config/stormy16/stormy16.c (combine_bnp): Add code to handle zero_extension and
[official-gcc.git] / gcc / cfgloopmanip.c
blobab78203715766db0394f7037b58379831e498a17
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "cfglayout.h"
30 #include "output.h"
32 static void duplicate_subloops (struct loops *, struct loop *, struct loop *);
33 static void copy_loops_to (struct loops *, struct loop **, int,
34 struct loop *);
35 static void loop_redirect_edge (edge, basic_block);
36 static bool loop_delete_branch_edge (edge, int);
37 static void remove_bbs (basic_block *, int);
38 static bool rpe_enum_p (basic_block, void *);
39 static int find_path (edge, basic_block **);
40 static bool alp_enum_p (basic_block, void *);
41 static void add_loop (struct loops *, struct loop *);
42 static void fix_loop_placements (struct loops *, struct loop *);
43 static bool fix_bb_placement (struct loops *, basic_block);
44 static void fix_bb_placements (struct loops *, basic_block);
45 static void place_new_loop (struct loops *, struct loop *);
46 static void scale_loop_frequencies (struct loop *, int, int);
47 static void scale_bbs_frequencies (basic_block *, int, int, int);
48 static basic_block create_preheader (struct loop *, int);
49 static void fix_irreducible_loops (basic_block);
50 static void unloop (struct loops *, struct loop *);
52 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
54 /* Splits basic block BB after INSN, returns created edge. Updates loops
55 and dominators. */
56 edge
57 split_loop_bb (basic_block bb, void *insn)
59 edge e;
61 /* Split the block. */
62 e = split_block (bb, insn);
64 /* Add dest to loop. */
65 add_bb_to_loop (e->dest, e->src->loop_father);
67 return e;
70 /* Checks whether basic block BB is dominated by DATA. */
71 static bool
72 rpe_enum_p (basic_block bb, void *data)
74 return dominated_by_p (CDI_DOMINATORS, bb, data);
77 /* Remove basic blocks BBS from loop structure and dominance info,
78 and delete them afterwards. */
79 static void
80 remove_bbs (basic_block *bbs, int nbbs)
82 int i;
84 for (i = 0; i < nbbs; i++)
86 remove_bb_from_loops (bbs[i]);
87 delete_basic_block (bbs[i]);
91 /* Find path -- i.e. the basic blocks dominated by edge E and put them
92 into array BBS, that will be allocated large enough to contain them.
93 E->dest must have exactly one predecessor for this to work (it is
94 easy to achieve and we do not put it here because we do not want to
95 alter anything by this function). The number of basic blocks in the
96 path is returned. */
97 static int
98 find_path (edge e, basic_block **bbs)
100 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
102 /* Find bbs in the path. */
103 *bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
104 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
105 n_basic_blocks, e->dest);
108 /* Fix placement of basic block BB inside loop hierarchy stored in LOOPS --
109 Let L be a loop to that BB belongs. Then every successor of BB must either
110 1) belong to some superloop of loop L, or
111 2) be a header of loop K such that K->outer is superloop of L
112 Returns true if we had to move BB into other loop to enforce this condition,
113 false if the placement of BB was already correct (provided that placements
114 of its successors are correct). */
115 static bool
116 fix_bb_placement (struct loops *loops, basic_block bb)
118 edge e;
119 edge_iterator ei;
120 struct loop *loop = loops->tree_root, *act;
122 FOR_EACH_EDGE (e, ei, bb->succs)
124 if (e->dest == EXIT_BLOCK_PTR)
125 continue;
127 act = e->dest->loop_father;
128 if (act->header == e->dest)
129 act = act->outer;
131 if (flow_loop_nested_p (loop, act))
132 loop = act;
135 if (loop == bb->loop_father)
136 return false;
138 remove_bb_from_loops (bb);
139 add_bb_to_loop (bb, loop);
141 return true;
144 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
145 enforce condition condition stated in description of fix_bb_placement. We
146 start from basic block FROM that had some of its successors removed, so that
147 his placement no longer has to be correct, and iteratively fix placement of
148 its predecessors that may change if placement of FROM changed. Also fix
149 placement of subloops of FROM->loop_father, that might also be altered due
150 to this change; the condition for them is similar, except that instead of
151 successors we consider edges coming out of the loops. */
152 static void
153 fix_bb_placements (struct loops *loops, basic_block from)
155 sbitmap in_queue;
156 basic_block *queue, *qtop, *qbeg, *qend;
157 struct loop *base_loop;
158 edge e;
160 /* We pass through blocks back-reachable from FROM, testing whether some
161 of their successors moved to outer loop. It may be necessary to
162 iterate several times, but it is finite, as we stop unless we move
