PR testsuite/44195
[official-gcc.git] / gcc / ada / exp_pakd.adb
blobbd8a69771a447f3dc8a58e82f38574b7ad9d7abc
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ P A K D --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Exp_Dbug; use Exp_Dbug;
31 with Exp_Util; use Exp_Util;
32 with Layout; use Layout;
33 with Namet; use Namet;
34 with Nlists; use Nlists;
35 with Nmake; use Nmake;
36 with Opt; use Opt;
37 with Rtsfind; use Rtsfind;
38 with Sem; use Sem;
39 with Sem_Aux; use Sem_Aux;
40 with Sem_Ch3; use Sem_Ch3;
41 with Sem_Ch8; use Sem_Ch8;
42 with Sem_Ch13; use Sem_Ch13;
43 with Sem_Eval; use Sem_Eval;
44 with Sem_Res; use Sem_Res;
45 with Sem_Util; use Sem_Util;
46 with Sinfo; use Sinfo;
47 with Snames; use Snames;
48 with Stand; use Stand;
49 with Targparm; use Targparm;
50 with Tbuild; use Tbuild;
51 with Ttypes; use Ttypes;
52 with Uintp; use Uintp;
54 package body Exp_Pakd is
56 ---------------------------
57 -- Endian Considerations --
58 ---------------------------
60 -- As described in the specification, bit numbering in a packed array
61 -- is consistent with bit numbering in a record representation clause,
62 -- and hence dependent on the endianness of the machine:
64 -- For little-endian machines, element zero is at the right hand end
65 -- (low order end) of a bit field.
67 -- For big-endian machines, element zero is at the left hand end
68 -- (high order end) of a bit field.
70 -- The shifts that are used to right justify a field therefore differ
71 -- in the two cases. For the little-endian case, we can simply use the
72 -- bit number (i.e. the element number * element size) as the count for
73 -- a right shift. For the big-endian case, we have to subtract the shift
74 -- count from an appropriate constant to use in the right shift. We use
75 -- rotates instead of shifts (which is necessary in the store case to
76 -- preserve other fields), and we expect that the backend will be able
77 -- to change the right rotate into a left rotate, avoiding the subtract,
78 -- if the architecture provides such an instruction.
80 ----------------------------------------------
81 -- Entity Tables for Packed Access Routines --
82 ----------------------------------------------
84 -- For the cases of component size = 3,5-7,9-15,17-31,33-63 we call
85 -- library routines. This table is used to obtain the entity for the
86 -- proper routine.
88 type E_Array is array (Int range 01 .. 63) of RE_Id;
90 -- Array of Bits_nn entities. Note that we do not use library routines
91 -- for the 8-bit and 16-bit cases, but we still fill in the table, using
92 -- entries from System.Unsigned, because we also use this table for
93 -- certain special unchecked conversions in the big-endian case.
95 Bits_Id : constant E_Array :=
96 (01 => RE_Bits_1,
97 02 => RE_Bits_2,
98 03 => RE_Bits_03,
99 04 => RE_Bits_4,
100 05 => RE_Bits_05,
101 06 => RE_Bits_06,
102 07 => RE_Bits_07,
103 08 => RE_Unsigned_8,
104 09 => RE_Bits_09,
105 10 => RE_Bits_10,
106 11 => RE_Bits_11,
107 12 => RE_Bits_12,
108 13 => RE_Bits_13,
109 14 => RE_Bits_14,
110 15 => RE_Bits_15,
111 16 => RE_Unsigned_16,
112 17 => RE_Bits_17,
113 18 => RE_Bits_18,
114 19 => RE_Bits_19,
115 20 => RE_Bits_20,
116 21 => RE_Bits_21,
117 22 => RE_Bits_22,
118 23 => RE_Bits_23,
119 24 => RE_Bits_24,
120 25 => RE_Bits_25,
121 26 => RE_Bits_26,
122 27 => RE_Bits_27,
123 28 => RE_Bits_28,
124 29 => RE_Bits_29,
125 30 => RE_Bits_30,
126 31 => RE_Bits_31,
127 32 => RE_Unsigned_32,
128 33 => RE_Bits_33,
129 34 => RE_Bits_34,
130 35 => RE_Bits_35,
131 36 => RE_Bits_36,
132 37 => RE_Bits_37,
133 38 => RE_Bits_38,
134 39 => RE_Bits_39,
135 40 => RE_Bits_40,
136 41 => RE_Bits_41,
137 42 => RE_Bits_42,
138 43 => RE_Bits_43,
139 44 => RE_Bits_44,
140 45 => RE_Bits_45,
141 46 => RE_Bits_46,
142 47 => RE_Bits_47,
143 48 => RE_Bits_48,
144 49 => RE_Bits_49,
145 50 => RE_Bits_50,
146 51 => RE_Bits_51,
147 52 => RE_Bits_52,
148 53 => RE_Bits_53,
149 54 => RE_Bits_54,
150 55 => RE_Bits_55,
151 56 => RE_Bits_56,
152 57 => RE_Bits_57,
153 58 => RE_Bits_58,
154 59 => RE_Bits_59,
155 60 => RE_Bits_60,
156 61 => RE_Bits_61,
157 62 => RE_Bits_62,
158 63 => RE_Bits_63);
160 -- Array of Get routine entities. These are used to obtain an element
161 -- from a packed array. The N'th entry is used to obtain elements from
162 -- a packed array whose component size is N. RE_Null is used as a null
163 -- entry, for the cases where a library routine is not used.
165 Get_Id : constant E_Array :=
166 (01 => RE_Null,
167 02 => RE_Null,
168 03 => RE_Get_03,
169 04 => RE_Null,
170 05 => RE_Get_05,
171 06 => RE_Get_06,
172 07 => RE_Get_07,
173 08 => RE_Null,
174 09 => RE_Get_09,
175 10 => RE_Get_10,
176 11 => RE_Get_11,
177 12 => RE_Get_12,
178 13 => RE_Get_13,
179 14 => RE_Get_14,
180 15 => RE_Get_15,
181 16 => RE_Null,
182 17 => RE_Get_17,
183 18 => RE_Get_18,
184 19 => RE_Get_19,
185 20 => RE_Get_20,
186 21 => RE_Get_21,
187 22 => RE_Get_22,
188 23 => RE_Get_23,
189 24 => RE_Get_24,
190 25 => RE_Get_25,
191 26 => RE_Get_26,
192 27 => RE_Get_27,
193 28 => RE_Get_28,
194 29 => RE_Get_29,
195 30 => RE_Get_30,
196 31 => RE_Get_31,
197 32 => RE_Null,
198 33 => RE_Get_33,
199 34 => RE_Get_34,
200 35 => RE_Get_35,
201 36 => RE_Get_36,
202 37 => RE_Get_37,
203 38 => RE_Get_38,
204 39 => RE_Get_39,
205 40 => RE_Get_40,
206 41 => RE_Get_41,
207 42 => RE_Get_42,
208 43 => RE_Get_43,
209 44 => RE_Get_44,
210 45 => RE_Get_45,
211 46 => RE_Get_46,
212 47 => RE_Get_47,
213 48 => RE_Get_48,
214 49 => RE_Get_49,
215 50 => RE_Get_50,
216 51 => RE_Get_51,
217 52 => RE_Get_52,
218 53 => RE_Get_53,
219 54 => RE_Get_54,
220 55 => RE_Get_55,
221 56 => RE_Get_56,
222 57 => RE_Get_57,
223 58 => RE_Get_58,
224 59 => RE_Get_59,
225 60 => RE_Get_60,
226 61 => RE_Get_61,
227 62 => RE_Get_62,
228 63 => RE_Get_63);
230 -- Array of Get routine entities to be used in the case where the packed
231 -- array is itself a component of a packed structure, and therefore may
232 -- not be fully aligned. This only affects the even sizes, since for the
233 -- odd sizes, we do not get any fixed alignment in any case.
235 GetU_Id : constant E_Array :=
236 (01 => RE_Null,
237 02 => RE_Null,
238 03 => RE_Get_03,
239 04 => RE_Null,
240 05 => RE_Get_05,
241 06 => RE_GetU_06,
242 07 => RE_Get_07,
243 08 => RE_Null,
244 09 => RE_Get_09,
245 10 => RE_GetU_10,
246 11 => RE_Get_11,
247 12 => RE_GetU_12,
248 13 => RE_Get_13,
249 14 => RE_GetU_14,
250 15 => RE_Get_15,
251 16 => RE_Null,
252 17 => RE_Get_17,
253 18 => RE_GetU_18,
254 19 => RE_Get_19,
255 20 => RE_GetU_20,
256 21 => RE_Get_21,
257 22 => RE_GetU_22,
258 23 => RE_Get_23,
259 24 => RE_GetU_24,
260 25 => RE_Get_25,
261 26 => RE_GetU_26,
262 27 => RE_Get_27,
263 28 => RE_GetU_28,
264 29 => RE_Get_29,
265 30 => RE_GetU_30,
266 31 => RE_Get_31,
267 32 => RE_Null,
268 33 => RE_Get_33,
269 34 => RE_GetU_34,
270 35 => RE_Get_35,
271 36 => RE_GetU_36,
272 37 => RE_Get_37,
273 38 => RE_GetU_38,
274 39 => RE_Get_39,
275 40 => RE_GetU_40,
276 41 => RE_Get_41,
277 42 => RE_GetU_42,
278 43 => RE_Get_43,
279 44 => RE_GetU_44,
280 45 => RE_Get_45,
281 46 => RE_GetU_46,
282 47 => RE_Get_47,
283 48 => RE_GetU_48,
284 49 => RE_Get_49,
285 50 => RE_GetU_50,
286 51 => RE_Get_51,
287 52 => RE_GetU_52,
288 53 => RE_Get_53,
289 54 => RE_GetU_54,
290 55 => RE_Get_55,
291 56 => RE_GetU_56,
292 57 => RE_Get_57,
293 58 => RE_GetU_58,
294 59 => RE_Get_59,
295 60 => RE_GetU_60,
296 61 => RE_Get_61,
297 62 => RE_GetU_62,
298 63 => RE_Get_63);
300 -- Array of Set routine entities. These are used to assign an element
301 -- of a packed array. The N'th entry is used to assign elements for
302 -- a packed array whose component size is N. RE_Null is used as a null
303 -- entry, for the cases where a library routine is not used.
