add default for PCC_BITFIELD_TYPE_MATTERS
[official-gcc.git] / gcc / stor-layout.c
blob1d1de997363d9d1a42b903a4ef543914f75e0add
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "stringpool.h"
38 #include "varasm.h"
39 #include "print-tree.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "function.h"
45 #include "hashtab.h"
46 #include "statistics.h"
47 #include "real.h"
48 #include "fixed-value.h"
49 #include "insn-config.h"
50 #include "expmed.h"
51 #include "dojump.h"
52 #include "explow.h"
53 #include "calls.h"
54 #include "emit-rtl.h"
55 #include "stmt.h"
56 #include "expr.h"
57 #include "diagnostic-core.h"
58 #include "target.h"
59 #include "langhooks.h"
60 #include "regs.h"
61 #include "params.h"
62 #include "hash-map.h"
63 #include "is-a.h"
64 #include "plugin-api.h"
65 #include "ipa-ref.h"
66 #include "cgraph.h"
67 #include "tree-inline.h"
68 #include "tree-dump.h"
69 #include "gimplify.h"
71 /* Data type for the expressions representing sizes of data types.
72 It is the first integer type laid out. */
73 tree sizetype_tab[(int) stk_type_kind_last];
75 /* If nonzero, this is an upper limit on alignment of structure fields.
76 The value is measured in bits. */
77 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
79 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
80 in the address spaces' address_mode, not pointer_mode. Set only by
81 internal_reference_types called only by a front end. */
82 static int reference_types_internal = 0;
84 static tree self_referential_size (tree);
85 static void finalize_record_size (record_layout_info);
86 static void finalize_type_size (tree);
87 static void place_union_field (record_layout_info, tree);
88 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
89 HOST_WIDE_INT, tree);
90 extern void debug_rli (record_layout_info);
92 /* Show that REFERENCE_TYPES are internal and should use address_mode.
93 Called only by front end. */
95 void
96 internal_reference_types (void)
98 reference_types_internal = 1;
101 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
102 to serve as the actual size-expression for a type or decl. */
104 tree
105 variable_size (tree size)
107 /* Obviously. */
108 if (TREE_CONSTANT (size))
109 return size;
111 /* If the size is self-referential, we can't make a SAVE_EXPR (see
112 save_expr for the rationale). But we can do something else. */
113 if (CONTAINS_PLACEHOLDER_P (size))
114 return self_referential_size (size);
116 /* If we are in the global binding level, we can't make a SAVE_EXPR
117 since it may end up being shared across functions, so it is up
118 to the front-end to deal with this case. */
119 if (lang_hooks.decls.global_bindings_p ())
120 return size;
122 return save_expr (size);
125 /* An array of functions used for self-referential size computation. */
126 static GTY(()) vec<tree, va_gc> *size_functions;
128 /* Return true if T is a self-referential component reference. */
130 static bool
131 self_referential_component_ref_p (tree t)
133 if (TREE_CODE (t) != COMPONENT_REF)
134 return false;
136 while (REFERENCE_CLASS_P (t))
137 t = TREE_OPERAND (t, 0);
139 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
142 /* Similar to copy_tree_r but do not copy component references involving
143 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
144 and substituted in substitute_in_expr. */
146 static tree
147 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
149 enum tree_code code = TREE_CODE (*tp);
151 /* Stop at types, decls, constants like copy_tree_r. */
152 if (TREE_CODE_CLASS (code) == tcc_type
153 || TREE_CODE_CLASS (code) == tcc_declaration
154 || TREE_CODE_CLASS (code) == tcc_constant)
156 *walk_subtrees = 0;
157 return NULL_TREE;
160 /* This is the pattern built in ada/make_aligning_type. */
161 else if (code == ADDR_EXPR
162 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
164 *walk_subtrees = 0;
165 return NULL_TREE;
168 /* Default case: the component reference. */
169 else if (self_referential_component_ref_p (*tp))
171 *walk_subtrees = 0;
172 return NULL_TREE;
175 /* We're not supposed to have them in self-referential size trees
176 because we wouldn't properly control when they are evaluated.
177 However, not creating superfluous SAVE_EXPRs requires accurate
178 tracking of readonly-ness all the way down to here, which we
179 cannot always guarantee in practice. So punt in this case. */
180 else if (code == SAVE_EXPR)
181 return error_mark_node;
183 else if (code == STATEMENT_LIST)
184 gcc_unreachable ();
186 return copy_tree_r (tp, walk_subtrees, data);
189 /* Given a SIZE expression that is self-referential, return an equivalent
190 expression to serve as the actual size expression for a type. */
192 static tree
193 self_referential_size (tree size)
195 static unsigned HOST_WIDE_INT fnno = 0;
196 vec<tree> self_refs = vNULL;
197 tree param_type_list = NULL, param_decl_list = NULL;
198 tree t, ref, return_type, fntype, fnname, fndecl;
199 unsigned int i;
200 char buf[128];
201 vec<tree, va_gc> *args = NULL;
203 /* Do not factor out simple operations. */
204 t = skip_simple_constant_arithmetic (size);
205 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
206 return size;
208 /* Collect the list of self-references in the expression. */
209 find_placeholder_in_expr (size, &self_refs);
210 gcc_assert (self_refs.length () > 0);
212 /* Obtain a private copy of the expression. */
213 t = size;
214 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
215 return size;
216 size = t;
218 /* Build the parameter and argument lists in parallel; also
219 substitute the former for the latter in the expression. */
220 vec_alloc (args, self_refs.length ());
221 FOR_EACH_VEC_ELT (self_refs, i, ref)
223 tree subst, param_name, param_type, param_decl;
225 if (DECL_P (ref))
227 /* We shouldn't have true variables here. */
228 gcc_assert (TREE_READONLY (ref));
229 subst = ref;
231 /* This is the pattern built in ada/make_aligning_type. */
232 else if (TREE_CODE (ref) == ADDR_EXPR)
233 subst = ref;
234 /* Default case: the component reference. */
235 else
236 subst = TREE_OPERAND (ref, 1);
238 sprintf (buf, "p%d", i);
239 param_name = get_identifier (buf);
240 param_type = TREE_TYPE (ref);
241 param_decl
242 = build_decl (input_location, PARM_DECL, param_name, param_type);
243 DECL_ARG_TYPE (param_decl) = param_type;
244 DECL_ARTIFICIAL (param_decl) = 1;
245 TREE_READONLY (param_decl) = 1;
247 size = substitute_in_expr (size, subst, param_decl);
249 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
250 param_decl_list = chainon (param_decl, param_decl_list);
251 args->quick_push (ref);
254 self_refs.release ();
256 /* Append 'void' to indicate that the number of parameters is fixed. */
257 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
259 /* The 3 lists have been created in reverse order. */
260 param_type_list = nreverse (param_type_list);
261 param_decl_list = nreverse (param_decl_list);
263 /* Build the function type. */
264 return_type = TREE_TYPE (size);
265 fntype = build_function_type (return_type, param_type_list);
267 /* Build the function declaration. */
268 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
269 fnname = get_file_function_name (buf);
270 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
271 for (t = param_decl_list; t; t = DECL_CHAIN (t))
272 DECL_CONTEXT (t) = fndecl;
273 DECL_ARGUMENTS (fndecl) = param_decl_list;
274 DECL_RESULT (fndecl)
275 = build_decl (input_location, RESULT_DECL, 0, return_type);
276 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
278 /* The function has been created by the compiler and we don't
279 want to emit debug info for it. */
280 DECL_ARTIFICIAL (fndecl) = 1;
281 DECL_IGNORED_P (fndecl) = 1;
283 /* It is supposed to be "const" and never throw. */
284 TREE_READONLY (fndecl) = 1;
285 TREE_NOTHROW (fndecl) = 1;
287 /* We want it to be inlined when this is deemed profitable, as
288 well as discarded if every call has been integrated. */
289 DECL_DECLARED_INLINE_P (fndecl) = 1;
291 /* It is made up of a unique return statement. */
292 DECL_INITIAL (fndecl) = make_node (BLOCK);
293 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
294 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
295 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
296 TREE_STATIC (fndecl) = 1;
298 /* Put it onto the list of size functions. */
299 vec_safe_push (size_functions, fndecl);
301 /* Replace the original expression with a call to the size function. */
302 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
305 /* Take, queue and compile all the size functions. It is essential that
306 the size functions be gimplified at the very end of the compilation
307 in order to guarantee transparent handling of self-referential sizes.
308 Otherwise the GENERIC inliner would not be able to inline them back
309 at each of their call sites, thus creating artificial non-constant
310 size expressions which would trigger nasty problems later on. */
312 void
313 finalize_size_functions (void)
315 unsigned int i;
316 tree fndecl;
318 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
320 allocate_struct_function (fndecl, false);
321 set_cfun (NULL);
322 dump_function (TDI_original, fndecl);
323 gimplify_function_tree (fndecl);
324 dump_function (TDI_generic, fndecl);
325 cgraph_node::finalize_function (fndecl, false);
328 vec_free (size_functions);
331 /* Return the machine mode to use for a nonscalar of SIZE bits. The
332 mode must be in class MCLASS, and have exactly that many value bits;
333 it may have padding as well. If LIMIT is nonzero, modes of wider
334 than MAX_FIXED_MODE_SIZE will not be used. */
336 machine_mode
337 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
339 machine_mode mode;
340 int i;
342 if (limit && size > MAX_FIXED_MODE_SIZE)
343 return BLKmode;
345 /* Get the first mode which has this size, in the specified class. */
346 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
347 mode = GET_MODE_WIDER_MODE (mode))
348 if (GET_MODE_PRECISION (mode) == size)
349 return mode;
351 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
352 for (i = 0; i < NUM_INT_N_ENTS; i ++)
353 if (int_n_data[i].bitsize == size
354 && int_n_enabled_p[i])
355 return int_n_data[i].m;
357 return BLKmode;
360 /* Similar, except passed a tree node. */
362 machine_mode
363 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
365 unsigned HOST_WIDE_INT uhwi;
366 unsigned int ui;
368 if (!tree_fits_uhwi_p (size))
369 return BLKmode;
370 uhwi = tree_to_uhwi (size);
371 ui = uhwi;
372 if (uhwi != ui)
373 return BLKmode;
374 return mode_for_size (ui, mclass, limit);
377 /* Similar, but never return BLKmode; return the narrowest mode that
378 contains at least the requested number of value bits. */
380 machine_mode
381 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
383 machine_mode mode = VOIDmode;
384 int i;
386 /* Get the first mode which has at least this size, in the
387 specified class. */
388 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
389 mode = GET_MODE_WIDER_MODE (mode))
390 if (GET_MODE_PRECISION (mode) >= size)
391 break;
393 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
394 for (i = 0; i < NUM_INT_N_ENTS; i ++)
395 if (int_n_data[i].bitsize >= size
396 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
397 && int_n_enabled_p[i])
398 mode = int_n_data[i].m;
400 if (mode == VOIDmode)
401 gcc_unreachable ();
403 return mode;
406 /* Find an integer mode of the exact same size, or BLKmode on failure. */
408 machine_mode
409 int_mode_for_mode (machine_mode mode)
411 switch (GET_MODE_CLASS (mode))
413 case MODE_INT:
414 case MODE_PARTIAL_INT:
415 break;
417 case MODE_COMPLEX_INT:
418 case MODE_COMPLEX_FLOAT:
419 case MODE_FLOAT:
420 case MODE_DECIMAL_FLOAT:
421 case MODE_VECTOR_INT:
422 case MODE_VECTOR_FLOAT:
423 case MODE_FRACT:
424 case MODE_ACCUM:
425 case MODE_UFRACT:
426 case MODE_UACCUM:
427 case MODE_VECTOR_FRACT:
428 case MODE_VECTOR_ACCUM:
429 case MODE_VECTOR_UFRACT:
430 case MODE_VECTOR_UACCUM:
431 case MODE_POINTER_BOUNDS:
432 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
433 break;
435 case MODE_RANDOM:
436 if (mode == BLKmode)
437 break;
439 /* ... fall through ... */
441 case MODE_CC:
442 default:
443 gcc_unreachable ();
446 return mode;
449 /* Find a mode that can be used for efficient bitwise operations on MODE.