163 the basic block up the loop structure. The whole story is a bit
164 more complicated due to presence of subloops, those are moved using
165 fix_loop_placement. */
167 base_loop = from->loop_father;
168 if (base_loop == loops->tree_root)
169 return;
171 in_queue = sbitmap_alloc (last_basic_block);
172 sbitmap_zero (in_queue);
173 SET_BIT (in_queue, from->index);
174 /* Prevent us from going out of the base_loop. */
175 SET_BIT (in_queue, base_loop->header->index);
177 queue = xmalloc ((base_loop->num_nodes + 1) * sizeof (basic_block));
178 qtop = queue + base_loop->num_nodes + 1;
179 qbeg = queue;
180 qend = queue + 1;
181 *qbeg = from;
183 while (qbeg != qend)
185 edge_iterator ei;
186 from = *qbeg;
187 qbeg++;
188 if (qbeg == qtop)
189 qbeg = queue;
190 RESET_BIT (in_queue, from->index);
192 if (from->loop_father->header == from)
194 /* Subloop header, maybe move the loop upward. */
195 if (!fix_loop_placement (from->loop_father))
196 continue;
198 else
200 /* Ordinary basic block. */
201 if (!fix_bb_placement (loops, from))
202 continue;
205 /* Something has changed, insert predecessors into queue. */
206 FOR_EACH_EDGE (e, ei, from->preds)
208 basic_block pred = e->src;
209 struct loop *nca;
211 if (TEST_BIT (in_queue, pred->index))
212 continue;
214 /* If it is subloop, then it either was not moved, or
215 the path up the loop tree from base_loop do not contain
216 it. */
217 nca = find_common_loop (pred->loop_father, base_loop);
218 if (pred->loop_father != base_loop
219 && (nca == base_loop
220 || nca != pred->loop_father))
221 pred = pred->loop_father->header;
222 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
224 /* No point in processing it. */
225 continue;
228 if (TEST_BIT (in_queue, pred->index))
229 continue;
231 /* Schedule the basic block. */
232 *qend = pred;
233 qend++;
234 if (qend == qtop)
235 qend = queue;
236 SET_BIT (in_queue, pred->index);
239 free (in_queue);
240 free (queue);
243 /* Basic block from has lost one or more of its predecessors, so it might
244 mo longer be part irreducible loop. Fix it and proceed recursively
245 for its successors if needed. */
246 static void
247 fix_irreducible_loops (basic_block from)
249 basic_block bb;
250 basic_block *stack;
251 int stack_top;
252 sbitmap on_stack;
253 edge *edges, e;
254 unsigned n_edges, i;
256 if (!(from->flags & BB_IRREDUCIBLE_LOOP))
257 return;
259 on_stack = sbitmap_alloc (last_basic_block);
260 sbitmap_zero (on_stack);
261 SET_BIT (on_stack, from->index);
262 stack = xmalloc (from->loop_father->num_nodes * sizeof (basic_block));
263 stack[0] = from;
264 stack_top = 1;
266 while (stack_top)
268 edge_iterator ei;
269 bb = stack[--stack_top];
270 RESET_BIT (on_stack, bb->index);
272 FOR_EACH_EDGE (e, ei, bb->preds)
273 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
274 break;
275 if (e)
276 continue;
278 bb->flags &= ~BB_IRREDUCIBLE_LOOP;
279 if (bb->loop_father->header == bb)
280 edges = get_loop_exit_edges (bb->loop_father, &n_edges);
281 else
283 n_edges = EDGE_COUNT (bb->succs);
284 edges = xmalloc (n_edges * sizeof (edge));
285 FOR_EACH_EDGE (e, ei, bb->succs)
286 edges[ei.index] = e;
289 for (i = 0; i < n_edges; i++)
291 e = edges[i];
293 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
295 if (!flow_bb_inside_loop_p (from->loop_father, e->dest))
296 continue;
298 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
299 if (TEST_BIT (on_stack, e->dest->index))
300 continue;
302 SET_BIT (on_stack, e->dest->index);
303 stack[stack_top++] = e->dest;
306 free (edges);
309 free (on_stack);
310 free (stack);
313 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
314 and update loop structure stored in LOOPS and dominators. Return true if
315 we were able to remove the path, false otherwise (and nothing is affected
316 then). */
317 bool
318 remove_path (struct loops *loops, edge e)
320 edge ae;
321 basic_block *rem_bbs, *bord_bbs, *dom_bbs, from, bb;
322 int i, nrem, n_bord_bbs, n_dom_bbs;
323 sbitmap seen;
324 bool deleted;
326 if (!loop_delete_branch_edge (e, 0))
327 return false;
329 /* We need to check whether basic blocks are dominated by the edge
330 e, but we only have basic block dominators. This is easy to
331 fix -- when e->dest has exactly one predecessor, this corresponds
332 to blocks dominated by e->dest, if not, split the edge. */
333 if (EDGE_COUNT (e->dest->preds) > 1)
334 e = EDGE_PRED (loop_split_edge_with (e, NULL_RTX), 0);
336 /* It may happen that by removing path we remove one or more loops
337 we belong to. In this case first unloop the loops, then proceed
338 normally. We may assume that e->dest is not a header of any loop,
339 as it now has exactly one predecessor. */
340 while (e->src->loop_father->outer
341 && dominated_by_p (CDI_DOMINATORS,
342 e->src->loop_father->latch, e->dest))
343 unloop (loops, e->src->loop_father);
