rust: Implement TARGET_RUST_OS_INFO for *-*-openbsd*
[official-gcc.git] / gcc / mode-switching.cc
blobf483c831c35f720d5caefd551f3ef05450d720dc
1 /* CPU mode switching
2 Copyright (C) 1998-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "cfghooks.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "cfgrtl.h"
33 #include "cfganal.h"
34 #include "lcm.h"
35 #include "cfgcleanup.h"
36 #include "tree-pass.h"
38 /* We want target macros for the mode switching code to be able to refer
39 to instruction attribute values. */
40 #include "insn-attr.h"
42 #ifdef OPTIMIZE_MODE_SWITCHING
44 /* The algorithm for setting the modes consists of scanning the insn list
45 and finding all the insns which require a specific mode. Each insn gets
46 a unique struct seginfo element. These structures are inserted into a list
47 for each basic block. For each entity, there is an array of bb_info over
48 the flow graph basic blocks (local var 'bb_info'), which contains a list
49 of all insns within that basic block, in the order they are encountered.
51 For each entity, any basic block WITHOUT any insns requiring a specific
52 mode are given a single entry without a mode (each basic block in the
53 flow graph must have at least one entry in the segment table).
55 The LCM algorithm is then run over the flow graph to determine where to
56 place the sets to the highest-priority mode with respect to the first
57 insn in any one block. Any adjustments required to the transparency
58 vectors are made, then the next iteration starts for the next-lower
59 priority mode, till for each entity all modes are exhausted.
61 More details can be found in the code of optimize_mode_switching. */
63 /* This structure contains the information for each insn which requires
64 either single or double mode to be set.
65 MODE is the mode this insn must be executed in.
66 INSN_PTR is the insn to be executed (may be the note that marks the
67 beginning of a basic block).
68 BBNUM is the flow graph basic block this insn occurs in.
69 NEXT is the next insn in the same basic block. */
70 struct seginfo
72 int mode;
73 rtx_insn *insn_ptr;
74 int bbnum;
75 struct seginfo *next;
76 HARD_REG_SET regs_live;
79 struct bb_info
81 struct seginfo *seginfo;
82 int computing;
83 int mode_out;
84 int mode_in;
87 static struct seginfo * new_seginfo (int, rtx_insn *, int, HARD_REG_SET);
88 static void add_seginfo (struct bb_info *, struct seginfo *);
89 static void reg_dies (rtx, HARD_REG_SET *);
90 static void reg_becomes_live (rtx, const_rtx, void *);
92 /* Clear ode I from entity J in bitmap B. */
93 #define clear_mode_bit(b, j, i) \
94 bitmap_clear_bit (b, (j * max_num_modes) + i)
96 /* Test mode I from entity J in bitmap B. */
97 #define mode_bit_p(b, j, i) \
98 bitmap_bit_p (b, (j * max_num_modes) + i)
100 /* Set mode I from entity J in bitmal B. */
101 #define set_mode_bit(b, j, i) \
102 bitmap_set_bit (b, (j * max_num_modes) + i)
104 /* Emit modes segments from EDGE_LIST associated with entity E.
105 INFO gives mode availability for each mode. */
107 static bool
108 commit_mode_sets (struct edge_list *edge_list, int e, struct bb_info *info)
110 bool need_commit = false;
112 for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
114 edge eg = INDEX_EDGE (edge_list, ed);
115 int mode;
117 if ((mode = (int)(intptr_t)(eg->aux)) != -1)
119 HARD_REG_SET live_at_edge;
120 basic_block src_bb = eg->src;
121 int cur_mode = info[src_bb->index].mode_out;
122 rtx_insn *mode_set;
124 REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));
126 rtl_profile_for_edge (eg);
127 start_sequence ();
129 targetm.mode_switching.emit (e, mode, cur_mode, live_at_edge);
131 mode_set = get_insns ();
132 end_sequence ();
133 default_rtl_profile ();
135 /* Do not bother to insert empty sequence. */
136 if (mode_set == NULL)
137 continue;
139 /* We should not get an abnormal edge here. */
140 gcc_assert (! (eg->flags & EDGE_ABNORMAL));
142 need_commit = true;
143 insert_insn_on_edge (mode_set, eg);
147 return need_commit;
150 /* Allocate a new BBINFO structure, initialized with the MODE, INSN,
151 and basic block BB parameters.
