1 /* Simple garbage collection for the GNU compiler.
2 Copyright (C) 1999-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Generic garbage collection (GC) functions and data, not specific to
21 any particular GC implementation. */
24 #define INCLUDE_MALLOC_H
26 #include "coretypes.h"
28 #include "diagnostic-core.h"
29 #include "ggc-internal.h"
30 #include "hosthooks.h"
34 /* When true, protect the contents of the identifier hash table. */
35 bool ggc_protect_identifiers
= true;
37 /* Statistics about the allocation. */
38 static ggc_statistics
*ggc_stats
;
40 struct traversal_state
;
42 static int compare_ptr_data (const void *, const void *);
43 static void relocate_ptrs (void *, void *);
44 static void write_pch_globals (const struct ggc_root_tab
* const *tab
,
45 struct traversal_state
*state
);
47 /* Maintain global roots that are preserved during GC. */
49 /* This extra vector of dynamically registered root_tab-s is used by
50 ggc_mark_roots and gives the ability to dynamically add new GGC root
51 tables, for instance from some plugins; this vector is on the heap
52 since it is used by GGC internally. */
53 typedef const struct ggc_root_tab
*const_ggc_root_tab_t
;
54 static vec
<const_ggc_root_tab_t
> extra_root_vec
;
56 /* Dynamically register a new GGC root table RT. This is useful for
60 ggc_register_root_tab (const struct ggc_root_tab
* rt
)
63 extra_root_vec
.safe_push (rt
);
66 /* Mark all the roots in the table RT. */
69 ggc_mark_root_tab (const_ggc_root_tab_t rt
)
73 for ( ; rt
->base
!= NULL
; rt
++)
74 for (i
= 0; i
< rt
->nelt
; i
++)
75 (*rt
->cb
) (*(void **) ((char *)rt
->base
+ rt
->stride
* i
));
78 /* Iterate through all registered roots and mark each element. */
83 const struct ggc_root_tab
*const *rt
;
84 const_ggc_root_tab_t rtp
, rti
;
87 for (rt
= gt_ggc_deletable_rtab
; *rt
; rt
++)
88 for (rti
= *rt
; rti
->base
!= NULL
; rti
++)
89 memset (rti
->base
, 0, rti
->stride
);
91 for (rt
= gt_ggc_rtab
; *rt
; rt
++)
92 ggc_mark_root_tab (*rt
);
94 FOR_EACH_VEC_ELT (extra_root_vec
, i
, rtp
)
95 ggc_mark_root_tab (rtp
);
97 if (ggc_protect_identifiers
)
98 ggc_mark_stringpool ();
102 if (! ggc_protect_identifiers
)
103 ggc_purge_stringpool ();
105 /* Some plugins may call ggc_set_mark from here. */
106 invoke_plugin_callbacks (PLUGIN_GGC_MARKING
, NULL
);
109 /* Allocate a block of memory, then clear it. */
111 ggc_internal_cleared_alloc (size_t size
, void (*f
)(void *), size_t s
, size_t n
114 void *buf
= ggc_internal_alloc (size
, f
, s
, n PASS_MEM_STAT
);
115 memset (buf
, 0, size
);
119 /* Resize a block of memory, possibly re-allocating it. */
121 ggc_realloc (void *x
, size_t size MEM_STAT_DECL
)
127 return ggc_internal_alloc (size PASS_MEM_STAT
);
129 old_size
= ggc_get_size (x
);
131 if (size
<= old_size
)
133 /* Mark the unwanted memory as unaccessible. We also need to make
134 the "new" size accessible, since ggc_get_size returns the size of
135 the pool, not the size of the individually allocated object, the
136 size which was previously made accessible. Unfortunately, we
137 don't know that previously allocated size. Without that
138 knowledge we have to lose some initialization-tracking for the
139 old parts of the object. An alternative is to mark the whole
140 old_size as reachable, but that would lose tracking of writes
141 after the end of the object (by small offsets). Discard the
142 handle to avoid handle leak. */
