1 /* Reassociation for trees.
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "alloc-pool.h"
31 #include "tree-pass.h"
35 #include "optabs-tree.h"
36 #include "gimple-pretty-print.h"
37 #include "diagnostic-core.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
41 #include "gimple-fold.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
46 #include "tree-ssa-loop.h"
49 #include "langhooks.h"
54 #include "case-cfn-macros.h"
56 /* This is a simple global reassociation pass. It is, in part, based
57 on the LLVM pass of the same name (They do some things more/less
58 than we do, in different orders, etc).
60 It consists of five steps:
62 1. Breaking up subtract operations into addition + negate, where
63 it would promote the reassociation of adds.
65 2. Left linearization of the expression trees, so that (A+B)+(C+D)
66 becomes (((A+B)+C)+D), which is easier for us to rewrite later.
67 During linearization, we place the operands of the binary
68 expressions into a vector of operand_entry_*
70 3. Optimization of the operand lists, eliminating things like a +
73 3a. Combine repeated factors with the same occurrence counts
74 into a __builtin_powi call that will later be optimized into
75 an optimal number of multiplies.
77 4. Rewrite the expression trees we linearized and optimized so
78 they are in proper rank order.
80 5. Repropagate negates, as nothing else will clean it up ATM.
82 A bit of theory on #4, since nobody seems to write anything down
83 about why it makes sense to do it the way they do it:
85 We could do this much nicer theoretically, but don't (for reasons
86 explained after how to do it theoretically nice :P).
88 In order to promote the most redundancy elimination, you want
89 binary expressions whose operands are the same rank (or
90 preferably, the same value) exposed to the redundancy eliminator,
91 for possible elimination.
93 So the way to do this if we really cared, is to build the new op
94 tree from the leaves to the roots, merging as you go, and putting the
95 new op on the end of the worklist, until you are left with one
96 thing on the worklist.
98 IE if you have to rewrite the following set of operands (listed with
99 rank in parentheses), with opcode PLUS_EXPR:
101 a (1), b (1), c (1), d (2), e (2)
104 We start with our merge worklist empty, and the ops list with all of
107 You want to first merge all leaves of the same rank, as much as
110 So first build a binary op of
112 mergetmp = a + b, and put "mergetmp" on the merge worklist.
114 Because there is no three operand form of PLUS_EXPR, c is not going to
115 be exposed to redundancy elimination as a rank 1 operand.
117 So you might as well throw it on the merge worklist (you could also
118 consider it to now be a rank two operand, and merge it with d and e,
119 but in this case, you then have evicted e from a binary op. So at
120 least in this situation, you can't win.)
122 Then build a binary op of d + e
125 and put mergetmp2 on the merge worklist.
127 so merge worklist = {mergetmp, c, mergetmp2}
129 Continue building binary ops of these operations until you have only
130 one operation left on the worklist.
135 mergetmp3 = mergetmp + c
137 worklist = {mergetmp2, mergetmp3}
139 mergetmp4 = mergetmp2 + mergetmp3
141 worklist = {mergetmp4}
143 because we have one operation left, we can now just set the original
144 statement equal to the result of that operation.
146 This will at least expose a + b and d + e to redundancy elimination
147 as binary operations.
149 For extra points, you can reuse the old statements to build the
150 mergetmps, since you shouldn't run out.
152 So why don't we do this?
154 Because it's expensive, and rarely will help. Most trees we are
155 reassociating have 3 or less ops. If they have 2 ops, they already
156 will be written into a nice single binary op. If you have 3 ops, a
157 single simple check suffices to tell you whether the first two are of the
158 same rank. If so, you know to order it
161 newstmt = mergetmp + op3
165 newstmt = mergetmp + op1
167 If all three are of the same rank, you can't expose them all in a
168 single binary operator anyway, so the above is *still* the best you
171 Thus, this is what we do. When we have three ops left, we check to see
172 what order to put them in, and call it a day. As a nod to vector sum
173 reduction, we check if any of the ops are really a phi node that is a
174 destructive update for the associating op, and keep the destructive
175 update together for vector sum reduction recognition. */
177 /* Enable insertion of __builtin_powi calls during execute_reassoc. See
178 point 3a in the pass header comment. */
179 static bool reassoc_insert_powi_p
;
185 int constants_eliminated
;
188 int pows_encountered
;
192 /* Operator, rank pair. */
199 gimple
*stmt_to_insert
;
202 static object_allocator
<operand_entry
> operand_entry_pool
203 ("operand entry pool");
205 /* This is used to assign a unique ID to each struct operand_entry
206 so that qsort results are identical on different hosts. */
207 static unsigned int next_operand_entry_id
;
209 /* Starting rank number for a given basic block, so that we can rank
210 operations using unmovable instructions in that BB based on the bb
212 static long *bb_rank
;
214 /* Operand->rank hashtable. */
215 static hash_map
<tree
, long> *operand_rank
;
217 /* Vector of SSA_NAMEs on which after reassociate_bb is done with
218 all basic blocks the CFG should be adjusted - basic blocks
219 split right after that SSA_NAME's definition statement and before
220 the only use, which must be a bit ior. */
221 static vec
<tree
> reassoc_branch_fixups
;
224 static long get_rank (tree
);
225 static bool reassoc_stmt_dominates_stmt_p (gimple
*, gimple
*);
227 /* Wrapper around gsi_remove, which adjusts gimple_uid of debug stmts
228 possibly added by gsi_remove. */
231 reassoc_remove_stmt (gimple_stmt_iterator
*gsi
)
233 gimple
*stmt
= gsi_stmt (*gsi
);
235 if (!MAY_HAVE_DEBUG_STMTS
|| gimple_code (stmt
) == GIMPLE_PHI
)
236 return gsi_remove (gsi
, true);
238 gimple_stmt_iterator prev
= *gsi
;
240 unsigned uid
= gimple_uid (stmt
);
241 basic_block bb
= gimple_bb (stmt
);
242 bool ret
= gsi_remove (gsi
, true);
243 if (!gsi_end_p (prev
))
246 prev
= gsi_start_bb (bb
);
247 gimple
*end_stmt
= gsi_stmt (*gsi
);
248 while ((stmt
= gsi_stmt (prev
)) != end_stmt
)
250 gcc_assert (stmt
&& is_gimple_debug (stmt
) && gimple_uid (stmt
) == 0);
251 gimple_set_uid (stmt
, uid
);
257 /* Bias amount for loop-carried phis. We want this to be larger than
258 the depth of any reassociation tree we can see, but not larger than
259 the rank difference between two blocks. */
260 #define PHI_LOOP_BIAS (1 << 15)
262 /* Rank assigned to a phi statement. If STMT is a loop-carried phi of
263 an innermost loop, and the phi has only a single use which is inside
264 the loop, then the rank is the block rank of the loop latch plus an
265 extra bias for the loop-carried dependence. This causes expressions
266 calculated into an accumulator variable to be independent for each
267 iteration of the loop. If STMT is some other phi, the rank is the
268 block rank of its containing block. */
270 phi_rank (gimple
*stmt
)
272 basic_block bb
= gimple_bb (stmt
);
273 struct loop
*father
= bb
->loop_father
;
279 /* We only care about real loops (those with a latch). */
281 return bb_rank
[bb
->index
];
283 /* Interesting phis must be in headers of innermost loops. */
284 if (bb
!= father
->header
286 return bb_rank
[bb
->index
];
288 /* Ignore virtual SSA_NAMEs. */
289 res
= gimple_phi_result (stmt
);
290 if (virtual_operand_p (res
))
291 return bb_rank
[bb
->index
];
293 /* The phi definition must have a single use, and that use must be
294 within the loop. Otherwise this isn't an accumulator pattern. */
295 if (!single_imm_use (res
, &use
, &use_stmt
)
296 || gimple_bb (use_stmt
)->loop_father
!= father
)
297 return bb_rank
[bb
->index
];
299 /* Look for phi arguments from within the loop. If found, bias this phi. */
300 for (i
= 0; i
< gimple_phi_num_args (stmt
); i
++)
302 tree arg
= gimple_phi_arg_def (stmt
, i
);
303 if (TREE_CODE (arg
) == SSA_NAME
304 && !SSA_NAME_IS_DEFAULT_DEF (arg
))
306 gimple
*def_stmt
= SSA_NAME_DEF_STMT (arg
);
307 if (gimple_bb (def_stmt
)->loop_father
== father
)
308 return bb_rank
[father
->latch
->index
] + PHI_LOOP_BIAS
;
312 /* Must be an uninteresting phi. */
313 return bb_rank
[bb
->index
];
316 /* If EXP is an SSA_NAME defined by a PHI statement that represents a
317 loop-carried dependence of an innermost loop, return TRUE; else
320 loop_carried_phi (tree exp
)
325 if (TREE_CODE (exp
) != SSA_NAME
326 || SSA_NAME_IS_DEFAULT_DEF (exp
))
329 phi_stmt
= SSA_NAME_DEF_STMT (exp
);
331 if (gimple_code (SSA_NAME_DEF_STMT (exp
)) != GIMPLE_PHI
)
334 /* Non-loop-carried phis have block rank. Loop-carried phis have
335 an additional bias added in. If this phi doesn't have block rank,
336 it's biased and should not be propagated. */
337 block_rank
= bb_rank
[gimple_bb (phi_stmt
)->index
];
339 if (phi_rank (phi_stmt
) != block_rank
)
345 /* Return the maximum of RANK and the rank that should be propagated
346 from expression OP. For most operands, this is just the rank of OP.
347 For loop-carried phis, the value is zero to avoid undoing the bias
348 in favor of the phi. */
350 propagate_rank (long rank
, tree op
)
354 if (loop_carried_phi (op
))
357 op_rank
= get_rank (op
);
359 return MAX (rank
, op_rank
);
362 /* Look up the operand rank structure for expression E. */
365 find_operand_rank (tree e
)
367 long *slot
= operand_rank
->get (e
);
368 return slot
? *slot
: -1;
371 /* Insert {E,RANK} into the operand rank hashtable. */
374 insert_operand_rank (tree e
, long rank
)
376 gcc_assert (rank
> 0);
377 gcc_assert (!operand_rank
->put (e
, rank
));
380 /* Given an expression E, return the rank of the expression. */
385 /* SSA_NAME's have the rank of the expression they are the result
387 For globals and uninitialized values, the rank is 0.
388 For function arguments, use the pre-setup rank.
389 For PHI nodes, stores, asm statements, etc, we use the rank of
391 For simple operations, the rank is the maximum rank of any of
392 its operands, or the bb_rank, whichever is less.
393 I make no claims that this is optimal, however, it gives good
396 /* We make an exception to the normal ranking system to break
397 dependences of accumulator variables in loops. Suppose we
398 have a simple one-block loop containing:
405 As shown, each iteration of the calculation into x is fully
406 dependent upon the iteration before it. We would prefer to
407 see this in the form:
414 If the loop is unrolled, the calculations of b and c from
415 different iterations can be interleaved.
417 To obtain this result during reassociation, we bias the rank
418 of the phi definition x_1 upward, when it is recognized as an
419 accumulator pattern. The artificial rank causes it to be
420 added last, providing the desired independence. */
422 if (TREE_CODE (e
) == SSA_NAME
)
429 if (SSA_NAME_IS_DEFAULT_DEF (e
))
430 return find_operand_rank (e
);
432 stmt
= SSA_NAME_DEF_STMT (e
);
433 if (gimple_code (stmt
) == GIMPLE_PHI
)
434 return phi_rank (stmt
);
436 if (!is_gimple_assign (stmt
))
437 return bb_rank
[gimple_bb (stmt
)->index
];
439 /* If we already have a rank for this expression, use that. */
440 rank
= find_operand_rank (e
);
444 /* Otherwise, find the maximum rank for the operands. As an
445 exception, remove the bias from loop-carried phis when propagating
446 the rank so that dependent operations are not also biased. */
447 /* Simply walk over all SSA uses - this takes advatage of the
448 fact that non-SSA operands are is_gimple_min_invariant and
451 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, iter
, SSA_OP_USE
)
452 rank
= propagate_rank (rank
, op
);
454 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
456 fprintf (dump_file
, "Rank for ");
457 print_generic_expr (dump_file
, e
);
458 fprintf (dump_file
, " is %ld\n", (rank
+ 1));
461 /* Note the rank in the hashtable so we don't recompute it. */
462 insert_operand_rank (e
, (rank
+ 1));
466 /* Constants, globals, etc., are rank 0 */
471 /* We want integer ones to end up last no matter what, since they are
472 the ones we can do the most with. */
473 #define INTEGER_CONST_TYPE 1 << 3
474 #define FLOAT_CONST_TYPE 1 << 2
475 #define OTHER_CONST_TYPE 1 << 1
477 /* Classify an invariant tree into integer, float, or other, so that
478 we can sort them to be near other constants of the same type. */
480 constant_type (tree t
)
482 if (INTEGRAL_TYPE_P (TREE_TYPE (t
)))
483 return INTEGER_CONST_TYPE
;
484 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t
)))
485 return FLOAT_CONST_TYPE
;
487 return OTHER_CONST_TYPE
;
490 /* qsort comparison function to sort operand entries PA and PB by rank
491 so that the sorted array is ordered by rank in decreasing order. */
493 sort_by_operand_rank (const void *pa
, const void *pb
)
495 const operand_entry
*oea
= *(const operand_entry
*const *)pa
;
496 const operand_entry
*oeb
= *(const operand_entry
*const *)pb
;
498 /* It's nicer for optimize_expression if constants that are likely
499 to fold when added/multiplied//whatever are put next to each
500 other. Since all constants have rank 0, order them by type. */
501 if (oeb
->rank
== 0 && oea
->rank
== 0)
503 if (constant_type (oeb
->op
) != constant_type (oea
->op
))
504 return constant_type (oeb
->op
) - constant_type (oea
->op
);
506 /* To make sorting result stable, we use unique IDs to determine
508 return oeb
->id
> oea
->id
? 1 : -1;
511 /* Lastly, make sure the versions that are the same go next to each
513 if (oeb
->rank
== oea
->rank
514 && TREE_CODE (oea
->op
) == SSA_NAME
515 && TREE_CODE (oeb
->op
) == SSA_NAME
)
517 /* As SSA_NAME_VERSION is assigned pretty randomly, because we reuse
518 versions of removed SSA_NAMEs, so if possible, prefer to sort
519 based on basic block and gimple_uid of the SSA_NAME_DEF_STMT.
521 if (!SSA_NAME_IS_DEFAULT_DEF (oea
->op
)
522 && !SSA_NAME_IS_DEFAULT_DEF (oeb
->op
)
523 && !oea
->stmt_to_insert
524 && !oeb
->stmt_to_insert
525 && SSA_NAME_VERSION (oeb
->op
) != SSA_NAME_VERSION (oea
->op
))
527 gimple
*stmta
= SSA_NAME_DEF_STMT (oea
->op
);
528 gimple
*stmtb
= SSA_NAME_DEF_STMT (oeb
->op
);
529 basic_block bba
= gimple_bb (stmta
);
530 basic_block bbb
= gimple_bb (stmtb
);
533 if (bb_rank
[bbb
->index
] != bb_rank
[bba
->index
])
534 return bb_rank
[bbb
->index
] - bb_rank
[bba
->index
];
538 bool da
= reassoc_stmt_dominates_stmt_p (stmta
, stmtb
);
539 bool db
= reassoc_stmt_dominates_stmt_p (stmtb
, stmta
);
545 if (SSA_NAME_VERSION (oeb
->op
) != SSA_NAME_VERSION (oea
->op
))
546 return SSA_NAME_VERSION (oeb
->op
) > SSA_NAME_VERSION (oea
->op
) ? 1 : -1;
548 return oeb
->id
> oea
->id
? 1 : -1;
551 if (oeb
->rank
!= oea
->rank
)
552 return oeb
->rank
> oea
->rank
? 1 : -1;
554 return oeb
->id
> oea
->id
? 1 : -1;
557 /* Add an operand entry to *OPS for the tree operand OP. */
560 add_to_ops_vec (vec
<operand_entry
*> *ops
, tree op
, gimple
*stmt_to_insert
= NULL
)
562 operand_entry
*oe
= operand_entry_pool
.allocate ();
565 oe
->rank
= get_rank (op
);
566 oe
->id
= next_operand_entry_id
++;
568 oe
->stmt_to_insert
= stmt_to_insert
;
572 /* Add an operand entry to *OPS for the tree operand OP with repeat
576 add_repeat_to_ops_vec (vec
<operand_entry
*> *ops
, tree op
,
577 HOST_WIDE_INT repeat
)
579 operand_entry
*oe
= operand_entry_pool
.allocate ();
582 oe
->rank
= get_rank (op
);
583 oe
->id
= next_operand_entry_id
++;
585 oe
->stmt_to_insert
= NULL
;
588 reassociate_stats
.pows_encountered
++;
591 /* Return true if STMT is reassociable operation containing a binary
592 operation with tree code CODE, and is inside LOOP. */
595 is_reassociable_op (gimple
*stmt
, enum tree_code code
, struct loop
*loop
)
597 basic_block bb
= gimple_bb (stmt
);
599 if (gimple_bb (stmt
) == NULL
)
602 if (!flow_bb_inside_loop_p (loop
, bb
))
605 if (is_gimple_assign (stmt
)
606 && gimple_assign_rhs_code (stmt
) == code
607 && has_single_use (gimple_assign_lhs (stmt
)))
609 tree rhs1
= gimple_assign_rhs1 (stmt
);
610 tree rhs2
= gimple_assign_rhs1 (stmt
);
611 if (TREE_CODE (rhs1
) == SSA_NAME
612 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs1
))
615 && TREE_CODE (rhs2
) == SSA_NAME
616 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs2
))
625 /* Return true if STMT is a nop-conversion. */
628 gimple_nop_conversion_p (gimple
*stmt
)
630 if (gassign
*ass
= dyn_cast
<gassign
*> (stmt
))
632 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (ass
))
633 && tree_nop_conversion_p (TREE_TYPE (gimple_assign_lhs (ass
)),
634 TREE_TYPE (gimple_assign_rhs1 (ass
))))
640 /* Given NAME, if NAME is defined by a unary operation OPCODE, return the
641 operand of the negate operation. Otherwise, return NULL. */
644 get_unary_op (tree name
, enum tree_code opcode
)
646 gimple
*stmt
= SSA_NAME_DEF_STMT (name
);
648 /* Look through nop conversions (sign changes). */
649 if (gimple_nop_conversion_p (stmt
)
650 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
651 stmt
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
653 if (!is_gimple_assign (stmt
))
656 if (gimple_assign_rhs_code (stmt
) == opcode
)
657 return gimple_assign_rhs1 (stmt
);
661 /* Return true if OP1 and OP2 have the same value if casted to either type. */
664 ops_equal_values_p (tree op1
, tree op2
)
670 if (TREE_CODE (op1
) == SSA_NAME
)
672 gimple
*stmt
= SSA_NAME_DEF_STMT (op1
);
673 if (gimple_nop_conversion_p (stmt
))
675 op1
= gimple_assign_rhs1 (stmt
);
681 if (TREE_CODE (op2
) == SSA_NAME
)
683 gimple
*stmt
= SSA_NAME_DEF_STMT (op2
);
684 if (gimple_nop_conversion_p (stmt
))
686 op2
= gimple_assign_rhs1 (stmt
);
697 /* If CURR and LAST are a pair of ops that OPCODE allows us to
698 eliminate through equivalences, do so, remove them from OPS, and
699 return true. Otherwise, return false. */
702 eliminate_duplicate_pair (enum tree_code opcode
,
703 vec
<operand_entry
*> *ops
,
710 /* If we have two of the same op, and the opcode is & |, min, or max,
711 we can eliminate one of them.