450 Return BLKmode if no such mode exists. */
452 machine_mode
453 bitwise_mode_for_mode (machine_mode mode)
455 /* Quick exit if we already have a suitable mode. */
456 unsigned int bitsize = GET_MODE_BITSIZE (mode);
457 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
458 return mode;
460 /* Reuse the sanity checks from int_mode_for_mode. */
461 gcc_checking_assert ((int_mode_for_mode (mode), true));
463 /* Try to replace complex modes with complex modes. In general we
464 expect both components to be processed independently, so we only
465 care whether there is a register for the inner mode. */
466 if (COMPLEX_MODE_P (mode))
468 machine_mode trial = mode;
469 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
470 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
471 if (trial != BLKmode
472 && have_regs_of_mode[GET_MODE_INNER (trial)])
473 return trial;
476 /* Try to replace vector modes with vector modes. Also try using vector
477 modes if an integer mode would be too big. */
478 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
480 machine_mode trial = mode;
481 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
482 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
483 if (trial != BLKmode
484 && have_regs_of_mode[trial]
485 && targetm.vector_mode_supported_p (trial))
486 return trial;
489 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
490 return mode_for_size (bitsize, MODE_INT, true);
493 /* Find a type that can be used for efficient bitwise operations on MODE.
494 Return null if no such mode exists. */
496 tree
497 bitwise_type_for_mode (machine_mode mode)
499 mode = bitwise_mode_for_mode (mode);
500 if (mode == BLKmode)
501 return NULL_TREE;
503 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
504 tree inner_type = build_nonstandard_integer_type (inner_size, true);
506 if (VECTOR_MODE_P (mode))
507 return build_vector_type_for_mode (inner_type, mode);
509 if (COMPLEX_MODE_P (mode))
510 return build_complex_type (inner_type);
512 gcc_checking_assert (GET_MODE_INNER (mode) == VOIDmode);
513 return inner_type;
516 /* Find a mode that is suitable for representing a vector with
517 NUNITS elements of mode INNERMODE. Returns BLKmode if there
518 is no suitable mode. */
520 machine_mode
521 mode_for_vector (machine_mode innermode, unsigned nunits)
523 machine_mode mode;
525 /* First, look for a supported vector type. */
526 if (SCALAR_FLOAT_MODE_P (innermode))
527 mode = MIN_MODE_VECTOR_FLOAT;
528 else if (SCALAR_FRACT_MODE_P (innermode))
529 mode = MIN_MODE_VECTOR_FRACT;
530 else if (SCALAR_UFRACT_MODE_P (innermode))
531 mode = MIN_MODE_VECTOR_UFRACT;
532 else if (SCALAR_ACCUM_MODE_P (innermode))
533 mode = MIN_MODE_VECTOR_ACCUM;
534 else if (SCALAR_UACCUM_MODE_P (innermode))
535 mode = MIN_MODE_VECTOR_UACCUM;
536 else
537 mode = MIN_MODE_VECTOR_INT;
539 /* Do not check vector_mode_supported_p here. We'll do that
540 later in vector_type_mode. */
541 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
542 if (GET_MODE_NUNITS (mode) == nunits
543 && GET_MODE_INNER (mode) == innermode)
544 break;
546 /* For integers, try mapping it to a same-sized scalar mode. */
547 if (mode == VOIDmode
548 && GET_MODE_CLASS (innermode) == MODE_INT)
549 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
550 MODE_INT, 0);
552 if (mode == VOIDmode
553 || (GET_MODE_CLASS (mode) == MODE_INT
554 && !have_regs_of_mode[mode]))
555 return BLKmode;
557 return mode;
560 /* Return the alignment of MODE. This will be bounded by 1 and
561 BIGGEST_ALIGNMENT. */
563 unsigned int
564 get_mode_alignment (machine_mode mode)
566 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
569 /* Return the precision of the mode, or for a complex or vector mode the
570 precision of the mode of its elements. */
572 unsigned int
573 element_precision (machine_mode mode)
575 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
576 mode = GET_MODE_INNER (mode);
578 return GET_MODE_PRECISION (mode);
581 /* Return the natural mode of an array, given that it is SIZE bytes in
582 total and has elements of type ELEM_TYPE. */
584 static machine_mode
585 mode_for_array (tree elem_type, tree size)
587 tree elem_size;
588 unsigned HOST_WIDE_INT int_size, int_elem_size;
589 bool limit_p;
591 /* One-element arrays get the component type's mode. */
592 elem_size = TYPE_SIZE (elem_type);
593 if (simple_cst_equal (size, elem_size))
594 return TYPE_MODE (elem_type);
596 limit_p = true;
597 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
599 int_size = tree_to_uhwi (size);
600 int_elem_size = tree_to_uhwi (elem_size);
601 if (int_elem_size > 0
602 && int_size % int_elem_size == 0
603 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
604 int_size / int_elem_size))
605 limit_p = false;
607 return mode_for_size_tree (size, MODE_INT, limit_p);
610 /* Subroutine of layout_decl: Force alignment required for the data type.
611 But if the decl itself wants greater alignment, don't override that. */
613 static inline void
614 do_type_align (tree type, tree decl)
616 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
618 DECL_ALIGN (decl) = TYPE_ALIGN (type);
619 if (TREE_CODE (decl) == FIELD_DECL)
620 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
624 /* Set the size, mode and alignment of a ..._DECL node.
625 TYPE_DECL does need this for C++.
626 Note that LABEL_DECL and CONST_DECL nodes do not need this,
627 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
628 Don't call layout_decl for them.
630 KNOWN_ALIGN is the amount of alignment we can assume this
631 decl has with no special effort. It is relevant only for FIELD_DECLs
632 and depends on the previous fields.
633 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
634 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
635 the record will be aligned to suit. */
637 void
638 layout_decl (tree decl, unsigned int known_align)
640 tree type = TREE_TYPE (decl);
641 enum tree_code code = TREE_CODE (decl);
642 rtx rtl = NULL_RTX;
643 location_t loc = DECL_SOURCE_LOCATION (decl);
645 if (code == CONST_DECL)
646 return;
648 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
649 || code == TYPE_DECL ||code == FIELD_DECL);
651 rtl = DECL_RTL_IF_SET (decl);
653 if (type == error_mark_node)
654 type = void_type_node;
656 /* Usually the size and mode come from the data type without change,
657 however, the front-end may set the explicit width of the field, so its
658 size may not be the same as the size of its type. This happens with
659 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
660 also happens with other fields. For example, the C++ front-end creates
661 zero-sized fields corresponding to empty base classes, and depends on
662 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
663 size in bytes from the size in bits. If we have already set the mode,
664 don't set it again since we can be called twice for FIELD_DECLs. */
666 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
667 if (DECL_MODE (decl) == VOIDmode)
668 DECL_MODE (decl) = TYPE_MODE (type);
670 if (DECL_SIZE (decl) == 0)
672 DECL_SIZE (decl) = TYPE_SIZE (type);
673 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
675 else if (DECL_SIZE_UNIT (decl) == 0)
676 DECL_SIZE_UNIT (decl)
677 = fold_convert_loc (loc, sizetype,
678 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
679 bitsize_unit_node));
681 if (code != FIELD_DECL)
682 /* For non-fields, update the alignment from the type. */
683 do_type_align (type, decl);
684 else
685 /* For fields, it's a bit more complicated... */
687 bool old_user_align = DECL_USER_ALIGN (decl);
688 bool zero_bitfield = false;
689 bool packed_p = DECL_PACKED (decl);
690 unsigned int mfa;
692 if (DECL_BIT_FIELD (decl))
694 DECL_BIT_FIELD_TYPE (decl) = type;
696 /* A zero-length bit-field affects the alignment of the next
697 field. In essence such bit-fields are not influenced by
698 any packing due to #pragma pack or attribute packed. */
699 if (integer_zerop (DECL_SIZE (decl))
700 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
702 zero_bitfield = true;
703 packed_p = false;
704 if (PCC_BITFIELD_TYPE_MATTERS)
705 do_type_align (type, decl);
706 else
708 #ifdef EMPTY_FIELD_BOUNDARY
709 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
711 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
712 DECL_USER_ALIGN (decl) = 0;
714 #endif
718 /* See if we can use an ordinary integer mode for a bit-field.
