PR testsuite/44195
[official-gcc.git] / gcc / ira-int.h
blob1da087cecdb5db2c305c61ea6855de6a5b40f6ac
1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "cfgloop.h"
23 #include "ira.h"
24 #include "alloc-pool.h"
26 /* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
29 #ifdef ENABLE_CHECKING
30 #define ENABLE_IRA_CHECKING
31 #endif
33 #ifdef ENABLE_IRA_CHECKING
34 #define ira_assert(c) gcc_assert (c)
35 #else
36 /* Always define and include C, so that warnings for empty body in an
37 ‘if’ statement and unused variable do not occur. */
38 #define ira_assert(c) ((void)(0 && (c)))
39 #endif
41 /* Compute register frequency from edge frequency FREQ. It is
42 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
43 profile driven feedback is available and the function is never
44 executed, frequency is always equivalent. Otherwise rescale the
45 edge frequency. */
46 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
47 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
48 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
49 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
51 /* All natural loops. */
52 extern struct loops ira_loops;
54 /* A modified value of flag `-fira-verbose' used internally. */
55 extern int internal_flag_ira_verbose;
57 /* Dump file of the allocator if it is not NULL. */
58 extern FILE *ira_dump_file;
60 /* Typedefs for pointers to allocno live range, allocno, and copy of
61 allocnos. */
62 typedef struct live_range *live_range_t;
63 typedef struct ira_allocno *ira_allocno_t;
64 typedef struct ira_allocno_copy *ira_copy_t;
66 /* Definition of vector of allocnos and copies. */
67 DEF_VEC_P(ira_allocno_t);
68 DEF_VEC_ALLOC_P(ira_allocno_t, heap);
69 DEF_VEC_P(ira_copy_t);
70 DEF_VEC_ALLOC_P(ira_copy_t, heap);
72 /* Typedef for pointer to the subsequent structure. */
73 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
75 /* In general case, IRA is a regional allocator. The regions are
76 nested and form a tree. Currently regions are natural loops. The
77 following structure describes loop tree node (representing basic
78 block or loop). We need such tree because the loop tree from
79 cfgloop.h is not convenient for the optimization: basic blocks are
80 not a part of the tree from cfgloop.h. We also use the nodes for
81 storing additional information about basic blocks/loops for the
82 register allocation purposes. */
83 struct ira_loop_tree_node
85 /* The node represents basic block if children == NULL. */
86 basic_block bb; /* NULL for loop. */
87 struct loop *loop; /* NULL for BB. */
88 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
89 SUBLOOP_NEXT is always NULL for BBs. */
90 ira_loop_tree_node_t subloop_next, next;
91 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
92 the node. They are NULL for BBs. */
93 ira_loop_tree_node_t subloops, children;
94 /* The node immediately containing given node. */
95 ira_loop_tree_node_t parent;
97 /* Loop level in range [0, ira_loop_tree_height). */
98 int level;
100 /* All the following members are defined only for nodes representing
101 loops. */
103 /* True if the loop was marked for removal from the register
104 allocation. */
105 bool to_remove_p;
107 /* Allocnos in the loop corresponding to their regnos. If it is
108 NULL the loop does not form a separate register allocation region
109 (e.g. because it has abnormal enter/exit edges and we can not put
110 code for register shuffling on the edges if a different
111 allocation is used for a pseudo-register on different sides of
112 the edges). Caps are not in the map (remember we can have more
113 one cap with the same regno in a region). */
114 ira_allocno_t *regno_allocno_map;
116 /* True if there is an entry to given loop not from its parent (or
117 grandparent) basic block. For example, it is possible for two
118 adjacent loops inside another loop. */
119 bool entered_from_non_parent_p;
121 /* Maximal register pressure inside loop for given register class
122 (defined only for the cover classes). */
123 int reg_pressure[N_REG_CLASSES];
125 /* Numbers of allocnos referred or living in the loop node (except
126 for its subloops). */
127 bitmap all_allocnos;
129 /* Numbers of allocnos living at the loop borders. */
130 bitmap border_allocnos;
132 /* Regnos of pseudos modified in the loop node (including its
133 subloops). */
134 bitmap modified_regnos;
136 /* Numbers of copies referred in the corresponding loop. */
137 bitmap local_copies;
140 /* The root of the loop tree corresponding to the all function. */
141 extern ira_loop_tree_node_t ira_loop_tree_root;
143 /* Height of the loop tree. */
144 extern int ira_loop_tree_height;
146 /* All nodes representing basic blocks are referred through the
147 following array. We can not use basic block member `aux' for this
148 because it is used for insertion of insns on edges. */
149 extern ira_loop_tree_node_t ira_bb_nodes;
151 /* Two access macros to the nodes representing basic blocks. */
152 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
153 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
154 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
155 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
157 fprintf (stderr, \
158 "\n%s: %d: error in %s: it is not a block node\n", \
159 __FILE__, __LINE__, __FUNCTION__); \
160 gcc_unreachable (); \
162 _node; }))
163 #else
164 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
165 #endif
167 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
169 /* All nodes representing loops are referred through the following
170 array. */
171 extern ira_loop_tree_node_t ira_loop_nodes;
173 /* Two access macros to the nodes representing loops. */
174 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
175 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
176 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\
177 if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\
179 fprintf (stderr, \
180 "\n%s: %d: error in %s: it is not a loop node\n", \
181 __FILE__, __LINE__, __FUNCTION__); \
182 gcc_unreachable (); \
184 _node; }))
185 #else
186 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
187 #endif
189 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
193 /* The structure describes program points where a given allocno lives.