712 If we have two of the same op, and the opcode is ^, we can
713 eliminate both of them. */
715 if (last
&& last
->op
== curr
->op
)
723 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
725 fprintf (dump_file
, "Equivalence: ");
726 print_generic_expr (dump_file
, curr
->op
);
727 fprintf (dump_file
, " [&|minmax] ");
728 print_generic_expr (dump_file
, last
->op
);
729 fprintf (dump_file
, " -> ");
730 print_generic_stmt (dump_file
, last
->op
);
733 ops
->ordered_remove (i
);
734 reassociate_stats
.ops_eliminated
++;
739 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
741 fprintf (dump_file
, "Equivalence: ");
742 print_generic_expr (dump_file
, curr
->op
);
743 fprintf (dump_file
, " ^ ");
744 print_generic_expr (dump_file
, last
->op
);
745 fprintf (dump_file
, " -> nothing\n");
748 reassociate_stats
.ops_eliminated
+= 2;
750 if (ops
->length () == 2)
753 add_to_ops_vec (ops
, build_zero_cst (TREE_TYPE (last
->op
)));
758 ops
->ordered_remove (i
-1);
759 ops
->ordered_remove (i
-1);
771 static vec
<tree
> plus_negates
;
773 /* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not
774 expression, look in OPS for a corresponding positive operation to cancel
775 it out. If we find one, remove the other from OPS, replace
776 OPS[CURRINDEX] with 0 or -1, respectively, and return true. Otherwise,
780 eliminate_plus_minus_pair (enum tree_code opcode
,
781 vec
<operand_entry
*> *ops
,
782 unsigned int currindex
,
790 if (opcode
!= PLUS_EXPR
|| TREE_CODE (curr
->op
) != SSA_NAME
)
793 negateop
= get_unary_op (curr
->op
, NEGATE_EXPR
);
794 notop
= get_unary_op (curr
->op
, BIT_NOT_EXPR
);
795 if (negateop
== NULL_TREE
&& notop
== NULL_TREE
)
798 /* Any non-negated version will have a rank that is one less than
799 the current rank. So once we hit those ranks, if we don't find
802 for (i
= currindex
+ 1;
803 ops
->iterate (i
, &oe
)
804 && oe
->rank
>= curr
->rank
- 1 ;
808 && ops_equal_values_p (oe
->op
, negateop
))
810 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
812 fprintf (dump_file
, "Equivalence: ");
813 print_generic_expr (dump_file
, negateop
);
814 fprintf (dump_file
, " + -");
815 print_generic_expr (dump_file
, oe
->op
);
816 fprintf (dump_file
, " -> 0\n");
819 ops
->ordered_remove (i
);
820 add_to_ops_vec (ops
, build_zero_cst (TREE_TYPE (oe
->op
)));
821 ops
->ordered_remove (currindex
);
822 reassociate_stats
.ops_eliminated
++;
827 && ops_equal_values_p (oe
->op
, notop
))
829 tree op_type
= TREE_TYPE (oe
->op
);
831 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
833 fprintf (dump_file
, "Equivalence: ");
834 print_generic_expr (dump_file
, notop
);
835 fprintf (dump_file
, " + ~");
836 print_generic_expr (dump_file
, oe
->op
);
837 fprintf (dump_file
, " -> -1\n");
840 ops
->ordered_remove (i
);
841 add_to_ops_vec (ops
, build_all_ones_cst (op_type
));
842 ops
->ordered_remove (currindex
);
843 reassociate_stats
.ops_eliminated
++;
849 /* If CURR->OP is a negate expr without nop conversion in a plus expr:
850 save it for later inspection in repropagate_negates(). */
851 if (negateop
!= NULL_TREE
852 && gimple_assign_rhs_code (SSA_NAME_DEF_STMT (curr
->op
)) == NEGATE_EXPR
)
853 plus_negates
.safe_push (curr
->op
);
858 /* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
859 bitwise not expression, look in OPS for a corresponding operand to
860 cancel it out. If we find one, remove the other from OPS, replace
861 OPS[CURRINDEX] with 0, and return true. Otherwise, return
865 eliminate_not_pairs (enum tree_code opcode
,
866 vec
<operand_entry
*> *ops
,
867 unsigned int currindex
,
874 if ((opcode
!= BIT_IOR_EXPR
&& opcode
!= BIT_AND_EXPR
)
875 || TREE_CODE (curr
->op
) != SSA_NAME
)
878 notop
= get_unary_op (curr
->op
, BIT_NOT_EXPR
);
879 if (notop
== NULL_TREE
)
882 /* Any non-not version will have a rank that is one less than
883 the current rank. So once we hit those ranks, if we don't find
886 for (i
= currindex
+ 1;
887 ops
->iterate (i
, &oe
)
888 && oe
->rank
>= curr
->rank
- 1;
893 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
895 fprintf (dump_file
, "Equivalence: ");
896 print_generic_expr (dump_file
, notop
);
897 if (opcode
== BIT_AND_EXPR
)
898 fprintf (dump_file
, " & ~");
899 else if (opcode
== BIT_IOR_EXPR
)
900 fprintf (dump_file
, " | ~");
901 print_generic_expr (dump_file
, oe
->op
);
902 if (opcode
== BIT_AND_EXPR
)
903 fprintf (dump_file
, " -> 0\n");
904 else if (opcode
== BIT_IOR_EXPR
)
905 fprintf (dump_file
, " -> -1\n");
908 if (opcode
== BIT_AND_EXPR
)
909 oe
->op
= build_zero_cst (TREE_TYPE (oe
->op
));
910 else if (opcode
== BIT_IOR_EXPR
)
911 oe
->op
= build_all_ones_cst (TREE_TYPE (oe
->op
));
913 reassociate_stats
.ops_eliminated
+= ops
->length () - 1;
915 ops
->quick_push (oe
);
923 /* Use constant value that may be present in OPS to try to eliminate
924 operands. Note that this function is only really used when we've
925 eliminated ops for other reasons, or merged constants. Across
926 single statements, fold already does all of this, plus more. There
927 is little point in duplicating logic, so I've only included the
928 identities that I could ever construct testcases to trigger. */
931 eliminate_using_constants (enum tree_code opcode
,
932 vec
<operand_entry
*> *ops
)
934 operand_entry
*oelast
= ops
->last ();
935 tree type
= TREE_TYPE (oelast
->op
);
937 if (oelast
->rank
== 0
938 && (ANY_INTEGRAL_TYPE_P (type
) || FLOAT_TYPE_P (type
)))
943 if (integer_zerop (oelast
->op
))
945 if (ops
->length () != 1)
947 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
948 fprintf (dump_file
, "Found & 0, removing all other ops\n");
950 reassociate_stats
.ops_eliminated
+= ops
->length () - 1;
953 ops
->quick_push (oelast
);
957 else if (integer_all_onesp (oelast
->op
))
959 if (ops
->length () != 1)
961 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
962 fprintf (dump_file
, "Found & -1, removing\n");
964 reassociate_stats
.ops_eliminated
++;
969 if (integer_all_onesp (oelast
->op
))
971 if (ops
->length () != 1)
973 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
974 fprintf (dump_file
, "Found | -1, removing all other ops\n");
976 reassociate_stats
.ops_eliminated
+= ops
->length () - 1;
979 ops
->quick_push (oelast
);
983 else if (integer_zerop (oelast
->op
))
985 if (ops
->length () != 1)
987 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
988 fprintf (dump_file
, "Found | 0, removing\n");
990 reassociate_stats
.ops_eliminated
++;
995 if (integer_zerop (oelast
->op
)
996 || (FLOAT_TYPE_P (type
)
997 && !HONOR_NANS (type
)
998 && !HONOR_SIGNED_ZEROS (type
)
999 && real_zerop (oelast
->op
)))
1001 if (ops
->length () != 1)
1003 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1004 fprintf (dump_file
, "Found * 0, removing all other ops\n");
1006 reassociate_stats
.ops_eliminated
+= ops
->length () - 1;
1008 ops
->quick_push (oelast
);
1012 else if (integer_onep (oelast
->op
)
1013 || (FLOAT_TYPE_P (type
)
1014 && !HONOR_SNANS (type
)
1015 && real_onep (oelast
->op
)))
1017 if (ops
->length () != 1)
1019 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1020 fprintf (dump_file
, "Found * 1, removing\n");
1022 reassociate_stats
.ops_eliminated
++;
1030 if (integer_zerop (oelast
->op
)
1031 || (FLOAT_TYPE_P (type
)
1032 && (opcode
== PLUS_EXPR
|| opcode
== MINUS_EXPR
)
1033 && fold_real_zero_addition_p (type
, oelast
->op
,
1034 opcode
== MINUS_EXPR
)))
1036 if (ops
->length () != 1)
1038 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1039 fprintf (dump_file
, "Found [|^+] 0, removing\n");
1041 reassociate_stats
.ops_eliminated
++;
1053 static void linearize_expr_tree (vec
<operand_entry
*> *, gimple
*,
1056 /* Structure for tracking and counting operands. */
1060 enum tree_code oecode
;
1065 /* The heap for the oecount hashtable and the sorted list of operands. */
1066 static vec
<oecount
> cvec
;
1069 /* Oecount hashtable helpers. */
1071 struct oecount_hasher
: int_hash
<int, 0, 1>
1073 static inline hashval_t
hash (int);
1074 static inline bool equal (int, int);
1077 /* Hash function for oecount. */
1080 oecount_hasher::hash (int p
)
1082 const oecount
*c
= &cvec
[p
- 42];
1083 return htab_hash_pointer (c
->op
) ^ (hashval_t
)c
->oecode
;
1086 /* Comparison function for oecount. */
1089 oecount_hasher::equal (int p1
, int p2
)
1091 const oecount
*c1
= &cvec
[p1
- 42];
1092 const oecount
*c2
= &cvec
[p2
- 42];
1093 return c1
->oecode
== c2
->oecode
&& c1
->op
== c2
->op
;
1096 /* Comparison function for qsort sorting oecount elements by count. */
1099 oecount_cmp (const void *p1
, const void *p2
)
1101 const oecount
*c1
= (const oecount
*)p1
;
1102 const oecount
*c2
= (const oecount
*)p2
;
1103 if (c1
->cnt
!= c2
->cnt
)
1104 return c1
->cnt
> c2
->cnt
? 1 : -1;
1106 /* If counts are identical, use unique IDs to stabilize qsort. */
1107 return c1
->id
> c2
->id
? 1 : -1;
1110 /* Return TRUE iff STMT represents a builtin call that raises OP
1111 to some exponent. */
1114 stmt_is_power_of_op (gimple
*stmt
, tree op
)
1116 if (!is_gimple_call (stmt
))
1119 switch (gimple_call_combined_fn (stmt
))
1123 return (operand_equal_p (gimple_call_arg (stmt
, 0), op
, 0));
1130 /* Given STMT which is a __builtin_pow* call, decrement its exponent
1131 in place and return the result. Assumes that stmt_is_power_of_op
1132 was previously called for STMT and returned TRUE. */
1134 static HOST_WIDE_INT
1135 decrement_power (gimple
*stmt
)
1137 REAL_VALUE_TYPE c
, cint
;
1138 HOST_WIDE_INT power
;
1141 switch (gimple_call_combined_fn (stmt
))
1144 arg1
= gimple_call_arg (stmt
, 1);
1145 c
= TREE_REAL_CST (arg1
);
1146 power
= real_to_integer (&c
) - 1;
1147 real_from_integer (&cint
, VOIDmode
, power
, SIGNED
);
1148 gimple_call_set_arg (stmt
, 1, build_real (TREE_TYPE (arg1
), cint
));
1152 arg1
= gimple_call_arg (stmt
, 1);
1153 power
= TREE_INT_CST_LOW (arg1
) - 1;
1154 gimple_call_set_arg (stmt
, 1, build_int_cst (TREE_TYPE (arg1
), power
));
1162 /* Replace SSA defined by STMT and replace all its uses with new
1163 SSA. Also return the new SSA. */
1166 make_new_ssa_for_def (gimple
*stmt
, enum tree_code opcode
, tree op
)
1170 imm_use_iterator iter
;
1171 tree new_lhs
, new_debug_lhs
= NULL_TREE
;
1172 tree lhs
= gimple_get_lhs (stmt
);
1174 new_lhs
= make_ssa_name (TREE_TYPE (lhs
));
1175 gimple_set_lhs (stmt
, new_lhs
);
1177 /* Also need to update GIMPLE_DEBUGs. */
1178 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
1180 tree repl
= new_lhs
;
1181 if (is_gimple_debug (use_stmt
))
1183 if (new_debug_lhs
== NULL_TREE
)
1185 new_debug_lhs
= make_node (DEBUG_EXPR_DECL
);
1187 = gimple_build_debug_bind (new_debug_lhs
,
1188 build2 (opcode
, TREE_TYPE (lhs
),
1191 DECL_ARTIFICIAL (new_debug_lhs
) = 1;
1192 TREE_TYPE (new_debug_lhs
) = TREE_TYPE (lhs
);
1193 SET_DECL_MODE (new_debug_lhs
, TYPE_MODE (TREE_TYPE (lhs
)));
1194 gimple_set_uid (def_temp
, gimple_uid (stmt
));
1195 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1196 gsi_insert_after (&gsi
, def_temp
, GSI_SAME_STMT
);
1198 repl
= new_debug_lhs
;
1200 FOR_EACH_IMM_USE_ON_STMT (use
, iter
)
1201 SET_USE (use
, repl
);
1202 update_stmt (use_stmt
);
1207 /* Replace all SSAs defined in STMTS_TO_FIX and replace its
1208 uses with new SSAs. Also do this for the stmt that defines DEF
1209 if *DEF is not OP. */
1212 make_new_ssa_for_all_defs (tree
*def
, enum tree_code opcode
, tree op
,
1213 vec
<gimple
*> &stmts_to_fix
)
1219 && TREE_CODE (*def
) == SSA_NAME
1220 && (stmt
= SSA_NAME_DEF_STMT (*def
))
1221 && gimple_code (stmt
) != GIMPLE_NOP
)
1222 *def
= make_new_ssa_for_def (stmt
, opcode
, op
);
1224 FOR_EACH_VEC_ELT (stmts_to_fix
, i
, stmt
)
1225 make_new_ssa_for_def (stmt
, opcode
, op
);
1228 /* Find the single immediate use of STMT's LHS, and replace it
1229 with OP. Remove STMT. If STMT's LHS is the same as *DEF,
1230 replace *DEF with OP as well. */
1233 propagate_op_to_single_use (tree op
, gimple
*stmt
, tree
*def
)
1238 gimple_stmt_iterator gsi
;
1240 if (is_gimple_call (stmt
))
1241 lhs
= gimple_call_lhs (stmt
);
1243 lhs
= gimple_assign_lhs (stmt
);
1245 gcc_assert (has_single_use (lhs
));
1246 single_imm_use (lhs
, &use
, &use_stmt
);
1250 if (TREE_CODE (op
) != SSA_NAME
)
1251 update_stmt (use_stmt
);
1252 gsi
= gsi_for_stmt (stmt
);
1253 unlink_stmt_vdef (stmt
);
1254 reassoc_remove_stmt (&gsi
);
1255 release_defs (stmt
);
1258 /* Walks the linear chain with result *DEF searching for an operation
1259 with operand OP and code OPCODE removing that from the chain. *DEF
1260 is updated if there is only one operand but no operation left. */
1263 zero_one_operation (tree
*def
, enum tree_code opcode
, tree op
)
1265 tree orig_def
= *def
;
1266 gimple
*stmt
= SSA_NAME_DEF_STMT (*def
);
1267 /* PR72835 - Record the stmt chain that has to be updated such that
1268 we dont use the same LHS when the values computed are different. */
