1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 /* Conditional constant propagation (CCP) is based on the SSA
25 propagation engine (tree-ssa-propagate.c). Constant assignments of
26 the form VAR = CST are propagated from the assignments into uses of
27 VAR, which in turn may generate new constants. The simulation uses
28 a four level lattice to keep track of constant values associated
29 with SSA names. Given an SSA name V_i, it may take one of the
32 UNINITIALIZED -> the initial state of the value. This value
33 is replaced with a correct initial value
34 the first time the value is used, so the
35 rest of the pass does not need to care about
36 it. Using this value simplifies initialization
37 of the pass, and prevents us from needlessly
38 scanning statements that are never reached.
40 UNDEFINED -> V_i is a local variable whose definition
41 has not been processed yet. Therefore we
42 don't yet know if its value is a constant
45 CONSTANT -> V_i has been found to hold a constant
48 VARYING -> V_i cannot take a constant value, or if it
49 does, it is not possible to determine it
52 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
54 1- In ccp_visit_stmt, we are interested in assignments whose RHS
55 evaluates into a constant and conditional jumps whose predicate
56 evaluates into a boolean true or false. When an assignment of
57 the form V_i = CONST is found, V_i's lattice value is set to
58 CONSTANT and CONST is associated with it. This causes the
59 propagation engine to add all the SSA edges coming out the
60 assignment into the worklists, so that statements that use V_i
63 If the statement is a conditional with a constant predicate, we
64 mark the outgoing edges as executable or not executable
65 depending on the predicate's value. This is then used when
66 visiting PHI nodes to know when a PHI argument can be ignored.
69 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
70 same constant C, then the LHS of the PHI is set to C. This
71 evaluation is known as the "meet operation". Since one of the
72 goals of this evaluation is to optimistically return constant
73 values as often as possible, it uses two main short cuts:
75 - If an argument is flowing in through a non-executable edge, it
76 is ignored. This is useful in cases like this:
82 a_11 = PHI (a_9, a_10)
84 If PRED is known to always evaluate to false, then we can
85 assume that a_11 will always take its value from a_10, meaning
86 that instead of consider it VARYING (a_9 and a_10 have
87 different values), we can consider it CONSTANT 100.
89 - If an argument has an UNDEFINED value, then it does not affect
90 the outcome of the meet operation. If a variable V_i has an
91 UNDEFINED value, it means that either its defining statement
92 hasn't been visited yet or V_i has no defining statement, in
93 which case the original symbol 'V' is being used
94 uninitialized. Since 'V' is a local variable, the compiler
95 may assume any initial value for it.
98 After propagation, every variable V_i that ends up with a lattice
99 value of CONSTANT will have the associated constant value in the
100 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
101 final substitution and folding.
104 Constant propagation in stores and loads (STORE-CCP)
105 ----------------------------------------------------
107 While CCP has all the logic to propagate constants in GIMPLE
108 registers, it is missing the ability to associate constants with
109 stores and loads (i.e., pointer dereferences, structures and
110 global/aliased variables). We don't keep loads and stores in
111 SSA, but we do build a factored use-def web for them (in the
114 For instance, consider the following code fragment:
133 We should be able to deduce that the predicate 'a.a != B' is always
134 false. To achieve this, we associate constant values to the SSA
135 names in the VDEF operands for each store. Additionally,
136 since we also glob partial loads/stores with the base symbol, we
137 also keep track of the memory reference where the constant value
138 was stored (in the MEM_REF field of PROP_VALUE_T). For instance,
146 In the example above, CCP will associate value '2' with 'a_5', but
147 it would be wrong to replace the load from 'a.b' with '2', because
148 '2' had been stored into a.a.
150 Note that the initial value of virtual operands is VARYING, not
151 UNDEFINED. Consider, for instance global variables:
159 # A_5 = PHI (A_4, A_2);
167 The value of A_2 cannot be assumed to be UNDEFINED, as it may have
168 been defined outside of foo. If we were to assume it UNDEFINED, we
169 would erroneously optimize the above into 'return 3;'.
171 Though STORE-CCP is not too expensive, it does have to do more work
172 than regular CCP, so it is only enabled at -O2. Both regular CCP
173 and STORE-CCP use the exact same algorithm. The only distinction
174 is that when doing STORE-CCP, the boolean variable DO_STORE_CCP is
175 set to true. This affects the evaluation of statements and PHI
180 Constant propagation with conditional branches,
181 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
183 Building an Optimizing Compiler,
184 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
186 Advanced Compiler Design and Implementation,
187 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
191 #include "coretypes.h"
198 #include "basic-block.h"
201 #include "function.h"
202 #include "diagnostic.h"
204 #include "tree-dump.h"
205 #include "tree-flow.h"
206 #include "tree-pass.h"
207 #include "tree-ssa-propagate.h"
208 #include "langhooks.h"
213 /* Possible lattice values. */
222 /* Array of propagated constant values. After propagation,
223 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
224 the constant is held in an SSA name representing a memory store
225 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
226 memory reference used to store (i.e., the LHS of the assignment
228 static prop_value_t
*const_val
;
230 /* True if we are also propagating constants in stores and loads. */
231 static bool do_store_ccp
;
233 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
236 dump_lattice_value (FILE *outf
, const char *prefix
, prop_value_t val
)
238 switch (val
.lattice_val
)
241 fprintf (outf
, "%sUNINITIALIZED", prefix
);
244 fprintf (outf
, "%sUNDEFINED", prefix
);
247 fprintf (outf
, "%sVARYING", prefix
);
250 fprintf (outf
, "%sCONSTANT ", prefix
);
251 print_generic_expr (outf
, val
.value
, dump_flags
);
259 /* Print lattice value VAL to stderr. */
261 void debug_lattice_value (prop_value_t val
);
264 debug_lattice_value (prop_value_t val
)
266 dump_lattice_value (stderr
, "", val
);
267 fprintf (stderr
, "\n");
271 /* The regular is_gimple_min_invariant does a shallow test of the object.
272 It assumes that full gimplification has happened, or will happen on the
273 object. For a value coming from DECL_INITIAL, this is not true, so we
274 have to be more strict ourselves. */
277 ccp_decl_initial_min_invariant (tree t
)
279 if (!is_gimple_min_invariant (t
))
281 if (TREE_CODE (t
) == ADDR_EXPR
)
283 /* Inline and unroll is_gimple_addressable. */
286 t
= TREE_OPERAND (t
, 0);
287 if (is_gimple_id (t
))
289 if (!handled_component_p (t
))
296 /* If SYM is a constant variable with known value, return the value.
297 NULL_TREE is returned otherwise. */
300 get_symbol_constant_value (tree sym
)
302 if (TREE_STATIC (sym
)
303 && TREE_READONLY (sym
)
306 tree val
= DECL_INITIAL (sym
);
308 && ccp_decl_initial_min_invariant (val
))
315 /* Compute a default value for variable VAR and store it in the
316 CONST_VAL array. The following rules are used to get default
319 1- Global and static variables that are declared constant are
322 2- Any other value is considered UNDEFINED. This is useful when
323 considering PHI nodes. PHI arguments that are undefined do not
324 change the constant value of the PHI node, which allows for more
325 constants to be propagated.
327 3- If SSA_NAME_VALUE is set and it is a constant, its value is
330 4- Variables defined by statements other than assignments and PHI
331 nodes are considered VARYING.
333 5- Initial values of variables that are not GIMPLE registers are
334 considered VARYING. */
337 get_default_value (tree var
)
339 tree sym
= SSA_NAME_VAR (var
);
340 prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, NULL_TREE
};
343 if (!do_store_ccp
&& !is_gimple_reg (var
))
345 /* Short circuit for regular CCP. We are not interested in any
346 non-register when DO_STORE_CCP is false. */
347 val
.lattice_val
= VARYING
;
349 else if (SSA_NAME_VALUE (var
)
350 && is_gimple_min_invariant (SSA_NAME_VALUE (var
)))
352 val
.lattice_val
= CONSTANT
;
353 val
.value
= SSA_NAME_VALUE (var
);
355 else if ((cst_val
= get_symbol_constant_value (sym
)) != NULL_TREE
)
357 /* Globals and static variables declared 'const' take their
359 val
.lattice_val
= CONSTANT
;
365 tree stmt
= SSA_NAME_DEF_STMT (var
);
367 if (IS_EMPTY_STMT (stmt
))
369 /* Variables defined by an empty statement are those used
370 before being initialized. If VAR is a local variable, we
371 can assume initially that it is UNDEFINED, otherwise we must
372 consider it VARYING. */
373 if (is_gimple_reg (sym
) && TREE_CODE (sym
) != PARM_DECL
)
374 val
.lattice_val
= UNDEFINED
;
376 val
.lattice_val
= VARYING
;
378 else if (TREE_CODE (stmt
) == GIMPLE_MODIFY_STMT
379 || TREE_CODE (stmt
) == PHI_NODE
)
381 /* Any other variable defined by an assignment or a PHI node
382 is considered UNDEFINED. */
383 val
.lattice_val
= UNDEFINED
;
387 /* Otherwise, VAR will never take on a constant value. */
388 val
.lattice_val
= VARYING
;
396 /* Get the constant value associated with variable VAR. */
398 static inline prop_value_t
*
401 prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
403 if (val
->lattice_val
== UNINITIALIZED
)
404 *val
= get_default_value (var
);
409 /* Sets the value associated with VAR to VARYING. */
412 set_value_varying (tree var
)
414 prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
416 val
->lattice_val
= VARYING
;
417 val
->value
= NULL_TREE
;
418 val
->mem_ref
= NULL_TREE
;
421 /* For float types, modify the value of VAL to make ccp work correctly
422 for non-standard values (-0, NaN):
424 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
425 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
426 This is to fix the following problem (see PR 29921): Suppose we have
430 and we set value of y to NaN. This causes value of x to be set to NaN.