194 To save memory we store allocno conflicts only for the same cover
195 class allocnos which is enough to assign hard registers. To find
196 conflicts for other allocnos (e.g. to assign stack memory slot) we
197 use the live ranges. If the live ranges of two allocnos are
198 intersected, the allocnos are in conflict. */
199 struct live_range
201 /* Allocno whose live range is described by given structure. */
202 ira_allocno_t allocno;
203 /* Program point range. */
204 int start, finish;
205 /* Next structure describing program points where the allocno
206 lives. */
207 live_range_t next;
208 /* Pointer to structures with the same start/finish. */
209 live_range_t start_next, finish_next;
212 /* Program points are enumerated by numbers from range
213 0..IRA_MAX_POINT-1. There are approximately two times more program
214 points than insns. Program points are places in the program where
215 liveness info can be changed. In most general case (there are more
216 complicated cases too) some program points correspond to places
217 where input operand dies and other ones correspond to places where
218 output operands are born. */
219 extern int ira_max_point;
221 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
222 live ranges with given start/finish point. */
223 extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
225 /* A structure representing an allocno (allocation entity). Allocno
226 represents a pseudo-register in an allocation region. If
227 pseudo-register does not live in a region but it lives in the
228 nested regions, it is represented in the region by special allocno
229 called *cap*. There may be more one cap representing the same
230 pseudo-register in region. It means that the corresponding
231 pseudo-register lives in more one non-intersected subregion. */
232 struct ira_allocno
234 /* The allocno order number starting with 0. Each allocno has an
235 unique number and the number is never changed for the
236 allocno. */
237 int num;
238 /* Regno for allocno or cap. */
239 int regno;
240 /* Mode of the allocno which is the mode of the corresponding
241 pseudo-register. */
242 enum machine_mode mode;
243 /* Hard register assigned to given allocno. Negative value means
244 that memory was allocated to the allocno. During the reload,
245 spilled allocno has value equal to the corresponding stack slot
246 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
247 reload (at this point pseudo-register has only one allocno) which
248 did not get stack slot yet. */
249 int hard_regno;
250 /* Final rtx representation of the allocno. */
251 rtx reg;
252 /* Allocnos with the same regno are linked by the following member.
253 Allocnos corresponding to inner loops are first in the list (it
254 corresponds to depth-first traverse of the loops). */
255 ira_allocno_t next_regno_allocno;
256 /* There may be different allocnos with the same regno in different
257 regions. Allocnos are bound to the corresponding loop tree node.
258 Pseudo-register may have only one regular allocno with given loop
259 tree node but more than one cap (see comments above). */
260 ira_loop_tree_node_t loop_tree_node;
261 /* Accumulated usage references of the allocno. Here and below,
262 word 'accumulated' means info for given region and all nested
263 subregions. In this case, 'accumulated' means sum of references
264 of the corresponding pseudo-register in this region and in all
265 nested subregions recursively. */
266 int nrefs;
267 /* Accumulated frequency of usage of the allocno. */
268 int freq;
269 /* Register class which should be used for allocation for given
270 allocno. NO_REGS means that we should use memory. */
271 enum reg_class cover_class;
272 /* Minimal accumulated and updated costs of usage register of the
273 cover class for the allocno. */
274 int cover_class_cost, updated_cover_class_cost;
275 /* Minimal accumulated, and updated costs of memory for the allocno.
276 At the allocation start, the original and updated costs are
277 equal. The updated cost may be changed after finishing
278 allocation in a region and starting allocation in a subregion.
279 The change reflects the cost of spill/restore code on the
280 subregion border if we assign memory to the pseudo in the
281 subregion. */
282 int memory_cost, updated_memory_cost;
283 /* Accumulated number of points where the allocno lives and there is
284 excess pressure for its class. Excess pressure for a register
285 class at some point means that there are more allocnos of given
286 register class living at the point than number of hard-registers
287 of the class available for the allocation. */
288 int excess_pressure_points_num;
289 /* Copies to other non-conflicting allocnos. The copies can
290 represent move insn or potential move insn usually because of two
291 operand insn constraints. */
292 ira_copy_t allocno_copies;
293 /* It is a allocno (cap) representing given allocno on upper loop tree
294 level. */
295 ira_allocno_t cap;
296 /* It is a link to allocno (cap) on lower loop level represented by
297 given cap. Null if given allocno is not a cap. */
298 ira_allocno_t cap_member;
299 /* Coalesced allocnos form a cyclic list. One allocno given by
300 FIRST_COALESCED_ALLOCNO represents all coalesced allocnos. The
301 list is chained by NEXT_COALESCED_ALLOCNO. */
302 ira_allocno_t first_coalesced_allocno;
303 ira_allocno_t next_coalesced_allocno;
304 /* Pointer to structures describing at what program point the
305 allocno lives. We always maintain the list in such way that *the
306 ranges in the list are not intersected and ordered by decreasing
307 their program points*. */
308 live_range_t live_ranges;
309 /* Before building conflicts the two member values are
310 correspondingly minimal and maximal points of the accumulated
311 allocno live ranges. After building conflicts the values are
312 correspondingly minimal and maximal conflict ids of allocnos with
313 which given allocno can conflict. */
314 int min, max;
315 /* Vector of accumulated conflicting allocnos with NULL end marker
316 (if CONFLICT_VEC_P is true) or conflict bit vector otherwise.
