PR testsuite/44195
[official-gcc.git] / gcc / predict.c
blob15d573b50a2f9ac39e219885287f7acab2b3e5c6
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* References:
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "toplev.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
69 /* Random guesstimation given names.
70 PROV_VERY_UNLIKELY should be small enough so basic block predicted
71 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
72 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
73 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
74 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
75 #define PROB_ALWAYS (REG_BR_PROB_BASE)
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void choose_function_section (void);
81 static bool can_predict_insn_p (const_rtx);
83 /* Information we hold about each branch predictor.
84 Filled using information from predict.def. */
86 struct predictor_info
88 const char *const name; /* Name used in the debugging dumps. */
89 const int hitrate; /* Expected hitrate used by
90 predict_insn_def call. */
91 const int flags;
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95 using first_match heuristics. */
96 #define PRED_FLAG_FIRST_MATCH 1
98 /* Recompute hitrate in percent to our representation. */
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
106 /* Upper bound on predictors. */
107 {NULL, 0, 0}
109 #undef DEF_PREDICTOR
111 /* Return TRUE if frequency FREQ is considered to be hot. */
113 static inline bool
114 maybe_hot_frequency_p (int freq)
116 struct cgraph_node *node = cgraph_node (current_function_decl);
117 if (!profile_info || !flag_branch_probabilities)
119 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (node->frequency == NODE_FREQUENCY_HOT)
122 return true;
124 if (profile_status == PROFILE_ABSENT)
125 return true;
126 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
127 && freq <= (ENTRY_BLOCK_PTR->frequency * 2 / 3))
128 return false;
129 if (freq < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
130 return false;
131 return true;
134 /* Return TRUE if frequency FREQ is considered to be hot. */
136 static inline bool
137 maybe_hot_count_p (gcov_type count)
139 if (profile_status != PROFILE_READ)
140 return true;
141 /* Code executed at most once is not hot. */
142 if (profile_info->runs >= count)
143 return false;
144 return (count
145 > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
148 /* Return true in case BB can be CPU intensive and should be optimized
149 for maximal performance. */
151 bool
152 maybe_hot_bb_p (const_basic_block bb)
154 if (profile_status == PROFILE_READ)
155 return maybe_hot_count_p (bb->count);
156 return maybe_hot_frequency_p (bb->frequency);
159 /* Return true if the call can be hot. */
161 bool
162 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
164 if (profile_info && flag_branch_probabilities
165 && (edge->count
166 <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
167 return false;
168 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
169 || edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
170 return false;
171 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
172 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE)
173 return false;
174 if (optimize_size)
175 return false;
176 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
177 return true;
178 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
179 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
180 return false;
181 if (flag_guess_branch_prob
182 && edge->frequency <= (CGRAPH_FREQ_BASE
183 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
184 return false;
185 return true;
188 /* Return true in case BB can be CPU intensive and should be optimized
189 for maximal performance. */
191 bool
192 maybe_hot_edge_p (edge e)
194 if (profile_status == PROFILE_READ)
195 return maybe_hot_count_p (e->count);
196 return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
199 /* Return true in case BB is probably never executed. */
200 bool
201 probably_never_executed_bb_p (const_basic_block bb)
203 if (profile_info && flag_branch_probabilities)
204 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
205 if ((!profile_info || !flag_branch_probabilities)
206 && cgraph_node (current_function_decl)->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
207 return true;
208 return false;
211 /* Return true when current function should always be optimized for size. */
213 bool
214 optimize_function_for_size_p (struct function *fun)
216 return (optimize_size
217 || (fun && fun->decl
218 && (cgraph_node (fun->decl)->frequency
219 == NODE_FREQUENCY_UNLIKELY_EXECUTED)));
222 /* Return true when current function should always be optimized for speed. */
224 bool
225 optimize_function_for_speed_p (struct function *fun)
227 return !optimize_function_for_size_p (fun);
230 /* Return TRUE when BB should be optimized for size. */
232 bool
233 optimize_bb_for_size_p (const_basic_block bb)
235 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
238 /* Return TRUE when BB should be optimized for speed. */
240 bool
241 optimize_bb_for_speed_p (const_basic_block bb)
243 return !optimize_bb_for_size_p (bb);
246 /* Return TRUE when BB should be optimized for size. */
248 bool
249 optimize_edge_for_size_p (edge e)
251 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
254 /* Return TRUE when BB should be optimized for speed. */
256 bool
257 optimize_edge_for_speed_p (edge e)
259 return !optimize_edge_for_size_p (e);
262 /* Return TRUE when BB should be optimized for size. */
264 bool
265 optimize_insn_for_size_p (void)
267 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
270 /* Return TRUE when BB should be optimized for speed. */
272 bool
273 optimize_insn_for_speed_p (void)
275 return !optimize_insn_for_size_p ();
278 /* Return TRUE when LOOP should be optimized for size. */
280 bool
281 optimize_loop_for_size_p (struct loop *loop)
283 return optimize_bb_for_size_p (loop->header);
286 /* Return TRUE when LOOP should be optimized for speed. */
288 bool
289 optimize_loop_for_speed_p (struct loop *loop)
291 return optimize_bb_for_speed_p (loop->header);
294 /* Return TRUE when LOOP nest should be optimized for speed. */
296 bool
297 optimize_loop_nest_for_speed_p (struct loop *loop)
299 struct loop *l = loop;
300 if (optimize_loop_for_speed_p (loop))
301 return true;
302 l = loop->inner;
303 while (l && l != loop)
305 if (optimize_loop_for_speed_p (l))
306 return true;
307 if (l->inner)
308 l = l->inner;
309 else if (l->next)
310 l = l->next;
311 else
313 while (l != loop && !l->next)
314 l = loop_outer (l);
315 if (l != loop)
316 l = l->next;
319 return false;
322 /* Return TRUE when LOOP nest should be optimized for size. */
324 bool
325 optimize_loop_nest_for_size_p (struct loop *loop)
327 return !optimize_loop_nest_for_speed_p (loop);
330 /* Return true when edge E is likely to be well predictable by branch
331 predictor. */
333 bool
334 predictable_edge_p (edge e)
336 if (profile_status == PROFILE_ABSENT)
337 return false;
338 if ((e->probability
339 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
340 || (REG_BR_PROB_BASE - e->probability
341 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
342 return true;
343 return false;
347 /* Set RTL expansion for BB profile. */
349 void
350 rtl_profile_for_bb (basic_block bb)
352 crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
355 /* Set RTL expansion for edge profile. */
357 void
358 rtl_profile_for_edge (edge e)
360 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
363 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
364 void
365 default_rtl_profile (void)
367 crtl->maybe_hot_insn_p = true;
370 /* Return true if the one of outgoing edges is already predicted by
371 PREDICTOR. */
373 bool
374 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
376 rtx note;
377 if (!INSN_P (BB_END (bb)))
378 return false;
379 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
380 if (REG_NOTE_KIND (note) == REG_BR_PRED
381 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
382 return true;
383 return false;
386 /* This map contains for a basic block the list of predictions for the
387 outgoing edges. */
389 static struct pointer_map_t *bb_predictions;
391 /* Return true if the one of outgoing edges is already predicted by
392 PREDICTOR. */
394 bool
395 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
397 struct edge_prediction *i;
398 void **preds = pointer_map_contains (bb_predictions, bb);
400 if (!preds)
401 return false;
403 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
404 if (i->ep_predictor == predictor)
405 return true;
406 return false;
409 /* Return true when the probability of edge is reliable.