431 When we later determine that y is in fact VARYING, fold uses the fact
432 that HONOR_NANS is false, and we try to change the value of x to 0,
433 causing an ICE. With HONOR_NANS being false, the real appearance of
434 NaN would cause undefined behavior, though, so claiming that y (and x)
435 are UNDEFINED initially is correct. */
438 canonicalize_float_value (prop_value_t
*val
)
440 enum machine_mode mode
;
444 if (val
->lattice_val
!= CONSTANT
445 || TREE_CODE (val
->value
) != REAL_CST
)
448 d
= TREE_REAL_CST (val
->value
);
449 type
= TREE_TYPE (val
->value
);
450 mode
= TYPE_MODE (type
);
452 if (!HONOR_SIGNED_ZEROS (mode
)
453 && REAL_VALUE_MINUS_ZERO (d
))
455 val
->value
= build_real (type
, dconst0
);
459 if (!HONOR_NANS (mode
)
460 && REAL_VALUE_ISNAN (d
))
462 val
->lattice_val
= UNDEFINED
;
469 /* Set the value for variable VAR to NEW_VAL. Return true if the new
470 value is different from VAR's previous value. */
473 set_lattice_value (tree var
, prop_value_t new_val
)
475 prop_value_t
*old_val
= get_value (var
);
477 canonicalize_float_value (&new_val
);
479 /* Lattice transitions must always be monotonically increasing in
480 value. If *OLD_VAL and NEW_VAL are the same, return false to
481 inform the caller that this was a non-transition. */
483 gcc_assert (old_val
->lattice_val
< new_val
.lattice_val
484 || (old_val
->lattice_val
== new_val
.lattice_val
485 && ((!old_val
->value
&& !new_val
.value
)
486 || operand_equal_p (old_val
->value
, new_val
.value
, 0))
487 && old_val
->mem_ref
== new_val
.mem_ref
));
489 if (old_val
->lattice_val
!= new_val
.lattice_val
)
491 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
493 dump_lattice_value (dump_file
, "Lattice value changed to ", new_val
);
494 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
499 gcc_assert (new_val
.lattice_val
!= UNDEFINED
);
507 /* Return the likely CCP lattice value for STMT.
509 If STMT has no operands, then return CONSTANT.
511 Else if any operands of STMT are undefined, then return UNDEFINED.
513 Else if any operands of STMT are constants, then return CONSTANT.
515 Else return VARYING. */
518 likely_value (tree stmt
)
520 bool has_constant_operand
;
525 ann
= stmt_ann (stmt
);
527 /* If the statement has volatile operands, it won't fold to a
529 if (ann
->has_volatile_ops
)
532 /* If we are not doing store-ccp, statements with loads
533 and/or stores will never fold into a constant. */
535 && !ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
))
539 /* A CALL_EXPR is assumed to be varying. NOTE: This may be overly
540 conservative, in the presence of const and pure calls. */
541 if (get_call_expr_in (stmt
) != NULL_TREE
)
544 /* Anything other than assignments and conditional jumps are not
545 interesting for CCP. */
546 if (TREE_CODE (stmt
) != GIMPLE_MODIFY_STMT
547 && !(TREE_CODE (stmt
) == RETURN_EXPR
&& get_rhs (stmt
) != NULL_TREE
)
548 && TREE_CODE (stmt
) != COND_EXPR
549 && TREE_CODE (stmt
) != SWITCH_EXPR
)
552 if (is_gimple_min_invariant (get_rhs (stmt
)))
555 has_constant_operand
= false;
556 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
| SSA_OP_VUSE
)
558 prop_value_t
*val
= get_value (use
);
560 if (val
->lattice_val
== UNDEFINED
)
563 if (val
->lattice_val
== CONSTANT
)
564 has_constant_operand
= true;
567 if (has_constant_operand
568 /* We do not consider virtual operands here -- load from read-only
569 memory may have only VARYING virtual operands, but still be
571 || ZERO_SSA_OPERANDS (stmt
, SSA_OP_USE
))
577 /* Returns true if STMT cannot be constant. */
580 surely_varying_stmt_p (tree stmt
)
582 /* If the statement has operands that we cannot handle, it cannot be
584 if (stmt_ann (stmt
)->has_volatile_ops
)
587 if (!ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
))
592 /* We can only handle simple loads and stores. */
593 if (!stmt_makes_single_load (stmt
)
594 && !stmt_makes_single_store (stmt
))
598 /* If it contains a call, it is varying. */
599 if (get_call_expr_in (stmt
) != NULL_TREE
)
602 /* Anything other than assignments and conditional jumps are not
603 interesting for CCP. */
604 if (TREE_CODE (stmt
) != GIMPLE_MODIFY_STMT
605 && !(TREE_CODE (stmt
) == RETURN_EXPR
&& get_rhs (stmt
) != NULL_TREE
)
606 && TREE_CODE (stmt
) != COND_EXPR
607 && TREE_CODE (stmt
) != SWITCH_EXPR
)
613 /* Initialize local data structures for CCP. */
616 ccp_initialize (void)
620 const_val
= XCNEWVEC (prop_value_t
, num_ssa_names
);
622 /* Initialize simulation flags for PHI nodes and statements. */
625 block_stmt_iterator i
;
627 for (i
= bsi_start (bb
); !bsi_end_p (i
); bsi_next (&i
))
629 tree stmt
= bsi_stmt (i
);
630 bool is_varying
= surely_varying_stmt_p (stmt
);
637 /* If the statement will not produce a constant, mark
638 all its outputs VARYING. */
639 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
642 set_value_varying (def
);
646 DONT_SIMULATE_AGAIN (stmt
) = is_varying
;
650 /* Now process PHI nodes. We never set DONT_SIMULATE_AGAIN on phi node,
651 since we do not know which edges are executable yet, except for
652 phi nodes for virtual operands when we do not do store ccp. */
657 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
659 if (!do_store_ccp
&& !is_gimple_reg (PHI_RESULT (phi
)))
660 DONT_SIMULATE_AGAIN (phi
) = true;
662 DONT_SIMULATE_AGAIN (phi
) = false;
668 /* Do final substitution of propagated values, cleanup the flowgraph and
669 free allocated storage.
671 Return TRUE when something was optimized. */
676 /* Perform substitutions based on the known constant values. */
677 bool something_changed
= substitute_and_fold (const_val
, false);
680 return something_changed
;;
684 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
687 any M UNDEFINED = any
688 any M VARYING = VARYING
689 Ci M Cj = Ci if (i == j)
690 Ci M Cj = VARYING if (i != j)
694 ccp_lattice_meet (prop_value_t
*val1
, prop_value_t
*val2
)
696 if (val1
->lattice_val
== UNDEFINED
)
698 /* UNDEFINED M any = any */
701 else if (val2
->lattice_val
== UNDEFINED
)
703 /* any M UNDEFINED = any
704 Nothing to do. VAL1 already contains the value we want. */
707 else if (val1
->lattice_val
== VARYING
708 || val2
->lattice_val
== VARYING
)
710 /* any M VARYING = VARYING. */
711 val1
->lattice_val
= VARYING
;
712 val1
->value
= NULL_TREE
;
713 val1
->mem_ref
= NULL_TREE
;
715 else if (val1
->lattice_val
== CONSTANT
716 && val2
->lattice_val
== CONSTANT
717 && simple_cst_equal (val1
->value
, val2
->value
) == 1
719 || (val1
->mem_ref
&& val2
->mem_ref
720 && operand_equal_p (val1
->mem_ref
, val2
->mem_ref
, 0))))
722 /* Ci M Cj = Ci if (i == j)
723 Ci M Cj = VARYING if (i != j)
725 If these two values come from memory stores, make sure that
726 they come from the same memory reference. */
727 val1
->lattice_val
= CONSTANT
;
728 val1
->value
= val1
->value
;
729 val1
->mem_ref
= val1
->mem_ref
;
733 /* Any other combination is VARYING. */
734 val1
->lattice_val
= VARYING
;
735 val1
->value
= NULL_TREE
;
736 val1
->mem_ref
= NULL_TREE
;
741 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
742 lattice values to determine PHI_NODE's lattice value. The value of a
743 PHI node is determined calling ccp_lattice_meet with all the arguments
744 of the PHI node that are incoming via executable edges. */
746 static enum ssa_prop_result
747 ccp_visit_phi_node (tree phi
)
750 prop_value_t
*old_val
, new_val
;
752 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
754 fprintf (dump_file
, "\nVisiting PHI node: ");
755 print_generic_expr (dump_file
, phi
, dump_flags
);
758 old_val
= get_value (PHI_RESULT (phi
));
759 switch (old_val
->lattice_val
)
762 return SSA_PROP_VARYING
;
769 new_val
.lattice_val
= UNDEFINED
;
770 new_val
.value
= NULL_TREE
;
771 new_val
.mem_ref
= NULL_TREE
;
778 for (i
= 0; i
< PHI_NUM_ARGS (phi
); i
++)
780 /* Compute the meet operator over all the PHI arguments flowing
781 through executable edges. */
782 edge e
= PHI_ARG_EDGE (phi
, i
);
784 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
787 "\n Argument #%d (%d -> %d %sexecutable)\n",
788 i
, e
->src
->index
, e
->dest
->index
,
789 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
792 /* If the incoming edge is executable, Compute the meet operator for
793 the existing value of the PHI node and the current PHI argument. */
794 if (e
->flags
& EDGE_EXECUTABLE
)
796 tree arg
= PHI_ARG_DEF (phi
, i
);
797 prop_value_t arg_val
;
799 if (is_gimple_min_invariant (arg
))
801 arg_val
.lattice_val
= CONSTANT
;
803 arg_val
.mem_ref
= NULL_TREE
;
806 arg_val
= *(get_value (arg
));
808 ccp_lattice_meet (&new_val
, &arg_val
);
810 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
812 fprintf (dump_file
, "\t");
813 print_generic_expr (dump_file
, arg
, dump_flags
);
814 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
815 fprintf (dump_file
, "\n");
818 if (new_val
.lattice_val
== VARYING
)
823 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
825 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
826 fprintf (dump_file
, "\n\n");
829 /* Make the transition to the new value. */
830 if (set_lattice_value (PHI_RESULT (phi
), new_val
))
832 if (new_val
.lattice_val
== VARYING
)
833 return SSA_PROP_VARYING
;
835 return SSA_PROP_INTERESTING
;
838 return SSA_PROP_NOT_INTERESTING
;
842 /* CCP specific front-end to the non-destructive constant folding
845 Attempt to simplify the RHS of STMT knowing that one or more
846 operands are constants.