152 INSN may not be a NOTE_INSN_BASIC_BLOCK, unless it is an empty
153 basic block; that allows us later to insert instructions in a FIFO-like
154 manner. */
156 static struct seginfo *
157 new_seginfo (int mode, rtx_insn *insn, int bb, HARD_REG_SET regs_live)
159 struct seginfo *ptr;
161 gcc_assert (!NOTE_INSN_BASIC_BLOCK_P (insn)
162 || insn == BB_END (NOTE_BASIC_BLOCK (insn)));
163 ptr = XNEW (struct seginfo);
164 ptr->mode = mode;
165 ptr->insn_ptr = insn;
166 ptr->bbnum = bb;
167 ptr->next = NULL;
168 ptr->regs_live = regs_live;
169 return ptr;
172 /* Add a seginfo element to the end of a list.
173 HEAD is a pointer to the list beginning.
174 INFO is the structure to be linked in. */
176 static void
177 add_seginfo (struct bb_info *head, struct seginfo *info)
179 struct seginfo *ptr;
181 if (head->seginfo == NULL)
182 head->seginfo = info;
183 else
185 ptr = head->seginfo;
186 while (ptr->next != NULL)
187 ptr = ptr->next;
188 ptr->next = info;
192 /* Record in LIVE that register REG died. */
194 static void
195 reg_dies (rtx reg, HARD_REG_SET *live)
197 int regno;
199 if (!REG_P (reg))
200 return;
202 regno = REGNO (reg);
203 if (regno < FIRST_PSEUDO_REGISTER)
204 remove_from_hard_reg_set (live, GET_MODE (reg), regno);
207 /* Record in LIVE that register REG became live.
208 This is called via note_stores. */
210 static void
211 reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
213 int regno;
215 if (GET_CODE (reg) == SUBREG)
216 reg = SUBREG_REG (reg);
218 if (!REG_P (reg))
219 return;
221 regno = REGNO (reg);
222 if (regno < FIRST_PSEUDO_REGISTER)
223 add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
226 /* Split the fallthrough edge to the exit block, so that we can note
227 that there NORMAL_MODE is required. Return the new block if it's
228 inserted before the exit block. Otherwise return null. */
230 static basic_block
231 create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
233 edge eg;
234 edge_iterator ei;
235 basic_block pre_exit;
237 /* The only non-call predecessor at this stage is a block with a
238 fallthrough edge; there can be at most one, but there could be
239 none at all, e.g. when exit is called. */
240 pre_exit = 0;
241 FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
242 if (eg->flags & EDGE_FALLTHRU)
244 basic_block src_bb = eg->src;
245 rtx_insn *last_insn;
246 rtx ret_reg;
248 gcc_assert (!pre_exit);
249 /* If this function returns a value at the end, we have to
250 insert the final mode switch before the return value copy
251 to its hard register.
253 x86 targets use mode-switching infrastructure to
254 conditionally insert vzeroupper instruction at the exit
255 from the function where there is no need to switch the
256 mode before the return value copy. The vzeroupper insertion
257 pass runs after reload, so use !reload_completed as a stand-in
258 for x86 to skip the search for the return value copy insn.