411 The profile guessing code is good at predicting branch outcome (ie.
412 taken/not taken), that is predicted right slightly over 75% of time.
413 It is however notoriously poor on predicting the probability itself.
414 In general the profile appear a lot flatter (with probabilities closer
415 to 50%) than the reality so it is bad idea to use it to drive optimization
416 such as those disabling dynamic branch prediction for well predictable
417 branches.
419 There are two exceptions - edges leading to noreturn edges and edges
420 predicted by number of iterations heuristics are predicted well. This macro
421 should be able to distinguish those, but at the moment it simply check for
422 noreturn heuristic that is only one giving probability over 99% or bellow
423 1%. In future we might want to propagate reliability information across the
424 CFG if we find this information useful on multiple places. */
425 static bool
426 probability_reliable_p (int prob)
428 return (profile_status == PROFILE_READ
429 || (profile_status == PROFILE_GUESSED
430 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
433 /* Same predicate as above, working on edges. */
434 bool
435 edge_probability_reliable_p (const_edge e)
437 return probability_reliable_p (e->probability);
440 /* Same predicate as edge_probability_reliable_p, working on notes. */
441 bool
442 br_prob_note_reliable_p (const_rtx note)
444 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
445 return probability_reliable_p (INTVAL (XEXP (note, 0)));
448 static void
449 predict_insn (rtx insn, enum br_predictor predictor, int probability)
451 gcc_assert (any_condjump_p (insn));
452 if (!flag_guess_branch_prob)
453 return;
455 add_reg_note (insn, REG_BR_PRED,
456 gen_rtx_CONCAT (VOIDmode,
457 GEN_INT ((int) predictor),
458 GEN_INT ((int) probability)));
461 /* Predict insn by given predictor. */
463 void
464 predict_insn_def (rtx insn, enum br_predictor predictor,
465 enum prediction taken)
467 int probability = predictor_info[(int) predictor].hitrate;
469 if (taken != TAKEN)
470 probability = REG_BR_PROB_BASE - probability;
472 predict_insn (insn, predictor, probability);
475 /* Predict edge E with given probability if possible. */
477 void
478 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
480 rtx last_insn;
481 last_insn = BB_END (e->src);
483 /* We can store the branch prediction information only about
484 conditional jumps. */
485 if (!any_condjump_p (last_insn))
486 return;
488 /* We always store probability of branching. */
489 if (e->flags & EDGE_FALLTHRU)
490 probability = REG_BR_PROB_BASE - probability;
492 predict_insn (last_insn, predictor, probability);
495 /* Predict edge E with the given PROBABILITY. */
496 void
497 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
499 gcc_assert (profile_status != PROFILE_GUESSED);
500 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
501 && flag_guess_branch_prob && optimize)
503 struct edge_prediction *i = XNEW (struct edge_prediction);
504 void **preds = pointer_map_insert (bb_predictions, e->src);
506 i->ep_next = (struct edge_prediction *) *preds;
507 *preds = i;
508 i->ep_probability = probability;
509 i->ep_predictor = predictor;
510 i->ep_edge = e;
514 /* Remove all predictions on given basic block that are attached
515 to edge E. */
516 void
517 remove_predictions_associated_with_edge (edge e)
519 void **preds;
521 if (!bb_predictions)
522 return;
524 preds = pointer_map_contains (bb_predictions, e->src);
526 if (preds)
528 struct edge_prediction **prediction = (struct edge_prediction **) preds;
529 struct edge_prediction *next;
531 while (*prediction)
533 if ((*prediction)->ep_edge == e)
535 next = (*prediction)->ep_next;
536 free (*prediction);
537 *prediction = next;
539 else
540 prediction = &((*prediction)->ep_next);
545 /* Clears the list of predictions stored for BB. */
547 static void
548 clear_bb_predictions (basic_block bb)
550 void **preds = pointer_map_contains (bb_predictions, bb);
551 struct edge_prediction *pred, *next;
553 if (!preds)
554 return;
556 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
558 next = pred->ep_next;
559 free (pred);
561 *preds = NULL;
564 /* Return true when we can store prediction on insn INSN.
565 At the moment we represent predictions only on conditional
566 jumps, not at computed jump or other complicated cases. */
567 static bool
568 can_predict_insn_p (const_rtx insn)
570 return (JUMP_P (insn)
571 && any_condjump_p (insn)
572 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
575 /* Predict edge E by given predictor if possible. */
577 void
578 predict_edge_def (edge e, enum br_predictor predictor,
579 enum prediction taken)
581 int probability = predictor_info[(int) predictor].hitrate;
583 if (taken != TAKEN)
584 probability = REG_BR_PROB_BASE - probability;
586 predict_edge (e, predictor, probability);
589 /* Invert all branch predictions or probability notes in the INSN. This needs
590 to be done each time we invert the condition used by the jump. */
592 void
593 invert_br_probabilities (rtx insn)
595 rtx note;
597 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
598 if (REG_NOTE_KIND (note) == REG_BR_PROB)
599 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
600 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
601 XEXP (XEXP (note, 0), 1)
602 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
605 /* Dump information about the branch prediction to the output file. */
607 static void
608 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
609 basic_block bb, int used)
611 edge e;
612 edge_iterator ei;
614 if (!file)
615 return;
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 if (! (e->flags & EDGE_FALLTHRU))
619 break;
621 fprintf (file, " %s heuristics%s: %.1f%%",
622 predictor_info[predictor].name,
623 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
625 if (bb->count)
627 fprintf (file, " exec ");
628 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
629 if (e)
631 fprintf (file, " hit ");
632 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
633 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
637 fprintf (file, "\n");
640 /* We can not predict the probabilities of outgoing edges of bb. Set them
641 evenly and hope for the best. */
642 static void
643 set_even_probabilities (basic_block bb)
645 int nedges = 0;
646 edge e;
647 edge_iterator ei;
649 FOR_EACH_EDGE (e, ei, bb->succs)
650 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
651 nedges ++;
652 FOR_EACH_EDGE (e, ei, bb->succs)
653 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
654 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
655 else
656 e->probability = 0;
659 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
660 note if not already present. Remove now useless REG_BR_PRED notes. */
662 static void
663 combine_predictions_for_insn (rtx insn, basic_block bb)
665 rtx prob_note;
666 rtx *pnote;
667 rtx note;
668 int best_probability = PROB_EVEN;
669 enum br_predictor best_predictor = END_PREDICTORS;
670 int combined_probability = REG_BR_PROB_BASE / 2;
671 int d;
672 bool first_match = false;
673 bool found = false;
675 if (!can_predict_insn_p (insn))
677 set_even_probabilities (bb);
678 return;
681 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
682 pnote = &REG_NOTES (insn);
683 if (dump_file)
684 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
685 bb->index);
687 /* We implement "first match" heuristics and use probability guessed
688 by predictor with smallest index. */
689 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
690 if (REG_NOTE_KIND (note) == REG_BR_PRED)
692 enum br_predictor predictor = ((enum br_predictor)
693 INTVAL (XEXP (XEXP (note, 0), 0)));
694 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
696 found = true;
697 if (best_predictor > predictor)
698 best_probability = probability, best_predictor = predictor;
700 d = (combined_probability * probability
701 + (REG_BR_PROB_BASE - combined_probability)
702 * (REG_BR_PROB_BASE - probability));
704 /* Use FP math to avoid overflows of 32bit integers. */
705 if (d == 0)
706 /* If one probability is 0% and one 100%, avoid division by zero. */
707 combined_probability = REG_BR_PROB_BASE / 2;
708 else
709 combined_probability = (((double) combined_probability) * probability
710 * REG_BR_PROB_BASE / d + 0.5);
713 /* Decide which heuristic to use. In case we didn't match anything,
714 use no_prediction heuristic, in case we did match, use either
715 first match or Dempster-Shaffer theory depending on the flags. */
717 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
718 first_match = true;
720 if (!found)
721 dump_prediction (dump_file, PRED_NO_PREDICTION,
722 combined_probability, bb, true);
723 else
725 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
726 bb, !first_match);
727 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
728 bb, first_match);
731 if (first_match)
732 combined_probability = best_probability;
733 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
735 while (*pnote)
737 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
739 enum br_predictor predictor = ((enum br_predictor)
740 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
741 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
743 dump_prediction (dump_file, predictor, probability, bb,
744 !first_match || best_predictor == predictor);
745 *pnote = XEXP (*pnote, 1);
747 else
748 pnote = &XEXP (*pnote, 1);
751 if (!prob_note)
753 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
755 /* Save the prediction into CFG in case we are seeing non-degenerated
756 conditional jump. */
757 if (!single_succ_p (bb))
759 BRANCH_EDGE (bb)->probability = combined_probability;
760 FALLTHRU_EDGE (bb)->probability
761 = REG_BR_PROB_BASE - combined_probability;
764 else if (!single_succ_p (bb))
766 int prob = INTVAL (XEXP (prob_note, 0));
768 BRANCH_EDGE (bb)->probability = prob;
769 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
771 else
772 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
775 /* Combine predictions into single probability and store them into CFG.