848 If simplification is possible, return the simplified RHS,
849 otherwise return the original RHS. */
854 tree rhs
= get_rhs (stmt
);
855 enum tree_code code
= TREE_CODE (rhs
);
856 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
857 tree retval
= NULL_TREE
;
859 if (TREE_CODE (rhs
) == SSA_NAME
)
861 /* If the RHS is an SSA_NAME, return its known constant value,
863 return get_value (rhs
)->value
;
865 else if (do_store_ccp
&& stmt_makes_single_load (stmt
))
867 /* If the RHS is a memory load, see if the VUSEs associated with
868 it are a valid constant for that memory load. */
869 prop_value_t
*val
= get_value_loaded_by (stmt
, const_val
);
870 if (val
&& val
->mem_ref
)
872 if (operand_equal_p (val
->mem_ref
, rhs
, 0))
875 /* If RHS is extracting REALPART_EXPR or IMAGPART_EXPR of a
876 complex type with a known constant value, return it. */
877 if ((TREE_CODE (rhs
) == REALPART_EXPR
878 || TREE_CODE (rhs
) == IMAGPART_EXPR
)
879 && operand_equal_p (val
->mem_ref
, TREE_OPERAND (rhs
, 0), 0))
880 return fold_build1 (TREE_CODE (rhs
), TREE_TYPE (rhs
), val
->value
);
885 /* Unary operators. Note that we know the single operand must
886 be a constant. So this should almost always return a
888 if (kind
== tcc_unary
)
890 /* Handle unary operators which can appear in GIMPLE form. */
891 tree op0
= TREE_OPERAND (rhs
, 0);
893 /* Simplify the operand down to a constant. */
894 if (TREE_CODE (op0
) == SSA_NAME
)
896 prop_value_t
*val
= get_value (op0
);
897 if (val
->lattice_val
== CONSTANT
)
898 op0
= get_value (op0
)->value
;
901 if ((code
== NOP_EXPR
|| code
== CONVERT_EXPR
)
902 && tree_ssa_useless_type_conversion_1 (TREE_TYPE (rhs
),
905 return fold_unary (code
, TREE_TYPE (rhs
), op0
);
908 /* Binary and comparison operators. We know one or both of the
909 operands are constants. */
910 else if (kind
== tcc_binary
911 || kind
== tcc_comparison
912 || code
== TRUTH_AND_EXPR
913 || code
== TRUTH_OR_EXPR
914 || code
== TRUTH_XOR_EXPR
)
916 /* Handle binary and comparison operators that can appear in
918 tree op0
= TREE_OPERAND (rhs
, 0);
919 tree op1
= TREE_OPERAND (rhs
, 1);
921 /* Simplify the operands down to constants when appropriate. */
922 if (TREE_CODE (op0
) == SSA_NAME
)
924 prop_value_t
*val
= get_value (op0
);
925 if (val
->lattice_val
== CONSTANT
)
929 if (TREE_CODE (op1
) == SSA_NAME
)
931 prop_value_t
*val
= get_value (op1
);
932 if (val
->lattice_val
== CONSTANT
)
936 return fold_binary (code
, TREE_TYPE (rhs
), op0
, op1
);
939 /* We may be able to fold away calls to builtin functions if their
940 arguments are constants. */
941 else if (code
== CALL_EXPR
942 && TREE_CODE (CALL_EXPR_FN (rhs
)) == ADDR_EXPR
943 && TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (rhs
), 0)) == FUNCTION_DECL
944 && DECL_BUILT_IN (TREE_OPERAND (CALL_EXPR_FN (rhs
), 0)))
946 if (!ZERO_SSA_OPERANDS (stmt
, SSA_OP_USE
))
953 /* Preserve the original values of every operand. */
954 orig
= XNEWVEC (tree
, NUM_SSA_OPERANDS (stmt
, SSA_OP_USE
));
955 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_USE
)
958 /* Substitute operands with their values and try to fold. */
959 replace_uses_in (stmt
, NULL
, const_val
);
960 retval
= fold_call_expr (rhs
, false);
962 /* Restore operands to their original form. */
964 FOR_EACH_SSA_USE_OPERAND (var_p
, stmt
, iter
, SSA_OP_USE
)
965 SET_USE (var_p
, orig
[i
++]);
972 /* If we got a simplified form, see if we need to convert its type. */
974 return fold_convert (TREE_TYPE (rhs
), retval
);
976 /* No simplification was possible. */
981 /* Return the tree representing the element referenced by T if T is an
982 ARRAY_REF or COMPONENT_REF into constant aggregates. Return
983 NULL_TREE otherwise. */
986 fold_const_aggregate_ref (tree t
)
989 tree base
, ctor
, idx
, field
;
990 unsigned HOST_WIDE_INT cnt
;
993 switch (TREE_CODE (t
))
996 /* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
997 DECL_INITIAL. If BASE is a nested reference into another
998 ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
999 the inner reference. */
1000 base
= TREE_OPERAND (t
, 0);
1001 switch (TREE_CODE (base
))
1004 if (!TREE_READONLY (base
)
1005 || TREE_CODE (TREE_TYPE (base
)) != ARRAY_TYPE
1006 || !targetm
.binds_local_p (base
))
1009 ctor
= DECL_INITIAL (base
);
1014 ctor
= fold_const_aggregate_ref (base
);
1021 if (ctor
== NULL_TREE
1022 || (TREE_CODE (ctor
) != CONSTRUCTOR
1023 && TREE_CODE (ctor
) != STRING_CST
)
1024 || !TREE_STATIC (ctor
))
1027 /* Get the index. If we have an SSA_NAME, try to resolve it
1028 with the current lattice value for the SSA_NAME. */
1029 idx
= TREE_OPERAND (t
, 1);
1030 switch (TREE_CODE (idx
))
1033 if ((value
= get_value (idx
))
1034 && value
->lattice_val
== CONSTANT
1035 && TREE_CODE (value
->value
) == INTEGER_CST
)
1048 /* Fold read from constant string. */
1049 if (TREE_CODE (ctor
) == STRING_CST
)
1051 if ((TYPE_MODE (TREE_TYPE (t
))
1052 == TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor
))))
1053 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor
))))
1055 && GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor
)))) == 1
1056 && compare_tree_int (idx
, TREE_STRING_LENGTH (ctor
)) < 0)
1057 return build_int_cst (TREE_TYPE (t
), (TREE_STRING_POINTER (ctor
)
1058 [TREE_INT_CST_LOW (idx
)]));
1062 /* Whoo-hoo! I'll fold ya baby. Yeah! */
1063 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), cnt
, cfield
, cval
)
1064 if (tree_int_cst_equal (cfield
, idx
))
1069 /* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
1070 DECL_INITIAL. If BASE is a nested reference into another
1071 ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
1072 the inner reference. */
1073 base
= TREE_OPERAND (t
, 0);
1074 switch (TREE_CODE (base
))
1077 if (!TREE_READONLY (base
)
1078 || TREE_CODE (TREE_TYPE (base
)) != RECORD_TYPE
1079 || !targetm
.binds_local_p (base
))
1082 ctor
= DECL_INITIAL (base
);
1087 ctor
= fold_const_aggregate_ref (base
);
1094 if (ctor
== NULL_TREE
1095 || TREE_CODE (ctor
) != CONSTRUCTOR
1096 || !TREE_STATIC (ctor
))
1099 field
= TREE_OPERAND (t
, 1);
1101 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), cnt
, cfield
, cval
)
1103 /* FIXME: Handle bit-fields. */
1104 && ! DECL_BIT_FIELD (cfield
))
1111 tree c
= fold_const_aggregate_ref (TREE_OPERAND (t
, 0));
1112 if (c
&& TREE_CODE (c
) == COMPLEX_CST
)
1113 return fold_build1 (TREE_CODE (t
), TREE_TYPE (t
), c
);
1124 /* Evaluate statement STMT. */
1127 evaluate_stmt (tree stmt
)
1130 tree simplified
= NULL_TREE
;
1131 ccp_lattice_t likelyvalue
= likely_value (stmt
);
1134 val
.mem_ref
= NULL_TREE
;
1136 fold_defer_overflow_warnings ();
1138 /* If the statement is likely to have a CONSTANT result, then try
1139 to fold the statement to determine the constant value. */
1140 if (likelyvalue
== CONSTANT
)
1141 simplified
= ccp_fold (stmt
);
1142 /* If the statement is likely to have a VARYING result, then do not
1143 bother folding the statement. */
1144 if (likelyvalue
== VARYING
)
1145 simplified
= get_rhs (stmt
);
1146 /* If the statement is an ARRAY_REF or COMPONENT_REF into constant
1147 aggregates, extract the referenced constant. Otherwise the
1148 statement is likely to have an UNDEFINED value, and there will be
1149 nothing to do. Note that fold_const_aggregate_ref returns
1150 NULL_TREE if the first case does not match. */
1151 else if (!simplified
)
1152 simplified
= fold_const_aggregate_ref (get_rhs (stmt
));
1154 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1156 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
1160 /* The statement produced a constant value. */
1161 val
.lattice_val
= CONSTANT
;
1162 val
.value
= simplified
;
1166 /* The statement produced a nonconstant value. If the statement
1167 had UNDEFINED operands, then the result of the statement
1168 should be UNDEFINED. Otherwise, the statement is VARYING. */
1169 if (likelyvalue
== UNDEFINED
)
1170 val
.lattice_val
= likelyvalue
;
1172 val
.lattice_val
= VARYING
;
1174 val
.value
= NULL_TREE
;
1181 /* Visit the assignment statement STMT. Set the value of its LHS to the
1182 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1183 creates virtual definitions, set the value of each new name to that
1184 of the RHS (if we can derive a constant out of the RHS). */
1186 static enum ssa_prop_result
1187 visit_assignment (tree stmt
, tree
*output_p
)
1191 enum ssa_prop_result retval
;
1193 lhs
= GIMPLE_STMT_OPERAND (stmt
, 0);
1194 rhs
= GIMPLE_STMT_OPERAND (stmt
, 1);
1196 if (TREE_CODE (rhs
) == SSA_NAME
)
1198 /* For a simple copy operation, we copy the lattice values. */
1199 prop_value_t
*nval
= get_value (rhs
);
1202 else if (do_store_ccp
&& stmt_makes_single_load (stmt
))
1204 /* Same as above, but the RHS is not a gimple register and yet
1205 has a known VUSE. If STMT is loading from the same memory
1206 location that created the SSA_NAMEs for the virtual operands,
1207 we can propagate the value on the RHS. */
1208 prop_value_t
*nval
= get_value_loaded_by (stmt
, const_val
);
1212 && operand_equal_p (nval
->mem_ref
, rhs
, 0))
1215 val
= evaluate_stmt (stmt
);
1218 /* Evaluate the statement. */
1219 val
= evaluate_stmt (stmt
);
1221 /* If the original LHS was a VIEW_CONVERT_EXPR, modify the constant
1222 value to be a VIEW_CONVERT_EXPR of the old constant value.
