2001-09-05 Alexandre Petit-Bianco <apbianco@redhat.com>
[official-gcc.git] / boehm-gc / os_dep.c
blob71fc3b68e209712ed16e6402d0503bdf743db58f
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "private/gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
26 # define __KERNEL__
27 # include <asm/signal.h>
28 # undef __KERNEL__
29 # else
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
35 # if 2 <= __GLIBC__
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
46 # endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49 && !defined(MSWINCE)
50 # include <sys/types.h>
51 # if !defined(MSWIN32) && !defined(SUNOS4)
52 # include <unistd.h>
53 # endif
54 # endif
56 # include <stdio.h>
57 # if defined(MSWINCE)
58 # define SIGSEGV 0 /* value is irrelevant */
59 # else
60 # include <signal.h>
61 # endif
63 /* Blatantly OS dependent routines, except for those that are related */
64 /* to dynamic loading. */
66 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
67 # define NEED_FIND_LIMIT
68 # endif
70 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
71 # define NEED_FIND_LIMIT
72 # endif
74 # if defined(IRIX_THREADS) || defined(HPUX_THREADS)
75 # define NEED_FIND_LIMIT
76 # endif
78 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
79 # define NEED_FIND_LIMIT
80 # endif
82 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
83 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
84 # define NEED_FIND_LIMIT
85 # endif
87 #ifdef NEED_FIND_LIMIT
88 # include <setjmp.h>
89 #endif
91 #ifdef FREEBSD
92 # include <machine/trap.h>
93 #endif
95 #ifdef AMIGA
96 # define GC_AMIGA_DEF
97 # include "AmigaOS.c"
98 # undef GC_AMIGA_DEF
99 #endif
101 #if defined(MSWIN32) || defined(MSWINCE)
102 # define WIN32_LEAN_AND_MEAN
103 # define NOSERVICE
104 # include <windows.h>
105 #endif
107 #ifdef MACOS
108 # include <Processes.h>
109 #endif
111 #ifdef IRIX5
112 # include <sys/uio.h>
113 # include <malloc.h> /* for locking */
114 #endif
115 #ifdef USE_MMAP
116 # include <sys/types.h>
117 # include <sys/mman.h>
118 # include <sys/stat.h>
119 #endif
121 #ifdef UNIX_LIKE
122 # include <fcntl.h>
123 #endif
125 #if defined(SUNOS5SIGS) || defined (HURD) || defined(LINUX)
126 # ifdef SUNOS5SIGS
127 # include <sys/siginfo.h>
128 # endif
129 # undef setjmp
130 # undef longjmp
131 # define setjmp(env) sigsetjmp(env, 1)
132 # define longjmp(env, val) siglongjmp(env, val)
133 # define jmp_buf sigjmp_buf
134 #endif
136 #ifdef DJGPP
137 /* Apparently necessary for djgpp 2.01. May cause problems with */
138 /* other versions. */
139 typedef long unsigned int caddr_t;
140 #endif
142 #ifdef PCR
143 # include "il/PCR_IL.h"
144 # include "th/PCR_ThCtl.h"
145 # include "mm/PCR_MM.h"
146 #endif
148 #if !defined(NO_EXECUTE_PERMISSION)
149 # define OPT_PROT_EXEC PROT_EXEC
150 #else
151 # define OPT_PROT_EXEC 0
152 #endif
154 #if defined(SEARCH_FOR_DATA_START)
155 /* The I386 case can be handled without a search. The Alpha case */
156 /* used to be handled differently as well, but the rules changed */
157 /* for recent Linux versions. This seems to be the easiest way to */
158 /* cover all versions. */
160 # ifdef LINUX
161 # pragma weak __data_start
162 extern int __data_start;
163 # pragma weak data_start
164 extern int data_start;
165 # endif /* LINUX */
166 extern int _end;
168 ptr_t GC_data_start;
170 void GC_init_linux_data_start()
172 extern ptr_t GC_find_limit();
174 # ifdef LINUX
175 /* Try the easy approaches first: */
176 if (&__data_start != 0) {
177 GC_data_start = (ptr_t)(&__data_start);
178 return;
180 if (&data_start != 0) {
181 GC_data_start = (ptr_t)(&data_start);
182 return;
184 # endif /* LINUX */
185 GC_data_start = GC_find_limit((ptr_t)(&_end), FALSE);
187 #endif
189 # ifdef ECOS
191 # ifndef ECOS_GC_MEMORY_SIZE
192 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
193 # endif /* ECOS_GC_MEMORY_SIZE */
195 // setjmp() function, as described in ANSI para 7.6.1.1
196 #define setjmp( __env__ ) hal_setjmp( __env__ )
198 // FIXME: This is a simple way of allocating memory which is
199 // compatible with ECOS early releases. Later releases use a more
200 // sophisticated means of allocating memory than this simple static
201 // allocator, but this method is at least bound to work.
202 static char memory[ECOS_GC_MEMORY_SIZE];
203 static char *brk = memory;
205 static void *tiny_sbrk(ptrdiff_t increment)
207 void *p = brk;
209 brk += increment;
211 if (brk > memory + sizeof memory)
213 brk -= increment;
214 return NULL;
217 return p;
219 #define sbrk tiny_sbrk
220 # endif /* ECOS */
222 #if defined(NETBSD) && defined(__ELF__)
223 ptr_t GC_data_start;
225 void GC_init_netbsd_elf()
227 extern ptr_t GC_find_limit();
228 extern char **environ;
229 /* This may need to be environ, without the underscore, for */
230 /* some versions. */
231 GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
233 #endif
235 # ifdef OS2
237 # include <stddef.h>
239 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
241 struct exe_hdr {
242 unsigned short magic_number;
243 unsigned short padding[29];
244 long new_exe_offset;
247 #define E_MAGIC(x) (x).magic_number
248 #define EMAGIC 0x5A4D
249 #define E_LFANEW(x) (x).new_exe_offset
251 struct e32_exe {
252 unsigned char magic_number[2];
253 unsigned char byte_order;
254 unsigned char word_order;
255 unsigned long exe_format_level;
256 unsigned short cpu;
257 unsigned short os;
258 unsigned long padding1[13];
259 unsigned long object_table_offset;
260 unsigned long object_count;
261 unsigned long padding2[31];
264 #define E32_MAGIC1(x) (x).magic_number[0]
265 #define E32MAGIC1 'L'
266 #define E32_MAGIC2(x) (x).magic_number[1]
267 #define E32MAGIC2 'X'
268 #define E32_BORDER(x) (x).byte_order
269 #define E32LEBO 0
270 #define E32_WORDER(x) (x).word_order
271 #define E32LEWO 0
272 #define E32_CPU(x) (x).cpu
273 #define E32CPU286 1
274 #define E32_OBJTAB(x) (x).object_table_offset
275 #define E32_OBJCNT(x) (x).object_count
277 struct o32_obj {
278 unsigned long size;
279 unsigned long base;
280 unsigned long flags;
281 unsigned long pagemap;
282 unsigned long mapsize;
283 unsigned long reserved;
286 #define O32_FLAGS(x) (x).flags
287 #define OBJREAD 0x0001L
288 #define OBJWRITE 0x0002L
289 #define OBJINVALID 0x0080L
290 #define O32_SIZE(x) (x).size
291 #define O32_BASE(x) (x).base
293 # else /* IBM's compiler */
295 /* A kludge to get around what appears to be a header file bug */
296 # ifndef WORD
297 # define WORD unsigned short
298 # endif
299 # ifndef DWORD
300 # define DWORD unsigned long
301 # endif
303 # define EXE386 1
304 # include <newexe.h>
305 # include <exe386.h>
307 # endif /* __IBMC__ */
309 # define INCL_DOSEXCEPTIONS
310 # define INCL_DOSPROCESS
311 # define INCL_DOSERRORS
312 # define INCL_DOSMODULEMGR
313 # define INCL_DOSMEMMGR
314 # include <os2.h>
317 /* Disable and enable signals during nontrivial allocations */
319 void GC_disable_signals(void)
321 ULONG nest;
323 DosEnterMustComplete(&nest);
324 if (nest != 1) ABORT("nested GC_disable_signals");
327 void GC_enable_signals(void)
329 ULONG nest;
331 DosExitMustComplete(&nest);
332 if (nest != 0) ABORT("GC_enable_signals");
336 # else
338 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
339 && !defined(MSWINCE) \
340 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW)
342 # if defined(sigmask) && !defined(UTS4) && !defined(HURD)
343 /* Use the traditional BSD interface */
344 # define SIGSET_T int
345 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
346 # define SIG_FILL(set) (set) = 0x7fffffff
347 /* Setting the leading bit appears to provoke a bug in some */
348 /* longjmp implementations. Most systems appear not to have */
349 /* a signal 32. */
350 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
351 # else
352 /* Use POSIX/SYSV interface */
353 # define SIGSET_T sigset_t
354 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
355 # define SIG_FILL(set) sigfillset(&set)
356 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
357 # endif
359 static GC_bool mask_initialized = FALSE;
361 static SIGSET_T new_mask;
363 static SIGSET_T old_mask;
365 static SIGSET_T dummy;
367 #if defined(PRINTSTATS) && !defined(THREADS)
368 # define CHECK_SIGNALS
369 int GC_sig_disabled = 0;
370 #endif
372 void GC_disable_signals()
374 if (!mask_initialized) {
375 SIG_FILL(new_mask);
377 SIG_DEL(new_mask, SIGSEGV);
378 SIG_DEL(new_mask, SIGILL);
379 SIG_DEL(new_mask, SIGQUIT);
380 # ifdef SIGBUS
381 SIG_DEL(new_mask, SIGBUS);
382 # endif
383 # ifdef SIGIOT
384 SIG_DEL(new_mask, SIGIOT);
385 # endif
386 # ifdef SIGEMT
387 SIG_DEL(new_mask, SIGEMT);
388 # endif
389 # ifdef SIGTRAP
390 SIG_DEL(new_mask, SIGTRAP);
391 # endif
392 mask_initialized = TRUE;
394 # ifdef CHECK_SIGNALS
395 if (GC_sig_disabled != 0) ABORT("Nested disables");
396 GC_sig_disabled++;
397 # endif
398 SIGSETMASK(old_mask,new_mask);
401 void GC_enable_signals()
403 # ifdef CHECK_SIGNALS
404 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
405 GC_sig_disabled--;
406 # endif
407 SIGSETMASK(dummy,old_mask);
410 # endif /* !PCR */
412 # endif /*!OS/2 */
414 /* Ivan Demakov: simplest way (to me) */
415 #if defined (DOS4GW)
416 void GC_disable_signals() { }
417 void GC_enable_signals() { }
418 #endif
420 /* Find the page size */
421 word GC_page_size;
423 # if defined(MSWIN32) || defined(MSWINCE)
424 void GC_setpagesize()
426 GetSystemInfo(&GC_sysinfo);
427 GC_page_size = GC_sysinfo.dwPageSize;
430 # else
431 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
432 || defined(USE_MUNMAP)
433 void GC_setpagesize()
435 GC_page_size = GETPAGESIZE();
437 # else
438 /* It's acceptable to fake it. */
439 void GC_setpagesize()
441 GC_page_size = HBLKSIZE;
443 # endif
444 # endif
447 * Find the base of the stack.
448 * Used only in single-threaded environment.
449 * With threads, GC_mark_roots needs to know how to do this.
450 * Called with allocator lock held.