317 Only allocnos with the same cover class are in the vector or in
318 the bit vector. */
319 void *conflict_allocno_array;
320 /* The unique member value represents given allocno in conflict bit
321 vectors. */
322 int conflict_id;
323 /* Allocated size of the previous array. */
324 unsigned int conflict_allocno_array_size;
325 /* Initial and accumulated hard registers conflicting with this
326 allocno and as a consequences can not be assigned to the allocno.
327 All non-allocatable hard regs and hard regs of cover classes
328 different from given allocno one are included in the sets. */
329 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
330 /* Number of accumulated conflicts in the vector of conflicting
331 allocnos. */
332 int conflict_allocnos_num;
333 /* Accumulated frequency of calls which given allocno
334 intersects. */
335 int call_freq;
336 /* Accumulated number of the intersected calls. */
337 int calls_crossed_num;
338 /* TRUE if the allocno assigned to memory was a destination of
339 removed move (see ira-emit.c) at loop exit because the value of
340 the corresponding pseudo-register is not changed inside the
341 loop. */
342 unsigned int mem_optimized_dest_p : 1;
343 /* TRUE if the corresponding pseudo-register has disjoint live
344 ranges and the other allocnos of the pseudo-register except this
345 one changed REG. */
346 unsigned int somewhere_renamed_p : 1;
347 /* TRUE if allocno with the same REGNO in a subregion has been
348 renamed, in other words, got a new pseudo-register. */
349 unsigned int child_renamed_p : 1;
350 /* During the reload, value TRUE means that we should not reassign a
351 hard register to the allocno got memory earlier. It is set up
352 when we removed memory-memory move insn before each iteration of
353 the reload. */
354 unsigned int dont_reassign_p : 1;
355 #ifdef STACK_REGS
356 /* Set to TRUE if allocno can't be assigned to the stack hard
357 register correspondingly in this region and area including the
358 region and all its subregions recursively. */
359 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
360 #endif
361 /* TRUE value means that there is no sense to spill the allocno
362 during coloring because the spill will result in additional
363 reloads in reload pass. */
364 unsigned int bad_spill_p : 1;
365 /* TRUE value means that the allocno was not removed yet from the
366 conflicting graph during colouring. */
367 unsigned int in_graph_p : 1;
368 /* TRUE if a hard register or memory has been assigned to the
369 allocno. */
370 unsigned int assigned_p : 1;
371 /* TRUE if it is put on the stack to make other allocnos
372 colorable. */
373 unsigned int may_be_spilled_p : 1;
374 /* TRUE if the allocno was removed from the splay tree used to
375 choose allocn for spilling (see ira-color.c::. */
376 unsigned int splay_removed_p : 1;
377 /* TRUE if conflicts for given allocno are represented by vector of
378 pointers to the conflicting allocnos. Otherwise, we use a bit
379 vector where a bit with given index represents allocno with the
380 same number. */
381 unsigned int conflict_vec_p : 1;
382 /* Non NULL if we remove restoring value from given allocno to
383 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
384 allocno value is not changed inside the loop. */
385 ira_allocno_t mem_optimized_dest;
386 /* Array of usage costs (accumulated and the one updated during
387 coloring) for each hard register of the allocno cover class. The
388 member value can be NULL if all costs are the same and equal to
389 COVER_CLASS_COST. For example, the costs of two different hard
390 registers can be different if one hard register is callee-saved
391 and another one is callee-used and the allocno lives through
392 calls. Another example can be case when for some insn the
393 corresponding pseudo-register value should be put in specific
394 register class (e.g. AREG for x86) which is a strict subset of
395 the allocno cover class (GENERAL_REGS for x86). We have updated
396 costs to reflect the situation when the usage cost of a hard
397 register is decreased because the allocno is connected to another
398 allocno by a copy and the another allocno has been assigned to
399 the hard register. */
400 int *hard_reg_costs, *updated_hard_reg_costs;
401 /* Array of decreasing costs (accumulated and the one updated during
402 coloring) for allocnos conflicting with given allocno for hard
403 regno of the allocno cover class. The member value can be NULL
404 if all costs are the same. These costs are used to reflect
405 preferences of other allocnos not assigned yet during assigning
406 to given allocno. */
407 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
408 /* Size (in hard registers) of the same cover class allocnos with
409 TRUE in_graph_p value and conflicting with given allocno during
410 each point of graph coloring. */
411 int left_conflicts_size;
412 /* Number of hard registers of the allocno cover class really
413 available for the allocno allocation. */
414 int available_regs_num;
415 /* Allocnos in a bucket (used in coloring) chained by the following
416 two members. */
417 ira_allocno_t next_bucket_allocno;
418 ira_allocno_t prev_bucket_allocno;
419 /* Used for temporary purposes. */
420 int temp;
423 /* All members of the allocno structures should be accessed only
424 through the following macros. */
425 #define ALLOCNO_NUM(A) ((A)->num)
426 #define ALLOCNO_REGNO(A) ((A)->regno)
427 #define ALLOCNO_REG(A) ((A)->reg)
428 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
429 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
430 #define ALLOCNO_CAP(A) ((A)->cap)
431 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
432 #define ALLOCNO_CONFLICT_ALLOCNO_ARRAY(A) ((A)->conflict_allocno_array)
433 #define ALLOCNO_CONFLICT_ALLOCNO_ARRAY_SIZE(A) \
434 ((A)->conflict_allocno_array_size)
435 #define ALLOCNO_CONFLICT_ALLOCNOS_NUM(A) \
436 ((A)->conflict_allocnos_num)
437 #define ALLOCNO_CONFLICT_HARD_REGS(A) ((A)->conflict_hard_regs)
438 #define ALLOCNO_TOTAL_CONFLICT_HARD_REGS(A) ((A)->total_conflict_hard_regs)