719 Conditions are: a fixed size that is correct for another mode,
720 occupying a complete byte or bytes on proper boundary. */
721 if (TYPE_SIZE (type) != 0
722 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
723 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
725 machine_mode xmode
726 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
727 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
729 if (xmode != BLKmode
730 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
731 && (known_align == 0 || known_align >= xalign))
733 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
734 DECL_MODE (decl) = xmode;
735 DECL_BIT_FIELD (decl) = 0;
739 /* Turn off DECL_BIT_FIELD if we won't need it set. */
740 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
741 && known_align >= TYPE_ALIGN (type)
742 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
743 DECL_BIT_FIELD (decl) = 0;
745 else if (packed_p && DECL_USER_ALIGN (decl))
746 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
747 round up; we'll reduce it again below. We want packing to
748 supersede USER_ALIGN inherited from the type, but defer to
749 alignment explicitly specified on the field decl. */;
750 else
751 do_type_align (type, decl);
753 /* If the field is packed and not explicitly aligned, give it the
754 minimum alignment. Note that do_type_align may set
755 DECL_USER_ALIGN, so we need to check old_user_align instead. */
756 if (packed_p
757 && !old_user_align)
758 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
760 if (! packed_p && ! DECL_USER_ALIGN (decl))
762 /* Some targets (i.e. i386, VMS) limit struct field alignment
763 to a lower boundary than alignment of variables unless
764 it was overridden by attribute aligned. */
765 #ifdef BIGGEST_FIELD_ALIGNMENT
766 DECL_ALIGN (decl)
767 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
768 #endif
769 #ifdef ADJUST_FIELD_ALIGN
770 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
771 #endif
774 if (zero_bitfield)
775 mfa = initial_max_fld_align * BITS_PER_UNIT;
776 else
777 mfa = maximum_field_alignment;
778 /* Should this be controlled by DECL_USER_ALIGN, too? */
779 if (mfa != 0)
780 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
783 /* Evaluate nonconstant size only once, either now or as soon as safe. */
784 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
785 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
786 if (DECL_SIZE_UNIT (decl) != 0
787 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
788 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
790 /* If requested, warn about definitions of large data objects. */
791 if (warn_larger_than
792 && (code == VAR_DECL || code == PARM_DECL)
793 && ! DECL_EXTERNAL (decl))
795 tree size = DECL_SIZE_UNIT (decl);
797 if (size != 0 && TREE_CODE (size) == INTEGER_CST
798 && compare_tree_int (size, larger_than_size) > 0)
800 int size_as_int = TREE_INT_CST_LOW (size);
802 if (compare_tree_int (size, size_as_int) == 0)
803 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
804 else
805 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
806 decl, larger_than_size);
810 /* If the RTL was already set, update its mode and mem attributes. */
811 if (rtl)
813 PUT_MODE (rtl, DECL_MODE (decl));
814 SET_DECL_RTL (decl, 0);
815 set_mem_attributes (rtl, decl, 1);
816 SET_DECL_RTL (decl, rtl);
820 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
821 a previous call to layout_decl and calls it again. */
823 void
824 relayout_decl (tree decl)
826 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
827 DECL_MODE (decl) = VOIDmode;
828 if (!DECL_USER_ALIGN (decl))
829 DECL_ALIGN (decl) = 0;
830 SET_DECL_RTL (decl, 0);
832 layout_decl (decl, 0);
835 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
836 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
837 is to be passed to all other layout functions for this record. It is the
838 responsibility of the caller to call `free' for the storage returned.
839 Note that garbage collection is not permitted until we finish laying
840 out the record. */
842 record_layout_info
843 start_record_layout (tree t)
845 record_layout_info rli = XNEW (struct record_layout_info_s);
847 rli->t = t;
849 /* If the type has a minimum specified alignment (via an attribute
850 declaration, for example) use it -- otherwise, start with a
851 one-byte alignment. */
852 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
853 rli->unpacked_align = rli->record_align;
854 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
856 #ifdef STRUCTURE_SIZE_BOUNDARY
857 /* Packed structures don't need to have minimum size. */
858 if (! TYPE_PACKED (t))
860 unsigned tmp;
862 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
863 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
864 if (maximum_field_alignment != 0)
865 tmp = MIN (tmp, maximum_field_alignment);
866 rli->record_align = MAX (rli->record_align, tmp);
868 #endif
870 rli->offset = size_zero_node;
871 rli->bitpos = bitsize_zero_node;
872 rli->prev_field = 0;
873 rli->pending_statics = 0;
874 rli->packed_maybe_necessary = 0;
875 rli->remaining_in_alignment = 0;
877 return rli;
880 /* Return the combined bit position for the byte offset OFFSET and the
881 bit position BITPOS.
883 These functions operate on byte and bit positions present in FIELD_DECLs
884 and assume that these expressions result in no (intermediate) overflow.
885 This assumption is necessary to fold the expressions as much as possible,
886 so as to avoid creating artificially variable-sized types in languages
887 supporting variable-sized types like Ada. */
889 tree
890 bit_from_pos (tree offset, tree bitpos)
892 if (TREE_CODE (offset) == PLUS_EXPR)
893 offset = size_binop (PLUS_EXPR,
894 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
895 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
896 else
897 offset = fold_convert (bitsizetype, offset);
898 return size_binop (PLUS_EXPR, bitpos,
899 size_binop (MULT_EXPR, offset, bitsize_unit_node));
902 /* Return the combined truncated byte position for the byte offset OFFSET and
903 the bit position BITPOS. */
905 tree
906 byte_from_pos (tree offset, tree bitpos)
908 tree bytepos;
909 if (TREE_CODE (bitpos) == MULT_EXPR
910 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
911 bytepos = TREE_OPERAND (bitpos, 0);
912 else
913 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
914 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
917 /* Split the bit position POS into a byte offset *POFFSET and a bit
918 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
920 void
921 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
922 tree pos)
924 tree toff_align = bitsize_int (off_align);
925 if (TREE_CODE (pos) == MULT_EXPR
926 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
928 *poffset = size_binop (MULT_EXPR,
929 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
930 size_int (off_align / BITS_PER_UNIT));
931 *pbitpos = bitsize_zero_node;
933 else
935 *poffset = size_binop (MULT_EXPR,
936 fold_convert (sizetype,
937 size_binop (FLOOR_DIV_EXPR, pos,
938 toff_align)),
939 size_int (off_align / BITS_PER_UNIT));
940 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
944 /* Given a pointer to bit and byte offsets and an offset alignment,
945 normalize the offsets so they are within the alignment. */
947 void
948 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
950 /* If the bit position is now larger than it should be, adjust it
951 downwards. */
952 if (compare_tree_int (*pbitpos, off_align) >= 0)
954 tree offset, bitpos;
955 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
956 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
957 *pbitpos = bitpos;
961 /* Print debugging information about the information in RLI. */
963 DEBUG_FUNCTION void
964 debug_rli (record_layout_info rli)
966 print_node_brief (stderr, "type", rli->t, 0);
967 print_node_brief (stderr, "\noffset", rli->offset, 0);
968 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
970 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
971 rli->record_align, rli->unpacked_align,
972 rli->offset_align);
974 /* The ms_struct code is the only that uses this. */
975 if (targetm.ms_bitfield_layout_p (rli->t))
976 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
978 if (rli->packed_maybe_necessary)
979 fprintf (stderr, "packed may be necessary\n");
981 if (!vec_safe_is_empty (rli->pending_statics))
983 fprintf (stderr, "pending statics:\n");
984 debug_vec_tree (rli->pending_statics);
988 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
989 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
991 void
992 normalize_rli (record_layout_info rli)
994 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
997 /* Returns the size in bytes allocated so far. */
999 tree
1000 rli_size_unit_so_far (record_layout_info rli)
1002 return byte_from_pos (rli->offset, rli->bitpos);
1005 /* Returns the size in bits allocated so far. */
1007 tree
1008 rli_size_so_far (record_layout_info rli)
1010 return bit_from_pos (rli->offset, rli->bitpos);
1013 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1014 the next available location within the record is given by KNOWN_ALIGN.
1015 Update the variable alignment fields in RLI, and return the alignment
1016 to give the FIELD. */
1018 unsigned int
1019 update_alignment_for_field (record_layout_info rli, tree field,
1020 unsigned int known_align)
1022 /* The alignment required for FIELD. */
1023 unsigned int desired_align;
1024 /* The type of this field. */
1025 tree type = TREE_TYPE (field);
1026 /* True if the field was explicitly aligned by the user. */
1027 bool user_align;
1028 bool is_bitfield;
1030 /* Do not attempt to align an ERROR_MARK node */
1031 if (TREE_CODE (type) == ERROR_MARK)
1032 return 0;
1034 /* Lay out the field so we know what alignment it needs. */
1035 layout_decl (field, known_align);
1036 desired_align = DECL_ALIGN (field);
1037 user_align = DECL_USER_ALIGN (field);
1039 is_bitfield = (type != error_mark_node
1040 && DECL_BIT_FIELD_TYPE (field)
1041 && ! integer_zerop (TYPE_SIZE (type)));
1043 /* Record must have at least as much alignment as any field.