452 # if defined(MSWIN32) || defined(MSWINCE)
453 # define is_writable(prot) ((prot) == PAGE_READWRITE \
454 || (prot) == PAGE_WRITECOPY \
455 || (prot) == PAGE_EXECUTE_READWRITE \
456 || (prot) == PAGE_EXECUTE_WRITECOPY)
457 /* Return the number of bytes that are writable starting at p. */
458 /* The pointer p is assumed to be page aligned. */
459 /* If base is not 0, *base becomes the beginning of the */
460 /* allocation region containing p. */
461 word GC_get_writable_length(ptr_t p, ptr_t *base)
463 MEMORY_BASIC_INFORMATION buf;
464 word result;
465 word protect;
467 result = VirtualQuery(p, &buf, sizeof(buf));
468 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
469 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
470 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
471 if (!is_writable(protect)) {
472 return(0);
474 if (buf.State != MEM_COMMIT) return(0);
475 return(buf.RegionSize);
478 ptr_t GC_get_stack_base()
480 int dummy;
481 ptr_t sp = (ptr_t)(&dummy);
482 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
483 word size = GC_get_writable_length(trunc_sp, 0);
485 return(trunc_sp + size);
489 # endif /* MS Windows */
491 # ifdef BEOS
492 # include <kernel/OS.h>
493 ptr_t GC_get_stack_base(){
494 thread_info th;
495 get_thread_info(find_thread(NULL),&th);
496 return th.stack_end;
498 # endif /* BEOS */
501 # ifdef OS2
503 ptr_t GC_get_stack_base()
505 PTIB ptib;
506 PPIB ppib;
508 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
509 GC_err_printf0("DosGetInfoBlocks failed\n");
510 ABORT("DosGetInfoBlocks failed\n");
512 return((ptr_t)(ptib -> tib_pstacklimit));
515 # endif /* OS2 */
517 # ifdef AMIGA
518 # define GC_AMIGA_SB
519 # include "AmigaOS.c"
520 # undef GC_AMIGA_SB
521 # endif /* AMIGA */
523 # if defined(NEED_FIND_LIMIT) || (defined(UNIX_LIKE) && !defined(ECOS))
525 # ifdef __STDC__
526 typedef void (*handler)(int);
527 # else
528 typedef void (*handler)();
529 # endif
531 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) || defined(HURD)
532 static struct sigaction old_segv_act;
533 # if defined(_sigargs) /* !Irix6.x */ || defined(HPUX) || defined(HURD)
534 static struct sigaction old_bus_act;
535 # endif
536 # else
537 static handler old_segv_handler, old_bus_handler;
538 # endif
540 # ifdef __STDC__
541 void GC_set_and_save_fault_handler(handler h)
542 # else
543 void GC_set_and_save_fault_handler(h)
544 handler h;
545 # endif
547 # ifndef ECOS
548 # if defined(SUNOS5SIGS) || defined(IRIX5) \
549 || defined(OSF1) || defined(HURD)
550 struct sigaction act;
552 act.sa_handler = h;
553 # ifdef SUNOS5SIGS
554 act.sa_flags = SA_RESTART | SA_NODEFER;
555 # else
556 act.sa_flags = SA_RESTART;
557 # endif
558 /* The presence of SA_NODEFER represents yet another gross */
559 /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
560 /* interact correctly with -lthread. We hide the confusion */
561 /* by making sure that signal handling doesn't affect the */
562 /* signal mask. */
564 (void) sigemptyset(&act.sa_mask);
565 # ifdef IRIX_THREADS
566 /* Older versions have a bug related to retrieving and */
567 /* and setting a handler at the same time. */
568 (void) sigaction(SIGSEGV, 0, &old_segv_act);
569 (void) sigaction(SIGSEGV, &act, 0);
570 # else
571 (void) sigaction(SIGSEGV, &act, &old_segv_act);
572 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
573 || defined(HPUX) || defined(HURD)
574 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
575 /* Pthreads doesn't exist under Irix 5.x, so we */
576 /* don't have to worry in the threads case. */
577 (void) sigaction(SIGBUS, &act, &old_bus_act);
578 # endif
579 # endif /* IRIX_THREADS */
580 # else
581 old_segv_handler = signal(SIGSEGV, h);
582 # ifdef SIGBUS
583 old_bus_handler = signal(SIGBUS, h);
584 # endif
585 # endif
586 # endif /* ECOS */
588 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
590 # ifdef NEED_FIND_LIMIT
591 /* Some tools to implement HEURISTIC2 */
592 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
593 /* static */ jmp_buf GC_jmp_buf;
595 /*ARGSUSED*/
596 void GC_fault_handler(sig)
597 int sig;
599 longjmp(GC_jmp_buf, 1);
602 void GC_setup_temporary_fault_handler()
604 GC_set_and_save_fault_handler(GC_fault_handler);
607 void GC_reset_fault_handler()
609 # ifndef ECOS
610 # if defined(SUNOS5SIGS) || defined(IRIX5) \
611 || defined(OSF1) || defined(HURD)
612 (void) sigaction(SIGSEGV, &old_segv_act, 0);
613 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
614 || defined(HPUX) || defined(HURD)
615 (void) sigaction(SIGBUS, &old_bus_act, 0);
616 # endif
617 # else
618 (void) signal(SIGSEGV, old_segv_handler);
619 # ifdef SIGBUS
620 (void) signal(SIGBUS, old_bus_handler);
621 # endif
622 # endif
623 # endif /* ECOS */
626 /* Return the first nonaddressible location > p (up) or */
627 /* the smallest location q s.t. [q,p] is addressible (!up). */
628 ptr_t GC_find_limit(p, up)
629 ptr_t p;
630 GC_bool up;
632 # ifndef ECOS
633 static VOLATILE ptr_t result;
634 /* Needs to be static, since otherwise it may not be */
635 /* preserved across the longjmp. Can safely be */
636 /* static since it's only called once, with the */
637 /* allocation lock held. */
640 GC_setup_temporary_fault_handler();
641 if (setjmp(GC_jmp_buf) == 0) {
642 result = (ptr_t)(((word)(p))
643 & ~(MIN_PAGE_SIZE-1));
644 for (;;) {
645 if (up) {
646 result += MIN_PAGE_SIZE;
647 } else {
648 result -= MIN_PAGE_SIZE;
650 GC_noop1((word)(*result));
653 GC_reset_fault_handler();
654 if (!up) {
655 result += MIN_PAGE_SIZE;
657 return(result);
658 # else /* ECOS */
659 abort();
660 # endif /* ECOS */
662 # endif
664 # ifndef ECOS
666 #ifdef LINUX_STACKBOTTOM
668 #include <sys/types.h>
669 #include <sys/stat.h>
671 # define STAT_SKIP 27 /* Number of fields preceding startstack */
672 /* field in /proc/self/stat */
674 # pragma weak __libc_stack_end
675 extern ptr_t __libc_stack_end;
677 # ifdef IA64
678 # pragma weak __libc_ia64_register_backing_store_base
679 extern ptr_t __libc_ia64_register_backing_store_base;
681 ptr_t GC_get_register_stack_base(void)
683 if (0 != &__libc_ia64_register_backing_store_base) {
684 return __libc_ia64_register_backing_store_base;
685 } else {
686 word result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
687 result += BACKING_STORE_ALIGNMENT - 1;
688 result &= ~(BACKING_STORE_ALIGNMENT - 1);
689 return (ptr_t)result;
692 # endif
694 ptr_t GC_linux_stack_base(void)
696 /* We read the stack base value from /proc/self/stat. We do this */
697 /* using direct I/O system calls in order to avoid calling malloc */
698 /* in case REDIRECT_MALLOC is defined. */
699 # define STAT_BUF_SIZE 4096
700 # if defined(GC_USE_LD_WRAP)
701 # define STAT_READ __real_read
702 # else
703 # define STAT_READ read
704 # endif
705 char stat_buf[STAT_BUF_SIZE];
706 int f;
707 char c;
708 word result = 0;
709 size_t i, buf_offset = 0;
711 /* First try the easy way. This should work for glibc 2.2 */
712 if (0 != &__libc_stack_end) {
713 return __libc_stack_end;
715 f = open("/proc/self/stat", O_RDONLY);
716 if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
717 ABORT("Couldn't read /proc/self/stat");
719 c = stat_buf[buf_offset++];
720 /* Skip the required number of fields. This number is hopefully */
721 /* constant across all Linux implementations. */
722 for (i = 0; i < STAT_SKIP; ++i) {
723 while (isspace(c)) c = stat_buf[buf_offset++];
724 while (!isspace(c)) c = stat_buf[buf_offset++];
726 while (isspace(c)) c = stat_buf[buf_offset++];
727 while (isdigit(c)) {
728 result *= 10;
729 result += c - '0';
730 c = stat_buf[buf_offset++];
732 close(f);
733 if (result < 0x10000000) ABORT("Absurd stack bottom value");
734 return (ptr_t)result;
737 #endif /* LINUX_STACKBOTTOM */
739 #ifdef FREEBSD_STACKBOTTOM
741 /* This uses an undocumented sysctl call, but at least one expert */
742 /* believes it will stay. */
744 #include <unistd.h>
745 #include <sys/types.h>
746 #include <sys/sysctl.h>
748 ptr_t GC_freebsd_stack_base(void)
750 int nm[2] = { CTL_KERN, KERN_USRSTACK}, base, len, r;
752 len = sizeof(int);
753 r = sysctl(nm, 2, &base, &len, NULL, 0);
755 if (r) ABORT("Error getting stack base");
757 return (ptr_t)base;
760 #endif /* FREEBSD_STACKBOTTOM */
762 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
763 && !defined(MSWINCE) && !defined(OS2) && !defined(ECOS)
765 ptr_t GC_get_stack_base()
767 word dummy;
768 ptr_t result;
770 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
772 # ifdef STACKBOTTOM
773 return(STACKBOTTOM);
774 # else
775 # ifdef HEURISTIC1
776 # ifdef STACK_GROWS_DOWN
777 result = (ptr_t)((((word)(&dummy))
778 + STACKBOTTOM_ALIGNMENT_M1)
779 & ~STACKBOTTOM_ALIGNMENT_M1);
780 # else
781 result = (ptr_t)(((word)(&dummy))
782 & ~STACKBOTTOM_ALIGNMENT_M1);
783 # endif
784 # endif /* HEURISTIC1 */
785 # ifdef LINUX_STACKBOTTOM
786 result = GC_linux_stack_base();
787 # endif
788 # ifdef FREEBSD_STACKBOTTOM
789 result = GC_freebsd_stack_base();
790 # endif
791 # ifdef HEURISTIC2
792 # ifdef STACK_GROWS_DOWN
793 result = GC_find_limit((ptr_t)(&dummy), TRUE);
794 # ifdef HEURISTIC2_LIMIT
795 if (result > HEURISTIC2_LIMIT
796 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
797 result = HEURISTIC2_LIMIT;
799 # endif
800 # else
801 result = GC_find_limit((ptr_t)(&dummy), FALSE);
802 # ifdef HEURISTIC2_LIMIT
803 if (result < HEURISTIC2_LIMIT
804 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
805 result = HEURISTIC2_LIMIT;
807 # endif
808 # endif
810 # endif /* HEURISTIC2 */
811 # ifdef STACK_GROWS_DOWN
812 if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
813 # endif
814 return(result);
815 # endif /* STACKBOTTOM */
817 # endif /* ECOS */
819 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS */
822 * Register static data segment(s) as roots.
823 * If more data segments are added later then they need to be registered
824 * add that point (as we do with SunOS dynamic loading),
825 * or GC_mark_roots needs to check for them (as we do with PCR).
826 * Called with allocator lock held.
