PR testsuite/44195
[official-gcc.git] / gcc / cfgloopanal.c
blob129ec25a331bb0e6d260c790a85cb119f32c37ea
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "expr.h"
31 #include "output.h"
32 #include "graphds.h"
33 #include "params.h"
35 /* Checks whether BB is executed exactly once in each LOOP iteration. */
37 bool
38 just_once_each_iteration_p (const struct loop *loop, const_basic_block bb)
40 /* It must be executed at least once each iteration. */
41 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
42 return false;
44 /* And just once. */
45 if (bb->loop_father != loop)
46 return false;
48 /* But this was not enough. We might have some irreducible loop here. */
49 if (bb->flags & BB_IRREDUCIBLE_LOOP)
50 return false;
52 return true;
55 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
56 throw away all latch edges and mark blocks inside any remaining cycle.
57 Everything is a bit complicated due to fact we do not want to do this
58 for parts of cycles that only "pass" through some loop -- i.e. for
59 each cycle, we want to mark blocks that belong directly to innermost
60 loop containing the whole cycle.
62 LOOPS is the loop tree. */
64 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
65 #define BB_REPR(BB) ((BB)->index + 1)
67 bool
68 mark_irreducible_loops (void)
70 basic_block act;
71 struct graph_edge *ge;
72 edge e;
73 edge_iterator ei;
74 int src, dest;
75 unsigned depth;
76 struct graph *g;
77 int num = number_of_loops ();
78 struct loop *cloop;
79 bool irred_loop_found = false;
80 int i;
82 gcc_assert (current_loops != NULL);
84 /* Reset the flags. */
85 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
87 act->flags &= ~BB_IRREDUCIBLE_LOOP;
88 FOR_EACH_EDGE (e, ei, act->succs)
89 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
92 /* Create the edge lists. */
93 g = new_graph (last_basic_block + num);
95 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
96 FOR_EACH_EDGE (e, ei, act->succs)
98 /* Ignore edges to exit. */
99 if (e->dest == EXIT_BLOCK_PTR)
100 continue;
102 src = BB_REPR (act);
103 dest = BB_REPR (e->dest);
105 /* Ignore latch edges. */
106 if (e->dest->loop_father->header == e->dest
107 && e->dest->loop_father->latch == act)
108 continue;
110 /* Edges inside a single loop should be left where they are. Edges
111 to subloop headers should lead to representative of the subloop,
112 but from the same place.
114 Edges exiting loops should lead from representative
115 of the son of nearest common ancestor of the loops in that
116 act lays. */
118 if (e->dest->loop_father->header == e->dest)
119 dest = LOOP_REPR (e->dest->loop_father);
121 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
123 depth = 1 + loop_depth (find_common_loop (act->loop_father,
124 e->dest->loop_father));
125 if (depth == loop_depth (act->loop_father))
126 cloop = act->loop_father;
127 else
128 cloop = VEC_index (loop_p, act->loop_father->superloops, depth);
130 src = LOOP_REPR (cloop);
133 add_edge (g, src, dest)->data = e;
136 /* Find the strongly connected components. */
137 graphds_scc (g, NULL);
139 /* Mark the irreducible loops. */
140 for (i = 0; i < g->n_vertices; i++)
141 for (ge = g->vertices[i].succ; ge; ge = ge->succ_next)
143 edge real = (edge) ge->data;
144 /* edge E in graph G is irreducible if it connects two vertices in the
145 same scc. */
147 /* All edges should lead from a component with higher number to the
148 one with lower one. */
149 gcc_assert (g->vertices[ge->src].component >= g->vertices[ge->dest].component);
151 if (g->vertices[ge->src].component != g->vertices[ge->dest].component)
152 continue;
154 real->flags |= EDGE_IRREDUCIBLE_LOOP;
155 irred_loop_found = true;
156 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
157 real->src->flags |= BB_IRREDUCIBLE_LOOP;
160 free_graph (g);
162 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
163 return irred_loop_found;
166 /* Counts number of insns inside LOOP. */
168 num_loop_insns (const struct loop *loop)
170 basic_block *bbs, bb;
171 unsigned i, ninsns = 0;
172 rtx insn;
174 bbs = get_loop_body (loop);
175 for (i = 0; i < loop->num_nodes; i++)
177 bb = bbs[i];
178 FOR_BB_INSNS (bb, insn)
179 if (NONDEBUG_INSN_P (insn))
180 ninsns++;
182 free (bbs);
184 if (!ninsns)
185 ninsns = 1; /* To avoid division by zero. */
187 return ninsns;
190 /* Counts number of insns executed on average per iteration LOOP. */
192 average_num_loop_insns (const struct loop *loop)
194 basic_block *bbs, bb;
195 unsigned i, binsns, ninsns, ratio;
196 rtx insn;
198 ninsns = 0;
199 bbs = get_loop_body (loop);
200 for (i = 0; i < loop->num_nodes; i++)
202 bb = bbs[i];
204 binsns = 0;
205 FOR_BB_INSNS (bb, insn)
206 if (NONDEBUG_INSN_P (insn))
207 binsns++;
209 ratio = loop->header->frequency == 0
210 ? BB_FREQ_MAX
211 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
212 ninsns += binsns * ratio;
214 free (bbs);
216 ninsns /= BB_FREQ_MAX;
217 if (!ninsns)
218 ninsns = 1; /* To avoid division by zero. */
220 return ninsns;
223 /* Returns expected number of iterations of LOOP, according to
224 measured or guessed profile. No bounding is done on the
225 value. */
227 gcov_type
228 expected_loop_iterations_unbounded (const struct loop *loop)