439 #define ALLOCNO_NREFS(A) ((A)->nrefs)
440 #define ALLOCNO_FREQ(A) ((A)->freq)
441 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
442 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
443 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
444 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
445 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
446 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
447 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
448 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
449 #ifdef STACK_REGS
450 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
451 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
452 #endif
453 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
454 #define ALLOCNO_IN_GRAPH_P(A) ((A)->in_graph_p)
455 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
456 #define ALLOCNO_MAY_BE_SPILLED_P(A) ((A)->may_be_spilled_p)
457 #define ALLOCNO_SPLAY_REMOVED_P(A) ((A)->splay_removed_p)
458 #define ALLOCNO_CONFLICT_VEC_P(A) ((A)->conflict_vec_p)
459 #define ALLOCNO_MODE(A) ((A)->mode)
460 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
461 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
462 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
463 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
464 ((A)->conflict_hard_reg_costs)
465 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
466 ((A)->updated_conflict_hard_reg_costs)
467 #define ALLOCNO_LEFT_CONFLICTS_SIZE(A) ((A)->left_conflicts_size)
468 #define ALLOCNO_COVER_CLASS(A) ((A)->cover_class)
469 #define ALLOCNO_COVER_CLASS_COST(A) ((A)->cover_class_cost)
470 #define ALLOCNO_UPDATED_COVER_CLASS_COST(A) ((A)->updated_cover_class_cost)
471 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
472 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
473 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) ((A)->excess_pressure_points_num)
474 #define ALLOCNO_AVAILABLE_REGS_NUM(A) ((A)->available_regs_num)
475 #define ALLOCNO_NEXT_BUCKET_ALLOCNO(A) ((A)->next_bucket_allocno)
476 #define ALLOCNO_PREV_BUCKET_ALLOCNO(A) ((A)->prev_bucket_allocno)
477 #define ALLOCNO_TEMP(A) ((A)->temp)
478 #define ALLOCNO_FIRST_COALESCED_ALLOCNO(A) ((A)->first_coalesced_allocno)
479 #define ALLOCNO_NEXT_COALESCED_ALLOCNO(A) ((A)->next_coalesced_allocno)
480 #define ALLOCNO_LIVE_RANGES(A) ((A)->live_ranges)
481 #define ALLOCNO_MIN(A) ((A)->min)
482 #define ALLOCNO_MAX(A) ((A)->max)
483 #define ALLOCNO_CONFLICT_ID(A) ((A)->conflict_id)
485 /* Map regno -> allocnos with given regno (see comments for
486 allocno member `next_regno_allocno'). */
487 extern ira_allocno_t *ira_regno_allocno_map;
489 /* Array of references to all allocnos. The order number of the
490 allocno corresponds to the index in the array. Removed allocnos
491 have NULL element value. */
492 extern ira_allocno_t *ira_allocnos;
494 /* Sizes of the previous array. */
495 extern int ira_allocnos_num;
497 /* Map conflict id -> allocno with given conflict id (see comments for
498 allocno member `conflict_id'). */
499 extern ira_allocno_t *ira_conflict_id_allocno_map;
501 /* The following structure represents a copy of two allocnos. The
502 copies represent move insns or potential move insns usually because
503 of two operand insn constraints. To remove register shuffle, we
504 also create copies between allocno which is output of an insn and
505 allocno becoming dead in the insn. */
506 struct ira_allocno_copy
508 /* The unique order number of the copy node starting with 0. */
509 int num;
510 /* Allocnos connected by the copy. The first allocno should have
511 smaller order number than the second one. */
512 ira_allocno_t first, second;
513 /* Execution frequency of the copy. */
514 int freq;
515 bool constraint_p;
516 /* It is a move insn which is an origin of the copy. The member
517 value for the copy representing two operand insn constraints or
518 for the copy created to remove register shuffle is NULL. In last
519 case the copy frequency is smaller than the corresponding insn
520 execution frequency. */
521 rtx insn;
522 /* All copies with the same allocno as FIRST are linked by the two
523 following members. */
524 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
525 /* All copies with the same allocno as SECOND are linked by the two
526 following members. */
527 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
528 /* Region from which given copy is originated. */
529 ira_loop_tree_node_t loop_tree_node;
532 /* Array of references to all copies. The order number of the copy
533 corresponds to the index in the array. Removed copies have NULL
534 element value. */
535 extern ira_copy_t *ira_copies;
537 /* Size of the previous array. */
538 extern int ira_copies_num;
540 /* The following structure describes a stack slot used for spilled
541 pseudo-registers. */
542 struct ira_spilled_reg_stack_slot
544 /* pseudo-registers assigned to the stack slot. */
545 bitmap_head spilled_regs;
546 /* RTL representation of the stack slot. */
547 rtx mem;
548 /* Size of the stack slot. */
549 unsigned int width;
552 /* The number of elements in the following array. */
553 extern int ira_spilled_reg_stack_slots_num;
555 /* The following array contains info about spilled pseudo-registers
556 stack slots used in current function so far. */
557 extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
559 /* Correspondingly overall cost of the allocation, cost of the
560 allocnos assigned to hard-registers, cost of the allocnos assigned
561 to memory, cost of loads, stores and register move insns generated
562 for pseudo-register live range splitting (see ira-emit.c). */
563 extern int ira_overall_cost;
564 extern int ira_reg_cost, ira_mem_cost;
565 extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
566 extern int ira_move_loops_num, ira_additional_jumps_num;
568 /* Maximal value of element of array ira_reg_class_nregs. */
569 extern int ira_max_nregs;
571 /* This page contains a bitset implementation called 'min/max sets' used to
572 record conflicts in IRA.