143 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x
+ size
,
145 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x
, size
));
149 r
= ggc_internal_alloc (size PASS_MEM_STAT
);
151 /* Since ggc_get_size returns the size of the pool, not the size of the
152 individually allocated object, we'd access parts of the old object
153 that were marked invalid with the memcpy below. We lose a bit of the
154 initialization-tracking since some of it may be uninitialized. */
155 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x
, old_size
));
157 memcpy (r
, x
, old_size
);
159 /* The old object is not supposed to be used anymore. */
166 ggc_cleared_alloc_htab_ignore_args (size_t c ATTRIBUTE_UNUSED
,
167 size_t n ATTRIBUTE_UNUSED
)
169 gcc_assert (c
* n
== sizeof (struct htab
));
170 return ggc_cleared_alloc
<htab
> ();
173 /* TODO: once we actually use type information in GGC, create a new tag
174 gt_gcc_ptr_array and use it for pointer arrays. */
176 ggc_cleared_alloc_ptr_array_two_args (size_t c
, size_t n
)
178 gcc_assert (sizeof (PTR
*) == n
);
179 return ggc_cleared_vec_alloc
<PTR
*> (c
);
182 /* These are for splay_tree_new_ggc. */
184 ggc_splay_alloc (int sz
, void *nl
)
187 return ggc_internal_alloc (sz
);
191 ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED
, void *nl
)
197 ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED
,
198 ggc_statistics
*stats
)
200 /* Set the pointer so that during collection we will actually gather
204 /* Then do one collection to fill in the statistics. */
207 /* At present, we don't really gather any interesting statistics. */
209 /* Don't gather statistics any more. */
213 /* Functions for saving and restoring GCable memory to disk. */
218 void *note_ptr_cookie
;
219 gt_note_pointers note_ptr_fn
;
220 gt_handle_reorder reorder_fn
;
225 #define POINTER_HASH(x) (hashval_t)((intptr_t)x >> 3)
227 /* Helper for hashing saving_htab. */
229 struct saving_hasher
: free_ptr_hash
<ptr_data
>
231 typedef void *compare_type
;
232 static inline hashval_t
hash (const ptr_data
*);
233 static inline bool equal (const ptr_data
*, const void *);
237 saving_hasher::hash (const ptr_data
*p
)
239 return POINTER_HASH (p
->obj
);
243 saving_hasher::equal (const ptr_data
*p1
, const void *p2
)
245 return p1
->obj
== p2
;
248 static hash_table
<saving_hasher
> *saving_htab
;
250 /* Register an object in the hash table. */
253 gt_pch_note_object (void *obj
, void *note_ptr_cookie
,
254 gt_note_pointers note_ptr_fn
)
256 struct ptr_data
**slot
;
258 if (obj
== NULL
|| obj
== (void *) 1)
261 slot
= (struct ptr_data
**)
262 saving_htab
->find_slot_with_hash (obj
, POINTER_HASH (obj
), INSERT
);
265 gcc_assert ((*slot
)->note_ptr_fn
== note_ptr_fn
266 && (*slot
)->note_ptr_cookie
== note_ptr_cookie
);
270 *slot
= XCNEW (struct ptr_data
);
272 (*slot
)->note_ptr_fn
= note_ptr_fn
;
273 (*slot
)->note_ptr_cookie
= note_ptr_cookie
;
274 if (note_ptr_fn
== gt_pch_p_S
)
275 (*slot
)->size
= strlen ((const char *)obj
) + 1;
277 (*slot
)->size
= ggc_get_size (obj
);
281 /* Register an object in the hash table. */
284 gt_pch_note_reorder (void *obj
, void *note_ptr_cookie
,
285 gt_handle_reorder reorder_fn
)
287 struct ptr_data
*data
;
289 if (obj
== NULL
|| obj
== (void *) 1)
292 data
= (struct ptr_data
*)
293 saving_htab
->find_with_hash (obj
, POINTER_HASH (obj
));
294 gcc_assert (data
&& data
->note_ptr_cookie
== note_ptr_cookie
);
296 data
->reorder_fn
= reorder_fn
;