1269 auto_vec
<gimple
*, 64> stmts_to_fix
;
1275 if (opcode
== MULT_EXPR
)
1277 if (stmt_is_power_of_op (stmt
, op
))
1279 if (decrement_power (stmt
) == 1)
1281 if (stmts_to_fix
.length () > 0)
1282 stmts_to_fix
.pop ();
1283 propagate_op_to_single_use (op
, stmt
, def
);
1287 else if (gimple_assign_rhs_code (stmt
) == NEGATE_EXPR
)
1289 if (gimple_assign_rhs1 (stmt
) == op
)
1291 tree cst
= build_minus_one_cst (TREE_TYPE (op
));
1292 if (stmts_to_fix
.length () > 0)
1293 stmts_to_fix
.pop ();
1294 propagate_op_to_single_use (cst
, stmt
, def
);
1297 else if (integer_minus_onep (op
)
1298 || real_minus_onep (op
))
1300 gimple_assign_set_rhs_code
1301 (stmt
, TREE_CODE (gimple_assign_rhs1 (stmt
)));
1307 name
= gimple_assign_rhs1 (stmt
);
1309 /* If this is the operation we look for and one of the operands
1310 is ours simply propagate the other operand into the stmts
1312 if (gimple_assign_rhs_code (stmt
) == opcode
1314 || gimple_assign_rhs2 (stmt
) == op
))
1317 name
= gimple_assign_rhs2 (stmt
);
1318 if (stmts_to_fix
.length () > 0)
1319 stmts_to_fix
.pop ();
1320 propagate_op_to_single_use (name
, stmt
, def
);
1324 /* We might have a multiply of two __builtin_pow* calls, and
1325 the operand might be hiding in the rightmost one. Likewise
1326 this can happen for a negate. */
1327 if (opcode
== MULT_EXPR
1328 && gimple_assign_rhs_code (stmt
) == opcode
1329 && TREE_CODE (gimple_assign_rhs2 (stmt
)) == SSA_NAME
1330 && has_single_use (gimple_assign_rhs2 (stmt
)))
1332 gimple
*stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt
));
1333 if (stmt_is_power_of_op (stmt2
, op
))
1335 if (decrement_power (stmt2
) == 1)
1336 propagate_op_to_single_use (op
, stmt2
, def
);
1338 stmts_to_fix
.safe_push (stmt2
);
1341 else if (is_gimple_assign (stmt2
)
1342 && gimple_assign_rhs_code (stmt2
) == NEGATE_EXPR
)
1344 if (gimple_assign_rhs1 (stmt2
) == op
)
1346 tree cst
= build_minus_one_cst (TREE_TYPE (op
));
1347 propagate_op_to_single_use (cst
, stmt2
, def
);
1350 else if (integer_minus_onep (op
)
1351 || real_minus_onep (op
))
1353 stmts_to_fix
.safe_push (stmt2
);
1354 gimple_assign_set_rhs_code
1355 (stmt2
, TREE_CODE (gimple_assign_rhs1 (stmt2
)));
1361 /* Continue walking the chain. */
1362 gcc_assert (name
!= op
1363 && TREE_CODE (name
) == SSA_NAME
);
1364 stmt
= SSA_NAME_DEF_STMT (name
);
1365 stmts_to_fix
.safe_push (stmt
);
1369 if (stmts_to_fix
.length () > 0 || *def
== orig_def
)
1370 make_new_ssa_for_all_defs (def
, opcode
, op
, stmts_to_fix
);
1373 /* Returns true if statement S1 dominates statement S2. Like
1374 stmt_dominates_stmt_p, but uses stmt UIDs to optimize. */
1377 reassoc_stmt_dominates_stmt_p (gimple
*s1
, gimple
*s2
)
1379 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
1381 /* If bb1 is NULL, it should be a GIMPLE_NOP def stmt of an (D)
1382 SSA_NAME. Assume it lives at the beginning of function and
1383 thus dominates everything. */
1384 if (!bb1
|| s1
== s2
)
1387 /* If bb2 is NULL, it doesn't dominate any stmt with a bb. */
1393 /* PHIs in the same basic block are assumed to be
1394 executed all in parallel, if only one stmt is a PHI,
1395 it dominates the other stmt in the same basic block. */
1396 if (gimple_code (s1
) == GIMPLE_PHI
)
1399 if (gimple_code (s2
) == GIMPLE_PHI
)
1402 gcc_assert (gimple_uid (s1
) && gimple_uid (s2
));
1404 if (gimple_uid (s1
) < gimple_uid (s2
))
1407 if (gimple_uid (s1
) > gimple_uid (s2
))
1410 gimple_stmt_iterator gsi
= gsi_for_stmt (s1
);
1411 unsigned int uid
= gimple_uid (s1
);
1412 for (gsi_next (&gsi
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1414 gimple
*s
= gsi_stmt (gsi
);
1415 if (gimple_uid (s
) != uid
)
1424 return dominated_by_p (CDI_DOMINATORS
, bb2
, bb1
);
1427 /* Insert STMT after INSERT_POINT. */
1430 insert_stmt_after (gimple
*stmt
, gimple
*insert_point
)
1432 gimple_stmt_iterator gsi
;
1435 if (gimple_code (insert_point
) == GIMPLE_PHI
)
1436 bb
= gimple_bb (insert_point
);
1437 else if (!stmt_ends_bb_p (insert_point
))
1439 gsi
= gsi_for_stmt (insert_point
);
1440 gimple_set_uid (stmt
, gimple_uid (insert_point
));
1441 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1445 /* We assume INSERT_POINT is a SSA_NAME_DEF_STMT of some SSA_NAME,
1446 thus if it must end a basic block, it should be a call that can
1447 throw, or some assignment that can throw. If it throws, the LHS
1448 of it will not be initialized though, so only valid places using
1449 the SSA_NAME should be dominated by the fallthru edge. */
1450 bb
= find_fallthru_edge (gimple_bb (insert_point
)->succs
)->dest
;
1451 gsi
= gsi_after_labels (bb
);
1452 if (gsi_end_p (gsi
))
1454 gimple_stmt_iterator gsi2
= gsi_last_bb (bb
);
1455 gimple_set_uid (stmt
,
1456 gsi_end_p (gsi2
) ? 1 : gimple_uid (gsi_stmt (gsi2
)));
1459 gimple_set_uid (stmt
, gimple_uid (gsi_stmt (gsi
)));
1460 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1463 /* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
1464 the result. Places the statement after the definition of either
1465 OP1 or OP2. Returns the new statement. */
1468 build_and_add_sum (tree type
, tree op1
, tree op2
, enum tree_code opcode
)
1470 gimple
*op1def
= NULL
, *op2def
= NULL
;
1471 gimple_stmt_iterator gsi
;
1475 /* Create the addition statement. */
1476 op
= make_ssa_name (type
);
1477 sum
= gimple_build_assign (op
, opcode
, op1
, op2
);
1479 /* Find an insertion place and insert. */
1480 if (TREE_CODE (op1
) == SSA_NAME
)
1481 op1def
= SSA_NAME_DEF_STMT (op1
);
1482 if (TREE_CODE (op2
) == SSA_NAME
)
1483 op2def
= SSA_NAME_DEF_STMT (op2
);
1484 if ((!op1def
|| gimple_nop_p (op1def
))
1485 && (!op2def
|| gimple_nop_p (op2def
)))
1487 gsi
= gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
1488 if (gsi_end_p (gsi
))
1490 gimple_stmt_iterator gsi2
1491 = gsi_last_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
1492 gimple_set_uid (sum
,
1493 gsi_end_p (gsi2
) ? 1 : gimple_uid (gsi_stmt (gsi2
)));
1496 gimple_set_uid (sum
, gimple_uid (gsi_stmt (gsi
)));
1497 gsi_insert_before (&gsi
, sum
, GSI_NEW_STMT
);
1501 gimple
*insert_point
;
1502 if ((!op1def
|| gimple_nop_p (op1def
))
1503 || (op2def
&& !gimple_nop_p (op2def
)
1504 && reassoc_stmt_dominates_stmt_p (op1def
, op2def
)))
1505 insert_point
= op2def
;
1507 insert_point
= op1def
;
1508 insert_stmt_after (sum
, insert_point
);
1515 /* Perform un-distribution of divisions and multiplications.
1516 A * X + B * X is transformed into (A + B) * X and A / X + B / X
1517 to (A + B) / X for real X.
1519 The algorithm is organized as follows.
1521 - First we walk the addition chain *OPS looking for summands that
1522 are defined by a multiplication or a real division. This results
1523 in the candidates bitmap with relevant indices into *OPS.
1525 - Second we build the chains of multiplications or divisions for
1526 these candidates, counting the number of occurrences of (operand, code)
1527 pairs in all of the candidates chains.
1529 - Third we sort the (operand, code) pairs by number of occurrence and
1530 process them starting with the pair with the most uses.
1532 * For each such pair we walk the candidates again to build a
1533 second candidate bitmap noting all multiplication/division chains
1534 that have at least one occurrence of (operand, code).
1536 * We build an alternate addition chain only covering these
1537 candidates with one (operand, code) operation removed from their
1538 multiplication/division chain.
1540 * The first candidate gets replaced by the alternate addition chain
1541 multiplied/divided by the operand.
1543 * All candidate chains get disabled for further processing and
1544 processing of (operand, code) pairs continues.
1546 The alternate addition chains built are re-processed by the main
1547 reassociation algorithm which allows optimizing a * x * y + b * y * x
1548 to (a + b ) * x * y in one invocation of the reassociation pass. */
1551 undistribute_ops_list (enum tree_code opcode
,
1552 vec
<operand_entry
*> *ops
, struct loop
*loop
)
1554 unsigned int length
= ops
->length ();
1557 unsigned nr_candidates
, nr_candidates2
;
1558 sbitmap_iterator sbi0
;
1559 vec
<operand_entry
*> *subops
;
1560 bool changed
= false;
1561 unsigned int next_oecount_id
= 0;
1564 || opcode
!= PLUS_EXPR
)
1567 /* Build a list of candidates to process. */
1568 auto_sbitmap
candidates (length
);
1569 bitmap_clear (candidates
);
1571 FOR_EACH_VEC_ELT (*ops
, i
, oe1
)
1573 enum tree_code dcode
;
1576 if (TREE_CODE (oe1
->op
) != SSA_NAME
)
1578 oe1def
= SSA_NAME_DEF_STMT (oe1
->op
);
1579 if (!is_gimple_assign (oe1def
))
1581 dcode
= gimple_assign_rhs_code (oe1def
);
1582 if ((dcode
!= MULT_EXPR
1583 && dcode
!= RDIV_EXPR
)
1584 || !is_reassociable_op (oe1def
, dcode
, loop
))
1587 bitmap_set_bit (candidates
, i
);
1591 if (nr_candidates
< 2)
1594 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1596 fprintf (dump_file
, "searching for un-distribute opportunities ");
1597 print_generic_expr (dump_file
,
1598 (*ops
)[bitmap_first_set_bit (candidates
)]->op
, 0);
1599 fprintf (dump_file
, " %d\n", nr_candidates
);
1602 /* Build linearized sub-operand lists and the counting table. */
1605 hash_table
<oecount_hasher
> ctable (15);
1607 /* ??? Macro arguments cannot have multi-argument template types in
1608 them. This typedef is needed to workaround that limitation. */
1609 typedef vec
<operand_entry
*> vec_operand_entry_t_heap
;
1610 subops
= XCNEWVEC (vec_operand_entry_t_heap
, ops
->length ());
1611 EXECUTE_IF_SET_IN_BITMAP (candidates
, 0, i
, sbi0
)
1614 enum tree_code oecode
;
1617 oedef
= SSA_NAME_DEF_STMT ((*ops
)[i
]->op
);
1618 oecode
= gimple_assign_rhs_code (oedef
);
1619 linearize_expr_tree (&subops
[i
], oedef
,
1620 associative_tree_code (oecode
), false);
1622 FOR_EACH_VEC_ELT (subops
[i
], j
, oe1
)
1629 c
.id
= next_oecount_id
++;
1632 idx
= cvec
.length () + 41;
1633 slot
= ctable
.find_slot (idx
, INSERT
);
1641 cvec
[*slot
- 42].cnt
++;
1646 /* Sort the counting table. */
1647 cvec
.qsort (oecount_cmp
);
1649 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1652 fprintf (dump_file
, "Candidates:\n");
1653 FOR_EACH_VEC_ELT (cvec
, j
, c
)
1655 fprintf (dump_file
, " %u %s: ", c
->cnt
,
1656 c
->oecode
== MULT_EXPR
1657 ? "*" : c
->oecode
== RDIV_EXPR
? "/" : "?");
1658 print_generic_expr (dump_file
, c
->op
);
1659 fprintf (dump_file
, "\n");
1663 /* Process the (operand, code) pairs in order of most occurrence. */
1664 auto_sbitmap
candidates2 (length
);
1665 while (!cvec
.is_empty ())
1667 oecount
*c
= &cvec
.last ();
1671 /* Now collect the operands in the outer chain that contain
1672 the common operand in their inner chain. */
1673 bitmap_clear (candidates2
);
1675 EXECUTE_IF_SET_IN_BITMAP (candidates
, 0, i
, sbi0
)
1678 enum tree_code oecode
;
1680 tree op
= (*ops
)[i
]->op
;
1682 /* If we undistributed in this chain already this may be
1684 if (TREE_CODE (op
) != SSA_NAME
)
1687 oedef
= SSA_NAME_DEF_STMT (op
);
1688 oecode
= gimple_assign_rhs_code (oedef
);
1689 if (oecode
!= c
->oecode
)
1692 FOR_EACH_VEC_ELT (subops
[i
], j
, oe1
)
1694 if (oe1
->op
== c
->op
)
1696 bitmap_set_bit (candidates2
, i
);
1703 if (nr_candidates2
>= 2)
1705 operand_entry
*oe1
, *oe2
;
1707 int first
= bitmap_first_set_bit (candidates2
);
1709 /* Build the new addition chain. */
1710 oe1
= (*ops
)[first
];
1711 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1713 fprintf (dump_file
, "Building (");
1714 print_generic_expr (dump_file
, oe1
->op
);
1716 zero_one_operation (&oe1
->op
, c
->oecode
, c
->op
);
1717 EXECUTE_IF_SET_IN_BITMAP (candidates2
, first
+1, i
, sbi0
)
1721 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1723 fprintf (dump_file
, " + ");
1724 print_generic_expr (dump_file
, oe2
->op
);
1726 zero_one_operation (&oe2
->op
, c
->oecode
, c
->op
);
1727 sum
= build_and_add_sum (TREE_TYPE (oe1
->op
),
1728 oe1
->op
, oe2
->op
, opcode
);
1729 oe2
->op
= build_zero_cst (TREE_TYPE (oe2
->op
));
1731 oe1
->op
= gimple_get_lhs (sum
);
1734 /* Apply the multiplication/division. */
1735 prod
= build_and_add_sum (TREE_TYPE (oe1
->op
),
1736 oe1
->op
, c
->op
, c
->oecode
);
1737 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1739 fprintf (dump_file
, ") %s ", c
->oecode
== MULT_EXPR
? "*" : "/");
1740 print_generic_expr (dump_file
, c
->op
);
1741 fprintf (dump_file
, "\n");
1744 /* Record it in the addition chain and disable further
1745 undistribution with this op. */
1746 oe1
->op
= gimple_assign_lhs (prod
);
1747 oe1
->rank
= get_rank (oe1
->op
);
1748 subops
[first
].release ();
1756 for (i
= 0; i
< ops
->length (); ++i
)
1757 subops
[i
].release ();
1764 /* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
1765 expression, examine the other OPS to see if any of them are comparisons
1766 of the same values, which we may be able to combine or eliminate.