345 /* Identify the path. */
346 nrem = find_path (e, &rem_bbs);
348 n_bord_bbs = 0;
349 bord_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
350 seen = sbitmap_alloc (last_basic_block);
351 sbitmap_zero (seen);
353 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
354 for (i = 0; i < nrem; i++)
355 SET_BIT (seen, rem_bbs[i]->index);
356 for (i = 0; i < nrem; i++)
358 edge_iterator ei;
359 bb = rem_bbs[i];
360 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
361 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
363 SET_BIT (seen, ae->dest->index);
364 bord_bbs[n_bord_bbs++] = ae->dest;
368 /* Remove the path. */
369 from = e->src;
370 deleted = loop_delete_branch_edge (e, 1);
371 gcc_assert (deleted);
372 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
374 /* Cancel loops contained in the path. */
375 for (i = 0; i < nrem; i++)
376 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
377 cancel_loop_tree (loops, rem_bbs[i]->loop_father);
379 remove_bbs (rem_bbs, nrem);
380 free (rem_bbs);
382 /* Find blocks whose dominators may be affected. */
383 n_dom_bbs = 0;
384 sbitmap_zero (seen);
385 for (i = 0; i < n_bord_bbs; i++)
387 basic_block ldom;
389 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
390 if (TEST_BIT (seen, bb->index))
391 continue;
392 SET_BIT (seen, bb->index);
394 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
395 ldom;
396 ldom = next_dom_son (CDI_DOMINATORS, ldom))
397 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
398 dom_bbs[n_dom_bbs++] = ldom;
401 free (seen);
403 /* Recount dominators. */
404 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
405 free (dom_bbs);
407 /* These blocks have lost some predecessor(s), thus their irreducible
408 status could be changed. */
409 for (i = 0; i < n_bord_bbs; i++)
410 fix_irreducible_loops (bord_bbs[i]);
411 free (bord_bbs);
413 /* Fix placements of basic blocks inside loops and the placement of
414 loops in the loop tree. */
415 fix_bb_placements (loops, from);
416 fix_loop_placements (loops, from->loop_father);
418 return true;
421 /* Predicate for enumeration in add_loop. */
422 static bool
423 alp_enum_p (basic_block bb, void *alp_header)
425 return bb != (basic_block) alp_header;
428 /* Given LOOP structure with filled header and latch, find the body of the
429 corresponding loop and add it to LOOPS tree. */
430 static void
431 add_loop (struct loops *loops, struct loop *loop)
433 basic_block *bbs;
434 int i, n;
436 /* Add it to loop structure. */
437 place_new_loop (loops, loop);
438 loop->level = 1;
440 /* Find its nodes. */
441 bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
442 n = dfs_enumerate_from (loop->latch, 1, alp_enum_p,
443 bbs, n_basic_blocks, loop->header);
445 for (i = 0; i < n; i++)
446 add_bb_to_loop (bbs[i], loop);
447 add_bb_to_loop (loop->header, loop);
449 free (bbs);
452 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
453 by NUM/DEN. */
454 static void
455 scale_bbs_frequencies (basic_block *bbs, int nbbs, int num, int den)
457 int i;
458 edge e;
460 for (i = 0; i < nbbs; i++)
462 edge_iterator ei;
463 bbs[i]->frequency = (bbs[i]->frequency * num) / den;
464 bbs[i]->count = RDIV (bbs[i]->count * num, den);
465 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
466 e->count = (e->count * num) /den;
470 /* Multiply all frequencies in LOOP by NUM/DEN. */
471 static void
472 scale_loop_frequencies (struct loop *loop, int num, int den)
474 basic_block *bbs;
476 bbs = get_loop_body (loop);
477 scale_bbs_frequencies (bbs, loop->num_nodes, num, den);
478 free (bbs);
481 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
482 latch to header and update loop tree stored in LOOPS and dominators
483 accordingly. Everything between them plus LATCH_EDGE destination must
484 be dominated by HEADER_EDGE destination, and back-reachable from
485 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
486 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
487 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
488 Returns newly created loop. */
490 struct loop *
491 loopify (struct loops *loops, edge latch_edge, edge header_edge,
492 basic_block switch_bb, edge true_edge, edge false_edge,
493 bool redirect_all_edges)
495 basic_block succ_bb = latch_edge->dest;
496 basic_block pred_bb = header_edge->src;
497 basic_block *dom_bbs, *body;
498 unsigned n_dom_bbs, i;
499 sbitmap seen;
500 struct loop *loop = xcalloc (1, sizeof (struct loop));
501 struct loop *outer = succ_bb->loop_father->outer;
502 int freq, prob, tot_prob;
503 gcov_type cnt;
504 edge e;
505 edge_iterator ei;
507 loop->header = header_edge->dest;
508 loop->latch = latch_edge->src;
510 freq = EDGE_FREQUENCY (header_edge);
511 cnt = header_edge->count;
512 prob = EDGE_SUCC (switch_bb, 0)->probability;
