p (DR_STEP (dra)))
3225 unsigned HOST_WIDE_INT step
3226 = absu_hwi (tree_to_shwi (DR_STEP (dra)));
3227 if (step != 0
3228 && step <= ((unsigned HOST_WIDE_INT)init_b - init_a))
3229 break;
3233 if (dump_enabled_p ())
3234 dump_printf_loc (MSG_NOTE, vect_location,
3235 DR_IS_READ (dra)
3236 ? "Detected interleaving load %T and %T\n"
3237 : "Detected interleaving store %T and %T\n",
3238 DR_REF (dra), DR_REF (drb));
3240 /* Link the found element into the group list. */
3241 if (!DR_GROUP_FIRST_ELEMENT (stmtinfo_a))
3243 DR_GROUP_FIRST_ELEMENT (stmtinfo_a) = stmtinfo_a;
3244 lastinfo = stmtinfo_a;
3246 DR_GROUP_FIRST_ELEMENT (stmtinfo_b) = stmtinfo_a;
3247 DR_GROUP_NEXT_ELEMENT (lastinfo) = stmtinfo_b;
3248 lastinfo = stmtinfo_b;
3250 STMT_VINFO_SLP_VECT_ONLY (stmtinfo_a)
3251 = !can_group_stmts_p (stmtinfo_a, stmtinfo_b, false);
3253 if (dump_enabled_p () && STMT_VINFO_SLP_VECT_ONLY (stmtinfo_a))
3254 dump_printf_loc (MSG_NOTE, vect_location,
3255 "Load suitable for SLP vectorization only.\n");
3257 if (init_b == init_prev
3258 && !to_fixup.add (DR_GROUP_FIRST_ELEMENT (stmtinfo_a))
3259 && dump_enabled_p ())
3260 dump_printf_loc (MSG_NOTE, vect_location,
3261 "Queuing group with duplicate access for fixup\n");
3265 /* Fixup groups with duplicate entries by splitting it. */
3266 while (1)
3268 hash_set<stmt_vec_info>::iterator it = to_fixup.begin ();
3269 if (!(it != to_fixup.end ()))
3270 break;
3271 stmt_vec_info grp = *it;
3272 to_fixup.remove (grp);
3274 /* Find the earliest duplicate group member. */
3275 unsigned first_duplicate = -1u;
3276 stmt_vec_info next, g = grp;
3277 while ((next = DR_GROUP_NEXT_ELEMENT (g)))
3279 if (tree_int_cst_equal (DR_INIT (STMT_VINFO_DR_INFO (next)->dr),
3280 DR_INIT (STMT_VINFO_DR_INFO (g)->dr))
3281 && gimple_uid (STMT_VINFO_STMT (next)) < first_duplicate)
3282 first_duplicate = gimple_uid (STMT_VINFO_STMT (next));
3283 g = next;
3285 if (first_duplicate == -1U)
3286 continue;
3288 /* Then move all stmts after the first duplicate to a new group.
3289 Note this is a heuristic but one with the property that *it
3290 is fixed up completely. */
3291 g = grp;
3292 stmt_vec_info newgroup = NULL, ng = grp;
3293 while ((next = DR_GROUP_NEXT_ELEMENT (g)))
3295 if (gimple_uid (STMT_VINFO_STMT (next)) >= first_duplicate)
3297 DR_GROUP_NEXT_ELEMENT (g) = DR_GROUP_NEXT_ELEMENT (next);
3298 if (!newgroup)
3299 newgroup = next;
3300 else
3301 DR_GROUP_NEXT_ELEMENT (ng) = next;
3302 ng = next;
3303 DR_GROUP_FIRST_ELEMENT (ng) = newgroup;
3305 else
3306 g = DR_GROUP_NEXT_ELEMENT (g);
3308 DR_GROUP_NEXT_ELEMENT (ng) = NULL;
3310 /* Fixup the new group which still may contain duplicates. */
3311 to_fixup.add (newgroup);
3314 dr_vec_info *dr_info;
3315 FOR_EACH_VEC_ELT (datarefs_copy, i, dr_info)
3317 if (STMT_VINFO_VECTORIZABLE (dr_info->stmt)
3318 && !vect_analyze_data_ref_access (vinfo, dr_info))
3320 if (dump_enabled_p ())
3321 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3322 "not vectorized: complicated access pattern.\n");
3324 if (is_a <bb_vec_info> (vinfo))
3326 /* Mark the statement as not vectorizable. */
3327 STMT_VINFO_VECTORIZABLE (dr_info->stmt) = false;
3328 continue;
3330 else
3332 datarefs_copy.release ();
3333 return opt_result::failure_at (dr_info->stmt->stmt,
3334 "not vectorized:"
3335 " complicated access pattern.\n");
3340 datarefs_copy.release ();
3341 return opt_result::success ();
3344 /* Function vect_vfa_segment_size.
3346 Input:
3347 DR_INFO: The data reference.
3348 LENGTH_FACTOR: segment length to consider.
3350 Return a value suitable for the dr_with_seg_len::seg_len field.
3351 This is the "distance travelled" by the pointer from the first
3352 iteration in the segment to the last. Note that it does not include
3353 the size of the access; in effect it only describes the first byte. */
3355 static tree
3356 vect_vfa_segment_size (dr_vec_info *dr_info, tree length_factor)
3358 length_factor = size_binop (MINUS_EXPR,
3359 fold_convert (sizetype, length_factor),
3360 size_one_node);
3361 return size_binop (MULT_EXPR, fold_convert (sizetype, DR_STEP (dr_info->dr)),
3362 length_factor);
3365 /* Return a value that, when added to abs (vect_vfa_segment_size (DR_INFO)),
3366 gives the worst-case number of bytes covered by the segment. */
3368 static unsigned HOST_WIDE_INT
3369 vect_vfa_access_size (vec_info *vinfo, dr_vec_info *dr_info)
3371 stmt_vec_info stmt_vinfo = dr_info->stmt;
3372 tree ref_type = TREE_TYPE (DR_REF (dr_info->dr));
3373 unsigned HOST_WIDE_INT ref_size = tree_to_uhwi (TYPE_SIZE_UNIT (ref_type));
3374 unsigned HOST_WIDE_INT access_size = ref_size;
3375 if (DR_GROUP_FIRST_ELEMENT (stmt_vinfo))
3377 gcc_assert (DR_GROUP_FIRST_ELEMENT (stmt_vinfo) == stmt_vinfo);
3378 access_size *= DR_GROUP_SIZE (stmt_vinfo) - DR_GROUP_GAP (stmt_vinfo);
3380 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
3381 int misalignment;
3382 if (STMT_VINFO_VEC_STMTS (stmt_vinfo).exists ()
3383 && ((misalignment = dr_misalignment (dr_info, vectype)), true)
3384 && (vect_supportable_dr_alignment (vinfo, dr_info, vectype, misalignment)
3385 == dr_explicit_realign_optimized))
3387 /* We might access a full vector's worth. */
3388 access_size += tree_to_uhwi (TYPE_SIZE_UNIT (vectype)) - ref_size;
3390 return access_size;
3393 /* Get the minimum alignment for all the scalar accesses that DR_INFO
3394 describes. */
3396 static unsigned int
3397 vect_vfa_align (dr_vec_info *dr_info)
3399 return dr_alignment (dr_info->dr);
3402 /* Function vect_no_alias_p.
3404 Given data references A and B with equal base and offset, see whether
3405 the alias relation can be decided at compilation time. Return 1 if
3406 it can and the references alias, 0 if it can and the references do
3407 not alias, and -1 if we cannot decide at compile time. SEGMENT_LENGTH_A,
3408 SEGMENT_LENGTH_B, ACCESS_SIZE_A and ACCESS_SIZE_B are the equivalent
3409 of dr_with_seg_len::{seg_len,access_size} for A and B. */
3411 static int
3412 vect_compile_time_alias (dr_vec_info *a, dr_vec_info *b,
3413 tree segment_length_a, tree segment_length_b,
3414 unsigned HOST_WIDE_INT access_size_a,
3415 unsigned HOST_WIDE_INT access_size_b)
3417 poly_offset_int offset_a = wi::to_poly_offset (DR_INIT (a->dr));
3418 poly_offset_int offset_b = wi::to_poly_offset (DR_INIT (b->dr));
3419 poly_uint64 const_length_a;
3420 poly_uint64 const_length_b;
3422 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
3423 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
3424 [a, a+12) */
3425 if (tree_int_cst_compare (DR_STEP (a->dr), size_zero_node) < 0)
3427 const_length_a = (-wi::to_poly_wide (segment_length_a)).force_uhwi ();
3428 offset_a -= const_length_a;
3430 else
3431 const_length_a = tree_to_poly_uint64 (segment_length_a);
3432 if (tree_int_cst_compare (DR_STEP (b->dr), size_zero_node) < 0)
3434 const_length_b = (-wi::to_poly_wide (segment_length_b)).force_uhwi ();
3435 offset_b -= const_length_b;
3437 else
3438 const_length_b = tree_to_poly_uint64 (segment_length_b);
3440 const_length_a += access_size_a;
3441 const_length_b += access_size_b;
3443 if (ranges_known_overlap_p (offset_a, const_length_a,
3444 offset_b, const_length_b))
3445 return 1;
3447 if (!ranges_maybe_overlap_p (offset_a, const_length_a,
3448 offset_b, const_length_b))
3449 return 0;
3451 return -1;
3454 /* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH
3455 in DDR is >= VF. */
3457 static bool
3458 dependence_distance_ge_vf (data_dependence_relation *ddr,
3459 unsigned int loop_depth, poly_uint64 vf)
3461 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE
3462 || DDR_NUM_DIST_VECTS (ddr) == 0)
3463 return false;
3465 /* If the dependence is exact, we should have limited the VF instead. */
3466 gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr));
3468 unsigned int i;
3469 lambda_vector dist_v;
3470 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
3472 HOST_WIDE_INT dist = dist_v[loop_depth];
3473 if (dist != 0
3474 && !(dist > 0 && DDR_REVERSED_P (ddr))
3475 && maybe_lt ((unsigned HOST_WIDE_INT) abs_hwi (dist), vf))
3476 return false;
3479 if (dump_enabled_p ())
3480 dump_printf_loc (MSG_NOTE, vect_location,
3481 "dependence distance between %T and %T is >= VF\n",
3482 DR_REF (DDR_A (ddr)), DR_REF (DDR_B (ddr)));
3484 return true;
3487 /* Dump LOWER_BOUND using flags DUMP_KIND. Dumps are known to be enabled. */
3489 static void
3490 dump_lower_bound (dump_flags_t dump_kind, const vec_lower_bound &lower_bound)
3492 dump_printf (dump_kind, "%s (%T) >= ",
3493 lower_bound.unsigned_p ? "unsigned" : "abs",
3494 lower_bound.expr);
3495 dump_dec (dump_kind, lower_bound.min_value);
3498 /* Record that the vectorized loop requires the vec_lower_bound described
3499 by EXPR, UNSIGNED_P and MIN_VALUE. */
3501 static void
3502 vect_check_lower_bound (loop_vec_info loop_vinfo, tree expr, bool unsigned_p,
3503 poly_uint64 min_value)
3505 vec<vec_lower_bound> &lower_bounds
3506 = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
3507 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
3508 if (operand_equal_p (lower_bounds[i].expr, expr, 0))
3510 unsigned_p &= lower_bounds[i].unsigned_p;
3511 min_value = upper_bound (lower_bounds[i].min_value, min_value);
3512 if (lower_bounds[i].unsigned_p != unsigned_p
3513 || maybe_lt (lower_bounds[i].min_value, min_value))
3515 lower_bounds[i].unsigned_p = unsigned_p;
3516 lower_bounds[i].min_value = min_value;
3517 if (dump_enabled_p ())
3519 dump_printf_loc (MSG_NOTE, vect_location,
3520 "updating run-time check to ");
3521 dump_lower_bound (MSG_NOTE, lower_bounds[i]);
3522 dump_printf (MSG_NOTE, "\n");
3525 return;
3528 vec_lower_bound lower_bound (expr, unsigned_p, min_value);
3529 if (dump_enabled_p ())
3531 dump_printf_loc (MSG_NOTE, vect_location, "need a run-time check that ");
3532 dump_lower_bound (MSG_NOTE, lower_bound);
3533 dump_printf (MSG_NOTE, "\n");
3535 LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).safe_push (lower_bound);
3538 /* Return true if it's unlikely that the step of the vectorized form of DR_INFO
3539 will span fewer than GAP bytes. */
3541 static bool
3542 vect_small_gap_p (loop_vec_info loop_vinfo, dr_vec_info *dr_info,
3543 poly_int64 gap)
3545 stmt_vec_info stmt_info = dr_info->stmt;
3546 HOST_WIDE_INT count
3547 = estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
3548 if (DR_GROUP_FIRST_ELEMENT (stmt_info))
3549 count *= DR_GROUP_SIZE (DR_GROUP_FIRST_ELEMENT (stmt_info));
3550 return (estimated_poly_value (gap)
3551 <= count * vect_get_scalar_dr_size (dr_info));
3554 /* Return true if we know that there is no alias between DR_INFO_A and
3555 DR_INFO_B when abs (DR_STEP (DR_INFO_A->dr)) >= N for some N.
3556 When returning true, set *LOWER_BOUND_OUT to this N. */
3558 static bool
3559 vectorizable_with_step_bound_p (dr_vec_info *dr_info_a, dr_vec_info *dr_info_b,
3560 poly_uint64 *lower_bound_out)
3562 /* Check that there is a constant gap of known sign between DR_A
3563 and DR_B. */
3564 data_reference *dr_a = dr_info_a->dr;
3565 data_reference *dr_b = dr_info_b->dr;
3566 poly_int64 init_a, init_b;
3567 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b), 0)
3568 || !operand_equal_p (DR_OFFSET (dr_a), DR_OFFSET (dr_b), 0)
3569 || !operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0)
3570 || !poly_int_tree_p (DR_INIT (dr_a), &init_a)
3571 || !poly_int_tree_p (DR_INIT (dr_b), &init_b)
3572 || !ordered_p (init_a, init_b))
3573 return false;
3575 /* Sort DR_A and DR_B by the address they access. */
3576 if (maybe_lt (init_b, init_a))
3578 std::swap (init_a, init_b);
3579 std::swap (dr_info_a, dr_info_b);
3580 std::swap (dr_a, dr_b);
3583 /* If the two accesses could be dependent within a scalar iteration,
3584 make sure that we'd retain their order. */
3585 if (maybe_gt (init_a + vect_get_scalar_dr_size (dr_info_a), init_b)
3586 && !vect_preserves_scalar_order_p (dr_info_a, dr_info_b))
3587 return false;
3589 /* There is no alias if abs (DR_STEP) is greater than or equal to
3590 the bytes spanned by the combination of the two accesses. */
3591 *lower_bound_out = init_b + vect_get_scalar_dr_size (dr_info_b) - init_a;
3592 return true;
3595 /* Function vect_prune_runtime_alias_test_list.