1224 ??? Also, if this was a definition of a bitfield, we need to widen
1225 the constant value into the type of the destination variable. This
1226 should not be necessary if GCC represented bitfields properly. */
1228 tree orig_lhs
= GIMPLE_STMT_OPERAND (stmt
, 0);
1230 if (TREE_CODE (orig_lhs
) == VIEW_CONVERT_EXPR
1231 && val
.lattice_val
== CONSTANT
)
1233 tree w
= fold_unary (VIEW_CONVERT_EXPR
,
1234 TREE_TYPE (TREE_OPERAND (orig_lhs
, 0)),
1237 orig_lhs
= TREE_OPERAND (orig_lhs
, 0);
1238 if (w
&& is_gimple_min_invariant (w
))
1242 val
.lattice_val
= VARYING
;
1247 if (val
.lattice_val
== CONSTANT
1248 && TREE_CODE (orig_lhs
) == COMPONENT_REF
1249 && DECL_BIT_FIELD (TREE_OPERAND (orig_lhs
, 1)))
1251 tree w
= widen_bitfield (val
.value
, TREE_OPERAND (orig_lhs
, 1),
1254 if (w
&& is_gimple_min_invariant (w
))
1258 val
.lattice_val
= VARYING
;
1259 val
.value
= NULL_TREE
;
1260 val
.mem_ref
= NULL_TREE
;
1265 retval
= SSA_PROP_NOT_INTERESTING
;
1267 /* Set the lattice value of the statement's output. */
1268 if (TREE_CODE (lhs
) == SSA_NAME
)
1270 /* If STMT is an assignment to an SSA_NAME, we only have one
1272 if (set_lattice_value (lhs
, val
))
1275 if (val
.lattice_val
== VARYING
)
1276 retval
= SSA_PROP_VARYING
;
1278 retval
= SSA_PROP_INTERESTING
;
1281 else if (do_store_ccp
&& stmt_makes_single_store (stmt
))
1283 /* Otherwise, set the names in VDEF operands to the new
1284 constant value and mark the LHS as the memory reference
1285 associated with VAL. */
1290 /* Mark VAL as stored in the LHS of this assignment. */
1291 if (val
.lattice_val
== CONSTANT
)
1294 /* Set the value of every VDEF to VAL. */
1296 FOR_EACH_SSA_TREE_OPERAND (vdef
, stmt
, i
, SSA_OP_VIRTUAL_DEFS
)
1298 /* See PR 29801. We may have VDEFs for read-only variables
1299 (see the handling of unmodifiable variables in
1300 add_virtual_operand); do not attempt to change their value. */
1301 if (get_symbol_constant_value (SSA_NAME_VAR (vdef
)) != NULL_TREE
)
1304 changed
|= set_lattice_value (vdef
, val
);
1307 /* Note that for propagation purposes, we are only interested in
1308 visiting statements that load the exact same memory reference
1309 stored here. Those statements will have the exact same list
1310 of virtual uses, so it is enough to set the output of this
1311 statement to be its first virtual definition. */
1312 *output_p
= first_vdef (stmt
);
1315 if (val
.lattice_val
== VARYING
)
1316 retval
= SSA_PROP_VARYING
;
1318 retval
= SSA_PROP_INTERESTING
;
1326 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
1327 if it can determine which edge will be taken. Otherwise, return
1328 SSA_PROP_VARYING. */
1330 static enum ssa_prop_result
1331 visit_cond_stmt (tree stmt
, edge
*taken_edge_p
)
1336 block
= bb_for_stmt (stmt
);
1337 val
= evaluate_stmt (stmt
);
1339 /* Find which edge out of the conditional block will be taken and add it
1340 to the worklist. If no single edge can be determined statically,
1341 return SSA_PROP_VARYING to feed all the outgoing edges to the
1342 propagation engine. */
1343 *taken_edge_p
= val
.value
? find_taken_edge (block
, val
.value
) : 0;
1345 return SSA_PROP_INTERESTING
;
1347 return SSA_PROP_VARYING
;
1351 /* Evaluate statement STMT. If the statement produces an output value and
1352 its evaluation changes the lattice value of its output, return
1353 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
1356 If STMT is a conditional branch and we can determine its truth
1357 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
1358 value, return SSA_PROP_VARYING. */
1360 static enum ssa_prop_result
1361 ccp_visit_stmt (tree stmt
, edge
*taken_edge_p
, tree
*output_p
)
1366 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1368 fprintf (dump_file
, "\nVisiting statement:\n");
1369 print_generic_stmt (dump_file
, stmt
, dump_flags
);
1370 fprintf (dump_file
, "\n");
1373 if (TREE_CODE (stmt
) == GIMPLE_MODIFY_STMT
)
1375 /* If the statement is an assignment that produces a single
1376 output value, evaluate its RHS to see if the lattice value of
1377 its output has changed. */
1378 return visit_assignment (stmt
, output_p
);
1380 else if (TREE_CODE (stmt
) == COND_EXPR
|| TREE_CODE (stmt
) == SWITCH_EXPR
)
1382 /* If STMT is a conditional branch, see if we can determine
1383 which branch will be taken. */
1384 return visit_cond_stmt (stmt
, taken_edge_p
);
1387 /* Any other kind of statement is not interesting for constant
1388 propagation and, therefore, not worth simulating. */
1389 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1390 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
1392 /* Definitions made by statements other than assignments to
1393 SSA_NAMEs represent unknown modifications to their outputs.
1394 Mark them VARYING. */
1395 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
1397 prop_value_t v
= { VARYING
, NULL_TREE
, NULL_TREE
};
1398 set_lattice_value (def
, v
);
1401 return SSA_PROP_VARYING
;
1405 /* Main entry point for SSA Conditional Constant Propagation. */
1408 execute_ssa_ccp (bool store_ccp
)
1410 do_store_ccp
= store_ccp
;
1412 ssa_propagate (ccp_visit_stmt
, ccp_visit_phi_node
);
1413 if (ccp_finalize ())
1414 return (TODO_cleanup_cfg
| TODO_update_ssa
| TODO_update_smt_usage
1415 | TODO_remove_unused_locals
);
1424 return execute_ssa_ccp (false);
1431 return flag_tree_ccp
!= 0;
1435 struct tree_opt_pass pass_ccp
=
1438 gate_ccp
, /* gate */
1439 do_ssa_ccp
, /* execute */
1442 0, /* static_pass_number */
1443 TV_TREE_CCP
, /* tv_id */
1444 PROP_cfg
| PROP_ssa
, /* properties_required */
1445 0, /* properties_provided */
1446 0, /* properties_destroyed */
1447 0, /* todo_flags_start */
1448 TODO_dump_func
| TODO_verify_ssa
1449 | TODO_verify_stmts
| TODO_ggc_collect
,/* todo_flags_finish */
1455 do_ssa_store_ccp (void)
1457 /* If STORE-CCP is not enabled, we just run regular CCP. */
1458 return execute_ssa_ccp (flag_tree_store_ccp
!= 0);
1462 gate_store_ccp (void)
1464 /* STORE-CCP is enabled only with -ftree-store-ccp, but when
1465 -fno-tree-store-ccp is specified, we should run regular CCP.