260 N.b.: the code below assumes that the return copy insn
261 immediately precedes its corresponding use insn. This
262 assumption does not hold after reload, since sched1 pass
263 can schedule the return copy insn away from its
264 corresponding use insn. */
265 if (!reload_completed
266 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 1
267 && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
268 && GET_CODE (PATTERN (last_insn)) == USE
269 && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
271 int ret_start = REGNO (ret_reg);
272 int nregs = REG_NREGS (ret_reg);
273 int ret_end = ret_start + nregs;
274 bool short_block = false;
275 bool multi_reg_return = false;
276 bool forced_late_switch = false;
277 rtx_insn *before_return_copy;
281 rtx_insn *return_copy = PREV_INSN (last_insn);
282 rtx return_copy_pat, copy_reg;
283 int copy_start, copy_num;
284 int j;
286 if (NONDEBUG_INSN_P (return_copy))
288 /* When using SJLJ exceptions, the call to the
289 unregister function is inserted between the
290 clobber of the return value and the copy.
291 We do not want to split the block before this
292 or any other call; if we have not found the
293 copy yet, the copy must have been deleted. */
294 if (CALL_P (return_copy))
296 short_block = true;
297 break;
299 return_copy_pat = PATTERN (return_copy);
300 switch (GET_CODE (return_copy_pat))
302 case USE:
303 /* Skip USEs of multiple return registers.
304 __builtin_apply pattern is also handled here. */
305 if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
306 && (targetm.calls.function_value_regno_p
307 (REGNO (XEXP (return_copy_pat, 0)))))
309 multi_reg_return = true;
310 last_insn = return_copy;
311 continue;
313 break;
315 case ASM_OPERANDS:
316 /* Skip barrier insns. */
317 if (!MEM_VOLATILE_P (return_copy_pat))
318 break;
320 /* Fall through. */
322 case ASM_INPUT:
323 case UNSPEC_VOLATILE:
324 last_insn = return_copy;
325 continue;
327 default:
328 break;
331 /* If the return register is not (in its entirety)
332 likely spilled, the return copy might be
333 partially or completely optimized away. */
334 return_copy_pat = single_set (return_copy);
335 if (!return_copy_pat)
337 return_copy_pat = PATTERN (return_copy);
338 if (GET_CODE (return_copy_pat) != CLOBBER)
339 break;
340 else if (!optimize)
342 /* This might be (clobber (reg [<result>]))
343 when not optimizing. Then check if
344 the previous insn is the clobber for
345 the return register. */
346 copy_reg = SET_DEST (return_copy_pat);
347 if (GET_CODE (copy_reg) == REG
348 && !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
350 if (INSN_P (PREV_INSN (return_copy)))
352 return_copy = PREV_INSN (return_copy);
353 return_copy_pat = PATTERN (return_copy);
354 if (GET_CODE (return_copy_pat) != CLOBBER)
355 break;
360 copy_reg = SET_DEST (return_copy_pat);
361 if (GET_CODE (copy_reg) == REG)
362 copy_start = REGNO (copy_reg);
363 else if (GET_CODE (copy_reg) == SUBREG
364 && GET_CODE (SUBREG_REG (copy_reg)) == REG)
365 copy_start = REGNO (SUBREG_REG (copy_reg));
366 else
368 /* When control reaches end of non-void function,
369 there are no return copy insns at all. This
370 avoids an ice on that invalid function. */
371 if (ret_start + nregs == ret_end)
372 short_block = true;
373 break;
375 if (!targetm.calls.function_value_regno_p (copy_start))
376 copy_num = 0;
377 else
378 copy_num = hard_regno_nregs (copy_start,
379 GET_MODE (copy_reg));
381 /* If the return register is not likely spilled, - as is
382 the case for floating point on SH4 - then it might
383 be set by an arithmetic operation that needs a
384 different mode than the exit block. */
385 for (j = n_entities - 1; j >= 0; j--)
387 int e = entity_map[j];
388 int mode =
389 targetm.mode_switching.needed (e, return_copy);
391 if (mode != num_modes[e]
392 && mode != targetm.mode_switching.exit (e))
393 break;
395 if (j >= 0)
397 /* __builtin_return emits a sequence of loads to all
398 return registers. One of them might require
399 another mode than MODE_EXIT, even if it is
400 unrelated to the return value, so we want to put
401 the final mode switch after it. */
402 if (multi_reg_return
403 && targetm.calls.function_value_regno_p
404 (copy_start))
405 forced_late_switch = true;
407 /* For the SH4, floating point loads depend on fpscr,
408 thus we might need to put the final mode switch
409 after the return value copy. That is still OK,
410 because a floating point return value does not
411 conflict with address reloads. */
412 if (copy_start >= ret_start
413 && copy_start + copy_num <= ret_end
414 && GET_CODE (return_copy_pat) == SET
415 && OBJECT_P (SET_SRC (return_copy_pat)))
416 forced_late_switch = true;
417 break;
419 if (copy_num == 0)
421 last_insn = return_copy;
422 continue;
425 if (copy_start >= ret_start
426 && copy_start + copy_num <= ret_end)
427 nregs -= copy_num;
428 else if (!multi_reg_return
429 || !targetm.calls.function_value_regno_p
430 (copy_start))
431 break;
432 last_insn = return_copy;
434 /* ??? Exception handling can lead to the return value
435 copy being already separated from the return value use,
436 as in unwind-dw2.c .