3597 Prune a list of ddrs to be tested at run-time by versioning for alias.
3598 Merge several alias checks into one if possible.
3599 Return FALSE if resulting list of ddrs is longer then allowed by
3600 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
3602 opt_result
3603 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
3605 typedef pair_hash <tree_operand_hash, tree_operand_hash> tree_pair_hash;
3606 hash_set <tree_pair_hash> compared_objects;
3608 const vec<ddr_p> &may_alias_ddrs = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
3609 vec<dr_with_seg_len_pair_t> &comp_alias_ddrs
3610 = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3611 const vec<vec_object_pair> &check_unequal_addrs
3612 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3613 poly_uint64 vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3614 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
3616 ddr_p ddr;
3617 unsigned int i;
3618 tree length_factor;
3620 DUMP_VECT_SCOPE ("vect_prune_runtime_alias_test_list");
3622 /* Step values are irrelevant for aliasing if the number of vector
3623 iterations is equal to the number of scalar iterations (which can
3624 happen for fully-SLP loops). */
3625 bool vf_one_p = known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), 1U);
3627 if (!vf_one_p)
3629 /* Convert the checks for nonzero steps into bound tests. */
3630 tree value;
3631 FOR_EACH_VEC_ELT (LOOP_VINFO_CHECK_NONZERO (loop_vinfo), i, value)
3632 vect_check_lower_bound (loop_vinfo, value, true, 1);
3635 if (may_alias_ddrs.is_empty ())
3636 return opt_result::success ();
3638 comp_alias_ddrs.create (may_alias_ddrs.length ());
3640 unsigned int loop_depth
3641 = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num,
3642 LOOP_VINFO_LOOP_NEST (loop_vinfo));
3644 /* First, we collect all data ref pairs for aliasing checks. */
3645 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
3647 poly_uint64 lower_bound;
3648 tree segment_length_a, segment_length_b;
3649 unsigned HOST_WIDE_INT access_size_a, access_size_b;
3650 unsigned int align_a, align_b;
3652 /* Ignore the alias if the VF we chose ended up being no greater
3653 than the dependence distance. */
3654 if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor))
3655 continue;
3657 if (DDR_OBJECT_A (ddr))
3659 vec_object_pair new_pair (DDR_OBJECT_A (ddr), DDR_OBJECT_B (ddr));
3660 if (!compared_objects.add (new_pair))
3662 if (dump_enabled_p ())
3663 dump_printf_loc (MSG_NOTE, vect_location,
3664 "checking that %T and %T"
3665 " have different addresses\n",
3666 new_pair.first, new_pair.second);
3667 LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).safe_push (new_pair);
3669 continue;
3672 dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (DDR_A (ddr));
3673 stmt_vec_info stmt_info_a = dr_info_a->stmt;
3675 dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (DDR_B (ddr));
3676 stmt_vec_info stmt_info_b = dr_info_b->stmt;
3678 bool preserves_scalar_order_p
3679 = vect_preserves_scalar_order_p (dr_info_a, dr_info_b);
3680 bool ignore_step_p
3681 = (vf_one_p
3682 && (preserves_scalar_order_p
3683 || operand_equal_p (DR_STEP (dr_info_a->dr),
3684 DR_STEP (dr_info_b->dr))));
3686 /* Skip the pair if inter-iteration dependencies are irrelevant
3687 and intra-iteration dependencies are guaranteed to be honored. */
3688 if (ignore_step_p
3689 && (preserves_scalar_order_p
3690 || vectorizable_with_step_bound_p (dr_info_a, dr_info_b,
3691 &lower_bound)))
3693 if (dump_enabled_p ())
3694 dump_printf_loc (MSG_NOTE, vect_location,
3695 "no need for alias check between "
3696 "%T and %T when VF is 1\n",
3697 DR_REF (dr_info_a->dr), DR_REF (dr_info_b->dr));
3698 continue;
3701 /* See whether we can handle the alias using a bounds check on
3702 the step, and whether that's likely to be the best approach.
3703 (It might not be, for example, if the minimum step is much larger
3704 than the number of bytes handled by one vector iteration.) */
3705 if (!ignore_step_p
3706 && TREE_CODE (DR_STEP (dr_info_a->dr)) != INTEGER_CST
3707 && vectorizable_with_step_bound_p (dr_info_a, dr_info_b,
3708 &lower_bound)
3709 && (vect_small_gap_p (loop_vinfo, dr_info_a, lower_bound)
3710 || vect_small_gap_p (loop_vinfo, dr_info_b, lower_bound)))
3712 bool unsigned_p = dr_known_forward_stride_p (dr_info_a->dr);
3713 if (dump_enabled_p ())
3715 dump_printf_loc (MSG_NOTE, vect_location, "no alias between "
3716 "%T and %T when the step %T is outside ",
3717 DR_REF (dr_info_a->dr),
3718 DR_REF (dr_info_b->dr),
3719 DR_STEP (dr_info_a->dr));
3720 if (unsigned_p)
3721 dump_printf (MSG_NOTE, "[0");
3722 else
3724 dump_printf (MSG_NOTE, "(");
3725 dump_dec (MSG_NOTE, poly_int64 (-lower_bound));
3727 dump_printf (MSG_NOTE, ", ");
3728 dump_dec (MSG_NOTE, lower_bound);
3729 dump_printf (MSG_NOTE, ")\n");
3731 vect_check_lower_bound (loop_vinfo, DR_STEP (dr_info_a->dr),
3732 unsigned_p, lower_bound);
3733 continue;
3736 stmt_vec_info dr_group_first_a = DR_GROUP_FIRST_ELEMENT (stmt_info_a);
3737 if (dr_group_first_a)
3739 stmt_info_a = dr_group_first_a;
3740 dr_info_a = STMT_VINFO_DR_INFO (stmt_info_a);
3743 stmt_vec_info dr_group_first_b = DR_GROUP_FIRST_ELEMENT (stmt_info_b);
3744 if (dr_group_first_b)
3746 stmt_info_b = dr_group_first_b;
3747 dr_info_b = STMT_VINFO_DR_INFO (stmt_info_b);
3750 if (ignore_step_p)
3752 segment_length_a = size_zero_node;
3753 segment_length_b = size_zero_node;
3755 else
3757 if (!operand_equal_p (DR_STEP (dr_info_a->dr),
3758 DR_STEP (dr_info_b->dr), 0))
3759 length_factor = scalar_loop_iters;
3760 else
3761 length_factor = size_int (vect_factor);
3762 segment_length_a = vect_vfa_segment_size (dr_info_a, length_factor);
3763 segment_length_b = vect_vfa_segment_size (dr_info_b, length_factor);
3765 access_size_a = vect_vfa_access_size (loop_vinfo, dr_info_a);
3766 access_size_b = vect_vfa_access_size (loop_vinfo, dr_info_b);
3767 align_a = vect_vfa_align (dr_info_a);
3768 align_b = vect_vfa_align (dr_info_b);
3770 /* See whether the alias is known at compilation time. */
3771 if (operand_equal_p (DR_BASE_ADDRESS (dr_info_a->dr),
3772 DR_BASE_ADDRESS (dr_info_b->dr), 0)
3773 && operand_equal_p (DR_OFFSET (dr_info_a->dr),
3774 DR_OFFSET (dr_info_b->dr), 0)
3775 && TREE_CODE (DR_STEP (dr_info_a->dr)) == INTEGER_CST
3776 && TREE_CODE (DR_STEP (dr_info_b->dr)) == INTEGER_CST
3777 && poly_int_tree_p (segment_length_a)
3778 && poly_int_tree_p (segment_length_b))
3780 int res = vect_compile_time_alias (dr_info_a, dr_info_b,
3781 segment_length_a,
3782 segment_length_b,
3783 access_size_a,
3784 access_size_b);
3785 if (res >= 0 && dump_enabled_p ())
3787 dump_printf_loc (MSG_NOTE, vect_location,
3788 "can tell at compile time that %T and %T",
3789 DR_REF (dr_info_a->dr), DR_REF (dr_info_b->dr));
3790 if (res == 0)
3791 dump_printf (MSG_NOTE, " do not alias\n");
3792 else
3793 dump_printf (MSG_NOTE, " alias\n");
3796 if (res == 0)
3797 continue;
3799 if (res == 1)
3800 return opt_result::failure_at (stmt_info_b->stmt,
3801 "not vectorized:"
3802 " compilation time alias: %G%G",
3803 stmt_info_a->stmt,
3804 stmt_info_b->stmt);
3807 dr_with_seg_len dr_a (dr_info_a->dr, segment_length_a,
3808 access_size_a, align_a);
3809 dr_with_seg_len dr_b (dr_info_b->dr, segment_length_b,
3810 access_size_b, align_b);
3811 /* Canonicalize the order to be the one that's needed for accurate
3812 RAW, WAR and WAW flags, in cases where the data references are
3813 well-ordered. The order doesn't really matter otherwise,
3814 but we might as well be consistent. */
3815 if (get_later_stmt (stmt_info_a, stmt_info_b) == stmt_info_a)
3816 std::swap (dr_a, dr_b);
3818 dr_with_seg_len_pair_t dr_with_seg_len_pair
3819 (dr_a, dr_b, (preserves_scalar_order_p
3820 ? dr_with_seg_len_pair_t::WELL_ORDERED
3821 : dr_with_seg_len_pair_t::REORDERED));
3823 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
3826 prune_runtime_alias_test_list (&comp_alias_ddrs, vect_factor);
3828 unsigned int count = (comp_alias_ddrs.length ()
3829 + check_unequal_addrs.length ());
3831 if (count
3832 && (loop_cost_model (LOOP_VINFO_LOOP (loop_vinfo))
3833 == VECT_COST_MODEL_VERY_CHEAP))
3834 return opt_result::failure_at
3835 (vect_location, "would need a runtime alias check\n");
3837 if (dump_enabled_p ())
3838 dump_printf_loc (MSG_NOTE, vect_location,
3839 "improved number of alias checks from %d to %d\n",
3840 may_alias_ddrs.length (), count);
3841 unsigned limit = param_vect_max_version_for_alias_checks;
3842 if (loop_cost_model (LOOP_VINFO_LOOP (loop_vinfo)) == VECT_COST_MODEL_CHEAP)
3843 limit = param_vect_max_version_for_alias_checks * 6 / 10;
3844 if (count > limit)
3845 return opt_result::failure_at
3846 (vect_location,
3847 "number of versioning for alias run-time tests exceeds %d "
3848 "(--param vect-max-version-for-alias-checks)\n", limit);
3850 return opt_result::success ();
3853 /* Check whether we can use an internal function for a gather load
3854 or scatter store. READ_P is true for loads and false for stores.
3855 MASKED_P is true if the load or store is conditional. MEMORY_TYPE is
3856 the type of the memory elements being loaded or stored. OFFSET_TYPE
3857 is the type of the offset that is being applied to the invariant
3858 base address. SCALE is the amount by which the offset should
3859 be multiplied *after* it has been converted to address width.
3861 Return true if the function is supported, storing the function id in
3862 *IFN_OUT and the vector type for the offset in *OFFSET_VECTYPE_OUT. */
3864 bool
3865 vect_gather_scatter_fn_p (vec_info *vinfo, bool read_p, bool masked_p,
3866 tree vectype, tree memory_type, tree offset_type,
3867 int scale, internal_fn *ifn_out,
3868 tree *offset_vectype_out)
3870 unsigned int memory_bits = tree_to_uhwi (TYPE_SIZE (memory_type));
3871 unsigned int element_bits = vector_element_bits (vectype);
3872 if (element_bits != memory_bits)
3873 /* For now the vector elements must be the same width as the
3874 memory elements. */
3875 return false;
3877 /* Work out which function we need. */
3878 internal_fn ifn, alt_ifn;
3879 if (read_p)
3881 ifn = masked_p ? IFN_MASK_GATHER_LOAD : IFN_GATHER_LOAD;
3882 alt_ifn = IFN_MASK_GATHER_LOAD;
3884 else
3886 ifn = masked_p ? IFN_MASK_SCATTER_STORE : IFN_SCATTER_STORE;
3887 alt_ifn = IFN_MASK_SCATTER_STORE;
3890 for (;;)
3892 tree offset_vectype = get_vectype_for_scalar_type (vinfo, offset_type);
3893 if (!offset_vectype)
3894 return false;
3896 /* Test whether the target supports this combination. */
3897 if (internal_gather_scatter_fn_supported_p (ifn, vectype, memory_type,
3898 offset_vectype, scale))
3900 *ifn_out = ifn;
3901 *offset_vectype_out = offset_vectype;
3902 return true;
3904 else if (!masked_p
3905 && internal_gather_scatter_fn_supported_p (alt_ifn, vectype,
3906 memory_type,
3907 offset_vectype,
3908 scale))
3910 *ifn_out = alt_ifn;
3911 *offset_vectype_out = offset_vectype;
3912 return true;
3915 if (TYPE_PRECISION (offset_type) >= POINTER_SIZE
3916 && TYPE_PRECISION (offset_type) >= element_bits)
3917 return false;
3919 offset_type = build_nonstandard_integer_type
3920 (TYPE_PRECISION (offset_type) * 2, TYPE_UNSIGNED (offset_type));
3924 /* STMT_INFO is a call to an internal gather load or scatter store function.
3925 Describe the operation in INFO. */
3927 static void
3928 vect_describe_gather_scatter_call (stmt_vec_info stmt_info,
3929 gather_scatter_info *info)
3931 gcall *call = as_a <gcall *> (stmt_info->stmt);
3932 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3933 data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3935 info->ifn = gimple_call_internal_fn (call);
3936 info->decl = NULL_TREE;
3937 info->base = gimple_call_arg (call, 0);
3938 info->offset = gimple_call_arg (call, 1);
3939 info->offset_dt = vect_unknown_def_type;
3940 info->offset_vectype = NULL_TREE;
3941 info->scale = TREE_INT_CST_LOW (gimple_call_arg (call, 2));
3942 info->element_type = TREE_TYPE (vectype);
3943 info->memory_type = TREE_TYPE (DR_REF (dr));
3946 /* Return true if a non-affine read or write in STMT_INFO is suitable for a
3947 gather load or scatter store. Describe the operation in *INFO if so. */
3949 bool
3950 vect_check_gather_scatter (stmt_vec_info stmt_info, loop_vec_info loop_vinfo,
3951 gather_scatter_info *info)
3953 HOST_WIDE_INT scale = 1;
3954 poly_int64 pbitpos, pbitsize;
3955 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3956 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3957 tree offtype = NULL_TREE;
3958 tree decl = NULL_TREE, base, off;
3959 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3960 tree memory_type = TREE_TYPE (DR_REF (dr));
3961 machine_mode pmode;
3962 int punsignedp, reversep, pvolatilep = 0;
3963 internal_fn ifn;
3964 tree offset_vectype;
3965 bool masked_p = false;
3967 /* See whether this is already a call to a gather/scatter internal function.