230 edge e;
231 edge_iterator ei;
233 if (loop->latch->count || loop->header->count)
235 gcov_type count_in, count_latch, expected;
237 count_in = 0;
238 count_latch = 0;
240 FOR_EACH_EDGE (e, ei, loop->header->preds)
241 if (e->src == loop->latch)
242 count_latch = e->count;
243 else
244 count_in += e->count;
246 if (count_in == 0)
247 expected = count_latch * 2;
248 else
249 expected = (count_latch + count_in - 1) / count_in;
251 return expected;
253 else
255 int freq_in, freq_latch;
257 freq_in = 0;
258 freq_latch = 0;
260 FOR_EACH_EDGE (e, ei, loop->header->preds)
261 if (e->src == loop->latch)
262 freq_latch = EDGE_FREQUENCY (e);
263 else
264 freq_in += EDGE_FREQUENCY (e);
266 if (freq_in == 0)
267 return freq_latch * 2;
269 return (freq_latch + freq_in - 1) / freq_in;
273 /* Returns expected number of LOOP iterations. The returned value is bounded
274 by REG_BR_PROB_BASE. */
276 unsigned
277 expected_loop_iterations (const struct loop *loop)
279 gcov_type expected = expected_loop_iterations_unbounded (loop);
280 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
283 /* Returns the maximum level of nesting of subloops of LOOP. */
285 unsigned
286 get_loop_level (const struct loop *loop)
288 const struct loop *ploop;
289 unsigned mx = 0, l;
291 for (ploop = loop->inner; ploop; ploop = ploop->next)
293 l = get_loop_level (ploop);
294 if (l >= mx)
295 mx = l + 1;
297 return mx;
300 /* Returns estimate on cost of computing SEQ. */
302 static unsigned
303 seq_cost (const_rtx seq, bool speed)
305 unsigned cost = 0;
306 rtx set;
308 for (; seq; seq = NEXT_INSN (seq))
310 set = single_set (seq);
311 if (set)
312 cost += rtx_cost (set, SET, speed);
313 else
314 cost++;
317 return cost;
320 /* The properties of the target. */
322 unsigned target_avail_regs; /* Number of available registers. */
323 unsigned target_res_regs; /* Number of registers reserved for temporary
324 expressions. */
325 unsigned target_reg_cost[2]; /* The cost for register when there still
326 is some reserve, but we are approaching
327 the number of available registers. */
328 unsigned target_spill_cost[2]; /* The cost for register when we need
329 to spill. */
331 /* Initialize the constants for computing set costs. */
333 void
334 init_set_costs (void)
336 int speed;
337 rtx seq;
338 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
339 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
340 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
341 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
342 unsigned i;
344 target_avail_regs = 0;
345 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
346 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
347 && !fixed_regs[i])
348 target_avail_regs++;
350 target_res_regs = 3;
352 for (speed = 0; speed < 2; speed++)
354 crtl->maybe_hot_insn_p = speed;
355 /* Set up the costs for using extra registers:
357 1) If not many free registers remain, we should prefer having an
358 additional move to decreasing the number of available registers.
359 (TARGET_REG_COST).
360 2) If no registers are available, we need to spill, which may require
361 storing the old value to memory and loading it back
362 (TARGET_SPILL_COST). */
364 start_sequence ();
365 emit_move_insn (reg1, reg2);
366 seq = get_insns ();
367 end_sequence ();
368 target_reg_cost [speed] = seq_cost (seq, speed);
370 start_sequence ();
371 emit_move_insn (mem, reg1);
372 emit_move_insn (reg2, mem);
373 seq = get_insns ();
374 end_sequence ();
375 target_spill_cost [speed] = seq_cost (seq, speed);
377 default_rtl_profile ();
380 /* Estimates cost of increased register pressure caused by making N_NEW new
381 registers live around the loop. N_OLD is the number of registers live
382 around the loop. */
384 unsigned
385 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed)
387 unsigned cost;
388 unsigned regs_needed = n_new + n_old;
390 /* If we have enough registers, we should use them and not restrict
391 the transformations unnecessarily. */
392 if (regs_needed + target_res_regs <= target_avail_regs)
393 return 0;
395 if (regs_needed <= target_avail_regs)
396 /* If we are close to running out of registers, try to preserve
397 them. */
398 cost = target_reg_cost [speed] * n_new;
399 else
400 /* If we run out of registers, it is very expensive to add another
401 one. */
402 cost = target_spill_cost [speed] * n_new;
404 if (optimize && (flag_ira_region == IRA_REGION_ALL
405 || flag_ira_region == IRA_REGION_MIXED)
406 && number_of_loops () <= (unsigned) IRA_MAX_LOOPS_NUM)
407 /* IRA regional allocation deals with high register pressure
408 better. So decrease the cost (to do more accurate the cost
409 calculation for IRA, we need to know how many registers lives
410 through the loop transparently). */
411 cost /= 2;
413 return cost;
416 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
418 void
419 mark_loop_exit_edges (void)
421 basic_block bb;
422 edge e;
424 if (number_of_loops () <= 1)
425 return;
427 FOR_EACH_BB (bb)
429 edge_iterator ei;
431 FOR_EACH_EDGE (e, ei, bb->succs)
433 if (loop_outer (bb->loop_father)
434 && loop_exit_edge_p (bb->loop_father, e))
435 e->flags |= EDGE_LOOP_EXIT;
436 else
437 e->flags &= ~EDGE_LOOP_EXIT;