1044 Otherwise, the alignment of the field within the record is
1045 meaningless. */
1046 if (targetm.ms_bitfield_layout_p (rli->t))
1048 /* Here, the alignment of the underlying type of a bitfield can
1049 affect the alignment of a record; even a zero-sized field
1050 can do this. The alignment should be to the alignment of
1051 the type, except that for zero-size bitfields this only
1052 applies if there was an immediately prior, nonzero-size
1053 bitfield. (That's the way it is, experimentally.) */
1054 if ((!is_bitfield && !DECL_PACKED (field))
1055 || ((DECL_SIZE (field) == NULL_TREE
1056 || !integer_zerop (DECL_SIZE (field)))
1057 ? !DECL_PACKED (field)
1058 : (rli->prev_field
1059 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1060 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1062 unsigned int type_align = TYPE_ALIGN (type);
1063 type_align = MAX (type_align, desired_align);
1064 if (maximum_field_alignment != 0)
1065 type_align = MIN (type_align, maximum_field_alignment);
1066 rli->record_align = MAX (rli->record_align, type_align);
1067 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1070 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1072 /* Named bit-fields cause the entire structure to have the
1073 alignment implied by their type. Some targets also apply the same
1074 rules to unnamed bitfields. */
1075 if (DECL_NAME (field) != 0
1076 || targetm.align_anon_bitfield ())
1078 unsigned int type_align = TYPE_ALIGN (type);
1080 #ifdef ADJUST_FIELD_ALIGN
1081 if (! TYPE_USER_ALIGN (type))
1082 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1083 #endif
1085 /* Targets might chose to handle unnamed and hence possibly
1086 zero-width bitfield. Those are not influenced by #pragmas
1087 or packed attributes. */
1088 if (integer_zerop (DECL_SIZE (field)))
1090 if (initial_max_fld_align)
1091 type_align = MIN (type_align,
1092 initial_max_fld_align * BITS_PER_UNIT);
1094 else if (maximum_field_alignment != 0)
1095 type_align = MIN (type_align, maximum_field_alignment);
1096 else if (DECL_PACKED (field))
1097 type_align = MIN (type_align, BITS_PER_UNIT);
1099 /* The alignment of the record is increased to the maximum
1100 of the current alignment, the alignment indicated on the
1101 field (i.e., the alignment specified by an __aligned__
1102 attribute), and the alignment indicated by the type of
1103 the field. */
1104 rli->record_align = MAX (rli->record_align, desired_align);
1105 rli->record_align = MAX (rli->record_align, type_align);
1107 if (warn_packed)
1108 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1109 user_align |= TYPE_USER_ALIGN (type);
1112 else
1114 rli->record_align = MAX (rli->record_align, desired_align);
1115 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1118 TYPE_USER_ALIGN (rli->t) |= user_align;
1120 return desired_align;
1123 /* Called from place_field to handle unions. */
1125 static void
1126 place_union_field (record_layout_info rli, tree field)
1128 update_alignment_for_field (rli, field, /*known_align=*/0);
1130 DECL_FIELD_OFFSET (field) = size_zero_node;
1131 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1132 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1134 /* If this is an ERROR_MARK return *after* having set the
1135 field at the start of the union. This helps when parsing
1136 invalid fields. */
1137 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1138 return;
1140 /* We assume the union's size will be a multiple of a byte so we don't
1141 bother with BITPOS. */
1142 if (TREE_CODE (rli->t) == UNION_TYPE)
1143 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1144 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1145 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1146 DECL_SIZE_UNIT (field), rli->offset);
1149 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1150 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1151 units of alignment than the underlying TYPE. */
1152 static int
1153 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1154 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1156 /* Note that the calculation of OFFSET might overflow; we calculate it so
1157 that we still get the right result as long as ALIGN is a power of two. */
1158 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1160 offset = offset % align;
1161 return ((offset + size + align - 1) / align
1162 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1165 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1166 is a FIELD_DECL to be added after those fields already present in
1167 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1168 callers that desire that behavior must manually perform that step.) */
1170 void
1171 place_field (record_layout_info rli, tree field)
1173 /* The alignment required for FIELD. */
1174 unsigned int desired_align;
1175 /* The alignment FIELD would have if we just dropped it into the
1176 record as it presently stands. */
1177 unsigned int known_align;
1178 unsigned int actual_align;
1179 /* The type of this field. */
1180 tree type = TREE_TYPE (field);
1182 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1184 /* If FIELD is static, then treat it like a separate variable, not
1185 really like a structure field. If it is a FUNCTION_DECL, it's a
1186 method. In both cases, all we do is lay out the decl, and we do
1187 it *after* the record is laid out. */
1188 if (TREE_CODE (field) == VAR_DECL)
1190 vec_safe_push (rli->pending_statics, field);
1191 return;
1194 /* Enumerators and enum types which are local to this class need not
1195 be laid out. Likewise for initialized constant fields. */
1196 else if (TREE_CODE (field) != FIELD_DECL)
1197 return;
1199 /* Unions are laid out very differently than records, so split
1200 that code off to another function. */
1201 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1203 place_union_field (rli, field);
1204 return;
1207 else if (TREE_CODE (type) == ERROR_MARK)
1209 /* Place this field at the current allocation position, so we
1210 maintain monotonicity. */
1211 DECL_FIELD_OFFSET (field) = rli->offset;
1212 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1213 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1214 return;
1217 /* Work out the known alignment so far. Note that A & (-A) is the
1218 value of the least-significant bit in A that is one. */
1219 if (! integer_zerop (rli->bitpos))
1220 known_align = (tree_to_uhwi (rli->bitpos)
1221 & - tree_to_uhwi (rli->bitpos));
1222 else if (integer_zerop (rli->offset))
1223 known_align = 0;
1224 else if (tree_fits_uhwi_p (rli->offset))
1225 known_align = (BITS_PER_UNIT
1226 * (tree_to_uhwi (rli->offset)
1227 & - tree_to_uhwi (rli->offset)));
1228 else
1229 known_align = rli->offset_align;
1231 desired_align = update_alignment_for_field (rli, field, known_align);
1232 if (known_align == 0)
1233 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1235 if (warn_packed && DECL_PACKED (field))
1237 if (known_align >= TYPE_ALIGN (type))
1239 if (TYPE_ALIGN (type) > desired_align)
1241 if (STRICT_ALIGNMENT)
1242 warning (OPT_Wattributes, "packed attribute causes "
1243 "inefficient alignment for %q+D", field);
1244 /* Don't warn if DECL_PACKED was set by the type. */
1245 else if (!TYPE_PACKED (rli->t))
1246 warning (OPT_Wattributes, "packed attribute is "
1247 "unnecessary for %q+D", field);
1250 else
1251 rli->packed_maybe_necessary = 1;
1254 /* Does this field automatically have alignment it needs by virtue
1255 of the fields that precede it and the record's own alignment? */
1256 if (known_align < desired_align)
1258 /* No, we need to skip space before this field.
1259 Bump the cumulative size to multiple of field alignment. */
1261 if (!targetm.ms_bitfield_layout_p (rli->t)
1262 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1263 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1265 /* If the alignment is still within offset_align, just align
1266 the bit position. */
1267 if (desired_align < rli->offset_align)
1268 rli->bitpos = round_up (rli->bitpos, desired_align);
1269 else
1271 /* First adjust OFFSET by the partial bits, then align. */
1272 rli->offset
1273 = size_binop (PLUS_EXPR, rli->offset,
1274 fold_convert (sizetype,
1275 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1276 bitsize_unit_node)));
1277 rli->bitpos = bitsize_zero_node;
1279 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1282 if (! TREE_CONSTANT (rli->offset))
1283 rli->offset_align = desired_align;
1284 if (targetm.ms_bitfield_layout_p (rli->t))
1285 rli->prev_field = NULL;
1288 /* Handle compatibility with PCC. Note that if the record has any
1289 variable-sized fields, we need not worry about compatibility. */
1290 if (PCC_BITFIELD_TYPE_MATTERS
1291 && ! targetm.ms_bitfield_layout_p (rli->t)
1292 && TREE_CODE (field) == FIELD_DECL
1293 && type != error_mark_node
1294 && DECL_BIT_FIELD (field)
1295 && (! DECL_PACKED (field)
1296 /* Enter for these packed fields only to issue a warning. */
1297 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1298 && maximum_field_alignment == 0
1299 && ! integer_zerop (DECL_SIZE (field))
1300 && tree_fits_uhwi_p (DECL_SIZE (field))
1301 && tree_fits_uhwi_p (rli->offset)
1302 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1304 unsigned int type_align = TYPE_ALIGN (type);
1305 tree dsize = DECL_SIZE (field);
1306 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1307 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1308 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1310 #ifdef ADJUST_FIELD_ALIGN
1311 if (! TYPE_USER_ALIGN (type))
1312 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1313 #endif
1315 /* A bit field may not span more units of alignment of its type
1316 than its type itself. Advance to next boundary if necessary. */
1317 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1319 if (DECL_PACKED (field))
1321 if (warn_packed_bitfield_compat == 1)
1322 inform
1323 (input_location,
1324 "offset of packed bit-field %qD has changed in GCC 4.4",
1325 field);
1327 else
1328 rli->bitpos = round_up (rli->bitpos, type_align);
1331 if (! DECL_PACKED (field))
1332 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1335 #ifdef BITFIELD_NBYTES_LIMITED
1336 if (BITFIELD_NBYTES_LIMITED
1337 && ! targetm.ms_bitfield_layout_p (rli->t)
1338 && TREE_CODE (field) == FIELD_DECL
1339 && type != error_mark_node
1340 && DECL_BIT_FIELD_TYPE (field)
1341 && ! DECL_PACKED (field)
1342 && ! integer_zerop (DECL_SIZE (field))
1343 && tree_fits_uhwi_p (DECL_SIZE (field))
1344 && tree_fits_uhwi_p (rli->offset)
1345 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1347 unsigned int type_align = TYPE_ALIGN (type);
1348 tree dsize = DECL_SIZE (field);
1349 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1350 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1351 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1353 #ifdef ADJUST_FIELD_ALIGN
1354 if (! TYPE_USER_ALIGN (type))
1355 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1356 #endif
1358 if (maximum_field_alignment != 0)
1359 type_align = MIN (type_align, maximum_field_alignment);
1360 /* ??? This test is opposite the test in the containing if
1361 statement, so this code is unreachable currently. */
1362 else if (DECL_PACKED (field))
1363 type_align = MIN (type_align, BITS_PER_UNIT);
1365 /* A bit field may not span the unit of alignment of its type.
1366 Advance to next boundary if necessary. */
1367 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1368 rli->bitpos = round_up (rli->bitpos, type_align);
1370 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1372 #endif
1374 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1375 A subtlety:
1376 When a bit field is inserted into a packed record, the whole
1377 size of the underlying type is used by one or more same-size
1378 adjacent bitfields. (That is, if its long:3, 32 bits is
1379 used in the record, and any additional adjacent long bitfields are
1380 packed into the same chunk of 32 bits. However, if the size
1381 changes, a new field of that size is allocated.) In an unpacked
1382 record, this is the same as using alignment, but not equivalent
1383 when packing.
1385 Note: for compatibility, we use the type size, not the type alignment
1386 to determine alignment, since that matches the documentation */
1388 if (targetm.ms_bitfield_layout_p (rli->t))
1390 tree prev_saved = rli->prev_field;
1391 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1393 /* This is a bitfield if it exists. */
1394 if (rli->prev_field)
1396 /* If both are bitfields, nonzero, and the same size, this is
1397 the middle of a run. Zero declared size fields are special
1398 and handled as "end of run". (Note: it's nonzero declared
1399 size, but equal type sizes!) (Since we know that both
1400 the current and previous fields are bitfields by the
1401 time we check it, DECL_SIZE must be present for both.) */
1402 if (DECL_BIT_FIELD_TYPE (field)
1403 && !integer_zerop (DECL_SIZE (field))
1404 && !integer_zerop (DECL_SIZE (rli->prev_field))
1405 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1406 && tree_fits_uhwi_p (TYPE_SIZE (type))
1407 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1409 /* We're in the middle of a run of equal type size fields; make
1410 sure we realign if we run out of bits. (Not decl size,
1411 type size!) */
1412 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1414 if (rli->remaining_in_alignment < bitsize)
1416 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1418 /* out of bits; bump up to next 'word'. */
1419 rli->bitpos
1420 = size_binop (PLUS_EXPR, rli->bitpos,
1421 bitsize_int (rli->remaining_in_alignment));
1422 rli->prev_field = field;
1423 if (typesize < bitsize)
1424 rli->remaining_in_alignment = 0;
1425 else
1426 rli->remaining_in_alignment = typesize - bitsize;
1428 else
1429 rli->remaining_in_alignment -= bitsize;
1431 else
1433 /* End of a run: if leaving a run of bitfields of the same type
1434 size, we have to "use up" the rest of the bits of the type
1435 size.
1437 Compute the new position as the sum of the size for the prior
1438 type and where we first started working on that type.