3968 If not, see whether it's a masked load or store. */
3969 gcall *call = dyn_cast <gcall *> (stmt_info->stmt);
3970 if (call && gimple_call_internal_p (call))
3972 ifn = gimple_call_internal_fn (call);
3973 if (internal_gather_scatter_fn_p (ifn))
3975 vect_describe_gather_scatter_call (stmt_info, info);
3976 return true;
3978 masked_p = (ifn == IFN_MASK_LOAD || ifn == IFN_MASK_STORE);
3981 /* True if we should aim to use internal functions rather than
3982 built-in functions. */
3983 bool use_ifn_p = (DR_IS_READ (dr)
3984 ? supports_vec_gather_load_p (TYPE_MODE (vectype))
3985 : supports_vec_scatter_store_p (TYPE_MODE (vectype)));
3987 base = DR_REF (dr);
3988 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
3989 see if we can use the def stmt of the address. */
3990 if (masked_p
3991 && TREE_CODE (base) == MEM_REF
3992 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
3993 && integer_zerop (TREE_OPERAND (base, 1))
3994 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
3996 gimple *def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
3997 if (is_gimple_assign (def_stmt)
3998 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
3999 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
4002 /* The gather and scatter builtins need address of the form
4003 loop_invariant + vector * {1, 2, 4, 8}
4005 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
4006 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
4007 of loop invariants/SSA_NAMEs defined in the loop, with casts,
4008 multiplications and additions in it. To get a vector, we need
4009 a single SSA_NAME that will be defined in the loop and will
4010 contain everything that is not loop invariant and that can be
4011 vectorized. The following code attempts to find such a preexistng
4012 SSA_NAME OFF and put the loop invariants into a tree BASE
4013 that can be gimplified before the loop. */
4014 base = get_inner_reference (base, &pbitsize, &pbitpos, &off, &pmode,
4015 &punsignedp, &reversep, &pvolatilep);
4016 if (reversep)
4017 return false;
4019 poly_int64 pbytepos = exact_div (pbitpos, BITS_PER_UNIT);
4021 if (TREE_CODE (base) == MEM_REF)
4023 if (!integer_zerop (TREE_OPERAND (base, 1)))
4025 if (off == NULL_TREE)
4026 off = wide_int_to_tree (sizetype, mem_ref_offset (base));
4027 else
4028 off = size_binop (PLUS_EXPR, off,
4029 fold_convert (sizetype, TREE_OPERAND (base, 1)));
4031 base = TREE_OPERAND (base, 0);
4033 else
4034 base = build_fold_addr_expr (base);
4036 if (off == NULL_TREE)
4037 off = size_zero_node;
4039 /* If base is not loop invariant, either off is 0, then we start with just
4040 the constant offset in the loop invariant BASE and continue with base
4041 as OFF, otherwise give up.
4042 We could handle that case by gimplifying the addition of base + off
4043 into some SSA_NAME and use that as off, but for now punt. */
4044 if (!expr_invariant_in_loop_p (loop, base))
4046 if (!integer_zerop (off))
4047 return false;
4048 off = base;
4049 base = size_int (pbytepos);
4051 /* Otherwise put base + constant offset into the loop invariant BASE
4052 and continue with OFF. */
4053 else
4055 base = fold_convert (sizetype, base);
4056 base = size_binop (PLUS_EXPR, base, size_int (pbytepos));
4059 /* OFF at this point may be either a SSA_NAME or some tree expression
4060 from get_inner_reference. Try to peel off loop invariants from it
4061 into BASE as long as possible. */
4062 STRIP_NOPS (off);
4063 while (offtype == NULL_TREE)
4065 enum tree_code code;
4066 tree op0, op1, add = NULL_TREE;
4068 if (TREE_CODE (off) == SSA_NAME)
4070 gimple *def_stmt = SSA_NAME_DEF_STMT (off);
4072 if (expr_invariant_in_loop_p (loop, off))
4073 return false;
4075 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
4076 break;
4078 op0 = gimple_assign_rhs1 (def_stmt);
4079 code = gimple_assign_rhs_code (def_stmt);
4080 op1 = gimple_assign_rhs2 (def_stmt);
4082 else
4084 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
4085 return false;
4086 code = TREE_CODE (off);
4087 extract_ops_from_tree (off, &code, &op0, &op1);
4089 switch (code)
4091 case POINTER_PLUS_EXPR:
4092 case PLUS_EXPR:
4093 if (expr_invariant_in_loop_p (loop, op0))
4095 add = op0;
4096 off = op1;
4097 do_add:
4098 add = fold_convert (sizetype, add);
4099 if (scale != 1)
4100 add = size_binop (MULT_EXPR, add, size_int (scale));
4101 base = size_binop (PLUS_EXPR, base, add);
4102 continue;
4104 if (expr_invariant_in_loop_p (loop, op1))
4106 add = op1;
4107 off = op0;
4108 goto do_add;
4110 break;
4111 case MINUS_EXPR:
4112 if (expr_invariant_in_loop_p (loop, op1))
4114 add = fold_convert (sizetype, op1);
4115 add = size_binop (MINUS_EXPR, size_zero_node, add);
4116 off = op0;
4117 goto do_add;
4119 break;
4120 case MULT_EXPR:
4121 if (scale == 1 && tree_fits_shwi_p (op1))
4123 int new_scale = tree_to_shwi (op1);
4124 /* Only treat this as a scaling operation if the target
4125 supports it for at least some offset type. */
4126 if (use_ifn_p
4127 && !vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr),
4128 masked_p, vectype, memory_type,
4129 signed_char_type_node,
4130 new_scale, &ifn,
4131 &offset_vectype)
4132 && !vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr),
4133 masked_p, vectype, memory_type,
4134 unsigned_char_type_node,
4135 new_scale, &ifn,
4136 &offset_vectype))
4137 break;
4138 scale = new_scale;
4139 off = op0;
4140 continue;
4142 break;
4143 case SSA_NAME:
4144 off = op0;
4145 continue;
4146 CASE_CONVERT:
4147 if (!POINTER_TYPE_P (TREE_TYPE (op0))
4148 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
4149 break;
4151 /* Don't include the conversion if the target is happy with
4152 the current offset type. */
4153 if (use_ifn_p
4154 && !POINTER_TYPE_P (TREE_TYPE (off))
4155 && vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr),
4156 masked_p, vectype, memory_type,
4157 TREE_TYPE (off), scale, &ifn,
4158 &offset_vectype))
4159 break;
4161 if (TYPE_PRECISION (TREE_TYPE (op0))
4162 == TYPE_PRECISION (TREE_TYPE (off)))
4164 off = op0;
4165 continue;
4168 /* Include the conversion if it is widening and we're using
4169 the IFN path or the target can handle the converted from
4170 offset or the current size is not already the same as the
4171 data vector element size. */
4172 if ((TYPE_PRECISION (TREE_TYPE (op0))
4173 < TYPE_PRECISION (TREE_TYPE (off)))
4174 && (use_ifn_p
4175 || (DR_IS_READ (dr)
4176 ? (targetm.vectorize.builtin_gather
4177 && targetm.vectorize.builtin_gather (vectype,
4178 TREE_TYPE (op0),
4179 scale))
4180 : (targetm.vectorize.builtin_scatter
4181 && targetm.vectorize.builtin_scatter (vectype,
4182 TREE_TYPE (op0),
4183 scale)))
4184 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (off)),
4185 TYPE_SIZE (TREE_TYPE (vectype)), 0)))
4187 off = op0;
4188 offtype = TREE_TYPE (off);
4189 STRIP_NOPS (off);
4190 continue;
4192 break;
4193 default:
4194 break;
4196 break;
4199 /* If at the end OFF still isn't a SSA_NAME or isn't
4200 defined in the loop, punt. */
4201 if (TREE_CODE (off) != SSA_NAME
4202 || expr_invariant_in_loop_p (loop, off))
4203 return false;
4205 if (offtype == NULL_TREE)
4206 offtype = TREE_TYPE (off);
4208 if (use_ifn_p)
4210 if (!vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr), masked_p,
4211 vectype, memory_type, offtype, scale,
4212 &ifn, &offset_vectype))
4213 ifn = IFN_LAST;
4214 decl = NULL_TREE;
4216 else
4218 if (DR_IS_READ (dr))
4220 if (targetm.vectorize.builtin_gather)
4221 decl = targetm.vectorize.builtin_gather (vectype, offtype, scale);
4223 else
4225 if (targetm.vectorize.builtin_scatter)
4226 decl = targetm.vectorize.builtin_scatter (vectype, offtype, scale);
4228 ifn = IFN_LAST;
4229 /* The offset vector type will be read from DECL when needed. */
4230 offset_vectype = NULL_TREE;
4233 info->ifn = ifn;
4234 info->decl = decl;
4235 info->base = base;
4236 info->offset = off;
4237 info->offset_dt = vect_unknown_def_type;
4238 info->offset_vectype = offset_vectype;
4239 info->scale = scale;
4240 info->element_type = TREE_TYPE (vectype);
4241 info->memory_type = memory_type;
4242 return true;
4245 /* Find the data references in STMT, analyze them with respect to LOOP and
4246 append them to DATAREFS. Return false if datarefs in this stmt cannot
4247 be handled. */
4249 opt_result
4250 vect_find_stmt_data_reference (loop_p loop, gimple *stmt,
4251 vec<data_reference_p> *datarefs,
4252 vec<int> *dataref_groups, int group_id)
4254 /* We can ignore clobbers for dataref analysis - they are removed during
4255 loop vectorization and BB vectorization checks dependences with a
4256 stmt walk. */
4257 if (gimple_clobber_p (stmt))
4258 return opt_result::success ();
4260 if (gimple_has_volatile_ops (stmt))
4261 return opt_result::failure_at (stmt, "not vectorized: volatile type: %G",
4262 stmt);
4264 if (stmt_can_throw_internal (cfun, stmt))
4265 return opt_result::failure_at (stmt,
4266 "not vectorized:"
4267 " statement can throw an exception: %G",
4268 stmt);
4270 auto_vec<data_reference_p, 2> refs;
4271 opt_result res = find_data_references_in_stmt (loop, stmt, &refs);
4272 if (!res)
4273 return res;
4275 if (refs.is_empty ())
4276 return opt_result::success ();
4278 if (refs.length () > 1)
4280 while (!refs.is_empty ())
4281 free_data_ref (refs.pop ());
4282 return opt_result::failure_at (stmt,
4283 "not vectorized: more than one "
4284 "data ref in stmt: %G", stmt);
4287 data_reference_p dr = refs.pop ();
4288 if (gcall *call = dyn_cast <gcall *> (stmt))
4289 if (!gimple_call_internal_p (call)
4290 || (gimple_call_internal_fn (call) != IFN_MASK_LOAD
4291 && gimple_call_internal_fn (call) != IFN_MASK_STORE))
4293 free_data_ref (dr);
4294 return opt_result::failure_at (stmt,
4295 "not vectorized: dr in a call %G", stmt);
4298 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
4299 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
4301 free_data_ref (dr);
4302 return opt_result::failure_at (stmt,
4303 "not vectorized:"
4304 " statement is bitfield access %G", stmt);
4307 if (DR_BASE_ADDRESS (dr)
4308 && TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
4310 free_data_ref (dr);
4311 return opt_result::failure_at (stmt,
4312 "not vectorized:"
4313 " base addr of dr is a constant\n");
4316 /* Check whether this may be a SIMD lane access and adjust the
4317 DR to make it easier for us to handle it. */
4318 if (loop
4319 && loop->simduid
4320 && (!DR_BASE_ADDRESS (dr)
4321 || !DR_OFFSET (dr)
4322 || !DR_INIT (dr)
4323 || !DR_STEP (dr)))
4325 struct data_reference *newdr
4326 = create_data_ref (NULL, loop_containing_stmt (stmt), DR_REF (dr), stmt,
4327 DR_IS_READ (dr), DR_IS_CONDITIONAL_IN_STMT (dr));
4328 if (DR_BASE_ADDRESS (newdr)
4329 && DR_OFFSET (newdr)
4330 && DR_INIT (newdr)
4331 && DR_STEP (newdr)
4332 && TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
4333 && integer_zerop (DR_STEP (newdr)))
4335 tree base_address = DR_BASE_ADDRESS (newdr);
4336 tree off = DR_OFFSET (newdr);
4337 tree step = ssize_int (1);
4338 if (integer_zerop (off)
4339 && TREE_CODE (base_address) == POINTER_PLUS_EXPR)
4341 off = TREE_OPERAND (base_address, 1);
4342 base_address = TREE_OPERAND (base_address, 0);
4344 STRIP_NOPS (off);
4345 if (TREE_CODE (off) == MULT_EXPR
4346 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
4348 step = TREE_OPERAND (off, 1);
4349 off = TREE_OPERAND (off, 0);
4350 STRIP_NOPS (off);
4352 if (CONVERT_EXPR_P (off)
4353 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off, 0)))
4354 < TYPE_PRECISION (TREE_TYPE (off))))
4355 off = TREE_OPERAND (off, 0);
4356 if (TREE_CODE (off) == SSA_NAME)
4358 gimple *def = SSA_NAME_DEF_STMT (off);
4359 /* Look through widening conversion. */
4360 if (is_gimple_assign (def)
4361 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
4363 tree rhs1 = gimple_assign_rhs1 (def);
4364 if (TREE_CODE (rhs1) == SSA_NAME
4365 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
4366 && (TYPE_PRECISION (TREE_TYPE (off))
4367 > TYPE_PRECISION (TREE_TYPE (rhs1))))
4368 def = SSA_NAME_DEF_STMT (rhs1);
4370 if (is_gimple_call (def)
4371 && gimple_call_internal_p (def)
4372 && (gimple_call_internal_fn (def) == IFN_GOMP_SIMD_LANE))
4374 tree arg = gimple_call_arg (def, 0);
4375 tree reft = TREE_TYPE (DR_REF (newdr));
4376 gcc_assert (TREE_CODE (arg) == SSA_NAME);
4377 arg = SSA_NAME_VAR (arg);
4378 if (arg == loop->simduid
4379 /* For now. */
4380 && tree_int_cst_equal (TYPE_SIZE_UNIT (reft), step))
4382 DR_BASE_ADDRESS (newdr) = base_address;
4383 DR_OFFSET (newdr) = ssize_int (0);
4384 DR_STEP (newdr) = step;
4385 DR_OFFSET_ALIGNMENT (newdr) = BIGGEST_ALIGNMENT;
4386 DR_STEP_ALIGNMENT (newdr) = highest_pow2_factor (step);
4387 /* Mark as simd-lane access. */
4388 tree arg2 = gimple_call_arg (def, 1);
4389 newdr->aux = (void *) (-1 - tree_to_uhwi (arg2));
4390 free_data_ref (dr);
4391 datarefs->safe_push (newdr);
4392 if (dataref_groups)
4393 dataref_groups->safe_push (group_id);
4394 return opt_result::success ();
4399 free_data_ref (newdr);
4402 datarefs->safe_push (dr);
4403 if (dataref_groups)
4404 dataref_groups->safe_push (group_id);
4405 return opt_result::success ();
4408 /* Function vect_analyze_data_refs.
4410 Find all the data references in the loop or basic block.
4412 The general structure of the analysis of data refs in the vectorizer is as
4413 follows:
4414 1- vect_analyze_data_refs(loop/bb): call
4415 compute_data_dependences_for_loop/bb to find and analyze all data-refs
4416 in the loop/bb and their dependences.
4417 2- vect_analyze_dependences(): apply dependence testing using ddrs.