1466 That's why the pass is enabled with either flag. */
1467 return flag_tree_store_ccp
!= 0 || flag_tree_ccp
!= 0;
1471 struct tree_opt_pass pass_store_ccp
=
1473 "store_ccp", /* name */
1474 gate_store_ccp
, /* gate */
1475 do_ssa_store_ccp
, /* execute */
1478 0, /* static_pass_number */
1479 TV_TREE_STORE_CCP
, /* tv_id */
1480 PROP_cfg
| PROP_ssa
| PROP_alias
, /* properties_required */
1481 0, /* properties_provided */
1482 0, /* properties_destroyed */
1483 0, /* todo_flags_start */
1484 TODO_dump_func
| TODO_verify_ssa
1485 | TODO_verify_stmts
| TODO_ggc_collect
,/* todo_flags_finish */
1489 /* Given a constant value VAL for bitfield FIELD, and a destination
1490 variable VAR, return VAL appropriately widened to fit into VAR. If
1491 FIELD is wider than HOST_WIDE_INT, NULL is returned. */
1494 widen_bitfield (tree val
, tree field
, tree var
)
1496 unsigned HOST_WIDE_INT var_size
, field_size
;
1498 unsigned HOST_WIDE_INT mask
;
1501 /* We can only do this if the size of the type and field and VAL are
1502 all constants representable in HOST_WIDE_INT. */
1503 if (!host_integerp (TYPE_SIZE (TREE_TYPE (var
)), 1)
1504 || !host_integerp (DECL_SIZE (field
), 1)
1505 || !host_integerp (val
, 0))
1508 var_size
= tree_low_cst (TYPE_SIZE (TREE_TYPE (var
)), 1);
1509 field_size
= tree_low_cst (DECL_SIZE (field
), 1);
1511 /* Give up if either the bitfield or the variable are too wide. */
1512 if (field_size
> HOST_BITS_PER_WIDE_INT
|| var_size
> HOST_BITS_PER_WIDE_INT
)
1515 gcc_assert (var_size
>= field_size
);
1517 /* If the sign bit of the value is not set or the field's type is unsigned,
1518 just mask off the high order bits of the value. */
1519 if (DECL_UNSIGNED (field
)
1520 || !(tree_low_cst (val
, 0) & (((HOST_WIDE_INT
)1) << (field_size
- 1))))
1522 /* Zero extension. Build a mask with the lower 'field_size' bits
1523 set and a BIT_AND_EXPR node to clear the high order bits of
1525 for (i
= 0, mask
= 0; i
< field_size
; i
++)
1526 mask
|= ((HOST_WIDE_INT
) 1) << i
;
1528 wide_val
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (var
), val
,
1529 build_int_cst (TREE_TYPE (var
), mask
));
1533 /* Sign extension. Create a mask with the upper 'field_size'
1534 bits set and a BIT_IOR_EXPR to set the high order bits of the
1536 for (i
= 0, mask
= 0; i
< (var_size
- field_size
); i
++)
1537 mask
|= ((HOST_WIDE_INT
) 1) << (var_size
- i
- 1);
1539 wide_val
= fold_build2 (BIT_IOR_EXPR
, TREE_TYPE (var
), val
,
1540 build_int_cst (TREE_TYPE (var
), mask
));
1547 /* A subroutine of fold_stmt_r. Attempts to fold *(A+O) to A[X].
1548 BASE is an array type. OFFSET is a byte displacement. ORIG_TYPE
1549 is the desired result type. */
1552 maybe_fold_offset_to_array_ref (tree base
, tree offset
, tree orig_type
)
1554 tree min_idx
, idx
, elt_offset
= integer_zero_node
;
1555 tree array_type
, elt_type
, elt_size
;
1557 /* If BASE is an ARRAY_REF, we can pick up another offset (this time
1558 measured in units of the size of elements type) from that ARRAY_REF).
1559 We can't do anything if either is variable.
1561 The case we handle here is *(&A[N]+O). */
1562 if (TREE_CODE (base
) == ARRAY_REF
)
1564 tree low_bound
= array_ref_low_bound (base
);
1566 elt_offset
= TREE_OPERAND (base
, 1);
1567 if (TREE_CODE (low_bound
) != INTEGER_CST
1568 || TREE_CODE (elt_offset
) != INTEGER_CST
)
1571 elt_offset
= int_const_binop (MINUS_EXPR
, elt_offset
, low_bound
, 0);
1572 base
= TREE_OPERAND (base
, 0);
1575 /* Ignore stupid user tricks of indexing non-array variables. */
1576 array_type
= TREE_TYPE (base
);
1577 if (TREE_CODE (array_type
) != ARRAY_TYPE
)
1579 elt_type
= TREE_TYPE (array_type
);
1580 if (!lang_hooks
.types_compatible_p (orig_type
, elt_type
))
1583 /* If OFFSET and ELT_OFFSET are zero, we don't care about the size of the
1584 element type (so we can use the alignment if it's not constant).
1585 Otherwise, compute the offset as an index by using a division. If the
1586 division isn't exact, then don't do anything. */
1587 elt_size
= TYPE_SIZE_UNIT (elt_type
);
1588 if (integer_zerop (offset
))
1590 if (TREE_CODE (elt_size
) != INTEGER_CST
)
1591 elt_size
= size_int (TYPE_ALIGN (elt_type
));
1593 idx
= integer_zero_node
;
1597 unsigned HOST_WIDE_INT lquo
, lrem
;
1598 HOST_WIDE_INT hquo
, hrem
;
1600 if (TREE_CODE (elt_size
) != INTEGER_CST
1601 || div_and_round_double (TRUNC_DIV_EXPR
, 1,
1602 TREE_INT_CST_LOW (offset
),
1603 TREE_INT_CST_HIGH (offset
),
1604 TREE_INT_CST_LOW (elt_size
),
1605 TREE_INT_CST_HIGH (elt_size
),
1606 &lquo
, &hquo
, &lrem
, &hrem
)
1610 idx
= build_int_cst_wide (TREE_TYPE (offset
), lquo
, hquo
);
1613 /* Assume the low bound is zero. If there is a domain type, get the
1614 low bound, if any, convert the index into that type, and add the
1616 min_idx
= integer_zero_node
;
1617 if (TYPE_DOMAIN (array_type
))
1619 if (TYPE_MIN_VALUE (TYPE_DOMAIN (array_type
)))
1620 min_idx
= TYPE_MIN_VALUE (TYPE_DOMAIN (array_type
));
1622 min_idx
= fold_convert (TYPE_DOMAIN (array_type
), min_idx
);
1624 if (TREE_CODE (min_idx
) != INTEGER_CST
)
1627 idx
= fold_convert (TYPE_DOMAIN (array_type
), idx
);
1628 elt_offset
= fold_convert (TYPE_DOMAIN (array_type
), elt_offset
);
1631 if (!integer_zerop (min_idx
))
1632 idx
= int_const_binop (PLUS_EXPR
, idx
, min_idx
, 0);
1633 if (!integer_zerop (elt_offset
))
1634 idx
= int_const_binop (PLUS_EXPR
, idx
, elt_offset
, 0);
1636 return build4 (ARRAY_REF
, orig_type
, base
, idx
, min_idx
,
1637 size_int (tree_low_cst (elt_size
, 1)
1638 / (TYPE_ALIGN_UNIT (elt_type
))));
1642 /* A subroutine of fold_stmt_r. Attempts to fold *(S+O) to S.X.
1643 BASE is a record type. OFFSET is a byte displacement. ORIG_TYPE
1644 is the desired result type. */
1645 /* ??? This doesn't handle class inheritance. */
1648 maybe_fold_offset_to_component_ref (tree record_type
, tree base
, tree offset
,
1649 tree orig_type
, bool base_is_ptr
)
1651 tree f
, t
, field_type
, tail_array_field
, field_offset
;
1653 if (TREE_CODE (record_type
) != RECORD_TYPE
1654 && TREE_CODE (record_type
) != UNION_TYPE
1655 && TREE_CODE (record_type
) != QUAL_UNION_TYPE
)
1658 /* Short-circuit silly cases. */
1659 if (lang_hooks
.types_compatible_p (record_type
, orig_type
))
1662 tail_array_field
= NULL_TREE
;
1663 for (f
= TYPE_FIELDS (record_type
); f
; f
= TREE_CHAIN (f
))
1667 if (TREE_CODE (f
) != FIELD_DECL
)
1669 if (DECL_BIT_FIELD (f
))
1672 field_offset
= byte_position (f
);
1673 if (TREE_CODE (field_offset
) != INTEGER_CST
)
1676 /* ??? Java creates "interesting" fields for representing base classes.
1677 They have no name, and have no context. With no context, we get into
1678 trouble with nonoverlapping_component_refs_p. Skip them. */
1679 if (!DECL_FIELD_CONTEXT (f
))
1682 /* The previous array field isn't at the end. */
1683 tail_array_field
= NULL_TREE
;
1685 /* Check to see if this offset overlaps with the field. */
1686 cmp
= tree_int_cst_compare (field_offset
, offset
);
1690 field_type
= TREE_TYPE (f
);
1692 /* Here we exactly match the offset being checked. If the types match,
1693 then we can return that field. */
1695 && lang_hooks
.types_compatible_p (orig_type
, field_type
))
1698 base
= build1 (INDIRECT_REF
, record_type
, base
);
1699 t
= build3 (COMPONENT_REF
, field_type
, base
, f
, NULL_TREE
);
1703 /* Don't care about offsets into the middle of scalars. */
1704 if (!AGGREGATE_TYPE_P (field_type
))
1707 /* Check for array at the end of the struct. This is often
1708 used as for flexible array members. We should be able to
1709 turn this into an array access anyway. */
1710 if (TREE_CODE (field_type
) == ARRAY_TYPE
)
1711 tail_array_field
= f
;
1713 /* Check the end of the field against the offset. */
1714 if (!DECL_SIZE_UNIT (f
)
1715 || TREE_CODE (DECL_SIZE_UNIT (f
)) != INTEGER_CST
)
1717 t
= int_const_binop (MINUS_EXPR
, offset
, field_offset
, 1);
1718 if (!tree_int_cst_lt (t
, DECL_SIZE_UNIT (f
)))
1721 /* If we matched, then set offset to the displacement into
1727 if (!tail_array_field
)
1730 f
= tail_array_field
;
1731 field_type
= TREE_TYPE (f
);
1732 offset
= int_const_binop (MINUS_EXPR
, offset
, byte_position (f
), 1);
1735 /* If we get here, we've got an aggregate field, and a possibly
1736 nonzero offset into them. Recurse and hope for a valid match. */
1738 base
= build1 (INDIRECT_REF
, record_type
, base
);
1739 base
= build3 (COMPONENT_REF
, field_type
, base
, f
, NULL_TREE
);
1741 t
= maybe_fold_offset_to_array_ref (base
, offset
, orig_type
);
1744 return maybe_fold_offset_to_component_ref (field_type
, base
, offset
,
1749 /* A subroutine of fold_stmt_r. Attempt to simplify *(BASE+OFFSET).