305 Set_Id : constant E_Array :=
306 (01 => RE_Null,
307 02 => RE_Null,
308 03 => RE_Set_03,
309 04 => RE_Null,
310 05 => RE_Set_05,
311 06 => RE_Set_06,
312 07 => RE_Set_07,
313 08 => RE_Null,
314 09 => RE_Set_09,
315 10 => RE_Set_10,
316 11 => RE_Set_11,
317 12 => RE_Set_12,
318 13 => RE_Set_13,
319 14 => RE_Set_14,
320 15 => RE_Set_15,
321 16 => RE_Null,
322 17 => RE_Set_17,
323 18 => RE_Set_18,
324 19 => RE_Set_19,
325 20 => RE_Set_20,
326 21 => RE_Set_21,
327 22 => RE_Set_22,
328 23 => RE_Set_23,
329 24 => RE_Set_24,
330 25 => RE_Set_25,
331 26 => RE_Set_26,
332 27 => RE_Set_27,
333 28 => RE_Set_28,
334 29 => RE_Set_29,
335 30 => RE_Set_30,
336 31 => RE_Set_31,
337 32 => RE_Null,
338 33 => RE_Set_33,
339 34 => RE_Set_34,
340 35 => RE_Set_35,
341 36 => RE_Set_36,
342 37 => RE_Set_37,
343 38 => RE_Set_38,
344 39 => RE_Set_39,
345 40 => RE_Set_40,
346 41 => RE_Set_41,
347 42 => RE_Set_42,
348 43 => RE_Set_43,
349 44 => RE_Set_44,
350 45 => RE_Set_45,
351 46 => RE_Set_46,
352 47 => RE_Set_47,
353 48 => RE_Set_48,
354 49 => RE_Set_49,
355 50 => RE_Set_50,
356 51 => RE_Set_51,
357 52 => RE_Set_52,
358 53 => RE_Set_53,
359 54 => RE_Set_54,
360 55 => RE_Set_55,
361 56 => RE_Set_56,
362 57 => RE_Set_57,
363 58 => RE_Set_58,
364 59 => RE_Set_59,
365 60 => RE_Set_60,
366 61 => RE_Set_61,
367 62 => RE_Set_62,
368 63 => RE_Set_63);
370 -- Array of Set routine entities to be used in the case where the packed
371 -- array is itself a component of a packed structure, and therefore may
372 -- not be fully aligned. This only affects the even sizes, since for the
373 -- odd sizes, we do not get any fixed alignment in any case.
375 SetU_Id : constant E_Array :=
376 (01 => RE_Null,
377 02 => RE_Null,
378 03 => RE_Set_03,
379 04 => RE_Null,
380 05 => RE_Set_05,
381 06 => RE_SetU_06,
382 07 => RE_Set_07,
383 08 => RE_Null,
384 09 => RE_Set_09,
385 10 => RE_SetU_10,
386 11 => RE_Set_11,
387 12 => RE_SetU_12,
388 13 => RE_Set_13,
389 14 => RE_SetU_14,
390 15 => RE_Set_15,
391 16 => RE_Null,
392 17 => RE_Set_17,
393 18 => RE_SetU_18,
394 19 => RE_Set_19,
395 20 => RE_SetU_20,
396 21 => RE_Set_21,
397 22 => RE_SetU_22,
398 23 => RE_Set_23,
399 24 => RE_SetU_24,
400 25 => RE_Set_25,
401 26 => RE_SetU_26,
402 27 => RE_Set_27,
403 28 => RE_SetU_28,
404 29 => RE_Set_29,
405 30 => RE_SetU_30,
406 31 => RE_Set_31,
407 32 => RE_Null,
408 33 => RE_Set_33,
409 34 => RE_SetU_34,
410 35 => RE_Set_35,
411 36 => RE_SetU_36,
412 37 => RE_Set_37,
413 38 => RE_SetU_38,
414 39 => RE_Set_39,
415 40 => RE_SetU_40,
416 41 => RE_Set_41,
417 42 => RE_SetU_42,
418 43 => RE_Set_43,
419 44 => RE_SetU_44,
420 45 => RE_Set_45,
421 46 => RE_SetU_46,
422 47 => RE_Set_47,
423 48 => RE_SetU_48,
424 49 => RE_Set_49,
425 50 => RE_SetU_50,
426 51 => RE_Set_51,
427 52 => RE_SetU_52,
428 53 => RE_Set_53,
429 54 => RE_SetU_54,
430 55 => RE_Set_55,
431 56 => RE_SetU_56,
432 57 => RE_Set_57,
433 58 => RE_SetU_58,
434 59 => RE_Set_59,
435 60 => RE_SetU_60,
436 61 => RE_Set_61,
437 62 => RE_SetU_62,
438 63 => RE_Set_63);
440 -----------------------
441 -- Local Subprograms --
442 -----------------------
444 procedure Compute_Linear_Subscript
445 (Atyp : Entity_Id;
446 N : Node_Id;
447 Subscr : out Node_Id);
448 -- Given a constrained array type Atyp, and an indexed component node
449 -- N referencing an array object of this type, build an expression of
450 -- type Standard.Integer representing the zero-based linear subscript
451 -- value. This expression includes any required range checks.
453 procedure Convert_To_PAT_Type (Aexp : Node_Id);
454 -- Given an expression of a packed array type, builds a corresponding
455 -- expression whose type is the implementation type used to represent
456 -- the packed array. Aexp is analyzed and resolved on entry and on exit.
458 procedure Get_Base_And_Bit_Offset
459 (N : Node_Id;
460 Base : out Node_Id;
461 Offset : out Node_Id);
462 -- Given a node N for a name which involves a packed array reference,
463 -- return the base object of the reference and build an expression of
464 -- type Standard.Integer representing the zero-based offset in bits
465 -- from Base'Address to the first bit of the reference.
467 function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
468 -- There are two versions of the Set routines, the ones used when the
469 -- object is known to be sufficiently well aligned given the number of
470 -- bits, and the ones used when the object is not known to be aligned.
471 -- This routine is used to determine which set to use. Obj is a reference
472 -- to the object, and Csiz is the component size of the packed array.
473 -- True is returned if the alignment of object is known to be sufficient,
474 -- defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
475 -- 2 otherwise.
477 function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
478 -- Build a left shift node, checking for the case of a shift count of zero
480 function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
481 -- Build a right shift node, checking for the case of a shift count of zero
483 function RJ_Unchecked_Convert_To
484 (Typ : Entity_Id;
485 Expr : Node_Id) return Node_Id;
486 -- The packed array code does unchecked conversions which in some cases
487 -- may involve non-discrete types with differing sizes. The semantics of
488 -- such conversions is potentially endian dependent, and the effect we
489 -- want here for such a conversion is to do the conversion in size as
490 -- though numeric items are involved, and we extend or truncate on the
491 -- left side. This happens naturally in the little-endian case, but in
492 -- the big endian case we can get left justification, when what we want
493 -- is right justification. This routine does the unchecked conversion in
494 -- a stepwise manner to ensure that it gives the expected result. Hence
495 -- the name (RJ = Right justified). The parameters Typ and Expr are as
496 -- for the case of a normal Unchecked_Convert_To call.
498 procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
499 -- This routine is called in the Get and Set case for arrays that are
500 -- packed but not bit-packed, meaning that they have at least one
501 -- subscript that is of an enumeration type with a non-standard
502 -- representation. This routine modifies the given node to properly
503 -- reference the corresponding packed array type.
505 procedure Setup_Inline_Packed_Array_Reference
506 (N : Node_Id;
507 Atyp : Entity_Id;
508 Obj : in out Node_Id;
509 Cmask : out Uint;
510 Shift : out Node_Id);
511 -- This procedure performs common processing on the N_Indexed_Component
512 -- parameter given as N, whose prefix is a reference to a packed array.
513 -- This is used for the get and set when the component size is 1,2,4
514 -- or for other component sizes when the packed array type is a modular
515 -- type (i.e. the cases that are handled with inline code).
517 -- On entry:
519 -- N is the N_Indexed_Component node for the packed array reference
521 -- Atyp is the constrained array type (the actual subtype has been
522 -- computed if necessary to obtain the constraints, but this is still
523 -- the original array type, not the Packed_Array_Type value).
525 -- Obj is the object which is to be indexed. It is always of type Atyp.
527 -- On return:
529 -- Obj is the object containing the desired bit field. It is of type
530 -- Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
531 -- entire value, for the small static case, or the proper selected byte
532 -- from the array in the large or dynamic case. This node is analyzed
533 -- and resolved on return.
535 -- Shift is a node representing the shift count to be used in the
536 -- rotate right instruction that positions the field for access.
537 -- This node is analyzed and resolved on return.
539 -- Cmask is a mask corresponding to the width of the component field.
540 -- Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
542 -- Note: in some cases the call to this routine may generate actions
543 -- (for handling multi-use references and the generation of the packed
544 -- array type on the fly). Such actions are inserted into the tree
545 -- directly using Insert_Action.
547 ------------------------------
548 -- Compute_Linear_Subscript --
549 ------------------------------
551 procedure Compute_Linear_Subscript
552 (Atyp : Entity_Id;
553 N : Node_Id;
554 Subscr : out Node_Id)
556 Loc : constant Source_Ptr := Sloc (N);
557 Oldsub : Node_Id;
558 Newsub : Node_Id;
559 Indx : Node_Id;
560 Styp : Entity_Id;
562 begin
563 Subscr := Empty;
565 -- Loop through dimensions
567 Indx := First_Index (Atyp);
568 Oldsub := First (Expressions (N));
570 while Present (Indx) loop
571 Styp := Etype (Indx);
572 Newsub := Relocate_Node (Oldsub);
574 -- Get expression for the subscript value. First, if Do_Range_Check
575 -- is set on a subscript, then we must do a range check against the
576 -- original bounds (not the bounds of the packed array type). We do
577 -- this by introducing a subtype conversion.
579 if Do_Range_Check (Newsub)
580 and then Etype (Newsub) /= Styp
581 then
582 Newsub := Convert_To (Styp, Newsub);
583 end if;
585 -- Now evolve the expression for the subscript. First convert
586 -- the subscript to be zero based and of an integer type.
588 -- Case of integer type, where we just subtract to get lower bound
590 if Is_Integer_Type (Styp) then
592 -- If length of integer type is smaller than standard integer,
593 -- then we convert to integer first, then do the subtract
595 -- Integer (subscript) - Integer (Styp'First)
597 if Esize (Styp) < Esize (Standard_Integer) then
598 Newsub :=
599 Make_Op_Subtract (Loc,
600 Left_Opnd => Convert_To (Standard_Integer, Newsub),
601 Right_Opnd =>
602 Convert_To (Standard_Integer,
603 Make_Attribute_Reference (Loc,
604 Prefix => New_Occurrence_Of (Styp, Loc),
605 Attribute_Name => Name_First)));
607 -- For larger integer types, subtract first, then convert to
608 -- integer, this deals with strange long long integer bounds.
610 -- Integer (subscript - Styp'First)
612 else
613 Newsub :=
614 Convert_To (Standard_Integer,
615 Make_Op_Subtract (Loc,
616 Left_Opnd => Newsub,
617 Right_Opnd =>
618 Make_Attribute_Reference (Loc,
619 Prefix => New_Occurrence_Of (Styp, Loc),
620 Attribute_Name => Name_First)));
621 end if;
623 -- For the enumeration case, we have to use 'Pos to get the value
624 -- to work with before subtracting the lower bound.
626 -- Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
628 -- This is not quite right for bizarre cases where the size of the
629 -- enumeration type is > Integer'Size bits due to rep clause ???
631 else
632 pragma Assert (Is_Enumeration_Type (Styp));
634 Newsub :=
635 Make_Op_Subtract (Loc,
636 Left_Opnd => Convert_To (Standard_Integer,
637 Make_Attribute_Reference (Loc,
638 Prefix => New_Occurrence_Of (Styp, Loc),
639 Attribute_Name => Name_Pos,
640 Expressions => New_List (Newsub))),
642 Right_Opnd =>
643 Convert_To (Standard_Integer,
644 Make_Attribute_Reference (Loc,
645 Prefix => New_Occurrence_Of (Styp, Loc),
646 Attribute_Name => Name_Pos,
647 Expressions => New_List (
648 Make_Attribute_Reference (Loc,
649 Prefix => New_Occurrence_Of (Styp, Loc),
650 Attribute_Name => Name_First)))));
651 end if;
653 Set_Paren_Count (Newsub, 1);
655 -- For the first subscript, we just copy that subscript value
657 if No (Subscr) then
658 Subscr := Newsub;
660 -- Otherwise, we must multiply what we already have by the current
661 -- stride and then add in the new value to the evolving subscript.