4418 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
4419 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
4423 opt_result
4424 vect_analyze_data_refs (vec_info *vinfo, poly_uint64 *min_vf, bool *fatal)
4426 class loop *loop = NULL;
4427 unsigned int i;
4428 struct data_reference *dr;
4429 tree scalar_type;
4431 DUMP_VECT_SCOPE ("vect_analyze_data_refs");
4433 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
4434 loop = LOOP_VINFO_LOOP (loop_vinfo);
4436 /* Go through the data-refs, check that the analysis succeeded. Update
4437 pointer from stmt_vec_info struct to DR and vectype. */
4439 vec<data_reference_p> datarefs = vinfo->shared->datarefs;
4440 FOR_EACH_VEC_ELT (datarefs, i, dr)
4442 enum { SG_NONE, GATHER, SCATTER } gatherscatter = SG_NONE;
4443 poly_uint64 vf;
4445 gcc_assert (DR_REF (dr));
4446 stmt_vec_info stmt_info = vinfo->lookup_stmt (DR_STMT (dr));
4447 gcc_assert (!stmt_info->dr_aux.dr);
4448 stmt_info->dr_aux.dr = dr;
4449 stmt_info->dr_aux.stmt = stmt_info;
4451 /* Check that analysis of the data-ref succeeded. */
4452 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
4453 || !DR_STEP (dr))
4455 bool maybe_gather
4456 = DR_IS_READ (dr)
4457 && !TREE_THIS_VOLATILE (DR_REF (dr));
4458 bool maybe_scatter
4459 = DR_IS_WRITE (dr)
4460 && !TREE_THIS_VOLATILE (DR_REF (dr))
4461 && (targetm.vectorize.builtin_scatter != NULL
4462 || supports_vec_scatter_store_p ());
4464 /* If target supports vector gather loads or scatter stores,
4465 see if they can't be used. */
4466 if (is_a <loop_vec_info> (vinfo)
4467 && !nested_in_vect_loop_p (loop, stmt_info))
4469 if (maybe_gather || maybe_scatter)
4471 if (maybe_gather)
4472 gatherscatter = GATHER;
4473 else
4474 gatherscatter = SCATTER;
4478 if (gatherscatter == SG_NONE)
4480 if (dump_enabled_p ())
4481 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4482 "not vectorized: data ref analysis "
4483 "failed %G", stmt_info->stmt);
4484 if (is_a <bb_vec_info> (vinfo))
4486 /* In BB vectorization the ref can still participate
4487 in dependence analysis, we just can't vectorize it. */
4488 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
4489 continue;
4491 return opt_result::failure_at (stmt_info->stmt,
4492 "not vectorized:"
4493 " data ref analysis failed: %G",
4494 stmt_info->stmt);
4498 /* See if this was detected as SIMD lane access. */
4499 if (dr->aux == (void *)-1
4500 || dr->aux == (void *)-2
4501 || dr->aux == (void *)-3
4502 || dr->aux == (void *)-4)
4504 if (nested_in_vect_loop_p (loop, stmt_info))
4505 return opt_result::failure_at (stmt_info->stmt,
4506 "not vectorized:"
4507 " data ref analysis failed: %G",
4508 stmt_info->stmt);
4509 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info)
4510 = -(uintptr_t) dr->aux;
4513 tree base = get_base_address (DR_REF (dr));
4514 if (base && VAR_P (base) && DECL_NONALIASED (base))
4516 if (dump_enabled_p ())
4517 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4518 "not vectorized: base object not addressable "
4519 "for stmt: %G", stmt_info->stmt);
4520 if (is_a <bb_vec_info> (vinfo))
4522 /* In BB vectorization the ref can still participate
4523 in dependence analysis, we just can't vectorize it. */
4524 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
4525 continue;
4527 return opt_result::failure_at (stmt_info->stmt,
4528 "not vectorized: base object not"
4529 " addressable for stmt: %G",
4530 stmt_info->stmt);
4533 if (is_a <loop_vec_info> (vinfo)
4534 && DR_STEP (dr)
4535 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
4537 if (nested_in_vect_loop_p (loop, stmt_info))
4538 return opt_result::failure_at (stmt_info->stmt,
4539 "not vectorized: "
4540 "not suitable for strided load %G",
4541 stmt_info->stmt);
4542 STMT_VINFO_STRIDED_P (stmt_info) = true;
4545 /* Update DR field in stmt_vec_info struct. */
4547 /* If the dataref is in an inner-loop of the loop that is considered for
4548 for vectorization, we also want to analyze the access relative to
4549 the outer-loop (DR contains information only relative to the
4550 inner-most enclosing loop). We do that by building a reference to the
4551 first location accessed by the inner-loop, and analyze it relative to
4552 the outer-loop. */
4553 if (loop && nested_in_vect_loop_p (loop, stmt_info))
4555 /* Build a reference to the first location accessed by the
4556 inner loop: *(BASE + INIT + OFFSET). By construction,
4557 this address must be invariant in the inner loop, so we
4558 can consider it as being used in the outer loop. */
4559 tree base = unshare_expr (DR_BASE_ADDRESS (dr));
4560 tree offset = unshare_expr (DR_OFFSET (dr));
4561 tree init = unshare_expr (DR_INIT (dr));
4562 tree init_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset),
4563 init, offset);
4564 tree init_addr = fold_build_pointer_plus (base, init_offset);
4565 tree init_ref = build_fold_indirect_ref (init_addr);
4567 if (dump_enabled_p ())
4568 dump_printf_loc (MSG_NOTE, vect_location,
4569 "analyze in outer loop: %T\n", init_ref);
4571 opt_result res
4572 = dr_analyze_innermost (&STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info),
4573 init_ref, loop, stmt_info->stmt);
4574 if (!res)
4575 /* dr_analyze_innermost already explained the failure. */
4576 return res;
4578 if (dump_enabled_p ())
4579 dump_printf_loc (MSG_NOTE, vect_location,
4580 "\touter base_address: %T\n"
4581 "\touter offset from base address: %T\n"
4582 "\touter constant offset from base address: %T\n"
4583 "\touter step: %T\n"
4584 "\touter base alignment: %d\n\n"
4585 "\touter base misalignment: %d\n"
4586 "\touter offset alignment: %d\n"
4587 "\touter step alignment: %d\n",
4588 STMT_VINFO_DR_BASE_ADDRESS (stmt_info),
4589 STMT_VINFO_DR_OFFSET (stmt_info),
4590 STMT_VINFO_DR_INIT (stmt_info),
4591 STMT_VINFO_DR_STEP (stmt_info),
4592 STMT_VINFO_DR_BASE_ALIGNMENT (stmt_info),
4593 STMT_VINFO_DR_BASE_MISALIGNMENT (stmt_info),
4594 STMT_VINFO_DR_OFFSET_ALIGNMENT (stmt_info),
4595 STMT_VINFO_DR_STEP_ALIGNMENT (stmt_info));
4598 /* Set vectype for STMT. */
4599 scalar_type = TREE_TYPE (DR_REF (dr));
4600 tree vectype = get_vectype_for_scalar_type (vinfo, scalar_type);
4601 if (!vectype)
4603 if (dump_enabled_p ())
4605 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4606 "not vectorized: no vectype for stmt: %G",
4607 stmt_info->stmt);
4608 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
4609 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
4610 scalar_type);
4611 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
4614 if (is_a <bb_vec_info> (vinfo))
4616 /* No vector type is fine, the ref can still participate
4617 in dependence analysis, we just can't vectorize it. */
4618 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
4619 continue;
4621 if (fatal)
4622 *fatal = false;
4623 return opt_result::failure_at (stmt_info->stmt,
4624 "not vectorized:"
4625 " no vectype for stmt: %G"
4626 " scalar_type: %T\n",
4627 stmt_info->stmt, scalar_type);
4629 else
4631 if (dump_enabled_p ())
4632 dump_printf_loc (MSG_NOTE, vect_location,
4633 "got vectype for stmt: %G%T\n",
4634 stmt_info->stmt, vectype);
4637 /* Adjust the minimal vectorization factor according to the
4638 vector type. */
4639 vf = TYPE_VECTOR_SUBPARTS (vectype);
4640 *min_vf = upper_bound (*min_vf, vf);
4642 /* Leave the BB vectorizer to pick the vector type later, based on
4643 the final dataref group size and SLP node size. */
4644 if (is_a <loop_vec_info> (vinfo))
4645 STMT_VINFO_VECTYPE (stmt_info) = vectype;
4647 if (gatherscatter != SG_NONE)
4649 gather_scatter_info gs_info;
4650 if (!vect_check_gather_scatter (stmt_info,
4651 as_a <loop_vec_info> (vinfo),
4652 &gs_info)
4653 || !get_vectype_for_scalar_type (vinfo,
4654 TREE_TYPE (gs_info.offset)))
4656 if (fatal)
4657 *fatal = false;
4658 return opt_result::failure_at
4659 (stmt_info->stmt,
4660 (gatherscatter == GATHER)
4661 ? "not vectorized: not suitable for gather load %G"
4662 : "not vectorized: not suitable for scatter store %G",
4663 stmt_info->stmt);
4665 STMT_VINFO_GATHER_SCATTER_P (stmt_info) = gatherscatter;
4669 /* We used to stop processing and prune the list here. Verify we no
4670 longer need to. */
4671 gcc_assert (i == datarefs.length ());
4673 return opt_result::success ();
4677 /* Function vect_get_new_vect_var.
4679 Returns a name for a new variable. The current naming scheme appends the
4680 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
4681 the name of vectorizer generated variables, and appends that to NAME if
4682 provided. */
4684 tree
4685 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
4687 const char *prefix;
4688 tree new_vect_var;
4690 switch (var_kind)
4692 case vect_simple_var:
4693 prefix = "vect";
4694 break;
4695 case vect_scalar_var:
4696 prefix = "stmp";
4697 break;
4698 case vect_mask_var:
4699 prefix = "mask";
4700 break;
4701 case vect_pointer_var:
4702 prefix = "vectp";
4703 break;
4704 default:
4705 gcc_unreachable ();
4708 if (name)
4710 char* tmp = concat (prefix, "_", name, NULL);
4711 new_vect_var = create_tmp_reg (type, tmp);
4712 free (tmp);
4714 else
4715 new_vect_var = create_tmp_reg (type, prefix);
4717 return new_vect_var;
4720 /* Like vect_get_new_vect_var but return an SSA name. */
4722 tree
4723 vect_get_new_ssa_name (tree type, enum vect_var_kind var_kind, const char *name)
4725 const char *prefix;
4726 tree new_vect_var;
4728 switch (var_kind)
4730 case vect_simple_var:
4731 prefix = "vect";
4732 break;
4733 case vect_scalar_var:
4734 prefix = "stmp";
4735 break;
4736 case vect_pointer_var:
4737 prefix = "vectp";
4738 break;
4739 default:
4740 gcc_unreachable ();
4743 if (name)
4745 char* tmp = concat (prefix, "_", name, NULL);
4746 new_vect_var = make_temp_ssa_name (type, NULL, tmp);
4747 free (tmp);
4749 else
4750 new_vect_var = make_temp_ssa_name (type, NULL, prefix);
4752 return new_vect_var;
4755 /* Duplicate points-to info on NAME from DR_INFO. */
4757 static void
4758 vect_duplicate_ssa_name_ptr_info (tree name, dr_vec_info *dr_info)
4760 duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr_info->dr));
4761 /* DR_PTR_INFO is for a base SSA name, not including constant or
4762 variable offsets in the ref so its alignment info does not apply. */
4763 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
4766 /* Function vect_create_addr_base_for_vector_ref.
4768 Create an expression that computes the address of the first memory location
4769 that will be accessed for a data reference.
4771 Input:
4772 STMT_INFO: The statement containing the data reference.
4773 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
4774 OFFSET: Optional. If supplied, it is be added to the initial address.
4775 LOOP: Specify relative to which loop-nest should the address be computed.
4776 For example, when the dataref is in an inner-loop nested in an
4777 outer-loop that is now being vectorized, LOOP can be either the
4778 outer-loop, or the inner-loop. The first memory location accessed
4779 by the following dataref ('in' points to short):
4781 for (i=0; i<N; i++)
4782 for (j=0; j<M; j++)
4783 s += in[i+j]
4785 is as follows:
4786 if LOOP=i_loop: &in (relative to i_loop)
4787 if LOOP=j_loop: &in+i*2B (relative to j_loop)
4789 Output:
4790 1. Return an SSA_NAME whose value is the address of the memory location of
4791 the first vector of the data reference.
4792 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
4793 these statement(s) which define the returned SSA_NAME.
4795 FORNOW: We are only handling array accesses with step 1. */
4797 tree
4798 vect_create_addr_base_for_vector_ref (vec_info *vinfo, stmt_vec_info stmt_info,
4799 gimple_seq *new_stmt_list,
4800 tree offset)
4802 dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
4803 struct data_reference *dr = dr_info->dr;
4804 const char *base_name;
4805 tree addr_base;
4806 tree dest;
4807 gimple_seq seq = NULL;
4808 tree vect_ptr_type;
4809 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
4810 innermost_loop_behavior *drb = vect_dr_behavior (vinfo, dr_info);
4812 tree data_ref_base = unshare_expr (drb->base_address);
4813 tree base_offset = unshare_expr (get_dr_vinfo_offset (vinfo, dr_info, true));
4814 tree init = unshare_expr (drb->init);
4816 if (loop_vinfo)
4817 base_name = get_name (data_ref_base);
4818 else
4820 base_offset = ssize_int (0);
4821 init = ssize_int (0);
4822 base_name = get_name (DR_REF (dr));
4825 /* Create base_offset */
4826 base_offset = size_binop (PLUS_EXPR,
4827 fold_convert (sizetype, base_offset),
4828 fold_convert (sizetype, init));
4830 if (offset)
4832 offset = fold_convert (sizetype, offset);
4833 base_offset = fold_build2 (PLUS_EXPR, sizetype,
4834 base_offset, offset);
4837 /* base + base_offset */
4838 if (loop_vinfo)
4839 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
4840 else
4842 addr_base = build1 (ADDR_EXPR,
4843 build_pointer_type (TREE_TYPE (DR_REF (dr))),
4844 unshare_expr (DR_REF (dr)));
4847 vect_ptr_type = build_pointer_type (TREE_TYPE (DR_REF (dr)));
4848 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
4849 addr_base = force_gimple_operand (addr_base, &seq, true, dest);
4850 gimple_seq_add_seq (new_stmt_list, seq);
4852 if (DR_PTR_INFO (dr)
4853 && TREE_CODE (addr_base) == SSA_NAME
4854 /* We should only duplicate pointer info to newly created SSA names. */
4855 && SSA_NAME_VAR (addr_base) == dest)
4857 gcc_assert (!SSA_NAME_PTR_INFO (addr_base));
4858 vect_duplicate_ssa_name_ptr_info (addr_base, dr_info);
4861 if (dump_enabled_p ())
4862 dump_printf_loc (MSG_NOTE, vect_location, "created %T\n", addr_base);
4864 return addr_base;
4868 /* Function vect_create_data_ref_ptr.
4870 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
4871 location accessed in the loop by STMT_INFO, along with the def-use update
4872 chain to appropriately advance the pointer through the loop iterations.
4873 Also set aliasing information for the pointer. This pointer is used by
4874 the callers to this function to create a memory reference expression for
4875 vector load/store access.
4877 Input:
4878 1. STMT_INFO: a stmt that references memory. Expected to be of the form
4879 GIMPLE_ASSIGN <name, data-ref> or
4880 GIMPLE_ASSIGN <data-ref, name>.
4881 2. AGGR_TYPE: the type of the reference, which should be either a vector
4882 or an array.
4883 3. AT_LOOP: the loop where the vector memref is to be created.
4884 4. OFFSET (optional): a byte offset to be added to the initial address
4885 accessed by the data-ref in STMT_INFO.
4886 5. BSI: location where the new stmts are to be placed if there is no loop
4887 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
4888 pointing to the initial address.
4889 8. IV_STEP (optional, defaults to NULL): the amount that should be added
4890 to the IV during each iteration of the loop. NULL says to move
4891 by one copy of AGGR_TYPE up or down, depending on the step of the
4892 data reference.