299 /* Handy state for the traversal functions. */
301 struct traversal_state
304 struct ggc_pch_data
*d
;
306 struct ptr_data
**ptrs
;
310 /* Callbacks for htab_traverse. */
313 ggc_call_count (ptr_data
**slot
, traversal_state
*state
)
315 struct ptr_data
*d
= *slot
;
317 ggc_pch_count_object (state
->d
, d
->obj
, d
->size
,
318 d
->note_ptr_fn
== gt_pch_p_S
);
324 ggc_call_alloc (ptr_data
**slot
, traversal_state
*state
)
326 struct ptr_data
*d
= *slot
;
328 d
->new_addr
= ggc_pch_alloc_object (state
->d
, d
->obj
, d
->size
,
329 d
->note_ptr_fn
== gt_pch_p_S
);
330 state
->ptrs
[state
->ptrs_i
++] = d
;
334 /* Callback for qsort. */
337 compare_ptr_data (const void *p1_p
, const void *p2_p
)
339 const struct ptr_data
*const p1
= *(const struct ptr_data
*const *)p1_p
;
340 const struct ptr_data
*const p2
= *(const struct ptr_data
*const *)p2_p
;
341 return (((size_t)p1
->new_addr
> (size_t)p2
->new_addr
)
342 - ((size_t)p1
->new_addr
< (size_t)p2
->new_addr
));
345 /* Callbacks for note_ptr_fn. */
348 relocate_ptrs (void *ptr_p
, void *state_p
)
350 void **ptr
= (void **)ptr_p
;
351 struct traversal_state
*state ATTRIBUTE_UNUSED
352 = (struct traversal_state
*)state_p
;
353 struct ptr_data
*result
;
355 if (*ptr
== NULL
|| *ptr
== (void *)1)
358 result
= (struct ptr_data
*)
359 saving_htab
->find_with_hash (*ptr
, POINTER_HASH (*ptr
));
361 *ptr
= result
->new_addr
;
364 /* Write out, after relocation, the pointers in TAB. */
366 write_pch_globals (const struct ggc_root_tab
* const *tab
,
367 struct traversal_state
*state
)
369 const struct ggc_root_tab
*const *rt
;
370 const struct ggc_root_tab
*rti
;
373 for (rt
= tab
; *rt
; rt
++)
374 for (rti
= *rt
; rti
->base
!= NULL
; rti
++)
375 for (i
= 0; i
< rti
->nelt
; i
++)
377 void *ptr
= *(void **)((char *)rti
->base
+ rti
->stride
* i
);
378 struct ptr_data
*new_ptr
;
379 if (ptr
== NULL
|| ptr
== (void *)1)
381 if (fwrite (&ptr
, sizeof (void *), 1, state
->f
)
383 fatal_error (input_location
, "cannot write PCH file: %m");
387 new_ptr
= (struct ptr_data
*)
388 saving_htab
->find_with_hash (ptr
, POINTER_HASH (ptr
));
389 if (fwrite (&new_ptr
->new_addr
, sizeof (void *), 1, state
->f
)
391 fatal_error (input_location
, "cannot write PCH file: %m");
396 /* Hold the information we need to mmap the file back in. */
402 void *preferred_base
;
405 /* Write out the state of the compiler to F. */
408 gt_pch_save (FILE *f
)
410 const struct ggc_root_tab
*const *rt
;
411 const struct ggc_root_tab
*rti
;
413 struct traversal_state state
;
414 char *this_object
= NULL
;
415 size_t this_object_size
= 0;
416 struct mmap_info mmi
;
417 const size_t mmap_offset_alignment
= host_hooks
.gt_pch_alloc_granularity ();
419 gt_pch_save_stringpool ();
421 timevar_push (TV_PCH_PTR_REALLOC
);
422 saving_htab
= new hash_table
<saving_hasher
> (50000);
424 for (rt
= gt_ggc_rtab
; *rt
; rt
++)
425 for (rti
= *rt
; rti
->base
!= NULL
; rti
++)
426 for (i
= 0; i
< rti
->nelt
; i
++)
427 (*rti
->pchw
)(*(void **)((char *)rti
->base
+ rti
->stride
* i
));
429 /* Prepare the objects for writing, determine addresses and such. */
431 state
.d
= init_ggc_pch ();
433 saving_htab
->traverse
<traversal_state
*, ggc_call_count
> (&state
);
435 mmi
.size
= ggc_pch_total_size (state
.d
);
437 /* Try to arrange things so that no relocation is necessary, but
438 don't try very hard. On most platforms, this will always work,
439 and on the rest it's a lot of work to do better.