513 tot_prob = prob + EDGE_SUCC (switch_bb, 1)->probability;
514 if (tot_prob == 0)
515 tot_prob = 1;
517 /* Redirect edges. */
518 loop_redirect_edge (latch_edge, loop->header);
519 loop_redirect_edge (true_edge, succ_bb);
521 /* During loop versioning, one of the switch_bb edge is already properly
522 set. Do not redirect it again unless redirect_all_edges is true. */
523 if (redirect_all_edges)
525 loop_redirect_edge (header_edge, switch_bb);
526 loop_redirect_edge (false_edge, loop->header);
528 /* Update dominators. */
529 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
530 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
533 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
535 /* Compute new loop. */
536 add_loop (loops, loop);
537 flow_loop_tree_node_add (outer, loop);
539 /* Add switch_bb to appropriate loop. */
540 add_bb_to_loop (switch_bb, outer);
542 /* Fix frequencies. */
543 switch_bb->frequency = freq;
544 switch_bb->count = cnt;
545 FOR_EACH_EDGE (e, ei, switch_bb->succs)
546 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
547 scale_loop_frequencies (loop, prob, tot_prob);
548 scale_loop_frequencies (succ_bb->loop_father, tot_prob - prob, tot_prob);
550 /* Update dominators of blocks outside of LOOP. */
551 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
552 n_dom_bbs = 0;
553 seen = sbitmap_alloc (last_basic_block);
554 sbitmap_zero (seen);
555 body = get_loop_body (loop);
557 for (i = 0; i < loop->num_nodes; i++)
558 SET_BIT (seen, body[i]->index);
560 for (i = 0; i < loop->num_nodes; i++)
562 basic_block ldom;
564 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
565 ldom;
566 ldom = next_dom_son (CDI_DOMINATORS, ldom))
567 if (!TEST_BIT (seen, ldom->index))
569 SET_BIT (seen, ldom->index);
570 dom_bbs[n_dom_bbs++] = ldom;
574 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
576 free (body);
577 free (seen);
578 free (dom_bbs);
580 return loop;
583 /* Remove the latch edge of a LOOP and update LOOPS tree to indicate that
584 the LOOP was removed. After this function, original loop latch will
585 have no successor, which caller is expected to fix somehow. */
586 static void
587 unloop (struct loops *loops, struct loop *loop)
589 basic_block *body;
590 struct loop *ploop;
591 unsigned i, n;
592 basic_block latch = loop->latch;
593 edge *edges;
594 unsigned n_edges;
596 /* This is relatively straightforward. The dominators are unchanged, as
597 loop header dominates loop latch, so the only thing we have to care of
598 is the placement of loops and basic blocks inside the loop tree. We
599 move them all to the loop->outer, and then let fix_bb_placements do
600 its work. */
602 body = get_loop_body (loop);
603 edges = get_loop_exit_edges (loop, &n_edges);
604 n = loop->num_nodes;
605 for (i = 0; i < n; i++)
606 if (body[i]->loop_father == loop)
608 remove_bb_from_loops (body[i]);
609 add_bb_to_loop (body[i], loop->outer);
611 free(body);
613 while (loop->inner)
615 ploop = loop->inner;
616 flow_loop_tree_node_remove (ploop);
617 flow_loop_tree_node_add (loop->outer, ploop);
620 /* Remove the loop and free its data. */
621 flow_loop_tree_node_remove (loop);
622 loops->parray[loop->num] = NULL;
623 flow_loop_free (loop);
625 remove_edge (EDGE_SUCC (latch, 0));
626 fix_bb_placements (loops, latch);
628 /* If the loop was inside an irreducible region, we would have to somehow
629 update the irreducible marks inside its body. While it is certainly
630 possible to do, it is a bit complicated and this situation should be
631 very rare, so we just remark all loops in this case. */
632 for (i = 0; i < n_edges; i++)
633 if (edges[i]->flags & EDGE_IRREDUCIBLE_LOOP)
634 break;
635 if (i != n_edges)
636 mark_irreducible_loops (loops);
637 free (edges);
640 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
641 FATHER of LOOP such that all of the edges coming out of LOOP belong to
642 FATHER, and set it as outer loop of LOOP. Return 1 if placement of
643 LOOP changed. */
645 fix_loop_placement (struct loop *loop)
647 basic_block *body;
648 unsigned i;
649 edge e;
650 edge_iterator ei;
651 struct loop *father = loop->pred[0], *act;
653 body = get_loop_body (loop);
654 for (i = 0; i < loop->num_nodes; i++)
655 FOR_EACH_EDGE (e, ei, body[i]->succs)
656 if (!flow_bb_inside_loop_p (loop, e->dest))
658 act = find_common_loop (loop, e->dest->loop_father);
659 if (flow_loop_nested_p (father, act))
660 father = act;
662 free (body);
664 if (father != loop->outer)
666 for (act = loop->outer; act != father; act = act->outer)
667 act->num_nodes -= loop->num_nodes;
668 flow_loop_tree_node_remove (loop);
669 flow_loop_tree_node_add (father, loop);
670 return 1;
672 return 0;
675 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
676 condition stated in description of fix_loop_placement holds for them.