437 Similarly, conditionally returning without a value,
438 and conditionally using builtin_return can lead to an
439 isolated use. */
440 if (return_copy == BB_HEAD (src_bb))
442 short_block = true;
443 break;
445 last_insn = return_copy;
447 while (nregs);
449 /* If we didn't see a full return value copy, verify that there
450 is a plausible reason for this. If some, but not all of the
451 return register is likely spilled, we can expect that there
452 is a copy for the likely spilled part. */
453 gcc_assert (!nregs
454 || forced_late_switch
455 || short_block
456 || !(targetm.class_likely_spilled_p
457 (REGNO_REG_CLASS (ret_start)))
458 || nregs != REG_NREGS (ret_reg)
459 /* For multi-hard-register floating point
460 values, sometimes the likely-spilled part
461 is ordinarily copied first, then the other
462 part is set with an arithmetic operation.
463 This doesn't actually cause reload
464 failures, so let it pass. */
465 || (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
466 && nregs != 1));
468 if (!NOTE_INSN_BASIC_BLOCK_P (last_insn))
470 before_return_copy
471 = emit_note_before (NOTE_INSN_DELETED, last_insn);
472 /* Instructions preceding LAST_INSN in the same block might
473 require a different mode than MODE_EXIT, so if we might
474 have such instructions, keep them in a separate block
475 from pre_exit. */
476 src_bb = split_block (src_bb,
477 PREV_INSN (before_return_copy))->dest;
479 else
480 before_return_copy = last_insn;
481 pre_exit = split_block (src_bb, before_return_copy)->src;
483 else
485 pre_exit = split_edge (eg);
489 return pre_exit;
492 /* Find all insns that need a particular mode setting, and insert the
493 necessary mode switches. Return true if we did work. */
495 static int
496 optimize_mode_switching (void)
498 int e;
499 basic_block bb;
500 bool need_commit = false;
501 static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
502 #define N_ENTITIES ARRAY_SIZE (num_modes)
503 int entity_map[N_ENTITIES] = {};
504 struct bb_info *bb_info[N_ENTITIES] = {};
505 int i, j;
506 int n_entities = 0;
507 int max_num_modes = 0;
508 bool emitted ATTRIBUTE_UNUSED = false;
509 basic_block post_entry = 0;
510 basic_block pre_exit = 0;
511 struct edge_list *edge_list = 0;
513 /* These bitmaps are used for the LCM algorithm. */
514 sbitmap *kill, *del, *insert, *antic, *transp, *comp;
515 sbitmap *avin, *avout;
517 for (e = N_ENTITIES - 1; e >= 0; e--)
518 if (OPTIMIZE_MODE_SWITCHING (e))
520 int entry_exit_extra = 0;
522 /* Create the list of segments within each basic block.