440 (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
441 HOST_HOOKS_GT_PCH_USE_ADDRESS.) */
442 mmi
.preferred_base
= host_hooks
.gt_pch_get_address (mmi
.size
, fileno (f
));
444 ggc_pch_this_base (state
.d
, mmi
.preferred_base
);
446 state
.ptrs
= XNEWVEC (struct ptr_data
*, state
.count
);
449 saving_htab
->traverse
<traversal_state
*, ggc_call_alloc
> (&state
);
450 timevar_pop (TV_PCH_PTR_REALLOC
);
452 timevar_push (TV_PCH_PTR_SORT
);
453 qsort (state
.ptrs
, state
.count
, sizeof (*state
.ptrs
), compare_ptr_data
);
454 timevar_pop (TV_PCH_PTR_SORT
);
456 /* Write out all the scalar variables. */
457 for (rt
= gt_pch_scalar_rtab
; *rt
; rt
++)
458 for (rti
= *rt
; rti
->base
!= NULL
; rti
++)
459 if (fwrite (rti
->base
, rti
->stride
, 1, f
) != 1)
460 fatal_error (input_location
, "cannot write PCH file: %m");
462 /* Write out all the global pointers, after translation. */
463 write_pch_globals (gt_ggc_rtab
, &state
);
465 /* Pad the PCH file so that the mmapped area starts on an allocation
466 granularity (usually page) boundary. */
469 o
= ftell (state
.f
) + sizeof (mmi
);
471 fatal_error (input_location
, "cannot get position in PCH file: %m");
472 mmi
.offset
= mmap_offset_alignment
- o
% mmap_offset_alignment
;
473 if (mmi
.offset
== mmap_offset_alignment
)
477 if (fwrite (&mmi
, sizeof (mmi
), 1, state
.f
) != 1)
478 fatal_error (input_location
, "cannot write PCH file: %m");
480 && fseek (state
.f
, mmi
.offset
, SEEK_SET
) != 0)
481 fatal_error (input_location
, "cannot write padding to PCH file: %m");
483 ggc_pch_prepare_write (state
.d
, state
.f
);
485 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
486 vec
<char> vbits
= vNULL
;
489 /* Actually write out the objects. */
490 for (i
= 0; i
< state
.count
; i
++)
492 if (this_object_size
< state
.ptrs
[i
]->size
)
494 this_object_size
= state
.ptrs
[i
]->size
;
495 this_object
= XRESIZEVAR (char, this_object
, this_object_size
);
497 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
498 /* obj might contain uninitialized bytes, e.g. in the trailing
499 padding of the object. Avoid warnings by making the memory
500 temporarily defined and then restoring previous state. */
502 size_t valid_size
= state
.ptrs
[i
]->size
;
503 if (__builtin_expect (RUNNING_ON_VALGRIND
, 0))
505 if (vbits
.length () < valid_size
)
506 vbits
.safe_grow (valid_size
, true);
507 get_vbits
= VALGRIND_GET_VBITS (state
.ptrs
[i
]->obj
,
508 vbits
.address (), valid_size
);
511 /* We assume that first part of obj is addressable, and
512 the rest is unaddressable. Find out where the boundary is
513 using binary search. */
514 size_t lo
= 0, hi
= valid_size
;
517 size_t mid
= (lo
+ hi
) / 2;
518 get_vbits
= VALGRIND_GET_VBITS ((char *) state
.ptrs
[i
]->obj
519 + mid
, vbits
.address (),
523 else if (get_vbits
== 1)
528 if (get_vbits
== 1 || get_vbits
== 3)
531 get_vbits
= VALGRIND_GET_VBITS (state
.ptrs
[i
]->obj
,
537 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (state
.ptrs
[i
]->obj
,
538 state
.ptrs
[i
]->size
));
541 memcpy (this_object
, state
.ptrs
[i
]->obj
, state
.ptrs
[i
]->size
);
542 if (state
.ptrs
[i
]->reorder_fn
!= NULL
)
543 state
.ptrs
[i
]->reorder_fn (state
.ptrs
[i
]->obj
,
544 state
.ptrs
[i
]->note_ptr_cookie
,
545 relocate_ptrs
, &state
);
546 state
.ptrs
[i
]->note_ptr_fn (state
.ptrs
[i
]->obj
,
547 state
.ptrs
[i
]->note_ptr_cookie
,
548 relocate_ptrs
, &state
);