1439 Note: since the beginning of the field was aligned then
1440 of course the end will be too. No round needed. */
1442 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1444 rli->bitpos
1445 = size_binop (PLUS_EXPR, rli->bitpos,
1446 bitsize_int (rli->remaining_in_alignment));
1448 else
1449 /* We "use up" size zero fields; the code below should behave
1450 as if the prior field was not a bitfield. */
1451 prev_saved = NULL;
1453 /* Cause a new bitfield to be captured, either this time (if
1454 currently a bitfield) or next time we see one. */
1455 if (!DECL_BIT_FIELD_TYPE (field)
1456 || integer_zerop (DECL_SIZE (field)))
1457 rli->prev_field = NULL;
1460 normalize_rli (rli);
1463 /* If we're starting a new run of same type size bitfields
1464 (or a run of non-bitfields), set up the "first of the run"
1465 fields.
1467 That is, if the current field is not a bitfield, or if there
1468 was a prior bitfield the type sizes differ, or if there wasn't
1469 a prior bitfield the size of the current field is nonzero.
1471 Note: we must be sure to test ONLY the type size if there was
1472 a prior bitfield and ONLY for the current field being zero if
1473 there wasn't. */
1475 if (!DECL_BIT_FIELD_TYPE (field)
1476 || (prev_saved != NULL
1477 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1478 : !integer_zerop (DECL_SIZE (field)) ))
1480 /* Never smaller than a byte for compatibility. */
1481 unsigned int type_align = BITS_PER_UNIT;
1483 /* (When not a bitfield), we could be seeing a flex array (with
1484 no DECL_SIZE). Since we won't be using remaining_in_alignment
1485 until we see a bitfield (and come by here again) we just skip
1486 calculating it. */
1487 if (DECL_SIZE (field) != NULL
1488 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1489 && tree_fits_uhwi_p (DECL_SIZE (field)))
1491 unsigned HOST_WIDE_INT bitsize
1492 = tree_to_uhwi (DECL_SIZE (field));
1493 unsigned HOST_WIDE_INT typesize
1494 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1496 if (typesize < bitsize)
1497 rli->remaining_in_alignment = 0;
1498 else
1499 rli->remaining_in_alignment = typesize - bitsize;
1502 /* Now align (conventionally) for the new type. */
1503 type_align = TYPE_ALIGN (TREE_TYPE (field));
1505 if (maximum_field_alignment != 0)
1506 type_align = MIN (type_align, maximum_field_alignment);
1508 rli->bitpos = round_up (rli->bitpos, type_align);
1510 /* If we really aligned, don't allow subsequent bitfields
1511 to undo that. */
1512 rli->prev_field = NULL;
1516 /* Offset so far becomes the position of this field after normalizing. */
1517 normalize_rli (rli);
1518 DECL_FIELD_OFFSET (field) = rli->offset;
1519 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1520 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1522 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1523 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1524 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1526 /* If this field ended up more aligned than we thought it would be (we
1527 approximate this by seeing if its position changed), lay out the field
1528 again; perhaps we can use an integral mode for it now. */
1529 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1530 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1531 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1532 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1533 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1534 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1535 actual_align = (BITS_PER_UNIT
1536 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1537 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1538 else
1539 actual_align = DECL_OFFSET_ALIGN (field);
1540 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1541 store / extract bit field operations will check the alignment of the
1542 record against the mode of bit fields. */
1544 if (known_align != actual_align)
1545 layout_decl (field, actual_align);
1547 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1548 rli->prev_field = field;
1550 /* Now add size of this field to the size of the record. If the size is
1551 not constant, treat the field as being a multiple of bytes and just
1552 adjust the offset, resetting the bit position. Otherwise, apportion the
1553 size amongst the bit position and offset. First handle the case of an
1554 unspecified size, which can happen when we have an invalid nested struct
1555 definition, such as struct j { struct j { int i; } }. The error message
1556 is printed in finish_struct. */
1557 if (DECL_SIZE (field) == 0)
1558 /* Do nothing. */;
1559 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1560 || TREE_OVERFLOW (DECL_SIZE (field)))
1562 rli->offset
1563 = size_binop (PLUS_EXPR, rli->offset,
1564 fold_convert (sizetype,
1565 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1566 bitsize_unit_node)));
1567 rli->offset
1568 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1569 rli->bitpos = bitsize_zero_node;
1570 rli->offset_align = MIN (rli->offset_align, desired_align);
1572 else if (targetm.ms_bitfield_layout_p (rli->t))
1574 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1576 /* If we ended a bitfield before the full length of the type then
1577 pad the struct out to the full length of the last type. */
1578 if ((DECL_CHAIN (field) == NULL
1579 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1580 && DECL_BIT_FIELD_TYPE (field)
1581 && !integer_zerop (DECL_SIZE (field)))
1582 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1583 bitsize_int (rli->remaining_in_alignment));
1585 normalize_rli (rli);
1587 else
1589 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1590 normalize_rli (rli);
1594 /* Assuming that all the fields have been laid out, this function uses
1595 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1596 indicated by RLI. */
1598 static void
1599 finalize_record_size (record_layout_info rli)
1601 tree unpadded_size, unpadded_size_unit;
1603 /* Now we want just byte and bit offsets, so set the offset alignment
1604 to be a byte and then normalize. */
1605 rli->offset_align = BITS_PER_UNIT;
1606 normalize_rli (rli);
1608 /* Determine the desired alignment. */
1609 #ifdef ROUND_TYPE_ALIGN
1610 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1611 rli->record_align);
1612 #else
1613 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1614 #endif
1616 /* Compute the size so far. Be sure to allow for extra bits in the
1617 size in bytes. We have guaranteed above that it will be no more
1618 than a single byte. */
1619 unpadded_size = rli_size_so_far (rli);
1620 unpadded_size_unit = rli_size_unit_so_far (rli);
1621 if (! integer_zerop (rli->bitpos))
1622 unpadded_size_unit
1623 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1625 /* Round the size up to be a multiple of the required alignment. */
1626 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1627 TYPE_SIZE_UNIT (rli->t)
1628 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1630 if (TREE_CONSTANT (unpadded_size)
1631 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1632 && input_location != BUILTINS_LOCATION)
1633 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1635 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1636 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1637 && TREE_CONSTANT (unpadded_size))
1639 tree unpacked_size;
1641 #ifdef ROUND_TYPE_ALIGN
1642 rli->unpacked_align
1643 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1644 #else
1645 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1646 #endif
1648 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1649 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1651 if (TYPE_NAME (rli->t))
1653 tree name;
1655 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1656 name = TYPE_NAME (rli->t);
1657 else
1658 name = DECL_NAME (TYPE_NAME (rli->t));
1660 if (STRICT_ALIGNMENT)
1661 warning (OPT_Wpacked, "packed attribute causes inefficient "
1662 "alignment for %qE", name);
1663 else
1664 warning (OPT_Wpacked,
1665 "packed attribute is unnecessary for %qE", name);
1667 else
1669 if (STRICT_ALIGNMENT)
1670 warning (OPT_Wpacked,
1671 "packed attribute causes inefficient alignment");
1672 else
1673 warning (OPT_Wpacked, "packed attribute is unnecessary");
1679 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1681 void
1682 compute_record_mode (tree type)
1684 tree field;
1685 machine_mode mode = VOIDmode;
1687 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1688 However, if possible, we use a mode that fits in a register
1689 instead, in order to allow for better optimization down the
1690 line. */
1691 SET_TYPE_MODE (type, BLKmode);
1693 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1694 return;
1696 /* A record which has any BLKmode members must itself be
1697 BLKmode; it can't go in a register. Unless the member is
1698 BLKmode only because it isn't aligned. */
1699 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1701 if (TREE_CODE (field) != FIELD_DECL)
1702 continue;
1704 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1705 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1706 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1707 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1708 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1709 || ! tree_fits_uhwi_p (bit_position (field))
1710 || DECL_SIZE (field) == 0
1711 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1712 return;
1714 /* If this field is the whole struct, remember its mode so
1715 that, say, we can put a double in a class into a DF
1716 register instead of forcing it to live in the stack. */
1717 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1718 mode = DECL_MODE (field);
1720 /* With some targets, it is sub-optimal to access an aligned
1721 BLKmode structure as a scalar. */
1722 if (targetm.member_type_forces_blk (field, mode))
1723 return;
1726 /* If we only have one real field; use its mode if that mode's size
1727 matches the type's size. This only applies to RECORD_TYPE. This
1728 does not apply to unions. */
1729 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1730 && tree_fits_uhwi_p (TYPE_SIZE (type))
1731 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1732 SET_TYPE_MODE (type, mode);
1733 else
1734 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1736 /* If structure's known alignment is less than what the scalar
1737 mode would need, and it matters, then stick with BLKmode. */
1738 if (TYPE_MODE (type) != BLKmode
1739 && STRICT_ALIGNMENT
1740 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1741 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1743 /* If this is the only reason this type is BLKmode, then
1744 don't force containing types to be BLKmode. */
1745 TYPE_NO_FORCE_BLK (type) = 1;
1746 SET_TYPE_MODE (type, BLKmode);
1750 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1751 out. */
1753 static void
1754 finalize_type_size (tree type)
1756 /* Normally, use the alignment corresponding to the mode chosen.
1757 However, where strict alignment is not required, avoid
1758 over-aligning structures, since most compilers do not do this
1759 alignment. */
1761 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1762 && (STRICT_ALIGNMENT
1763 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1764 && TREE_CODE (type) != QUAL_UNION_TYPE
1765 && TREE_CODE (type) != ARRAY_TYPE)))
1767 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1769 /* Don't override a larger alignment requirement coming from a user
1770 alignment of one of the fields. */
1771 if (mode_align >= TYPE_ALIGN (type))
1773 TYPE_ALIGN (type) = mode_align;
1774 TYPE_USER_ALIGN (type) = 0;
1778 /* Do machine-dependent extra alignment. */
1779 #ifdef ROUND_TYPE_ALIGN
1780 TYPE_ALIGN (type)
1781 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1782 #endif
1784 /* If we failed to find a simple way to calculate the unit size
1785 of the type, find it by division. */
1786 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1787 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1788 result will fit in sizetype. We will get more efficient code using
1789 sizetype, so we force a conversion. */
1790 TYPE_SIZE_UNIT (type)
1791 = fold_convert (sizetype,
1792 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1793 bitsize_unit_node));
1795 if (TYPE_SIZE (type) != 0)
1797 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1798 TYPE_SIZE_UNIT (type)
1799 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1802 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1803 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1804 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1805 if (TYPE_SIZE_UNIT (type) != 0
1806 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1807 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1809 /* Also layout any other variants of the type. */
1810 if (TYPE_NEXT_VARIANT (type)
1811 || type != TYPE_MAIN_VARIANT (type))
1813 tree variant;
1814 /* Record layout info of this variant. */
1815 tree size = TYPE_SIZE (type);
1816 tree size_unit = TYPE_SIZE_UNIT (type);
1817 unsigned int align = TYPE_ALIGN (type);
1818 unsigned int precision = TYPE_PRECISION (type);
1819 unsigned int user_align = TYPE_USER_ALIGN (type);
1820 machine_mode mode = TYPE_MODE (type);
1822 /* Copy it into all variants. */
1823 for (variant = TYPE_MAIN_VARIANT (type);
1824 variant != 0;
1825 variant = TYPE_NEXT_VARIANT (variant))
1827 TYPE_SIZE (variant) = size;
1828 TYPE_SIZE_UNIT (variant) = size_unit;
1829 TYPE_ALIGN (variant) = align;
1830 TYPE_PRECISION (variant) = precision;
1831 TYPE_USER_ALIGN (variant) = user_align;
1832 SET_TYPE_MODE (variant, mode);
1837 /* Return a new underlying object for a bitfield started with FIELD. */
1839 static tree
1840 start_bitfield_representative (tree field)
1842 tree repr = make_node (FIELD_DECL);
1843 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1844 /* Force the representative to begin at a BITS_PER_UNIT aligned
1845 boundary - C++ may use tail-padding of a base object to
1846 continue packing bits so the bitfield region does not start
1847 at bit zero (see g++.dg/abi/bitfield5.C for example).