829 # ifdef OS2
831 void GC_register_data_segments()
833 PTIB ptib;
834 PPIB ppib;
835 HMODULE module_handle;
836 # define PBUFSIZ 512
837 UCHAR path[PBUFSIZ];
838 FILE * myexefile;
839 struct exe_hdr hdrdos; /* MSDOS header. */
840 struct e32_exe hdr386; /* Real header for my executable */
841 struct o32_obj seg; /* Currrent segment */
842 int nsegs;
845 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
846 GC_err_printf0("DosGetInfoBlocks failed\n");
847 ABORT("DosGetInfoBlocks failed\n");
849 module_handle = ppib -> pib_hmte;
850 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
851 GC_err_printf0("DosQueryModuleName failed\n");
852 ABORT("DosGetInfoBlocks failed\n");
854 myexefile = fopen(path, "rb");
855 if (myexefile == 0) {
856 GC_err_puts("Couldn't open executable ");
857 GC_err_puts(path); GC_err_puts("\n");
858 ABORT("Failed to open executable\n");
860 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
861 GC_err_puts("Couldn't read MSDOS header from ");
862 GC_err_puts(path); GC_err_puts("\n");
863 ABORT("Couldn't read MSDOS header");
865 if (E_MAGIC(hdrdos) != EMAGIC) {
866 GC_err_puts("Executable has wrong DOS magic number: ");
867 GC_err_puts(path); GC_err_puts("\n");
868 ABORT("Bad DOS magic number");
870 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
871 GC_err_puts("Seek to new header failed in ");
872 GC_err_puts(path); GC_err_puts("\n");
873 ABORT("Bad DOS magic number");
875 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
876 GC_err_puts("Couldn't read MSDOS header from ");
877 GC_err_puts(path); GC_err_puts("\n");
878 ABORT("Couldn't read OS/2 header");
880 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
881 GC_err_puts("Executable has wrong OS/2 magic number:");
882 GC_err_puts(path); GC_err_puts("\n");
883 ABORT("Bad OS/2 magic number");
885 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
886 GC_err_puts("Executable %s has wrong byte order: ");
887 GC_err_puts(path); GC_err_puts("\n");
888 ABORT("Bad byte order");
890 if ( E32_CPU(hdr386) == E32CPU286) {
891 GC_err_puts("GC can't handle 80286 executables: ");
892 GC_err_puts(path); GC_err_puts("\n");
893 EXIT();
895 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
896 SEEK_SET) != 0) {
897 GC_err_puts("Seek to object table failed: ");
898 GC_err_puts(path); GC_err_puts("\n");
899 ABORT("Seek to object table failed");
901 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
902 int flags;
903 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
904 GC_err_puts("Couldn't read obj table entry from ");
905 GC_err_puts(path); GC_err_puts("\n");
906 ABORT("Couldn't read obj table entry");
908 flags = O32_FLAGS(seg);
909 if (!(flags & OBJWRITE)) continue;
910 if (!(flags & OBJREAD)) continue;
911 if (flags & OBJINVALID) {
912 GC_err_printf0("Object with invalid pages?\n");
913 continue;
915 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
919 # else /* !OS2 */
921 # if defined(MSWIN32) || defined(MSWINCE)
923 # ifdef MSWIN32
924 /* Unfortunately, we have to handle win32s very differently from NT, */
925 /* Since VirtualQuery has very different semantics. In particular, */
926 /* under win32s a VirtualQuery call on an unmapped page returns an */
927 /* invalid result. Under GC_register_data_segments is a noop and */
928 /* all real work is done by GC_register_dynamic_libraries. Under */
929 /* win32s, we cannot find the data segments associated with dll's. */
930 /* We rgister the main data segment here. */
931 GC_bool GC_win32s = FALSE; /* We're running under win32s. */
933 GC_bool GC_is_win32s()
935 DWORD v = GetVersion();
937 /* Check that this is not NT, and Windows major version <= 3 */
938 return ((v & 0x80000000) && (v & 0xff) <= 3);
941 void GC_init_win32()
943 GC_win32s = GC_is_win32s();
946 /* Return the smallest address a such that VirtualQuery */
947 /* returns correct results for all addresses between a and start. */
948 /* Assumes VirtualQuery returns correct information for start. */
949 ptr_t GC_least_described_address(ptr_t start)
951 MEMORY_BASIC_INFORMATION buf;
952 DWORD result;
953 LPVOID limit;
954 ptr_t p;
955 LPVOID q;
957 limit = GC_sysinfo.lpMinimumApplicationAddress;
958 p = (ptr_t)((word)start & ~(GC_page_size - 1));
959 for (;;) {
960 q = (LPVOID)(p - GC_page_size);
961 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
962 result = VirtualQuery(q, &buf, sizeof(buf));
963 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
964 p = (ptr_t)(buf.AllocationBase);
966 return(p);
968 # endif
970 /* Is p the start of either the malloc heap, or of one of our */
971 /* heap sections? */
972 GC_bool GC_is_heap_base (ptr_t p)
975 register unsigned i;
977 # ifndef REDIRECT_MALLOC
978 static ptr_t malloc_heap_pointer = 0;
980 if (0 == malloc_heap_pointer) {
981 MEMORY_BASIC_INFORMATION buf;
982 void *pTemp = malloc( 1 );
983 register DWORD result = VirtualQuery(pTemp, &buf, sizeof(buf));
985 free( pTemp );
988 if (result != sizeof(buf)) {
989 ABORT("Weird VirtualQuery result");
991 malloc_heap_pointer = (ptr_t)(buf.AllocationBase);
993 if (p == malloc_heap_pointer) return(TRUE);
994 # endif
995 for (i = 0; i < GC_n_heap_bases; i++) {
996 if (GC_heap_bases[i] == p) return(TRUE);
998 return(FALSE);
1001 # ifdef MSWIN32
1002 void GC_register_root_section(ptr_t static_root)
1004 MEMORY_BASIC_INFORMATION buf;
1005 DWORD result;
1006 DWORD protect;
1007 LPVOID p;
1008 char * base;
1009 char * limit, * new_limit;
1011 if (!GC_win32s) return;
1012 p = base = limit = GC_least_described_address(static_root);
1013 while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1014 result = VirtualQuery(p, &buf, sizeof(buf));
1015 if (result != sizeof(buf) || buf.AllocationBase == 0
1016 || GC_is_heap_base(buf.AllocationBase)) break;
1017 new_limit = (char *)p + buf.RegionSize;
1018 protect = buf.Protect;
1019 if (buf.State == MEM_COMMIT
1020 && is_writable(protect)) {
1021 if ((char *)p == limit) {
1022 limit = new_limit;
1023 } else {
1024 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1025 base = p;
1026 limit = new_limit;
1029 if (p > (LPVOID)new_limit /* overflow */) break;
1030 p = (LPVOID)new_limit;
1032 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1034 #endif
1036 void GC_register_data_segments()
1038 # ifdef MSWIN32
1039 static char dummy;
1040 GC_register_root_section((ptr_t)(&dummy));
1041 # endif
1044 # else /* !OS2 && !Windows */
1046 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1047 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1048 char * GC_SysVGetDataStart(max_page_size, etext_addr)
1049 int max_page_size;
1050 int * etext_addr;
1052 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1053 & ~(sizeof(word) - 1);
1054 /* etext rounded to word boundary */
1055 word next_page = ((text_end + (word)max_page_size - 1)
1056 & ~((word)max_page_size - 1));
1057 word page_offset = (text_end & ((word)max_page_size - 1));
1058 VOLATILE char * result = (char *)(next_page + page_offset);
1059 /* Note that this isnt equivalent to just adding */
1060 /* max_page_size to &etext if &etext is at a page boundary */
1062 GC_setup_temporary_fault_handler();
1063 if (setjmp(GC_jmp_buf) == 0) {
1064 /* Try writing to the address. */
1065 *result = *result;
1066 GC_reset_fault_handler();
1067 } else {
1068 GC_reset_fault_handler();
1069 /* We got here via a longjmp. The address is not readable. */
1070 /* This is known to happen under Solaris 2.4 + gcc, which place */
1071 /* string constants in the text segment, but after etext. */
1072 /* Use plan B. Note that we now know there is a gap between */
1073 /* text and data segments, so plan A bought us something. */
1074 result = (char *)GC_find_limit((ptr_t)(DATAEND) - MIN_PAGE_SIZE, FALSE);
1076 return((char *)result);
1078 # endif
1081 #ifdef AMIGA
1083 # define GC_AMIGA_DS
1084 # include "AmigaOS.c"
1085 # undef GC_AMIGA_DS
1087 #else /* !OS2 && !Windows && !AMIGA */
1089 void GC_register_data_segments()
1091 # if !defined(PCR) && !defined(SRC_M3) && !defined(NEXT) && !defined(MACOS) \
1092 && !defined(MACOSX)
1093 # if defined(REDIRECT_MALLOC) && defined(SOLARIS_THREADS)
1094 /* As of Solaris 2.3, the Solaris threads implementation */
1095 /* allocates the data structure for the initial thread with */
1096 /* sbrk at process startup. It needs to be scanned, so that */
1097 /* we don't lose some malloc allocated data structures */
1098 /* hanging from it. We're on thin ice here ... */
1099 extern caddr_t sbrk();
1101 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1102 # else
1103 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1104 # endif
1105 # endif
1106 # if !defined(PCR) && (defined(NEXT) || defined(MACOSX))
1107 GC_add_roots_inner(DATASTART, (char *) get_end(), FALSE);
1108 # endif
1109 # if defined(MACOS)
1111 # if defined(THINK_C)
1112 extern void* GC_MacGetDataStart(void);
1113 /* globals begin above stack and end at a5. */
1114 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1115 (ptr_t)LMGetCurrentA5(), FALSE);
1116 # else
1117 # if defined(__MWERKS__)
1118 # if !__POWERPC__
1119 extern void* GC_MacGetDataStart(void);
1120 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1121 # if __option(far_data)
1122 extern void* GC_MacGetDataEnd(void);
1123 # endif
1124 /* globals begin above stack and end at a5. */
1125 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1126 (ptr_t)LMGetCurrentA5(), FALSE);
1127 /* MATTHEW: Handle Far Globals */
1128 # if __option(far_data)
1129 /* Far globals follow he QD globals: */
1130 GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1131 (ptr_t)GC_MacGetDataEnd(), FALSE);
1132 # endif
1133 # else
1134 extern char __data_start__[], __data_end__[];
1135 GC_add_roots_inner((ptr_t)&__data_start__,
1136 (ptr_t)&__data_end__, FALSE);
1137 # endif /* __POWERPC__ */
1138 # endif /* __MWERKS__ */
1139 # endif /* !THINK_C */
1141 # endif /* MACOS */
1143 /* Dynamic libraries are added at every collection, since they may */
1144 /* change. */
1147 # endif /* ! AMIGA */
1148 # endif /* ! MSWIN32 && ! MSWINCE*/
1149 # endif /* ! OS2 */
1152 * Auxiliary routines for obtaining memory from OS.