523 If NORMAL_MODE is defined, allow for two extra
524 blocks split from the entry and exit block. */
525 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
526 entry_exit_extra = 3;
528 bb_info[n_entities]
529 = XCNEWVEC (struct bb_info,
530 last_basic_block_for_fn (cfun) + entry_exit_extra);
531 entity_map[n_entities++] = e;
532 if (num_modes[e] > max_num_modes)
533 max_num_modes = num_modes[e];
536 if (! n_entities)
537 return 0;
539 /* Make sure if MODE_ENTRY is defined MODE_EXIT is defined. */
540 gcc_assert ((targetm.mode_switching.entry && targetm.mode_switching.exit)
541 || (!targetm.mode_switching.entry
542 && !targetm.mode_switching.exit));
544 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
546 /* Split the edge from the entry block, so that we can note that
547 there NORMAL_MODE is supplied. */
548 post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
549 pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
552 df_analyze ();
554 /* Create the bitmap vectors. */
555 antic = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
556 n_entities * max_num_modes);
557 transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
558 n_entities * max_num_modes);
559 comp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
560 n_entities * max_num_modes);
561 avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
562 n_entities * max_num_modes);
563 avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
564 n_entities * max_num_modes);
565 kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
566 n_entities * max_num_modes);
568 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
569 bitmap_vector_clear (antic, last_basic_block_for_fn (cfun));
570 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
572 for (j = n_entities - 1; j >= 0; j--)
574 int e = entity_map[j];
575 int no_mode = num_modes[e];
576 struct bb_info *info = bb_info[j];
577 rtx_insn *insn;
579 /* Determine what the first use (if any) need for a mode of entity E is.
580 This will be the mode that is anticipatable for this block.
581 Also compute the initial transparency settings. */
582 FOR_EACH_BB_FN (bb, cfun)
584 struct seginfo *ptr;
585 int last_mode = no_mode;
586 bool any_set_required = false;
587 HARD_REG_SET live_now;
589 info[bb->index].mode_out = info[bb->index].mode_in = no_mode;
591 REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));
593 /* Pretend the mode is clobbered across abnormal edges. */
595 edge_iterator ei;
596 edge eg;
597 FOR_EACH_EDGE (eg, ei, bb->preds)
598 if (eg->flags & EDGE_COMPLEX)
599 break;
600 if (eg)
602 rtx_insn *ins_pos = BB_HEAD (bb);
603 if (LABEL_P (ins_pos))
604 ins_pos = NEXT_INSN (ins_pos);
605 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (ins_pos));
606 if (ins_pos != BB_END (bb))
607 ins_pos = NEXT_INSN (ins_pos);
608 ptr = new_seginfo (no_mode, ins_pos, bb->index, live_now);
609 add_seginfo (info + bb->index, ptr);
610 for (i = 0; i < no_mode; i++)
611 clear_mode_bit (transp[bb->index], j, i);
615 FOR_BB_INSNS (bb, insn)
617 if (INSN_P (insn))
619 int mode = targetm.mode_switching.needed (e, insn);
620 rtx link;
622 if (mode != no_mode && mode != last_mode)
624 any_set_required = true;
625 last_mode = mode;
626 ptr = new_seginfo (mode, insn, bb->index, live_now);
627 add_seginfo (info + bb->index, ptr);
628 for (i = 0; i < no_mode; i++)
629 clear_mode_bit (transp[bb->index], j, i);
632 if (targetm.mode_switching.after)
633 last_mode = targetm.mode_switching.after (e, last_mode,
634 insn);
636 /* Update LIVE_NOW. */
637 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
638 if (REG_NOTE_KIND (link) == REG_DEAD)
639 reg_dies (XEXP (link, 0), &live_now);
641 note_stores (insn, reg_becomes_live, &live_now);
642 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
643 if (REG_NOTE_KIND (link) == REG_UNUSED)
644 reg_dies (XEXP (link, 0), &live_now);
648 info[bb->index].computing = last_mode;
649 /* Check for blocks without ANY mode requirements.