573 They are named min/maxs set since we keep track of a minimum and a maximum
574 bit number for each set representing the bounds of valid elements. Otherwise,
575 the implementation resembles sbitmaps in that we store an array of integers
576 whose bits directly represent the members of the set. */
578 /* The type used as elements in the array, and the number of bits in
579 this type. */
580 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
581 #define IRA_INT_TYPE HOST_WIDE_INT
583 /* Set, clear or test bit number I in R, a bit vector of elements with
584 minimal index and maximal index equal correspondingly to MIN and
585 MAX. */
586 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
588 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
589 (({ int _min = (MIN), _max = (MAX), _i = (I); \
590 if (_i < _min || _i > _max) \
592 fprintf (stderr, \
593 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
594 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
595 gcc_unreachable (); \
597 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
598 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
601 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
602 (({ int _min = (MIN), _max = (MAX), _i = (I); \
603 if (_i < _min || _i > _max) \
605 fprintf (stderr, \
606 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
607 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
608 gcc_unreachable (); \
610 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
611 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
613 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
614 (({ int _min = (MIN), _max = (MAX), _i = (I); \
615 if (_i < _min || _i > _max) \
617 fprintf (stderr, \
618 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
619 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
620 gcc_unreachable (); \
622 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
623 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
625 #else
627 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
628 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
629 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
631 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
632 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
633 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
635 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
636 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
637 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
639 #endif
641 /* The iterator for min/max sets. */
642 typedef struct {
644 /* Array containing the bit vector. */
645 IRA_INT_TYPE *vec;
647 /* The number of the current element in the vector. */
648 unsigned int word_num;
650 /* The number of bits in the bit vector. */
651 unsigned int nel;
653 /* The current bit index of the bit vector. */
654 unsigned int bit_num;
656 /* Index corresponding to the 1st bit of the bit vector. */
657 int start_val;
659 /* The word of the bit vector currently visited. */
660 unsigned IRA_INT_TYPE word;
661 } minmax_set_iterator;
663 /* Initialize the iterator I for bit vector VEC containing minimal and
664 maximal values MIN and MAX. */
665 static inline void
666 minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
667 int max)
669 i->vec = vec;
670 i->word_num = 0;
671 i->nel = max < min ? 0 : max - min + 1;
672 i->start_val = min;
673 i->bit_num = 0;
674 i->word = i->nel == 0 ? 0 : vec[0];
677 /* Return TRUE if we have more elements to visit, in which case *N is
678 set to the number of the element to be visited. Otherwise, return
679 FALSE. */
680 static inline bool
681 minmax_set_iter_cond (minmax_set_iterator *i, int *n)
683 /* Skip words that are zeros. */
684 for (; i->word == 0; i->word = i->vec[i->word_num])
686 i->word_num++;
687 i->bit_num = i->word_num * IRA_INT_BITS;
689 /* If we have reached the end, break. */
690 if (i->bit_num >= i->nel)
691 return false;
694 /* Skip bits that are zero. */
695 for (; (i->word & 1) == 0; i->word >>= 1)
696 i->bit_num++;
698 *n = (int) i->bit_num + i->start_val;
700 return true;
703 /* Advance to the next element in the set. */
704 static inline void
705 minmax_set_iter_next (minmax_set_iterator *i)
707 i->word >>= 1;
708 i->bit_num++;
711 /* Loop over all elements of a min/max set given by bit vector VEC and
712 their minimal and maximal values MIN and MAX. In each iteration, N
713 is set to the number of next allocno. ITER is an instance of
714 minmax_set_iterator used to iterate over the set. */
715 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
716 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
717 minmax_set_iter_cond (&(ITER), &(N)); \
718 minmax_set_iter_next (&(ITER)))
720 /* ira.c: */
722 /* Map: hard regs X modes -> set of hard registers for storing value
723 of given mode starting with given hard register. */
724 extern HARD_REG_SET ira_reg_mode_hard_regset
725 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
727 /* Array based on TARGET_REGISTER_MOVE_COST. Don't use
728 ira_register_move_cost directly. Use function of
729 ira_get_may_move_cost instead. */
730 extern move_table *ira_register_move_cost[MAX_MACHINE_MODE];
732 /* Similar to may_move_in_cost but it is calculated in IRA instead of
733 regclass. Another difference we take only available hard registers
734 into account to figure out that one register class is a subset of
735 the another one. Don't use it directly. Use function of
736 ira_get_may_move_cost instead. */
737 extern move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