1767 For example, we can rewrite (a < b) | (a == b) as (a <= b). */
1770 eliminate_redundant_comparison (enum tree_code opcode
,
1771 vec
<operand_entry
*> *ops
,
1772 unsigned int currindex
,
1773 operand_entry
*curr
)
1776 enum tree_code lcode
, rcode
;
1777 gimple
*def1
, *def2
;
1781 if (opcode
!= BIT_IOR_EXPR
&& opcode
!= BIT_AND_EXPR
)
1784 /* Check that CURR is a comparison. */
1785 if (TREE_CODE (curr
->op
) != SSA_NAME
)
1787 def1
= SSA_NAME_DEF_STMT (curr
->op
);
1788 if (!is_gimple_assign (def1
))
1790 lcode
= gimple_assign_rhs_code (def1
);
1791 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
)
1793 op1
= gimple_assign_rhs1 (def1
);
1794 op2
= gimple_assign_rhs2 (def1
);
1796 /* Now look for a similar comparison in the remaining OPS. */
1797 for (i
= currindex
+ 1; ops
->iterate (i
, &oe
); i
++)
1801 if (TREE_CODE (oe
->op
) != SSA_NAME
)
1803 def2
= SSA_NAME_DEF_STMT (oe
->op
);
1804 if (!is_gimple_assign (def2
))
1806 rcode
= gimple_assign_rhs_code (def2
);
1807 if (TREE_CODE_CLASS (rcode
) != tcc_comparison
)
1810 /* If we got here, we have a match. See if we can combine the
1812 if (opcode
== BIT_IOR_EXPR
)
1813 t
= maybe_fold_or_comparisons (lcode
, op1
, op2
,
1814 rcode
, gimple_assign_rhs1 (def2
),
1815 gimple_assign_rhs2 (def2
));
1817 t
= maybe_fold_and_comparisons (lcode
, op1
, op2
,
1818 rcode
, gimple_assign_rhs1 (def2
),
1819 gimple_assign_rhs2 (def2
));
1823 /* maybe_fold_and_comparisons and maybe_fold_or_comparisons
1824 always give us a boolean_type_node value back. If the original
1825 BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
1826 we need to convert. */
1827 if (!useless_type_conversion_p (TREE_TYPE (curr
->op
), TREE_TYPE (t
)))
1828 t
= fold_convert (TREE_TYPE (curr
->op
), t
);
1830 if (TREE_CODE (t
) != INTEGER_CST
1831 && !operand_equal_p (t
, curr
->op
, 0))
1833 enum tree_code subcode
;
1834 tree newop1
, newop2
;
1835 if (!COMPARISON_CLASS_P (t
))
1837 extract_ops_from_tree (t
, &subcode
, &newop1
, &newop2
);
1838 STRIP_USELESS_TYPE_CONVERSION (newop1
);
1839 STRIP_USELESS_TYPE_CONVERSION (newop2
);
1840 if (!is_gimple_val (newop1
) || !is_gimple_val (newop2
))
1844 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1846 fprintf (dump_file
, "Equivalence: ");
1847 print_generic_expr (dump_file
, curr
->op
);
1848 fprintf (dump_file
, " %s ", op_symbol_code (opcode
));
1849 print_generic_expr (dump_file
, oe
->op
);
1850 fprintf (dump_file
, " -> ");
1851 print_generic_expr (dump_file
, t
);
1852 fprintf (dump_file
, "\n");
1855 /* Now we can delete oe, as it has been subsumed by the new combined
1857 ops
->ordered_remove (i
);
1858 reassociate_stats
.ops_eliminated
++;
1860 /* If t is the same as curr->op, we're done. Otherwise we must
1861 replace curr->op with t. Special case is if we got a constant
1862 back, in which case we add it to the end instead of in place of
1863 the current entry. */
1864 if (TREE_CODE (t
) == INTEGER_CST
)
1866 ops
->ordered_remove (currindex
);
1867 add_to_ops_vec (ops
, t
);
1869 else if (!operand_equal_p (t
, curr
->op
, 0))
1872 enum tree_code subcode
;
1875 gcc_assert (COMPARISON_CLASS_P (t
));
1876 extract_ops_from_tree (t
, &subcode
, &newop1
, &newop2
);
1877 STRIP_USELESS_TYPE_CONVERSION (newop1
);
1878 STRIP_USELESS_TYPE_CONVERSION (newop2
);
1879 gcc_checking_assert (is_gimple_val (newop1
)
1880 && is_gimple_val (newop2
));
1881 sum
= build_and_add_sum (TREE_TYPE (t
), newop1
, newop2
, subcode
);
1882 curr
->op
= gimple_get_lhs (sum
);
1891 /* Transform repeated addition of same values into multiply with
1894 transform_add_to_multiply (vec
<operand_entry
*> *ops
)
1897 tree op
= NULL_TREE
;
1899 int i
, start
= -1, end
= 0, count
= 0;
1900 auto_vec
<std::pair
<int, int> > indxs
;
1901 bool changed
= false;
1903 if (!INTEGRAL_TYPE_P (TREE_TYPE ((*ops
)[0]->op
))
1904 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE ((*ops
)[0]->op
))
1905 || !flag_unsafe_math_optimizations
))
1908 /* Look for repeated operands. */
1909 FOR_EACH_VEC_ELT (*ops
, i
, oe
)
1917 else if (operand_equal_p (oe
->op
, op
, 0))
1925 indxs
.safe_push (std::make_pair (start
, end
));
1933 indxs
.safe_push (std::make_pair (start
, end
));
1935 for (j
= indxs
.length () - 1; j
>= 0; --j
)
1937 /* Convert repeated operand addition to multiplication. */
1938 start
= indxs
[j
].first
;
1939 end
= indxs
[j
].second
;
1940 op
= (*ops
)[start
]->op
;
1941 count
= end
- start
+ 1;
1942 for (i
= end
; i
>= start
; --i
)
1943 ops
->unordered_remove (i
);
1944 tree tmp
= make_ssa_name (TREE_TYPE (op
));
1945 tree cst
= build_int_cst (integer_type_node
, count
);
1947 = gimple_build_assign (tmp
, MULT_EXPR
,
1948 op
, fold_convert (TREE_TYPE (op
), cst
));
1949 gimple_set_visited (mul_stmt
, true);
1950 add_to_ops_vec (ops
, tmp
, mul_stmt
);
1958 /* Perform various identities and other optimizations on the list of
1959 operand entries, stored in OPS. The tree code for the binary
1960 operation between all the operands is OPCODE. */
1963 optimize_ops_list (enum tree_code opcode
,
1964 vec
<operand_entry
*> *ops
)
1966 unsigned int length
= ops
->length ();
1969 operand_entry
*oelast
= NULL
;
1970 bool iterate
= false;
1975 oelast
= ops
->last ();
1977 /* If the last two are constants, pop the constants off, merge them
1978 and try the next two. */
1979 if (oelast
->rank
== 0 && is_gimple_min_invariant (oelast
->op
))
1981 operand_entry
*oelm1
= (*ops
)[length
- 2];
1983 if (oelm1
->rank
== 0
1984 && is_gimple_min_invariant (oelm1
->op
)
1985 && useless_type_conversion_p (TREE_TYPE (oelm1
->op
),
1986 TREE_TYPE (oelast
->op
)))
1988 tree folded
= fold_binary (opcode
, TREE_TYPE (oelm1
->op
),
1989 oelm1
->op
, oelast
->op
);
1991 if (folded
&& is_gimple_min_invariant (folded
))
1993 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1994 fprintf (dump_file
, "Merging constants\n");
1999 add_to_ops_vec (ops
, folded
);
2000 reassociate_stats
.constants_eliminated
++;
2002 optimize_ops_list (opcode
, ops
);
2008 eliminate_using_constants (opcode
, ops
);
2011 for (i
= 0; ops
->iterate (i
, &oe
);)
2015 if (eliminate_not_pairs (opcode
, ops
, i
, oe
))
2017 if (eliminate_duplicate_pair (opcode
, ops
, &done
, i
, oe
, oelast
)
2018 || (!done
&& eliminate_plus_minus_pair (opcode
, ops
, i
, oe
))
2019 || (!done
&& eliminate_redundant_comparison (opcode
, ops
, i
, oe
)))
2031 length
= ops
->length ();
2032 oelast
= ops
->last ();
2035 optimize_ops_list (opcode
, ops
);
2038 /* The following functions are subroutines to optimize_range_tests and allow
2039 it to try to change a logical combination of comparisons into a range
2043 X == 2 || X == 5 || X == 3 || X == 4
2047 (unsigned) (X - 2) <= 3
2049 For more information see comments above fold_test_range in fold-const.c,
2050 this implementation is for GIMPLE. */
2058 bool strict_overflow_p
;
2059 unsigned int idx
, next
;
2062 /* This is similar to make_range in fold-const.c, but on top of
2063 GIMPLE instead of trees. If EXP is non-NULL, it should be
2064 an SSA_NAME and STMT argument is ignored, otherwise STMT
2065 argument should be a GIMPLE_COND. */
2068 init_range_entry (struct range_entry
*r
, tree exp
, gimple
*stmt
)
2072 bool is_bool
, strict_overflow_p
;
2076 r
->strict_overflow_p
= false;
2078 r
->high
= NULL_TREE
;
2079 if (exp
!= NULL_TREE
2080 && (TREE_CODE (exp
) != SSA_NAME
|| !INTEGRAL_TYPE_P (TREE_TYPE (exp
))))
2083 /* Start with simply saying "EXP != 0" and then look at the code of EXP
2084 and see if we can refine the range. Some of the cases below may not
2085 happen, but it doesn't seem worth worrying about this. We "continue"
2086 the outer loop when we've changed something; otherwise we "break"
2087 the switch, which will "break" the while. */
2088 low
= exp
? build_int_cst (TREE_TYPE (exp
), 0) : boolean_false_node
;
2091 strict_overflow_p
= false;
2093 if (exp
== NULL_TREE
)
2095 else if (TYPE_PRECISION (TREE_TYPE (exp
)) == 1)
2097 if (TYPE_UNSIGNED (TREE_TYPE (exp
)))
2102 else if (TREE_CODE (TREE_TYPE (exp
)) == BOOLEAN_TYPE
)
2107 enum tree_code code
;
2108 tree arg0
, arg1
, exp_type
;
2112 if (exp
!= NULL_TREE
)
2114 if (TREE_CODE (exp
) != SSA_NAME
2115 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp
))
2118 stmt
= SSA_NAME_DEF_STMT (exp
);
2119 if (!is_gimple_assign (stmt
))
2122 code
= gimple_assign_rhs_code (stmt
);
2123 arg0
= gimple_assign_rhs1 (stmt
);
2124 arg1
= gimple_assign_rhs2 (stmt
);
2125 exp_type
= TREE_TYPE (exp
);
2129 code
= gimple_cond_code (stmt
);
2130 arg0
= gimple_cond_lhs (stmt
);
2131 arg1
= gimple_cond_rhs (stmt
);
2132 exp_type
= boolean_type_node
;
2135 if (TREE_CODE (arg0
) != SSA_NAME
)
2137 loc
= gimple_location (stmt
);
2141 if (TREE_CODE (TREE_TYPE (exp
)) == BOOLEAN_TYPE
2142 /* Ensure the range is either +[-,0], +[0,0],
2143 -[-,0], -[0,0] or +[1,-], +[1,1], -[1,-] or
2144 -[1,1]. If it is e.g. +[-,-] or -[-,-]
2145 or similar expression of unconditional true or
2146 false, it should not be negated. */
2147 && ((high
&& integer_zerop (high
))
2148 || (low
&& integer_onep (low
))))
2161 if (TYPE_PRECISION (TREE_TYPE (arg0
)) == 1)
2163 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)))
2168 else if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
)
2183 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
,
2185 &strict_overflow_p
);
2186 if (nexp
!= NULL_TREE
)
2189 gcc_assert (TREE_CODE (exp
) == SSA_NAME
);
2202 r
->strict_overflow_p
= strict_overflow_p
;
2206 /* Comparison function for qsort. Sort entries
2207 without SSA_NAME exp first, then with SSA_NAMEs sorted
2208 by increasing SSA_NAME_VERSION, and for the same SSA_NAMEs
2209 by increasing ->low and if ->low is the same, by increasing
2210 ->high. ->low == NULL_TREE means minimum, ->high == NULL_TREE
2214 range_entry_cmp (const void *a
, const void *b
)
2216 const struct range_entry
*p
= (const struct range_entry
*) a
;
2217 const struct range_entry
*q
= (const struct range_entry
*) b
;
2219 if (p
->exp
!= NULL_TREE
&& TREE_CODE (p
->exp
) == SSA_NAME
)
2221 if (q
->exp
!= NULL_TREE
&& TREE_CODE (q
->exp
) == SSA_NAME
)
2223 /* Group range_entries for the same SSA_NAME together. */
2224 if (SSA_NAME_VERSION (p
->exp
) < SSA_NAME_VERSION (q
->exp
))
2226 else if (SSA_NAME_VERSION (p
->exp
) > SSA_NAME_VERSION (q
->exp
))
2228 /* If ->low is different, NULL low goes first, then by
2230 if (p
->low
!= NULL_TREE
)
2232 if (q
->low
!= NULL_TREE
)
2234 tree tem
= fold_binary (LT_EXPR
, boolean_type_node
,
2236 if (tem
&& integer_onep (tem
))
2238 tem
= fold_binary (GT_EXPR
, boolean_type_node
,
2240 if (tem
&& integer_onep (tem
))
2246 else if (q
->low
!= NULL_TREE
)
2248 /* If ->high is different, NULL high goes last, before that by
2250 if (p
->high
!= NULL_TREE
)
2252 if (q
->high
!= NULL_TREE
)
2254 tree tem
= fold_binary (LT_EXPR
, boolean_type_node
,
2256 if (tem
&& integer_onep (tem
))
2258 tem
= fold_binary (GT_EXPR
, boolean_type_node
,
2260 if (tem
&& integer_onep (tem
))
2266 else if (q
->high
!= NULL_TREE
)
2268 /* If both ranges are the same, sort below by ascending idx. */
2273 else if (q
->exp
!= NULL_TREE
&& TREE_CODE (q
->exp
) == SSA_NAME
)
2276 if (p
->idx
< q
->idx
)
2280 gcc_checking_assert (p
->idx
> q
->idx
);
2285 /* Helper function for update_range_test. Force EXPR into an SSA_NAME,
2286 insert needed statements BEFORE or after GSI. */
2289 force_into_ssa_name (gimple_stmt_iterator
*gsi
, tree expr
, bool before
)
2291 enum gsi_iterator_update m
= before
? GSI_SAME_STMT
: GSI_CONTINUE_LINKING
;
2292 tree ret
= force_gimple_operand_gsi (gsi
, expr
, true, NULL_TREE
, before
, m
);
2293 if (TREE_CODE (ret
) != SSA_NAME
)
2295 gimple
*g
= gimple_build_assign (make_ssa_name (TREE_TYPE (ret
)), ret
);
2297 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
2299 gsi_insert_after (gsi
, g
, GSI_CONTINUE_LINKING
);
2300 ret
= gimple_assign_lhs (g
);
2305 /* Helper routine of optimize_range_test.
2306 [EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for
2307 RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges,
2308 OPCODE and OPS are arguments of optimize_range_tests. If OTHERRANGE
2309 is NULL, OTHERRANGEP should not be and then OTHERRANGEP points to
2310 an array of COUNT pointers to other ranges. Return
2311 true if the range merge has been successful.
2312 If OPCODE is ERROR_MARK, this is called from within
2313 maybe_optimize_range_tests and is performing inter-bb range optimization.
2314 In that case, whether an op is BIT_AND_EXPR or BIT_IOR_EXPR is found in
2318 update_range_test (struct range_entry
*range
, struct range_entry
*otherrange
,
2319 struct range_entry
**otherrangep
,
2320 unsigned int count
, enum tree_code opcode
,
2321 vec
<operand_entry
*> *ops
, tree exp
, gimple_seq seq
,
2322 bool in_p
, tree low
, tree high
, bool strict_overflow_p
)
2324 operand_entry
*oe
= (*ops
)[range
->idx
];
2326 gimple
*stmt
= op
? SSA_NAME_DEF_STMT (op
)
2327 : last_stmt (BASIC_BLOCK_FOR_FN (cfun
, oe
->id
));
2328 location_t loc
= gimple_location (stmt
);
2329 tree optype
= op
? TREE_TYPE (op
) : boolean_type_node
;
2330 tree tem
= build_range_check (loc
, optype
, unshare_expr (exp
),
2332 enum warn_strict_overflow_code wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
2333 gimple_stmt_iterator gsi
;
2334 unsigned int i
, uid
;
2336 if (tem
== NULL_TREE
)
2339 /* If op is default def SSA_NAME, there is no place to insert the
2340 new comparison. Give up, unless we can use OP itself as the
2342 if (op
&& SSA_NAME_IS_DEFAULT_DEF (op
))
2344 if (op
== range
->exp
2345 && ((TYPE_PRECISION (optype
) == 1 && TYPE_UNSIGNED (optype
))
2346 || TREE_CODE (optype
) == BOOLEAN_TYPE
)
2348 || (TREE_CODE (tem
) == EQ_EXPR
2349 && TREE_OPERAND (tem
, 0) == op
2350 && integer_onep (TREE_OPERAND (tem
, 1))))
2351 && opcode
!= BIT_IOR_EXPR
2352 && (opcode
!= ERROR_MARK
|| oe
->rank
!= BIT_IOR_EXPR
))
2361 if (strict_overflow_p
&& issue_strict_overflow_warning (wc
))
2362 warning_at (loc
, OPT_Wstrict_overflow
,
2363 "assuming signed overflow does not occur "
2364 "when simplifying range test");
2366 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2368 struct range_entry
*r
;
2369 fprintf (dump_file
, "Optimizing range tests ");
2370 print_generic_expr (dump_file
, range
->exp
);
2371 fprintf (dump_file
, " %c[", range
->in_p
? '+' : '-');
2372 print_generic_expr (dump_file
, range
->low
);
2373 fprintf (dump_file
, ", ");
2374 print_generic_expr (dump_file
, range
->high
);
2375 fprintf (dump_file
, "]");
2376 for (i
= 0; i
< count
; i
++)
2382 fprintf (dump_file
, " and %c[", r
->in_p
? '+' : '-');
2383 print_generic_expr (dump_file
, r
->low
);
2384 fprintf (dump_file
, ", ");
2385 print_generic_expr (dump_file
, r
->high
);
2386 fprintf (dump_file
, "]");
2388 fprintf (dump_file
, "\n into ");
2389 print_generic_expr (dump_file
, tem
);
2390 fprintf (dump_file
, "\n");
2393 if (opcode
== BIT_IOR_EXPR
2394 || (opcode
== ERROR_MARK
&& oe
->rank
== BIT_IOR_EXPR
))
2395 tem
= invert_truthvalue_loc (loc
, tem
);
2397 tem
= fold_convert_loc (loc
, optype
, tem
);
2400 gsi
= gsi_for_stmt (stmt
);
2401 uid
= gimple_uid (stmt
);
2409 gcc_checking_assert (tem
== op
);
2410 /* In rare cases range->exp can be equal to lhs of stmt.