1155 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1156 && !defined(MSWIN32) && !defined(MSWINCE) \
1157 && !defined(MACOS) && !defined(DOS4GW)
1159 # ifdef SUNOS4
1160 extern caddr_t sbrk();
1161 # endif
1162 # ifdef __STDC__
1163 # define SBRK_ARG_T ptrdiff_t
1164 # else
1165 # define SBRK_ARG_T int
1166 # endif
1169 # ifdef RS6000
1170 /* The compiler seems to generate speculative reads one past the end of */
1171 /* an allocated object. Hence we need to make sure that the page */
1172 /* following the last heap page is also mapped. */
1173 ptr_t GC_unix_get_mem(bytes)
1174 word bytes;
1176 caddr_t cur_brk = (caddr_t)sbrk(0);
1177 caddr_t result;
1178 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1179 static caddr_t my_brk_val = 0;
1181 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1182 if (lsbs != 0) {
1183 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1185 if (cur_brk == my_brk_val) {
1186 /* Use the extra block we allocated last time. */
1187 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1188 if (result == (caddr_t)(-1)) return(0);
1189 result -= GC_page_size;
1190 } else {
1191 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1192 if (result == (caddr_t)(-1)) return(0);
1194 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1195 return((ptr_t)result);
1198 #else /* Not RS6000 */
1200 #if defined(USE_MMAP)
1201 /* Tested only under Linux, IRIX5 and Solaris 2 */
1203 #ifdef USE_MMAP_FIXED
1204 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1205 /* Seems to yield better performance on Solaris 2, but can */
1206 /* be unreliable if something is already mapped at the address. */
1207 #else
1208 # define GC_MMAP_FLAGS MAP_PRIVATE
1209 #endif
1211 #ifndef HEAP_START
1212 # define HEAP_START 0
1213 #endif
1215 ptr_t GC_unix_get_mem(bytes)
1216 word bytes;
1218 static GC_bool initialized = FALSE;
1219 static int fd;
1220 void *result;
1221 static ptr_t last_addr = HEAP_START;
1223 if (!initialized) {
1224 fd = open("/dev/zero", O_RDONLY);
1225 initialized = TRUE;
1227 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1228 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1229 GC_MMAP_FLAGS, fd, 0/* offset */);
1230 if (result == MAP_FAILED) return(0);
1231 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1232 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1233 # if !defined(LINUX)
1234 if (last_addr == 0) {
1235 /* Oops. We got the end of the address space. This isn't */
1236 /* usable by arbitrary C code, since one-past-end pointers */
1237 /* don't work, so we discard it and try again. */
1238 munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1239 /* Leave last page mapped, so we can't repeat. */
1240 return GC_unix_get_mem(bytes);
1242 # else
1243 GC_ASSERT(last_addr != 0);
1244 # endif
1245 return((ptr_t)result);
1248 #else /* Not RS6000, not USE_MMAP */
1249 ptr_t GC_unix_get_mem(bytes)
1250 word bytes;
1252 ptr_t result;
1253 # ifdef IRIX5
1254 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1255 /* The equivalent may be needed on other systems as well. */
1256 __LOCK_MALLOC();
1257 # endif
1259 ptr_t cur_brk = (ptr_t)sbrk(0);
1260 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1262 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1263 if (lsbs != 0) {
1264 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1266 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1267 if (result == (ptr_t)(-1)) result = 0;
1269 # ifdef IRIX5
1270 __UNLOCK_MALLOC();
1271 # endif
1272 return(result);
1275 #endif /* Not USE_MMAP */
1276 #endif /* Not RS6000 */
1278 # endif /* UN*X */
1280 # ifdef OS2
1282 void * os2_alloc(size_t bytes)
1284 void * result;
1286 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1287 PAG_WRITE | PAG_COMMIT)
1288 != NO_ERROR) {
1289 return(0);
1291 if (result == 0) return(os2_alloc(bytes));
1292 return(result);
1295 # endif /* OS2 */
1298 # if defined(MSWIN32) || defined(MSWINCE)
1299 SYSTEM_INFO GC_sysinfo;
1300 # endif
1303 # ifdef MSWIN32
1304 word GC_n_heap_bases = 0;
1306 ptr_t GC_win32_get_mem(bytes)
1307 word bytes;
1309 ptr_t result;
1311 if (GC_win32s) {
1312 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1313 /* There are also unconfirmed rumors of other */
1314 /* problems, so we dodge the issue. */
1315 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1316 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1317 } else {
1318 result = (ptr_t) VirtualAlloc(NULL, bytes,
1319 MEM_COMMIT | MEM_RESERVE,
1320 PAGE_EXECUTE_READWRITE);
1322 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1323 /* If I read the documentation correctly, this can */
1324 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1325 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1326 GC_heap_bases[GC_n_heap_bases++] = result;
1327 return(result);
1330 void GC_win32_free_heap ()
1332 if (GC_win32s) {
1333 while (GC_n_heap_bases > 0) {
1334 GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1335 GC_heap_bases[GC_n_heap_bases] = 0;
1339 # endif
1341 #ifdef AMIGA
1342 # define GC_AMIGA_AM
1343 # include "AmigaOS.c"
1344 # undef GC_AMIGA_AM
1345 #endif
1348 # ifdef MSWINCE
1349 word GC_n_heap_bases = 0;
1351 ptr_t GC_wince_get_mem(bytes)
1352 word bytes;
1354 ptr_t result;
1355 word i;
1357 /* Round up allocation size to multiple of page size */
1358 bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1360 /* Try to find reserved, uncommitted pages */
1361 for (i = 0; i < GC_n_heap_bases; i++) {
1362 if (((word)(-(signed_word)GC_heap_lengths[i])
1363 & (GC_sysinfo.dwAllocationGranularity-1))
1364 >= bytes) {
1365 result = GC_heap_bases[i] + GC_heap_lengths[i];
1366 break;
1370 if (i == GC_n_heap_bases) {
1371 /* Reserve more pages */
1372 word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1373 & ~(GC_sysinfo.dwAllocationGranularity-1);
1374 result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1375 MEM_RESERVE | MEM_TOP_DOWN,
1376 PAGE_EXECUTE_READWRITE);
1377 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1378 /* If I read the documentation correctly, this can */
1379 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1380 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1381 GC_heap_bases[GC_n_heap_bases] = result;
1382 GC_heap_lengths[GC_n_heap_bases] = 0;
1383 GC_n_heap_bases++;
1386 /* Commit pages */
1387 result = (ptr_t) VirtualAlloc(result, bytes,
1388 MEM_COMMIT,
1389 PAGE_EXECUTE_READWRITE);
1390 if (result != NULL) {
1391 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1392 GC_heap_lengths[i] += bytes;
1395 return(result);
1397 # endif
1399 #ifdef USE_MUNMAP
1401 /* For now, this only works on Win32/WinCE and some Unix-like */
1402 /* systems. If you have something else, don't define */
1403 /* USE_MUNMAP. */
1404 /* We assume ANSI C to support this feature. */
1406 #if !defined(MSWIN32) && !defined(MSWINCE)
1408 #include <unistd.h>
1409 #include <sys/mman.h>
1410 #include <sys/stat.h>
1411 #include <sys/types.h>
1413 #endif
1415 /* Compute a page aligned starting address for the unmap */
1416 /* operation on a block of size bytes starting at start. */
1417 /* Return 0 if the block is too small to make this feasible. */
1418 ptr_t GC_unmap_start(ptr_t start, word bytes)
1420 ptr_t result = start;
1421 /* Round start to next page boundary. */
1422 result += GC_page_size - 1;
1423 result = (ptr_t)((word)result & ~(GC_page_size - 1));
1424 if (result + GC_page_size > start + bytes) return 0;
1425 return result;
1428 /* Compute end address for an unmap operation on the indicated */
1429 /* block. */
1430 ptr_t GC_unmap_end(ptr_t start, word bytes)
1432 ptr_t end_addr = start + bytes;
1433 end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1434 return end_addr;
1437 /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1438 /* memory using VirtualAlloc and VirtualFree. These functions */
1439 /* work on individual allocations of virtual memory, made */
1440 /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1441 /* The ranges we need to (de)commit may span several of these */
1442 /* allocations; therefore we use VirtualQuery to check */
1443 /* allocation lengths, and split up the range as necessary. */
1445 /* We assume that GC_remap is called on exactly the same range */
1446 /* as a previous call to GC_unmap. It is safe to consistently */
1447 /* round the endpoints in both places. */
1448 void GC_unmap(ptr_t start, word bytes)
1450 ptr_t start_addr = GC_unmap_start(start, bytes);
1451 ptr_t end_addr = GC_unmap_end(start, bytes);
1452 word len = end_addr - start_addr;
1453 if (0 == start_addr) return;
1454 # if defined(MSWIN32) || defined(MSWINCE)
1455 while (len != 0) {
1456 MEMORY_BASIC_INFORMATION mem_info;
1457 GC_word free_len;
1458 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1459 != sizeof(mem_info))
1460 ABORT("Weird VirtualQuery result");
1461 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1462 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1463 ABORT("VirtualFree failed");
1464 GC_unmapped_bytes += free_len;
1465 start_addr += free_len;
1466 len -= free_len;
1468 # else
1469 if (munmap(start_addr, len) != 0) ABORT("munmap failed");
1470 GC_unmapped_bytes += len;
1471 # endif
1475 void GC_remap(ptr_t start, word bytes)
1477 static int zero_descr = -1;
1478 ptr_t start_addr = GC_unmap_start(start, bytes);
1479 ptr_t end_addr = GC_unmap_end(start, bytes);
1480 word len = end_addr - start_addr;
1481 ptr_t result;
1483 # if defined(MSWIN32) || defined(MSWINCE)
1484 if (0 == start_addr) return;
1485 while (len != 0) {
1486 MEMORY_BASIC_INFORMATION mem_info;
1487 GC_word alloc_len;
1488 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1489 != sizeof(mem_info))
1490 ABORT("Weird VirtualQuery result");
1491 alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1492 result = VirtualAlloc(start_addr, alloc_len,
1493 MEM_COMMIT,
1494 PAGE_EXECUTE_READWRITE);
1495 if (result != start_addr) {
1496 ABORT("VirtualAlloc remapping failed");
1498 GC_unmapped_bytes -= alloc_len;
1499 start_addr += alloc_len;
1500 len -= alloc_len;
1502 # else
1503 if (-1 == zero_descr) zero_descr = open("/dev/zero", O_RDWR);
1504 if (0 == start_addr) return;
1505 result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1506 MAP_FIXED | MAP_PRIVATE, zero_descr, 0);
1507 if (result != start_addr) {
1508 ABORT("mmap remapping failed");
1510 GC_unmapped_bytes -= len;
1511 # endif
1514 /* Two adjacent blocks have already been unmapped and are about to */
1515 /* be merged. Unmap the whole block. This typically requires */
1516 /* that we unmap a small section in the middle that was not previously */
1517 /* unmapped due to alignment constraints. */
1518 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1520 ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1521 ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1522 ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1523 ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1524 ptr_t start_addr = end1_addr;
1525 ptr_t end_addr = start2_addr;
1526 word len;
1527 GC_ASSERT(start1 + bytes1 == start2);
1528 if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1529 if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1530 if (0 == start_addr) return;
1531 len = end_addr - start_addr;
1532 # if defined(MSWIN32) || defined(MSWINCE)
1533 while (len != 0) {
1534 MEMORY_BASIC_INFORMATION mem_info;
1535 GC_word free_len;
1536 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1537 != sizeof(mem_info))
1538 ABORT("Weird VirtualQuery result");
1539 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1540 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1541 ABORT("VirtualFree failed");
1542 GC_unmapped_bytes += free_len;
1543 start_addr += free_len;
1544 len -= free_len;
1546 # else
1547 if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1548 GC_unmapped_bytes += len;
1549 # endif
1552 #endif /* USE_MUNMAP */
1554 /* Routine for pushing any additional roots. In THREADS */
1555 /* environment, this is also responsible for marking from */
1556 /* thread stacks. */
1557 #ifndef THREADS
1558 void (*GC_push_other_roots)() = 0;
1559 #else /* THREADS */
1561 # ifdef PCR
1562 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1564 struct PCR_ThCtl_TInfoRep info;
1565 PCR_ERes result;
1567 info.ti_stkLow = info.ti_stkHi = 0;
1568 result = PCR_ThCtl_GetInfo(t, &info);
1569 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1570 return(result);
1573 /* Push the contents of an old object. We treat this as stack */
1574 /* data only becasue that makes it robust against mark stack */
1575 /* overflow. */
1576 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1578 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1579 return(PCR_ERes_okay);
1583 void GC_default_push_other_roots GC_PROTO((void))
1585 /* Traverse data allocated by previous memory managers. */
1587 extern struct PCR_MM_ProcsRep * GC_old_allocator;
1589 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1590 GC_push_old_obj, 0)
1591 != PCR_ERes_okay) {
1592 ABORT("Old object enumeration failed");
1595 /* Traverse all thread stacks. */
1596 if (PCR_ERes_IsErr(
1597 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1598 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1599 ABORT("Thread stack marking failed\n");
1603 # endif /* PCR */
1605 # ifdef SRC_M3
1607 # ifdef ALL_INTERIOR_POINTERS
1608 --> misconfigured
1609 # endif
1611 void GC_push_thread_structures GC_PROTO((void))
1613 /* Not our responsibibility. */
1616 extern void ThreadF__ProcessStacks();
1618 void GC_push_thread_stack(start, stop)
1619 word start, stop;
1621 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
1624 /* Push routine with M3 specific calling convention. */
1625 GC_m3_push_root(dummy1, p, dummy2, dummy3)
1626 word *p;
1627 ptr_t dummy1, dummy2;
1628 int dummy3;
1630 word q = *p;
1632 GC_PUSH_ONE_STACK(q, p);
1635 /* M3 set equivalent to RTHeap.TracedRefTypes */
1636 typedef struct { int elts[1]; } RefTypeSet;
1637 RefTypeSet GC_TracedRefTypes = {{0x1}};
1639 void GC_default_push_other_roots GC_PROTO((void))
1641 /* Use the M3 provided routine for finding static roots. */
1642 /* This is a bit dubious, since it presumes no C roots. */
1643 /* We handle the collector roots explicitly in GC_push_roots */
1644 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
1645 if (GC_words_allocd > 0) {
1646 ThreadF__ProcessStacks(GC_push_thread_stack);
1648 /* Otherwise this isn't absolutely necessary, and we have */
1649 /* startup ordering problems. */
1652 # endif /* SRC_M3 */
1654 # if defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \
1655 || defined(IRIX_THREADS) || defined(LINUX_THREADS) \
1656 || defined(HPUX_THREADS)
1658 extern void GC_push_all_stacks();
1660 void GC_default_push_other_roots GC_PROTO((void))
1662 GC_push_all_stacks();
1665 # endif /* SOLARIS_THREADS || ... */
1667 void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
1669 #endif
1672 * Routines for accessing dirty bits on virtual pages.