1750 Return the simplified expression, or NULL if nothing could be done. */
1753 maybe_fold_stmt_indirect (tree expr
, tree base
, tree offset
)
1757 /* We may well have constructed a double-nested PLUS_EXPR via multiple
1758 substitutions. Fold that down to one. Remove NON_LVALUE_EXPRs that
1759 are sometimes added. */
1761 STRIP_TYPE_NOPS (base
);
1762 TREE_OPERAND (expr
, 0) = base
;
1764 /* One possibility is that the address reduces to a string constant. */
1765 t
= fold_read_from_constant_string (expr
);
1769 /* Add in any offset from a PLUS_EXPR. */
1770 if (TREE_CODE (base
) == PLUS_EXPR
)
1774 offset2
= TREE_OPERAND (base
, 1);
1775 if (TREE_CODE (offset2
) != INTEGER_CST
)
1777 base
= TREE_OPERAND (base
, 0);
1779 offset
= int_const_binop (PLUS_EXPR
, offset
, offset2
, 1);
1782 if (TREE_CODE (base
) == ADDR_EXPR
)
1784 /* Strip the ADDR_EXPR. */
1785 base
= TREE_OPERAND (base
, 0);
1787 /* Fold away CONST_DECL to its value, if the type is scalar. */
1788 if (TREE_CODE (base
) == CONST_DECL
1789 && ccp_decl_initial_min_invariant (DECL_INITIAL (base
)))
1790 return DECL_INITIAL (base
);
1792 /* Try folding *(&B+O) to B[X]. */
1793 t
= maybe_fold_offset_to_array_ref (base
, offset
, TREE_TYPE (expr
));
1797 /* Try folding *(&B+O) to B.X. */
1798 t
= maybe_fold_offset_to_component_ref (TREE_TYPE (base
), base
, offset
,
1799 TREE_TYPE (expr
), false);
1803 /* Fold *&B to B. We can only do this if EXPR is the same type
1804 as BASE. We can't do this if EXPR is the element type of an array
1805 and BASE is the array. */
1806 if (integer_zerop (offset
)
1807 && lang_hooks
.types_compatible_p (TREE_TYPE (base
),
1813 /* We can get here for out-of-range string constant accesses,
1814 such as "_"[3]. Bail out of the entire substitution search
1815 and arrange for the entire statement to be replaced by a
1816 call to __builtin_trap. In all likelihood this will all be
1817 constant-folded away, but in the meantime we can't leave with
1818 something that get_expr_operands can't understand. */
1822 if (TREE_CODE (t
) == ADDR_EXPR
1823 && TREE_CODE (TREE_OPERAND (t
, 0)) == STRING_CST
)
1825 /* FIXME: Except that this causes problems elsewhere with dead
1826 code not being deleted, and we die in the rtl expanders
1827 because we failed to remove some ssa_name. In the meantime,
1828 just return zero. */
1829 /* FIXME2: This condition should be signaled by
1830 fold_read_from_constant_string directly, rather than
1831 re-checking for it here. */
1832 return integer_zero_node
;
1835 /* Try folding *(B+O) to B->X. Still an improvement. */
1836 if (POINTER_TYPE_P (TREE_TYPE (base
)))
1838 t
= maybe_fold_offset_to_component_ref (TREE_TYPE (TREE_TYPE (base
)),
1840 TREE_TYPE (expr
), true);
1846 /* Otherwise we had an offset that we could not simplify. */
1851 /* A subroutine of fold_stmt_r. EXPR is a PLUS_EXPR.
1853 A quaint feature extant in our address arithmetic is that there
1854 can be hidden type changes here. The type of the result need
1855 not be the same as the type of the input pointer.
1857 What we're after here is an expression of the form
1858 (T *)(&array + const)
1859 where the cast doesn't actually exist, but is implicit in the
1860 type of the PLUS_EXPR. We'd like to turn this into
1862 which may be able to propagate further. */
1865 maybe_fold_stmt_addition (tree expr
)
1867 tree op0
= TREE_OPERAND (expr
, 0);
1868 tree op1
= TREE_OPERAND (expr
, 1);
1869 tree ptr_type
= TREE_TYPE (expr
);
1872 bool subtract
= (TREE_CODE (expr
) == MINUS_EXPR
);
1874 /* We're only interested in pointer arithmetic. */
1875 if (!POINTER_TYPE_P (ptr_type
))
1877 /* Canonicalize the integral operand to op1. */
1878 if (INTEGRAL_TYPE_P (TREE_TYPE (op0
)))
1882 t
= op0
, op0
= op1
, op1
= t
;
1884 /* It had better be a constant. */
1885 if (TREE_CODE (op1
) != INTEGER_CST
)
1887 /* The first operand should be an ADDR_EXPR. */
1888 if (TREE_CODE (op0
) != ADDR_EXPR
)
1890 op0
= TREE_OPERAND (op0
, 0);
1892 /* If the first operand is an ARRAY_REF, expand it so that we can fold
1893 the offset into it. */
1894 while (TREE_CODE (op0
) == ARRAY_REF
)
1896 tree array_obj
= TREE_OPERAND (op0
, 0);
1897 tree array_idx
= TREE_OPERAND (op0
, 1);
1898 tree elt_type
= TREE_TYPE (op0
);
1899 tree elt_size
= TYPE_SIZE_UNIT (elt_type
);
1902 if (TREE_CODE (array_idx
) != INTEGER_CST
)
1904 if (TREE_CODE (elt_size
) != INTEGER_CST
)
1907 /* Un-bias the index by the min index of the array type. */
1908 min_idx
= TYPE_DOMAIN (TREE_TYPE (array_obj
));
1911 min_idx
= TYPE_MIN_VALUE (min_idx
);
1914 if (TREE_CODE (min_idx
) != INTEGER_CST
)
1917 array_idx
= fold_convert (TREE_TYPE (min_idx
), array_idx
);
1918 if (!integer_zerop (min_idx
))
1919 array_idx
= int_const_binop (MINUS_EXPR
, array_idx
,
1924 /* Convert the index to a byte offset. */
1925 array_idx
= fold_convert (sizetype
, array_idx
);
1926 array_idx
= int_const_binop (MULT_EXPR
, array_idx
, elt_size
, 0);
1928 /* Update the operands for the next round, or for folding. */
1929 /* If we're manipulating unsigned types, then folding into negative
1930 values can produce incorrect results. Particularly if the type
1931 is smaller than the width of the pointer. */
1933 && TYPE_UNSIGNED (TREE_TYPE (op1
))
1934 && tree_int_cst_lt (array_idx
, op1
))
1936 op1
= int_const_binop (subtract
? MINUS_EXPR
: PLUS_EXPR
,
1942 /* If we weren't able to fold the subtraction into another array reference,
1943 canonicalize the integer for passing to the array and component ref
1944 simplification functions. */
1947 if (TYPE_UNSIGNED (TREE_TYPE (op1
)))
1949 op1
= fold_unary (NEGATE_EXPR
, TREE_TYPE (op1
), op1
);
1950 /* ??? In theory fold should always produce another integer. */
1951 if (op1
== NULL
|| TREE_CODE (op1
) != INTEGER_CST
)
1955 ptd_type
= TREE_TYPE (ptr_type
);
1957 /* At which point we can try some of the same things as for indirects. */
1958 t
= maybe_fold_offset_to_array_ref (op0
, op1
, ptd_type
);
1960 t
= maybe_fold_offset_to_component_ref (TREE_TYPE (op0
), op0
, op1
,
1963 t
= build1 (ADDR_EXPR
, ptr_type
, t
);
1968 /* For passing state through walk_tree into fold_stmt_r and its
1971 struct fold_stmt_r_data
1975 bool *inside_addr_expr_p
;
1978 /* Subroutine of fold_stmt called via walk_tree. We perform several
1979 simplifications of EXPR_P, mostly having to do with pointer arithmetic. */
1982 fold_stmt_r (tree
*expr_p
, int *walk_subtrees
, void *data
)
1984 struct fold_stmt_r_data
*fold_stmt_r_data
= (struct fold_stmt_r_data
*) data
;
1985 bool *inside_addr_expr_p
= fold_stmt_r_data
->inside_addr_expr_p
;
1986 bool *changed_p
= fold_stmt_r_data
->changed_p
;
1987 tree expr
= *expr_p
, t
;
1989 /* ??? It'd be nice if walk_tree had a pre-order option. */
1990 switch (TREE_CODE (expr
))
1993 t
= walk_tree (&TREE_OPERAND (expr
, 0), fold_stmt_r
, data
, NULL
);
1998 t
= maybe_fold_stmt_indirect (expr
, TREE_OPERAND (expr
, 0),
2002 /* ??? Could handle more ARRAY_REFs here, as a variant of INDIRECT_REF.
2003 We'd only want to bother decomposing an existing ARRAY_REF if
2004 the base array is found to have another offset contained within.
2005 Otherwise we'd be wasting time. */
2007 /* If we are not processing expressions found within an
2008 ADDR_EXPR, then we can fold constant array references. */
2009 if (!*inside_addr_expr_p
)
2010 t
= fold_read_from_constant_string (expr
);
2016 *inside_addr_expr_p
= true;
2017 t
= walk_tree (&TREE_OPERAND (expr
, 0), fold_stmt_r
, data
, NULL
);
2018 *inside_addr_expr_p
= false;
2023 /* Set TREE_INVARIANT properly so that the value is properly
2024 considered constant, and so gets propagated as expected. */
2026 recompute_tree_invariant_for_addr_expr (expr
);
2031 t
= walk_tree (&TREE_OPERAND (expr
, 0), fold_stmt_r
, data
, NULL
);
2034 t
= walk_tree (&TREE_OPERAND (expr
, 1), fold_stmt_r
, data
, NULL
);
2039 t
= maybe_fold_stmt_addition (expr
);
2043 t
= walk_tree (&TREE_OPERAND (expr
, 0), fold_stmt_r
, data
, NULL
);
2048 /* Make sure the FIELD_DECL is actually a field in the type on the lhs.