2411 In that case we have to insert after the stmt rather then before
2412 it. If stmt is a PHI, insert it at the start of the basic block. */
2413 else if (op
!= range
->exp
)
2415 gsi_insert_seq_before (&gsi
, seq
, GSI_SAME_STMT
);
2416 tem
= force_into_ssa_name (&gsi
, tem
, true);
2419 else if (gimple_code (stmt
) != GIMPLE_PHI
)
2421 gsi_insert_seq_after (&gsi
, seq
, GSI_CONTINUE_LINKING
);
2422 tem
= force_into_ssa_name (&gsi
, tem
, false);
2426 gsi
= gsi_after_labels (gimple_bb (stmt
));
2427 if (!gsi_end_p (gsi
))
2428 uid
= gimple_uid (gsi_stmt (gsi
));
2431 gsi
= gsi_start_bb (gimple_bb (stmt
));
2433 while (!gsi_end_p (gsi
))
2435 uid
= gimple_uid (gsi_stmt (gsi
));
2439 gsi_insert_seq_before (&gsi
, seq
, GSI_SAME_STMT
);
2440 tem
= force_into_ssa_name (&gsi
, tem
, true);
2441 if (gsi_end_p (gsi
))
2442 gsi
= gsi_last_bb (gimple_bb (stmt
));
2446 for (; !gsi_end_p (gsi
); gsi_prev (&gsi
))
2447 if (gimple_uid (gsi_stmt (gsi
)))
2450 gimple_set_uid (gsi_stmt (gsi
), uid
);
2457 range
->strict_overflow_p
= false;
2459 for (i
= 0; i
< count
; i
++)
2462 range
= otherrange
+ i
;
2464 range
= otherrangep
[i
];
2465 oe
= (*ops
)[range
->idx
];
2466 /* Now change all the other range test immediate uses, so that
2467 those tests will be optimized away. */
2468 if (opcode
== ERROR_MARK
)
2471 oe
->op
= build_int_cst (TREE_TYPE (oe
->op
),
2472 oe
->rank
== BIT_IOR_EXPR
? 0 : 1);
2474 oe
->op
= (oe
->rank
== BIT_IOR_EXPR
2475 ? boolean_false_node
: boolean_true_node
);
2478 oe
->op
= error_mark_node
;
2479 range
->exp
= NULL_TREE
;
2480 range
->low
= NULL_TREE
;
2481 range
->high
= NULL_TREE
;
2486 /* Optimize X == CST1 || X == CST2
2487 if popcount (CST1 ^ CST2) == 1 into
2488 (X & ~(CST1 ^ CST2)) == (CST1 & ~(CST1 ^ CST2)).
2489 Similarly for ranges. E.g.
2490 X != 2 && X != 3 && X != 10 && X != 11
2491 will be transformed by the previous optimization into
2492 !((X - 2U) <= 1U || (X - 10U) <= 1U)
2493 and this loop can transform that into
2494 !(((X & ~8) - 2U) <= 1U). */
2497 optimize_range_tests_xor (enum tree_code opcode
, tree type
,
2498 tree lowi
, tree lowj
, tree highi
, tree highj
,
2499 vec
<operand_entry
*> *ops
,
2500 struct range_entry
*rangei
,
2501 struct range_entry
*rangej
)
2503 tree lowxor
, highxor
, tem
, exp
;
2504 /* Check lowi ^ lowj == highi ^ highj and
2505 popcount (lowi ^ lowj) == 1. */
2506 lowxor
= fold_binary (BIT_XOR_EXPR
, type
, lowi
, lowj
);
2507 if (lowxor
== NULL_TREE
|| TREE_CODE (lowxor
) != INTEGER_CST
)
2509 if (!integer_pow2p (lowxor
))
2511 highxor
= fold_binary (BIT_XOR_EXPR
, type
, highi
, highj
);
2512 if (!tree_int_cst_equal (lowxor
, highxor
))
2515 tem
= fold_build1 (BIT_NOT_EXPR
, type
, lowxor
);
2516 exp
= fold_build2 (BIT_AND_EXPR
, type
, rangei
->exp
, tem
);
2517 lowj
= fold_build2 (BIT_AND_EXPR
, type
, lowi
, tem
);
2518 highj
= fold_build2 (BIT_AND_EXPR
, type
, highi
, tem
);
2519 if (update_range_test (rangei
, rangej
, NULL
, 1, opcode
, ops
, exp
,
2520 NULL
, rangei
->in_p
, lowj
, highj
,
2521 rangei
->strict_overflow_p
2522 || rangej
->strict_overflow_p
))
2527 /* Optimize X == CST1 || X == CST2
2528 if popcount (CST2 - CST1) == 1 into
2529 ((X - CST1) & ~(CST2 - CST1)) == 0.
2530 Similarly for ranges. E.g.
2531 X == 43 || X == 76 || X == 44 || X == 78 || X == 77 || X == 46
2532 || X == 75 || X == 45
2533 will be transformed by the previous optimization into
2534 (X - 43U) <= 3U || (X - 75U) <= 3U
2535 and this loop can transform that into
2536 ((X - 43U) & ~(75U - 43U)) <= 3U. */
2538 optimize_range_tests_diff (enum tree_code opcode
, tree type
,
2539 tree lowi
, tree lowj
, tree highi
, tree highj
,
2540 vec
<operand_entry
*> *ops
,
2541 struct range_entry
*rangei
,
2542 struct range_entry
*rangej
)
2544 tree tem1
, tem2
, mask
;
2545 /* Check highi - lowi == highj - lowj. */
2546 tem1
= fold_binary (MINUS_EXPR
, type
, highi
, lowi
);
2547 if (tem1
== NULL_TREE
|| TREE_CODE (tem1
) != INTEGER_CST
)
2549 tem2
= fold_binary (MINUS_EXPR
, type
, highj
, lowj
);
2550 if (!tree_int_cst_equal (tem1
, tem2
))
2552 /* Check popcount (lowj - lowi) == 1. */
2553 tem1
= fold_binary (MINUS_EXPR
, type
, lowj
, lowi
);
2554 if (tem1
== NULL_TREE
|| TREE_CODE (tem1
) != INTEGER_CST
)
2556 if (!integer_pow2p (tem1
))
2559 type
= unsigned_type_for (type
);
2560 tem1
= fold_convert (type
, tem1
);
2561 tem2
= fold_convert (type
, tem2
);
2562 lowi
= fold_convert (type
, lowi
);
2563 mask
= fold_build1 (BIT_NOT_EXPR
, type
, tem1
);
2564 tem1
= fold_binary (MINUS_EXPR
, type
,
2565 fold_convert (type
, rangei
->exp
), lowi
);
2566 tem1
= fold_build2 (BIT_AND_EXPR
, type
, tem1
, mask
);
2567 lowj
= build_int_cst (type
, 0);
2568 if (update_range_test (rangei
, rangej
, NULL
, 1, opcode
, ops
, tem1
,
2569 NULL
, rangei
->in_p
, lowj
, tem2
,
2570 rangei
->strict_overflow_p
2571 || rangej
->strict_overflow_p
))
2576 /* It does some common checks for function optimize_range_tests_xor and
2577 optimize_range_tests_diff.
2578 If OPTIMIZE_XOR is TRUE, it calls optimize_range_tests_xor.
2579 Else it calls optimize_range_tests_diff. */
2582 optimize_range_tests_1 (enum tree_code opcode
, int first
, int length
,
2583 bool optimize_xor
, vec
<operand_entry
*> *ops
,
2584 struct range_entry
*ranges
)
2587 bool any_changes
= false;
2588 for (i
= first
; i
< length
; i
++)
2590 tree lowi
, highi
, lowj
, highj
, type
, tem
;
2592 if (ranges
[i
].exp
== NULL_TREE
|| ranges
[i
].in_p
)
2594 type
= TREE_TYPE (ranges
[i
].exp
);
2595 if (!INTEGRAL_TYPE_P (type
))
2597 lowi
= ranges
[i
].low
;
2598 if (lowi
== NULL_TREE
)
2599 lowi
= TYPE_MIN_VALUE (type
);
2600 highi
= ranges
[i
].high
;
2601 if (highi
== NULL_TREE
)
2603 for (j
= i
+ 1; j
< length
&& j
< i
+ 64; j
++)
2606 if (ranges
[i
].exp
!= ranges
[j
].exp
|| ranges
[j
].in_p
)
2608 lowj
= ranges
[j
].low
;
2609 if (lowj
== NULL_TREE
)
2611 highj
= ranges
[j
].high
;
2612 if (highj
== NULL_TREE
)
2613 highj
= TYPE_MAX_VALUE (type
);
2614 /* Check lowj > highi. */
2615 tem
= fold_binary (GT_EXPR
, boolean_type_node
,
2617 if (tem
== NULL_TREE
|| !integer_onep (tem
))
2620 changes
= optimize_range_tests_xor (opcode
, type
, lowi
, lowj
,
2622 ranges
+ i
, ranges
+ j
);
2624 changes
= optimize_range_tests_diff (opcode
, type
, lowi
, lowj
,
2626 ranges
+ i
, ranges
+ j
);
2637 /* Helper function of optimize_range_tests_to_bit_test. Handle a single
2638 range, EXP, LOW, HIGH, compute bit mask of bits to test and return
2639 EXP on success, NULL otherwise. */
2642 extract_bit_test_mask (tree exp
, int prec
, tree totallow
, tree low
, tree high
,
2643 wide_int
*mask
, tree
*totallowp
)
2645 tree tem
= int_const_binop (MINUS_EXPR
, high
, low
);
2646 if (tem
== NULL_TREE
2647 || TREE_CODE (tem
) != INTEGER_CST
2648 || TREE_OVERFLOW (tem
)
2649 || tree_int_cst_sgn (tem
) == -1
2650 || compare_tree_int (tem
, prec
) != -1)
2653 unsigned HOST_WIDE_INT max
= tree_to_uhwi (tem
) + 1;
2654 *mask
= wi::shifted_mask (0, max
, false, prec
);
2655 if (TREE_CODE (exp
) == BIT_AND_EXPR
2656 && TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
2658 widest_int msk
= wi::to_widest (TREE_OPERAND (exp
, 1));
2659 msk
= wi::zext (~msk
, TYPE_PRECISION (TREE_TYPE (exp
)));
2660 if (wi::popcount (msk
) == 1
2661 && wi::ltu_p (msk
, prec
- max
))
2663 *mask
|= wi::shifted_mask (msk
.to_uhwi (), max
, false, prec
);
2664 max
+= msk
.to_uhwi ();
2665 exp
= TREE_OPERAND (exp
, 0);
2666 if (integer_zerop (low
)
2667 && TREE_CODE (exp
) == PLUS_EXPR
2668 && TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
2670 tree ret
= TREE_OPERAND (exp
, 0);
2673 = wi::neg (wi::sext (wi::to_widest (TREE_OPERAND (exp
, 1)),
2674 TYPE_PRECISION (TREE_TYPE (low
))));
2675 tree tbias
= wide_int_to_tree (TREE_TYPE (ret
), bias
);
2681 else if (!tree_int_cst_lt (totallow
, tbias
))
2683 bias
= wi::to_widest (tbias
);
2684 bias
-= wi::to_widest (totallow
);
2685 if (bias
>= 0 && bias
< prec
- max
)
2687 *mask
= wi::lshift (*mask
, bias
);
2695 if (!tree_int_cst_lt (totallow
, low
))
2697 tem
= int_const_binop (MINUS_EXPR
, low
, totallow
);
2698 if (tem
== NULL_TREE
2699 || TREE_CODE (tem
) != INTEGER_CST
2700 || TREE_OVERFLOW (tem
)
2701 || compare_tree_int (tem
, prec
- max
) == 1)
2704 *mask
= wi::lshift (*mask
, wi::to_widest (tem
));
2708 /* Attempt to optimize small range tests using bit test.
2710 X != 43 && X != 76 && X != 44 && X != 78 && X != 49
2711 && X != 77 && X != 46 && X != 75 && X != 45 && X != 82
2712 has been by earlier optimizations optimized into:
2713 ((X - 43U) & ~32U) > 3U && X != 49 && X != 82
2714 As all the 43 through 82 range is less than 64 numbers,
2715 for 64-bit word targets optimize that into:
2716 (X - 43U) > 40U && ((1 << (X - 43U)) & 0x8F0000004FULL) == 0 */
2719 optimize_range_tests_to_bit_test (enum tree_code opcode
, int first
, int length
,
2720 vec
<operand_entry
*> *ops
,
2721 struct range_entry
*ranges
)
2724 bool any_changes
= false;
2725 int prec
= GET_MODE_BITSIZE (word_mode
);
2726 auto_vec
<struct range_entry
*, 64> candidates
;
2728 for (i
= first
; i
< length
- 2; i
++)
2730 tree lowi
, highi
, lowj
, highj
, type
;
2732 if (ranges
[i
].exp
== NULL_TREE
|| ranges
[i
].in_p
)
2734 type
= TREE_TYPE (ranges
[i
].exp
);
2735 if (!INTEGRAL_TYPE_P (type
))
2737 lowi
= ranges
[i
].low
;
2738 if (lowi
== NULL_TREE
)
2739 lowi
= TYPE_MIN_VALUE (type
);
2740 highi
= ranges
[i
].high
;
2741 if (highi
== NULL_TREE
)
2744 tree exp
= extract_bit_test_mask (ranges
[i
].exp
, prec
, lowi
, lowi
,
2745 highi
, &mask
, &lowi
);
2746 if (exp
== NULL_TREE
)
2748 bool strict_overflow_p
= ranges
[i
].strict_overflow_p
;
2749 candidates
.truncate (0);
2750 int end
= MIN (i
+ 64, length
);
2751 for (j
= i
+ 1; j
< end
; j
++)
2754 if (ranges
[j
].exp
== NULL_TREE
|| ranges
[j
].in_p
)
2756 if (ranges
[j
].exp
== exp
)
2758 else if (TREE_CODE (ranges
[j
].exp
) == BIT_AND_EXPR
)
2760 exp2
= TREE_OPERAND (ranges
[j
].exp
, 0);
2763 else if (TREE_CODE (exp2
) == PLUS_EXPR
)
2765 exp2
= TREE_OPERAND (exp2
, 0);
2775 lowj
= ranges
[j
].low
;
2776 if (lowj
== NULL_TREE
)
2778 highj
= ranges
[j
].high
;
2779 if (highj
== NULL_TREE
)
2780 highj
= TYPE_MAX_VALUE (type
);
2782 exp2
= extract_bit_test_mask (ranges
[j
].exp
, prec
, lowi
, lowj
,
2783 highj
, &mask2
, NULL
);
2787 strict_overflow_p
|= ranges
[j
].strict_overflow_p
;
2788 candidates
.safe_push (&ranges
[j
]);
2791 /* If we need otherwise 3 or more comparisons, use a bit test. */
2792 if (candidates
.length () >= 2)
2794 tree high
= wide_int_to_tree (TREE_TYPE (lowi
),
2795 wi::to_widest (lowi
)
2796 + prec
- 1 - wi::clz (mask
));
2797 operand_entry
*oe
= (*ops
)[ranges
[i
].idx
];
2799 gimple
*stmt
= op
? SSA_NAME_DEF_STMT (op
)
2800 : last_stmt (BASIC_BLOCK_FOR_FN (cfun
, oe
->id
));
2801 location_t loc
= gimple_location (stmt
);
2802 tree optype
= op
? TREE_TYPE (op
) : boolean_type_node
;
2804 /* See if it isn't cheaper to pretend the minimum value of the
2805 range is 0, if maximum value is small enough.