1848 Unallocated bits may happen for other reasons as well,
1849 for example Ada which allows explicit bit-granular structure layout. */
1850 DECL_FIELD_BIT_OFFSET (repr)
1851 = size_binop (BIT_AND_EXPR,
1852 DECL_FIELD_BIT_OFFSET (field),
1853 bitsize_int (~(BITS_PER_UNIT - 1)));
1854 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1855 DECL_SIZE (repr) = DECL_SIZE (field);
1856 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1857 DECL_PACKED (repr) = DECL_PACKED (field);
1858 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1859 return repr;
1862 /* Finish up a bitfield group that was started by creating the underlying
1863 object REPR with the last field in the bitfield group FIELD. */
1865 static void
1866 finish_bitfield_representative (tree repr, tree field)
1868 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1869 machine_mode mode;
1870 tree nextf, size;
1872 size = size_diffop (DECL_FIELD_OFFSET (field),
1873 DECL_FIELD_OFFSET (repr));
1874 while (TREE_CODE (size) == COMPOUND_EXPR)
1875 size = TREE_OPERAND (size, 1);
1876 gcc_assert (tree_fits_uhwi_p (size));
1877 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1878 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1879 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1880 + tree_to_uhwi (DECL_SIZE (field)));
1882 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1883 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1885 /* Now nothing tells us how to pad out bitsize ... */
1886 nextf = DECL_CHAIN (field);
1887 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1888 nextf = DECL_CHAIN (nextf);
1889 if (nextf)
1891 tree maxsize;
1892 /* If there was an error, the field may be not laid out
1893 correctly. Don't bother to do anything. */
1894 if (TREE_TYPE (nextf) == error_mark_node)
1895 return;
1896 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1897 DECL_FIELD_OFFSET (repr));
1898 if (tree_fits_uhwi_p (maxsize))
1900 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1901 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1902 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1903 /* If the group ends within a bitfield nextf does not need to be
1904 aligned to BITS_PER_UNIT. Thus round up. */
1905 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1907 else
1908 maxbitsize = bitsize;
1910 else
1912 /* ??? If you consider that tail-padding of this struct might be
1913 re-used when deriving from it we cannot really do the following
1914 and thus need to set maxsize to bitsize? Also we cannot
1915 generally rely on maxsize to fold to an integer constant, so
1916 use bitsize as fallback for this case. */
1917 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1918 DECL_FIELD_OFFSET (repr));
1919 if (tree_fits_uhwi_p (maxsize))
1920 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1921 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1922 else
1923 maxbitsize = bitsize;
1926 /* Only if we don't artificially break up the representative in
1927 the middle of a large bitfield with different possibly
1928 overlapping representatives. And all representatives start
1929 at byte offset. */
1930 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1932 /* Find the smallest nice mode to use. */
1933 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1934 mode = GET_MODE_WIDER_MODE (mode))
1935 if (GET_MODE_BITSIZE (mode) >= bitsize)
1936 break;
1937 if (mode != VOIDmode
1938 && (GET_MODE_BITSIZE (mode) > maxbitsize
1939 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1940 mode = VOIDmode;
1942 if (mode == VOIDmode)
1944 /* We really want a BLKmode representative only as a last resort,
1945 considering the member b in
1946 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1947 Otherwise we simply want to split the representative up
1948 allowing for overlaps within the bitfield region as required for
1949 struct { int a : 7; int b : 7;
1950 int c : 10; int d; } __attribute__((packed));
1951 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1952 DECL_SIZE (repr) = bitsize_int (bitsize);
1953 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1954 DECL_MODE (repr) = BLKmode;
1955 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1956 bitsize / BITS_PER_UNIT);
1958 else
1960 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1961 DECL_SIZE (repr) = bitsize_int (modesize);
1962 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1963 DECL_MODE (repr) = mode;
1964 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1967 /* Remember whether the bitfield group is at the end of the
1968 structure or not. */
1969 DECL_CHAIN (repr) = nextf;
1972 /* Compute and set FIELD_DECLs for the underlying objects we should
1973 use for bitfield access for the structure T. */
1975 void
1976 finish_bitfield_layout (tree t)
1978 tree field, prev;
1979 tree repr = NULL_TREE;
1981 /* Unions would be special, for the ease of type-punning optimizations
1982 we could use the underlying type as hint for the representative
1983 if the bitfield would fit and the representative would not exceed
1984 the union in size. */
1985 if (TREE_CODE (t) != RECORD_TYPE)
1986 return;
1988 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1989 field; field = DECL_CHAIN (field))
1991 if (TREE_CODE (field) != FIELD_DECL)
1992 continue;
1994 /* In the C++ memory model, consecutive bit fields in a structure are
1995 considered one memory location and updating a memory location
1996 may not store into adjacent memory locations. */
1997 if (!repr
1998 && DECL_BIT_FIELD_TYPE (field))
2000 /* Start new representative. */
2001 repr = start_bitfield_representative (field);
2003 else if (repr
2004 && ! DECL_BIT_FIELD_TYPE (field))
2006 /* Finish off new representative. */
2007 finish_bitfield_representative (repr, prev);
2008 repr = NULL_TREE;
2010 else if (DECL_BIT_FIELD_TYPE (field))
2012 gcc_assert (repr != NULL_TREE);
2014 /* Zero-size bitfields finish off a representative and
2015 do not have a representative themselves. This is
2016 required by the C++ memory model. */
2017 if (integer_zerop (DECL_SIZE (field)))
2019 finish_bitfield_representative (repr, prev);
2020 repr = NULL_TREE;
2023 /* We assume that either DECL_FIELD_OFFSET of the representative
2024 and each bitfield member is a constant or they are equal.
2025 This is because we need to be able to compute the bit-offset
2026 of each field relative to the representative in get_bit_range
2027 during RTL expansion.
2028 If these constraints are not met, simply force a new
2029 representative to be generated. That will at most
2030 generate worse code but still maintain correctness with
2031 respect to the C++ memory model. */
2032 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2033 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2034 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2035 DECL_FIELD_OFFSET (field), 0)))
2037 finish_bitfield_representative (repr, prev);
2038 repr = start_bitfield_representative (field);
2041 else
2042 continue;
2044 if (repr)
2045 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2047 prev = field;
2050 if (repr)
2051 finish_bitfield_representative (repr, prev);
2054 /* Do all of the work required to layout the type indicated by RLI,
2055 once the fields have been laid out. This function will call `free'
2056 for RLI, unless FREE_P is false. Passing a value other than false
2057 for FREE_P is bad practice; this option only exists to support the
2058 G++ 3.2 ABI. */
2060 void
2061 finish_record_layout (record_layout_info rli, int free_p)
2063 tree variant;
2065 /* Compute the final size. */
2066 finalize_record_size (rli);
2068 /* Compute the TYPE_MODE for the record. */
2069 compute_record_mode (rli->t);
2071 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2072 finalize_type_size (rli->t);
2074 /* Compute bitfield representatives. */
2075 finish_bitfield_layout (rli->t);
2077 /* Propagate TYPE_PACKED to variants. With C++ templates,
2078 handle_packed_attribute is too early to do this. */
2079 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2080 variant = TYPE_NEXT_VARIANT (variant))
2081 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2083 /* Lay out any static members. This is done now because their type
2084 may use the record's type. */
2085 while (!vec_safe_is_empty (rli->pending_statics))
2086 layout_decl (rli->pending_statics->pop (), 0);
2088 /* Clean up. */
2089 if (free_p)
2091 vec_free (rli->pending_statics);
2092 free (rli);
2097 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2098 NAME, its fields are chained in reverse on FIELDS.
2100 If ALIGN_TYPE is non-null, it is given the same alignment as
2101 ALIGN_TYPE. */
2103 void
2104 finish_builtin_struct (tree type, const char *name, tree fields,
2105 tree align_type)
2107 tree tail, next;
2109 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2111 DECL_FIELD_CONTEXT (fields) = type;
2112 next = DECL_CHAIN (fields);
2113 DECL_CHAIN (fields) = tail;
2115 TYPE_FIELDS (type) = tail;
2117 if (align_type)
2119 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2120 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2123 layout_type (type);
2124 #if 0 /* not yet, should get fixed properly later */
2125 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2126 #else
2127 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2128 TYPE_DECL, get_identifier (name), type);
2129 #endif
2130 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2131 layout_decl (TYPE_NAME (type), 0);
2134 /* Calculate the mode, size, and alignment for TYPE.
2135 For an array type, calculate the element separation as well.
2136 Record TYPE on the chain of permanent or temporary types
2137 so that dbxout will find out about it.
2139 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2140 layout_type does nothing on such a type.