776 Remove now useless prediction entries. */
778 static void
779 combine_predictions_for_bb (basic_block bb)
781 int best_probability = PROB_EVEN;
782 enum br_predictor best_predictor = END_PREDICTORS;
783 int combined_probability = REG_BR_PROB_BASE / 2;
784 int d;
785 bool first_match = false;
786 bool found = false;
787 struct edge_prediction *pred;
788 int nedges = 0;
789 edge e, first = NULL, second = NULL;
790 edge_iterator ei;
791 void **preds;
793 FOR_EACH_EDGE (e, ei, bb->succs)
794 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
796 nedges ++;
797 if (first && !second)
798 second = e;
799 if (!first)
800 first = e;
803 /* When there is no successor or only one choice, prediction is easy.
805 We are lazy for now and predict only basic blocks with two outgoing
806 edges. It is possible to predict generic case too, but we have to
807 ignore first match heuristics and do more involved combining. Implement
808 this later. */
809 if (nedges != 2)
811 if (!bb->count)
812 set_even_probabilities (bb);
813 clear_bb_predictions (bb);
814 if (dump_file)
815 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
816 nedges, bb->index);
817 return;
820 if (dump_file)
821 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
823 preds = pointer_map_contains (bb_predictions, bb);
824 if (preds)
826 /* We implement "first match" heuristics and use probability guessed
827 by predictor with smallest index. */
828 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
830 enum br_predictor predictor = pred->ep_predictor;
831 int probability = pred->ep_probability;
833 if (pred->ep_edge != first)
834 probability = REG_BR_PROB_BASE - probability;
836 found = true;
837 /* First match heuristics would be widly confused if we predicted
838 both directions. */
839 if (best_predictor > predictor)
841 struct edge_prediction *pred2;
842 int prob = probability;
844 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
845 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
847 int probability2 = pred->ep_probability;
849 if (pred2->ep_edge != first)
850 probability2 = REG_BR_PROB_BASE - probability2;
852 if ((probability < REG_BR_PROB_BASE / 2) !=
853 (probability2 < REG_BR_PROB_BASE / 2))
854 break;
856 /* If the same predictor later gave better result, go for it! */
857 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
858 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
859 prob = probability2;
861 if (!pred2)
862 best_probability = prob, best_predictor = predictor;
865 d = (combined_probability * probability
866 + (REG_BR_PROB_BASE - combined_probability)
867 * (REG_BR_PROB_BASE - probability));
869 /* Use FP math to avoid overflows of 32bit integers. */
870 if (d == 0)
871 /* If one probability is 0% and one 100%, avoid division by zero. */
872 combined_probability = REG_BR_PROB_BASE / 2;
873 else
874 combined_probability = (((double) combined_probability)
875 * probability
876 * REG_BR_PROB_BASE / d + 0.5);
880 /* Decide which heuristic to use. In case we didn't match anything,
881 use no_prediction heuristic, in case we did match, use either
882 first match or Dempster-Shaffer theory depending on the flags. */
884 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
885 first_match = true;
887 if (!found)
888 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
889 else
891 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
892 !first_match);
893 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
894 first_match);
897 if (first_match)
898 combined_probability = best_probability;
899 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
901 if (preds)
903 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
905 enum br_predictor predictor = pred->ep_predictor;
906 int probability = pred->ep_probability;
908 if (pred->ep_edge != EDGE_SUCC (bb, 0))
909 probability = REG_BR_PROB_BASE - probability;
910 dump_prediction (dump_file, predictor, probability, bb,
911 !first_match || best_predictor == predictor);
914 clear_bb_predictions (bb);
916 if (!bb->count)
918 first->probability = combined_probability;
919 second->probability = REG_BR_PROB_BASE - combined_probability;
923 /* Predict edge probabilities by exploiting loop structure. */
925 static void
926 predict_loops (void)
928 loop_iterator li;
929 struct loop *loop;
931 /* Try to predict out blocks in a loop that are not part of a
932 natural loop. */
933 FOR_EACH_LOOP (li, loop, 0)
935 basic_block bb, *bbs;
936 unsigned j, n_exits;
937 VEC (edge, heap) *exits;
938 struct tree_niter_desc niter_desc;
939 edge ex;
941 exits = get_loop_exit_edges (loop);
942 n_exits = VEC_length (edge, exits);
944 for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
946 tree niter = NULL;
947 HOST_WIDE_INT nitercst;
948 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
949 int probability;
950 enum br_predictor predictor;
952 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
953 niter = niter_desc.niter;
954 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
955 niter = loop_niter_by_eval (loop, ex);
957 if (TREE_CODE (niter) == INTEGER_CST)
959 if (host_integerp (niter, 1)
960 && compare_tree_int (niter, max-1) == -1)
961 nitercst = tree_low_cst (niter, 1) + 1;
962 else
963 nitercst = max;
964 predictor = PRED_LOOP_ITERATIONS;
966 /* If we have just one exit and we can derive some information about
967 the number of iterations of the loop from the statements inside
968 the loop, use it to predict this exit. */
969 else if (n_exits == 1)
971 nitercst = estimated_loop_iterations_int (loop, false);
972 if (nitercst < 0)
973 continue;
974 if (nitercst > max)
975 nitercst = max;
977 predictor = PRED_LOOP_ITERATIONS_GUESSED;
979 else
980 continue;
982 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
983 predict_edge (ex, predictor, probability);
985 VEC_free (edge, heap, exits);
987 bbs = get_loop_body (loop);
989 for (j = 0; j < loop->num_nodes; j++)
991 int header_found = 0;
992 edge e;
993 edge_iterator ei;
995 bb = bbs[j];
997 /* Bypass loop heuristics on continue statement. These
998 statements construct loops via "non-loop" constructs
999 in the source language and are better to be handled
1000 separately. */
1001 if (predicted_by_p (bb, PRED_CONTINUE))
1002 continue;
1004 /* Loop branch heuristics - predict an edge back to a
1005 loop's head as taken. */
1006 if (bb == loop->latch)
1008 e = find_edge (loop->latch, loop->header);
1009 if (e)
1011 header_found = 1;
1012 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1016 /* Loop exit heuristics - predict an edge exiting the loop if the
1017 conditional has no loop header successors as not taken. */
1018 if (!header_found
1019 /* If we already used more reliable loop exit predictors, do not
1020 bother with PRED_LOOP_EXIT. */
1021 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1022 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1024 /* For loop with many exits we don't want to predict all exits
1025 with the pretty large probability, because if all exits are
1026 considered in row, the loop would be predicted to iterate
1027 almost never. The code to divide probability by number of
1028 exits is very rough. It should compute the number of exits
1029 taken in each patch through function (not the overall number
1030 of exits that might be a lot higher for loops with wide switch
1031 statements in them) and compute n-th square root.