549 ggc_pch_write_object (state
.d
, state
.f
, state
.ptrs
[i
]->obj
,
550 state
.ptrs
[i
]->new_addr
, state
.ptrs
[i
]->size
,
551 state
.ptrs
[i
]->note_ptr_fn
== gt_pch_p_S
);
552 if (state
.ptrs
[i
]->note_ptr_fn
!= gt_pch_p_S
)
553 memcpy (state
.ptrs
[i
]->obj
, this_object
, state
.ptrs
[i
]->size
);
554 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
555 if (__builtin_expect (get_vbits
== 1, 0))
557 (void) VALGRIND_SET_VBITS (state
.ptrs
[i
]->obj
, vbits
.address (),
559 if (valid_size
!= state
.ptrs
[i
]->size
)
560 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *)
568 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
572 ggc_pch_finish (state
.d
, state
.f
);
573 gt_pch_fixup_stringpool ();
575 XDELETE (state
.ptrs
);
576 XDELETE (this_object
);
581 /* Read the state of the compiler back in from F. */
584 gt_pch_restore (FILE *f
)
586 const struct ggc_root_tab
*const *rt
;
587 const struct ggc_root_tab
*rti
;
589 struct mmap_info mmi
;
592 /* Delete any deletable objects. This makes ggc_pch_read much
593 faster, as it can be sure that no GCable objects remain other
594 than the ones just read in. */
595 for (rt
= gt_ggc_deletable_rtab
; *rt
; rt
++)
596 for (rti
= *rt
; rti
->base
!= NULL
; rti
++)
597 memset (rti
->base
, 0, rti
->stride
);
599 /* Read in all the scalar variables. */
600 for (rt
= gt_pch_scalar_rtab
; *rt
; rt
++)
601 for (rti
= *rt
; rti
->base
!= NULL
; rti
++)
602 if (fread (rti
->base
, rti
->stride
, 1, f
) != 1)
603 fatal_error (input_location
, "cannot read PCH file: %m");
605 /* Read in all the global pointers, in 6 easy loops. */
606 for (rt
= gt_ggc_rtab
; *rt
; rt
++)
607 for (rti
= *rt
; rti
->base
!= NULL
; rti
++)
608 for (i
= 0; i
< rti
->nelt
; i
++)
609 if (fread ((char *)rti
->base
+ rti
->stride
* i
,
610 sizeof (void *), 1, f
) != 1)
611 fatal_error (input_location
, "cannot read PCH file: %m");
613 if (fread (&mmi
, sizeof (mmi
), 1, f
) != 1)
614 fatal_error (input_location
, "cannot read PCH file: %m");
616 result
= host_hooks
.gt_pch_use_address (mmi
.preferred_base
, mmi
.size
,
617 fileno (f
), mmi
.offset
);
619 fatal_error (input_location
, "had to relocate PCH");
622 if (fseek (f
, mmi
.offset
, SEEK_SET
) != 0
623 || fread (mmi
.preferred_base
, mmi
.size
, 1, f
) != 1)
624 fatal_error (input_location
, "cannot read PCH file: %m");
626 else if (fseek (f
, mmi
.offset
+ mmi
.size
, SEEK_SET
) != 0)
627 fatal_error (input_location
, "cannot read PCH file: %m");
629 ggc_pch_read (f
, mmi
.preferred_base
);
631 gt_pch_restore_stringpool ();
634 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
635 Select no address whatsoever, and let gt_pch_save choose what it will with
636 malloc, presumably. */
639 default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED
,
640 int fd ATTRIBUTE_UNUSED
)
645 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
646 Allocate SIZE bytes with malloc. Return 0 if the address we got is the
647 same as base, indicating that the memory has been allocated but needs to
648 be read in from the file. Return -1 if the address differs, to relocation
649 of the PCH file would be required. */
652 default_gt_pch_use_address (void *base
, size_t size
, int fd ATTRIBUTE_UNUSED
,
653 size_t offset ATTRIBUTE_UNUSED
)
655 void *addr
= xmalloc (size
);
656 return (addr
== base
) - 1;
659 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return the