739 /* Similar to may_move_out_cost but it is calculated in IRA instead of
740 regclass. Another difference we take only available hard registers
741 into account to figure out that one register class is a subset of
742 the another one. Don't use it directly. Use function of
743 ira_get_may_move_cost instead. */
744 extern move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
746 /* Register class subset relation: TRUE if the first class is a subset
747 of the second one considering only hard registers available for the
748 allocation. */
749 extern int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
751 /* Array of the number of hard registers of given class which are
752 available for allocation. The order is defined by the the hard
753 register numbers. */
754 extern short ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
756 /* Index (in ira_class_hard_regs) for given register class and hard
757 register (in general case a hard register can belong to several
758 register classes). The index is negative for hard registers
759 unavailable for the allocation. */
760 extern short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
762 /* Array whose values are hard regset of hard registers available for
763 the allocation of given register class whose HARD_REGNO_MODE_OK
764 values for given mode are zero. */
765 extern HARD_REG_SET prohibited_class_mode_regs
766 [N_REG_CLASSES][NUM_MACHINE_MODES];
768 /* Array whose values are hard regset of hard registers for which
769 move of the hard register in given mode into itself is
770 prohibited. */
771 extern HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
773 /* The value is number of elements in the subsequent array. */
774 extern int ira_important_classes_num;
776 /* The array containing non-empty classes (including non-empty cover
777 classes) which are subclasses of cover classes. Such classes is
778 important for calculation of the hard register usage costs. */
779 extern enum reg_class ira_important_classes[N_REG_CLASSES];
781 /* The array containing indexes of important classes in the previous
782 array. The array elements are defined only for important
783 classes. */
784 extern int ira_important_class_nums[N_REG_CLASSES];
786 /* The biggest important class inside of intersection of the two
787 classes (that is calculated taking only hard registers available
788 for allocation into account). If the both classes contain no hard
789 registers available for allocation, the value is calculated with
790 taking all hard-registers including fixed ones into account. */
791 extern enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
793 /* True if the two classes (that is calculated taking only hard
794 registers available for allocation into account) are
795 intersected. */
796 extern bool ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
798 /* Classes with end marker LIM_REG_CLASSES which are intersected with
799 given class (the first index). That includes given class itself.
800 This is calculated taking only hard registers available for
801 allocation into account. */
802 extern enum reg_class ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
803 /* The biggest important class inside of union of the two classes
804 (that is calculated taking only hard registers available for
805 allocation into account). If the both classes contain no hard
806 registers available for allocation, the value is calculated with
807 taking all hard-registers including fixed ones into account. In
808 other words, the value is the corresponding reg_class_subunion
809 value. */
810 extern enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
812 extern void *ira_allocate (size_t);
813 extern void *ira_reallocate (void *, size_t);
814 extern void ira_free (void *addr);
815 extern bitmap ira_allocate_bitmap (void);
816 extern void ira_free_bitmap (bitmap);
817 extern void ira_print_disposition (FILE *);
818 extern void ira_debug_disposition (void);
819 extern void ira_debug_class_cover (void);
820 extern void ira_init_register_move_cost (enum machine_mode);
822 /* The length of the two following arrays. */
823 extern int ira_reg_equiv_len;
825 /* The element value is TRUE if the corresponding regno value is
826 invariant. */
827 extern bool *ira_reg_equiv_invariant_p;
829 /* The element value is equiv constant of given pseudo-register or
830 NULL_RTX. */
831 extern rtx *ira_reg_equiv_const;
833 /* ira-build.c */
835 /* The current loop tree node and its regno allocno map. */
836 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
837 extern ira_allocno_t *ira_curr_regno_allocno_map;
839 extern void ira_debug_copy (ira_copy_t);
840 extern void ira_debug_copies (void);
841 extern void ira_debug_allocno_copies (ira_allocno_t);
843 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
844 void (*) (ira_loop_tree_node_t),
845 void (*) (ira_loop_tree_node_t));
846 extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
847 extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
848 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
849 extern void ira_set_allocno_cover_class (ira_allocno_t, enum reg_class);
850 extern bool ira_conflict_vector_profitable_p (ira_allocno_t, int);
851 extern void ira_allocate_allocno_conflict_vec (ira_allocno_t, int);
852 extern void ira_allocate_allocno_conflicts (ira_allocno_t, int);
853 extern void ira_add_allocno_conflict (ira_allocno_t, ira_allocno_t);
854 extern void ira_print_expanded_allocno (ira_allocno_t);
855 extern live_range_t ira_create_allocno_live_range (ira_allocno_t, int, int,
856 live_range_t);