663 else
664 Subscr :=
665 Make_Op_Add (Loc,
666 Left_Opnd =>
667 Make_Op_Multiply (Loc,
668 Left_Opnd => Subscr,
669 Right_Opnd =>
670 Make_Attribute_Reference (Loc,
671 Attribute_Name => Name_Range_Length,
672 Prefix => New_Occurrence_Of (Styp, Loc))),
673 Right_Opnd => Newsub);
674 end if;
676 -- Move to next subscript
678 Next_Index (Indx);
679 Next (Oldsub);
680 end loop;
681 end Compute_Linear_Subscript;
683 -------------------------
684 -- Convert_To_PAT_Type --
685 -------------------------
687 -- The PAT is always obtained from the actual subtype
689 procedure Convert_To_PAT_Type (Aexp : Node_Id) is
690 Act_ST : Entity_Id;
692 begin
693 Convert_To_Actual_Subtype (Aexp);
694 Act_ST := Underlying_Type (Etype (Aexp));
695 Create_Packed_Array_Type (Act_ST);
697 -- Just replace the etype with the packed array type. This works because
698 -- the expression will not be further analyzed, and Gigi considers the
699 -- two types equivalent in any case.
701 -- This is not strictly the case ??? If the reference is an actual in
702 -- call, the expansion of the prefix is delayed, and must be reanalyzed,
703 -- see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
704 -- array reference, reanalysis can produce spurious type errors when the
705 -- PAT type is replaced again with the original type of the array. Same
706 -- for the case of a dereference. The following is correct and minimal,
707 -- but the handling of more complex packed expressions in actuals is
708 -- confused. Probably the problem only remains for actuals in calls.
710 Set_Etype (Aexp, Packed_Array_Type (Act_ST));
712 if Is_Entity_Name (Aexp)
713 or else
714 (Nkind (Aexp) = N_Indexed_Component
715 and then Is_Entity_Name (Prefix (Aexp)))
716 or else Nkind (Aexp) = N_Explicit_Dereference
717 then
718 Set_Analyzed (Aexp);
719 end if;
720 end Convert_To_PAT_Type;
722 ------------------------------
723 -- Create_Packed_Array_Type --
724 ------------------------------
726 procedure Create_Packed_Array_Type (Typ : Entity_Id) is
727 Loc : constant Source_Ptr := Sloc (Typ);
728 Ctyp : constant Entity_Id := Component_Type (Typ);
729 Csize : constant Uint := Component_Size (Typ);
731 Ancest : Entity_Id;
732 PB_Type : Entity_Id;
733 PASize : Uint;
734 Decl : Node_Id;
735 PAT : Entity_Id;
736 Len_Dim : Node_Id;
737 Len_Expr : Node_Id;
738 Len_Bits : Uint;
739 Bits_U1 : Node_Id;
740 PAT_High : Node_Id;
741 Btyp : Entity_Id;
742 Lit : Node_Id;
744 procedure Install_PAT;
745 -- This procedure is called with Decl set to the declaration for the
746 -- packed array type. It creates the type and installs it as required.
748 procedure Set_PB_Type;
749 -- Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
750 -- requirements (see documentation in the spec of this package).
752 -----------------
753 -- Install_PAT --
754 -----------------
756 procedure Install_PAT is
757 Pushed_Scope : Boolean := False;
759 begin
760 -- We do not want to put the declaration we have created in the tree
761 -- since it is often hard, and sometimes impossible to find a proper
762 -- place for it (the impossible case arises for a packed array type
763 -- with bounds depending on the discriminant, a declaration cannot
764 -- be put inside the record, and the reference to the discriminant
765 -- cannot be outside the record).
767 -- The solution is to analyze the declaration while temporarily
768 -- attached to the tree at an appropriate point, and then we install
769 -- the resulting type as an Itype in the packed array type field of
770 -- the original type, so that no explicit declaration is required.
772 -- Note: the packed type is created in the scope of its parent
773 -- type. There are at least some cases where the current scope
774 -- is deeper, and so when this is the case, we temporarily reset
775 -- the scope for the definition. This is clearly safe, since the
776 -- first use of the packed array type will be the implicit
777 -- reference from the corresponding unpacked type when it is
778 -- elaborated.
780 if Is_Itype (Typ) then
781 Set_Parent (Decl, Associated_Node_For_Itype (Typ));
782 else
783 Set_Parent (Decl, Declaration_Node (Typ));
784 end if;
786 if Scope (Typ) /= Current_Scope then
787 Push_Scope (Scope (Typ));
788 Pushed_Scope := True;
789 end if;
791 Set_Is_Itype (PAT, True);
792 Set_Packed_Array_Type (Typ, PAT);
793 Analyze (Decl, Suppress => All_Checks);
795 if Pushed_Scope then
796 Pop_Scope;
797 end if;
799 -- Set Esize and RM_Size to the actual size of the packed object
800 -- Do not reset RM_Size if already set, as happens in the case of
801 -- a modular type.
803 if Unknown_Esize (PAT) then
804 Set_Esize (PAT, PASize);
805 end if;
807 if Unknown_RM_Size (PAT) then
808 Set_RM_Size (PAT, PASize);
809 end if;
811 Adjust_Esize_Alignment (PAT);
813 -- Set remaining fields of packed array type
815 Init_Alignment (PAT);
816 Set_Parent (PAT, Empty);
817 Set_Associated_Node_For_Itype (PAT, Typ);
818 Set_Is_Packed_Array_Type (PAT, True);
819 Set_Original_Array_Type (PAT, Typ);
821 -- We definitely do not want to delay freezing for packed array
822 -- types. This is of particular importance for the itypes that
823 -- are generated for record components depending on discriminants
824 -- where there is no place to put the freeze node.
826 Set_Has_Delayed_Freeze (PAT, False);
827 Set_Has_Delayed_Freeze (Etype (PAT), False);
829 -- If we did allocate a freeze node, then clear out the reference
830 -- since it is obsolete (should we delete the freeze node???)
832 Set_Freeze_Node (PAT, Empty);
833 Set_Freeze_Node (Etype (PAT), Empty);
834 end Install_PAT;
836 -----------------
837 -- Set_PB_Type --
838 -----------------
840 procedure Set_PB_Type is
841 begin
842 -- If the user has specified an explicit alignment for the
843 -- type or component, take it into account.
845 if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
846 or else Alignment (Typ) = 1
847 or else Component_Alignment (Typ) = Calign_Storage_Unit
848 then
849 PB_Type := RTE (RE_Packed_Bytes1);
851 elsif Csize mod 4 /= 0
852 or else Alignment (Typ) = 2
853 then
854 PB_Type := RTE (RE_Packed_Bytes2);
856 else
857 PB_Type := RTE (RE_Packed_Bytes4);
858 end if;
859 end Set_PB_Type;
861 -- Start of processing for Create_Packed_Array_Type
863 begin
864 -- If we already have a packed array type, nothing to do
866 if Present (Packed_Array_Type (Typ)) then
867 return;
868 end if;
870 -- If our immediate ancestor subtype is constrained, and it already
871 -- has a packed array type, then just share the same type, since the
872 -- bounds must be the same. If the ancestor is not an array type but
873 -- a private type, as can happen with multiple instantiations, create
874 -- a new packed type, to avoid privacy issues.
876 if Ekind (Typ) = E_Array_Subtype then
877 Ancest := Ancestor_Subtype (Typ);
879 if Present (Ancest)
880 and then Is_Array_Type (Ancest)
881 and then Is_Constrained (Ancest)
882 and then Present (Packed_Array_Type (Ancest))
883 then
884 Set_Packed_Array_Type (Typ, Packed_Array_Type (Ancest));
885 return;
886 end if;
887 end if;
889 -- We preset the result type size from the size of the original array
890 -- type, since this size clearly belongs to the packed array type. The
891 -- size of the conceptual unpacked type is always set to unknown.
893 PASize := RM_Size (Typ);
895 -- Case of an array where at least one index is of an enumeration
896 -- type with a non-standard representation, but the component size
897 -- is not appropriate for bit packing. This is the case where we
898 -- have Is_Packed set (we would never be in this unit otherwise),
899 -- but Is_Bit_Packed_Array is false.
901 -- Note that if the component size is appropriate for bit packing,
902 -- then the circuit for the computation of the subscript properly
903 -- deals with the non-standard enumeration type case by taking the
904 -- Pos anyway.
906 if not Is_Bit_Packed_Array (Typ) then
908 -- Here we build a declaration:
910 -- type tttP is array (index1, index2, ...) of component_type
912 -- where index1, index2, are the index types. These are the same
913 -- as the index types of the original array, except for the non-
914 -- standard representation enumeration type case, where we have
915 -- two subcases.
917 -- For the unconstrained array case, we use
919 -- Natural range <>
921 -- For the constrained case, we use
923 -- Natural range Enum_Type'Pos (Enum_Type'First) ..
924 -- Enum_Type'Pos (Enum_Type'Last);
926 PAT :=
927 Make_Defining_Identifier (Loc,
928 Chars => New_External_Name (Chars (Typ), 'P'));
930 Set_Packed_Array_Type (Typ, PAT);
932 declare
933 Indexes : constant List_Id := New_List;
934 Indx : Node_Id;
935 Indx_Typ : Entity_Id;
936 Enum_Case : Boolean;
937 Typedef : Node_Id;
939 begin
940 Indx := First_Index (Typ);
942 while Present (Indx) loop
943 Indx_Typ := Etype (Indx);
945 Enum_Case := Is_Enumeration_Type (Indx_Typ)
946 and then Has_Non_Standard_Rep (Indx_Typ);
948 -- Unconstrained case
950 if not Is_Constrained (Typ) then
951 if Enum_Case then
952 Indx_Typ := Standard_Natural;
953 end if;
955 Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
957 -- Constrained case
959 else
960 if not Enum_Case then
961 Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
963 else
964 Append_To (Indexes,
965 Make_Subtype_Indication (Loc,
966 Subtype_Mark =>
967 New_Occurrence_Of (Standard_Natural, Loc),
968 Constraint =>
969 Make_Range_Constraint (Loc,
970 Range_Expression =>
971 Make_Range (Loc,
972 Low_Bound =>
973 Make_Attribute_Reference (Loc,
974 Prefix =>
975 New_Occurrence_Of (Indx_Typ, Loc),
976 Attribute_Name => Name_Pos,
977 Expressions => New_List (
978 Make_Attribute_Reference (Loc,
979 Prefix =>
980 New_Occurrence_Of (Indx_Typ, Loc),
981 Attribute_Name => Name_First))),
983 High_Bound =>
984 Make_Attribute_Reference (Loc,
985 Prefix =>
986 New_Occurrence_Of (Indx_Typ, Loc),
987 Attribute_Name => Name_Pos,
988 Expressions => New_List (
989 Make_Attribute_Reference (Loc,
990 Prefix =>
991 New_Occurrence_Of (Indx_Typ, Loc),
992 Attribute_Name => Name_Last)))))));
994 end if;
995 end if;
997 Next_Index (Indx);
998 end loop;
1000 if not Is_Constrained (Typ) then
1001 Typedef :=
1002 Make_Unconstrained_Array_Definition (Loc,
1003 Subtype_Marks => Indexes,
1004 Component_Definition =>
1005 Make_Component_Definition (Loc,
1006 Aliased_Present => False,
1007 Subtype_Indication =>
1008 New_Occurrence_Of (Ctyp, Loc)));
1010 else
1011 Typedef :=
1012 Make_Constrained_Array_Definition (Loc,
1013 Discrete_Subtype_Definitions => Indexes,
1014 Component_Definition =>
1015 Make_Component_Definition (Loc,
1016 Aliased_Present => False,
1017 Subtype_Indication =>
1018 New_Occurrence_Of (Ctyp, Loc)));
1019 end if;
1021 Decl :=
1022 Make_Full_Type_Declaration (Loc,
1023 Defining_Identifier => PAT,
1024 Type_Definition => Typedef);
1025 end;
1027 -- Set type as packed array type and install it
1029 Set_Is_Packed_Array_Type (PAT);
1030 Install_PAT;
1031 return;
1033 -- Case of bit-packing required for unconstrained array. We create
1034 -- a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
1036 elsif not Is_Constrained (Typ) then
1037 PAT :=
1038 Make_Defining_Identifier (Loc,
1039 Chars => Make_Packed_Array_Type_Name (Typ, Csize));
1041 Set_Packed_Array_Type (Typ, PAT);
1042 Set_PB_Type;
1044 Decl :=
1045 Make_Subtype_Declaration (Loc,
1046 Defining_Identifier => PAT,
1047 Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
1048 Install_PAT;
1049 return;
1051 -- Remaining code is for the case of bit-packing for constrained array
1053 -- The name of the packed array subtype is
1055 -- ttt___Xsss
1057 -- where sss is the component size in bits and ttt is the name of
1058 -- the parent packed type.