4894 Output:
4895 1. Declare a new ptr to vector_type, and have it point to the base of the
4896 data reference (initial addressed accessed by the data reference).
4897 For example, for vector of type V8HI, the following code is generated:
4899 v8hi *ap;
4900 ap = (v8hi *)initial_address;
4902 if OFFSET is not supplied:
4903 initial_address = &a[init];
4904 if OFFSET is supplied:
4905 initial_address = &a[init] + OFFSET;
4906 if BYTE_OFFSET is supplied:
4907 initial_address = &a[init] + BYTE_OFFSET;
4909 Return the initial_address in INITIAL_ADDRESS.
4911 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
4912 update the pointer in each iteration of the loop.
4914 Return the increment stmt that updates the pointer in PTR_INCR.
4916 3. Return the pointer. */
4918 tree
4919 vect_create_data_ref_ptr (vec_info *vinfo, stmt_vec_info stmt_info,
4920 tree aggr_type, class loop *at_loop, tree offset,
4921 tree *initial_address, gimple_stmt_iterator *gsi,
4922 gimple **ptr_incr, bool only_init,
4923 tree iv_step)
4925 const char *base_name;
4926 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
4927 class loop *loop = NULL;
4928 bool nested_in_vect_loop = false;
4929 class loop *containing_loop = NULL;
4930 tree aggr_ptr_type;
4931 tree aggr_ptr;
4932 tree new_temp;
4933 gimple_seq new_stmt_list = NULL;
4934 edge pe = NULL;
4935 basic_block new_bb;
4936 tree aggr_ptr_init;
4937 dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
4938 struct data_reference *dr = dr_info->dr;
4939 tree aptr;
4940 gimple_stmt_iterator incr_gsi;
4941 bool insert_after;
4942 tree indx_before_incr, indx_after_incr;
4943 gimple *incr;
4944 bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (vinfo);
4946 gcc_assert (iv_step != NULL_TREE
4947 || TREE_CODE (aggr_type) == ARRAY_TYPE
4948 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4950 if (loop_vinfo)
4952 loop = LOOP_VINFO_LOOP (loop_vinfo);
4953 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt_info);
4954 containing_loop = (gimple_bb (stmt_info->stmt))->loop_father;
4955 pe = loop_preheader_edge (loop);
4957 else
4959 gcc_assert (bb_vinfo);
4960 only_init = true;
4961 *ptr_incr = NULL;
4964 /* Create an expression for the first address accessed by this load
4965 in LOOP. */
4966 base_name = get_name (DR_BASE_ADDRESS (dr));
4968 if (dump_enabled_p ())
4970 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
4971 dump_printf_loc (MSG_NOTE, vect_location,
4972 "create %s-pointer variable to type: %T",
4973 get_tree_code_name (TREE_CODE (aggr_type)),
4974 aggr_type);
4975 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
4976 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
4977 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4978 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
4979 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
4980 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
4981 else
4982 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
4983 dump_printf (MSG_NOTE, "%T\n", DR_BASE_OBJECT (dr));
4986 /* (1) Create the new aggregate-pointer variable.
4987 Vector and array types inherit the alias set of their component
4988 type by default so we need to use a ref-all pointer if the data
4989 reference does not conflict with the created aggregated data
4990 reference because it is not addressable. */
4991 bool need_ref_all = false;
4992 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4993 get_alias_set (DR_REF (dr))))
4994 need_ref_all = true;
4995 /* Likewise for any of the data references in the stmt group. */
4996 else if (DR_GROUP_SIZE (stmt_info) > 1)
4998 stmt_vec_info sinfo = DR_GROUP_FIRST_ELEMENT (stmt_info);
5001 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
5002 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
5003 get_alias_set (DR_REF (sdr))))
5005 need_ref_all = true;
5006 break;
5008 sinfo = DR_GROUP_NEXT_ELEMENT (sinfo);
5010 while (sinfo);
5012 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
5013 need_ref_all);
5014 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
5017 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
5018 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
5019 def-use update cycles for the pointer: one relative to the outer-loop
5020 (LOOP), which is what steps (3) and (4) below do. The other is relative
5021 to the inner-loop (which is the inner-most loop containing the dataref),
5022 and this is done be step (5) below.
5024 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
5025 inner-most loop, and so steps (3),(4) work the same, and step (5) is
5026 redundant. Steps (3),(4) create the following:
5028 vp0 = &base_addr;
5029 LOOP: vp1 = phi(vp0,vp2)
5032 vp2 = vp1 + step
5033 goto LOOP
5035 If there is an inner-loop nested in loop, then step (5) will also be
5036 applied, and an additional update in the inner-loop will be created:
5038 vp0 = &base_addr;
5039 LOOP: vp1 = phi(vp0,vp2)
5041 inner: vp3 = phi(vp1,vp4)
5042 vp4 = vp3 + inner_step
5043 if () goto inner
5045 vp2 = vp1 + step
5046 if () goto LOOP */
5048 /* (2) Calculate the initial address of the aggregate-pointer, and set
5049 the aggregate-pointer to point to it before the loop. */
5051 /* Create: (&(base[init_val]+offset) in the loop preheader. */
5053 new_temp = vect_create_addr_base_for_vector_ref (vinfo,
5054 stmt_info, &new_stmt_list,
5055 offset);
5056 if (new_stmt_list)
5058 if (pe)
5060 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
5061 gcc_assert (!new_bb);
5063 else
5064 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
5067 *initial_address = new_temp;
5068 aggr_ptr_init = new_temp;
5070 /* (3) Handle the updating of the aggregate-pointer inside the loop.
5071 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
5072 inner-loop nested in LOOP (during outer-loop vectorization). */
5074 /* No update in loop is required. */
5075 if (only_init && (!loop_vinfo || at_loop == loop))
5076 aptr = aggr_ptr_init;
5077 else
5079 /* Accesses to invariant addresses should be handled specially
5080 by the caller. */
5081 tree step = vect_dr_behavior (vinfo, dr_info)->step;
5082 gcc_assert (!integer_zerop (step));
5084 if (iv_step == NULL_TREE)
5086 /* The step of the aggregate pointer is the type size,
5087 negated for downward accesses. */
5088 iv_step = TYPE_SIZE_UNIT (aggr_type);
5089 if (tree_int_cst_sgn (step) == -1)
5090 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
5093 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
5095 create_iv (aggr_ptr_init,
5096 fold_convert (aggr_ptr_type, iv_step),
5097 aggr_ptr, loop, &incr_gsi, insert_after,
5098 &indx_before_incr, &indx_after_incr);
5099 incr = gsi_stmt (incr_gsi);
5101 /* Copy the points-to information if it exists. */
5102 if (DR_PTR_INFO (dr))
5104 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr_info);
5105 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr_info);
5107 if (ptr_incr)
5108 *ptr_incr = incr;
5110 aptr = indx_before_incr;
5113 if (!nested_in_vect_loop || only_init)
5114 return aptr;
5117 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
5118 nested in LOOP, if exists. */
5120 gcc_assert (nested_in_vect_loop);
5121 if (!only_init)
5123 standard_iv_increment_position (containing_loop, &incr_gsi,
5124 &insert_after);
5125 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
5126 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
5127 &indx_after_incr);
5128 incr = gsi_stmt (incr_gsi);
5130 /* Copy the points-to information if it exists. */
5131 if (DR_PTR_INFO (dr))
5133 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr_info);
5134 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr_info);
5136 if (ptr_incr)
5137 *ptr_incr = incr;
5139 return indx_before_incr;
5141 else
5142 gcc_unreachable ();
5146 /* Function bump_vector_ptr
5148 Increment a pointer (to a vector type) by vector-size. If requested,
5149 i.e. if PTR-INCR is given, then also connect the new increment stmt
5150 to the existing def-use update-chain of the pointer, by modifying
5151 the PTR_INCR as illustrated below:
5153 The pointer def-use update-chain before this function:
5154 DATAREF_PTR = phi (p_0, p_2)
5155 ....
5156 PTR_INCR: p_2 = DATAREF_PTR + step
5158 The pointer def-use update-chain after this function:
5159 DATAREF_PTR = phi (p_0, p_2)
5160 ....
5161 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
5162 ....
5163 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
5165 Input:
5166 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
5167 in the loop.
5168 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
5169 the loop. The increment amount across iterations is expected
5170 to be vector_size.
5171 BSI - location where the new update stmt is to be placed.
5172 STMT_INFO - the original scalar memory-access stmt that is being vectorized.
5173 BUMP - optional. The offset by which to bump the pointer. If not given,
5174 the offset is assumed to be vector_size.
5176 Output: Return NEW_DATAREF_PTR as illustrated above.
5180 tree
5181 bump_vector_ptr (vec_info *vinfo,
5182 tree dataref_ptr, gimple *ptr_incr, gimple_stmt_iterator *gsi,
5183 stmt_vec_info stmt_info, tree bump)
5185 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
5186 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5187 tree update = TYPE_SIZE_UNIT (vectype);
5188 gimple *incr_stmt;
5189 ssa_op_iter iter;
5190 use_operand_p use_p;
5191 tree new_dataref_ptr;
5193 if (bump)
5194 update = bump;
5196 if (TREE_CODE (dataref_ptr) == SSA_NAME)
5197 new_dataref_ptr = copy_ssa_name (dataref_ptr);
5198 else
5199 new_dataref_ptr = make_ssa_name (TREE_TYPE (dataref_ptr));
5200 incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR,
5201 dataref_ptr, update);
5202 vect_finish_stmt_generation (vinfo, stmt_info, incr_stmt, gsi);
5203 /* Fold the increment, avoiding excessive chains use-def chains of
5204 those, leading to compile-time issues for passes until the next
5205 forwprop pass which would do this as well. */
5206 gimple_stmt_iterator fold_gsi = gsi_for_stmt (incr_stmt);
5207 if (fold_stmt (&fold_gsi, follow_all_ssa_edges))
5209 incr_stmt = gsi_stmt (fold_gsi);
5210 update_stmt (incr_stmt);
5213 /* Copy the points-to information if it exists. */
5214 if (DR_PTR_INFO (dr))
5216 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
5217 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
5220 if (!ptr_incr)
5221 return new_dataref_ptr;
5223 /* Update the vector-pointer's cross-iteration increment. */
5224 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
5226 tree use = USE_FROM_PTR (use_p);
5228 if (use == dataref_ptr)
5229 SET_USE (use_p, new_dataref_ptr);
5230 else
5231 gcc_assert (operand_equal_p (use, update, 0));
5234 return new_dataref_ptr;
5238 /* Copy memory reference info such as base/clique from the SRC reference
5239 to the DEST MEM_REF. */
5241 void
5242 vect_copy_ref_info (tree dest, tree src)
5244 if (TREE_CODE (dest) != MEM_REF)
5245 return;
5247 tree src_base = src;
5248 while (handled_component_p (src_base))
5249 src_base = TREE_OPERAND (src_base, 0);
5250 if (TREE_CODE (src_base) != MEM_REF
5251 && TREE_CODE (src_base) != TARGET_MEM_REF)
5252 return;
5254 MR_DEPENDENCE_CLIQUE (dest) = MR_DEPENDENCE_CLIQUE (src_base);
5255 MR_DEPENDENCE_BASE (dest) = MR_DEPENDENCE_BASE (src_base);
5259 /* Function vect_create_destination_var.
5261 Create a new temporary of type VECTYPE. */
5263 tree
5264 vect_create_destination_var (tree scalar_dest, tree vectype)
5266 tree vec_dest;
5267 const char *name;
5268 char *new_name;
5269 tree type;
5270 enum vect_var_kind kind;
5272 kind = vectype
5273 ? VECTOR_BOOLEAN_TYPE_P (vectype)
5274 ? vect_mask_var
5275 : vect_simple_var
5276 : vect_scalar_var;
5277 type = vectype ? vectype : TREE_TYPE (scalar_dest);
5279 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
5281 name = get_name (scalar_dest);
5282 if (name)
5283 new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest));
5284 else
5285 new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest));
5286 vec_dest = vect_get_new_vect_var (type, kind, new_name);
5287 free (new_name);
5289 return vec_dest;
5292 /* Function vect_grouped_store_supported.
5294 Returns TRUE if interleave high and interleave low permutations
5295 are supported, and FALSE otherwise. */
5297 bool
5298 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
5300 machine_mode mode = TYPE_MODE (vectype);
5302 /* vect_permute_store_chain requires the group size to be equal to 3 or
5303 be a power of two. */
5304 if (count != 3 && exact_log2 (count) == -1)
5306 if (dump_enabled_p ())
5307 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5308 "the size of the group of accesses"
5309 " is not a power of 2 or not eqaul to 3\n");
5310 return false;
5313 /* Check that the permutation is supported. */
5314 if (VECTOR_MODE_P (mode))
5316 unsigned int i;
5317 if (count == 3)
5319 unsigned int j0 = 0, j1 = 0, j2 = 0;
5320 unsigned int i, j;
5322 unsigned int nelt;
5323 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5325 if (dump_enabled_p ())
5326 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5327 "cannot handle groups of 3 stores for"
5328 " variable-length vectors\n");
5329 return false;
5332 vec_perm_builder sel (nelt, nelt, 1);
5333 sel.quick_grow (nelt);
5334 vec_perm_indices indices;
5335 for (j = 0; j < 3; j++)
5337 int nelt0 = ((3 - j) * nelt) % 3;
5338 int nelt1 = ((3 - j) * nelt + 1) % 3;
5339 int nelt2 = ((3 - j) * nelt + 2) % 3;
5340 for (i = 0; i < nelt; i++)
5342 if (3 * i + nelt0 < nelt)
5343 sel[3 * i + nelt0] = j0++;
5344 if (3 * i + nelt1 < nelt)
5345 sel[3 * i + nelt1] = nelt + j1++;
5346 if (3 * i + nelt2 < nelt)
5347 sel[3 * i + nelt2] = 0;
5349 indices.new_vector (sel, 2, nelt);
5350 if (!can_vec_perm_const_p (mode, indices))
5352 if (dump_enabled_p ())
5353 dump_printf (MSG_MISSED_OPTIMIZATION,
5354 "permutation op not supported by target.\n");
5355 return false;
5358 for (i = 0; i < nelt; i++)
5360 if (3 * i + nelt0 < nelt)
5361 sel[3 * i + nelt0] = 3 * i + nelt0;
5362 if (3 * i + nelt1 < nelt)
5363 sel[3 * i + nelt1] = 3 * i + nelt1;
5364 if (3 * i + nelt2 < nelt)
5365 sel[3 * i + nelt2] = nelt + j2++;
5367 indices.new_vector (sel, 2, nelt);
5368 if (!can_vec_perm_const_p (mode, indices))
5370 if (dump_enabled_p ())
5371 dump_printf (MSG_MISSED_OPTIMIZATION,
5372 "permutation op not supported by target.\n");
5373 return false;
5376 return true;
5378 else
5380 /* If length is not equal to 3 then only power of 2 is supported. */
5381 gcc_assert (pow2p_hwi (count));
5382 poly_uint64 nelt = GET_MODE_NUNITS (mode);
5384 /* The encoding has 2 interleaved stepped patterns. */
5385 vec_perm_builder sel (nelt, 2, 3);
5386 sel.quick_grow (6);
5387 for (i = 0; i < 3; i++)
5389 sel[i * 2] = i;
5390 sel[i * 2 + 1] = i + nelt;
5392 vec_perm_indices indices (sel, 2, nelt);
5393 if (can_vec_perm_const_p (mode, indices))
5395 for (i = 0; i < 6; i++)
5396 sel[i] += exact_div (nelt, 2);
5397 indices.new_vector (sel, 2, nelt);
5398 if (can_vec_perm_const_p (mode, indices))
5399 return true;
5404 if (dump_enabled_p ())
5405 dump_printf (MSG_MISSED_OPTIMIZATION,
5406 "permutation op not supported by target.\n");
5407 return false;
5411 /* Return TRUE if vec_{mask_}store_lanes is available for COUNT vectors of
5412 type VECTYPE. MASKED_P says whether the masked form is needed. */
5414 bool
5415 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count,
5416 bool masked_p)
5418 if (masked_p)
5419 return vect_lanes_optab_supported_p ("vec_mask_store_lanes",
5420 vec_mask_store_lanes_optab,
5421 vectype, count);
5422 else
5423 return vect_lanes_optab_supported_p ("vec_store_lanes",
5424 vec_store_lanes_optab,
5425 vectype, count);
5429 /* Function vect_permute_store_chain.