650 N.B. because of MODE_AFTER, last_mode might still
651 be different from no_mode, in which case we need to
652 mark the block as nontransparent. */
653 if (!any_set_required)
655 ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
656 add_seginfo (info + bb->index, ptr);
657 if (last_mode != no_mode)
658 for (i = 0; i < no_mode; i++)
659 clear_mode_bit (transp[bb->index], j, i);
662 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
664 int mode = targetm.mode_switching.entry (e);
666 info[post_entry->index].mode_out =
667 info[post_entry->index].mode_in = no_mode;
668 if (pre_exit)
670 info[pre_exit->index].mode_out =
671 info[pre_exit->index].mode_in = no_mode;
674 if (mode != no_mode)
676 bb = post_entry;
678 /* By always making this nontransparent, we save
679 an extra check in make_preds_opaque. We also
680 need this to avoid confusing pre_edge_lcm when
681 antic is cleared but transp and comp are set. */
682 for (i = 0; i < no_mode; i++)
683 clear_mode_bit (transp[bb->index], j, i);
685 /* Insert a fake computing definition of MODE into entry
686 blocks which compute no mode. This represents the mode on
687 entry. */
688 info[bb->index].computing = mode;
690 if (pre_exit)
691 info[pre_exit->index].seginfo->mode =
692 targetm.mode_switching.exit (e);
696 /* Set the anticipatable and computing arrays. */
697 for (i = 0; i < no_mode; i++)
699 int m = targetm.mode_switching.priority (entity_map[j], i);
701 FOR_EACH_BB_FN (bb, cfun)
703 if (info[bb->index].seginfo->mode == m)
704 set_mode_bit (antic[bb->index], j, m);
706 if (info[bb->index].computing == m)
707 set_mode_bit (comp[bb->index], j, m);
712 /* Calculate the optimal locations for the
713 placement mode switches to modes with priority I. */
715 FOR_EACH_BB_FN (bb, cfun)
716 bitmap_not (kill[bb->index], transp[bb->index]);
718 edge_list = pre_edge_lcm_avs (n_entities * max_num_modes, transp, comp, antic,
719 kill, avin, avout, &insert, &del);
721 for (j = n_entities - 1; j >= 0; j--)
723 int no_mode = num_modes[entity_map[j]];
725 /* Insert all mode sets that have been inserted by lcm. */
727 for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
729 edge eg = INDEX_EDGE (edge_list, ed);
731 eg->aux = (void *)(intptr_t)-1;
733 for (i = 0; i < no_mode; i++)
735 int m = targetm.mode_switching.priority (entity_map[j], i);
736 if (mode_bit_p (insert[ed], j, m))
738 eg->aux = (void *)(intptr_t)m;
739 break;
744 FOR_EACH_BB_FN (bb, cfun)
746 struct bb_info *info = bb_info[j];
747 int last_mode = no_mode;
749 /* intialize mode in availability for bb. */
750 for (i = 0; i < no_mode; i++)
751 if (mode_bit_p (avout[bb->index], j, i))
753 if (last_mode == no_mode)
754 last_mode = i;
755 if (last_mode != i)
757 last_mode = no_mode;
758 break;
761 info[bb->index].mode_out = last_mode;
763 /* intialize mode out availability for bb. */
764 last_mode = no_mode;
765 for (i = 0; i < no_mode; i++)
766 if (mode_bit_p (avin[bb->index], j, i))
768 if (last_mode == no_mode)
769 last_mode = i;
770 if (last_mode != i)
772 last_mode = no_mode;
773 break;
776 info[bb->index].mode_in = last_mode;
778 for (i = 0; i < no_mode; i++)
779 if (mode_bit_p (del[bb->index], j, i))
780 info[bb->index].seginfo->mode = no_mode;
783 /* Now output the remaining mode sets in all the segments. */
785 /* In case there was no mode inserted. the mode information on the edge
786 might not be complete.