1060 else
1061 PAT :=
1062 Make_Defining_Identifier (Loc,
1063 Chars => Make_Packed_Array_Type_Name (Typ, Csize));
1065 Set_Packed_Array_Type (Typ, PAT);
1067 -- Build an expression for the length of the array in bits.
1068 -- This is the product of the length of each of the dimensions
1070 declare
1071 J : Nat := 1;
1073 begin
1074 Len_Expr := Empty; -- suppress junk warning
1076 loop
1077 Len_Dim :=
1078 Make_Attribute_Reference (Loc,
1079 Attribute_Name => Name_Length,
1080 Prefix => New_Occurrence_Of (Typ, Loc),
1081 Expressions => New_List (
1082 Make_Integer_Literal (Loc, J)));
1084 if J = 1 then
1085 Len_Expr := Len_Dim;
1087 else
1088 Len_Expr :=
1089 Make_Op_Multiply (Loc,
1090 Left_Opnd => Len_Expr,
1091 Right_Opnd => Len_Dim);
1092 end if;
1094 J := J + 1;
1095 exit when J > Number_Dimensions (Typ);
1096 end loop;
1097 end;
1099 -- Temporarily attach the length expression to the tree and analyze
1100 -- and resolve it, so that we can test its value. We assume that the
1101 -- total length fits in type Integer. This expression may involve
1102 -- discriminants, so we treat it as a default/per-object expression.
1104 Set_Parent (Len_Expr, Typ);
1105 Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
1107 -- Use a modular type if possible. We can do this if we have
1108 -- static bounds, and the length is small enough, and the length
1109 -- is not zero. We exclude the zero length case because the size
1110 -- of things is always at least one, and the zero length object
1111 -- would have an anomalous size.
1113 if Compile_Time_Known_Value (Len_Expr) then
1114 Len_Bits := Expr_Value (Len_Expr) * Csize;
1116 -- Check for size known to be too large
1118 if Len_Bits >
1119 Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
1120 then
1121 if System_Storage_Unit = 8 then
1122 Error_Msg_N
1123 ("packed array size cannot exceed " &
1124 "Integer''Last bytes", Typ);
1125 else
1126 Error_Msg_N
1127 ("packed array size cannot exceed " &
1128 "Integer''Last storage units", Typ);
1129 end if;
1131 -- Reset length to arbitrary not too high value to continue
1133 Len_Expr := Make_Integer_Literal (Loc, 65535);
1134 Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
1135 end if;
1137 -- We normally consider small enough to mean no larger than the
1138 -- value of System_Max_Binary_Modulus_Power, checking that in the
1139 -- case of values longer than word size, we have long shifts.
1141 if Len_Bits > 0
1142 and then
1143 (Len_Bits <= System_Word_Size
1144 or else (Len_Bits <= System_Max_Binary_Modulus_Power
1145 and then Support_Long_Shifts_On_Target))
1146 then
1147 -- We can use the modular type, it has the form:
1149 -- subtype tttPn is btyp
1150 -- range 0 .. 2 ** ((Typ'Length (1)
1151 -- * ... * Typ'Length (n)) * Csize) - 1;
1153 -- The bounds are statically known, and btyp is one of the
1154 -- unsigned types, depending on the length.
1156 if Len_Bits <= Standard_Short_Short_Integer_Size then
1157 Btyp := RTE (RE_Short_Short_Unsigned);
1159 elsif Len_Bits <= Standard_Short_Integer_Size then
1160 Btyp := RTE (RE_Short_Unsigned);
1162 elsif Len_Bits <= Standard_Integer_Size then
1163 Btyp := RTE (RE_Unsigned);
1165 elsif Len_Bits <= Standard_Long_Integer_Size then
1166 Btyp := RTE (RE_Long_Unsigned);
1168 else
1169 Btyp := RTE (RE_Long_Long_Unsigned);
1170 end if;
1172 Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
1173 Set_Print_In_Hex (Lit);
1175 Decl :=
1176 Make_Subtype_Declaration (Loc,
1177 Defining_Identifier => PAT,
1178 Subtype_Indication =>
1179 Make_Subtype_Indication (Loc,
1180 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
1182 Constraint =>
1183 Make_Range_Constraint (Loc,
1184 Range_Expression =>
1185 Make_Range (Loc,
1186 Low_Bound =>
1187 Make_Integer_Literal (Loc, 0),
1188 High_Bound => Lit))));
1190 if PASize = Uint_0 then
1191 PASize := Len_Bits;
1192 end if;
1194 Install_PAT;
1196 -- Propagate a given alignment to the modular type. This can
1197 -- cause it to be under-aligned, but that's OK.
1199 if Present (Alignment_Clause (Typ)) then
1200 Set_Alignment (PAT, Alignment (Typ));
1201 end if;
1203 return;
1204 end if;
1205 end if;
1207 -- Could not use a modular type, for all other cases, we build
1208 -- a packed array subtype:
1210 -- subtype tttPn is
1211 -- System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
1213 -- Bits is the length of the array in bits
1215 Set_PB_Type;
1217 Bits_U1 :=
1218 Make_Op_Add (Loc,
1219 Left_Opnd =>
1220 Make_Op_Multiply (Loc,
1221 Left_Opnd =>
1222 Make_Integer_Literal (Loc, Csize),
1223 Right_Opnd => Len_Expr),
1225 Right_Opnd =>
1226 Make_Integer_Literal (Loc, 7));
1228 Set_Paren_Count (Bits_U1, 1);
1230 PAT_High :=
1231 Make_Op_Subtract (Loc,
1232 Left_Opnd =>
1233 Make_Op_Divide (Loc,
1234 Left_Opnd => Bits_U1,
1235 Right_Opnd => Make_Integer_Literal (Loc, 8)),
1236 Right_Opnd => Make_Integer_Literal (Loc, 1));
1238 Decl :=
1239 Make_Subtype_Declaration (Loc,
1240 Defining_Identifier => PAT,
1241 Subtype_Indication =>
1242 Make_Subtype_Indication (Loc,
1243 Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
1244 Constraint =>
1245 Make_Index_Or_Discriminant_Constraint (Loc,
1246 Constraints => New_List (
1247 Make_Range (Loc,
1248 Low_Bound =>
1249 Make_Integer_Literal (Loc, 0),
1250 High_Bound =>
1251 Convert_To (Standard_Integer, PAT_High))))));
1253 Install_PAT;
1255 -- Currently the code in this unit requires that packed arrays
1256 -- represented by non-modular arrays of bytes be on a byte
1257 -- boundary for bit sizes handled by System.Pack_nn units.
1258 -- That's because these units assume the array being accessed
1259 -- starts on a byte boundary.
1261 if Get_Id (UI_To_Int (Csize)) /= RE_Null then
1262 Set_Must_Be_On_Byte_Boundary (Typ);
1263 end if;
1264 end if;
1265 end Create_Packed_Array_Type;
1267 -----------------------------------
1268 -- Expand_Bit_Packed_Element_Set --
1269 -----------------------------------
1271 procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
1272 Loc : constant Source_Ptr := Sloc (N);
1273 Lhs : constant Node_Id := Name (N);
1275 Ass_OK : constant Boolean := Assignment_OK (Lhs);
1276 -- Used to preserve assignment OK status when assignment is rewritten
1278 Rhs : Node_Id := Expression (N);
1279 -- Initially Rhs is the right hand side value, it will be replaced
1280 -- later by an appropriate unchecked conversion for the assignment.
1282 Obj : Node_Id;
1283 Atyp : Entity_Id;
1284 PAT : Entity_Id;
1285 Ctyp : Entity_Id;
1286 Csiz : Int;
1287 Cmask : Uint;
1289 Shift : Node_Id;
1290 -- The expression for the shift value that is required
1292 Shift_Used : Boolean := False;
1293 -- Set True if Shift has been used in the generated code at least
1294 -- once, so that it must be duplicated if used again
1296 New_Lhs : Node_Id;
1297 New_Rhs : Node_Id;
1299 Rhs_Val_Known : Boolean;
1300 Rhs_Val : Uint;
1301 -- If the value of the right hand side as an integer constant is
1302 -- known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1303 -- contains the value. Otherwise Rhs_Val_Known is set False, and
1304 -- the Rhs_Val is undefined.
1306 function Get_Shift return Node_Id;
1307 -- Function used to get the value of Shift, making sure that it
1308 -- gets duplicated if the function is called more than once.
1310 ---------------
1311 -- Get_Shift --
1312 ---------------
1314 function Get_Shift return Node_Id is
1315 begin
1316 -- If we used the shift value already, then duplicate it. We
1317 -- set a temporary parent in case actions have to be inserted.
1319 if Shift_Used then
1320 Set_Parent (Shift, N);
1321 return Duplicate_Subexpr_No_Checks (Shift);
1323 -- If first time, use Shift unchanged, and set flag for first use
1325 else
1326 Shift_Used := True;
1327 return Shift;
1328 end if;
1329 end Get_Shift;
1331 -- Start of processing for Expand_Bit_Packed_Element_Set
1333 begin
1334 pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
1336 Obj := Relocate_Node (Prefix (Lhs));
1337 Convert_To_Actual_Subtype (Obj);
1338 Atyp := Etype (Obj);
1339 PAT := Packed_Array_Type (Atyp);
1340 Ctyp := Component_Type (Atyp);
1341 Csiz := UI_To_Int (Component_Size (Atyp));
1343 -- We convert the right hand side to the proper subtype to ensure
1344 -- that an appropriate range check is made (since the normal range
1345 -- check from assignment will be lost in the transformations). This
1346 -- conversion is analyzed immediately so that subsequent processing
1347 -- can work with an analyzed Rhs (and e.g. look at its Etype)
1349 -- If the right-hand side is a string literal, create a temporary for
1350 -- it, constant-folding is not ready to wrap the bit representation
1351 -- of a string literal.