2049 We've already checked that the records are compatible, so we should
2050 come up with a set of compatible fields. */
2052 tree expr_record
= TREE_TYPE (TREE_OPERAND (expr
, 0));
2053 tree expr_field
= TREE_OPERAND (expr
, 1);
2055 if (DECL_FIELD_CONTEXT (expr_field
) != TYPE_MAIN_VARIANT (expr_record
))
2057 expr_field
= find_compatible_field (expr_record
, expr_field
);
2058 TREE_OPERAND (expr
, 1) = expr_field
;
2063 case TARGET_MEM_REF
:
2064 t
= maybe_fold_tmr (expr
);
2068 if (COMPARISON_CLASS_P (TREE_OPERAND (expr
, 0)))
2070 tree op0
= TREE_OPERAND (expr
, 0);
2074 fold_defer_overflow_warnings ();
2075 tem
= fold_binary (TREE_CODE (op0
), TREE_TYPE (op0
),
2076 TREE_OPERAND (op0
, 0),
2077 TREE_OPERAND (op0
, 1));
2078 set
= tem
&& set_rhs (expr_p
, tem
);
2079 fold_undefer_overflow_warnings (set
, fold_stmt_r_data
->stmt
, 0);
2102 /* Return the string length, maximum string length or maximum value of
2104 If ARG is an SSA name variable, follow its use-def chains. If LENGTH
2105 is not NULL and, for TYPE == 0, its value is not equal to the length
2106 we determine or if we are unable to determine the length or value,
2107 return false. VISITED is a bitmap of visited variables.
2108 TYPE is 0 if string length should be returned, 1 for maximum string
2109 length and 2 for maximum value ARG can have. */
2112 get_maxval_strlen (tree arg
, tree
*length
, bitmap visited
, int type
)
2114 tree var
, def_stmt
, val
;
2116 if (TREE_CODE (arg
) != SSA_NAME
)
2118 if (TREE_CODE (arg
) == COND_EXPR
)
2119 return get_maxval_strlen (COND_EXPR_THEN (arg
), length
, visited
, type
)
2120 && get_maxval_strlen (COND_EXPR_ELSE (arg
), length
, visited
, type
);
2125 if (TREE_CODE (val
) != INTEGER_CST
2126 || tree_int_cst_sgn (val
) < 0)
2130 val
= c_strlen (arg
, 1);
2138 if (TREE_CODE (*length
) != INTEGER_CST
2139 || TREE_CODE (val
) != INTEGER_CST
)
2142 if (tree_int_cst_lt (*length
, val
))
2146 else if (simple_cst_equal (val
, *length
) != 1)
2154 /* If we were already here, break the infinite cycle. */
2155 if (bitmap_bit_p (visited
, SSA_NAME_VERSION (arg
)))
2157 bitmap_set_bit (visited
, SSA_NAME_VERSION (arg
));
2160 def_stmt
= SSA_NAME_DEF_STMT (var
);
2162 switch (TREE_CODE (def_stmt
))
2164 case GIMPLE_MODIFY_STMT
:
2168 /* The RHS of the statement defining VAR must either have a
2169 constant length or come from another SSA_NAME with a constant
2171 rhs
= GIMPLE_STMT_OPERAND (def_stmt
, 1);
2173 return get_maxval_strlen (rhs
, length
, visited
, type
);
2178 /* All the arguments of the PHI node must have the same constant
2182 for (i
= 0; i
< PHI_NUM_ARGS (def_stmt
); i
++)
2184 tree arg
= PHI_ARG_DEF (def_stmt
, i
);
2186 /* If this PHI has itself as an argument, we cannot
2187 determine the string length of this argument. However,
2188 if we can find a constant string length for the other
2189 PHI args then we can still be sure that this is a
2190 constant string length. So be optimistic and just
2191 continue with the next argument. */
2192 if (arg
== PHI_RESULT (def_stmt
))
2195 if (!get_maxval_strlen (arg
, length
, visited
, type
))
2211 /* Fold builtin call FN in statement STMT. If it cannot be folded into a
2212 constant, return NULL_TREE. Otherwise, return its constant value. */
2215 ccp_fold_builtin (tree stmt
, tree fn
)
2217 tree result
, val
[3];
2219 int arg_mask
, i
, type
;
2222 call_expr_arg_iterator iter
;
2225 ignore
= TREE_CODE (stmt
) != GIMPLE_MODIFY_STMT
;
2227 /* First try the generic builtin folder. If that succeeds, return the
2229 result
= fold_call_expr (fn
, ignore
);
2233 STRIP_NOPS (result
);
2237 /* Ignore MD builtins. */
2238 callee
= get_callee_fndecl (fn
);
2239 if (DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_MD
)
2242 /* If the builtin could not be folded, and it has no argument list,
2244 nargs
= call_expr_nargs (fn
);
2248 /* Limit the work only for builtins we know how to simplify. */
2249 switch (DECL_FUNCTION_CODE (callee
))
2251 case BUILT_IN_STRLEN
:
2252 case BUILT_IN_FPUTS
:
2253 case BUILT_IN_FPUTS_UNLOCKED
:
2257 case BUILT_IN_STRCPY
:
2258 case BUILT_IN_STRNCPY
:
2262 case BUILT_IN_MEMCPY_CHK
:
2263 case BUILT_IN_MEMPCPY_CHK
:
2264 case BUILT_IN_MEMMOVE_CHK
:
2265 case BUILT_IN_MEMSET_CHK
:
2266 case BUILT_IN_STRNCPY_CHK
:
2270 case BUILT_IN_STRCPY_CHK
:
2271 case BUILT_IN_STPCPY_CHK
:
2275 case BUILT_IN_SNPRINTF_CHK
:
2276 case BUILT_IN_VSNPRINTF_CHK
:
2284 /* Try to use the dataflow information gathered by the CCP process. */
2285 visited
= BITMAP_ALLOC (NULL
);
2287 memset (val
, 0, sizeof (val
));
2288 init_call_expr_arg_iterator (fn
, &iter
);
2289 for (i
= 0; arg_mask
; i
++, arg_mask
>>= 1)
2291 a
= next_call_expr_arg (&iter
);
2294 bitmap_clear (visited
);
2295 if (!get_maxval_strlen (a
, &val
[i
], visited
, type
))
2300 BITMAP_FREE (visited
);
2303 switch (DECL_FUNCTION_CODE (callee
))
2305 case BUILT_IN_STRLEN
:
2308 tree
new = fold_convert (TREE_TYPE (fn
), val
[0]);
2310 /* If the result is not a valid gimple value, or not a cast
2311 of a valid gimple value, then we can not use the result. */
2312 if (is_gimple_val (new)
2313 || (is_gimple_cast (new)
2314 && is_gimple_val (TREE_OPERAND (new, 0))))
2319 case BUILT_IN_STRCPY
:
2320 if (val
[1] && is_gimple_val (val
[1]) && nargs
== 2)
2321 result
= fold_builtin_strcpy (callee
,
2322 CALL_EXPR_ARG (fn
, 0),
2323 CALL_EXPR_ARG (fn
, 1),
2327 case BUILT_IN_STRNCPY
:
2328 if (val
[1] && is_gimple_val (val
[1]) && nargs
== 3)
2329 result
= fold_builtin_strncpy (callee
,
2330 CALL_EXPR_ARG (fn
, 0),
2331 CALL_EXPR_ARG (fn
, 1),
2332 CALL_EXPR_ARG (fn
, 2),
2336 case BUILT_IN_FPUTS
:
2337 result
= fold_builtin_fputs (CALL_EXPR_ARG (fn
, 0),
2338 CALL_EXPR_ARG (fn
, 1),
2339 TREE_CODE (stmt
) != GIMPLE_MODIFY_STMT
, 0,
2343 case BUILT_IN_FPUTS_UNLOCKED
:
2344 result
= fold_builtin_fputs (CALL_EXPR_ARG (fn
, 0),
2345 CALL_EXPR_ARG (fn
, 1),
2346 TREE_CODE (stmt
) != GIMPLE_MODIFY_STMT
, 1,
2350 case BUILT_IN_MEMCPY_CHK
:
2351 case BUILT_IN_MEMPCPY_CHK
:
2352 case BUILT_IN_MEMMOVE_CHK
:
2353 case BUILT_IN_MEMSET_CHK
:
2354 if (val
[2] && is_gimple_val (val
[2]))
2355 result
= fold_builtin_memory_chk (callee
,
2356 CALL_EXPR_ARG (fn
, 0),
2357 CALL_EXPR_ARG (fn
, 1),
2358 CALL_EXPR_ARG (fn
, 2),
2359 CALL_EXPR_ARG (fn
, 3),
2361 DECL_FUNCTION_CODE (callee
));
2364 case BUILT_IN_STRCPY_CHK
:
2365 case BUILT_IN_STPCPY_CHK
:
2366 if (val
[1] && is_gimple_val (val
[1]))
2367 result
= fold_builtin_stxcpy_chk (callee
,
2368 CALL_EXPR_ARG (fn
, 0),
2369 CALL_EXPR_ARG (fn
, 1),
2370 CALL_EXPR_ARG (fn
, 2),
2372 DECL_FUNCTION_CODE (callee
));
2375 case BUILT_IN_STRNCPY_CHK
:
2376 if (val
[2] && is_gimple_val (val
[2]))
2377 result
= fold_builtin_strncpy_chk (CALL_EXPR_ARG (fn
, 0),
2378 CALL_EXPR_ARG (fn
, 1),
2379 CALL_EXPR_ARG (fn
, 2),
2380 CALL_EXPR_ARG (fn
, 3),
2384 case BUILT_IN_SNPRINTF_CHK
:
2385 case BUILT_IN_VSNPRINTF_CHK
:
2386 if (val
[1] && is_gimple_val (val
[1]))
2387 result
= fold_builtin_snprintf_chk (fn
, val
[1],
2388 DECL_FUNCTION_CODE (callee
));
2395 if (result
&& ignore
)
2396 result
= fold_ignored_result (result
);
2401 /* Fold the statement pointed to by STMT_P. In some cases, this function may