660 alignment required for allocating virtual memory. Usually this is the
664 default_gt_pch_alloc_granularity (void)
666 return getpagesize ();
670 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
671 We temporarily allocate SIZE bytes, and let the kernel place the data
672 wherever it will. If it worked, that's our spot, if not we're likely
676 mmap_gt_pch_get_address (size_t size
, int fd
)
680 ret
= mmap (NULL
, size
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
681 if (ret
== (void *) MAP_FAILED
)
684 munmap ((caddr_t
) ret
, size
);
689 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
690 Map SIZE bytes of FD+OFFSET at BASE. Return 1 if we succeeded at
691 mapping the data at BASE, -1 if we couldn't.
693 This version assumes that the kernel honors the START operand of mmap
694 even without MAP_FIXED if START through START+SIZE are not currently
695 mapped with something. */
698 mmap_gt_pch_use_address (void *base
, size_t size
, int fd
, size_t offset
)
702 /* We're called with size == 0 if we're not planning to load a PCH
703 file at all. This allows the hook to free any static space that
704 we might have allocated at link time. */
708 addr
= mmap ((caddr_t
) base
, size
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
,
711 return addr
== base
? 1 : -1;
713 #endif /* HAVE_MMAP_FILE */
715 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
717 /* Modify the bound based on rlimits. */
719 ggc_rlimit_bound (double limit
)
721 #if defined(HAVE_GETRLIMIT)
723 # if defined (RLIMIT_AS)
724 /* RLIMIT_AS is what POSIX says is the limit on mmap. Presumably
725 any OS which has RLIMIT_AS also has a working mmap that GCC will use. */
726 if (getrlimit (RLIMIT_AS
, &rlim
) == 0
727 && rlim
.rlim_cur
!= (rlim_t
) RLIM_INFINITY
728 && rlim
.rlim_cur
< limit
)
729 limit
= rlim
.rlim_cur
;
730 # elif defined (RLIMIT_DATA)
731 /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
732 might be on an OS that has a broken mmap. (Others don't bound
733 mmap at all, apparently.) */
734 if (getrlimit (RLIMIT_DATA
, &rlim
) == 0
735 && rlim
.rlim_cur
!= (rlim_t
) RLIM_INFINITY
736 && rlim
.rlim_cur
< limit
737 /* Darwin has this horribly bogus default setting of
738 RLIMIT_DATA, to 6144Kb. No-one notices because RLIMIT_DATA
739 appears to be ignored. Ignore such silliness. If a limit
740 this small was actually effective for mmap, GCC wouldn't even
742 && rlim
.rlim_cur
>= 8 * ONE_M
)
743 limit
= rlim
.rlim_cur
;
744 # endif /* RLIMIT_AS or RLIMIT_DATA */
745 #endif /* HAVE_GETRLIMIT */
750 /* Heuristic to set a default for GGC_MIN_EXPAND. */
752 ggc_min_expand_heuristic (void)
754 double min_expand
= physmem_total ();
756 /* Adjust for rlimits. */
757 min_expand
= ggc_rlimit_bound (min_expand
);
759 /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
760 a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB). */
763 min_expand
= MIN (min_expand
, 70);
769 /* Heuristic to set a default for GGC_MIN_HEAPSIZE. */
771 ggc_min_heapsize_heuristic (void)
773 double phys_kbytes
= physmem_total ();
774 double limit_kbytes
= ggc_rlimit_bound (phys_kbytes
* 2);
776 phys_kbytes
/= ONE_K
; /* Convert to Kbytes. */
777 limit_kbytes
/= ONE_K
;
779 /* The heuristic is RAM/8, with a lower bound of 4M and an upper
780 bound of 128M (when RAM >= 1GB). */
783 #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
784 /* Try not to overrun the RSS limit while doing garbage collection.