5431 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
5432 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
5433 the data correctly for the stores. Return the final references for stores
5434 in RESULT_CHAIN.
5436 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5437 The input is 4 vectors each containing 8 elements. We assign a number to
5438 each element, the input sequence is:
5440 1st vec: 0 1 2 3 4 5 6 7
5441 2nd vec: 8 9 10 11 12 13 14 15
5442 3rd vec: 16 17 18 19 20 21 22 23
5443 4th vec: 24 25 26 27 28 29 30 31
5445 The output sequence should be:
5447 1st vec: 0 8 16 24 1 9 17 25
5448 2nd vec: 2 10 18 26 3 11 19 27
5449 3rd vec: 4 12 20 28 5 13 21 30
5450 4th vec: 6 14 22 30 7 15 23 31
5452 i.e., we interleave the contents of the four vectors in their order.
5454 We use interleave_high/low instructions to create such output. The input of
5455 each interleave_high/low operation is two vectors:
5456 1st vec 2nd vec
5457 0 1 2 3 4 5 6 7
5458 the even elements of the result vector are obtained left-to-right from the
5459 high/low elements of the first vector. The odd elements of the result are
5460 obtained left-to-right from the high/low elements of the second vector.
5461 The output of interleave_high will be: 0 4 1 5
5462 and of interleave_low: 2 6 3 7
5465 The permutation is done in log LENGTH stages. In each stage interleave_high
5466 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
5467 where the first argument is taken from the first half of DR_CHAIN and the
5468 second argument from it's second half.
5469 In our example,
5471 I1: interleave_high (1st vec, 3rd vec)
5472 I2: interleave_low (1st vec, 3rd vec)
5473 I3: interleave_high (2nd vec, 4th vec)
5474 I4: interleave_low (2nd vec, 4th vec)
5476 The output for the first stage is:
5478 I1: 0 16 1 17 2 18 3 19
5479 I2: 4 20 5 21 6 22 7 23
5480 I3: 8 24 9 25 10 26 11 27
5481 I4: 12 28 13 29 14 30 15 31
5483 The output of the second stage, i.e. the final result is:
5485 I1: 0 8 16 24 1 9 17 25
5486 I2: 2 10 18 26 3 11 19 27
5487 I3: 4 12 20 28 5 13 21 30
5488 I4: 6 14 22 30 7 15 23 31. */
5490 void
5491 vect_permute_store_chain (vec_info *vinfo, vec<tree> &dr_chain,
5492 unsigned int length,
5493 stmt_vec_info stmt_info,
5494 gimple_stmt_iterator *gsi,
5495 vec<tree> *result_chain)
5497 tree vect1, vect2, high, low;
5498 gimple *perm_stmt;
5499 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5500 tree perm_mask_low, perm_mask_high;
5501 tree data_ref;
5502 tree perm3_mask_low, perm3_mask_high;
5503 unsigned int i, j, n, log_length = exact_log2 (length);
5505 result_chain->quick_grow (length);
5506 memcpy (result_chain->address (), dr_chain.address (),
5507 length * sizeof (tree));
5509 if (length == 3)
5511 /* vect_grouped_store_supported ensures that this is constant. */
5512 unsigned int nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
5513 unsigned int j0 = 0, j1 = 0, j2 = 0;
5515 vec_perm_builder sel (nelt, nelt, 1);
5516 sel.quick_grow (nelt);
5517 vec_perm_indices indices;
5518 for (j = 0; j < 3; j++)
5520 int nelt0 = ((3 - j) * nelt) % 3;
5521 int nelt1 = ((3 - j) * nelt + 1) % 3;
5522 int nelt2 = ((3 - j) * nelt + 2) % 3;
5524 for (i = 0; i < nelt; i++)
5526 if (3 * i + nelt0 < nelt)
5527 sel[3 * i + nelt0] = j0++;
5528 if (3 * i + nelt1 < nelt)
5529 sel[3 * i + nelt1] = nelt + j1++;
5530 if (3 * i + nelt2 < nelt)
5531 sel[3 * i + nelt2] = 0;
5533 indices.new_vector (sel, 2, nelt);
5534 perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices);
5536 for (i = 0; i < nelt; i++)
5538 if (3 * i + nelt0 < nelt)
5539 sel[3 * i + nelt0] = 3 * i + nelt0;
5540 if (3 * i + nelt1 < nelt)
5541 sel[3 * i + nelt1] = 3 * i + nelt1;
5542 if (3 * i + nelt2 < nelt)
5543 sel[3 * i + nelt2] = nelt + j2++;
5545 indices.new_vector (sel, 2, nelt);
5546 perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices);
5548 vect1 = dr_chain[0];
5549 vect2 = dr_chain[1];
5551 /* Create interleaving stmt:
5552 low = VEC_PERM_EXPR <vect1, vect2,
5553 {j, nelt, *, j + 1, nelt + j + 1, *,
5554 j + 2, nelt + j + 2, *, ...}> */
5555 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5556 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
5557 vect2, perm3_mask_low);
5558 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
5560 vect1 = data_ref;
5561 vect2 = dr_chain[2];
5562 /* Create interleaving stmt:
5563 low = VEC_PERM_EXPR <vect1, vect2,
5564 {0, 1, nelt + j, 3, 4, nelt + j + 1,
5565 6, 7, nelt + j + 2, ...}> */
5566 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5567 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
5568 vect2, perm3_mask_high);
5569 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
5570 (*result_chain)[j] = data_ref;
5573 else
5575 /* If length is not equal to 3 then only power of 2 is supported. */
5576 gcc_assert (pow2p_hwi (length));
5578 /* The encoding has 2 interleaved stepped patterns. */
5579 poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype);
5580 vec_perm_builder sel (nelt, 2, 3);
5581 sel.quick_grow (6);
5582 for (i = 0; i < 3; i++)
5584 sel[i * 2] = i;
5585 sel[i * 2 + 1] = i + nelt;
5587 vec_perm_indices indices (sel, 2, nelt);
5588 perm_mask_high = vect_gen_perm_mask_checked (vectype, indices);
5590 for (i = 0; i < 6; i++)
5591 sel[i] += exact_div (nelt, 2);
5592 indices.new_vector (sel, 2, nelt);
5593 perm_mask_low = vect_gen_perm_mask_checked (vectype, indices);
5595 for (i = 0, n = log_length; i < n; i++)
5597 for (j = 0; j < length/2; j++)
5599 vect1 = dr_chain[j];
5600 vect2 = dr_chain[j+length/2];
5602 /* Create interleaving stmt:
5603 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
5604 ...}> */
5605 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
5606 perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1,
5607 vect2, perm_mask_high);
5608 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
5609 (*result_chain)[2*j] = high;
5611 /* Create interleaving stmt:
5612 low = VEC_PERM_EXPR <vect1, vect2,
5613 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
5614 ...}> */
5615 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
5616 perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1,
5617 vect2, perm_mask_low);
5618 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
5619 (*result_chain)[2*j+1] = low;
5621 memcpy (dr_chain.address (), result_chain->address (),
5622 length * sizeof (tree));
5627 /* Function vect_setup_realignment
5629 This function is called when vectorizing an unaligned load using
5630 the dr_explicit_realign[_optimized] scheme.
5631 This function generates the following code at the loop prolog:
5633 p = initial_addr;
5634 x msq_init = *(floor(p)); # prolog load
5635 realignment_token = call target_builtin;
5636 loop:
5637 x msq = phi (msq_init, ---)
5639 The stmts marked with x are generated only for the case of
5640 dr_explicit_realign_optimized.
5642 The code above sets up a new (vector) pointer, pointing to the first
5643 location accessed by STMT_INFO, and a "floor-aligned" load using that
5644 pointer. It also generates code to compute the "realignment-token"
5645 (if the relevant target hook was defined), and creates a phi-node at the
5646 loop-header bb whose arguments are the result of the prolog-load (created
5647 by this function) and the result of a load that takes place in the loop
5648 (to be created by the caller to this function).
5650 For the case of dr_explicit_realign_optimized:
5651 The caller to this function uses the phi-result (msq) to create the
5652 realignment code inside the loop, and sets up the missing phi argument,
5653 as follows:
5654 loop:
5655 msq = phi (msq_init, lsq)
5656 lsq = *(floor(p')); # load in loop
5657 result = realign_load (msq, lsq, realignment_token);
5659 For the case of dr_explicit_realign:
5660 loop:
5661 msq = *(floor(p)); # load in loop
5662 p' = p + (VS-1);
5663 lsq = *(floor(p')); # load in loop
5664 result = realign_load (msq, lsq, realignment_token);
5666 Input:
5667 STMT_INFO - (scalar) load stmt to be vectorized. This load accesses
5668 a memory location that may be unaligned.
5669 BSI - place where new code is to be inserted.
5670 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
5671 is used.
5673 Output:
5674 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
5675 target hook, if defined.
5676 Return value - the result of the loop-header phi node. */
5678 tree
5679 vect_setup_realignment (vec_info *vinfo, stmt_vec_info stmt_info,
5680 gimple_stmt_iterator *gsi, tree *realignment_token,
5681 enum dr_alignment_support alignment_support_scheme,
5682 tree init_addr,
5683 class loop **at_loop)
5685 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5686 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
5687 dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
5688 struct data_reference *dr = dr_info->dr;
5689 class loop *loop = NULL;
5690 edge pe = NULL;
5691 tree scalar_dest = gimple_assign_lhs (stmt_info->stmt);
5692 tree vec_dest;
5693 gimple *inc;
5694 tree ptr;
5695 tree data_ref;
5696 basic_block new_bb;
5697 tree msq_init = NULL_TREE;
5698 tree new_temp;
5699 gphi *phi_stmt;
5700 tree msq = NULL_TREE;
5701 gimple_seq stmts = NULL;
5702 bool compute_in_loop = false;
5703 bool nested_in_vect_loop = false;
5704 class loop *containing_loop = (gimple_bb (stmt_info->stmt))->loop_father;
5705 class loop *loop_for_initial_load = NULL;
5707 if (loop_vinfo)
5709 loop = LOOP_VINFO_LOOP (loop_vinfo);
5710 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt_info);
5713 gcc_assert (alignment_support_scheme == dr_explicit_realign
5714 || alignment_support_scheme == dr_explicit_realign_optimized);
5716 /* We need to generate three things:
5717 1. the misalignment computation
5718 2. the extra vector load (for the optimized realignment scheme).
5719 3. the phi node for the two vectors from which the realignment is
5720 done (for the optimized realignment scheme). */
5722 /* 1. Determine where to generate the misalignment computation.
5724 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
5725 calculation will be generated by this function, outside the loop (in the
5726 preheader). Otherwise, INIT_ADDR had already been computed for us by the
5727 caller, inside the loop.
5729 Background: If the misalignment remains fixed throughout the iterations of
5730 the loop, then both realignment schemes are applicable, and also the
5731 misalignment computation can be done outside LOOP. This is because we are
5732 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
5733 are a multiple of VS (the Vector Size), and therefore the misalignment in
5734 different vectorized LOOP iterations is always the same.
5735 The problem arises only if the memory access is in an inner-loop nested
5736 inside LOOP, which is now being vectorized using outer-loop vectorization.
5737 This is the only case when the misalignment of the memory access may not
5738 remain fixed throughout the iterations of the inner-loop (as explained in
5739 detail in vect_supportable_dr_alignment). In this case, not only is the
5740 optimized realignment scheme not applicable, but also the misalignment
5741 computation (and generation of the realignment token that is passed to
5742 REALIGN_LOAD) have to be done inside the loop.
5744 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
5745 or not, which in turn determines if the misalignment is computed inside
5746 the inner-loop, or outside LOOP. */
5748 if (init_addr != NULL_TREE || !loop_vinfo)
5750 compute_in_loop = true;
5751 gcc_assert (alignment_support_scheme == dr_explicit_realign);
5755 /* 2. Determine where to generate the extra vector load.
5757 For the optimized realignment scheme, instead of generating two vector
5758 loads in each iteration, we generate a single extra vector load in the
5759 preheader of the loop, and in each iteration reuse the result of the
5760 vector load from the previous iteration. In case the memory access is in
5761 an inner-loop nested inside LOOP, which is now being vectorized using
5762 outer-loop vectorization, we need to determine whether this initial vector
5763 load should be generated at the preheader of the inner-loop, or can be
5764 generated at the preheader of LOOP. If the memory access has no evolution
5765 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
5766 to be generated inside LOOP (in the preheader of the inner-loop). */
5768 if (nested_in_vect_loop)
5770 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
5771 bool invariant_in_outerloop =
5772 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
5773 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
5775 else
5776 loop_for_initial_load = loop;
5777 if (at_loop)
5778 *at_loop = loop_for_initial_load;
5780 if (loop_for_initial_load)
5781 pe = loop_preheader_edge (loop_for_initial_load);
5783 /* 3. For the case of the optimized realignment, create the first vector
5784 load at the loop preheader. */
5786 if (alignment_support_scheme == dr_explicit_realign_optimized)
5788 /* Create msq_init = *(floor(p1)) in the loop preheader */
5789 gassign *new_stmt;
5791 gcc_assert (!compute_in_loop);
5792 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5793 ptr = vect_create_data_ref_ptr (vinfo, stmt_info, vectype,
5794 loop_for_initial_load, NULL_TREE,
5795 &init_addr, NULL, &inc, true);
5796 if (TREE_CODE (ptr) == SSA_NAME)
5797 new_temp = copy_ssa_name (ptr);
5798 else
5799 new_temp = make_ssa_name (TREE_TYPE (ptr));
5800 poly_uint64 align = DR_TARGET_ALIGNMENT (dr_info);
5801 tree type = TREE_TYPE (ptr);
5802 new_stmt = gimple_build_assign
5803 (new_temp, BIT_AND_EXPR, ptr,
5804 fold_build2 (MINUS_EXPR, type,
5805 build_int_cst (type, 0),
5806 build_int_cst (type, align)));
5807 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5808 gcc_assert (!new_bb);
5809 data_ref
5810 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
5811 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
5812 vect_copy_ref_info (data_ref, DR_REF (dr));
5813 new_stmt = gimple_build_assign (vec_dest, data_ref);
5814 new_temp = make_ssa_name (vec_dest, new_stmt);
5815 gimple_assign_set_lhs (new_stmt, new_temp);
5816 if (pe)
5818 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5819 gcc_assert (!new_bb);
5821 else
5822 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5824 msq_init = gimple_assign_lhs (new_stmt);
5827 /* 4. Create realignment token using a target builtin, if available.