1033 We limit the minimal probability by 2% to avoid
1034 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1035 as this was causing regression in perl benchmark containing such
1036 a wide loop. */
1038 int probability = ((REG_BR_PROB_BASE
1039 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1040 / n_exits);
1041 if (probability < HITRATE (2))
1042 probability = HITRATE (2);
1043 FOR_EACH_EDGE (e, ei, bb->succs)
1044 if (e->dest->index < NUM_FIXED_BLOCKS
1045 || !flow_bb_inside_loop_p (loop, e->dest))
1046 predict_edge (e, PRED_LOOP_EXIT, probability);
1050 /* Free basic blocks from get_loop_body. */
1051 free (bbs);
1055 /* Attempt to predict probabilities of BB outgoing edges using local
1056 properties. */
1057 static void
1058 bb_estimate_probability_locally (basic_block bb)
1060 rtx last_insn = BB_END (bb);
1061 rtx cond;
1063 if (! can_predict_insn_p (last_insn))
1064 return;
1065 cond = get_condition (last_insn, NULL, false, false);
1066 if (! cond)
1067 return;
1069 /* Try "pointer heuristic."
1070 A comparison ptr == 0 is predicted as false.
1071 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1072 if (COMPARISON_P (cond)
1073 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1074 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1076 if (GET_CODE (cond) == EQ)
1077 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1078 else if (GET_CODE (cond) == NE)
1079 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1081 else
1083 /* Try "opcode heuristic."
1084 EQ tests are usually false and NE tests are usually true. Also,
1085 most quantities are positive, so we can make the appropriate guesses
1086 about signed comparisons against zero. */
1087 switch (GET_CODE (cond))
1089 case CONST_INT:
1090 /* Unconditional branch. */
1091 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1092 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1093 break;
1095 case EQ:
1096 case UNEQ:
1097 /* Floating point comparisons appears to behave in a very
1098 unpredictable way because of special role of = tests in
1099 FP code. */
1100 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1102 /* Comparisons with 0 are often used for booleans and there is
1103 nothing useful to predict about them. */
1104 else if (XEXP (cond, 1) == const0_rtx
1105 || XEXP (cond, 0) == const0_rtx)
1107 else
1108 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1109 break;
1111 case NE:
1112 case LTGT:
1113 /* Floating point comparisons appears to behave in a very
1114 unpredictable way because of special role of = tests in
1115 FP code. */
1116 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1118 /* Comparisons with 0 are often used for booleans and there is
1119 nothing useful to predict about them. */
1120 else if (XEXP (cond, 1) == const0_rtx
1121 || XEXP (cond, 0) == const0_rtx)
1123 else
1124 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1125 break;
1127 case ORDERED:
1128 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1129 break;
1131 case UNORDERED:
1132 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1133 break;
1135 case LE:
1136 case LT:
1137 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1138 || XEXP (cond, 1) == constm1_rtx)
1139 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1140 break;
1142 case GE:
1143 case GT:
1144 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1145 || XEXP (cond, 1) == constm1_rtx)
1146 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1147 break;
1149 default:
1150 break;
1154 /* Set edge->probability for each successor edge of BB. */
1155 void
1156 guess_outgoing_edge_probabilities (basic_block bb)
1158 bb_estimate_probability_locally (bb);
1159 combine_predictions_for_insn (BB_END (bb), bb);
1162 static tree expr_expected_value (tree, bitmap);
1164 /* Helper function for expr_expected_value. */
1166 static tree
1167 expr_expected_value_1 (tree type, tree op0, enum tree_code code, tree op1, bitmap visited)
1169 gimple def;
1171 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1173 if (TREE_CONSTANT (op0))
1174 return op0;
1176 if (code != SSA_NAME)
1177 return NULL_TREE;
1179 def = SSA_NAME_DEF_STMT (op0);
1181 /* If we were already here, break the infinite cycle. */
1182 if (bitmap_bit_p (visited, SSA_NAME_VERSION (op0)))
1183 return NULL;
1184 bitmap_set_bit (visited, SSA_NAME_VERSION (op0));
1186 if (gimple_code (def) == GIMPLE_PHI)
1188 /* All the arguments of the PHI node must have the same constant
1189 length. */
1190 int i, n = gimple_phi_num_args (def);
1191 tree val = NULL, new_val;
1193 for (i = 0; i < n; i++)
1195 tree arg = PHI_ARG_DEF (def, i);
1197 /* If this PHI has itself as an argument, we cannot
1198 determine the string length of this argument. However,
1199 if we can find an expected constant value for the other
1200 PHI args then we can still be sure that this is
1201 likely a constant. So be optimistic and just
1202 continue with the next argument. */
1203 if (arg == PHI_RESULT (def))
1204 continue;
1206 new_val = expr_expected_value (arg, visited);
1207 if (!new_val)
1208 return NULL;
1209 if (!val)
1210 val = new_val;
1211 else if (!operand_equal_p (val, new_val, false))
1212 return NULL;
1214 return val;
1216 if (is_gimple_assign (def))
1218 if (gimple_assign_lhs (def) != op0)
1219 return NULL;
1221 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1222 gimple_assign_rhs1 (def),
1223 gimple_assign_rhs_code (def),
1224 gimple_assign_rhs2 (def),
1225 visited);
1228 if (is_gimple_call (def))
1230 tree decl = gimple_call_fndecl (def);
1231 if (!decl)
1232 return NULL;
1233 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
1234 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
1236 tree val;
1238 if (gimple_call_num_args (def) != 2)
1239 return NULL;
1240 val = gimple_call_arg (def, 0);
1241 if (TREE_CONSTANT (val))
1242 return val;
1243 return gimple_call_arg (def, 1);
1247 return NULL;
1250 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1252 tree res;
1253 op0 = expr_expected_value (op0, visited);
1254 if (!op0)
1255 return NULL;
1256 op1 = expr_expected_value (op1, visited);
1257 if (!op1)
1258 return NULL;
1259 res = fold_build2 (code, type, op0, op1);
1260 if (TREE_CONSTANT (res))
1261 return res;
1262 return NULL;
1264 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1266 tree res;
1267 op0 = expr_expected_value (op0, visited);
1268 if (!op0)
1269 return NULL;
1270 res = fold_build1 (code, type, op0);
1271 if (TREE_CONSTANT (res))
1272 return res;
1273 return NULL;
1275 return NULL;
1278 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1279 The function is used by builtin_expect branch predictor so the evidence
1280 must come from this construct and additional possible constant folding.