785 The RSS limit is only advisory, so no margin is subtracted. */
788 if (getrlimit (RLIMIT_RSS
, &rlim
) == 0
789 && rlim
.rlim_cur
!= (rlim_t
) RLIM_INFINITY
)
790 phys_kbytes
= MIN (phys_kbytes
, rlim
.rlim_cur
/ ONE_K
);
794 /* Don't blindly run over our data limit; do GC at least when the
795 *next* GC would be within 20Mb of the limit or within a quarter of
796 the limit, whichever is larger. If GCC does hit the data limit,
797 compilation will fail, so this tries to be conservative. */
798 limit_kbytes
= MAX (0, limit_kbytes
- MAX (limit_kbytes
/ 4, 20 * ONE_K
));
799 limit_kbytes
= (limit_kbytes
* 100) / (110 + ggc_min_expand_heuristic ());
800 phys_kbytes
= MIN (phys_kbytes
, limit_kbytes
);
802 phys_kbytes
= MAX (phys_kbytes
, 4 * ONE_K
);
803 phys_kbytes
= MIN (phys_kbytes
, 128 * ONE_K
);
810 init_ggc_heuristics (void)
812 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
813 param_ggc_min_expand
= ggc_min_expand_heuristic ();
814 param_ggc_min_heapsize
= ggc_min_heapsize_heuristic ();
818 /* GGC memory usage. */
819 class ggc_usage
: public mem_usage
822 /* Default constructor. */
823 ggc_usage (): m_freed (0), m_collected (0), m_overhead (0) {}
825 ggc_usage (size_t allocated
, size_t times
, size_t peak
,
826 size_t freed
, size_t collected
, size_t overhead
)
827 : mem_usage (allocated
, times
, peak
),
828 m_freed (freed
), m_collected (collected
), m_overhead (overhead
) {}
830 /* Equality operator. */
832 operator== (const ggc_usage
&second
) const
834 return (get_balance () == second
.get_balance ()
835 && m_peak
== second
.m_peak
836 && m_times
== second
.m_times
);
839 /* Comparison operator. */
841 operator< (const ggc_usage
&second
) const
846 return (get_balance () == second
.get_balance () ?
847 (m_peak
== second
.m_peak
? m_times
< second
.m_times
848 : m_peak
< second
.m_peak
)
849 : get_balance () < second
.get_balance ());
852 /* Register overhead of ALLOCATED and OVERHEAD bytes. */
854 register_overhead (size_t allocated
, size_t overhead
)
856 m_allocated
+= allocated
;
857 m_overhead
+= overhead
;
861 /* Release overhead of SIZE bytes. */
863 release_overhead (size_t size
)
868 /* Sum the usage with SECOND usage. */
870 operator+ (const ggc_usage
&second
)
872 return ggc_usage (m_allocated
+ second
.m_allocated
,
873 m_times
+ second
.m_times
,
874 m_peak
+ second
.m_peak
,
875 m_freed
+ second
.m_freed
,
876 m_collected
+ second
.m_collected
,
877 m_overhead
+ second
.m_overhead
);
880 /* Dump usage with PREFIX, where TOTAL is sum of all rows. */
882 dump (const char *prefix
, ggc_usage
&total
) const
884 size_t balance
= get_balance ();
886 "%-48s " PRsa (9) ":%5.1f%%" PRsa (9) ":%5.1f%%"
887 PRsa (9) ":%5.1f%%" PRsa (9) ":%5.1f%%" PRsa (9) "\n",
889 SIZE_AMOUNT (balance
), get_percent (balance
, total
.get_balance ()),
890 SIZE_AMOUNT (m_collected
),
891 get_percent (m_collected
, total
.m_collected
),
892 SIZE_AMOUNT (m_freed
), get_percent (m_freed