5828 It is done either inside the containing loop, or before LOOP (as
5829 determined above). */
5831 if (targetm.vectorize.builtin_mask_for_load)
5833 gcall *new_stmt;
5834 tree builtin_decl;
5836 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
5837 if (!init_addr)
5839 /* Generate the INIT_ADDR computation outside LOOP. */
5840 init_addr = vect_create_addr_base_for_vector_ref (vinfo,
5841 stmt_info, &stmts,
5842 NULL_TREE);
5843 if (loop)
5845 pe = loop_preheader_edge (loop);
5846 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
5847 gcc_assert (!new_bb);
5849 else
5850 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
5853 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
5854 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
5855 vec_dest =
5856 vect_create_destination_var (scalar_dest,
5857 gimple_call_return_type (new_stmt));
5858 new_temp = make_ssa_name (vec_dest, new_stmt);
5859 gimple_call_set_lhs (new_stmt, new_temp);
5861 if (compute_in_loop)
5862 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5863 else
5865 /* Generate the misalignment computation outside LOOP. */
5866 pe = loop_preheader_edge (loop);
5867 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5868 gcc_assert (!new_bb);
5871 *realignment_token = gimple_call_lhs (new_stmt);
5873 /* The result of the CALL_EXPR to this builtin is determined from
5874 the value of the parameter and no global variables are touched
5875 which makes the builtin a "const" function. Requiring the
5876 builtin to have the "const" attribute makes it unnecessary
5877 to call mark_call_clobbered. */
5878 gcc_assert (TREE_READONLY (builtin_decl));
5881 if (alignment_support_scheme == dr_explicit_realign)
5882 return msq;
5884 gcc_assert (!compute_in_loop);
5885 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
5888 /* 5. Create msq = phi <msq_init, lsq> in loop */
5890 pe = loop_preheader_edge (containing_loop);
5891 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5892 msq = make_ssa_name (vec_dest);
5893 phi_stmt = create_phi_node (msq, containing_loop->header);
5894 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
5896 return msq;
5900 /* Function vect_grouped_load_supported.
5902 COUNT is the size of the load group (the number of statements plus the
5903 number of gaps). SINGLE_ELEMENT_P is true if there is actually
5904 only one statement, with a gap of COUNT - 1.
5906 Returns true if a suitable permute exists. */
5908 bool
5909 vect_grouped_load_supported (tree vectype, bool single_element_p,
5910 unsigned HOST_WIDE_INT count)
5912 machine_mode mode = TYPE_MODE (vectype);
5914 /* If this is single-element interleaving with an element distance
5915 that leaves unused vector loads around punt - we at least create
5916 very sub-optimal code in that case (and blow up memory,
5917 see PR65518). */
5918 if (single_element_p && maybe_gt (count, TYPE_VECTOR_SUBPARTS (vectype)))
5920 if (dump_enabled_p ())
5921 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5922 "single-element interleaving not supported "
5923 "for not adjacent vector loads\n");
5924 return false;
5927 /* vect_permute_load_chain requires the group size to be equal to 3 or
5928 be a power of two. */
5929 if (count != 3 && exact_log2 (count) == -1)
5931 if (dump_enabled_p ())
5932 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5933 "the size of the group of accesses"
5934 " is not a power of 2 or not equal to 3\n");
5935 return false;
5938 /* Check that the permutation is supported. */
5939 if (VECTOR_MODE_P (mode))
5941 unsigned int i, j;
5942 if (count == 3)
5944 unsigned int nelt;
5945 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5947 if (dump_enabled_p ())
5948 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5949 "cannot handle groups of 3 loads for"
5950 " variable-length vectors\n");
5951 return false;
5954 vec_perm_builder sel (nelt, nelt, 1);
5955 sel.quick_grow (nelt);
5956 vec_perm_indices indices;
5957 unsigned int k;
5958 for (k = 0; k < 3; k++)
5960 for (i = 0; i < nelt; i++)
5961 if (3 * i + k < 2 * nelt)
5962 sel[i] = 3 * i + k;
5963 else
5964 sel[i] = 0;
5965 indices.new_vector (sel, 2, nelt);
5966 if (!can_vec_perm_const_p (mode, indices))
5968 if (dump_enabled_p ())
5969 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5970 "shuffle of 3 loads is not supported by"
5971 " target\n");
5972 return false;
5974 for (i = 0, j = 0; i < nelt; i++)
5975 if (3 * i + k < 2 * nelt)
5976 sel[i] = i;
5977 else
5978 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5979 indices.new_vector (sel, 2, nelt);
5980 if (!can_vec_perm_const_p (mode, indices))
5982 if (dump_enabled_p ())
5983 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5984 "shuffle of 3 loads is not supported by"
5985 " target\n");
5986 return false;
5989 return true;
5991 else
5993 /* If length is not equal to 3 then only power of 2 is supported. */
5994 gcc_assert (pow2p_hwi (count));
5995 poly_uint64 nelt = GET_MODE_NUNITS (mode);
5997 /* The encoding has a single stepped pattern. */
5998 vec_perm_builder sel (nelt, 1, 3);
5999 sel.quick_grow (3);
6000 for (i = 0; i < 3; i++)
6001 sel[i] = i * 2;
6002 vec_perm_indices indices (sel, 2, nelt);
6003 if (can_vec_perm_const_p (mode, indices))
6005 for (i = 0; i < 3; i++)
6006 sel[i] = i * 2 + 1;
6007 indices.new_vector (sel, 2, nelt);
6008 if (can_vec_perm_const_p (mode, indices))
6009 return true;
6014 if (dump_enabled_p ())
6015 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6016 "extract even/odd not supported by target\n");
6017 return false;
6020 /* Return TRUE if vec_{masked_}load_lanes is available for COUNT vectors of
6021 type VECTYPE. MASKED_P says whether the masked form is needed. */
6023 bool
6024 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count,
6025 bool masked_p)
6027 if (masked_p)
6028 return vect_lanes_optab_supported_p ("vec_mask_load_lanes",
6029 vec_mask_load_lanes_optab,
6030 vectype, count);
6031 else
6032 return vect_lanes_optab_supported_p ("vec_load_lanes",
6033 vec_load_lanes_optab,
6034 vectype, count);
6037 /* Function vect_permute_load_chain.
6039 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
6040 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
6041 the input data correctly. Return the final references for loads in
6042 RESULT_CHAIN.
6044 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
6045 The input is 4 vectors each containing 8 elements. We assign a number to each
6046 element, the input sequence is:
6048 1st vec: 0 1 2 3 4 5 6 7
6049 2nd vec: 8 9 10 11 12 13 14 15
6050 3rd vec: 16 17 18 19 20 21 22 23
6051 4th vec: 24 25 26 27 28 29 30 31
6053 The output sequence should be:
6055 1st vec: 0 4 8 12 16 20 24 28
6056 2nd vec: 1 5 9 13 17 21 25 29
6057 3rd vec: 2 6 10 14 18 22 26 30
6058 4th vec: 3 7 11 15 19 23 27 31
6060 i.e., the first output vector should contain the first elements of each
6061 interleaving group, etc.
6063 We use extract_even/odd instructions to create such output. The input of
6064 each extract_even/odd operation is two vectors
6065 1st vec 2nd vec
6066 0 1 2 3 4 5 6 7
6068 and the output is the vector of extracted even/odd elements. The output of
6069 extract_even will be: 0 2 4 6
6070 and of extract_odd: 1 3 5 7
6073 The permutation is done in log LENGTH stages. In each stage extract_even
6074 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
6075 their order. In our example,
6077 E1: extract_even (1st vec, 2nd vec)
6078 E2: extract_odd (1st vec, 2nd vec)
6079 E3: extract_even (3rd vec, 4th vec)
6080 E4: extract_odd (3rd vec, 4th vec)
6082 The output for the first stage will be:
6084 E1: 0 2 4 6 8 10 12 14
6085 E2: 1 3 5 7 9 11 13 15
6086 E3: 16 18 20 22 24 26 28 30
6087 E4: 17 19 21 23 25 27 29 31
6089 In order to proceed and create the correct sequence for the next stage (or
6090 for the correct output, if the second stage is the last one, as in our
6091 example), we first put the output of extract_even operation and then the
6092 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
6093 The input for the second stage is:
6095 1st vec (E1): 0 2 4 6 8 10 12 14
6096 2nd vec (E3): 16 18 20 22 24 26 28 30
6097 3rd vec (E2): 1 3 5 7 9 11 13 15
6098 4th vec (E4): 17 19 21 23 25 27 29 31
6100 The output of the second stage:
6102 E1: 0 4 8 12 16 20 24 28
6103 E2: 2 6 10 14 18 22 26 30
6104 E3: 1 5 9 13 17 21 25 29
6105 E4: 3 7 11 15 19 23 27 31
6107 And RESULT_CHAIN after reordering:
6109 1st vec (E1): 0 4 8 12 16 20 24 28
6110 2nd vec (E3): 1 5 9 13 17 21 25 29
6111 3rd vec (E2): 2 6 10 14 18 22 26 30
6112 4th vec (E4): 3 7 11 15 19 23 27 31. */
6114 static void
6115 vect_permute_load_chain (vec_info *vinfo, vec<tree> dr_chain,
6116 unsigned int length,
6117 stmt_vec_info stmt_info,
6118 gimple_stmt_iterator *gsi,
6119 vec<tree> *result_chain)
6121 tree data_ref, first_vect, second_vect;
6122 tree perm_mask_even, perm_mask_odd;
6123 tree perm3_mask_low, perm3_mask_high;
6124 gimple *perm_stmt;
6125 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6126 unsigned int i, j, log_length = exact_log2 (length);
6128 result_chain->quick_grow (length);
6129 memcpy (result_chain->address (), dr_chain.address (),
6130 length * sizeof (tree));
6132 if (length == 3)
6134 /* vect_grouped_load_supported ensures that this is constant. */
6135 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
6136 unsigned int k;
6138 vec_perm_builder sel (nelt, nelt, 1);
6139 sel.quick_grow (nelt);
6140 vec_perm_indices indices;
6141 for (k = 0; k < 3; k++)
6143 for (i = 0; i < nelt; i++)
6144 if (3 * i + k < 2 * nelt)
6145 sel[i] = 3 * i + k;
6146 else
6147 sel[i] = 0;
6148 indices.new_vector (sel, 2, nelt);
6149 perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices);
6151 for (i = 0, j = 0; i < nelt; i++)
6152 if (3 * i + k < 2 * nelt)
6153 sel[i] = i;
6154 else
6155 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
6156 indices.new_vector (sel, 2, nelt);
6157 perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices);
6159 first_vect = dr_chain[0];
6160 second_vect = dr_chain[1];
6162 /* Create interleaving stmt (low part of):
6163 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
6164 ...}> */
6165 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
6166 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
6167 second_vect, perm3_mask_low);
6168 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6170 /* Create interleaving stmt (high part of):
6171 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
6172 ...}> */
6173 first_vect = data_ref;
6174 second_vect = dr_chain[2];
6175 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
6176 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
6177 second_vect, perm3_mask_high);
6178 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6179 (*result_chain)[k] = data_ref;
6182 else
6184 /* If length is not equal to 3 then only power of 2 is supported. */
6185 gcc_assert (pow2p_hwi (length));
6187 /* The encoding has a single stepped pattern. */
6188 poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype);
6189 vec_perm_builder sel (nelt, 1, 3);
6190 sel.quick_grow (3);
6191 for (i = 0; i < 3; ++i)
6192 sel[i] = i * 2;
6193 vec_perm_indices indices (sel, 2, nelt);
6194 perm_mask_even = vect_gen_perm_mask_checked (vectype, indices);
6196 for (i = 0; i < 3; ++i)
6197 sel[i] = i * 2 + 1;
6198 indices.new_vector (sel, 2, nelt);
6199 perm_mask_odd = vect_gen_perm_mask_checked (vectype, indices);
6201 for (i = 0; i < log_length; i++)
6203 for (j = 0; j < length; j += 2)
6205 first_vect = dr_chain[j];
6206 second_vect = dr_chain[j+1];
6208 /* data_ref = permute_even (first_data_ref, second_data_ref); */
6209 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
6210 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6211 first_vect, second_vect,
6212 perm_mask_even);
6213 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6214 (*result_chain)[j/2] = data_ref;
6216 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
6217 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
6218 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6219 first_vect, second_vect,
6220 perm_mask_odd);
6221 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6222 (*result_chain)[j/2+length/2] = data_ref;
6224 memcpy (dr_chain.address (), result_chain->address (),
6225 length * sizeof (tree));
6230 /* Function vect_shift_permute_load_chain.
6232 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
6233 sequence of stmts to reorder the input data accordingly.
6234 Return the final references for loads in RESULT_CHAIN.
6235 Return true if successed, false otherwise.
6237 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
6238 The input is 3 vectors each containing 8 elements. We assign a
6239 number to each element, the input sequence is:
6241 1st vec: 0 1 2 3 4 5 6 7
6242 2nd vec: 8 9 10 11 12 13 14 15
6243 3rd vec: 16 17 18 19 20 21 22 23
6245 The output sequence should be:
6247 1st vec: 0 3 6 9 12 15 18 21
6248 2nd vec: 1 4 7 10 13 16 19 22
6249 3rd vec: 2 5 8 11 14 17 20 23
6251 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
6253 First we shuffle all 3 vectors to get correct elements order:
6255 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
6256 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
6257 3rd vec: (16 19 22) (17 20 23) (18 21)
6259 Next we unite and shift vector 3 times:
6261 1st step:
6262 shift right by 6 the concatenation of:
6263 "1st vec" and "2nd vec"
6264 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
6265 "2nd vec" and "3rd vec"
6266 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
6267 "3rd vec" and "1st vec"
6268 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
6269 | New vectors |
6271 So that now new vectors are:
6273 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
6274 2nd vec: (10 13) (16 19 22) (17 20 23)
6275 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
6277 2nd step:
6278 shift right by 5 the concatenation of:
6279 "1st vec" and "3rd vec"
6280 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
6281 "2nd vec" and "1st vec"
6282 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
6283 "3rd vec" and "2nd vec"
6284 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
6285 | New vectors |
6287 So that now new vectors are:
6289 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
6290 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
6291 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
6293 3rd step:
6294 shift right by 5 the concatenation of:
6295 "1st vec" and "1st vec"
6296 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
6297 shift right by 3 the concatenation of:
6298 "2nd vec" and "2nd vec"
6299 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
6300 | New vectors |
6302 So that now all vectors are READY:
6303 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
6304 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
6305 3rd vec: ( 1 4 7) (10 13) (16 19 22)
6307 This algorithm is faster than one in vect_permute_load_chain if:
6308 1. "shift of a concatination" is faster than general permutation.
6309 This is usually so.
6310 2. The TARGET machine can't execute vector instructions in parallel.