787 Update mode info on edges and commit pending mode sets. */
788 need_commit |= commit_mode_sets (edge_list, entity_map[j], bb_info[j]);
790 /* Reset modes for next entity. */
791 clear_aux_for_edges ();
793 FOR_EACH_BB_FN (bb, cfun)
795 struct seginfo *ptr, *next;
796 int cur_mode = bb_info[j][bb->index].mode_in;
798 for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
800 next = ptr->next;
801 if (ptr->mode != no_mode)
803 rtx_insn *mode_set;
805 rtl_profile_for_bb (bb);
806 start_sequence ();
808 targetm.mode_switching.emit (entity_map[j], ptr->mode,
809 cur_mode, ptr->regs_live);
810 mode_set = get_insns ();
811 end_sequence ();
813 /* modes kill each other inside a basic block. */
814 cur_mode = ptr->mode;
816 /* Insert MODE_SET only if it is nonempty. */
817 if (mode_set != NULL_RTX)
819 emitted = true;
820 if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
821 /* We need to emit the insns in a FIFO-like manner,
822 i.e. the first to be emitted at our insertion
823 point ends up first in the instruction steam.
824 Because we made sure that NOTE_INSN_BASIC_BLOCK is
825 only used for initially empty basic blocks, we
826 can achieve this by appending at the end of
827 the block. */
828 emit_insn_after
829 (mode_set, BB_END (NOTE_BASIC_BLOCK (ptr->insn_ptr)));
830 else
831 emit_insn_before (mode_set, ptr->insn_ptr);
834 default_rtl_profile ();
837 free (ptr);
841 free (bb_info[j]);
844 free_edge_list (edge_list);
846 /* Finished. Free up all the things we've allocated. */
847 sbitmap_vector_free (del);
848 sbitmap_vector_free (insert);
849 sbitmap_vector_free (kill);
850 sbitmap_vector_free (antic);
851 sbitmap_vector_free (transp);
852 sbitmap_vector_free (comp);
853 sbitmap_vector_free (avin);
854 sbitmap_vector_free (avout);
856 if (need_commit)
857 commit_edge_insertions ();
859 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
861 free_dominance_info (CDI_DOMINATORS);
862 cleanup_cfg (CLEANUP_NO_INSN_DEL);
864 else if (!need_commit && !emitted)
865 return 0;
867 return 1;
870 #endif /* OPTIMIZE_MODE_SWITCHING */
872 namespace {
874 const pass_data pass_data_mode_switching =
876 RTL_PASS, /* type */
877 "mode_sw", /* name */
878 OPTGROUP_NONE, /* optinfo_flags */
879 TV_MODE_SWITCH, /* tv_id */
880 0, /* properties_required */
881 0, /* properties_provided */
882 0, /* properties_destroyed */
883 0, /* todo_flags_start */
884 TODO_df_finish, /* todo_flags_finish */
887 class pass_mode_switching : public rtl_opt_pass
889 public:
890 pass_mode_switching (gcc::context *ctxt)
891 : rtl_opt_pass (pass_data_mode_switching, ctxt)
894 /* opt_pass methods: */
895 /* The epiphany backend creates a second instance of this pass, so we need
896 a clone method. */
897 opt_pass * clone () final override { return new pass_mode_switching (m_ctxt); }
898 bool gate (function *) final override
900 #ifdef OPTIMIZE_MODE_SWITCHING
901 return true;
902 #else
903 return false;
904 #endif
907 unsigned int execute (function *) final override
909 #ifdef OPTIMIZE_MODE_SWITCHING
910 optimize_mode_switching ();
911 #endif /* OPTIMIZE_MODE_SWITCHING */
912 return 0;
915 }; // class pass_mode_switching
917 } // anon namespace
919 rtl_opt_pass *
920 make_pass_mode_switching (gcc::context *ctxt)
922 return new pass_mode_switching (ctxt);