1282 We may want to implement more involved value guess (such as value range
1283 propagation based prediction), but such tricks shall go to new
1284 implementation. */
1286 static tree
1287 expr_expected_value (tree expr, bitmap visited)
1289 enum tree_code code;
1290 tree op0, op1;
1292 if (TREE_CONSTANT (expr))
1293 return expr;
1295 extract_ops_from_tree (expr, &code, &op0, &op1);
1296 return expr_expected_value_1 (TREE_TYPE (expr),
1297 op0, code, op1, visited);
1301 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1302 we no longer need. */
1303 static unsigned int
1304 strip_predict_hints (void)
1306 basic_block bb;
1307 gimple ass_stmt;
1308 tree var;
1310 FOR_EACH_BB (bb)
1312 gimple_stmt_iterator bi;
1313 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1315 gimple stmt = gsi_stmt (bi);
1317 if (gimple_code (stmt) == GIMPLE_PREDICT)
1319 gsi_remove (&bi, true);
1320 continue;
1322 else if (gimple_code (stmt) == GIMPLE_CALL)
1324 tree fndecl = gimple_call_fndecl (stmt);
1326 if (fndecl
1327 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1328 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1329 && gimple_call_num_args (stmt) == 2)
1331 var = gimple_call_lhs (stmt);
1332 ass_stmt = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1334 gsi_replace (&bi, ass_stmt, true);
1337 gsi_next (&bi);
1340 return 0;
1343 /* Predict using opcode of the last statement in basic block. */
1344 static void
1345 tree_predict_by_opcode (basic_block bb)
1347 gimple stmt = last_stmt (bb);
1348 edge then_edge;
1349 tree op0, op1;
1350 tree type;
1351 tree val;
1352 enum tree_code cmp;
1353 bitmap visited;
1354 edge_iterator ei;
1356 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1357 return;
1358 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1359 if (then_edge->flags & EDGE_TRUE_VALUE)
1360 break;
1361 op0 = gimple_cond_lhs (stmt);
1362 op1 = gimple_cond_rhs (stmt);
1363 cmp = gimple_cond_code (stmt);
1364 type = TREE_TYPE (op0);
1365 visited = BITMAP_ALLOC (NULL);
1366 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1367 BITMAP_FREE (visited);
1368 if (val)
1370 if (integer_zerop (val))
1371 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1372 else
1373 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1374 return;
1376 /* Try "pointer heuristic."
1377 A comparison ptr == 0 is predicted as false.
1378 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1379 if (POINTER_TYPE_P (type))
1381 if (cmp == EQ_EXPR)
1382 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1383 else if (cmp == NE_EXPR)
1384 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1386 else
1388 /* Try "opcode heuristic."
1389 EQ tests are usually false and NE tests are usually true. Also,
1390 most quantities are positive, so we can make the appropriate guesses
1391 about signed comparisons against zero. */
1392 switch (cmp)
1394 case EQ_EXPR:
1395 case UNEQ_EXPR:
1396 /* Floating point comparisons appears to behave in a very
1397 unpredictable way because of special role of = tests in
1398 FP code. */
1399 if (FLOAT_TYPE_P (type))
1401 /* Comparisons with 0 are often used for booleans and there is
1402 nothing useful to predict about them. */
1403 else if (integer_zerop (op0) || integer_zerop (op1))
1405 else
1406 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1407 break;
1409 case NE_EXPR:
1410 case LTGT_EXPR:
1411 /* Floating point comparisons appears to behave in a very
1412 unpredictable way because of special role of = tests in
1413 FP code. */
1414 if (FLOAT_TYPE_P (type))
1416 /* Comparisons with 0 are often used for booleans and there is
1417 nothing useful to predict about them. */
1418 else if (integer_zerop (op0)
1419 || integer_zerop (op1))
1421 else
1422 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1423 break;
1425 case ORDERED_EXPR:
1426 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1427 break;
1429 case UNORDERED_EXPR:
1430 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1431 break;
1433 case LE_EXPR:
1434 case LT_EXPR:
1435 if (integer_zerop (op1)
1436 || integer_onep (op1)
1437 || integer_all_onesp (op1)
1438 || real_zerop (op1)
1439 || real_onep (op1)
1440 || real_minus_onep (op1))
1441 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1442 break;
1444 case GE_EXPR:
1445 case GT_EXPR:
1446 if (integer_zerop (op1)
1447 || integer_onep (op1)
1448 || integer_all_onesp (op1)
1449 || real_zerop (op1)
1450 || real_onep (op1)
1451 || real_minus_onep (op1))
1452 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1453 break;
1455 default:
1456 break;
1460 /* Try to guess whether the value of return means error code. */
1462 static enum br_predictor
1463 return_prediction (tree val, enum prediction *prediction)
1465 /* VOID. */
1466 if (!val)
1467 return PRED_NO_PREDICTION;
1468 /* Different heuristics for pointers and scalars. */
1469 if (POINTER_TYPE_P (TREE_TYPE (val)))
1471 /* NULL is usually not returned. */
1472 if (integer_zerop (val))
1474 *prediction = NOT_TAKEN;
1475 return PRED_NULL_RETURN;
1478 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1480 /* Negative return values are often used to indicate
1481 errors. */
1482 if (TREE_CODE (val) == INTEGER_CST
1483 && tree_int_cst_sgn (val) < 0)
1485 *prediction = NOT_TAKEN;
1486 return PRED_NEGATIVE_RETURN;
1488 /* Constant return values seems to be commonly taken.