677 It is used in case when we removed some edges coming out of LOOP, which
678 may cause the right placement of LOOP inside loop tree to change. */
679 static void
680 fix_loop_placements (struct loops *loops, struct loop *loop)
682 struct loop *outer;
684 while (loop->outer)
686 outer = loop->outer;
687 if (!fix_loop_placement (loop))
688 break;
690 /* Changing the placement of a loop in the loop tree may alter the
691 validity of condition 2) of the description of fix_bb_placement
692 for its preheader, because the successor is the header and belongs
693 to the loop. So call fix_bb_placements to fix up the placement
694 of the preheader and (possibly) of its predecessors. */
695 fix_bb_placements (loops, loop_preheader_edge (loop)->src);
696 loop = outer;
700 /* Creates place for a new LOOP in LOOPS structure. */
701 static void
702 place_new_loop (struct loops *loops, struct loop *loop)
704 loops->parray =
705 xrealloc (loops->parray, (loops->num + 1) * sizeof (struct loop *));
706 loops->parray[loops->num] = loop;
708 loop->num = loops->num++;
711 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
712 created loop into LOOPS structure. */
713 struct loop *
714 duplicate_loop (struct loops *loops, struct loop *loop, struct loop *target)
716 struct loop *cloop;
717 cloop = xcalloc (1, sizeof (struct loop));
718 place_new_loop (loops, cloop);
720 /* Initialize copied loop. */
721 cloop->level = loop->level;
723 /* Set it as copy of loop. */
724 loop->copy = cloop;
726 /* Add it to target. */
727 flow_loop_tree_node_add (target, cloop);
729 return cloop;
732 /* Copies structure of subloops of LOOP into TARGET loop, placing
733 newly created loops into loop tree stored in LOOPS. */
734 static void
735 duplicate_subloops (struct loops *loops, struct loop *loop, struct loop *target)
737 struct loop *aloop, *cloop;
739 for (aloop = loop->inner; aloop; aloop = aloop->next)
741 cloop = duplicate_loop (loops, aloop, target);
742 duplicate_subloops (loops, aloop, cloop);
746 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
747 into TARGET loop, placing newly created loops into loop tree LOOPS. */
748 static void
749 copy_loops_to (struct loops *loops, struct loop **copied_loops, int n, struct loop *target)
751 struct loop *aloop;
752 int i;
754 for (i = 0; i < n; i++)
756 aloop = duplicate_loop (loops, copied_loops[i], target);
757 duplicate_subloops (loops, copied_loops[i], aloop);
761 /* Redirects edge E to basic block DEST. */
762 static void
763 loop_redirect_edge (edge e, basic_block dest)
765 if (e->dest == dest)
766 return;
768 redirect_edge_and_branch_force (e, dest);
771 /* Deletes edge E from a branch if possible. Unless REALLY_DELETE is set,
772 just test whether it is possible to remove the edge. */
773 static bool
774 loop_delete_branch_edge (edge e, int really_delete)
776 basic_block src = e->src;
777 basic_block newdest;
778 int irr;
779 edge snd;
781 gcc_assert (EDGE_COUNT (src->succs) > 1);
783 /* Cannot handle more than two exit edges. */
784 if (EDGE_COUNT (src->succs) > 2)
785 return false;
786 /* And it must be just a simple branch. */
787 if (!any_condjump_p (BB_END (src)))
788 return false;
790 snd = e == EDGE_SUCC (src, 0) ? EDGE_SUCC (src, 1) : EDGE_SUCC (src, 0);
791 newdest = snd->dest;
792 if (newdest == EXIT_BLOCK_PTR)
793 return false;
795 /* Hopefully the above conditions should suffice. */
796 if (!really_delete)
797 return true;
799 /* Redirecting behaves wrongly wrto this flag. */
800 irr = snd->flags & EDGE_IRREDUCIBLE_LOOP;
802 if (!redirect_edge_and_branch (e, newdest))
803 return false;
804 EDGE_SUCC (src, 0)->flags &= ~EDGE_IRREDUCIBLE_LOOP;
805 EDGE_SUCC (src, 0)->flags |= irr;
807 return true;
810 /* Check whether LOOP's body can be duplicated. */
811 bool
812 can_duplicate_loop_p (struct loop *loop)
814 int ret;
815 basic_block *bbs = get_loop_body (loop);
817 ret = can_copy_bbs_p (bbs, loop->num_nodes);
818 free (bbs);
820 return ret;
823 /* The NBBS blocks in BBS will get duplicated and the copies will be placed
824 to LOOP. Update the single_exit information in superloops of LOOP. */
826 static void
827 update_single_exits_after_duplication (basic_block *bbs, unsigned nbbs,
828 struct loop *loop)
830 unsigned i;
832 for (i = 0; i < nbbs; i++)
833 bbs[i]->rbi->duplicated = 1;
835 for (; loop->outer; loop = loop->outer)
837 if (!loop->single_exit)
838 continue;
840 if (loop->single_exit->src->rbi->duplicated)
841 loop->single_exit = NULL;
844 for (i = 0; i < nbbs; i++)
845 bbs[i]->rbi->duplicated = 0;
848 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
849 LOOPS structure and dominators. E's destination must be LOOP header for
850 this to work, i.e. it must be entry or latch edge of this loop; these are