857 extern live_range_t ira_copy_allocno_live_range_list (live_range_t);
858 extern live_range_t ira_merge_allocno_live_ranges (live_range_t, live_range_t);
859 extern bool ira_allocno_live_ranges_intersect_p (live_range_t, live_range_t);
860 extern void ira_finish_allocno_live_range (live_range_t);
861 extern void ira_finish_allocno_live_range_list (live_range_t);
862 extern void ira_free_allocno_updated_costs (ira_allocno_t);
863 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
864 int, bool, rtx, ira_loop_tree_node_t);
865 extern void ira_add_allocno_copy_to_list (ira_copy_t);
866 extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
867 extern void ira_remove_allocno_copy_from_list (ira_copy_t);
868 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
869 bool, rtx, ira_loop_tree_node_t);
871 extern int *ira_allocate_cost_vector (enum reg_class);
872 extern void ira_free_cost_vector (int *, enum reg_class);
874 extern void ira_flattening (int, int);
875 extern bool ira_build (bool);
876 extern void ira_destroy (void);
878 /* ira-costs.c */
879 extern void ira_init_costs_once (void);
880 extern void ira_init_costs (void);
881 extern void ira_finish_costs_once (void);
882 extern void ira_costs (void);
883 extern void ira_tune_allocno_costs_and_cover_classes (void);
885 /* ira-lives.c */
887 extern void ira_rebuild_start_finish_chains (void);
888 extern void ira_print_live_range_list (FILE *, live_range_t);
889 extern void ira_debug_live_range_list (live_range_t);
890 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
891 extern void ira_debug_live_ranges (void);
892 extern void ira_create_allocno_live_ranges (void);
893 extern void ira_compress_allocno_live_ranges (void);
894 extern void ira_finish_allocno_live_ranges (void);
896 /* ira-conflicts.c */
897 extern void ira_debug_conflicts (bool);
898 extern void ira_build_conflicts (void);
900 /* ira-color.c */
901 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
902 extern void ira_reassign_conflict_allocnos (int);
903 extern void ira_initiate_assign (void);
904 extern void ira_finish_assign (void);
905 extern void ira_color (void);
907 /* ira-emit.c */
908 extern void ira_emit (bool);
912 /* Return cost of moving value of MODE from register of class FROM to
913 register of class TO. */
914 static inline int
915 ira_get_register_move_cost (enum machine_mode mode,
916 enum reg_class from, enum reg_class to)
918 if (ira_register_move_cost[mode] == NULL)
919 ira_init_register_move_cost (mode);
920 return ira_register_move_cost[mode][from][to];
923 /* Return cost of moving value of MODE from register of class FROM to
924 register of class TO. Return zero if IN_P is true and FROM is
925 subset of TO or if IN_P is false and FROM is superset of TO. */
926 static inline int
927 ira_get_may_move_cost (enum machine_mode mode,
928 enum reg_class from, enum reg_class to,
929 bool in_p)
931 if (ira_register_move_cost[mode] == NULL)
932 ira_init_register_move_cost (mode);
933 return (in_p
934 ? ira_may_move_in_cost[mode][from][to]
935 : ira_may_move_out_cost[mode][from][to]);
940 /* The iterator for all allocnos. */
941 typedef struct {
942 /* The number of the current element in IRA_ALLOCNOS. */
943 int n;
944 } ira_allocno_iterator;
946 /* Initialize the iterator I. */
947 static inline void
948 ira_allocno_iter_init (ira_allocno_iterator *i)
950 i->n = 0;
953 /* Return TRUE if we have more allocnos to visit, in which case *A is
954 set to the allocno to be visited. Otherwise, return FALSE. */
955 static inline bool
956 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
958 int n;
960 for (n = i->n; n < ira_allocnos_num; n++)
961 if (ira_allocnos[n] != NULL)
963 *a = ira_allocnos[n];
964 i->n = n + 1;
965 return true;
967 return false;
970 /* Loop over all allocnos. In each iteration, A is set to the next
971 allocno. ITER is an instance of ira_allocno_iterator used to iterate
972 the allocnos. */
973 #define FOR_EACH_ALLOCNO(A, ITER) \
974 for (ira_allocno_iter_init (&(ITER)); \
975 ira_allocno_iter_cond (&(ITER), &(A));)
980 /* The iterator for copies. */
981 typedef struct {
982 /* The number of the current element in IRA_COPIES. */
983 int n;
984 } ira_copy_iterator;
986 /* Initialize the iterator I. */
987 static inline void
988 ira_copy_iter_init (ira_copy_iterator *i)
990 i->n = 0;
993 /* Return TRUE if we have more copies to visit, in which case *CP is
994 set to the copy to be visited. Otherwise, return FALSE. */
995 static inline bool
996 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
998 int n;
1000 for (n = i->n; n < ira_copies_num; n++)
1001 if (ira_copies[n] != NULL)
1003 *cp = ira_copies[n];
1004 i->n = n + 1;
1005 return true;
1007 return false;
1010 /* Loop over all copies. In each iteration, C is set to the next
1011 copy. ITER is an instance of ira_copy_iterator used to iterate
1012 the copies. */
1013 #define FOR_EACH_COPY(C, ITER) \
1014 for (ira_copy_iter_init (&(ITER)); \
1015 ira_copy_iter_cond (&(ITER), &(C));)
1020 /* The iterator for allocno conflicts. */
1021 typedef struct {
1023 /* TRUE if the conflicts are represented by vector of allocnos. */
1024 bool allocno_conflict_vec_p;
1026 /* The conflict vector or conflict bit vector. */
1027 void *vec;
1029 /* The number of the current element in the vector (of type
1030 ira_allocno_t or IRA_INT_TYPE). */
1031 unsigned int word_num;
1033 /* The bit vector size. It is defined only if
1034 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1035 unsigned int size;
1037 /* The current bit index of bit vector. It is defined only if