2806 We can avoid then subtraction of the minimum value, but the
2807 mask constant could be perhaps more expensive. */
2808 if (compare_tree_int (lowi
, 0) > 0
2809 && compare_tree_int (high
, prec
) < 0)
2812 HOST_WIDE_INT m
= tree_to_uhwi (lowi
);
2813 rtx reg
= gen_raw_REG (word_mode
, 10000);
2814 bool speed_p
= optimize_bb_for_speed_p (gimple_bb (stmt
));
2815 cost_diff
= set_rtx_cost (gen_rtx_PLUS (word_mode
, reg
,
2816 GEN_INT (-m
)), speed_p
);
2817 rtx r
= immed_wide_int_const (mask
, word_mode
);
2818 cost_diff
+= set_src_cost (gen_rtx_AND (word_mode
, reg
, r
),
2819 word_mode
, speed_p
);
2820 r
= immed_wide_int_const (wi::lshift (mask
, m
), word_mode
);
2821 cost_diff
-= set_src_cost (gen_rtx_AND (word_mode
, reg
, r
),
2822 word_mode
, speed_p
);
2825 mask
= wi::lshift (mask
, m
);
2826 lowi
= build_zero_cst (TREE_TYPE (lowi
));
2830 tree tem
= build_range_check (loc
, optype
, unshare_expr (exp
),
2832 if (tem
== NULL_TREE
|| is_gimple_val (tem
))
2834 tree etype
= unsigned_type_for (TREE_TYPE (exp
));
2835 exp
= fold_build2_loc (loc
, MINUS_EXPR
, etype
,
2836 fold_convert_loc (loc
, etype
, exp
),
2837 fold_convert_loc (loc
, etype
, lowi
));
2838 exp
= fold_convert_loc (loc
, integer_type_node
, exp
);
2839 tree word_type
= lang_hooks
.types
.type_for_mode (word_mode
, 1);
2840 exp
= fold_build2_loc (loc
, LSHIFT_EXPR
, word_type
,
2841 build_int_cst (word_type
, 1), exp
);
2842 exp
= fold_build2_loc (loc
, BIT_AND_EXPR
, word_type
, exp
,
2843 wide_int_to_tree (word_type
, mask
));
2844 exp
= fold_build2_loc (loc
, EQ_EXPR
, optype
, exp
,
2845 build_zero_cst (word_type
));
2846 if (is_gimple_val (exp
))
2849 /* The shift might have undefined behavior if TEM is true,
2850 but reassociate_bb isn't prepared to have basic blocks
2851 split when it is running. So, temporarily emit a code
2852 with BIT_IOR_EXPR instead of &&, and fix it up in
2855 tem
= force_gimple_operand (tem
, &seq
, true, NULL_TREE
);
2856 gcc_assert (TREE_CODE (tem
) == SSA_NAME
);
2857 gimple_set_visited (SSA_NAME_DEF_STMT (tem
), true);
2859 exp
= force_gimple_operand (exp
, &seq2
, true, NULL_TREE
);
2860 gimple_seq_add_seq_without_update (&seq
, seq2
);
2861 gcc_assert (TREE_CODE (exp
) == SSA_NAME
);
2862 gimple_set_visited (SSA_NAME_DEF_STMT (exp
), true);
2863 gimple
*g
= gimple_build_assign (make_ssa_name (optype
),
2864 BIT_IOR_EXPR
, tem
, exp
);
2865 gimple_set_location (g
, loc
);
2866 gimple_seq_add_stmt_without_update (&seq
, g
);
2867 exp
= gimple_assign_lhs (g
);
2868 tree val
= build_zero_cst (optype
);
2869 if (update_range_test (&ranges
[i
], NULL
, candidates
.address (),
2870 candidates
.length (), opcode
, ops
, exp
,
2871 seq
, false, val
, val
, strict_overflow_p
))
2874 reassoc_branch_fixups
.safe_push (tem
);
2877 gimple_seq_discard (seq
);
2883 /* Attempt to optimize for signed a and b where b is known to be >= 0:
2884 a >= 0 && a < b into (unsigned) a < (unsigned) b
2885 a >= 0 && a <= b into (unsigned) a <= (unsigned) b */
2888 optimize_range_tests_var_bound (enum tree_code opcode
, int first
, int length
,
2889 vec
<operand_entry
*> *ops
,
2890 struct range_entry
*ranges
)
2893 bool any_changes
= false;
2894 hash_map
<tree
, int> *map
= NULL
;
2896 for (i
= first
; i
< length
; i
++)
2898 if (ranges
[i
].exp
== NULL_TREE
2899 || TREE_CODE (ranges
[i
].exp
) != SSA_NAME
2903 tree type
= TREE_TYPE (ranges
[i
].exp
);
2904 if (!INTEGRAL_TYPE_P (type
)
2905 || TYPE_UNSIGNED (type
)
2906 || ranges
[i
].low
== NULL_TREE
2907 || !integer_zerop (ranges
[i
].low
)
2908 || ranges
[i
].high
!= NULL_TREE
)
2910 /* EXP >= 0 here. */
2912 map
= new hash_map
<tree
, int>;
2913 map
->put (ranges
[i
].exp
, i
);
2919 for (i
= 0; i
< length
; i
++)
2921 if (ranges
[i
].low
== NULL_TREE
2922 || ranges
[i
].high
== NULL_TREE
2923 || !integer_zerop (ranges
[i
].low
)
2924 || !integer_zerop (ranges
[i
].high
))
2932 if (TREE_CODE (ranges
[i
].exp
) != SSA_NAME
)
2934 stmt
= SSA_NAME_DEF_STMT (ranges
[i
].exp
);
2935 if (!is_gimple_assign (stmt
))
2937 ccode
= gimple_assign_rhs_code (stmt
);
2938 rhs1
= gimple_assign_rhs1 (stmt
);
2939 rhs2
= gimple_assign_rhs2 (stmt
);
2943 operand_entry
*oe
= (*ops
)[ranges
[i
].idx
];
2944 stmt
= last_stmt (BASIC_BLOCK_FOR_FN (cfun
, oe
->id
));
2945 if (gimple_code (stmt
) != GIMPLE_COND
)
2947 ccode
= gimple_cond_code (stmt
);
2948 rhs1
= gimple_cond_lhs (stmt
);
2949 rhs2
= gimple_cond_rhs (stmt
);
2952 if (TREE_CODE (rhs1
) != SSA_NAME
2953 || rhs2
== NULL_TREE
2954 || TREE_CODE (rhs2
) != SSA_NAME
)
2961 if (!ranges
[i
].in_p
)
2962 std::swap (rhs1
, rhs2
);
2963 ccode
= swap_tree_comparison (ccode
);
2968 std::swap (rhs1
, rhs2
);
2974 int *idx
= map
->get (rhs1
);
2978 wide_int nz
= get_nonzero_bits (rhs2
);
2982 /* We have EXP < RHS2 or EXP <= RHS2 where EXP >= 0
2983 and RHS2 is known to be RHS2 >= 0. */
2984 tree utype
= unsigned_type_for (TREE_TYPE (rhs1
));
2986 enum warn_strict_overflow_code wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
2987 if ((ranges
[*idx
].strict_overflow_p
2988 || ranges
[i
].strict_overflow_p
)
2989 && issue_strict_overflow_warning (wc
))
2990 warning_at (gimple_location (stmt
), OPT_Wstrict_overflow
,
2991 "assuming signed overflow does not occur "
2992 "when simplifying range test");
2994 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2996 struct range_entry
*r
= &ranges
[*idx
];
2997 fprintf (dump_file
, "Optimizing range test ");
2998 print_generic_expr (dump_file
, r
->exp
);
2999 fprintf (dump_file
, " +[");
3000 print_generic_expr (dump_file
, r
->low
);
3001 fprintf (dump_file
, ", ");
3002 print_generic_expr (dump_file
, r
->high
);
3003 fprintf (dump_file
, "] and comparison ");
3004 print_generic_expr (dump_file
, rhs1
);
3005 fprintf (dump_file
, " %s ", op_symbol_code (ccode
));
3006 print_generic_expr (dump_file
, rhs2
);
3007 fprintf (dump_file
, "\n into (");
3008 print_generic_expr (dump_file
, utype
);
3009 fprintf (dump_file
, ") ");
3010 print_generic_expr (dump_file
, rhs1
);
3011 fprintf (dump_file
, " %s (", op_symbol_code (ccode
));
3012 print_generic_expr (dump_file
, utype
);
3013 fprintf (dump_file
, ") ");
3014 print_generic_expr (dump_file
, rhs2
);
3015 fprintf (dump_file
, "\n");
3019 std::swap (rhs1
, rhs2
);
3021 unsigned int uid
= gimple_uid (stmt
);
3022 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
3023 gimple
*g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, rhs1
);
3024 gimple_set_uid (g
, uid
);
3025 rhs1
= gimple_assign_lhs (g
);
3026 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3027 g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, rhs2
);
3028 gimple_set_uid (g
, uid
);
3029 rhs2
= gimple_assign_lhs (g
);
3030 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3031 if (tree_swap_operands_p (rhs1
, rhs2
))
3033 std::swap (rhs1
, rhs2
);
3034 ccode
= swap_tree_comparison (ccode
);
3036 if (gimple_code (stmt
) == GIMPLE_COND
)
3038 gcond
*c
= as_a
<gcond
*> (stmt
);
3039 gimple_cond_set_code (c
, ccode
);
3040 gimple_cond_set_lhs (c
, rhs1
);
3041 gimple_cond_set_rhs (c
, rhs2
);
3046 operand_entry
*oe
= (*ops
)[ranges
[i
].idx
];
3047 tree ctype
= oe
->op
? TREE_TYPE (oe
->op
) : boolean_type_node
;
3048 if (!INTEGRAL_TYPE_P (ctype
)
3049 || (TREE_CODE (ctype
) != BOOLEAN_TYPE
3050 && TYPE_PRECISION (ctype
) != 1))
3051 ctype
= boolean_type_node
;
3052 g
= gimple_build_assign (make_ssa_name (ctype
), ccode
, rhs1
, rhs2
);
3053 gimple_set_uid (g
, uid
);
3054 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3055 if (oe
->op
&& ctype
!= TREE_TYPE (oe
->op
))
3057 g
= gimple_build_assign (make_ssa_name (TREE_TYPE (oe
->op
)),
3058 NOP_EXPR
, gimple_assign_lhs (g
));
3059 gimple_set_uid (g
, uid
);
3060 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3062 ranges
[i
].exp
= gimple_assign_lhs (g
);
3063 oe
->op
= ranges
[i
].exp
;
3064 ranges
[i
].low
= build_zero_cst (TREE_TYPE (ranges
[i
].exp
));
3065 ranges
[i
].high
= ranges
[i
].low
;
3067 ranges
[i
].strict_overflow_p
= false;
3068 operand_entry
*oe
= (*ops
)[ranges
[*idx
].idx
];
3069 /* Now change all the other range test immediate uses, so that
3070 those tests will be optimized away. */
3071 if (opcode
== ERROR_MARK
)
3074 oe
->op
= build_int_cst (TREE_TYPE (oe
->op
),
3075 oe
->rank
== BIT_IOR_EXPR
? 0 : 1);
3077 oe
->op
= (oe
->rank
== BIT_IOR_EXPR
3078 ? boolean_false_node
: boolean_true_node
);
3081 oe
->op
= error_mark_node
;
3082 ranges
[*idx
].exp
= NULL_TREE
;
3083 ranges
[*idx
].low
= NULL_TREE
;
3084 ranges
[*idx
].high
= NULL_TREE
;
3092 /* Optimize range tests, similarly how fold_range_test optimizes
3093 it on trees. The tree code for the binary
3094 operation between all the operands is OPCODE.
3095 If OPCODE is ERROR_MARK, optimize_range_tests is called from within
3096 maybe_optimize_range_tests for inter-bb range optimization.
3097 In that case if oe->op is NULL, oe->id is bb->index whose
3098 GIMPLE_COND is && or ||ed into the test, and oe->rank says
3099 the actual opcode. */
3102 optimize_range_tests (enum tree_code opcode
,
3103 vec
<operand_entry
*> *ops
)
3105 unsigned int length
= ops
->length (), i
, j
, first
;
3107 struct range_entry
*ranges
;
3108 bool any_changes
= false;
3113 ranges
= XNEWVEC (struct range_entry
, length
);
3114 for (i
= 0; i
< length
; i
++)
3118 init_range_entry (ranges
+ i
, oe
->op
,
3121 : last_stmt (BASIC_BLOCK_FOR_FN (cfun
, oe
->id
)));
3122 /* For | invert it now, we will invert it again before emitting
3123 the optimized expression. */
3124 if (opcode
== BIT_IOR_EXPR
3125 || (opcode
== ERROR_MARK
&& oe
->rank
== BIT_IOR_EXPR
))
3126 ranges
[i
].in_p
= !ranges
[i
].in_p
;
3129 qsort (ranges
, length
, sizeof (*ranges
), range_entry_cmp
);
3130 for (i
= 0; i
< length
; i
++)
3131 if (ranges
[i
].exp
!= NULL_TREE
&& TREE_CODE (ranges
[i
].exp
) == SSA_NAME
)
3134 /* Try to merge ranges. */
3135 for (first
= i
; i
< length
; i
++)
3137 tree low
= ranges
[i
].low
;
3138 tree high
= ranges
[i
].high
;
3139 int in_p
= ranges
[i
].in_p
;
3140 bool strict_overflow_p
= ranges
[i
].strict_overflow_p
;
3141 int update_fail_count
= 0;
3143 for (j
= i
+ 1; j
< length
; j
++)
3145 if (ranges
[i
].exp
!= ranges
[j
].exp
)
3147 if (!merge_ranges (&in_p
, &low
, &high
, in_p
, low
, high
,
3148 ranges
[j
].in_p
, ranges
[j
].low
, ranges
[j
].high
))
3150 strict_overflow_p
|= ranges
[j
].strict_overflow_p
;
3156 if (update_range_test (ranges
+ i
, ranges
+ i
+ 1, NULL
, j
- i
- 1,
3157 opcode
, ops
, ranges
[i
].exp
, NULL
, in_p
,
3158 low
, high
, strict_overflow_p
))
3163 /* Avoid quadratic complexity if all merge_ranges calls would succeed,
3164 while update_range_test would fail. */
3165 else if (update_fail_count
== 64)
3168 ++update_fail_count
;
3171 any_changes
|= optimize_range_tests_1 (opcode
, first
, length
, true,
3174 if (BRANCH_COST (optimize_function_for_speed_p (cfun
), false) >= 2)
3175 any_changes
|= optimize_range_tests_1 (opcode
, first
, length
, false,
3177 if (lshift_cheap_p (optimize_function_for_speed_p (cfun
)))
3178 any_changes
|= optimize_range_tests_to_bit_test (opcode
, first
, length
,
3180 any_changes
|= optimize_range_tests_var_bound (opcode
, first
, length
, ops
,
3183 if (any_changes
&& opcode
!= ERROR_MARK
)
3186 FOR_EACH_VEC_ELT (*ops
, i
, oe
)
3188 if (oe
->op
== error_mark_node
)
3197 XDELETEVEC (ranges
);
3201 /* A subroutine of optimize_vec_cond_expr to extract and canonicalize
3202 the operands of the VEC_COND_EXPR. Returns ERROR_MARK on failure,
3203 otherwise the comparison code. */
3206 ovce_extract_ops (tree var
, gassign
**rets
, bool *reti
)
3208 if (TREE_CODE (var
) != SSA_NAME
)
3211 gassign
*stmt
= dyn_cast
<gassign
*> (SSA_NAME_DEF_STMT (var
));
3215 /* ??? If we start creating more COND_EXPR, we could perform
3216 this same optimization with them. For now, simplify. */
3217 if (gimple_assign_rhs_code (stmt
) != VEC_COND_EXPR
)
3220 tree cond
= gimple_assign_rhs1 (stmt
);
3221 tree_code cmp
= TREE_CODE (cond
);
3222 if (TREE_CODE_CLASS (cmp
) != tcc_comparison
)
3225 /* ??? For now, allow only canonical true and false result vectors.
3226 We could expand this to other constants should the need arise,
3227 but at the moment we don't create them. */
3228 tree t
= gimple_assign_rhs2 (stmt
);
3229 tree f
= gimple_assign_rhs3 (stmt
);
3231 if (integer_all_onesp (t
))
3233 else if (integer_all_onesp (f
))
3235 cmp
= invert_tree_comparison (cmp
, false);
3240 if (!integer_zerop (f
))
3251 /* Optimize the condition of VEC_COND_EXPRs which have been combined
3252 with OPCODE (either BIT_AND_EXPR or BIT_IOR_EXPR). */
3255 optimize_vec_cond_expr (tree_code opcode
, vec
<operand_entry
*> *ops
)
3257 unsigned int length
= ops
->length (), i
, j
;
3258 bool any_changes
= false;
3263 for (i
= 0; i
< length
; ++i
)
3265 tree elt0
= (*ops
)[i
]->op
;
3269 tree_code cmp0
= ovce_extract_ops (elt0
, &stmt0
, &invert
);
3270 if (cmp0
== ERROR_MARK
)
3273 for (j
= i
+ 1; j
< length
; ++j
)
3275 tree
&elt1
= (*ops
)[j
]->op
;
3278 tree_code cmp1
= ovce_extract_ops (elt1
, &stmt1
, NULL
);
3279 if (cmp1
== ERROR_MARK
)
3282 tree cond0
= gimple_assign_rhs1 (stmt0
);
3283 tree x0
= TREE_OPERAND (cond0
, 0);
3284 tree y0
= TREE_OPERAND (cond0
, 1);
3286 tree cond1
= gimple_assign_rhs1 (stmt1
);
3287 tree x1
= TREE_OPERAND (cond1
, 0);
3288 tree y1
= TREE_OPERAND (cond1
, 1);
3291 if (opcode
== BIT_AND_EXPR
)
3292 comb
= maybe_fold_and_comparisons (cmp0
, x0
, y0
, cmp1
, x1
, y1
);
3293 else if (opcode
== BIT_IOR_EXPR
)
3294 comb
= maybe_fold_or_comparisons (cmp0
, x0
, y0
, cmp1
, x1
, y1
);
3301 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3303 fprintf (dump_file
, "Transforming ");
3304 print_generic_expr (dump_file
, cond0
);
3305 fprintf (dump_file
, " %c ", opcode
== BIT_AND_EXPR
? '&' : '|');
3306 print_generic_expr (dump_file
, cond1
);
3307 fprintf (dump_file
, " into ");
3308 print_generic_expr (dump_file
, comb
);
3309 fputc ('\n', dump_file
);
3312 gimple_assign_set_rhs1 (stmt0
, comb
);
3314 std::swap (*gimple_assign_rhs2_ptr (stmt0
),
3315 *gimple_assign_rhs3_ptr (stmt0
));
3316 update_stmt (stmt0
);
3318 elt1
= error_mark_node
;
3327 FOR_EACH_VEC_ELT (*ops
, i
, oe
)
3329 if (oe
->op
== error_mark_node
)
3341 /* Return true if STMT is a cast like:
3347 # _345 = PHI <_123(N), 1(...), 1(...)>
3348 where _234 has bool type, _123 has single use and
3349 bb N has a single successor M. This is commonly used in
3350 the last block of a range test.