851 unique, as the loops must have preheaders for this function to work
852 correctly (in case E is latch, the function unrolls the loop, if E is entry
853 edge, it peels the loop). Store edges created by copying ORIG edge from
854 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
855 original LOOP body, the other copies are numbered in order given by control
856 flow through them) into TO_REMOVE array. Returns false if duplication is
857 impossible. */
859 duplicate_loop_to_header_edge (struct loop *loop, edge e, struct loops *loops,
860 unsigned int ndupl, sbitmap wont_exit,
861 edge orig, edge *to_remove,
862 unsigned int *n_to_remove, int flags)
864 struct loop *target, *aloop;
865 struct loop **orig_loops;
866 unsigned n_orig_loops;
867 basic_block header = loop->header, latch = loop->latch;
868 basic_block *new_bbs, *bbs, *first_active;
869 basic_block new_bb, bb, first_active_latch = NULL;
870 edge ae, latch_edge;
871 edge spec_edges[2], new_spec_edges[2];
872 #define SE_LATCH 0
873 #define SE_ORIG 1
874 unsigned i, j, n;
875 int is_latch = (latch == e->src);
876 int scale_act = 0, *scale_step = NULL, scale_main = 0;
877 int p, freq_in, freq_le, freq_out_orig;
878 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
879 int add_irreducible_flag;
881 gcc_assert (e->dest == loop->header);
882 gcc_assert (ndupl > 0);
884 if (orig)
886 /* Orig must be edge out of the loop. */
887 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
888 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
891 bbs = get_loop_body (loop);
893 /* Check whether duplication is possible. */
894 if (!can_copy_bbs_p (bbs, loop->num_nodes))
896 free (bbs);
897 return false;
899 new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
901 /* In case we are doing loop peeling and the loop is in the middle of
902 irreducible region, the peeled copies will be inside it too. */
903 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
904 gcc_assert (!is_latch || !add_irreducible_flag);
906 /* Find edge from latch. */
907 latch_edge = loop_latch_edge (loop);
909 if (flags & DLTHE_FLAG_UPDATE_FREQ)
911 /* Calculate coefficients by that we have to scale frequencies
912 of duplicated loop bodies. */
913 freq_in = header->frequency;
914 freq_le = EDGE_FREQUENCY (latch_edge);
915 if (freq_in == 0)
916 freq_in = 1;
917 if (freq_in < freq_le)
918 freq_in = freq_le;
919 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
920 if (freq_out_orig > freq_in - freq_le)
921 freq_out_orig = freq_in - freq_le;
922 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
923 prob_pass_wont_exit =
924 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
926 scale_step = xmalloc (ndupl * sizeof (int));
928 for (i = 1; i <= ndupl; i++)
929 scale_step[i - 1] = TEST_BIT (wont_exit, i)
930 ? prob_pass_wont_exit
931 : prob_pass_thru;
933 if (is_latch)
935 prob_pass_main = TEST_BIT (wont_exit, 0)
936 ? prob_pass_wont_exit
937 : prob_pass_thru;
938 p = prob_pass_main;
939 scale_main = REG_BR_PROB_BASE;
940 for (i = 0; i < ndupl; i++)
942 scale_main += p;
943 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
945 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
946 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
948 else
950 scale_main = REG_BR_PROB_BASE;
951 for (i = 0; i < ndupl; i++)
952 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
953 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
955 for (i = 0; i < ndupl; i++)
956 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
957 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
958 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
961 /* Loop the new bbs will belong to. */
962 target = e->src->loop_father;
964 /* Original loops. */
965 n_orig_loops = 0;
966 for (aloop = loop->inner; aloop; aloop = aloop->next)
967 n_orig_loops++;
968 orig_loops = xcalloc (n_orig_loops, sizeof (struct loop *));
969 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
970 orig_loops[i] = aloop;
972 loop->copy = target;
974 n = loop->num_nodes;
976 first_active = xmalloc (n * sizeof (basic_block));
977 if (is_latch)
979 memcpy (first_active, bbs, n * sizeof (basic_block));
980 first_active_latch = latch;
983 /* Update the information about single exits. */
984 if (loops->state & LOOPS_HAVE_MARKED_SINGLE_EXITS)
985 update_single_exits_after_duplication (bbs, n, target);
987 /* Record exit edge in original loop body. */
988 if (orig && TEST_BIT (wont_exit, 0))
989 to_remove[(*n_to_remove)++] = orig;
991 spec_edges[SE_ORIG] = orig;
992 spec_edges[SE_LATCH] = latch_edge;
994 for (j = 0; j < ndupl; j++)
996 /* Copy loops. */
997 copy_loops_to (loops, orig_loops, n_orig_loops, target);
999 /* Copy bbs. */
1000 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop);
1002 for (i = 0; i < n; i++)