1353 if Nkind (Rhs) = N_String_Literal then
1354 declare
1355 Decl : Node_Id;
1356 begin
1357 Decl :=
1358 Make_Object_Declaration (Loc,
1359 Defining_Identifier => Make_Temporary (Loc, 'T', Rhs),
1360 Object_Definition => New_Occurrence_Of (Ctyp, Loc),
1361 Expression => New_Copy_Tree (Rhs));
1363 Insert_Actions (N, New_List (Decl));
1364 Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
1365 end;
1366 end if;
1368 Rhs := Convert_To (Ctyp, Rhs);
1369 Set_Parent (Rhs, N);
1371 -- If we are building the initialization procedure for a packed array,
1372 -- and Initialize_Scalars is enabled, each component assignment is an
1373 -- out-of-range value by design. Compile this value without checks,
1374 -- because a call to the array init_proc must not raise an exception.
1376 if Within_Init_Proc
1377 and then Initialize_Scalars
1378 then
1379 Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
1380 else
1381 Analyze_And_Resolve (Rhs, Ctyp);
1382 end if;
1384 -- For the AAMP target, indexing of certain packed array is passed
1385 -- through to the back end without expansion, because the expansion
1386 -- results in very inefficient code on that target. This allows the
1387 -- GNAAMP back end to generate specialized macros that support more
1388 -- efficient indexing of packed arrays with components having sizes
1389 -- that are small powers of two.
1391 if AAMP_On_Target
1392 and then (Csiz = 1 or else Csiz = 2 or else Csiz = 4)
1393 then
1394 return;
1395 end if;
1397 -- Case of component size 1,2,4 or any component size for the modular
1398 -- case. These are the cases for which we can inline the code.
1400 if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1401 or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1402 then
1403 Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
1405 -- The statement to be generated is:
1407 -- Obj := atyp!((Obj and Mask1) or (shift_left (rhs, shift)))
1409 -- where mask1 is obtained by shifting Cmask left Shift bits
1410 -- and then complementing the result.
1412 -- the "and Mask1" is omitted if rhs is constant and all 1 bits
1414 -- the "or ..." is omitted if rhs is constant and all 0 bits
1416 -- rhs is converted to the appropriate type
1418 -- The result is converted back to the array type, since
1419 -- otherwise we lose knowledge of the packed nature.
1421 -- Determine if right side is all 0 bits or all 1 bits
1423 if Compile_Time_Known_Value (Rhs) then
1424 Rhs_Val := Expr_Rep_Value (Rhs);
1425 Rhs_Val_Known := True;
1427 -- The following test catches the case of an unchecked conversion
1428 -- of an integer literal. This results from optimizing aggregates
1429 -- of packed types.
1431 elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
1432 and then Compile_Time_Known_Value (Expression (Rhs))
1433 then
1434 Rhs_Val := Expr_Rep_Value (Expression (Rhs));
1435 Rhs_Val_Known := True;
1437 else
1438 Rhs_Val := No_Uint;
1439 Rhs_Val_Known := False;
1440 end if;
1442 -- Some special checks for the case where the right hand value
1443 -- is known at compile time. Basically we have to take care of
1444 -- the implicit conversion to the subtype of the component object.
1446 if Rhs_Val_Known then
1448 -- If we have a biased component type then we must manually do
1449 -- the biasing, since we are taking responsibility in this case
1450 -- for constructing the exact bit pattern to be used.
1452 if Has_Biased_Representation (Ctyp) then
1453 Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
1454 end if;
1456 -- For a negative value, we manually convert the twos complement
1457 -- value to a corresponding unsigned value, so that the proper
1458 -- field width is maintained. If we did not do this, we would
1459 -- get too many leading sign bits later on.
1461 if Rhs_Val < 0 then
1462 Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
1463 end if;
1464 end if;
1466 -- Now create copies removing side effects. Note that in some
1467 -- complex cases, this may cause the fact that we have already
1468 -- set a packed array type on Obj to get lost. So we save the
1469 -- type of Obj, and make sure it is reset properly.
1471 declare
1472 T : constant Entity_Id := Etype (Obj);
1473 begin
1474 New_Lhs := Duplicate_Subexpr (Obj, True);
1475 New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
1476 Set_Etype (Obj, T);
1477 Set_Etype (New_Lhs, T);
1478 Set_Etype (New_Rhs, T);
1479 end;
1481 -- First we deal with the "and"
1483 if not Rhs_Val_Known or else Rhs_Val /= Cmask then
1484 declare
1485 Mask1 : Node_Id;
1486 Lit : Node_Id;
1488 begin
1489 if Compile_Time_Known_Value (Shift) then
1490 Mask1 :=
1491 Make_Integer_Literal (Loc,
1492 Modulus (Etype (Obj)) - 1 -
1493 (Cmask * (2 ** Expr_Value (Get_Shift))));
1494 Set_Print_In_Hex (Mask1);
1496 else
1497 Lit := Make_Integer_Literal (Loc, Cmask);
1498 Set_Print_In_Hex (Lit);
1499 Mask1 :=
1500 Make_Op_Not (Loc,
1501 Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
1502 end if;
1504 New_Rhs :=
1505 Make_Op_And (Loc,
1506 Left_Opnd => New_Rhs,
1507 Right_Opnd => Mask1);
1508 end;
1509 end if;
1511 -- Then deal with the "or"
1513 if not Rhs_Val_Known or else Rhs_Val /= 0 then
1514 declare
1515 Or_Rhs : Node_Id;
1517 procedure Fixup_Rhs;
1518 -- Adjust Rhs by bias if biased representation for components
1519 -- or remove extraneous high order sign bits if signed.
1521 procedure Fixup_Rhs is
1522 Etyp : constant Entity_Id := Etype (Rhs);
1524 begin
1525 -- For biased case, do the required biasing by simply
1526 -- converting to the biased subtype (the conversion
1527 -- will generate the required bias).
1529 if Has_Biased_Representation (Ctyp) then
1530 Rhs := Convert_To (Ctyp, Rhs);
1532 -- For a signed integer type that is not biased, generate
1533 -- a conversion to unsigned to strip high order sign bits.
1535 elsif Is_Signed_Integer_Type (Ctyp) then
1536 Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
1537 end if;
1539 -- Set Etype, since it can be referenced before the
1540 -- node is completely analyzed.
1542 Set_Etype (Rhs, Etyp);
1544 -- We now need to do an unchecked conversion of the
1545 -- result to the target type, but it is important that
1546 -- this conversion be a right justified conversion and
1547 -- not a left justified conversion.
1549 Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
1551 end Fixup_Rhs;
1553 begin
1554 if Rhs_Val_Known
1555 and then Compile_Time_Known_Value (Get_Shift)
1556 then
1557 Or_Rhs :=
1558 Make_Integer_Literal (Loc,
1559 Rhs_Val * (2 ** Expr_Value (Get_Shift)));
1560 Set_Print_In_Hex (Or_Rhs);
1562 else
1563 -- We have to convert the right hand side to Etype (Obj).
1564 -- A special case arises if what we have now is a Val
1565 -- attribute reference whose expression type is Etype (Obj).
1566 -- This happens for assignments of fields from the same
1567 -- array. In this case we get the required right hand side
1568 -- by simply removing the inner attribute reference.
1570 if Nkind (Rhs) = N_Attribute_Reference
1571 and then Attribute_Name (Rhs) = Name_Val
1572 and then Etype (First (Expressions (Rhs))) = Etype (Obj)
1573 then
1574 Rhs := Relocate_Node (First (Expressions (Rhs)));
1575 Fixup_Rhs;
1577 -- If the value of the right hand side is a known integer
1578 -- value, then just replace it by an untyped constant,
1579 -- which will be properly retyped when we analyze and
1580 -- resolve the expression.
1582 elsif Rhs_Val_Known then
1584 -- Note that Rhs_Val has already been normalized to
1585 -- be an unsigned value with the proper number of bits.
1587 Rhs :=
1588 Make_Integer_Literal (Loc, Rhs_Val);
1590 -- Otherwise we need an unchecked conversion
1592 else
1593 Fixup_Rhs;
1594 end if;
1596 Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
1597 end if;
1599 if Nkind (New_Rhs) = N_Op_And then
1600 Set_Paren_Count (New_Rhs, 1);
1601 end if;
1603 New_Rhs :=
1604 Make_Op_Or (Loc,
1605 Left_Opnd => New_Rhs,
1606 Right_Opnd => Or_Rhs);
1607 end;
1608 end if;
1610 -- Now do the rewrite
1612 Rewrite (N,
1613 Make_Assignment_Statement (Loc,
1614 Name => New_Lhs,
1615 Expression =>
1616 Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
1617 Set_Assignment_OK (Name (N), Ass_OK);
1619 -- All other component sizes for non-modular case
1621 else
1622 -- We generate
1624 -- Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1626 -- where Subscr is the computed linear subscript
1628 declare
1629 Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
1630 Set_nn : Entity_Id;
1631 Subscr : Node_Id;
1632 Atyp : Entity_Id;
1634 begin
1635 if No (Bits_nn) then
1637 -- Error, most likely High_Integrity_Mode restriction
1639 return;
1640 end if;
1642 -- Acquire proper Set entity. We use the aligned or unaligned
1643 -- case as appropriate.
1645 if Known_Aligned_Enough (Obj, Csiz) then
1646 Set_nn := RTE (Set_Id (Csiz));
1647 else
1648 Set_nn := RTE (SetU_Id (Csiz));
1649 end if;
1651 -- Now generate the set reference
1653 Obj := Relocate_Node (Prefix (Lhs));
1654 Convert_To_Actual_Subtype (Obj);
1655 Atyp := Etype (Obj);
1656 Compute_Linear_Subscript (Atyp, Lhs, Subscr);
1658 -- Below we must make the assumption that Obj is
1659 -- at least byte aligned, since otherwise its address
1660 -- cannot be taken. The assumption holds since the
1661 -- only arrays that can be misaligned are small packed
1662 -- arrays which are implemented as a modular type, and
1663 -- that is not the case here.
1665 Rewrite (N,
1666 Make_Procedure_Call_Statement (Loc,
1667 Name => New_Occurrence_Of (Set_nn, Loc),
1668 Parameter_Associations => New_List (
1669 Make_Attribute_Reference (Loc,
1670 Prefix => Obj,
1671 Attribute_Name => Name_Address),
1672 Subscr,
1673 Unchecked_Convert_To (Bits_nn,
1674 Convert_To (Ctyp, Rhs)))));
1676 end;
1677 end if;
1679 Analyze (N, Suppress => All_Checks);
1680 end Expand_Bit_Packed_Element_Set;
1682 -------------------------------------
1683 -- Expand_Packed_Address_Reference --
1684 -------------------------------------
1686 procedure Expand_Packed_Address_Reference (N : Node_Id) is
1687 Loc : constant Source_Ptr := Sloc (N);
1688 Base : Node_Id;
1689 Offset : Node_Id;
1691 begin
1692 -- We build an expression that has the form
1694 -- outer_object'Address
1695 -- + (linear-subscript * component_size for each array reference
1696 -- + field'Bit_Position for each record field
1697 -- + ...