3352 Also Return true if STMT is tcc_compare like:
3358 # _345 = PHI <_234(N), 1(...), 1(...)>
3360 where _234 has booltype, single use and
3361 bb N has a single successor M. This is commonly used in
3362 the last block of a range test. */
3365 final_range_test_p (gimple
*stmt
)
3367 basic_block bb
, rhs_bb
, lhs_bb
;
3370 use_operand_p use_p
;
3373 if (!gimple_assign_cast_p (stmt
)
3374 && (!is_gimple_assign (stmt
)
3375 || (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
))
3376 != tcc_comparison
)))
3378 bb
= gimple_bb (stmt
);
3379 if (!single_succ_p (bb
))
3381 e
= single_succ_edge (bb
);
3382 if (e
->flags
& EDGE_COMPLEX
)
3385 lhs
= gimple_assign_lhs (stmt
);
3386 rhs
= gimple_assign_rhs1 (stmt
);
3387 if (gimple_assign_cast_p (stmt
)
3388 && (!INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3389 || TREE_CODE (rhs
) != SSA_NAME
3390 || TREE_CODE (TREE_TYPE (rhs
)) != BOOLEAN_TYPE
))
3393 if (!gimple_assign_cast_p (stmt
)
3394 && (TREE_CODE (TREE_TYPE (lhs
)) != BOOLEAN_TYPE
))
3397 /* Test whether lhs is consumed only by a PHI in the only successor bb. */
3398 if (!single_imm_use (lhs
, &use_p
, &use_stmt
))
3401 if (gimple_code (use_stmt
) != GIMPLE_PHI
3402 || gimple_bb (use_stmt
) != e
->dest
)
3405 /* And that the rhs is defined in the same loop. */
3406 if (gimple_assign_cast_p (stmt
))
3408 if (TREE_CODE (rhs
) != SSA_NAME
3409 || !(rhs_bb
= gimple_bb (SSA_NAME_DEF_STMT (rhs
)))
3410 || !flow_bb_inside_loop_p (loop_containing_stmt (stmt
), rhs_bb
))
3415 if (TREE_CODE (lhs
) != SSA_NAME
3416 || !(lhs_bb
= gimple_bb (SSA_NAME_DEF_STMT (lhs
)))
3417 || !flow_bb_inside_loop_p (loop_containing_stmt (stmt
), lhs_bb
))
3424 /* Return true if BB is suitable basic block for inter-bb range test
3425 optimization. If BACKWARD is true, BB should be the only predecessor
3426 of TEST_BB, and *OTHER_BB is either NULL and filled by the routine,
3427 or compared with to find a common basic block to which all conditions
3428 branch to if true resp. false. If BACKWARD is false, TEST_BB should
3429 be the only predecessor of BB. */
3432 suitable_cond_bb (basic_block bb
, basic_block test_bb
, basic_block
*other_bb
,
3435 edge_iterator ei
, ei2
;
3439 bool other_edge_seen
= false;
3444 /* Check last stmt first. */
3445 stmt
= last_stmt (bb
);
3447 || (gimple_code (stmt
) != GIMPLE_COND
3448 && (backward
|| !final_range_test_p (stmt
)))
3449 || gimple_visited_p (stmt
)
3450 || stmt_could_throw_p (stmt
)
3453 is_cond
= gimple_code (stmt
) == GIMPLE_COND
;
3456 /* If last stmt is GIMPLE_COND, verify that one of the succ edges
3457 goes to the next bb (if BACKWARD, it is TEST_BB), and the other
3458 to *OTHER_BB (if not set yet, try to find it out). */
3459 if (EDGE_COUNT (bb
->succs
) != 2)
3461 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3463 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
3465 if (e
->dest
== test_bb
)
3474 if (*other_bb
== NULL
)
3476 FOR_EACH_EDGE (e2
, ei2
, test_bb
->succs
)
3477 if (!(e2
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
3479 else if (e
->dest
== e2
->dest
)
3480 *other_bb
= e
->dest
;
3481 if (*other_bb
== NULL
)
3484 if (e
->dest
== *other_bb
)
3485 other_edge_seen
= true;
3489 if (*other_bb
== NULL
|| !other_edge_seen
)
3492 else if (single_succ (bb
) != *other_bb
)
3495 /* Now check all PHIs of *OTHER_BB. */
3496 e
= find_edge (bb
, *other_bb
);
3497 e2
= find_edge (test_bb
, *other_bb
);
3498 for (gsi
= gsi_start_phis (e
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3500 gphi
*phi
= gsi
.phi ();
3501 /* If both BB and TEST_BB end with GIMPLE_COND, all PHI arguments
3502 corresponding to BB and TEST_BB predecessor must be the same. */
3503 if (!operand_equal_p (gimple_phi_arg_def (phi
, e
->dest_idx
),
3504 gimple_phi_arg_def (phi
, e2
->dest_idx
), 0))
3506 /* Otherwise, if one of the blocks doesn't end with GIMPLE_COND,
3507 one of the PHIs should have the lhs of the last stmt in
3508 that block as PHI arg and that PHI should have 0 or 1
3509 corresponding to it in all other range test basic blocks
3513 if (gimple_phi_arg_def (phi
, e
->dest_idx
)
3514 == gimple_assign_lhs (stmt
)
3515 && (integer_zerop (gimple_phi_arg_def (phi
, e2
->dest_idx
))
3516 || integer_onep (gimple_phi_arg_def (phi
,
3522 gimple
*test_last
= last_stmt (test_bb
);
3523 if (gimple_code (test_last
) != GIMPLE_COND
3524 && gimple_phi_arg_def (phi
, e2
->dest_idx
)
3525 == gimple_assign_lhs (test_last
)
3526 && (integer_zerop (gimple_phi_arg_def (phi
, e
->dest_idx
))
3527 || integer_onep (gimple_phi_arg_def (phi
, e
->dest_idx
))))
3537 /* Return true if BB doesn't have side-effects that would disallow
3538 range test optimization, all SSA_NAMEs set in the bb are consumed
3539 in the bb and there are no PHIs. */
3542 no_side_effect_bb (basic_block bb
)
3544 gimple_stmt_iterator gsi
;
3547 if (!gimple_seq_empty_p (phi_nodes (bb
)))
3549 last
= last_stmt (bb
);
3550 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3552 gimple
*stmt
= gsi_stmt (gsi
);
3554 imm_use_iterator imm_iter
;
3555 use_operand_p use_p
;
3557 if (is_gimple_debug (stmt
))
3559 if (gimple_has_side_effects (stmt
))
3563 if (!is_gimple_assign (stmt
))
3565 lhs
= gimple_assign_lhs (stmt
);
3566 if (TREE_CODE (lhs
) != SSA_NAME
)
3568 if (gimple_assign_rhs_could_trap_p (stmt
))
3570 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, lhs
)
3572 gimple
*use_stmt
= USE_STMT (use_p
);
3573 if (is_gimple_debug (use_stmt
))
3575 if (gimple_bb (use_stmt
) != bb
)
3582 /* If VAR is set by CODE (BIT_{AND,IOR}_EXPR) which is reassociable,
3583 return true and fill in *OPS recursively. */
3586 get_ops (tree var
, enum tree_code code
, vec
<operand_entry
*> *ops
,
3589 gimple
*stmt
= SSA_NAME_DEF_STMT (var
);
3593 if (!is_reassociable_op (stmt
, code
, loop
))
3596 rhs
[0] = gimple_assign_rhs1 (stmt
);
3597 rhs
[1] = gimple_assign_rhs2 (stmt
);
3598 gimple_set_visited (stmt
, true);
3599 for (i
= 0; i
< 2; i
++)
3600 if (TREE_CODE (rhs
[i
]) == SSA_NAME
3601 && !get_ops (rhs
[i
], code
, ops
, loop
)
3602 && has_single_use (rhs
[i
]))
3604 operand_entry
*oe
= operand_entry_pool
.allocate ();
3610 oe
->stmt_to_insert
= NULL
;
3611 ops
->safe_push (oe
);
3616 /* Find the ops that were added by get_ops starting from VAR, see if
3617 they were changed during update_range_test and if yes, create new
3621 update_ops (tree var
, enum tree_code code
, vec
<operand_entry
*> ops
,
3622 unsigned int *pidx
, struct loop
*loop
)
3624 gimple
*stmt
= SSA_NAME_DEF_STMT (var
);
3628 if (!is_reassociable_op (stmt
, code
, loop
))
3631 rhs
[0] = gimple_assign_rhs1 (stmt
);
3632 rhs
[1] = gimple_assign_rhs2 (stmt
);
3635 for (i
= 0; i
< 2; i
++)
3636 if (TREE_CODE (rhs
[i
]) == SSA_NAME
)
3638 rhs
[2 + i
] = update_ops (rhs
[i
], code
, ops
, pidx
, loop
);
3639 if (rhs
[2 + i
] == NULL_TREE
)
3641 if (has_single_use (rhs
[i
]))
3642 rhs
[2 + i
] = ops
[(*pidx
)++]->op
;
3644 rhs
[2 + i
] = rhs
[i
];
3647 if ((rhs
[2] != rhs
[0] || rhs
[3] != rhs
[1])
3648 && (rhs
[2] != rhs
[1] || rhs
[3] != rhs
[0]))
3650 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
3651 var
= make_ssa_name (TREE_TYPE (var
));
3652 gassign
*g
= gimple_build_assign (var
, gimple_assign_rhs_code (stmt
),
3654 gimple_set_uid (g
, gimple_uid (stmt
));
3655 gimple_set_visited (g
, true);
3656 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3661 /* Structure to track the initial value passed to get_ops and
3662 the range in the ops vector for each basic block. */
3664 struct inter_bb_range_test_entry
3667 unsigned int first_idx
, last_idx
;
3670 /* Inter-bb range test optimization.
3672 Returns TRUE if a gimple conditional is optimized to a true/false,
3673 otherwise return FALSE.
3675 This indicates to the caller that it should run a CFG cleanup pass
3676 once reassociation is completed. */
3679 maybe_optimize_range_tests (gimple
*stmt
)
3681 basic_block first_bb
= gimple_bb (stmt
);
3682 basic_block last_bb
= first_bb
;
3683 basic_block other_bb
= NULL
;
3687 auto_vec
<operand_entry
*> ops
;
3688 auto_vec
<inter_bb_range_test_entry
> bbinfo
;
3689 bool any_changes
= false;
3690 bool cfg_cleanup_needed
= false;
3692 /* Consider only basic blocks that end with GIMPLE_COND or
3693 a cast statement satisfying final_range_test_p. All
3694 but the last bb in the first_bb .. last_bb range
3695 should end with GIMPLE_COND. */
3696 if (gimple_code (stmt
) == GIMPLE_COND
)
3698 if (EDGE_COUNT (first_bb
->succs
) != 2)
3699 return cfg_cleanup_needed
;
3701 else if (final_range_test_p (stmt
))
3702 other_bb
= single_succ (first_bb
);
3704 return cfg_cleanup_needed
;
3706 if (stmt_could_throw_p (stmt
))
3707 return cfg_cleanup_needed
;
3709 /* As relative ordering of post-dominator sons isn't fixed,
3710 maybe_optimize_range_tests can be called first on any
3711 bb in the range we want to optimize. So, start searching
3712 backwards, if first_bb can be set to a predecessor. */
3713 while (single_pred_p (first_bb
))
3715 basic_block pred_bb
= single_pred (first_bb
);
3716 if (!suitable_cond_bb (pred_bb
, first_bb
, &other_bb
, true))
3718 if (!no_side_effect_bb (first_bb
))
3722 /* If first_bb is last_bb, other_bb hasn't been computed yet.
3723 Before starting forward search in last_bb successors, find
3724 out the other_bb. */
3725 if (first_bb
== last_bb
)
3728 /* As non-GIMPLE_COND last stmt always terminates the range,
3729 if forward search didn't discover anything, just give up. */
3730 if (gimple_code (stmt
) != GIMPLE_COND
)
3731 return cfg_cleanup_needed
;
3732 /* Look at both successors. Either it ends with a GIMPLE_COND
3733 and satisfies suitable_cond_bb, or ends with a cast and
3734 other_bb is that cast's successor. */
3735 FOR_EACH_EDGE (e
, ei
, first_bb
->succs
)
3736 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
3737 || e
->dest
== first_bb
)
3738 return cfg_cleanup_needed
;
3739 else if (single_pred_p (e
->dest
))
3741 stmt
= last_stmt (e
->dest
);
3743 && gimple_code (stmt
) == GIMPLE_COND
3744 && EDGE_COUNT (e
->dest
->succs
) == 2)
3746 if (suitable_cond_bb (first_bb
, e
->dest
, &other_bb
, true))
3752 && final_range_test_p (stmt
)
3753 && find_edge (first_bb
, single_succ (e
->dest
)))
3755 other_bb
= single_succ (e
->dest
);
3756 if (other_bb
== first_bb
)
3760 if (other_bb
== NULL
)
3761 return cfg_cleanup_needed
;
3763 /* Now do the forward search, moving last_bb to successor bbs
3764 that aren't other_bb. */
3765 while (EDGE_COUNT (last_bb
->succs
) == 2)
3767 FOR_EACH_EDGE (e
, ei
, last_bb
->succs
)
3768 if (e
->dest
!= other_bb
)
3772 if (!single_pred_p (e
->dest
))
3774 if (!suitable_cond_bb (e
->dest
, last_bb
, &other_bb
, false))
3776 if (!no_side_effect_bb (e
->dest
))
3780 if (first_bb
== last_bb
)
3781 return cfg_cleanup_needed
;
3782 /* Here basic blocks first_bb through last_bb's predecessor
3783 end with GIMPLE_COND, all of them have one of the edges to
3784 other_bb and another to another block in the range,
3785 all blocks except first_bb don't have side-effects and
3786 last_bb ends with either GIMPLE_COND, or cast satisfying
3787 final_range_test_p. */
3788 for (bb
= last_bb
; ; bb
= single_pred (bb
))
3790 enum tree_code code
;
3792 inter_bb_range_test_entry bb_ent
;
3794 bb_ent
.op
= NULL_TREE
;
3795 bb_ent
.first_idx
= ops
.length ();
3796 bb_ent
.last_idx
= bb_ent
.first_idx
;
3797 e
= find_edge (bb
, other_bb
);
3798 stmt
= last_stmt (bb
);
3799 gimple_set_visited (stmt
, true);
3800 if (gimple_code (stmt
) != GIMPLE_COND
)
3802 use_operand_p use_p
;
3807 lhs
= gimple_assign_lhs (stmt
);
3808 rhs
= gimple_assign_rhs1 (stmt
);
3809 gcc_assert (bb
== last_bb
);
3818 # _345 = PHI <_123(N), 1(...), 1(...)>
3820 or 0 instead of 1. If it is 0, the _234
3821 range test is anded together with all the
3822 other range tests, if it is 1, it is ored with
3824 single_imm_use (lhs
, &use_p
, &phi
);
3825 gcc_assert (gimple_code (phi
) == GIMPLE_PHI
);
3826 e2
= find_edge (first_bb
, other_bb
);
3828 gcc_assert (gimple_phi_arg_def (phi
, e
->dest_idx
) == lhs
);
3829 if (integer_zerop (gimple_phi_arg_def (phi
, d
)))
3830 code
= BIT_AND_EXPR
;
3833 gcc_checking_assert (integer_onep (gimple_phi_arg_def (phi
, d
)));
3834 code
= BIT_IOR_EXPR
;
3837 /* If _234 SSA_NAME_DEF_STMT is
3839 (or &, corresponding to 1/0 in the phi arguments,
3840 push into ops the individual range test arguments
3841 of the bitwise or resp. and, recursively. */
3842 if (TREE_CODE (rhs
) == SSA_NAME
3843 && (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
))
3845 && !get_ops (rhs
, code
, &ops
,
3846 loop_containing_stmt (stmt
))
3847 && has_single_use (rhs
))
3849 /* Otherwise, push the _234 range test itself. */
3850 operand_entry
*oe
= operand_entry_pool
.allocate ();
3856 oe
->stmt_to_insert
= NULL
;
3861 else if (is_gimple_assign (stmt
)
3862 && (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
))
3864 && !get_ops (lhs
, code
, &ops
,
3865 loop_containing_stmt (stmt
))
3866 && has_single_use (lhs
))
3868 operand_entry
*oe
= operand_entry_pool
.allocate ();
3879 bb_ent
.last_idx
= ops
.length ();
3882 bbinfo
.safe_push (bb_ent
);
3885 /* Otherwise stmt is GIMPLE_COND. */
3886 code
= gimple_cond_code (stmt
);
3887 lhs
= gimple_cond_lhs (stmt
);
3888 rhs
= gimple_cond_rhs (stmt
);
3889 if (TREE_CODE (lhs
) == SSA_NAME
3890 && INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3891 && ((code
!= EQ_EXPR
&& code
!= NE_EXPR
)
3892 || rhs
!= boolean_false_node
3893 /* Either push into ops the individual bitwise
3894 or resp. and operands, depending on which
3895 edge is other_bb. */
3896 || !get_ops (lhs
, (((e
->flags
& EDGE_TRUE_VALUE
) == 0)
3897 ^ (code
== EQ_EXPR
))
3898 ? BIT_AND_EXPR
: BIT_IOR_EXPR
, &ops
,
3899 loop_containing_stmt (stmt
))))
3901 /* Or push the GIMPLE_COND stmt itself. */
3902 operand_entry
*oe
= operand_entry_pool
.allocate ();
3905 oe
->rank
= (e
->flags
& EDGE_TRUE_VALUE
)
3906 ? BIT_IOR_EXPR
: BIT_AND_EXPR
;
3907 /* oe->op = NULL signs that there is no SSA_NAME
3908 for the range test, and oe->id instead is the
3909 basic block number, at which's end the GIMPLE_COND
3913 oe
->stmt_to_insert
= NULL
;
3918 else if (ops
.length () > bb_ent
.first_idx
)
3921 bb_ent
.last_idx
= ops
.length ();
3923 bbinfo
.safe_push (bb_ent
);
3927 if (ops
.length () > 1)
3928 any_changes
= optimize_range_tests (ERROR_MARK
, &ops
);
3931 unsigned int idx
, max_idx
= 0;
3932 /* update_ops relies on has_single_use predicates returning the
3933 same values as it did during get_ops earlier. Additionally it
3934 never removes statements, only adds new ones and it should walk
3935 from the single imm use and check the predicate already before
3936 making those changes.