2142 If the type is incomplete, its TYPE_SIZE remains zero. */
2144 void
2145 layout_type (tree type)
2147 gcc_assert (type);
2149 if (type == error_mark_node)
2150 return;
2152 /* Do nothing if type has been laid out before. */
2153 if (TYPE_SIZE (type))
2154 return;
2156 switch (TREE_CODE (type))
2158 case LANG_TYPE:
2159 /* This kind of type is the responsibility
2160 of the language-specific code. */
2161 gcc_unreachable ();
2163 case BOOLEAN_TYPE:
2164 case INTEGER_TYPE:
2165 case ENUMERAL_TYPE:
2166 SET_TYPE_MODE (type,
2167 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2168 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2169 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2170 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2171 break;
2173 case REAL_TYPE:
2174 SET_TYPE_MODE (type,
2175 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2176 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2177 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2178 break;
2180 case FIXED_POINT_TYPE:
2181 /* TYPE_MODE (type) has been set already. */
2182 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2183 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2184 break;
2186 case COMPLEX_TYPE:
2187 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2188 SET_TYPE_MODE (type,
2189 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2190 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2191 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2192 0));
2193 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2194 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2195 break;
2197 case VECTOR_TYPE:
2199 int nunits = TYPE_VECTOR_SUBPARTS (type);
2200 tree innertype = TREE_TYPE (type);
2202 gcc_assert (!(nunits & (nunits - 1)));
2204 /* Find an appropriate mode for the vector type. */
2205 if (TYPE_MODE (type) == VOIDmode)
2206 SET_TYPE_MODE (type,
2207 mode_for_vector (TYPE_MODE (innertype), nunits));
2209 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2210 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2211 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2212 TYPE_SIZE_UNIT (innertype),
2213 size_int (nunits));
2214 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2215 bitsize_int (nunits));
2217 /* For vector types, we do not default to the mode's alignment.
2218 Instead, query a target hook, defaulting to natural alignment.
2219 This prevents ABI changes depending on whether or not native
2220 vector modes are supported. */
2221 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2223 /* However, if the underlying mode requires a bigger alignment than
2224 what the target hook provides, we cannot use the mode. For now,
2225 simply reject that case. */
2226 gcc_assert (TYPE_ALIGN (type)
2227 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2228 break;
2231 case VOID_TYPE:
2232 /* This is an incomplete type and so doesn't have a size. */
2233 TYPE_ALIGN (type) = 1;
2234 TYPE_USER_ALIGN (type) = 0;
2235 SET_TYPE_MODE (type, VOIDmode);
2236 break;
2238 case POINTER_BOUNDS_TYPE:
2239 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2240 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2241 break;
2243 case OFFSET_TYPE:
2244 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2245 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2246 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2247 integral, which may be an __intN. */
2248 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2249 TYPE_PRECISION (type) = POINTER_SIZE;
2250 break;
2252 case FUNCTION_TYPE:
2253 case METHOD_TYPE:
2254 /* It's hard to see what the mode and size of a function ought to
2255 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2256 make it consistent with that. */
2257 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2258 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2259 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2260 break;
2262 case POINTER_TYPE:
2263 case REFERENCE_TYPE:
2265 machine_mode mode = TYPE_MODE (type);
2266 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2268 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2269 mode = targetm.addr_space.address_mode (as);
2272 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2273 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2274 TYPE_UNSIGNED (type) = 1;
2275 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2277 break;
2279 case ARRAY_TYPE:
2281 tree index = TYPE_DOMAIN (type);
2282 tree element = TREE_TYPE (type);
2284 build_pointer_type (element);
2286 /* We need to know both bounds in order to compute the size. */
2287 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2288 && TYPE_SIZE (element))
2290 tree ub = TYPE_MAX_VALUE (index);
2291 tree lb = TYPE_MIN_VALUE (index);
2292 tree element_size = TYPE_SIZE (element);
2293 tree length;
2295 /* Make sure that an array of zero-sized element is zero-sized
2296 regardless of its extent. */
2297 if (integer_zerop (element_size))
2298 length = size_zero_node;
2300 /* The computation should happen in the original signedness so
2301 that (possible) negative values are handled appropriately
2302 when determining overflow. */
2303 else
2305 /* ??? When it is obvious that the range is signed
2306 represent it using ssizetype. */
2307 if (TREE_CODE (lb) == INTEGER_CST
2308 && TREE_CODE (ub) == INTEGER_CST
2309 && TYPE_UNSIGNED (TREE_TYPE (lb))
2310 && tree_int_cst_lt (ub, lb))
2312 lb = wide_int_to_tree (ssizetype,
2313 offset_int::from (lb, SIGNED));
2314 ub = wide_int_to_tree (ssizetype,
2315 offset_int::from (ub, SIGNED));
2317 length
2318 = fold_convert (sizetype,
2319 size_binop (PLUS_EXPR,
2320 build_int_cst (TREE_TYPE (lb), 1),
2321 size_binop (MINUS_EXPR, ub, lb)));
2324 /* ??? We have no way to distinguish a null-sized array from an
2325 array spanning the whole sizetype range, so we arbitrarily
2326 decide that [0, -1] is the only valid representation. */
2327 if (integer_zerop (length)
2328 && TREE_OVERFLOW (length)
2329 && integer_zerop (lb))
2330 length = size_zero_node;
2332 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2333 fold_convert (bitsizetype,
2334 length));
2336 /* If we know the size of the element, calculate the total size
2337 directly, rather than do some division thing below. This
2338 optimization helps Fortran assumed-size arrays (where the
2339 size of the array is determined at runtime) substantially. */
2340 if (TYPE_SIZE_UNIT (element))
2341 TYPE_SIZE_UNIT (type)
2342 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2345 /* Now round the alignment and size,
2346 using machine-dependent criteria if any. */
2348 #ifdef ROUND_TYPE_ALIGN
2349 TYPE_ALIGN (type)
2350 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2351 #else
2352 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2353 #endif
2354 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2355 SET_TYPE_MODE (type, BLKmode);
2356 if (TYPE_SIZE (type) != 0
2357 && ! targetm.member_type_forces_blk (type, VOIDmode)
2358 /* BLKmode elements force BLKmode aggregate;
2359 else extract/store fields may lose. */
2360 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2361 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2363 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2364 TYPE_SIZE (type)));
2365 if (TYPE_MODE (type) != BLKmode
2366 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2367 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2369 TYPE_NO_FORCE_BLK (type) = 1;
2370 SET_TYPE_MODE (type, BLKmode);
2373 /* When the element size is constant, check that it is at least as
2374 large as the element alignment. */
2375 if (TYPE_SIZE_UNIT (element)
2376 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2377 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2378 TYPE_ALIGN_UNIT. */
2379 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2380 && !integer_zerop (TYPE_SIZE_UNIT (element))
2381 && compare_tree_int (TYPE_SIZE_UNIT (element),
2382 TYPE_ALIGN_UNIT (element)) < 0)
2383 error ("alignment of array elements is greater than element size");
2384 break;
2387 case RECORD_TYPE:
2388 case UNION_TYPE:
2389 case QUAL_UNION_TYPE:
2391 tree field;
2392 record_layout_info rli;
2394 /* Initialize the layout information. */
2395 rli = start_record_layout (type);
2397 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2398 in the reverse order in building the COND_EXPR that denotes
2399 its size. We reverse them again later. */
2400 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2401 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2403 /* Place all the fields. */
2404 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2405 place_field (rli, field);
2407 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2408 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2410 /* Finish laying out the record. */
2411 finish_record_layout (rli, /*free_p=*/true);
2413 break;
2415 default:
2416 gcc_unreachable ();
2419 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2420 records and unions, finish_record_layout already called this
2421 function. */
2422 if (TREE_CODE (type) != RECORD_TYPE
2423 && TREE_CODE (type) != UNION_TYPE
2424 && TREE_CODE (type) != QUAL_UNION_TYPE)
2425 finalize_type_size (type);
2427 /* We should never see alias sets on incomplete aggregates. And we
2428 should not call layout_type on not incomplete aggregates. */
2429 if (AGGREGATE_TYPE_P (type))
2430 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2433 /* Return the least alignment required for type TYPE. */
2435 unsigned int
2436 min_align_of_type (tree type)
2438 unsigned int align = TYPE_ALIGN (type);
2439 if (!TYPE_USER_ALIGN (type))
2441 align = MIN (align, BIGGEST_ALIGNMENT);
2442 #ifdef BIGGEST_FIELD_ALIGNMENT
2443 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2444 #endif
2445 unsigned int field_align = align;
2446 #ifdef ADJUST_FIELD_ALIGN
2447 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2448 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2449 ggc_free (field);
2450 #endif
2451 align = MIN (align, field_align);
2453 return align / BITS_PER_UNIT;
2456 /* Vector types need to re-check the target flags each time we report
2457 the machine mode. We need to do this because attribute target can
2458 change the result of vector_mode_supported_p and have_regs_of_mode
2459 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2460 change on a per-function basis. */
2461 /* ??? Possibly a better solution is to run through all the types
2462 referenced by a function and re-compute the TYPE_MODE once, rather
2463 than make the TYPE_MODE macro call a function. */
2465 machine_mode
2466 vector_type_mode (const_tree t)
2468 machine_mode mode;
2470 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2472 mode = t->type_common.mode;
2473 if (VECTOR_MODE_P (mode)
2474 && (!targetm.vector_mode_supported_p (mode)
2475 || !have_regs_of_mode[mode]))
2477 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2479 /* For integers, try mapping it to a same-sized scalar mode. */
2480 if (GET_MODE_CLASS (innermode) == MODE_INT)
2482 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2483 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2485 if (mode != VOIDmode && have_regs_of_mode[mode])
2486 return mode;
2489 return BLKmode;
2492 return mode;
2495 /* Create and return a type for signed integers of PRECISION bits. */
2497 tree
2498 make_signed_type (int precision)
2500 tree type = make_node (INTEGER_TYPE);
2502 TYPE_PRECISION (type) = precision;
2504 fixup_signed_type (type);
2505 return type;
2508 /* Create and return a type for unsigned integers of PRECISION bits. */
2510 tree
2511 make_unsigned_type (int precision)
2513 tree type = make_node (INTEGER_TYPE);
2515 TYPE_PRECISION (type) = precision;
2517 fixup_unsigned_type (type);
2518 return type;
2521 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2522 and SATP. */
2524 tree
2525 make_fract_type (int precision, int unsignedp, int satp)
2527 tree type = make_node (FIXED_POINT_TYPE);
2529 TYPE_PRECISION (type) = precision;
2531 if (satp)
2532 TYPE_SATURATING (type) = 1;
2534 /* Lay out the type: set its alignment, size, etc. */
2535 if (unsignedp)
2537 TYPE_UNSIGNED (type) = 1;
2538 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2540 else
2541 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2542 layout_type (type);
2544 return type;
2547 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2548 and SATP. */
2550 tree
2551 make_accum_type (int precision, int unsignedp, int satp)
2553 tree type = make_node (FIXED_POINT_TYPE);
2555 TYPE_PRECISION (type) = precision;
2557 if (satp)
2558 TYPE_SATURATING (type) = 1;
2560 /* Lay out the type: set its alignment, size, etc. */
2561 if (unsignedp)
2563 TYPE_UNSIGNED (type) = 1;
2564 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2566 else
2567 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2568 layout_type (type);
2570 return type;
2573 /* Initialize sizetypes so layout_type can use them. */
2575 void
2576 initialize_sizetypes (void)
2578 int precision, bprecision;
2580 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2581 if (strcmp (SIZETYPE, "unsigned int") == 0)
2582 precision = INT_TYPE_SIZE;
2583 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2584 precision = LONG_TYPE_SIZE;
2585 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2586 precision = LONG_LONG_TYPE_SIZE;
2587 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2588 precision = SHORT_TYPE_SIZE;
2589 else
2591 int i;
2593 precision = -1;
2594 for (i = 0; i < NUM_INT_N_ENTS; i++)
2595 if (int_n_enabled_p[i])
2597 char name[50];
2598 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2600 if (strcmp (name, SIZETYPE) == 0)
2602 precision = int_n_data[i].bitsize;
2605 if (precision == -1)
2606 gcc_unreachable ();
2609 bprecision
2610 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2611 bprecision
2612 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2613 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2614 bprecision = HOST_BITS_PER_DOUBLE_INT;
2616 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2617 sizetype = make_node (INTEGER_TYPE);
2618 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2619 TYPE_PRECISION (sizetype) = precision;
2620 TYPE_UNSIGNED (sizetype) = 1;
2621 bitsizetype = make_node (INTEGER_TYPE);
2622 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2623 TYPE_PRECISION (bitsizetype) = bprecision;
2624 TYPE_UNSIGNED (bitsizetype) = 1;
2626 /* Now layout both types manually. */
2627 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2628 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2629 TYPE_SIZE (sizetype) = bitsize_int (precision);
2630 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2631 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2633 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2634 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2635 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2636 TYPE_SIZE_UNIT (bitsizetype)
2637 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2638 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2640 /* Create the signed variants of *sizetype. */
2641 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2642 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2643 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2644 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2647 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2648 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2649 for TYPE, based on the PRECISION and whether or not the TYPE
2650 IS_UNSIGNED. PRECISION need not correspond to a width supported
2651 natively by the hardware; for example, on a machine with 8-bit,
2652 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2653 61. */
2655 void
2656 set_min_and_max_values_for_integral_type (tree type,
2657 int precision,
2658 signop sgn)
2660 /* For bitfields with zero width we end up creating integer types
2661 with zero precision. Don't assign any minimum/maximum values
2662 to those types, they don't have any valid value. */
2663 if (precision < 1)
2664 return;
2666 TYPE_MIN_VALUE (type)
2667 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2668 TYPE_MAX_VALUE (type)
2669 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2672 /* Set the extreme values of TYPE based on its precision in bits,
2673 then lay it out. Used when make_signed_type won't do
2674 because the tree code is not INTEGER_TYPE.