1698 -- + ...) / Storage_Unit;
1700 Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1702 Rewrite (N,
1703 Unchecked_Convert_To (RTE (RE_Address),
1704 Make_Op_Add (Loc,
1705 Left_Opnd =>
1706 Unchecked_Convert_To (RTE (RE_Integer_Address),
1707 Make_Attribute_Reference (Loc,
1708 Prefix => Base,
1709 Attribute_Name => Name_Address)),
1711 Right_Opnd =>
1712 Unchecked_Convert_To (RTE (RE_Integer_Address),
1713 Make_Op_Divide (Loc,
1714 Left_Opnd => Offset,
1715 Right_Opnd =>
1716 Make_Integer_Literal (Loc, System_Storage_Unit))))));
1718 Analyze_And_Resolve (N, RTE (RE_Address));
1719 end Expand_Packed_Address_Reference;
1721 ---------------------------------
1722 -- Expand_Packed_Bit_Reference --
1723 ---------------------------------
1725 procedure Expand_Packed_Bit_Reference (N : Node_Id) is
1726 Loc : constant Source_Ptr := Sloc (N);
1727 Base : Node_Id;
1728 Offset : Node_Id;
1730 begin
1731 -- We build an expression that has the form
1733 -- (linear-subscript * component_size for each array reference
1734 -- + field'Bit_Position for each record field
1735 -- + ...
1736 -- + ...) mod Storage_Unit;
1738 Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1740 Rewrite (N,
1741 Unchecked_Convert_To (Universal_Integer,
1742 Make_Op_Mod (Loc,
1743 Left_Opnd => Offset,
1744 Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
1746 Analyze_And_Resolve (N, Universal_Integer);
1747 end Expand_Packed_Bit_Reference;
1749 ------------------------------------
1750 -- Expand_Packed_Boolean_Operator --
1751 ------------------------------------
1753 -- This routine expands "a op b" for the packed cases
1755 procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
1756 Loc : constant Source_Ptr := Sloc (N);
1757 Typ : constant Entity_Id := Etype (N);
1758 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
1759 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
1761 Ltyp : Entity_Id;
1762 Rtyp : Entity_Id;
1763 PAT : Entity_Id;
1765 begin
1766 Convert_To_Actual_Subtype (L);
1767 Convert_To_Actual_Subtype (R);
1769 Ensure_Defined (Etype (L), N);
1770 Ensure_Defined (Etype (R), N);
1772 Apply_Length_Check (R, Etype (L));
1774 Ltyp := Etype (L);
1775 Rtyp := Etype (R);
1777 -- Deal with silly case of XOR where the subcomponent has a range
1778 -- True .. True where an exception must be raised.
1780 if Nkind (N) = N_Op_Xor then
1781 Silly_Boolean_Array_Xor_Test (N, Rtyp);
1782 end if;
1784 -- Now that that silliness is taken care of, get packed array type
1786 Convert_To_PAT_Type (L);
1787 Convert_To_PAT_Type (R);
1789 PAT := Etype (L);
1791 -- For the modular case, we expand a op b into
1793 -- rtyp!(pat!(a) op pat!(b))
1795 -- where rtyp is the Etype of the left operand. Note that we do not
1796 -- convert to the base type, since this would be unconstrained, and
1797 -- hence not have a corresponding packed array type set.
1799 -- Note that both operands must be modular for this code to be used
1801 if Is_Modular_Integer_Type (PAT)
1802 and then
1803 Is_Modular_Integer_Type (Etype (R))
1804 then
1805 declare
1806 P : Node_Id;
1808 begin
1809 if Nkind (N) = N_Op_And then
1810 P := Make_Op_And (Loc, L, R);
1812 elsif Nkind (N) = N_Op_Or then
1813 P := Make_Op_Or (Loc, L, R);
1815 else -- Nkind (N) = N_Op_Xor
1816 P := Make_Op_Xor (Loc, L, R);
1817 end if;
1819 Rewrite (N, Unchecked_Convert_To (Ltyp, P));
1820 end;
1822 -- For the array case, we insert the actions
1824 -- Result : Ltype;
1826 -- System.Bit_Ops.Bit_And/Or/Xor
1827 -- (Left'Address,
1828 -- Ltype'Length * Ltype'Component_Size;
1829 -- Right'Address,
1830 -- Rtype'Length * Rtype'Component_Size
1831 -- Result'Address);
1833 -- where Left and Right are the Packed_Bytes{1,2,4} operands and
1834 -- the second argument and fourth arguments are the lengths of the
1835 -- operands in bits. Then we replace the expression by a reference
1836 -- to Result.
1838 -- Note that if we are mixing a modular and array operand, everything
1839 -- works fine, since we ensure that the modular representation has the
1840 -- same physical layout as the array representation (that's what the
1841 -- left justified modular stuff in the big-endian case is about).
1843 else
1844 declare
1845 Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
1846 E_Id : RE_Id;
1848 begin
1849 if Nkind (N) = N_Op_And then
1850 E_Id := RE_Bit_And;
1852 elsif Nkind (N) = N_Op_Or then
1853 E_Id := RE_Bit_Or;
1855 else -- Nkind (N) = N_Op_Xor
1856 E_Id := RE_Bit_Xor;
1857 end if;
1859 Insert_Actions (N, New_List (
1861 Make_Object_Declaration (Loc,
1862 Defining_Identifier => Result_Ent,
1863 Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
1865 Make_Procedure_Call_Statement (Loc,
1866 Name => New_Occurrence_Of (RTE (E_Id), Loc),
1867 Parameter_Associations => New_List (
1869 Make_Byte_Aligned_Attribute_Reference (Loc,
1870 Prefix => L,
1871 Attribute_Name => Name_Address),
1873 Make_Op_Multiply (Loc,
1874 Left_Opnd =>
1875 Make_Attribute_Reference (Loc,
1876 Prefix =>
1877 New_Occurrence_Of
1878 (Etype (First_Index (Ltyp)), Loc),
1879 Attribute_Name => Name_Range_Length),
1881 Right_Opnd =>
1882 Make_Integer_Literal (Loc, Component_Size (Ltyp))),
1884 Make_Byte_Aligned_Attribute_Reference (Loc,
1885 Prefix => R,
1886 Attribute_Name => Name_Address),
1888 Make_Op_Multiply (Loc,
1889 Left_Opnd =>
1890 Make_Attribute_Reference (Loc,
1891 Prefix =>
1892 New_Occurrence_Of
1893 (Etype (First_Index (Rtyp)), Loc),
1894 Attribute_Name => Name_Range_Length),
1896 Right_Opnd =>
1897 Make_Integer_Literal (Loc, Component_Size (Rtyp))),
1899 Make_Byte_Aligned_Attribute_Reference (Loc,
1900 Prefix => New_Occurrence_Of (Result_Ent, Loc),
1901 Attribute_Name => Name_Address)))));
1903 Rewrite (N,
1904 New_Occurrence_Of (Result_Ent, Loc));
1905 end;
1906 end if;
1908 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
1909 end Expand_Packed_Boolean_Operator;
1911 -------------------------------------
1912 -- Expand_Packed_Element_Reference --
1913 -------------------------------------
1915 procedure Expand_Packed_Element_Reference (N : Node_Id) is
1916 Loc : constant Source_Ptr := Sloc (N);
1917 Obj : Node_Id;
1918 Atyp : Entity_Id;
1919 PAT : Entity_Id;
1920 Ctyp : Entity_Id;
1921 Csiz : Int;
1922 Shift : Node_Id;
1923 Cmask : Uint;
1924 Lit : Node_Id;
1925 Arg : Node_Id;
1927 begin
1928 -- If not bit packed, we have the enumeration case, which is easily
1929 -- dealt with (just adjust the subscripts of the indexed component)
1931 -- Note: this leaves the result as an indexed component, which is
1932 -- still a variable, so can be used in the assignment case, as is
1933 -- required in the enumeration case.
1935 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
1936 Setup_Enumeration_Packed_Array_Reference (N);
1937 return;
1938 end if;
1940 -- Remaining processing is for the bit-packed case
1942 Obj := Relocate_Node (Prefix (N));
1943 Convert_To_Actual_Subtype (Obj);
1944 Atyp := Etype (Obj);
1945 PAT := Packed_Array_Type (Atyp);
1946 Ctyp := Component_Type (Atyp);
1947 Csiz := UI_To_Int (Component_Size (Atyp));
1949 -- For the AAMP target, indexing of certain packed array is passed
1950 -- through to the back end without expansion, because the expansion
1951 -- results in very inefficient code on that target. This allows the
1952 -- GNAAMP back end to generate specialized macros that support more
1953 -- efficient indexing of packed arrays with components having sizes
1954 -- that are small powers of two.
1956 if AAMP_On_Target
1957 and then (Csiz = 1 or else Csiz = 2 or else Csiz = 4)
1958 then
1959 return;
1960 end if;
1962 -- Case of component size 1,2,4 or any component size for the modular
1963 -- case. These are the cases for which we can inline the code.
1965 if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1966 or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1967 then
1968 Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
1969 Lit := Make_Integer_Literal (Loc, Cmask);
1970 Set_Print_In_Hex (Lit);
1972 -- We generate a shift right to position the field, followed by a
1973 -- masking operation to extract the bit field, and we finally do an
1974 -- unchecked conversion to convert the result to the required target.
1976 -- Note that the unchecked conversion automatically deals with the
1977 -- bias if we are dealing with a biased representation. What will
1978 -- happen is that we temporarily generate the biased representation,
1979 -- but almost immediately that will be converted to the original
1980 -- unbiased component type, and the bias will disappear.
1982 Arg :=
1983 Make_Op_And (Loc,
1984 Left_Opnd => Make_Shift_Right (Obj, Shift),
1985 Right_Opnd => Lit);
1987 -- We needed to analyze this before we do the unchecked convert
1988 -- below, but we need it temporarily attached to the tree for
1989 -- this analysis (hence the temporary Set_Parent call).
1991 Set_Parent (Arg, Parent (N));
1992 Analyze_And_Resolve (Arg);
1994 Rewrite (N,
1995 RJ_Unchecked_Convert_To (Ctyp, Arg));
1997 -- All other component sizes for non-modular case
1999 else
2000 -- We generate
2002 -- Component_Type!(Get_nn (Arr'address, Subscr))
2004 -- where Subscr is the computed linear subscript
2006 declare
2007 Get_nn : Entity_Id;
2008 Subscr : Node_Id;
2010 begin
2011 -- Acquire proper Get entity. We use the aligned or unaligned
2012 -- case as appropriate.
2014 if Known_Aligned_Enough (Obj, Csiz) then
2015 Get_nn := RTE (Get_Id (Csiz));
2016 else
2017 Get_nn := RTE (GetU_Id (Csiz));
2018 end if;
2020 -- Now generate the get reference
2022 Compute_Linear_Subscript (Atyp, N, Subscr);
2024 -- Below we make the assumption that Obj is at least byte
2025 -- aligned, since otherwise its address cannot be taken.
2026 -- The assumption holds since the only arrays that can be
2027 -- misaligned are small packed arrays which are implemented
2028 -- as a modular type, and that is not the case here.