2402 replace the whole statement with a new one. Returns true iff folding
2403 makes any changes. */
2406 fold_stmt (tree
*stmt_p
)
2408 tree rhs
, result
, stmt
;
2409 struct fold_stmt_r_data fold_stmt_r_data
;
2410 bool changed
= false;
2411 bool inside_addr_expr
= false;
2415 fold_stmt_r_data
.stmt
= stmt
;
2416 fold_stmt_r_data
.changed_p
= &changed
;
2417 fold_stmt_r_data
.inside_addr_expr_p
= &inside_addr_expr
;
2419 /* If we replaced constants and the statement makes pointer dereferences,
2420 then we may need to fold instances of *&VAR into VAR, etc. */
2421 if (walk_tree (stmt_p
, fold_stmt_r
, &fold_stmt_r_data
, NULL
))
2423 *stmt_p
= build_call_expr (implicit_built_in_decls
[BUILT_IN_TRAP
], 0);
2427 rhs
= get_rhs (stmt
);
2432 if (TREE_CODE (rhs
) == CALL_EXPR
)
2436 /* Check for builtins that CCP can handle using information not
2437 available in the generic fold routines. */
2438 callee
= get_callee_fndecl (rhs
);
2439 if (callee
&& DECL_BUILT_IN (callee
))
2440 result
= ccp_fold_builtin (stmt
, rhs
);
2443 /* Check for resolvable OBJ_TYPE_REF. The only sorts we can resolve
2444 here are when we've propagated the address of a decl into the
2446 /* ??? Should perhaps do this in fold proper. However, doing it
2447 there requires that we create a new CALL_EXPR, and that requires
2448 copying EH region info to the new node. Easier to just do it
2449 here where we can just smash the call operand. Also
2450 CALL_EXPR_RETURN_SLOT_OPT needs to be handled correctly and
2451 copied, fold_call_expr does not have not information. */
2452 callee
= CALL_EXPR_FN (rhs
);
2453 if (TREE_CODE (callee
) == OBJ_TYPE_REF
2454 && lang_hooks
.fold_obj_type_ref
2455 && TREE_CODE (OBJ_TYPE_REF_OBJECT (callee
)) == ADDR_EXPR
2456 && DECL_P (TREE_OPERAND
2457 (OBJ_TYPE_REF_OBJECT (callee
), 0)))
2461 /* ??? Caution: Broken ADDR_EXPR semantics means that
2462 looking at the type of the operand of the addr_expr
2463 can yield an array type. See silly exception in
2464 check_pointer_types_r. */
2466 t
= TREE_TYPE (TREE_TYPE (OBJ_TYPE_REF_OBJECT (callee
)));
2467 t
= lang_hooks
.fold_obj_type_ref (callee
, t
);
2470 CALL_EXPR_FN (rhs
) = t
;
2476 else if (TREE_CODE (rhs
) == COND_EXPR
)
2478 tree temp
= fold (COND_EXPR_COND (rhs
));
2479 if (temp
!= COND_EXPR_COND (rhs
))
2480 result
= fold_build3 (COND_EXPR
, TREE_TYPE (rhs
), temp
,
2481 COND_EXPR_THEN (rhs
), COND_EXPR_ELSE (rhs
));
2484 /* If we couldn't fold the RHS, hand over to the generic fold routines. */
2485 if (result
== NULL_TREE
)
2486 result
= fold (rhs
);
2488 /* Strip away useless type conversions. Both the NON_LVALUE_EXPR that
2489 may have been added by fold, and "useless" type conversions that might
2490 now be apparent due to propagation. */
2491 STRIP_USELESS_TYPE_CONVERSION (result
);
2494 changed
|= set_rhs (stmt_p
, result
);
2499 /* Perform the minimal folding on statement STMT. Only operations like
2500 *&x created by constant propagation are handled. The statement cannot
2501 be replaced with a new one. */
2504 fold_stmt_inplace (tree stmt
)
2506 tree old_stmt
= stmt
, rhs
, new_rhs
;
2507 struct fold_stmt_r_data fold_stmt_r_data
;
2508 bool changed
= false;
2509 bool inside_addr_expr
= false;
2511 fold_stmt_r_data
.stmt
= stmt
;
2512 fold_stmt_r_data
.changed_p
= &changed
;
2513 fold_stmt_r_data
.inside_addr_expr_p
= &inside_addr_expr
;
2515 walk_tree (&stmt
, fold_stmt_r
, &fold_stmt_r_data
, NULL
);
2516 gcc_assert (stmt
== old_stmt
);
2518 rhs
= get_rhs (stmt
);
2519 if (!rhs
|| rhs
== stmt
)
2522 new_rhs
= fold (rhs
);
2523 STRIP_USELESS_TYPE_CONVERSION (new_rhs
);
2527 changed
|= set_rhs (&stmt
, new_rhs
);
2528 gcc_assert (stmt
== old_stmt
);
2533 /* Convert EXPR into a GIMPLE value suitable for substitution on the
2534 RHS of an assignment. Insert the necessary statements before
2536 When IGNORE is set, don't worry about the return value. */
2539 convert_to_gimple_builtin (block_stmt_iterator
*si_p
, tree expr
, bool ignore
)
2541 tree_stmt_iterator ti
;
2542 tree stmt
= bsi_stmt (*si_p
);
2543 tree tmp
, stmts
= NULL
;
2545 push_gimplify_context ();
2548 tmp
= build_empty_stmt ();
2549 gimplify_and_add (expr
, &stmts
);
2552 tmp
= get_initialized_tmp_var (expr
, &stmts
, NULL
);
2553 pop_gimplify_context (NULL
);
2555 if (EXPR_HAS_LOCATION (stmt
))
2556 annotate_all_with_locus (&stmts
, EXPR_LOCATION (stmt
));
2558 /* The replacement can expose previously unreferenced variables. */
2559 for (ti
= tsi_start (stmts
); !tsi_end_p (ti
); tsi_next (&ti
))
2561 tree new_stmt
= tsi_stmt (ti
);
2562 find_new_referenced_vars (tsi_stmt_ptr (ti
));
2563 bsi_insert_before (si_p
, new_stmt
, BSI_NEW_STMT
);
2564 mark_symbols_for_renaming (new_stmt
);
2572 /* A simple pass that attempts to fold all builtin functions. This pass
2573 is run after we've propagated as many constants as we can. */
2576 execute_fold_all_builtins (void)
2578 bool cfg_changed
= false;
2582 block_stmt_iterator i
;
2583 for (i
= bsi_start (bb
); !bsi_end_p (i
); )
2585 tree
*stmtp
= bsi_stmt_ptr (i
);
2586 tree old_stmt
= *stmtp
;
2587 tree call
= get_rhs (*stmtp
);
2588 tree callee
, result
;
2589 enum built_in_function fcode
;
2591 if (!call
|| TREE_CODE (call
) != CALL_EXPR
)
2596 callee
= get_callee_fndecl (call
);
2597 if (!callee
|| DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
)
2602 fcode
= DECL_FUNCTION_CODE (callee
);
2604 result
= ccp_fold_builtin (*stmtp
, call
);
2606 switch (DECL_FUNCTION_CODE (callee
))
2608 case BUILT_IN_CONSTANT_P
:
2609 /* Resolve __builtin_constant_p. If it hasn't been
2610 folded to integer_one_node by now, it's fairly
2611 certain that the value simply isn't constant. */
2612 result
= integer_zero_node
;
2620 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2622 fprintf (dump_file
, "Simplified\n ");
2623 print_generic_stmt (dump_file
, *stmtp
, dump_flags
);
2626 push_stmt_changes (stmtp
);
2628 if (!set_rhs (stmtp
, result
))
2630 result
= convert_to_gimple_builtin (&i
, result
,
2631 TREE_CODE (old_stmt
)
2632 != GIMPLE_MODIFY_STMT
);
2635 bool ok
= set_rhs (stmtp
, result
);
2640 pop_stmt_changes (stmtp
);
2642 if (maybe_clean_or_replace_eh_stmt (old_stmt
, *stmtp
)
2643 && tree_purge_dead_eh_edges (bb
))
2646 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2648 fprintf (dump_file
, "to\n ");
2649 print_generic_stmt (dump_file
, *stmtp
, dump_flags
);
2650 fprintf (dump_file
, "\n");
2653 /* Retry the same statement if it changed into another
2654 builtin, there might be new opportunities now. */
2655 call
= get_rhs (*stmtp
);
2656 if (!call
|| TREE_CODE (call
) != CALL_EXPR
)
2661 callee
= get_callee_fndecl (call
);
2663 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2664 || DECL_FUNCTION_CODE (callee
) == fcode
)
2669 /* Delete unreachable blocks. */
2670 return cfg_changed
? TODO_cleanup_cfg
: 0;
2674 struct tree_opt_pass pass_fold_builtins
=
2678 execute_fold_all_builtins
, /* execute */
2681 0, /* static_pass_number */
2683 PROP_cfg
| PROP_ssa
, /* properties_required */
2684 0, /* properties_provided */
2685 0, /* properties_destroyed */
2686 0, /* todo_flags_start */
2689 | TODO_update_ssa
, /* todo_flags_finish */