1673 * We plan to eventually implement four strategies for doing so:
1674 * DEFAULT_VDB: A simple dummy implementation that treats every page
1675 * as possibly dirty. This makes incremental collection
1676 * useless, but the implementation is still correct.
1677 * PCR_VDB: Use PPCRs virtual dirty bit facility.
1678 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
1679 * works under some SVR4 variants. Even then, it may be
1680 * too slow to be entirely satisfactory. Requires reading
1681 * dirty bits for entire address space. Implementations tend
1682 * to assume that the client is a (slow) debugger.
1683 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
1684 * dirtied pages. The implementation (and implementability)
1685 * is highly system dependent. This usually fails when system
1686 * calls write to a protected page. We prevent the read system
1687 * call from doing so. It is the clients responsibility to
1688 * make sure that other system calls are similarly protected
1689 * or write only to the stack.
1692 GC_bool GC_dirty_maintained = FALSE;
1694 # ifdef DEFAULT_VDB
1696 /* All of the following assume the allocation lock is held, and */
1697 /* signals are disabled. */
1699 /* The client asserts that unallocated pages in the heap are never */
1700 /* written. */
1702 /* Initialize virtual dirty bit implementation. */
1703 void GC_dirty_init()
1705 GC_dirty_maintained = TRUE;
1708 /* Retrieve system dirty bits for heap to a local buffer. */
1709 /* Restore the systems notion of which pages are dirty. */
1710 void GC_read_dirty()
1713 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
1714 /* If the actual page size is different, this returns TRUE if any */
1715 /* of the pages overlapping h are dirty. This routine may err on the */
1716 /* side of labelling pages as dirty (and this implementation does). */
1717 /*ARGSUSED*/
1718 GC_bool GC_page_was_dirty(h)
1719 struct hblk *h;
1721 return(TRUE);
1725 * The following two routines are typically less crucial. They matter
1726 * most with large dynamic libraries, or if we can't accurately identify
1727 * stacks, e.g. under Solaris 2.X. Otherwise the following default
1728 * versions are adequate.
1731 /* Could any valid GC heap pointer ever have been written to this page? */
1732 /*ARGSUSED*/
1733 GC_bool GC_page_was_ever_dirty(h)
1734 struct hblk *h;
1736 return(TRUE);
1739 /* Reset the n pages starting at h to "was never dirty" status. */
1740 void GC_is_fresh(h, n)
1741 struct hblk *h;
1742 word n;
1746 /* A call hints that h is about to be written. */
1747 /* May speed up some dirty bit implementations. */
1748 /*ARGSUSED*/
1749 void GC_write_hint(h)
1750 struct hblk *h;
1754 # endif /* DEFAULT_VDB */
1757 # ifdef MPROTECT_VDB
1760 * See DEFAULT_VDB for interface descriptions.
1764 * This implementation maintains dirty bits itself by catching write
1765 * faults and keeping track of them. We assume nobody else catches
1766 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls
1767 * except as a result of a read system call. This means clients must
1768 * either ensure that system calls do not touch the heap, or must
1769 * provide their own wrappers analogous to the one for read.
1770 * We assume the page size is a multiple of HBLKSIZE.
1771 * This implementation is currently SunOS 4.X and IRIX 5.X specific, though we
1772 * tried to use portable code where easily possible. It is known
1773 * not to work under a number of other systems.
1776 # if !defined(MSWIN32) && !defined(MSWINCE)
1778 # include <sys/mman.h>
1779 # include <signal.h>
1780 # include <sys/syscall.h>
1782 # define PROTECT(addr, len) \
1783 if (mprotect((caddr_t)(addr), (size_t)(len), \
1784 PROT_READ | OPT_PROT_EXEC) < 0) { \
1785 ABORT("mprotect failed"); \
1787 # define UNPROTECT(addr, len) \
1788 if (mprotect((caddr_t)(addr), (size_t)(len), \
1789 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
1790 ABORT("un-mprotect failed"); \
1793 # else
1795 # ifndef MSWINCE
1796 # include <signal.h>
1797 # endif
1799 static DWORD protect_junk;
1800 # define PROTECT(addr, len) \
1801 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
1802 &protect_junk)) { \
1803 DWORD last_error = GetLastError(); \
1804 GC_printf1("Last error code: %lx\n", last_error); \
1805 ABORT("VirtualProtect failed"); \
1807 # define UNPROTECT(addr, len) \
1808 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
1809 &protect_junk)) { \
1810 ABORT("un-VirtualProtect failed"); \
1813 # endif
1815 #if defined(SUNOS4) || defined(FREEBSD)
1816 typedef void (* SIG_PF)();
1817 #endif
1818 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
1819 || defined(MACOSX) || defined(HURD)
1820 # ifdef __STDC__
1821 typedef void (* SIG_PF)(int);
1822 # else
1823 typedef void (* SIG_PF)();
1824 # endif
1825 #endif
1826 #if defined(MSWIN32)
1827 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
1828 # undef SIG_DFL
1829 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
1830 #endif
1831 #if defined(MSWINCE)
1832 typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
1833 # undef SIG_DFL
1834 # define SIG_DFL (SIG_PF) (-1)
1835 #endif
1837 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
1838 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
1839 #endif
1840 #if defined(SUNOS5SIGS)
1841 # ifdef HPUX
1842 # define SIGINFO __siginfo
1843 # else
1844 # define SIGINFO siginfo
1845 # endif
1846 # ifdef __STDC__
1847 typedef void (* REAL_SIG_PF)(int, struct SIGINFO *, void *);
1848 # else
1849 typedef void (* REAL_SIG_PF)();
1850 # endif
1851 #endif
1852 #if defined(LINUX)
1853 # include <linux/version.h>
1854 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(IA64)
1855 typedef struct sigcontext s_c;
1856 # else
1857 typedef struct sigcontext_struct s_c;
1858 # endif
1859 # if defined(ALPHA) || defined(M68K)
1860 typedef void (* REAL_SIG_PF)(int, int, s_c *);
1861 # else
1862 # if defined(IA64) || defined(HP_PA)
1863 typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
1864 # else
1865 typedef void (* REAL_SIG_PF)(int, s_c);
1866 # endif
1867 # endif
1868 # ifdef ALPHA
1869 /* Retrieve fault address from sigcontext structure by decoding */
1870 /* instruction. */
1871 char * get_fault_addr(s_c *sc) {
1872 unsigned instr;
1873 word faultaddr;
1875 instr = *((unsigned *)(sc->sc_pc));
1876 faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
1877 faultaddr += (word) (((int)instr << 16) >> 16);
1878 return (char *)faultaddr;
1880 # endif /* !ALPHA */
1881 # endif
1883 # if defined(MACOSX) /* Should also test for PowerPC? */
1884 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
1886 /* Decodes the machine instruction which was responsible for the sending of the
1887 SIGBUS signal. Sadly this is the only way to find the faulting address because
1888 the signal handler doesn't get it directly from the kernel (although it is
1889 available on the Mach level, but droppped by the BSD personality before it
1890 calls our signal handler...)
1891 This code should be able to deal correctly with all PPCs starting from the
1892 601 up to and including the G4s (including Velocity Engine). */
1893 #define EXTRACT_OP1(iw) (((iw) & 0xFC000000) >> 26)
1894 #define EXTRACT_OP2(iw) (((iw) & 0x000007FE) >> 1)
1895 #define EXTRACT_REGA(iw) (((iw) & 0x001F0000) >> 16)
1896 #define EXTRACT_REGB(iw) (((iw) & 0x03E00000) >> 21)
1897 #define EXTRACT_REGC(iw) (((iw) & 0x0000F800) >> 11)
1898 #define EXTRACT_DISP(iw) ((short *) &(iw))[1]
1900 static char *get_fault_addr(struct sigcontext *scp)
1902 unsigned int instr = *((unsigned int *) scp->sc_ir);
1903 unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
1904 int disp = 0, tmp;
1905 unsigned int baseA = 0, baseB = 0;
1906 unsigned int addr, alignmask = 0xFFFFFFFF;
1908 #ifdef GC_DEBUG_DECODER
1909 GC_err_printf1("Instruction: 0x%lx\n", instr);
1910 GC_err_printf1("Opcode 1: d\n", (int)EXTRACT_OP1(instr));
1911 #endif
1912 switch(EXTRACT_OP1(instr)) {
1913 case 38: /* stb */
1914 case 39: /* stbu */
1915 case 54: /* stfd */
1916 case 55: /* stfdu */
1917 case 52: /* stfs */
1918 case 53: /* stfsu */
1919 case 44: /* sth */
1920 case 45: /* sthu */
1921 case 47: /* stmw */
1922 case 36: /* stw */
1923 case 37: /* stwu */
1924 tmp = EXTRACT_REGA(instr);
1925 if(tmp > 0)
1926 baseA = regs[tmp];
1927 disp = EXTRACT_DISP(instr);
1928 break;
1929 case 31:
1930 #ifdef GC_DEBUG_DECODER
1931 GC_err_printf1("Opcode 2: %d\n", (int)EXTRACT_OP2(instr));
1932 #endif
1933 switch(EXTRACT_OP2(instr)) {
1934 case 86: /* dcbf */
1935 case 54: /* dcbst */
1936 case 1014: /* dcbz */
1937 case 247: /* stbux */
1938 case 215: /* stbx */
1939 case 759: /* stfdux */
1940 case 727: /* stfdx */
1941 case 983: /* stfiwx */
1942 case 695: /* stfsux */
1943 case 663: /* stfsx */
1944 case 918: /* sthbrx */
1945 case 439: /* sthux */
1946 case 407: /* sthx */
1947 case 661: /* stswx */
1948 case 662: /* stwbrx */
1949 case 150: /* stwcx. */
1950 case 183: /* stwux */
1951 case 151: /* stwx */
1952 case 135: /* stvebx */
1953 case 167: /* stvehx */
1954 case 199: /* stvewx */
1955 case 231: /* stvx */
1956 case 487: /* stvxl */
1957 tmp = EXTRACT_REGA(instr);
1958 if(tmp > 0)
1959 baseA = regs[tmp];
1960 baseB = regs[EXTRACT_REGC(instr)];
1961 /* determine Altivec alignment mask */
1962 switch(EXTRACT_OP2(instr)) {
1963 case 167: /* stvehx */
1964 alignmask = 0xFFFFFFFE;
1965 break;
1966 case 199: /* stvewx */
1967 alignmask = 0xFFFFFFFC;
1968 break;
1969 case 231: /* stvx */
1970 alignmask = 0xFFFFFFF0;
1971 break;
1972 case 487: /* stvxl */
1973 alignmask = 0xFFFFFFF0;
1974 break;
1976 break;
1977 case 725: /* stswi */
1978 tmp = EXTRACT_REGA(instr);
1979 if(tmp > 0)
1980 baseA = regs[tmp];
1981 break;
1982 default: /* ignore instruction */
1983 #ifdef GC_DEBUG_DECODER
1984 GC_err_printf("Ignored by inner handler\n");
1985 #endif
1986 return NULL;
1987 break;
1989 break;
1990 default: /* ignore instruction */
1991 #ifdef GC_DEBUG_DECODER
1992 GC_err_printf("Ignored by main handler\n");
1993 #endif
1994 return NULL;
1995 break;
1998 addr = (baseA + baseB) + disp;
1999 addr &= alignmask;
2000 #ifdef GC_DEBUG_DECODER
2001 GC_err_printf1("BaseA: %d\n", baseA);
2002 GC_err_printf1("BaseB: %d\n", baseB);
2003 GC_err_printf1("Disp: %d\n", disp);
2004 GC_err_printf1("Address: %d\n", addr);
2005 #endif
2006 return (char *)addr;
2008 #endif /* MACOSX */
2010 SIG_PF GC_old_bus_handler;
2011 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
2013 #ifdef THREADS
2014 /* We need to lock around the bitmap update in the write fault handler */