2030 Rewrite (N,
2031 Unchecked_Convert_To (Ctyp,
2032 Make_Function_Call (Loc,
2033 Name => New_Occurrence_Of (Get_nn, Loc),
2034 Parameter_Associations => New_List (
2035 Make_Attribute_Reference (Loc,
2036 Prefix => Obj,
2037 Attribute_Name => Name_Address),
2038 Subscr))));
2039 end;
2040 end if;
2042 Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
2044 end Expand_Packed_Element_Reference;
2046 ----------------------
2047 -- Expand_Packed_Eq --
2048 ----------------------
2050 -- Handles expansion of "=" on packed array types
2052 procedure Expand_Packed_Eq (N : Node_Id) is
2053 Loc : constant Source_Ptr := Sloc (N);
2054 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
2055 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
2057 LLexpr : Node_Id;
2058 RLexpr : Node_Id;
2060 Ltyp : Entity_Id;
2061 Rtyp : Entity_Id;
2062 PAT : Entity_Id;
2064 begin
2065 Convert_To_Actual_Subtype (L);
2066 Convert_To_Actual_Subtype (R);
2067 Ltyp := Underlying_Type (Etype (L));
2068 Rtyp := Underlying_Type (Etype (R));
2070 Convert_To_PAT_Type (L);
2071 Convert_To_PAT_Type (R);
2072 PAT := Etype (L);
2074 LLexpr :=
2075 Make_Op_Multiply (Loc,
2076 Left_Opnd =>
2077 Make_Attribute_Reference (Loc,
2078 Prefix => New_Occurrence_Of (Ltyp, Loc),
2079 Attribute_Name => Name_Length),
2080 Right_Opnd =>
2081 Make_Integer_Literal (Loc, Component_Size (Ltyp)));
2083 RLexpr :=
2084 Make_Op_Multiply (Loc,
2085 Left_Opnd =>
2086 Make_Attribute_Reference (Loc,
2087 Prefix => New_Occurrence_Of (Rtyp, Loc),
2088 Attribute_Name => Name_Length),
2089 Right_Opnd =>
2090 Make_Integer_Literal (Loc, Component_Size (Rtyp)));
2092 -- For the modular case, we transform the comparison to:
2094 -- Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
2096 -- where PAT is the packed array type. This works fine, since in the
2097 -- modular case we guarantee that the unused bits are always zeroes.
2098 -- We do have to compare the lengths because we could be comparing
2099 -- two different subtypes of the same base type.
2101 if Is_Modular_Integer_Type (PAT) then
2102 Rewrite (N,
2103 Make_And_Then (Loc,
2104 Left_Opnd =>
2105 Make_Op_Eq (Loc,
2106 Left_Opnd => LLexpr,
2107 Right_Opnd => RLexpr),
2109 Right_Opnd =>
2110 Make_Op_Eq (Loc,
2111 Left_Opnd => L,
2112 Right_Opnd => R)));
2114 -- For the non-modular case, we call a runtime routine
2116 -- System.Bit_Ops.Bit_Eq
2117 -- (L'Address, L_Length, R'Address, R_Length)
2119 -- where PAT is the packed array type, and the lengths are the lengths
2120 -- in bits of the original packed arrays. This routine takes care of
2121 -- not comparing the unused bits in the last byte.
2123 else
2124 Rewrite (N,
2125 Make_Function_Call (Loc,
2126 Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
2127 Parameter_Associations => New_List (
2128 Make_Byte_Aligned_Attribute_Reference (Loc,
2129 Prefix => L,
2130 Attribute_Name => Name_Address),
2132 LLexpr,
2134 Make_Byte_Aligned_Attribute_Reference (Loc,
2135 Prefix => R,
2136 Attribute_Name => Name_Address),
2138 RLexpr)));
2139 end if;
2141 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
2142 end Expand_Packed_Eq;
2144 -----------------------
2145 -- Expand_Packed_Not --
2146 -----------------------
2148 -- Handles expansion of "not" on packed array types
2150 procedure Expand_Packed_Not (N : Node_Id) is
2151 Loc : constant Source_Ptr := Sloc (N);
2152 Typ : constant Entity_Id := Etype (N);
2153 Opnd : constant Node_Id := Relocate_Node (Right_Opnd (N));
2155 Rtyp : Entity_Id;
2156 PAT : Entity_Id;
2157 Lit : Node_Id;
2159 begin
2160 Convert_To_Actual_Subtype (Opnd);
2161 Rtyp := Etype (Opnd);
2163 -- Deal with silly False..False and True..True subtype case
2165 Silly_Boolean_Array_Not_Test (N, Rtyp);
2167 -- Now that the silliness is taken care of, get packed array type
2169 Convert_To_PAT_Type (Opnd);
2170 PAT := Etype (Opnd);
2172 -- For the case where the packed array type is a modular type,
2173 -- not A expands simply into:
2175 -- rtyp!(PAT!(A) xor mask)
2177 -- where PAT is the packed array type, and mask is a mask of all
2178 -- one bits of length equal to the size of this packed type and
2179 -- rtyp is the actual subtype of the operand
2181 Lit := Make_Integer_Literal (Loc, 2 ** RM_Size (PAT) - 1);
2182 Set_Print_In_Hex (Lit);
2184 if not Is_Array_Type (PAT) then
2185 Rewrite (N,
2186 Unchecked_Convert_To (Rtyp,
2187 Make_Op_Xor (Loc,
2188 Left_Opnd => Opnd,
2189 Right_Opnd => Lit)));
2191 -- For the array case, we insert the actions
2193 -- Result : Typ;
2195 -- System.Bit_Ops.Bit_Not
2196 -- (Opnd'Address,
2197 -- Typ'Length * Typ'Component_Size;
2198 -- Result'Address);
2200 -- where Opnd is the Packed_Bytes{1,2,4} operand and the second
2201 -- argument is the length of the operand in bits. Then we replace
2202 -- the expression by a reference to Result.
2204 else
2205 declare
2206 Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
2208 begin
2209 Insert_Actions (N, New_List (
2211 Make_Object_Declaration (Loc,
2212 Defining_Identifier => Result_Ent,
2213 Object_Definition => New_Occurrence_Of (Rtyp, Loc)),
2215 Make_Procedure_Call_Statement (Loc,
2216 Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
2217 Parameter_Associations => New_List (
2219 Make_Byte_Aligned_Attribute_Reference (Loc,
2220 Prefix => Opnd,
2221 Attribute_Name => Name_Address),
2223 Make_Op_Multiply (Loc,
2224 Left_Opnd =>
2225 Make_Attribute_Reference (Loc,
2226 Prefix =>
2227 New_Occurrence_Of
2228 (Etype (First_Index (Rtyp)), Loc),
2229 Attribute_Name => Name_Range_Length),
2231 Right_Opnd =>
2232 Make_Integer_Literal (Loc, Component_Size (Rtyp))),
2234 Make_Byte_Aligned_Attribute_Reference (Loc,
2235 Prefix => New_Occurrence_Of (Result_Ent, Loc),
2236 Attribute_Name => Name_Address)))));
2238 Rewrite (N,
2239 New_Occurrence_Of (Result_Ent, Loc));
2240 end;
2241 end if;
2243 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2245 end Expand_Packed_Not;
2247 -----------------------------
2248 -- Get_Base_And_Bit_Offset --
2249 -----------------------------
2251 procedure Get_Base_And_Bit_Offset
2252 (N : Node_Id;
2253 Base : out Node_Id;
2254 Offset : out Node_Id)
2256 Loc : Source_Ptr;
2257 Term : Node_Id;
2258 Atyp : Entity_Id;
2259 Subscr : Node_Id;
2261 begin
2262 Base := N;
2263 Offset := Empty;
2265 -- We build up an expression serially that has the form
2267 -- linear-subscript * component_size for each array reference
2268 -- + field'Bit_Position for each record field
2269 -- + ...
2271 loop
2272 Loc := Sloc (Base);
2274 if Nkind (Base) = N_Indexed_Component then
2275 Convert_To_Actual_Subtype (Prefix (Base));
2276 Atyp := Etype (Prefix (Base));
2277 Compute_Linear_Subscript (Atyp, Base, Subscr);
2279 Term :=
2280 Make_Op_Multiply (Loc,
2281 Left_Opnd => Subscr,
2282 Right_Opnd =>
2283 Make_Attribute_Reference (Loc,
2284 Prefix => New_Occurrence_Of (Atyp, Loc),
2285 Attribute_Name => Name_Component_Size));
2287 elsif Nkind (Base) = N_Selected_Component then
2288 Term :=
2289 Make_Attribute_Reference (Loc,
2290 Prefix => Selector_Name (Base),
2291 Attribute_Name => Name_Bit_Position);
2293 else
2294 return;
2295 end if;
2297 if No (Offset) then
2298 Offset := Term;
2300 else
2301 Offset :=
2302 Make_Op_Add (Loc,
2303 Left_Opnd => Offset,
2304 Right_Opnd => Term);
2305 end if;
2307 Base := Prefix (Base);
2308 end loop;
2309 end Get_Base_And_Bit_Offset;
2311 -------------------------------------
2312 -- Involves_Packed_Array_Reference --
2313 -------------------------------------
2315 function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
2316 begin
2317 if Nkind (N) = N_Indexed_Component
2318 and then Is_Bit_Packed_Array (Etype (Prefix (N)))
2319 then
2320 return True;
2322 elsif Nkind (N) = N_Selected_Component then
2323 return Involves_Packed_Array_Reference (Prefix (N));
2325 else
2326 return False;
2327 end if;
2328 end Involves_Packed_Array_Reference;
2330 --------------------------
2331 -- Known_Aligned_Enough --
2332 --------------------------
2334 function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
2335 Typ : constant Entity_Id := Etype (Obj);
2337 function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
2338 -- If the component is in a record that contains previous packed
2339 -- components, consider it unaligned because the back-end might
2340 -- choose to pack the rest of the record. Lead to less efficient code,
2341 -- but safer vis-a-vis of back-end choices.
2343 --------------------------------
2344 -- In_Partially_Packed_Record --
2345 --------------------------------
2347 function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
2348 Rec_Type : constant Entity_Id := Scope (Comp);
2349 Prev_Comp : Entity_Id;
2351 begin
2352 Prev_Comp := First_Entity (Rec_Type);
2353 while Present (Prev_Comp) loop
2354 if Is_Packed (Etype (Prev_Comp)) then
2355 return True;
2357 elsif Prev_Comp = Comp then
2358 return False;
2359 end if;
2361 Next_Entity (Prev_Comp);
2362 end loop;
2364 return False;
2365 end In_Partially_Packed_Record;
2367 -- Start of processing for Known_Aligned_Enough
2369 begin
2370 -- Odd bit sizes don't need alignment anyway
2372 if Csiz mod 2 = 1 then
2373 return True;
2375 -- If we have a specified alignment, see if it is sufficient, if not
2376 -- then we can't possibly be aligned enough in any case.
2378 elsif Known_Alignment (Etype (Obj)) then
2379 -- Alignment required is 4 if size is a multiple of 4, and
2380 -- 2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2382 if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
2383 return False;
2384 end if;
2385 end if;
2387 -- OK, alignment should be sufficient, if object is aligned
2389 -- If object is strictly aligned, then it is definitely aligned
2391 if Strict_Alignment (Typ) then
2392 return True;
2394 -- Case of subscripted array reference
2396 elsif Nkind (Obj) = N_Indexed_Component then
2398 -- If we have a pointer to an array, then this is definitely
2399 -- aligned, because pointers always point to aligned versions.