1489 Zero/one often represent booleans so exclude them from the
1490 heuristics. */
1491 if (TREE_CONSTANT (val)
1492 && (!integer_zerop (val) && !integer_onep (val)))
1494 *prediction = TAKEN;
1495 return PRED_CONST_RETURN;
1498 return PRED_NO_PREDICTION;
1501 /* Find the basic block with return expression and look up for possible
1502 return value trying to apply RETURN_PREDICTION heuristics. */
1503 static void
1504 apply_return_prediction (void)
1506 gimple return_stmt = NULL;
1507 tree return_val;
1508 edge e;
1509 gimple phi;
1510 int phi_num_args, i;
1511 enum br_predictor pred;
1512 enum prediction direction;
1513 edge_iterator ei;
1515 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1517 return_stmt = last_stmt (e->src);
1518 if (return_stmt
1519 && gimple_code (return_stmt) == GIMPLE_RETURN)
1520 break;
1522 if (!e)
1523 return;
1524 return_val = gimple_return_retval (return_stmt);
1525 if (!return_val)
1526 return;
1527 if (TREE_CODE (return_val) != SSA_NAME
1528 || !SSA_NAME_DEF_STMT (return_val)
1529 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1530 return;
1531 phi = SSA_NAME_DEF_STMT (return_val);
1532 phi_num_args = gimple_phi_num_args (phi);
1533 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1535 /* Avoid the degenerate case where all return values form the function
1536 belongs to same category (ie they are all positive constants)
1537 so we can hardly say something about them. */
1538 for (i = 1; i < phi_num_args; i++)
1539 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1540 break;
1541 if (i != phi_num_args)
1542 for (i = 0; i < phi_num_args; i++)
1544 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1545 if (pred != PRED_NO_PREDICTION)
1546 predict_paths_leading_to (gimple_phi_arg_edge (phi, i)->src, pred,
1547 direction);
1551 /* Look for basic block that contains unlikely to happen events
1552 (such as noreturn calls) and mark all paths leading to execution
1553 of this basic blocks as unlikely. */
1555 static void
1556 tree_bb_level_predictions (void)
1558 basic_block bb;
1559 bool has_return_edges = false;
1560 edge e;
1561 edge_iterator ei;
1563 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1564 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
1566 has_return_edges = true;
1567 break;
1570 apply_return_prediction ();
1572 FOR_EACH_BB (bb)
1574 gimple_stmt_iterator gsi;
1576 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1578 gimple stmt = gsi_stmt (gsi);
1579 tree decl;
1581 if (is_gimple_call (stmt))
1583 if ((gimple_call_flags (stmt) & ECF_NORETURN)
1584 && has_return_edges)
1585 predict_paths_leading_to (bb, PRED_NORETURN,
1586 NOT_TAKEN);
1587 decl = gimple_call_fndecl (stmt);
1588 if (decl
1589 && lookup_attribute ("cold",
1590 DECL_ATTRIBUTES (decl)))
1591 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1592 NOT_TAKEN);
1594 else if (gimple_code (stmt) == GIMPLE_PREDICT)
1596 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
1597 gimple_predict_outcome (stmt));
1598 /* Keep GIMPLE_PREDICT around so early inlining will propagate
1599 hints to callers. */
1605 #ifdef ENABLE_CHECKING
1607 /* Callback for pointer_map_traverse, asserts that the pointer map is
1608 empty. */
1610 static bool
1611 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1612 void *data ATTRIBUTE_UNUSED)
1614 gcc_assert (!*value);
1615 return false;
1617 #endif
1619 /* Predict branch probabilities and estimate profile for basic block BB. */
1621 static void
1622 tree_estimate_probability_bb (basic_block bb)
1624 edge e;
1625 edge_iterator ei;
1626 gimple last;
1628 FOR_EACH_EDGE (e, ei, bb->succs)
1630 /* Predict early returns to be probable, as we've already taken
1631 care for error returns and other cases are often used for
1632 fast paths through function.
1634 Since we've already removed the return statements, we are
1635 looking for CFG like:
1637 if (conditional)
1640 goto return_block
1642 some other blocks
1643 return_block:
1644 return_stmt. */
1645 if (e->dest != bb->next_bb
1646 && e->dest != EXIT_BLOCK_PTR
1647 && single_succ_p (e->dest)
1648 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1649 && (last = last_stmt (e->dest)) != NULL
1650 && gimple_code (last) == GIMPLE_RETURN)
1652 edge e1;
1653 edge_iterator ei1;
1655 if (single_succ_p (bb))
1657 FOR_EACH_EDGE (e1, ei1, bb->preds)
1658 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1659 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1660 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1661 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1663 else
1664 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1665 && !predicted_by_p (e->src, PRED_CONST_RETURN)
1666 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1667 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1670 /* Look for block we are guarding (ie we dominate it,
1671 but it doesn't postdominate us). */
1672 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1673 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1674 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1676 gimple_stmt_iterator bi;
1678 /* The call heuristic claims that a guarded function call
1679 is improbable. This is because such calls are often used
1680 to signal exceptional situations such as printing error
1681 messages. */
1682 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
1683 gsi_next (&bi))
1685 gimple stmt = gsi_stmt (bi);
1686 if (is_gimple_call (stmt)
1687 /* Constant and pure calls are hardly used to signalize
1688 something exceptional. */
1689 && gimple_has_side_effects (stmt))
1691 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1692 break;
1697 tree_predict_by_opcode (bb);
1700 /* Predict branch probabilities and estimate profile of the tree CFG.
1701 This function can be called from the loop optimizers to recompute
1702 the profile information. */
1704 void
1705 tree_estimate_probability (void)
1707 basic_block bb;
1709 add_noreturn_fake_exit_edges ();
1710 connect_infinite_loops_to_exit ();
1711 /* We use loop_niter_by_eval, which requires that the loops have
1712 preheaders. */
1713 create_preheaders (CP_SIMPLE_PREHEADERS);
1714 calculate_dominance_info (CDI_POST_DOMINATORS);
1716 bb_predictions = pointer_map_create ();
1717 tree_bb_level_predictions ();
1718 record_loop_exits ();
1720 if (number_of_loops () > 1)
1721 predict_loops ();
1723 FOR_EACH_BB (bb)
1724 tree_estimate_probability_bb (bb);
1726 FOR_EACH_BB (bb)
1727 combine_predictions_for_bb (bb);
1729 #ifdef ENABLE_CHECKING
1730 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1731 #endif
1732 pointer_map_destroy (bb_predictions);
1733 bb_predictions = NULL;
1735 estimate_bb_frequencies ();
1736 free_dominance_info (CDI_POST_DOMINATORS);
1737 remove_fake_exit_edges ();
1740 /* Predict branch probabilities and estimate profile of the tree CFG.
1741 This is the driver function for PASS_PROFILE. */
1743 static unsigned int
1744 tree_estimate_probability_driver (void)
1746 unsigned nb_loops;
1748 loop_optimizer_init (0);
1749 if (dump_file && (dump_flags & TDF_DETAILS))
1750 flow_loops_dump (dump_file, NULL, 0);
1752 mark_irreducible_loops ();
1754 nb_loops = number_of_loops ();
1755 if (nb_loops > 1)
1756 scev_initialize ();
1758 tree_estimate_probability ();
1760 if (nb_loops > 1)
1761 scev_finalize ();
1763 loop_optimizer_finalize ();
1764 if (dump_file && (dump_flags & TDF_DETAILS))
1765 gimple_dump_cfg (dump_file, dump_flags);
1766 if (profile_status == PROFILE_ABSENT)
1767 profile_status = PROFILE_GUESSED;
1768 return 0;
1771 /* Predict edges to successors of CUR whose sources are not postdominated by
1772 BB by PRED and recurse to all postdominators. */
1774 static void
1775 predict_paths_for_bb (basic_block cur, basic_block bb,
1776 enum br_predictor pred,
1777 enum prediction taken)
1779 edge e;
1780 edge_iterator ei;
1781 basic_block son;
1783 /* We are looking for all edges forming edge cut induced by
1784 set of all blocks postdominated by BB. */
1785 FOR_EACH_EDGE (e, ei, cur->preds)
1786 if (e->src->index >= NUM_FIXED_BLOCKS
1787 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1789 edge e2;
1790 edge_iterator ei2;
1791 bool found = false;
1793 /* Ignore abnormals, we predict them as not taken anyway. */
1794 if (e->flags & (EDGE_EH | EDGE_FAKE | EDGE_ABNORMAL))
1795 continue;
1796 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1798 /* See if there is how many edge from e->src that is not abnormal
1799 and does not lead to BB. */
1800 FOR_EACH_EDGE (e2, ei2, e->src->succs)
1801 if (e2 != e
1802 && !(e2->flags & (EDGE_EH | EDGE_FAKE | EDGE_ABNORMAL))
1803 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
1805 found = true;
1806 break;
1809 /* If there is non-abnormal path leaving e->src, predict edge
1810 using predictor. Otherwise we need to look for paths
1811 leading to e->src. */
1812 if (found)
1813 predict_edge_def (e, pred, taken);
1814 else
1815 predict_paths_for_bb (e->src, e->src, pred, taken);
1817 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1818 son;
1819 son = next_dom_son (CDI_POST_DOMINATORS, son))
1820 predict_paths_for_bb (son, bb, pred, taken);
1823 /* Sets branch probabilities according to PREDiction and
1824 FLAGS. */
1826 static void
1827 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1828 enum prediction taken)
1830 predict_paths_for_bb (bb, bb, pred, taken);
1833 /* This is used to carry information about basic blocks. It is
1834 attached to the AUX field of the standard CFG block. */
1836 typedef struct block_info_def
1838 /* Estimated frequency of execution of basic_block. */
1839 sreal frequency;
1841 /* To keep queue of basic blocks to process. */
1842 basic_block next;
1844 /* Number of predecessors we need to visit first. */
1845 int npredecessors;
1846 } *block_info;
1848 /* Similar information for edges. */
1849 typedef struct edge_info_def
1851 /* In case edge is a loopback edge, the probability edge will be reached
1852 in case header is. Estimated number of iterations of the loop can be
1853 then computed as 1 / (1 - back_edge_prob). */
1854 sreal back_edge_prob;
1855 /* True if the edge is a loopback edge in the natural loop. */
1856 unsigned int back_edge:1;
1857 } *edge_info;
1859 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1860 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1862 /* Helper function for estimate_bb_frequencies.