1003 new_bbs[i]->rbi->copy_number = j + 1;
1005 /* Note whether the blocks and edges belong to an irreducible loop. */
1006 if (add_irreducible_flag)
1008 for (i = 0; i < n; i++)
1009 new_bbs[i]->rbi->duplicated = 1;
1010 for (i = 0; i < n; i++)
1012 edge_iterator ei;
1013 new_bb = new_bbs[i];
1014 if (new_bb->loop_father == target)
1015 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1017 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1018 if (ae->dest->rbi->duplicated
1019 && (ae->src->loop_father == target
1020 || ae->dest->loop_father == target))
1021 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1023 for (i = 0; i < n; i++)
1024 new_bbs[i]->rbi->duplicated = 0;
1027 /* Redirect the special edges. */
1028 if (is_latch)
1030 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1031 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1032 loop->header);
1033 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1034 latch = loop->latch = new_bbs[1];
1035 e = latch_edge = new_spec_edges[SE_LATCH];
1037 else
1039 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1040 loop->header);
1041 redirect_edge_and_branch_force (e, new_bbs[0]);
1042 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1043 e = new_spec_edges[SE_LATCH];
1046 /* Record exit edge in this copy. */
1047 if (orig && TEST_BIT (wont_exit, j + 1))
1048 to_remove[(*n_to_remove)++] = new_spec_edges[SE_ORIG];
1050 /* Record the first copy in the control flow order if it is not
1051 the original loop (i.e. in case of peeling). */
1052 if (!first_active_latch)
1054 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1055 first_active_latch = new_bbs[1];
1058 /* Set counts and frequencies. */
1059 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1061 scale_bbs_frequencies (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1062 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1065 free (new_bbs);
1066 free (orig_loops);
1068 /* Update the original loop. */
1069 if (!is_latch)
1070 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1071 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1073 scale_bbs_frequencies (bbs, n, scale_main, REG_BR_PROB_BASE);
1074 free (scale_step);
1077 /* Update dominators of outer blocks if affected. */
1078 for (i = 0; i < n; i++)
1080 basic_block dominated, dom_bb, *dom_bbs;
1081 int n_dom_bbs,j;
1083 bb = bbs[i];
1084 bb->rbi->copy_number = 0;
1086 n_dom_bbs = get_dominated_by (CDI_DOMINATORS, bb, &dom_bbs);
1087 for (j = 0; j < n_dom_bbs; j++)
1089 dominated = dom_bbs[j];
1090 if (flow_bb_inside_loop_p (loop, dominated))
1091 continue;
1092 dom_bb = nearest_common_dominator (
1093 CDI_DOMINATORS, first_active[i], first_active_latch);
1094 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1096 free (dom_bbs);
1098 free (first_active);
1100 free (bbs);
1102 return true;
1105 /* A callback for make_forwarder block, to redirect all edges except for
1106 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1107 whether to redirect it. */
1109 static edge mfb_kj_edge;
1110 static bool
1111 mfb_keep_just (edge e)
1113 return e != mfb_kj_edge;
1116 /* A callback for make_forwarder block, to update data structures for a basic
1117 block JUMP created by redirecting an edge (only the latch edge is being
1118 redirected). */
1120 static void
1121 mfb_update_loops (basic_block jump)
1123 struct loop *loop = EDGE_SUCC (jump, 0)->dest->loop_father;
1125 if (dom_computed[CDI_DOMINATORS])
1126 set_immediate_dominator (CDI_DOMINATORS, jump, EDGE_PRED (jump, 0)->src);
1127 add_bb_to_loop (jump, loop);
1128 loop->latch = jump;
1131 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1132 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1133 entry; otherwise we also force preheader block to have only one successor.
1134 The function also updates dominators. */
1136 static basic_block
1137 create_preheader (struct loop *loop, int flags)
1139 edge e, fallthru;
1140 basic_block dummy;
1141 struct loop *cloop, *ploop;
1142 int nentry = 0;
1143 bool irred = false;
1144 edge_iterator ei;
1146 cloop = loop->outer;
1148 FOR_EACH_EDGE (e, ei, loop->header->preds)
1150 if (e->src == loop->latch)
1151 continue;
1152 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1153 nentry++;
1155 gcc_assert (nentry);
1156 if (nentry == 1)
1158 FOR_EACH_EDGE (e, ei, loop->header->preds)
1159 if (e->src != loop->latch)
1160 break;
1162 if (!(flags & CP_SIMPLE_PREHEADERS) || EDGE_COUNT (e->src->succs) == 1)
1163 return NULL;
1166 mfb_kj_edge = loop_latch_edge (loop);
1167 fallthru = make_forwarder_block (loop->header, mfb_keep_just,
1168 mfb_update_loops);
1169 dummy = fallthru->src;
1170 loop->header = fallthru->dest;
1172 /* The header could be a latch of some superloop(s); due to design of