6311 This is because each step of the algorithm depends on previous.
6312 The algorithm in vect_permute_load_chain is much more parallel.
6314 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
6317 static bool
6318 vect_shift_permute_load_chain (vec_info *vinfo, vec<tree> dr_chain,
6319 unsigned int length,
6320 stmt_vec_info stmt_info,
6321 gimple_stmt_iterator *gsi,
6322 vec<tree> *result_chain)
6324 tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
6325 tree perm2_mask1, perm2_mask2, perm3_mask;
6326 tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
6327 gimple *perm_stmt;
6329 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6330 unsigned int i;
6331 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
6333 unsigned HOST_WIDE_INT nelt, vf;
6334 if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nelt)
6335 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
6336 /* Not supported for variable-length vectors. */
6337 return false;
6339 vec_perm_builder sel (nelt, nelt, 1);
6340 sel.quick_grow (nelt);
6342 result_chain->quick_grow (length);
6343 memcpy (result_chain->address (), dr_chain.address (),
6344 length * sizeof (tree));
6346 if (pow2p_hwi (length) && vf > 4)
6348 unsigned int j, log_length = exact_log2 (length);
6349 for (i = 0; i < nelt / 2; ++i)
6350 sel[i] = i * 2;
6351 for (i = 0; i < nelt / 2; ++i)
6352 sel[nelt / 2 + i] = i * 2 + 1;
6353 vec_perm_indices indices (sel, 2, nelt);
6354 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6356 if (dump_enabled_p ())
6357 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6358 "shuffle of 2 fields structure is not \
6359 supported by target\n");
6360 return false;
6362 perm2_mask1 = vect_gen_perm_mask_checked (vectype, indices);
6364 for (i = 0; i < nelt / 2; ++i)
6365 sel[i] = i * 2 + 1;
6366 for (i = 0; i < nelt / 2; ++i)
6367 sel[nelt / 2 + i] = i * 2;
6368 indices.new_vector (sel, 2, nelt);
6369 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6371 if (dump_enabled_p ())
6372 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6373 "shuffle of 2 fields structure is not \
6374 supported by target\n");
6375 return false;
6377 perm2_mask2 = vect_gen_perm_mask_checked (vectype, indices);
6379 /* Generating permutation constant to shift all elements.
6380 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
6381 for (i = 0; i < nelt; i++)
6382 sel[i] = nelt / 2 + i;
6383 indices.new_vector (sel, 2, nelt);
6384 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6386 if (dump_enabled_p ())
6387 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6388 "shift permutation is not supported by target\n");
6389 return false;
6391 shift1_mask = vect_gen_perm_mask_checked (vectype, indices);
6393 /* Generating permutation constant to select vector from 2.
6394 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
6395 for (i = 0; i < nelt / 2; i++)
6396 sel[i] = i;
6397 for (i = nelt / 2; i < nelt; i++)
6398 sel[i] = nelt + i;
6399 indices.new_vector (sel, 2, nelt);
6400 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6402 if (dump_enabled_p ())
6403 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6404 "select is not supported by target\n");
6405 return false;
6407 select_mask = vect_gen_perm_mask_checked (vectype, indices);
6409 for (i = 0; i < log_length; i++)
6411 for (j = 0; j < length; j += 2)
6413 first_vect = dr_chain[j];
6414 second_vect = dr_chain[j + 1];
6416 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
6417 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6418 first_vect, first_vect,
6419 perm2_mask1);
6420 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6421 vect[0] = data_ref;
6423 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
6424 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6425 second_vect, second_vect,
6426 perm2_mask2);
6427 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6428 vect[1] = data_ref;
6430 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
6431 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6432 vect[0], vect[1], shift1_mask);
6433 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6434 (*result_chain)[j/2 + length/2] = data_ref;
6436 data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
6437 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6438 vect[0], vect[1], select_mask);
6439 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6440 (*result_chain)[j/2] = data_ref;
6442 memcpy (dr_chain.address (), result_chain->address (),
6443 length * sizeof (tree));
6445 return true;
6447 if (length == 3 && vf > 2)
6449 unsigned int k = 0, l = 0;
6451 /* Generating permutation constant to get all elements in rigth order.
6452 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
6453 for (i = 0; i < nelt; i++)
6455 if (3 * k + (l % 3) >= nelt)
6457 k = 0;
6458 l += (3 - (nelt % 3));
6460 sel[i] = 3 * k + (l % 3);
6461 k++;
6463 vec_perm_indices indices (sel, 2, nelt);
6464 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6466 if (dump_enabled_p ())
6467 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6468 "shuffle of 3 fields structure is not \
6469 supported by target\n");
6470 return false;
6472 perm3_mask = vect_gen_perm_mask_checked (vectype, indices);
6474 /* Generating permutation constant to shift all elements.
6475 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
6476 for (i = 0; i < nelt; i++)
6477 sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
6478 indices.new_vector (sel, 2, nelt);
6479 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6481 if (dump_enabled_p ())
6482 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6483 "shift permutation is not supported by target\n");
6484 return false;
6486 shift1_mask = vect_gen_perm_mask_checked (vectype, indices);
6488 /* Generating permutation constant to shift all elements.
6489 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
6490 for (i = 0; i < nelt; i++)
6491 sel[i] = 2 * (nelt / 3) + 1 + i;
6492 indices.new_vector (sel, 2, nelt);
6493 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6495 if (dump_enabled_p ())
6496 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6497 "shift permutation is not supported by target\n");
6498 return false;
6500 shift2_mask = vect_gen_perm_mask_checked (vectype, indices);
6502 /* Generating permutation constant to shift all elements.
6503 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
6504 for (i = 0; i < nelt; i++)
6505 sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
6506 indices.new_vector (sel, 2, nelt);
6507 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6509 if (dump_enabled_p ())
6510 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6511 "shift permutation is not supported by target\n");
6512 return false;
6514 shift3_mask = vect_gen_perm_mask_checked (vectype, indices);
6516 /* Generating permutation constant to shift all elements.
6517 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
6518 for (i = 0; i < nelt; i++)
6519 sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
6520 indices.new_vector (sel, 2, nelt);
6521 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6523 if (dump_enabled_p ())
6524 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6525 "shift permutation is not supported by target\n");
6526 return false;
6528 shift4_mask = vect_gen_perm_mask_checked (vectype, indices);
6530 for (k = 0; k < 3; k++)
6532 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
6533 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6534 dr_chain[k], dr_chain[k],
6535 perm3_mask);
6536 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6537 vect[k] = data_ref;
6540 for (k = 0; k < 3; k++)
6542 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
6543 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6544 vect[k % 3], vect[(k + 1) % 3],
6545 shift1_mask);
6546 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6547 vect_shift[k] = data_ref;
6550 for (k = 0; k < 3; k++)
6552 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
6553 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6554 vect_shift[(4 - k) % 3],
6555 vect_shift[(3 - k) % 3],
6556 shift2_mask);
6557 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6558 vect[k] = data_ref;
6561 (*result_chain)[3 - (nelt % 3)] = vect[2];
6563 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
6564 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0],
6565 vect[0], shift3_mask);
6566 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6567 (*result_chain)[nelt % 3] = data_ref;
6569 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
6570 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1],
6571 vect[1], shift4_mask);
6572 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6573 (*result_chain)[0] = data_ref;
6574 return true;
6576 return false;
6579 /* Function vect_transform_grouped_load.
6581 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
6582 to perform their permutation and ascribe the result vectorized statements to
6583 the scalar statements.
6586 void
6587 vect_transform_grouped_load (vec_info *vinfo, stmt_vec_info stmt_info,
6588 vec<tree> dr_chain,
6589 int size, gimple_stmt_iterator *gsi)
6591 machine_mode mode;
6592 vec<tree> result_chain = vNULL;
6594 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
6595 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
6596 vectors, that are ready for vector computation. */
6597 result_chain.create (size);
6599 /* If reassociation width for vector type is 2 or greater target machine can
6600 execute 2 or more vector instructions in parallel. Otherwise try to
6601 get chain for loads group using vect_shift_permute_load_chain. */
6602 mode = TYPE_MODE (STMT_VINFO_VECTYPE (stmt_info));
6603 if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
6604 || pow2p_hwi (size)
6605 || !vect_shift_permute_load_chain (vinfo, dr_chain, size, stmt_info,
6606 gsi, &result_chain))
6607 vect_permute_load_chain (vinfo, dr_chain,
6608 size, stmt_info, gsi, &result_chain);
6609 vect_record_grouped_load_vectors (vinfo, stmt_info, result_chain);
6610 result_chain.release ();
6613 /* RESULT_CHAIN contains the output of a group of grouped loads that were
6614 generated as part of the vectorization of STMT_INFO. Assign the statement
6615 for each vector to the associated scalar statement. */
6617 void
6618 vect_record_grouped_load_vectors (vec_info *, stmt_vec_info stmt_info,
6619 vec<tree> result_chain)
6621 stmt_vec_info first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info);
6622 unsigned int i, gap_count;
6623 tree tmp_data_ref;
6625 /* Put a permuted data-ref in the VECTORIZED_STMT field.
6626 Since we scan the chain starting from it's first node, their order
6627 corresponds the order of data-refs in RESULT_CHAIN. */
6628 stmt_vec_info next_stmt_info = first_stmt_info;
6629 gap_count = 1;
6630 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
6632 if (!next_stmt_info)
6633 break;
6635 /* Skip the gaps. Loads created for the gaps will be removed by dead
6636 code elimination pass later. No need to check for the first stmt in
6637 the group, since it always exists.
6638 DR_GROUP_GAP is the number of steps in elements from the previous
6639 access (if there is no gap DR_GROUP_GAP is 1). We skip loads that
6640 correspond to the gaps. */
6641 if (next_stmt_info != first_stmt_info
6642 && gap_count < DR_GROUP_GAP (next_stmt_info))
6644 gap_count++;
6645 continue;
6648 /* ??? The following needs cleanup after the removal of
6649 DR_GROUP_SAME_DR_STMT. */
6650 if (next_stmt_info)
6652 gimple *new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
6653 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
6654 copies, and we put the new vector statement last. */
6655 STMT_VINFO_VEC_STMTS (next_stmt_info).safe_push (new_stmt);
6657 next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info);
6658 gap_count = 1;
6663 /* Function vect_force_dr_alignment_p.
6665 Returns whether the alignment of a DECL can be forced to be aligned
6666 on ALIGNMENT bit boundary. */
6668 bool
6669 vect_can_force_dr_alignment_p (const_tree decl, poly_uint64 alignment)
6671 if (!VAR_P (decl))
6672 return false;
6674 if (decl_in_symtab_p (decl)
6675 && !symtab_node::get (decl)->can_increase_alignment_p ())
6676 return false;
6678 if (TREE_STATIC (decl))
6679 return (known_le (alignment,
6680 (unsigned HOST_WIDE_INT) MAX_OFILE_ALIGNMENT));
6681 else
6682 return (known_le (alignment, (unsigned HOST_WIDE_INT) MAX_STACK_ALIGNMENT));
6685 /* Return whether the data reference DR_INFO is supported with respect to its
6686 alignment.
6687 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
6688 it is aligned, i.e., check if it is possible to vectorize it with different
6689 alignment. */
6691 enum dr_alignment_support
6692 vect_supportable_dr_alignment (vec_info *vinfo, dr_vec_info *dr_info,
6693 tree vectype, int misalignment)
6695 data_reference *dr = dr_info->dr;
6696 stmt_vec_info stmt_info = dr_info->stmt;
6697 machine_mode mode = TYPE_MODE (vectype);
6698 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
6699 class loop *vect_loop = NULL;
6700 bool nested_in_vect_loop = false;
6702 if (misalignment == 0)
6703 return dr_aligned;
6705 /* For now assume all conditional loads/stores support unaligned
6706 access without any special code. */
6707 if (gcall *stmt = dyn_cast <gcall *> (stmt_info->stmt))
6708 if (gimple_call_internal_p (stmt)
6709 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
6710 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
6711 return dr_unaligned_supported;
6713 if (loop_vinfo)
6715 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
6716 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt_info);
6719 /* Possibly unaligned access. */
6721 /* We can choose between using the implicit realignment scheme (generating
6722 a misaligned_move stmt) and the explicit realignment scheme (generating
6723 aligned loads with a REALIGN_LOAD). There are two variants to the
6724 explicit realignment scheme: optimized, and unoptimized.
6725 We can optimize the realignment only if the step between consecutive
6726 vector loads is equal to the vector size. Since the vector memory
6727 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
6728 is guaranteed that the misalignment amount remains the same throughout the
6729 execution of the vectorized loop. Therefore, we can create the
6730 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
6731 at the loop preheader.
6733 However, in the case of outer-loop vectorization, when vectorizing a
6734 memory access in the inner-loop nested within the LOOP that is now being
6735 vectorized, while it is guaranteed that the misalignment of the
6736 vectorized memory access will remain the same in different outer-loop
6737 iterations, it is *not* guaranteed that is will remain the same throughout
6738 the execution of the inner-loop. This is because the inner-loop advances
6739 with the original scalar step (and not in steps of VS). If the inner-loop
6740 step happens to be a multiple of VS, then the misalignment remains fixed
6741 and we can use the optimized realignment scheme. For example:
6743 for (i=0; i<N; i++)
6744 for (j=0; j<M; j++)
6745 s += a[i+j];
6747 When vectorizing the i-loop in the above example, the step between
6748 consecutive vector loads is 1, and so the misalignment does not remain
6749 fixed across the execution of the inner-loop, and the realignment cannot
6750 be optimized (as illustrated in the following pseudo vectorized loop):
6752 for (i=0; i<N; i+=4)
6753 for (j=0; j<M; j++){
6754 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
6755 // when j is {0,1,2,3,4,5,6,7,...} respectively.
6756 // (assuming that we start from an aligned address).
6759 We therefore have to use the unoptimized realignment scheme:
6761 for (i=0; i<N; i+=4)
6762 for (j=k; j<M; j+=4)
6763 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
6764 // that the misalignment of the initial address is
6765 // 0).
6767 The loop can then be vectorized as follows:
6769 for (k=0; k<4; k++){
6770 rt = get_realignment_token (&vp[k]);
6771 for (i=0; i<N; i+=4){
6772 v1 = vp[i+k];
6773 for (j=k; j<M; j+=4){
6774 v2 = vp[i+j+VS-1];
6775 va = REALIGN_LOAD <v1,v2,rt>;
6776 vs += va;
6777 v1 = v2;
6780 } */
6782 if (DR_IS_READ (dr))
6784 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
6785 && (!targetm.vectorize.builtin_mask_for_load
6786 || targetm.vectorize.builtin_mask_for_load ()))
6788 /* If we are doing SLP then the accesses need not have the
6789 same alignment, instead it depends on the SLP group size. */
6790 if (loop_vinfo
6791 && STMT_SLP_TYPE (stmt_info)
6792 && !multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6793 * (DR_GROUP_SIZE
6794 (DR_GROUP_FIRST_ELEMENT (stmt_info))),
6795 TYPE_VECTOR_SUBPARTS (vectype)))
6797 else if (!loop_vinfo
6798 || (nested_in_vect_loop
6799 && maybe_ne (TREE_INT_CST_LOW (DR_STEP (dr)),
6800 GET_MODE_SIZE (TYPE_MODE (vectype)))))
6801 return dr_explicit_realign;
6802 else
6803 return dr_explicit_realign_optimized;
6807 bool is_packed = false;
6808 tree type = TREE_TYPE (DR_REF (dr));
6809 if (misalignment == DR_MISALIGNMENT_UNKNOWN)
6810 is_packed = not_size_aligned (DR_REF (dr));
6811 if (targetm.vectorize.support_vector_misalignment (mode, type, misalignment,
6812 is_packed))
6813 return dr_unaligned_supported;
6815 /* Unsupported. */
6816 return dr_unaligned_unsupported;