2015 /* in order to avoid the risk of losing a bit. We do this with a */
2016 /* test-and-set spin lock if we know how to do that. Otherwise we */
2017 /* check whether we are already in the handler and use the dumb but */
2018 /* safe fallback algorithm of setting all bits in the word. */
2019 /* Contention should be very rare, so we do the minimum to handle it */
2020 /* correctly. */
2021 #ifdef GC_TEST_AND_SET_DEFINED
2022 static VOLATILE unsigned int fault_handler_lock = 0;
2023 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2024 while (GC_test_and_set(&fault_handler_lock)) {}
2025 /* Could also revert to set_pht_entry_from_index_safe if initial */
2026 /* GC_test_and_set fails. */
2027 set_pht_entry_from_index(db, index);
2028 GC_clear(&fault_handler_lock);
2030 #else /* !GC_TEST_AND_SET_DEFINED */
2031 /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2032 /* just before we notice the conflict and correct it. We may end up */
2033 /* looking at it while it's wrong. But this requires contention */
2034 /* exactly when a GC is triggered, which seems far less likely to */
2035 /* fail than the old code, which had no reported failures. Thus we */
2036 /* leave it this way while we think of something better, or support */
2037 /* GC_test_and_set on the remaining platforms. */
2038 static VOLATILE word currently_updating = 0;
2039 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2040 unsigned int update_dummy;
2041 currently_updating = (word)(&update_dummy);
2042 set_pht_entry_from_index(db, index);
2043 /* If we get contention in the 10 or so instruction window here, */
2044 /* and we get stopped by a GC between the two updates, we lose! */
2045 if (currently_updating != (word)(&update_dummy)) {
2046 set_pht_entry_from_index_safe(db, index);
2047 /* We claim that if two threads concurrently try to update the */
2048 /* dirty bit vector, the first one to execute UPDATE_START */
2049 /* will see it changed when UPDATE_END is executed. (Note that */
2050 /* &update_dummy must differ in two distinct threads.) It */
2051 /* will then execute set_pht_entry_from_index_safe, thus */
2052 /* returning us to a safe state, though not soon enough. */
2055 #endif /* !GC_TEST_AND_SET_DEFINED */
2056 #else /* !THREADS */
2057 # define async_set_pht_entry_from_index(db, index) \
2058 set_pht_entry_from_index(db, index)
2059 #endif /* !THREADS */
2061 /*ARGSUSED*/
2062 # if defined (SUNOS4) || defined(FREEBSD)
2063 void GC_write_fault_handler(sig, code, scp, addr)
2064 int sig, code;
2065 struct sigcontext *scp;
2066 char * addr;
2067 # ifdef SUNOS4
2068 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2069 # define CODE_OK (FC_CODE(code) == FC_PROT \
2070 || (FC_CODE(code) == FC_OBJERR \
2071 && FC_ERRNO(code) == FC_PROT))
2072 # endif
2073 # ifdef FREEBSD
2074 # define SIG_OK (sig == SIGBUS)
2075 # define CODE_OK (code == BUS_PAGE_FAULT)
2076 # endif
2077 # endif
2078 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2079 # include <errno.h>
2080 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2081 # ifdef OSF1
2082 # define SIG_OK (sig == SIGSEGV)
2083 # define CODE_OK (code == 2 /* experimentally determined */)
2084 # endif
2085 # ifdef IRIX5
2086 # define SIG_OK (sig == SIGSEGV)
2087 # define CODE_OK (code == EACCES)
2088 # endif
2089 # ifdef HURD
2090 # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2091 # define CODE_OK TRUE
2092 # endif
2093 # endif
2094 # if defined(LINUX)
2095 # if defined(ALPHA) || defined(M68K)
2096 void GC_write_fault_handler(int sig, int code, s_c * sc)
2097 # else
2098 # if defined(IA64) || defined(HP_PA)
2099 void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2100 # else
2101 void GC_write_fault_handler(int sig, s_c sc)
2102 # endif
2103 # endif
2104 # define SIG_OK (sig == SIGSEGV)
2105 # define CODE_OK TRUE
2106 /* Empirically c.trapno == 14, on IA32, but is that useful? */
2107 /* Should probably consider alignment issues on other */
2108 /* architectures. */
2109 # endif
2110 # if defined(SUNOS5SIGS)
2111 # ifdef __STDC__
2112 void GC_write_fault_handler(int sig, struct SIGINFO *scp, void * context)
2113 # else
2114 void GC_write_fault_handler(sig, scp, context)
2115 int sig;
2116 struct SIGINFO *scp;
2117 void * context;
2118 # endif
2119 # ifdef HPUX
2120 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2121 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2122 || (scp -> si_code == BUS_ADRERR) \
2123 || (scp -> si_code == BUS_UNKNOWN) \
2124 || (scp -> si_code == SEGV_UNKNOWN) \
2125 || (scp -> si_code == BUS_OBJERR)
2126 # else
2127 # define SIG_OK (sig == SIGSEGV)
2128 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2129 # endif
2130 # endif
2132 # if defined(MACOSX)
2133 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2134 # define SIG_OK (sig == SIGBUS)
2135 # define CODE_OK (code == 0 /* experimentally determined */)
2136 # endif
2138 # if defined(MSWIN32) || defined(MSWINCE)
2139 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2140 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2141 STATUS_ACCESS_VIOLATION)
2142 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2143 /* Write fault */
2144 # endif
2146 register unsigned i;
2147 # if defined(HURD)
2148 char *addr = (char *) code;
2149 # endif
2150 # ifdef IRIX5
2151 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2152 # endif
2153 # if defined(OSF1) && defined(ALPHA)
2154 char * addr = (char *) (scp -> sc_traparg_a0);
2155 # endif
2156 # ifdef SUNOS5SIGS
2157 char * addr = (char *) (scp -> si_addr);
2158 # endif
2159 # ifdef LINUX
2160 # ifdef I386
2161 char * addr = (char *) (sc.cr2);
2162 # else
2163 # if defined(M68K)
2164 char * addr = NULL;
2166 struct sigcontext *scp = (struct sigcontext *)(sc);
2168 int format = (scp->sc_formatvec >> 12) & 0xf;
2169 unsigned long *framedata = (unsigned long *)(scp + 1);
2170 unsigned long ea;
2172 if (format == 0xa || format == 0xb) {
2173 /* 68020/030 */
2174 ea = framedata[2];
2175 } else if (format == 7) {
2176 /* 68040 */
2177 ea = framedata[3];
2178 if (framedata[1] & 0x08000000) {
2179 /* correct addr on misaligned access */
2180 ea = (ea+4095)&(~4095);
2182 } else if (format == 4) {
2183 /* 68060 */
2184 ea = framedata[0];
2185 if (framedata[1] & 0x08000000) {
2186 /* correct addr on misaligned access */
2187 ea = (ea+4095)&(~4095);
2190 addr = (char *)ea;
2191 # else
2192 # ifdef ALPHA
2193 char * addr = get_fault_addr(sc);
2194 # else
2195 # if defined(IA64) || defined(HP_PA)
2196 char * addr = si -> si_addr;
2197 /* I believe this is claimed to work on all platforms for */
2198 /* Linux 2.3.47 and later. Hopefully we don't have to */
2199 /* worry about earlier kernels on IA64. */
2200 # else
2201 # if defined(POWERPC)
2202 char * addr = (char *) (sc.regs->dar);
2203 # else
2204 --> architecture not supported
2205 # endif
2206 # endif
2207 # endif
2208 # endif
2209 # endif
2210 # endif
2211 # if defined(MACOSX)
2212 char * addr = get_fault_addr(scp);
2213 # endif
2214 # if defined(MSWIN32) || defined(MSWINCE)
2215 char * addr = (char *) (exc_info -> ExceptionRecord
2216 -> ExceptionInformation[1]);
2217 # define sig SIGSEGV
2218 # endif
2220 if (SIG_OK && CODE_OK) {
2221 register struct hblk * h =
2222 (struct hblk *)((word)addr & ~(GC_page_size-1));
2223 GC_bool in_allocd_block;
2225 # ifdef SUNOS5SIGS
2226 /* Address is only within the correct physical page. */
2227 in_allocd_block = FALSE;
2228 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2229 if (HDR(h+i) != 0) {
2230 in_allocd_block = TRUE;
2233 # else
2234 in_allocd_block = (HDR(addr) != 0);
2235 # endif
2236 if (!in_allocd_block) {
2237 /* Heap blocks now begin and end on page boundaries */
2238 SIG_PF old_handler;
2240 if (sig == SIGSEGV) {
2241 old_handler = GC_old_segv_handler;
2242 } else {
2243 old_handler = GC_old_bus_handler;
2245 if (old_handler == SIG_DFL) {
2246 # if !defined(MSWIN32) && !defined(MSWINCE)
2247 GC_err_printf1("Segfault at 0x%lx\n", addr);
2248 ABORT("Unexpected bus error or segmentation fault");
2249 # else
2250 return(EXCEPTION_CONTINUE_SEARCH);
2251 # endif
2252 } else {
2253 # if defined (SUNOS4) || defined(FREEBSD)
2254 (*old_handler) (sig, code, scp, addr);
2255 return;
2256 # endif
2257 # if defined (SUNOS5SIGS)
2258 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2259 return;
2260 # endif
2261 # if defined (LINUX)
2262 # if defined(ALPHA) || defined(M68K)
2263 (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2264 # else
2265 # if defined(IA64) || defined(HP_PA)
2266 (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2267 # else
2268 (*(REAL_SIG_PF)old_handler) (sig, sc);
2269 # endif
2270 # endif
2271 return;
2272 # endif
2273 # if defined (IRIX5) || defined(OSF1) || defined(HURD)
2274 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2275 return;
2276 # endif
2277 # ifdef MACOSX
2278 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2279 # endif
2280 # ifdef MSWIN32
2281 return((*old_handler)(exc_info));
2282 # endif
2285 UNPROTECT(h, GC_page_size);
2286 /* We need to make sure that no collection occurs between */
2287 /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2288 /* a write by a third thread might go unnoticed. Reversing */
2289 /* the order is just as bad, since we would end up unprotecting */
2290 /* a page in a GC cycle during which it's not marked. */
2291 /* Currently we do this by disabling the thread stopping */
2292 /* signals while this handler is running. An alternative might */
2293 /* be to record the fact that we're about to unprotect, or */
2294 /* have just unprotected a page in the GC's thread structure, */
2295 /* and then to have the thread stopping code set the dirty */
2296 /* flag, if necessary. */
2297 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2298 register int index = PHT_HASH(h+i);
2300 async_set_pht_entry_from_index(GC_dirty_pages, index);
2302 # if defined(OSF1)
2303 /* These reset the signal handler each time by default. */
2304 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2305 # endif
2306 /* The write may not take place before dirty bits are read. */
2307 /* But then we'll fault again ... */
2308 # if defined(MSWIN32) || defined(MSWINCE)
2309 return(EXCEPTION_CONTINUE_EXECUTION);
2310 # else
2311 return;
2312 # endif
2314 #if defined(MSWIN32) || defined(MSWINCE)
2315 return EXCEPTION_CONTINUE_SEARCH;
2316 #else
2317 GC_err_printf1("Segfault at 0x%lx\n", addr);
2318 ABORT("Unexpected bus error or segmentation fault");
2319 #endif
2323 * We hold the allocation lock. We expect block h to be written
2324 * shortly.