2401 if Is_Access_Type (Etype (Prefix (Obj))) then
2402 return True;
2404 -- Otherwise, go look at the prefix
2406 else
2407 return Known_Aligned_Enough (Prefix (Obj), Csiz);
2408 end if;
2410 -- Case of record field
2412 elsif Nkind (Obj) = N_Selected_Component then
2414 -- What is significant here is whether the record type is packed
2416 if Is_Record_Type (Etype (Prefix (Obj)))
2417 and then Is_Packed (Etype (Prefix (Obj)))
2418 then
2419 return False;
2421 -- Or the component has a component clause which might cause
2422 -- the component to become unaligned (we can't tell if the
2423 -- backend is doing alignment computations).
2425 elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
2426 return False;
2428 elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
2429 return False;
2431 -- In all other cases, go look at prefix
2433 else
2434 return Known_Aligned_Enough (Prefix (Obj), Csiz);
2435 end if;
2437 elsif Nkind (Obj) = N_Type_Conversion then
2438 return Known_Aligned_Enough (Expression (Obj), Csiz);
2440 -- For a formal parameter, it is safer to assume that it is not
2441 -- aligned, because the formal may be unconstrained while the actual
2442 -- is constrained. In this situation, a small constrained packed
2443 -- array, represented in modular form, may be unaligned.
2445 elsif Is_Entity_Name (Obj) then
2446 return not Is_Formal (Entity (Obj));
2447 else
2449 -- If none of the above, must be aligned
2450 return True;
2451 end if;
2452 end Known_Aligned_Enough;
2454 ---------------------
2455 -- Make_Shift_Left --
2456 ---------------------
2458 function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
2459 Nod : Node_Id;
2461 begin
2462 if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2463 return N;
2464 else
2465 Nod :=
2466 Make_Op_Shift_Left (Sloc (N),
2467 Left_Opnd => N,
2468 Right_Opnd => S);
2469 Set_Shift_Count_OK (Nod, True);
2470 return Nod;
2471 end if;
2472 end Make_Shift_Left;
2474 ----------------------
2475 -- Make_Shift_Right --
2476 ----------------------
2478 function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
2479 Nod : Node_Id;
2481 begin
2482 if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2483 return N;
2484 else
2485 Nod :=
2486 Make_Op_Shift_Right (Sloc (N),
2487 Left_Opnd => N,
2488 Right_Opnd => S);
2489 Set_Shift_Count_OK (Nod, True);
2490 return Nod;
2491 end if;
2492 end Make_Shift_Right;
2494 -----------------------------
2495 -- RJ_Unchecked_Convert_To --
2496 -----------------------------
2498 function RJ_Unchecked_Convert_To
2499 (Typ : Entity_Id;
2500 Expr : Node_Id) return Node_Id
2502 Source_Typ : constant Entity_Id := Etype (Expr);
2503 Target_Typ : constant Entity_Id := Typ;
2505 Src : Node_Id := Expr;
2507 Source_Siz : Nat;
2508 Target_Siz : Nat;
2510 begin
2511 Source_Siz := UI_To_Int (RM_Size (Source_Typ));
2512 Target_Siz := UI_To_Int (RM_Size (Target_Typ));
2514 -- First step, if the source type is not a discrete type, then we
2515 -- first convert to a modular type of the source length, since
2516 -- otherwise, on a big-endian machine, we get left-justification.
2517 -- We do it for little-endian machines as well, because there might
2518 -- be junk bits that are not cleared if the type is not numeric.
2520 if Source_Siz /= Target_Siz
2521 and then not Is_Discrete_Type (Source_Typ)
2522 then
2523 Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
2524 end if;
2526 -- In the big endian case, if the lengths of the two types differ,
2527 -- then we must worry about possible left justification in the
2528 -- conversion, and avoiding that is what this is all about.
2530 if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
2532 -- Next step. If the target is not a discrete type, then we first
2533 -- convert to a modular type of the target length, since
2534 -- otherwise, on a big-endian machine, we get left-justification.
2536 if not Is_Discrete_Type (Target_Typ) then
2537 Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
2538 end if;
2539 end if;
2541 -- And now we can do the final conversion to the target type
2543 return Unchecked_Convert_To (Target_Typ, Src);
2544 end RJ_Unchecked_Convert_To;
2546 ----------------------------------------------
2547 -- Setup_Enumeration_Packed_Array_Reference --
2548 ----------------------------------------------
2550 -- All we have to do here is to find the subscripts that correspond
2551 -- to the index positions that have non-standard enumeration types
2552 -- and insert a Pos attribute to get the proper subscript value.
2554 -- Finally the prefix must be uncheck converted to the corresponding
2555 -- packed array type.
2557 -- Note that the component type is unchanged, so we do not need to
2558 -- fiddle with the types (Gigi always automatically takes the packed
2559 -- array type if it is set, as it will be in this case).
2561 procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
2562 Pfx : constant Node_Id := Prefix (N);
2563 Typ : constant Entity_Id := Etype (N);
2564 Exprs : constant List_Id := Expressions (N);
2565 Expr : Node_Id;
2567 begin
2568 -- If the array is unconstrained, then we replace the array
2569 -- reference with its actual subtype. This actual subtype will
2570 -- have a packed array type with appropriate bounds.
2572 if not Is_Constrained (Packed_Array_Type (Etype (Pfx))) then
2573 Convert_To_Actual_Subtype (Pfx);
2574 end if;
2576 Expr := First (Exprs);
2577 while Present (Expr) loop
2578 declare
2579 Loc : constant Source_Ptr := Sloc (Expr);
2580 Expr_Typ : constant Entity_Id := Etype (Expr);
2582 begin
2583 if Is_Enumeration_Type (Expr_Typ)
2584 and then Has_Non_Standard_Rep (Expr_Typ)
2585 then
2586 Rewrite (Expr,
2587 Make_Attribute_Reference (Loc,
2588 Prefix => New_Occurrence_Of (Expr_Typ, Loc),
2589 Attribute_Name => Name_Pos,
2590 Expressions => New_List (Relocate_Node (Expr))));
2591 Analyze_And_Resolve (Expr, Standard_Natural);
2592 end if;
2593 end;
2595 Next (Expr);
2596 end loop;
2598 Rewrite (N,
2599 Make_Indexed_Component (Sloc (N),
2600 Prefix =>
2601 Unchecked_Convert_To (Packed_Array_Type (Etype (Pfx)), Pfx),
2602 Expressions => Exprs));
2604 Analyze_And_Resolve (N, Typ);
2606 end Setup_Enumeration_Packed_Array_Reference;
2608 -----------------------------------------
2609 -- Setup_Inline_Packed_Array_Reference --
2610 -----------------------------------------
2612 procedure Setup_Inline_Packed_Array_Reference
2613 (N : Node_Id;
2614 Atyp : Entity_Id;
2615 Obj : in out Node_Id;
2616 Cmask : out Uint;
2617 Shift : out Node_Id)
2619 Loc : constant Source_Ptr := Sloc (N);
2620 PAT : Entity_Id;
2621 Otyp : Entity_Id;
2622 Csiz : Uint;
2623 Osiz : Uint;
2625 begin
2626 Csiz := Component_Size (Atyp);
2628 Convert_To_PAT_Type (Obj);
2629 PAT := Etype (Obj);
2631 Cmask := 2 ** Csiz - 1;
2633 if Is_Array_Type (PAT) then
2634 Otyp := Component_Type (PAT);
2635 Osiz := Component_Size (PAT);
2637 else
2638 Otyp := PAT;
2640 -- In the case where the PAT is a modular type, we want the actual
2641 -- size in bits of the modular value we use. This is neither the
2642 -- Object_Size nor the Value_Size, either of which may have been
2643 -- reset to strange values, but rather the minimum size. Note that
2644 -- since this is a modular type with full range, the issue of
2645 -- biased representation does not arise.
2647 Osiz := UI_From_Int (Minimum_Size (Otyp));
2648 end if;
2650 Compute_Linear_Subscript (Atyp, N, Shift);
2652 -- If the component size is not 1, then the subscript must be
2653 -- multiplied by the component size to get the shift count.
2655 if Csiz /= 1 then
2656 Shift :=
2657 Make_Op_Multiply (Loc,
2658 Left_Opnd => Make_Integer_Literal (Loc, Csiz),
2659 Right_Opnd => Shift);
2660 end if;
2662 -- If we have the array case, then this shift count must be broken
2663 -- down into a byte subscript, and a shift within the byte.
2665 if Is_Array_Type (PAT) then
2667 declare
2668 New_Shift : Node_Id;
2670 begin
2671 -- We must analyze shift, since we will duplicate it
2673 Set_Parent (Shift, N);
2674 Analyze_And_Resolve
2675 (Shift, Standard_Integer, Suppress => All_Checks);
2677 -- The shift count within the word is
2678 -- shift mod Osiz
2680 New_Shift :=
2681 Make_Op_Mod (Loc,
2682 Left_Opnd => Duplicate_Subexpr (Shift),
2683 Right_Opnd => Make_Integer_Literal (Loc, Osiz));
2685 -- The subscript to be used on the PAT array is
2686 -- shift / Osiz
2688 Obj :=
2689 Make_Indexed_Component (Loc,
2690 Prefix => Obj,
2691 Expressions => New_List (
2692 Make_Op_Divide (Loc,
2693 Left_Opnd => Duplicate_Subexpr (Shift),
2694 Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
2696 Shift := New_Shift;
2697 end;
2699 -- For the modular integer case, the object to be manipulated is
2700 -- the entire array, so Obj is unchanged. Note that we will reset
2701 -- its type to PAT before returning to the caller.
2703 else
2704 null;
2705 end if;
2707 -- The one remaining step is to modify the shift count for the
2708 -- big-endian case. Consider the following example in a byte:
2710 -- xxxxxxxx bits of byte
2711 -- vvvvvvvv bits of value
2712 -- 33221100 little-endian numbering
2713 -- 00112233 big-endian numbering
2715 -- Here we have the case of 2-bit fields
2717 -- For the little-endian case, we already have the proper shift
2718 -- count set, e.g. for element 2, the shift count is 2*2 = 4.
2720 -- For the big endian case, we have to adjust the shift count,
2721 -- computing it as (N - F) - shift, where N is the number of bits
2722 -- in an element of the array used to implement the packed array,
2723 -- F is the number of bits in a source level array element, and
2724 -- shift is the count so far computed.
2726 if Bytes_Big_Endian then
2727 Shift :=
2728 Make_Op_Subtract (Loc,
2729 Left_Opnd => Make_Integer_Literal (Loc, Osiz - Csiz),
2730 Right_Opnd => Shift);
2731 end if;
2733 Set_Parent (Shift, N);
2734 Set_Parent (Obj, N);
2735 Analyze_And_Resolve (Obj, Otyp, Suppress => All_Checks);
2736 Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
2738 -- Make sure final type of object is the appropriate packed type
2740 Set_Etype (Obj, Otyp);
2742 end Setup_Inline_Packed_Array_Reference;
2744 end Exp_Pakd;