1038 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1039 unsigned int bit_num;
1041 /* Allocno conflict id corresponding to the 1st bit of the bit
1042 vector. It is defined only if ALLOCNO_CONFLICT_VEC_P is
1043 FALSE. */
1044 int base_conflict_id;
1046 /* The word of bit vector currently visited. It is defined only if
1047 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1048 unsigned IRA_INT_TYPE word;
1049 } ira_allocno_conflict_iterator;
1051 /* Initialize the iterator I with ALLOCNO conflicts. */
1052 static inline void
1053 ira_allocno_conflict_iter_init (ira_allocno_conflict_iterator *i,
1054 ira_allocno_t allocno)
1056 i->allocno_conflict_vec_p = ALLOCNO_CONFLICT_VEC_P (allocno);
1057 i->vec = ALLOCNO_CONFLICT_ALLOCNO_ARRAY (allocno);
1058 i->word_num = 0;
1059 if (i->allocno_conflict_vec_p)
1060 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1061 else
1063 if (ALLOCNO_MIN (allocno) > ALLOCNO_MAX (allocno))
1064 i->size = 0;
1065 else
1066 i->size = ((ALLOCNO_MAX (allocno) - ALLOCNO_MIN (allocno)
1067 + IRA_INT_BITS)
1068 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1069 i->bit_num = 0;
1070 i->base_conflict_id = ALLOCNO_MIN (allocno);
1071 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1075 /* Return TRUE if we have more conflicting allocnos to visit, in which
1076 case *A is set to the allocno to be visited. Otherwise, return
1077 FALSE. */
1078 static inline bool
1079 ira_allocno_conflict_iter_cond (ira_allocno_conflict_iterator *i,
1080 ira_allocno_t *a)
1082 ira_allocno_t conflict_allocno;
1084 if (i->allocno_conflict_vec_p)
1086 conflict_allocno = ((ira_allocno_t *) i->vec)[i->word_num];
1087 if (conflict_allocno == NULL)
1088 return false;
1089 *a = conflict_allocno;
1090 return true;
1092 else
1094 /* Skip words that are zeros. */
1095 for (; i->word == 0; i->word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1097 i->word_num++;
1099 /* If we have reached the end, break. */
1100 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1101 return false;
1103 i->bit_num = i->word_num * IRA_INT_BITS;
1106 /* Skip bits that are zero. */
1107 for (; (i->word & 1) == 0; i->word >>= 1)
1108 i->bit_num++;
1110 *a = ira_conflict_id_allocno_map[i->bit_num + i->base_conflict_id];
1112 return true;
1116 /* Advance to the next conflicting allocno. */
1117 static inline void
1118 ira_allocno_conflict_iter_next (ira_allocno_conflict_iterator *i)
1120 if (i->allocno_conflict_vec_p)
1121 i->word_num++;
1122 else
1124 i->word >>= 1;
1125 i->bit_num++;
1129 /* Loop over all allocnos conflicting with ALLOCNO. In each
1130 iteration, A is set to the next conflicting allocno. ITER is an
1131 instance of ira_allocno_conflict_iterator used to iterate the
1132 conflicts. */
1133 #define FOR_EACH_ALLOCNO_CONFLICT(ALLOCNO, A, ITER) \
1134 for (ira_allocno_conflict_iter_init (&(ITER), (ALLOCNO)); \
1135 ira_allocno_conflict_iter_cond (&(ITER), &(A)); \
1136 ira_allocno_conflict_iter_next (&(ITER)))
1140 /* The function returns TRUE if hard registers starting with
1141 HARD_REGNO and containing value of MODE are not in set
1142 HARD_REGSET. */
1143 static inline bool
1144 ira_hard_reg_not_in_set_p (int hard_regno, enum machine_mode mode,
1145 HARD_REG_SET hard_regset)
1147 int i;
1149 ira_assert (hard_regno >= 0);
1150 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1151 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1152 return false;
1153 return true;
1158 /* To save memory we use a lazy approach for allocation and
1159 initialization of the cost vectors. We do this only when it is
1160 really necessary. */
1162 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1163 initialize the elements by VAL if it is necessary */
1164 static inline void
1165 ira_allocate_and_set_costs (int **vec, enum reg_class cover_class, int val)
1167 int i, *reg_costs;
1168 int len;
1170 if (*vec != NULL)
1171 return;
1172 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1173 len = ira_class_hard_regs_num[cover_class];
1174 for (i = 0; i < len; i++)
1175 reg_costs[i] = val;
1178 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1179 copy values of vector SRC into the vector if it is necessary */
1180 static inline void
1181 ira_allocate_and_copy_costs (int **vec, enum reg_class cover_class, int *src)
1183 int len;
1185 if (*vec != NULL || src == NULL)
1186 return;
1187 *vec = ira_allocate_cost_vector (cover_class);
1188 len = ira_class_hard_regs_num[cover_class];
1189 memcpy (*vec, src, sizeof (int) * len);
1192 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1193 add values of vector SRC into the vector if it is necessary */
1194 static inline void
1195 ira_allocate_and_accumulate_costs (int **vec, enum reg_class cover_class,
1196 int *src)
1198 int i, len;
1200 if (src == NULL)
1201 return;
1202 len = ira_class_hard_regs_num[cover_class];
1203 if (*vec == NULL)
1205 *vec = ira_allocate_cost_vector (cover_class);
1206 memset (*vec, 0, sizeof (int) * len);
1208 for (i = 0; i < len; i++)
1209 (*vec)[i] += src[i];
1212 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1213 copy values of vector SRC into the vector or initialize it by VAL
1214 (if SRC is null). */
1215 static inline void
1216 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class cover_class,
1217 int val, int *src)
1219 int i, *reg_costs;
1220 int len;
1222 if (*vec != NULL)
1223 return;
1224 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1225 len = ira_class_hard_regs_num[cover_class];
1226 if (src != NULL)
1227 memcpy (reg_costs, src, sizeof (int) * len);
1228 else
1230 for (i = 0; i < len; i++)
1231 reg_costs[i] = val;