2675 E.g. for Pascal, when the -fsigned-char option is given. */
2677 void
2678 fixup_signed_type (tree type)
2680 int precision = TYPE_PRECISION (type);
2682 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2684 /* Lay out the type: set its alignment, size, etc. */
2685 layout_type (type);
2688 /* Set the extreme values of TYPE based on its precision in bits,
2689 then lay it out. This is used both in `make_unsigned_type'
2690 and for enumeral types. */
2692 void
2693 fixup_unsigned_type (tree type)
2695 int precision = TYPE_PRECISION (type);
2697 TYPE_UNSIGNED (type) = 1;
2699 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2701 /* Lay out the type: set its alignment, size, etc. */
2702 layout_type (type);
2705 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2706 starting at BITPOS.
2708 BITREGION_START is the bit position of the first bit in this
2709 sequence of bit fields. BITREGION_END is the last bit in this
2710 sequence. If these two fields are non-zero, we should restrict the
2711 memory access to that range. Otherwise, we are allowed to touch
2712 any adjacent non bit-fields.
2714 ALIGN is the alignment of the underlying object in bits.
2715 VOLATILEP says whether the bitfield is volatile. */
2717 bit_field_mode_iterator
2718 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2719 HOST_WIDE_INT bitregion_start,
2720 HOST_WIDE_INT bitregion_end,
2721 unsigned int align, bool volatilep)
2722 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2723 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2724 m_bitregion_end (bitregion_end), m_align (align),
2725 m_volatilep (volatilep), m_count (0)
2727 if (!m_bitregion_end)
2729 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2730 the bitfield is mapped and won't trap, provided that ALIGN isn't
2731 too large. The cap is the biggest required alignment for data,
2732 or at least the word size. And force one such chunk at least. */
2733 unsigned HOST_WIDE_INT units
2734 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2735 if (bitsize <= 0)
2736 bitsize = 1;
2737 m_bitregion_end = bitpos + bitsize + units - 1;
2738 m_bitregion_end -= m_bitregion_end % units + 1;
2742 /* Calls to this function return successively larger modes that can be used
2743 to represent the bitfield. Return true if another bitfield mode is
2744 available, storing it in *OUT_MODE if so. */
2746 bool
2747 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2749 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2751 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2753 /* Skip modes that don't have full precision. */
2754 if (unit != GET_MODE_PRECISION (m_mode))
2755 continue;
2757 /* Stop if the mode is too wide to handle efficiently. */
2758 if (unit > MAX_FIXED_MODE_SIZE)
2759 break;
2761 /* Don't deliver more than one multiword mode; the smallest one
2762 should be used. */
2763 if (m_count > 0 && unit > BITS_PER_WORD)
2764 break;
2766 /* Skip modes that are too small. */
2767 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2768 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2769 if (subend > unit)
2770 continue;
2772 /* Stop if the mode goes outside the bitregion. */
2773 HOST_WIDE_INT start = m_bitpos - substart;
2774 if (m_bitregion_start && start < m_bitregion_start)
2775 break;
2776 HOST_WIDE_INT end = start + unit;
2777 if (end > m_bitregion_end + 1)
2778 break;
2780 /* Stop if the mode requires too much alignment. */
2781 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2782 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2783 break;
2785 *out_mode = m_mode;
2786 m_mode = GET_MODE_WIDER_MODE (m_mode);
2787 m_count++;
2788 return true;
2790 return false;
2793 /* Return true if smaller modes are generally preferred for this kind
2794 of bitfield. */
2796 bool
2797 bit_field_mode_iterator::prefer_smaller_modes ()
2799 return (m_volatilep
2800 ? targetm.narrow_volatile_bitfield ()
2801 : !SLOW_BYTE_ACCESS);
2804 /* Find the best machine mode to use when referencing a bit field of length
2805 BITSIZE bits starting at BITPOS.
2807 BITREGION_START is the bit position of the first bit in this
2808 sequence of bit fields. BITREGION_END is the last bit in this
2809 sequence. If these two fields are non-zero, we should restrict the
2810 memory access to that range. Otherwise, we are allowed to touch
2811 any adjacent non bit-fields.
2813 The underlying object is known to be aligned to a boundary of ALIGN bits.
2814 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2815 larger than LARGEST_MODE (usually SImode).
2817 If no mode meets all these conditions, we return VOIDmode.
2819 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2820 smallest mode meeting these conditions.
2822 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2823 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2824 all the conditions.
2826 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2827 decide which of the above modes should be used. */
2829 machine_mode
2830 get_best_mode (int bitsize, int bitpos,
2831 unsigned HOST_WIDE_INT bitregion_start,
2832 unsigned HOST_WIDE_INT bitregion_end,
2833 unsigned int align,
2834 machine_mode largest_mode, bool volatilep)
2836 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2837 bitregion_end, align, volatilep);
2838 machine_mode widest_mode = VOIDmode;
2839 machine_mode mode;
2840 while (iter.next_mode (&mode)
2841 /* ??? For historical reasons, reject modes that would normally
2842 receive greater alignment, even if unaligned accesses are
2843 acceptable. This has both advantages and disadvantages.
2844 Removing this check means that something like:
2846 struct s { unsigned int x; unsigned int y; };
2847 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2849 can be implemented using a single load and compare on
2850 64-bit machines that have no alignment restrictions.
2851 For example, on powerpc64-linux-gnu, we would generate:
2853 ld 3,0(3)
2854 cntlzd 3,3
2855 srdi 3,3,6
2858 rather than:
2860 lwz 9,0(3)
2861 cmpwi 7,9,0
2862 bne 7,.L3
2863 lwz 3,4(3)
2864 cntlzw 3,3
2865 srwi 3,3,5
2866 extsw 3,3
2868 .p2align 4,,15
2869 .L3:
2870 li 3,0
2873 However, accessing more than one field can make life harder
2874 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2875 has a series of unsigned short copies followed by a series of
2876 unsigned short comparisons. With this check, both the copies
2877 and comparisons remain 16-bit accesses and FRE is able
2878 to eliminate the latter. Without the check, the comparisons
2879 can be done using 2 64-bit operations, which FRE isn't able
2880 to handle in the same way.
2882 Either way, it would probably be worth disabling this check
2883 during expand. One particular example where removing the
2884 check would help is the get_best_mode call in store_bit_field.
2885 If we are given a memory bitregion of 128 bits that is aligned
2886 to a 64-bit boundary, and the bitfield we want to modify is
2887 in the second half of the bitregion, this check causes
2888 store_bitfield to turn the memory into a 64-bit reference
2889 to the _first_ half of the region. We later use
2890 adjust_bitfield_address to get a reference to the correct half,
2891 but doing so looks to adjust_bitfield_address as though we are
2892 moving past the end of the original object, so it drops the
2893 associated MEM_EXPR and MEM_OFFSET. Removing the check
2894 causes store_bit_field to keep a 128-bit memory reference,
2895 so that the final bitfield reference still has a MEM_EXPR
2896 and MEM_OFFSET. */
2897 && GET_MODE_ALIGNMENT (mode) <= align
2898 && (largest_mode == VOIDmode
2899 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2901 widest_mode = mode;
2902 if (iter.prefer_smaller_modes ())
2903 break;
2905 return widest_mode;
2908 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2909 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2911 void
2912 get_mode_bounds (machine_mode mode, int sign,
2913 machine_mode target_mode,
2914 rtx *mmin, rtx *mmax)
2916 unsigned size = GET_MODE_PRECISION (mode);
2917 unsigned HOST_WIDE_INT min_val, max_val;
2919 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2921 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2922 if (mode == BImode)
2924 if (STORE_FLAG_VALUE < 0)
2926 min_val = STORE_FLAG_VALUE;
2927 max_val = 0;
2929 else
2931 min_val = 0;
2932 max_val = STORE_FLAG_VALUE;
2935 else if (sign)
2937 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2938 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2940 else
2942 min_val = 0;
2943 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2946 *mmin = gen_int_mode (min_val, target_mode);
2947 *mmax = gen_int_mode (max_val, target_mode);
2950 #include "gt-stor-layout.h"