1863 Propagate the frequencies in blocks marked in
1864 TOVISIT, starting in HEAD. */
1866 static void
1867 propagate_freq (basic_block head, bitmap tovisit)
1869 basic_block bb;
1870 basic_block last;
1871 unsigned i;
1872 edge e;
1873 basic_block nextbb;
1874 bitmap_iterator bi;
1876 /* For each basic block we need to visit count number of his predecessors
1877 we need to visit first. */
1878 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1880 edge_iterator ei;
1881 int count = 0;
1883 bb = BASIC_BLOCK (i);
1885 FOR_EACH_EDGE (e, ei, bb->preds)
1887 bool visit = bitmap_bit_p (tovisit, e->src->index);
1889 if (visit && !(e->flags & EDGE_DFS_BACK))
1890 count++;
1891 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1892 fprintf (dump_file,
1893 "Irreducible region hit, ignoring edge to %i->%i\n",
1894 e->src->index, bb->index);
1896 BLOCK_INFO (bb)->npredecessors = count;
1897 /* When function never returns, we will never process exit block. */
1898 if (!count && bb == EXIT_BLOCK_PTR)
1899 bb->count = bb->frequency = 0;
1902 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1903 last = head;
1904 for (bb = head; bb; bb = nextbb)
1906 edge_iterator ei;
1907 sreal cyclic_probability, frequency;
1909 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1910 memcpy (&frequency, &real_zero, sizeof (real_zero));
1912 nextbb = BLOCK_INFO (bb)->next;
1913 BLOCK_INFO (bb)->next = NULL;
1915 /* Compute frequency of basic block. */
1916 if (bb != head)
1918 #ifdef ENABLE_CHECKING
1919 FOR_EACH_EDGE (e, ei, bb->preds)
1920 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1921 || (e->flags & EDGE_DFS_BACK));
1922 #endif
1924 FOR_EACH_EDGE (e, ei, bb->preds)
1925 if (EDGE_INFO (e)->back_edge)
1927 sreal_add (&cyclic_probability, &cyclic_probability,
1928 &EDGE_INFO (e)->back_edge_prob);
1930 else if (!(e->flags & EDGE_DFS_BACK))
1932 sreal tmp;
1934 /* frequency += (e->probability
1935 * BLOCK_INFO (e->src)->frequency /
1936 REG_BR_PROB_BASE); */
1938 sreal_init (&tmp, e->probability, 0);
1939 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1940 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1941 sreal_add (&frequency, &frequency, &tmp);
1944 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1946 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1947 sizeof (frequency));
1949 else
1951 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1953 memcpy (&cyclic_probability, &real_almost_one,
1954 sizeof (real_almost_one));
1957 /* BLOCK_INFO (bb)->frequency = frequency
1958 / (1 - cyclic_probability) */
1960 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1961 sreal_div (&BLOCK_INFO (bb)->frequency,
1962 &frequency, &cyclic_probability);
1966 bitmap_clear_bit (tovisit, bb->index);
1968 e = find_edge (bb, head);
1969 if (e)
1971 sreal tmp;
1973 /* EDGE_INFO (e)->back_edge_prob
1974 = ((e->probability * BLOCK_INFO (bb)->frequency)
1975 / REG_BR_PROB_BASE); */
1977 sreal_init (&tmp, e->probability, 0);
1978 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1979 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1980 &tmp, &real_inv_br_prob_base);
1983 /* Propagate to successor blocks. */
1984 FOR_EACH_EDGE (e, ei, bb->succs)
1985 if (!(e->flags & EDGE_DFS_BACK)
1986 && BLOCK_INFO (e->dest)->npredecessors)
1988 BLOCK_INFO (e->dest)->npredecessors--;
1989 if (!BLOCK_INFO (e->dest)->npredecessors)
1991 if (!nextbb)
1992 nextbb = e->dest;
1993 else
1994 BLOCK_INFO (last)->next = e->dest;
1996 last = e->dest;
2002 /* Estimate probabilities of loopback edges in loops at same nest level. */
2004 static void
2005 estimate_loops_at_level (struct loop *first_loop)
2007 struct loop *loop;
2009 for (loop = first_loop; loop; loop = loop->next)
2011 edge e;
2012 basic_block *bbs;
2013 unsigned i;
2014 bitmap tovisit = BITMAP_ALLOC (NULL);
2016 estimate_loops_at_level (loop->inner);
2018 /* Find current loop back edge and mark it. */
2019 e = loop_latch_edge (loop);
2020 EDGE_INFO (e)->back_edge = 1;
2022 bbs = get_loop_body (loop);
2023 for (i = 0; i < loop->num_nodes; i++)
2024 bitmap_set_bit (tovisit, bbs[i]->index);
2025 free (bbs);
2026 propagate_freq (loop->header, tovisit);
2027 BITMAP_FREE (tovisit);
2031 /* Propagates frequencies through structure of loops. */
2033 static void
2034 estimate_loops (void)
2036 bitmap tovisit = BITMAP_ALLOC (NULL);
2037 basic_block bb;
2039 /* Start by estimating the frequencies in the loops. */
2040 if (number_of_loops () > 1)
2041 estimate_loops_at_level (current_loops->tree_root->inner);
2043 /* Now propagate the frequencies through all the blocks. */
2044 FOR_ALL_BB (bb)
2046 bitmap_set_bit (tovisit, bb->index);
2048 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
2049 BITMAP_FREE (tovisit);
2052 /* Convert counts measured by profile driven feedback to frequencies.