2326 void GC_write_hint(h)
2327 struct hblk *h;
2329 register struct hblk * h_trunc;
2330 register unsigned i;
2331 register GC_bool found_clean;
2333 if (!GC_dirty_maintained) return;
2334 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2335 found_clean = FALSE;
2336 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2337 register int index = PHT_HASH(h_trunc+i);
2339 if (!get_pht_entry_from_index(GC_dirty_pages, index)) {
2340 found_clean = TRUE;
2341 async_set_pht_entry_from_index(GC_dirty_pages, index);
2344 if (found_clean) {
2345 UNPROTECT(h_trunc, GC_page_size);
2349 void GC_dirty_init()
2351 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2352 defined(OSF1) || defined(HURD)
2353 struct sigaction act, oldact;
2354 /* We should probably specify SA_SIGINFO for Linux, and handle */
2355 /* the different architectures more uniformly. */
2356 # if defined(IRIX5) || defined(LINUX) || defined(OSF1) || defined(HURD)
2357 act.sa_flags = SA_RESTART;
2358 act.sa_handler = (SIG_PF)GC_write_fault_handler;
2359 # else
2360 act.sa_flags = SA_RESTART | SA_SIGINFO;
2361 act.sa_sigaction = GC_write_fault_handler;
2362 # endif
2363 (void)sigemptyset(&act.sa_mask);
2364 # ifdef SIG_SUSPEND
2365 /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2366 /* handler. This effectively makes the handler atomic w.r.t. */
2367 /* stopping the world for GC. */
2368 (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2369 # endif /* SIG_SUSPEND */
2370 # endif
2371 # if defined(MACOSX)
2372 struct sigaction act, oldact;
2374 act.sa_flags = SA_RESTART;
2375 act.sa_handler = GC_write_fault_handler;
2376 sigemptyset(&act.sa_mask);
2377 # endif
2378 # ifdef PRINTSTATS
2379 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2380 # endif
2381 GC_dirty_maintained = TRUE;
2382 if (GC_page_size % HBLKSIZE != 0) {
2383 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2384 ABORT("Page size not multiple of HBLKSIZE");
2386 # if defined(SUNOS4) || defined(FREEBSD)
2387 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2388 if (GC_old_bus_handler == SIG_IGN) {
2389 GC_err_printf0("Previously ignored bus error!?");
2390 GC_old_bus_handler = SIG_DFL;
2392 if (GC_old_bus_handler != SIG_DFL) {
2393 # ifdef PRINTSTATS
2394 GC_err_printf0("Replaced other SIGBUS handler\n");
2395 # endif
2397 # endif
2398 # if defined(SUNOS4)
2399 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2400 if (GC_old_segv_handler == SIG_IGN) {
2401 GC_err_printf0("Previously ignored segmentation violation!?");
2402 GC_old_segv_handler = SIG_DFL;
2404 if (GC_old_segv_handler != SIG_DFL) {
2405 # ifdef PRINTSTATS
2406 GC_err_printf0("Replaced other SIGSEGV handler\n");
2407 # endif
2409 # endif
2410 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) \
2411 || defined(OSF1) || defined(HURD)
2412 /* SUNOS5SIGS includes HPUX */
2413 # if defined(IRIX_THREADS)
2414 sigaction(SIGSEGV, 0, &oldact);
2415 sigaction(SIGSEGV, &act, 0);
2416 # else
2417 sigaction(SIGSEGV, &act, &oldact);
2418 # endif
2419 # if defined(_sigargs) || defined(HURD)
2420 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2421 /* sa_sigaction. */
2422 GC_old_segv_handler = oldact.sa_handler;
2423 # else /* Irix 6.x or SUNOS5SIGS or LINUX */
2424 if (oldact.sa_flags & SA_SIGINFO) {
2425 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2426 } else {
2427 GC_old_segv_handler = oldact.sa_handler;
2429 # endif
2430 if (GC_old_segv_handler == SIG_IGN) {
2431 GC_err_printf0("Previously ignored segmentation violation!?");
2432 GC_old_segv_handler = SIG_DFL;
2434 if (GC_old_segv_handler != SIG_DFL) {
2435 # ifdef PRINTSTATS
2436 GC_err_printf0("Replaced other SIGSEGV handler\n");
2437 # endif
2439 # endif
2440 # if defined(MACOSX) || defined(HPUX) || defined(LINUX) || defined(HURD)
2441 sigaction(SIGBUS, &act, &oldact);
2442 GC_old_bus_handler = oldact.sa_handler;
2443 if (GC_old_bus_handler == SIG_IGN) {
2444 GC_err_printf0("Previously ignored bus error!?");
2445 GC_old_bus_handler = SIG_DFL;
2447 if (GC_old_bus_handler != SIG_DFL) {
2448 # ifdef PRINTSTATS
2449 GC_err_printf0("Replaced other SIGBUS handler\n");
2450 # endif
2452 # endif /* MACOS || HPUX || LINUX */
2453 # if defined(MSWIN32)
2454 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2455 if (GC_old_segv_handler != NULL) {
2456 # ifdef PRINTSTATS
2457 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2458 # endif
2459 } else {
2460 GC_old_segv_handler = SIG_DFL;
2462 # endif
2467 void GC_protect_heap()
2469 ptr_t start;
2470 word len;
2471 unsigned i;
2473 for (i = 0; i < GC_n_heap_sects; i++) {
2474 start = GC_heap_sects[i].hs_start;
2475 len = GC_heap_sects[i].hs_bytes;
2476 PROTECT(start, len);
2480 /* We assume that either the world is stopped or its OK to lose dirty */
2481 /* bits while this is happenning (as in GC_enable_incremental). */
2482 void GC_read_dirty()
2484 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2485 (sizeof GC_dirty_pages));
2486 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2487 GC_protect_heap();
2490 GC_bool GC_page_was_dirty(h)
2491 struct hblk * h;
2493 register word index = PHT_HASH(h);
2495 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2499 * Acquiring the allocation lock here is dangerous, since this
2500 * can be called from within GC_call_with_alloc_lock, and the cord
2501 * package does so. On systems that allow nested lock acquisition, this
2502 * happens to work.
2503 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2506 static GC_bool syscall_acquired_lock = FALSE; /* Protected by GC lock. */
2508 void GC_begin_syscall()
2510 if (!I_HOLD_LOCK()) {
2511 LOCK();
2512 syscall_acquired_lock = TRUE;
2516 void GC_end_syscall()
2518 if (syscall_acquired_lock) {
2519 syscall_acquired_lock = FALSE;
2520 UNLOCK();
2524 void GC_unprotect_range(addr, len)
2525 ptr_t addr;
2526 word len;
2528 struct hblk * start_block;
2529 struct hblk * end_block;
2530 register struct hblk *h;
2531 ptr_t obj_start;
2533 if (!GC_incremental) return;
2534 obj_start = GC_base(addr);
2535 if (obj_start == 0) return;
2536 if (GC_base(addr + len - 1) != obj_start) {
2537 ABORT("GC_unprotect_range(range bigger than object)");
2539 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2540 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2541 end_block += GC_page_size/HBLKSIZE - 1;
2542 for (h = start_block; h <= end_block; h++) {
2543 register word index = PHT_HASH(h);
2545 async_set_pht_entry_from_index(GC_dirty_pages, index);
2547 UNPROTECT(start_block,
2548 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2551 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(LINUX_THREADS) \
2552 && !defined(GC_USE_LD_WRAP)
2553 /* Replacement for UNIX system call. */
2554 /* Other calls that write to the heap */
2555 /* should be handled similarly. */
2556 # if defined(__STDC__) && !defined(SUNOS4)
2557 # include <unistd.h>
2558 # include <sys/uio.h>
2559 ssize_t read(int fd, void *buf, size_t nbyte)
2560 # else
2561 # ifndef LINT
2562 int read(fd, buf, nbyte)
2563 # else
2564 int GC_read(fd, buf, nbyte)
2565 # endif
2566 int fd;
2567 char *buf;
2568 int nbyte;
2569 # endif
2571 int result;
2573 GC_begin_syscall();
2574 GC_unprotect_range(buf, (word)nbyte);
2575 # if defined(IRIX5) || defined(LINUX_THREADS)
2576 /* Indirect system call may not always be easily available. */
2577 /* We could call _read, but that would interfere with the */
2578 /* libpthread interception of read. */
2579 /* On Linux, we have to be careful with the linuxthreads */
2580 /* read interception. */
2582 struct iovec iov;
2584 iov.iov_base = buf;
2585 iov.iov_len = nbyte;
2586 result = readv(fd, &iov, 1);
2588 # else
2589 # if defined(HURD)
2590 result = __read(fd, buf, nbyte);
2591 # else
2592 /* The two zero args at the end of this list are because one
2593 IA-64 syscall() implementation actually requires six args
2594 to be passed, even though they aren't always used. */
2595 result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
2596 # endif /* !HURD */
2597 # endif
2598 GC_end_syscall();
2599 return(result);
2601 #endif /* !MSWIN32 && !MSWINCE && !LINUX_THREADS */
2603 #ifdef GC_USE_LD_WRAP
2604 /* We use the GNU ld call wrapping facility. */
2605 /* This requires that the linker be invoked with "--wrap read". */
2606 /* This can be done by passing -Wl,"--wrap read" to gcc. */
2607 /* I'm not sure that this actually wraps whatever version of read */
2608 /* is called by stdio. That code also mentions __read. */
2609 # include <unistd.h>
2610 ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
2612 int result;
2614 GC_begin_syscall();
2615 GC_unprotect_range(buf, (word)nbyte);
2616 result = __real_read(fd, buf, nbyte);
2617 GC_end_syscall();
2618 return(result);
2621 /* We should probably also do this for __read, or whatever stdio */
2622 /* actually calls. */
2623 #endif
2625 /*ARGSUSED*/
2626 GC_bool GC_page_was_ever_dirty(h)
2627 struct hblk *h;
2629 return(TRUE);
2632 /* Reset the n pages starting at h to "was never dirty" status. */
2633 /*ARGSUSED*/
2634 void GC_is_fresh(h, n)
2635 struct hblk *h;
2636 word n;
2640 # else /* !MPROTECT_VDB */
2642 # ifdef GC_USE_LD_WRAP
2643 ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
2644 { return __real_read(fd, buf, nbyte); }
2645 # endif
2647 # endif /* MPROTECT_VDB */
2649 # ifdef PROC_VDB
2652 * See DEFAULT_VDB for interface descriptions.
2656 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
2657 * from which we can read page modified bits. This facility is far from
2658 * optimal (e.g. we would like to get the info for only some of the
2659 * address space), but it avoids intercepting system calls.