, total
.m_freed
),
893 SIZE_AMOUNT (m_overhead
),
894 get_percent (m_overhead
, total
.m_overhead
),
895 SIZE_AMOUNT (m_times
));
898 /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */
900 dump (mem_location
*loc
, ggc_usage
&total
) const
902 char *location_string
= loc
->to_string ();
904 dump (location_string
, total
);
906 free (location_string
);
913 dump ("Total", *this);
916 /* Get balance which is GGC allocation leak. */
920 return m_allocated
+ m_overhead
- m_collected
- m_freed
;
923 typedef std::pair
<mem_location
*, ggc_usage
*> mem_pair_t
;
925 /* Compare wrapper used by qsort method. */
927 compare (const void *first
, const void *second
)
929 const mem_pair_t mem1
= *(const mem_pair_t
*) first
;
930 const mem_pair_t mem2
= *(const mem_pair_t
*) second
;
932 size_t balance1
= mem1
.second
->get_balance ();
933 size_t balance2
= mem2
.second
->get_balance ();
935 return balance1
== balance2
? 0 : (balance1
< balance2
? 1 : -1);
938 /* Dump header with NAME. */
940 dump_header (const char *name
)
942 fprintf (stderr
, "%-48s %11s%17s%17s%16s%17s\n", name
, "Leak", "Garbage",
943 "Freed", "Overhead", "Times");
946 /* Freed memory in bytes. */
948 /* Collected memory in bytes. */
950 /* Overhead memory in bytes. */
954 /* GCC memory description. */
955 static mem_alloc_description
<ggc_usage
> ggc_mem_desc
;
957 /* Dump per-site memory statistics. */
960 dump_ggc_loc_statistics ()
962 if (! GATHER_STATISTICS
)
965 ggc_collect (GGC_COLLECT_FORCE
);
967 ggc_mem_desc
.dump (GGC_ORIGIN
);
970 /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION). */
972 ggc_record_overhead (size_t allocated
, size_t overhead
, void *ptr MEM_STAT_DECL
)
974 ggc_usage
*usage
= ggc_mem_desc
.register_descriptor (ptr
, GGC_ORIGIN
, false
975 FINAL_PASS_MEM_STAT
);
977 ggc_mem_desc
.register_object_overhead (usage
, allocated
+ overhead
, ptr
);
978 usage
->register_overhead (allocated
, overhead
);
981 /* Notice that the pointer has been freed. */
983 ggc_free_overhead (void *ptr
)
985 ggc_mem_desc
.release_object_overhead (ptr
);
988 /* After live values has been marked, walk all recorded pointers and see if
989 they are still live. */
991 ggc_prune_overhead_list (void)
993 typedef hash_map
<const void *, std::pair
<ggc_usage
*, size_t > > map_t
;
995 map_t::iterator it
= ggc_mem_desc
.m_reverse_object_map
->begin ();
997 for (; it
!= ggc_mem_desc
.m_reverse_object_map
->end (); ++it
)
998 if (!ggc_marked_p ((*it
).first
))
1000 (*it
).second
.first
->m_collected
+= (*it
).second
.second
;
1001 ggc_mem_desc
.m_reverse_object_map
->remove ((*it
).first
);
1005 /* Print memory used by heap if this info is available. */
1008 report_heap_memory_use ()
1010 #if defined(HAVE_MALLINFO) || defined(HAVE_MALLINFO2)
1011 #ifdef HAVE_MALLINFO2
1012 #define MALLINFO_FN mallinfo2
1014 #define MALLINFO_FN mallinfo
1017 fprintf (stderr
, " {heap " PRsa (0) "}",
1018 SIZE_AMOUNT (MALLINFO_FN ().arena
));