2053 Return nonzero iff there was any nonzero execution count. */
2056 counts_to_freqs (void)
2058 gcov_type count_max, true_count_max = 0;
2059 basic_block bb;
2061 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2062 true_count_max = MAX (bb->count, true_count_max);
2064 count_max = MAX (true_count_max, 1);
2065 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2066 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2068 return true_count_max;
2071 /* Return true if function is likely to be expensive, so there is no point to
2072 optimize performance of prologue, epilogue or do inlining at the expense
2073 of code size growth. THRESHOLD is the limit of number of instructions
2074 function can execute at average to be still considered not expensive. */
2076 bool
2077 expensive_function_p (int threshold)
2079 unsigned int sum = 0;
2080 basic_block bb;
2081 unsigned int limit;
2083 /* We can not compute accurately for large thresholds due to scaled
2084 frequencies. */
2085 gcc_assert (threshold <= BB_FREQ_MAX);
2087 /* Frequencies are out of range. This either means that function contains
2088 internal loop executing more than BB_FREQ_MAX times or profile feedback
2089 is available and function has not been executed at all. */
2090 if (ENTRY_BLOCK_PTR->frequency == 0)
2091 return true;
2093 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2094 limit = ENTRY_BLOCK_PTR->frequency * threshold;
2095 FOR_EACH_BB (bb)
2097 rtx insn;
2099 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2100 insn = NEXT_INSN (insn))
2101 if (active_insn_p (insn))
2103 sum += bb->frequency;
2104 if (sum > limit)
2105 return true;
2109 return false;
2112 /* Estimate basic blocks frequency by given branch probabilities. */
2114 void
2115 estimate_bb_frequencies (void)
2117 basic_block bb;
2118 sreal freq_max;
2120 if (profile_status != PROFILE_READ || !counts_to_freqs ())
2122 static int real_values_initialized = 0;
2124 if (!real_values_initialized)
2126 real_values_initialized = 1;
2127 sreal_init (&real_zero, 0, 0);
2128 sreal_init (&real_one, 1, 0);
2129 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2130 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2131 sreal_init (&real_one_half, 1, -1);
2132 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2133 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2136 mark_dfs_back_edges ();
2138 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2140 /* Set up block info for each basic block. */
2141 alloc_aux_for_blocks (sizeof (struct block_info_def));
2142 alloc_aux_for_edges (sizeof (struct edge_info_def));
2143 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2145 edge e;
2146 edge_iterator ei;
2148 FOR_EACH_EDGE (e, ei, bb->succs)
2150 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2151 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2152 &EDGE_INFO (e)->back_edge_prob,
2153 &real_inv_br_prob_base);
2157 /* First compute probabilities locally for each loop from innermost
2158 to outermost to examine probabilities for back edges. */
2159 estimate_loops ();
2161 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2162 FOR_EACH_BB (bb)
2163 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2164 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2166 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2167 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2169 sreal tmp;
2171 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2172 sreal_add (&tmp, &tmp, &real_one_half);
2173 bb->frequency = sreal_to_int (&tmp);
2176 free_aux_for_blocks ();
2177 free_aux_for_edges ();
2179 compute_function_frequency ();
2180 if (flag_reorder_functions)
2181 choose_function_section ();
2184 /* Decide whether function is hot, cold or unlikely executed. */
2185 void
2186 compute_function_frequency (void)
2188 basic_block bb;
2189 struct cgraph_node *node = cgraph_node (current_function_decl);
2191 if (!profile_info || !flag_branch_probabilities)
2193 int flags = flags_from_decl_or_type (current_function_decl);
2194 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2195 != NULL)
2196 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2197 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2198 != NULL)
2199 node->frequency = NODE_FREQUENCY_HOT;
2200 else if (flags & ECF_NORETURN)
2201 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2202 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2203 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2204 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2205 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2206 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2207 return;
2209 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2210 FOR_EACH_BB (bb)
2212 if (maybe_hot_bb_p (bb))
2214 node->frequency = NODE_FREQUENCY_HOT;
2215 return;
2217 if (!probably_never_executed_bb_p (bb))
2218 node->frequency = NODE_FREQUENCY_NORMAL;
2222 /* Choose appropriate section for the function. */
2223 static void
2224 choose_function_section (void)
2226 struct cgraph_node *node = cgraph_node (current_function_decl);
2227 if (DECL_SECTION_NAME (current_function_decl)
2228 || !targetm.have_named_sections
2229 /* Theoretically we can split the gnu.linkonce text section too,
2230 but this requires more work as the frequency needs to match
2231 for all generated objects so we need to merge the frequency
2232 of all instances. For now just never set frequency for these. */
2233 || DECL_ONE_ONLY (current_function_decl))
2234 return;
2236 /* If we are doing the partitioning optimization, let the optimization
2237 choose the correct section into which to put things. */
2239 if (flag_reorder_blocks_and_partition)
2240 return;
2242 if (node->frequency == NODE_FREQUENCY_HOT)
2243 DECL_SECTION_NAME (current_function_decl) =
2244 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
2245 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
2246 DECL_SECTION_NAME (current_function_decl) =
2247 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
2248 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
2251 static bool
2252 gate_estimate_probability (void)
2254 return flag_guess_branch_prob;
2257 /* Build PREDICT_EXPR. */
2258 tree
2259 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2261 tree t = build1 (PREDICT_EXPR, void_type_node,
2262 build_int_cst (NULL, predictor));
2263 SET_PREDICT_EXPR_OUTCOME (t, taken);
2264 return t;
2267 const char *
2268 predictor_name (enum br_predictor predictor)
2270 return predictor_info[predictor].name;
2273 struct gimple_opt_pass pass_profile =
2276 GIMPLE_PASS,
2277 "profile", /* name */
2278 gate_estimate_probability, /* gate */
2279 tree_estimate_probability_driver, /* execute */
2280 NULL, /* sub */
2281 NULL, /* next */
2282 0, /* static_pass_number */
2283 TV_BRANCH_PROB, /* tv_id */
2284 PROP_cfg, /* properties_required */
2285 0, /* properties_provided */
2286 0, /* properties_destroyed */
2287 0, /* todo_flags_start */
2288 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2292 struct gimple_opt_pass pass_strip_predict_hints =
2295 GIMPLE_PASS,
2296 "*strip_predict_hints", /* name */
2297 NULL, /* gate */
2298 strip_predict_hints, /* execute */
2299 NULL, /* sub */
2300 NULL, /* next */
2301 0, /* static_pass_number */
2302 TV_BRANCH_PROB, /* tv_id */
2303 PROP_cfg, /* properties_required */
2304 0, /* properties_provided */
2305 0, /* properties_destroyed */
2306 0, /* todo_flags_start */
2307 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2311 /* Rebuild function frequencies. Passes are in general expected to
2312 maintain profile by hand, however in some cases this is not possible:
2313 for example when inlining several functions with loops freuqencies might run
2314 out of scale and thus needs to be recomputed. */
2316 void
2317 rebuild_frequencies (void)
2319 if (profile_status == PROFILE_GUESSED)
2321 loop_optimizer_init (0);
2322 add_noreturn_fake_exit_edges ();
2323 mark_irreducible_loops ();
2324 connect_infinite_loops_to_exit ();
2325 estimate_bb_frequencies ();
2326 remove_fake_exit_edges ();
2327 loop_optimizer_finalize ();
2329 else if (profile_status == PROFILE_READ)
2330 counts_to_freqs ();
2331 else
2332 gcc_unreachable ();