2662 #include <errno.h>
2663 #include <sys/types.h>
2664 #include <sys/signal.h>
2665 #include <sys/fault.h>
2666 #include <sys/syscall.h>
2667 #include <sys/procfs.h>
2668 #include <sys/stat.h>
2670 #define INITIAL_BUF_SZ 4096
2671 word GC_proc_buf_size = INITIAL_BUF_SZ;
2672 char *GC_proc_buf;
2674 #ifdef SOLARIS_THREADS
2675 /* We don't have exact sp values for threads. So we count on */
2676 /* occasionally declaring stack pages to be fresh. Thus we */
2677 /* need a real implementation of GC_is_fresh. We can't clear */
2678 /* entries in GC_written_pages, since that would declare all */
2679 /* pages with the given hash address to be fresh. */
2680 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
2681 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
2682 /* Collisions are dropped. */
2684 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
2685 # define ADD_FRESH_PAGE(h) \
2686 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
2687 # define PAGE_IS_FRESH(h) \
2688 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
2689 #endif
2691 /* Add all pages in pht2 to pht1 */
2692 void GC_or_pages(pht1, pht2)
2693 page_hash_table pht1, pht2;
2695 register int i;
2697 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
2700 int GC_proc_fd;
2702 void GC_dirty_init()
2704 int fd;
2705 char buf[30];
2707 GC_dirty_maintained = TRUE;
2708 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
2709 register int i;
2711 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
2712 # ifdef PRINTSTATS
2713 GC_printf1("Allocated words:%lu:all pages may have been written\n",
2714 (unsigned long)
2715 (GC_words_allocd + GC_words_allocd_before_gc));
2716 # endif
2718 sprintf(buf, "/proc/%d", getpid());
2719 fd = open(buf, O_RDONLY);
2720 if (fd < 0) {
2721 ABORT("/proc open failed");
2723 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
2724 close(fd);
2725 if (GC_proc_fd < 0) {
2726 ABORT("/proc ioctl failed");
2728 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
2729 # ifdef SOLARIS_THREADS
2730 GC_fresh_pages = (struct hblk **)
2731 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
2732 if (GC_fresh_pages == 0) {
2733 GC_err_printf0("No space for fresh pages\n");
2734 EXIT();
2736 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
2737 # endif
2740 /* Ignore write hints. They don't help us here. */
2741 /*ARGSUSED*/
2742 void GC_write_hint(h)
2743 struct hblk *h;
2747 #ifdef SOLARIS_THREADS
2748 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
2749 #else
2750 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
2751 #endif
2753 void GC_read_dirty()
2755 unsigned long ps, np;
2756 int nmaps;
2757 ptr_t vaddr;
2758 struct prasmap * map;
2759 char * bufp;
2760 ptr_t current_addr, limit;
2761 int i;
2762 int dummy;
2764 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
2766 bufp = GC_proc_buf;
2767 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2768 # ifdef PRINTSTATS
2769 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
2770 GC_proc_buf_size);
2771 # endif
2773 /* Retry with larger buffer. */
2774 word new_size = 2 * GC_proc_buf_size;
2775 char * new_buf = GC_scratch_alloc(new_size);
2777 if (new_buf != 0) {
2778 GC_proc_buf = bufp = new_buf;
2779 GC_proc_buf_size = new_size;
2781 if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2782 WARN("Insufficient space for /proc read\n", 0);
2783 /* Punt: */
2784 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
2785 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
2786 # ifdef SOLARIS_THREADS
2787 BZERO(GC_fresh_pages,
2788 MAX_FRESH_PAGES * sizeof (struct hblk *));
2789 # endif
2790 return;
2794 /* Copy dirty bits into GC_grungy_pages */
2795 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
2796 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
2797 nmaps, PG_REFERENCED, PG_MODIFIED); */
2798 bufp = bufp + sizeof(struct prpageheader);
2799 for (i = 0; i < nmaps; i++) {
2800 map = (struct prasmap *)bufp;
2801 vaddr = (ptr_t)(map -> pr_vaddr);
2802 ps = map -> pr_pagesize;
2803 np = map -> pr_npage;
2804 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
2805 limit = vaddr + ps * np;
2806 bufp += sizeof (struct prasmap);
2807 for (current_addr = vaddr;
2808 current_addr < limit; current_addr += ps){
2809 if ((*bufp++) & PG_MODIFIED) {
2810 register struct hblk * h = (struct hblk *) current_addr;
2812 while ((ptr_t)h < current_addr + ps) {
2813 register word index = PHT_HASH(h);
2815 set_pht_entry_from_index(GC_grungy_pages, index);
2816 # ifdef SOLARIS_THREADS
2818 register int slot = FRESH_PAGE_SLOT(h);
2820 if (GC_fresh_pages[slot] == h) {
2821 GC_fresh_pages[slot] = 0;
2824 # endif
2825 h++;
2829 bufp += sizeof(long) - 1;
2830 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
2832 /* Update GC_written_pages. */
2833 GC_or_pages(GC_written_pages, GC_grungy_pages);
2834 # ifdef SOLARIS_THREADS
2835 /* Make sure that old stacks are considered completely clean */
2836 /* unless written again. */
2837 GC_old_stacks_are_fresh();
2838 # endif
2841 #undef READ
2843 GC_bool GC_page_was_dirty(h)
2844 struct hblk *h;
2846 register word index = PHT_HASH(h);
2847 register GC_bool result;
2849 result = get_pht_entry_from_index(GC_grungy_pages, index);
2850 # ifdef SOLARIS_THREADS
2851 if (result && PAGE_IS_FRESH(h)) result = FALSE;
2852 /* This happens only if page was declared fresh since */
2853 /* the read_dirty call, e.g. because it's in an unused */
2854 /* thread stack. It's OK to treat it as clean, in */
2855 /* that case. And it's consistent with */
2856 /* GC_page_was_ever_dirty. */
2857 # endif
2858 return(result);
2861 GC_bool GC_page_was_ever_dirty(h)
2862 struct hblk *h;
2864 register word index = PHT_HASH(h);
2865 register GC_bool result;
2867 result = get_pht_entry_from_index(GC_written_pages, index);
2868 # ifdef SOLARIS_THREADS
2869 if (result && PAGE_IS_FRESH(h)) result = FALSE;
2870 # endif
2871 return(result);
2874 /* Caller holds allocation lock. */
2875 void GC_is_fresh(h, n)
2876 struct hblk *h;
2877 word n;
2880 register word index;
2882 # ifdef SOLARIS_THREADS
2883 register word i;
2885 if (GC_fresh_pages != 0) {
2886 for (i = 0; i < n; i++) {
2887 ADD_FRESH_PAGE(h + i);
2890 # endif
2893 # endif /* PROC_VDB */
2896 # ifdef PCR_VDB
2898 # include "vd/PCR_VD.h"
2900 # define NPAGES (32*1024) /* 128 MB */
2902 PCR_VD_DB GC_grungy_bits[NPAGES];
2904 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
2905 /* HBLKSIZE aligned. */
2907 void GC_dirty_init()
2909 GC_dirty_maintained = TRUE;
2910 /* For the time being, we assume the heap generally grows up */
2911 GC_vd_base = GC_heap_sects[0].hs_start;
2912 if (GC_vd_base == 0) {
2913 ABORT("Bad initial heap segment");
2915 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
2916 != PCR_ERes_okay) {
2917 ABORT("dirty bit initialization failed");
2921 void GC_read_dirty()
2923 /* lazily enable dirty bits on newly added heap sects */
2925 static int onhs = 0;
2926 int nhs = GC_n_heap_sects;
2927 for( ; onhs < nhs; onhs++ ) {
2928 PCR_VD_WriteProtectEnable(
2929 GC_heap_sects[onhs].hs_start,
2930 GC_heap_sects[onhs].hs_bytes );
2935 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
2936 != PCR_ERes_okay) {
2937 ABORT("dirty bit read failed");
2941 GC_bool GC_page_was_dirty(h)
2942 struct hblk *h;
2944 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
2945 return(TRUE);
2947 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
2950 /*ARGSUSED*/
2951 void GC_write_hint(h)
2952 struct hblk *h;
2954 PCR_VD_WriteProtectDisable(h, HBLKSIZE);
2955 PCR_VD_WriteProtectEnable(h, HBLKSIZE);
2958 # endif /* PCR_VDB */
2961 * Call stack save code for debugging.
2962 * Should probably be in mach_dep.c, but that requires reorganization.
2965 /* I suspect the following works for most X86 *nix variants, so */
2966 /* long as the frame pointer is explicitly stored. In the case of gcc, */
2967 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
2968 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
2969 struct frame {
2970 struct frame *fr_savfp;
2971 long fr_savpc;
2972 long fr_arg[NARGS]; /* All the arguments go here. */
2974 #endif
2976 #if defined(SPARC)
2977 # if defined(LINUX)
2978 struct frame {
2979 long fr_local[8];
2980 long fr_arg[6];
2981 struct frame *fr_savfp;
2982 long fr_savpc;
2983 # ifndef __arch64__
2984 char *fr_stret;
2985 # endif
2986 long fr_argd[6];
2987 long fr_argx[0];
2989 # else
2990 # if defined(SUNOS4)
2991 # include <machine/frame.h>
2992 # else
2993 # if defined (DRSNX)
2994 # include <sys/sparc/frame.h>
2995 # else
2996 # if defined(OPENBSD) || defined(NETBSD)
2997 # include <frame.h>
2998 # else
2999 # include <sys/frame.h>
3000 # endif
3001 # endif
3002 # endif
3003 # endif
3004 # if NARGS > 6
3005 --> We only know how to to get the first 6 arguments
3006 # endif
3007 #endif /* SPARC */
3009 #ifdef SAVE_CALL_CHAIN
3010 /* Fill in the pc and argument information for up to NFRAMES of my */
3011 /* callers. Ignore my frame and my callers frame. */
3013 #if (defined(OPENBSD) || defined(NETBSD)) && defined(SPARC)
3014 # define FR_SAVFP fr_fp
3015 # define FR_SAVPC fr_pc
3016 #else
3017 # define FR_SAVFP fr_savfp
3018 # define FR_SAVPC fr_savpc
3019 #endif
3021 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
3022 # define BIAS 2047
3023 #else
3024 # define BIAS 0
3025 #endif
3027 void GC_save_callers (info)
3028 struct callinfo info[NFRAMES];
3030 struct frame *frame;
3031 struct frame *fp;
3032 int nframes = 0;
3033 # ifdef I386
3034 /* We assume this is turned on only with gcc as the compiler. */
3035 asm("movl %%ebp,%0" : "=r"(frame));
3036 fp = frame;
3037 # else
3038 word GC_save_regs_in_stack();
3040 frame = (struct frame *) GC_save_regs_in_stack ();
3041 fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
3042 #endif
3044 for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
3045 && (nframes < NFRAMES));
3046 fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
3047 register int i;
3049 info[nframes].ci_pc = fp->FR_SAVPC;
3050 # if NARGS > 0
3051 for (i = 0; i < NARGS; i++) {
3052 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
3054 # endif /* NARGS > 0 */
3056 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
3059 #endif /* SAVE_CALL_CHAIN */
3061 #if defined(LINUX) && defined(__ELF__) && \
3062 (!defined(SMALL_CONFIG) || defined(USE_PROC_FOR_LIBRARIES))
3063 #ifdef GC_USE_LD_WRAP
3064 # define READ __real_read
3065 #else
3066 # define READ read
3067 #endif
3070 /* Repeatedly perform a read call until the buffer is filled or */
3071 /* we encounter EOF. */
3072 ssize_t GC_repeat_read(int fd, char *buf, size_t count)
3074 ssize_t num_read = 0;
3075 ssize_t result;
3077 while (num_read < count) {
3078 result = READ(fd, buf + num_read, count - num_read);
3079 if (result < 0) return result;
3080 if (result == 0) break;
3081 num_read += result;
3083 return num_read;
3085 #endif /* LINUX && ... */
3088 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
3090 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
3091 addresses in FIND_LEAK output. */
3093 void GC_print_address_map()
3095 int f;
3096 int result;
3097 char maps_temp[32768];
3098 GC_err_printf0("---------- Begin address map ----------\n");
3099 f = open("/proc/self/maps", O_RDONLY);
3100 if (-1 == f) ABORT("Couldn't open /proc/self/maps");
3101 do {
3102 result = GC_repeat_read(f, maps_temp, sizeof(maps_temp));
3103 if (result <= 0) ABORT("Couldn't read /proc/self/maps");
3104 GC_err_write(maps_temp, result);
3105 } while (result == sizeof(maps_temp));
3107 GC_err_printf0("---------- End address map ----------\n");
3110 #endif