1173 split_block, it would now move to fallthru->dest. */
1174 for (ploop = loop; ploop; ploop = ploop->outer)
1175 if (ploop->latch == dummy)
1176 ploop->latch = fallthru->dest;
1178 /* Reorganize blocks so that the preheader is not stuck in the middle of the
1179 loop. */
1180 FOR_EACH_EDGE (e, ei, dummy->preds)
1181 if (e->src != loop->latch)
1182 break;
1183 move_block_after (dummy, e->src);
1185 loop->header->loop_father = loop;
1186 add_bb_to_loop (dummy, cloop);
1188 if (irred)
1190 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1191 EDGE_SUCC (dummy, 0)->flags |= EDGE_IRREDUCIBLE_LOOP;
1194 if (dump_file)
1195 fprintf (dump_file, "Created preheader block for loop %i\n",
1196 loop->num);
1198 return dummy;
1201 /* Create preheaders for each loop from loop tree stored in LOOPS; for meaning
1202 of FLAGS see create_preheader. */
1203 void
1204 create_preheaders (struct loops *loops, int flags)
1206 unsigned i;
1207 for (i = 1; i < loops->num; i++)
1208 create_preheader (loops->parray[i], flags);
1209 loops->state |= LOOPS_HAVE_PREHEADERS;
1212 /* Forces all loop latches of loops from loop tree LOOPS to have only single
1213 successor. */
1214 void
1215 force_single_succ_latches (struct loops *loops)
1217 unsigned i;
1218 struct loop *loop;
1219 edge e;
1221 for (i = 1; i < loops->num; i++)
1223 edge_iterator ei;
1224 loop = loops->parray[i];
1225 if (loop->latch != loop->header && EDGE_COUNT (loop->latch->succs) == 1)
1226 continue;
1228 FOR_EACH_EDGE (e, ei, loop->header->preds)
1229 if (e->src == loop->latch)
1230 break;
1232 loop_split_edge_with (e, NULL_RTX);
1234 loops->state |= LOOPS_HAVE_SIMPLE_LATCHES;
1237 /* A quite stupid function to put INSNS on edge E. They are supposed to form
1238 just one basic block. Jumps in INSNS are not handled, so cfg do not have to
1239 be ok after this function. The created block is placed on correct place
1240 in LOOPS structure and its dominator is set. */
1241 basic_block
1242 loop_split_edge_with (edge e, rtx insns)
1244 basic_block src, dest, new_bb;
1245 struct loop *loop_c;
1247 src = e->src;
1248 dest = e->dest;
1250 loop_c = find_common_loop (src->loop_father, dest->loop_father);
1252 /* Create basic block for it. */
1254 new_bb = split_edge (e);
1255 add_bb_to_loop (new_bb, loop_c);
1256 new_bb->flags |= (insns ? BB_SUPERBLOCK : 0);
1258 if (insns)
1259 emit_insn_after (insns, BB_END (new_bb));
1261 if (dest->loop_father->latch == src)
1262 dest->loop_father->latch = new_bb;
1264 return new_bb;
1267 /* Uses the natural loop discovery to recreate loop notes. */
1268 void
1269 create_loop_notes (void)
1271 rtx insn, head, end;
1272 struct loops loops;
1273 struct loop *loop;
1274 basic_block *first, *last, bb, pbb;
1275 struct loop **stack, **top;
1277 #ifdef ENABLE_CHECKING
1278 /* Verify that there really are no loop notes. */
1279 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1280 gcc_assert (!NOTE_P (insn) ||
1281 NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
1282 #endif
1284 flow_loops_find (&loops, LOOP_TREE);
1285 free_dominance_info (CDI_DOMINATORS);
1286 if (loops.num > 1)
1288 last = xcalloc (loops.num, sizeof (basic_block));
1290 FOR_EACH_BB (bb)
1292 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1293 last[loop->num] = bb;
1296 first = xcalloc (loops.num, sizeof (basic_block));
1297 stack = xcalloc (loops.num, sizeof (struct loop *));
1298 top = stack;
1300 FOR_EACH_BB (bb)
1302 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1304 if (!first[loop->num])
1306 *top++ = loop;
1307 first[loop->num] = bb;
1310 if (bb == last[loop->num])
1312 /* Prevent loops from overlapping. */
1313 while (*--top != loop)
1314 last[(*top)->num] = EXIT_BLOCK_PTR;
1316 /* If loop starts with jump into it, place the note in
1317 front of the jump. */
1318 insn = PREV_INSN (BB_HEAD (first[loop->num]));
1319 if (insn
1320 && BARRIER_P (insn))
1321 insn = PREV_INSN (insn);
1323 if (insn
1324 && JUMP_P (insn)
1325 && any_uncondjump_p (insn)
1326 && onlyjump_p (insn))
1328 pbb = BLOCK_FOR_INSN (insn);
1329 gcc_assert (pbb && EDGE_COUNT (pbb->succs) == 1);
1331 if (!flow_bb_inside_loop_p (loop, EDGE_SUCC (pbb, 0)->dest))
1332 insn = BB_HEAD (first[loop->num]);
1334 else
1335 insn = BB_HEAD (first[loop->num]);
1337 head = BB_HEAD (first[loop->num]);
1338 emit_note_before (NOTE_INSN_LOOP_BEG, insn);
1339 BB_HEAD (first[loop->num]) = head;
1341 /* Position the note correctly wrto barrier. */
1342 insn = BB_END (last[loop->num]);
1343 if (NEXT_INSN (insn)
1344 && BARRIER_P (NEXT_INSN (insn)))
1345 insn = NEXT_INSN (insn);
1347 end = BB_END (last[loop->num]);
1348 emit_note_after (NOTE_INSN_LOOP_END, insn);
1349 BB_END (last[loop->num]) = end;
1354 free (first);
1355 free (last);
1356 free (stack);
1358 flow_loops_free (&loops);