3937 On the other side, the handling of GIMPLE_COND directly can turn
3938 previously multiply used SSA_NAMEs into single use SSA_NAMEs, so
3939 it needs to be done in a separate loop afterwards. */
3940 for (bb
= last_bb
, idx
= 0; ; bb
= single_pred (bb
), idx
++)
3942 if (bbinfo
[idx
].first_idx
< bbinfo
[idx
].last_idx
3943 && bbinfo
[idx
].op
!= NULL_TREE
)
3948 stmt
= last_stmt (bb
);
3949 new_op
= update_ops (bbinfo
[idx
].op
,
3951 ops
[bbinfo
[idx
].first_idx
]->rank
,
3952 ops
, &bbinfo
[idx
].first_idx
,
3953 loop_containing_stmt (stmt
));
3954 if (new_op
== NULL_TREE
)
3956 gcc_assert (bb
== last_bb
);
3957 new_op
= ops
[bbinfo
[idx
].first_idx
++]->op
;
3959 if (bbinfo
[idx
].op
!= new_op
)
3961 imm_use_iterator iter
;
3962 use_operand_p use_p
;
3963 gimple
*use_stmt
, *cast_or_tcc_cmp_stmt
= NULL
;
3965 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, bbinfo
[idx
].op
)
3966 if (is_gimple_debug (use_stmt
))
3968 else if (gimple_code (use_stmt
) == GIMPLE_COND
3969 || gimple_code (use_stmt
) == GIMPLE_PHI
)
3970 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3971 SET_USE (use_p
, new_op
);
3972 else if ((is_gimple_assign (use_stmt
)
3974 (gimple_assign_rhs_code (use_stmt
))
3975 == tcc_comparison
)))
3976 cast_or_tcc_cmp_stmt
= use_stmt
;
3977 else if (gimple_assign_cast_p (use_stmt
))
3978 cast_or_tcc_cmp_stmt
= use_stmt
;
3982 if (cast_or_tcc_cmp_stmt
)
3984 gcc_assert (bb
== last_bb
);
3985 tree lhs
= gimple_assign_lhs (cast_or_tcc_cmp_stmt
);
3986 tree new_lhs
= make_ssa_name (TREE_TYPE (lhs
));
3987 enum tree_code rhs_code
3988 = gimple_assign_cast_p (cast_or_tcc_cmp_stmt
)
3989 ? gimple_assign_rhs_code (cast_or_tcc_cmp_stmt
)
3992 if (is_gimple_min_invariant (new_op
))
3994 new_op
= fold_convert (TREE_TYPE (lhs
), new_op
);
3995 g
= gimple_build_assign (new_lhs
, new_op
);
3998 g
= gimple_build_assign (new_lhs
, rhs_code
, new_op
);
3999 gimple_stmt_iterator gsi
4000 = gsi_for_stmt (cast_or_tcc_cmp_stmt
);
4001 gimple_set_uid (g
, gimple_uid (cast_or_tcc_cmp_stmt
));
4002 gimple_set_visited (g
, true);
4003 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
4004 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
4005 if (is_gimple_debug (use_stmt
))
4007 else if (gimple_code (use_stmt
) == GIMPLE_COND
4008 || gimple_code (use_stmt
) == GIMPLE_PHI
)
4009 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
4010 SET_USE (use_p
, new_lhs
);
4019 for (bb
= last_bb
, idx
= 0; ; bb
= single_pred (bb
), idx
++)
4021 if (bbinfo
[idx
].first_idx
< bbinfo
[idx
].last_idx
4022 && bbinfo
[idx
].op
== NULL_TREE
4023 && ops
[bbinfo
[idx
].first_idx
]->op
!= NULL_TREE
)
4025 gcond
*cond_stmt
= as_a
<gcond
*> (last_stmt (bb
));
4030 /* If we collapse the conditional to a true/false
4031 condition, then bubble that knowledge up to our caller. */
4032 if (integer_zerop (ops
[bbinfo
[idx
].first_idx
]->op
))
4034 gimple_cond_make_false (cond_stmt
);
4035 cfg_cleanup_needed
= true;
4037 else if (integer_onep (ops
[bbinfo
[idx
].first_idx
]->op
))
4039 gimple_cond_make_true (cond_stmt
);
4040 cfg_cleanup_needed
= true;
4044 gimple_cond_set_code (cond_stmt
, NE_EXPR
);
4045 gimple_cond_set_lhs (cond_stmt
,
4046 ops
[bbinfo
[idx
].first_idx
]->op
);
4047 gimple_cond_set_rhs (cond_stmt
, boolean_false_node
);
4049 update_stmt (cond_stmt
);
4055 /* The above changes could result in basic blocks after the first
4056 modified one, up to and including last_bb, to be executed even if
4057 they would not be in the original program. If the value ranges of
4058 assignment lhs' in those bbs were dependent on the conditions
4059 guarding those basic blocks which now can change, the VRs might
4060 be incorrect. As no_side_effect_bb should ensure those SSA_NAMEs
4061 are only used within the same bb, it should be not a big deal if
4062 we just reset all the VRs in those bbs. See PR68671. */
4063 for (bb
= last_bb
, idx
= 0; idx
< max_idx
; bb
= single_pred (bb
), idx
++)
4064 reset_flow_sensitive_info_in_bb (bb
);
4066 return cfg_cleanup_needed
;
4069 /* Return true if OPERAND is defined by a PHI node which uses the LHS
4070 of STMT in it's operands. This is also known as a "destructive
4071 update" operation. */
4074 is_phi_for_stmt (gimple
*stmt
, tree operand
)
4079 use_operand_p arg_p
;
4082 if (TREE_CODE (operand
) != SSA_NAME
)
4085 lhs
= gimple_assign_lhs (stmt
);
4087 def_stmt
= SSA_NAME_DEF_STMT (operand
);
4088 def_phi
= dyn_cast
<gphi
*> (def_stmt
);
4092 FOR_EACH_PHI_ARG (arg_p
, def_phi
, i
, SSA_OP_USE
)
4093 if (lhs
== USE_FROM_PTR (arg_p
))
4098 /* Remove def stmt of VAR if VAR has zero uses and recurse
4099 on rhs1 operand if so. */
4102 remove_visited_stmt_chain (tree var
)
4105 gimple_stmt_iterator gsi
;
4109 if (TREE_CODE (var
) != SSA_NAME
|| !has_zero_uses (var
))
4111 stmt
= SSA_NAME_DEF_STMT (var
);
4112 if (is_gimple_assign (stmt
) && gimple_visited_p (stmt
))
4114 var
= gimple_assign_rhs1 (stmt
);
4115 gsi
= gsi_for_stmt (stmt
);
4116 reassoc_remove_stmt (&gsi
);
4117 release_defs (stmt
);
4124 /* This function checks three consequtive operands in
4125 passed operands vector OPS starting from OPINDEX and
4126 swaps two operands if it is profitable for binary operation
4127 consuming OPINDEX + 1 abnd OPINDEX + 2 operands.
4129 We pair ops with the same rank if possible.
4131 The alternative we try is to see if STMT is a destructive
4132 update style statement, which is like:
4135 In that case, we want to use the destructive update form to
4136 expose the possible vectorizer sum reduction opportunity.
4137 In that case, the third operand will be the phi node. This
4138 check is not performed if STMT is null.
4140 We could, of course, try to be better as noted above, and do a
4141 lot of work to try to find these opportunities in >3 operand
4142 cases, but it is unlikely to be worth it. */
4145 swap_ops_for_binary_stmt (vec
<operand_entry
*> ops
,
4146 unsigned int opindex
, gimple
*stmt
)
4148 operand_entry
*oe1
, *oe2
, *oe3
;
4151 oe2
= ops
[opindex
+ 1];
4152 oe3
= ops
[opindex
+ 2];
4154 if ((oe1
->rank
== oe2
->rank
4155 && oe2
->rank
!= oe3
->rank
)
4156 || (stmt
&& is_phi_for_stmt (stmt
, oe3
->op
)
4157 && !is_phi_for_stmt (stmt
, oe1
->op
)
4158 && !is_phi_for_stmt (stmt
, oe2
->op
)))
4159 std::swap (*oe1
, *oe3
);
4160 else if ((oe1
->rank
== oe3
->rank
4161 && oe2
->rank
!= oe3
->rank
)
4162 || (stmt
&& is_phi_for_stmt (stmt
, oe2
->op
)
4163 && !is_phi_for_stmt (stmt
, oe1
->op
)
4164 && !is_phi_for_stmt (stmt
, oe3
->op
)))
4165 std::swap (*oe1
, *oe2
);
4168 /* If definition of RHS1 or RHS2 dominates STMT, return the later of those
4169 two definitions, otherwise return STMT. */
4171 static inline gimple
*
4172 find_insert_point (gimple
*stmt
, tree rhs1
, tree rhs2
)
4174 if (TREE_CODE (rhs1
) == SSA_NAME
4175 && reassoc_stmt_dominates_stmt_p (stmt
, SSA_NAME_DEF_STMT (rhs1
)))
4176 stmt
= SSA_NAME_DEF_STMT (rhs1
);
4177 if (TREE_CODE (rhs2
) == SSA_NAME
4178 && reassoc_stmt_dominates_stmt_p (stmt
, SSA_NAME_DEF_STMT (rhs2
)))
4179 stmt
= SSA_NAME_DEF_STMT (rhs2
);
4183 /* If the stmt that defines operand has to be inserted, insert it
4186 insert_stmt_before_use (gimple
*stmt
, gimple
*stmt_to_insert
)
4188 gcc_assert (is_gimple_assign (stmt_to_insert
));
4189 tree rhs1
= gimple_assign_rhs1 (stmt_to_insert
);
4190 tree rhs2
= gimple_assign_rhs2 (stmt_to_insert
);
4191 gimple
*insert_point
= find_insert_point (stmt
, rhs1
, rhs2
);
4192 gimple_stmt_iterator gsi
= gsi_for_stmt (insert_point
);
4193 gimple_set_uid (stmt_to_insert
, gimple_uid (insert_point
));
4195 /* If the insert point is not stmt, then insert_point would be
4196 the point where operand rhs1 or rhs2 is defined. In this case,
4197 stmt_to_insert has to be inserted afterwards. This would
4198 only happen when the stmt insertion point is flexible. */
4199 if (stmt
== insert_point
)
4200 gsi_insert_before (&gsi
, stmt_to_insert
, GSI_NEW_STMT
);
4202 insert_stmt_after (stmt_to_insert
, insert_point
);
4206 /* Recursively rewrite our linearized statements so that the operators
4207 match those in OPS[OPINDEX], putting the computation in rank
4208 order. Return new lhs. */
4211 rewrite_expr_tree (gimple
*stmt
, unsigned int opindex
,
4212 vec
<operand_entry
*> ops
, bool changed
)
4214 tree rhs1
= gimple_assign_rhs1 (stmt
);
4215 tree rhs2
= gimple_assign_rhs2 (stmt
);
4216 tree lhs
= gimple_assign_lhs (stmt
);
4219 /* The final recursion case for this function is that you have
4220 exactly two operations left.
4221 If we had exactly one op in the entire list to start with, we
4222 would have never called this function, and the tail recursion
4223 rewrites them one at a time. */
4224 if (opindex
+ 2 == ops
.length ())
4226 operand_entry
*oe1
, *oe2
;
4229 oe2
= ops
[opindex
+ 1];
4231 if (rhs1
!= oe1
->op
|| rhs2
!= oe2
->op
)
4233 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
4234 unsigned int uid
= gimple_uid (stmt
);
4236 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4238 fprintf (dump_file
, "Transforming ");
4239 print_gimple_stmt (dump_file
, stmt
, 0);
4242 /* If the stmt that defines operand has to be inserted, insert it
4244 if (oe1
->stmt_to_insert
)
4245 insert_stmt_before_use (stmt
, oe1
->stmt_to_insert
);
4246 if (oe2
->stmt_to_insert
)
4247 insert_stmt_before_use (stmt
, oe2
->stmt_to_insert
);
4248 /* Even when changed is false, reassociation could have e.g. removed
4249 some redundant operations, so unless we are just swapping the
4250 arguments or unless there is no change at all (then we just
4251 return lhs), force creation of a new SSA_NAME. */
4252 if (changed
|| ((rhs1
!= oe2
->op
|| rhs2
!= oe1
->op
) && opindex
))
4254 gimple
*insert_point
4255 = find_insert_point (stmt
, oe1
->op
, oe2
->op
);
4256 lhs
= make_ssa_name (TREE_TYPE (lhs
));
4258 = gimple_build_assign (lhs
, gimple_assign_rhs_code (stmt
),
4260 gimple_set_uid (stmt
, uid
);
4261 gimple_set_visited (stmt
, true);
4262 if (insert_point
== gsi_stmt (gsi
))
4263 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
4265 insert_stmt_after (stmt
, insert_point
);
4269 gcc_checking_assert (find_insert_point (stmt
, oe1
->op
, oe2
->op
)
4271 gimple_assign_set_rhs1 (stmt
, oe1
->op
);
4272 gimple_assign_set_rhs2 (stmt
, oe2
->op
);
4276 if (rhs1
!= oe1
->op
&& rhs1
!= oe2
->op
)
4277 remove_visited_stmt_chain (rhs1
);
4279 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4281 fprintf (dump_file
, " into ");
4282 print_gimple_stmt (dump_file
, stmt
, 0);
4288 /* If we hit here, we should have 3 or more ops left. */
4289 gcc_assert (opindex
+ 2 < ops
.length ());
4291 /* Rewrite the next operator. */
4294 /* If the stmt that defines operand has to be inserted, insert it
4296 if (oe
->stmt_to_insert
)
4297 insert_stmt_before_use (stmt
, oe
->stmt_to_insert
);
4299 /* Recurse on the LHS of the binary operator, which is guaranteed to
4300 be the non-leaf side. */
4302 = rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1
), opindex
+ 1, ops
,
4303 changed
|| oe
->op
!= rhs2
);
4305 if (oe
->op
!= rhs2
|| new_rhs1
!= rhs1
)
4307 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4309 fprintf (dump_file
, "Transforming ");
4310 print_gimple_stmt (dump_file
, stmt
, 0);
4313 /* If changed is false, this is either opindex == 0
4314 or all outer rhs2's were equal to corresponding oe->op,
4315 and powi_result is NULL.
4316 That means lhs is equivalent before and after reassociation.
4317 Otherwise ensure the old lhs SSA_NAME is not reused and
4318 create a new stmt as well, so that any debug stmts will be
4319 properly adjusted. */
4322 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
4323 unsigned int uid
= gimple_uid (stmt
);
4324 gimple
*insert_point
= find_insert_point (stmt
, new_rhs1
, oe
->op
);
4326 lhs
= make_ssa_name (TREE_TYPE (lhs
));
4327 stmt
= gimple_build_assign (lhs
, gimple_assign_rhs_code (stmt
),
4329 gimple_set_uid (stmt
, uid
);
4330 gimple_set_visited (stmt
, true);
4331 if (insert_point
== gsi_stmt (gsi
))
4332 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
4334 insert_stmt_after (stmt
, insert_point
);
4338 gcc_checking_assert (find_insert_point (stmt
, new_rhs1
, oe
->op
)
4340 gimple_assign_set_rhs1 (stmt
, new_rhs1
);
4341 gimple_assign_set_rhs2 (stmt
, oe
->op
);
4345 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4347 fprintf (dump_file
, " into ");
4348 print_gimple_stmt (dump_file
, stmt
, 0);
4354 /* Find out how many cycles we need to compute statements chain.
4355 OPS_NUM holds number os statements in a chain. CPU_WIDTH is a
4356 maximum number of independent statements we may execute per cycle. */
4359 get_required_cycles (int ops_num
, int cpu_width
)
4365 /* While we have more than 2 * cpu_width operands
4366 we may reduce number of operands by cpu_width
4368 res
= ops_num
/ (2 * cpu_width
);
4370 /* Remained operands count may be reduced twice per cycle
4371 until we have only one operand. */
4372 rest
= (unsigned)(ops_num
- res
* cpu_width
);
4373 elog
= exact_log2 (rest
);
4377 res
+= floor_log2 (rest
) + 1;
4382 /* Returns an optimal number of registers to use for computation of
4383 given statements. */
4386 get_reassociation_width (int ops_num
, enum tree_code opc
,
4389 int param_width
= PARAM_VALUE (PARAM_TREE_REASSOC_WIDTH
);
4394 if (param_width
> 0)
4395 width
= param_width
;
4397 width
= targetm
.sched
.reassociation_width (opc
, mode
);
4402 /* Get the minimal time required for sequence computation. */
4403 cycles_best
= get_required_cycles (ops_num
, width
);
4405 /* Check if we may use less width and still compute sequence for
4406 the same time. It will allow us to reduce registers usage.
4407 get_required_cycles is monotonically increasing with lower width
4408 so we can perform a binary search for the minimal width that still
4409 results in the optimal cycle count. */
4411 while (width
> width_min
)
4413 int width_mid
= (width
+ width_min
) / 2;
4415 if (get_required_cycles (ops_num
, width_mid
) == cycles_best
)
4417 else if (width_min
< width_mid
)
4418 width_min
= width_mid
;
4426 /* Recursively rewrite our linearized statements so that the operators
4427 match those in OPS[OPINDEX], putting the computation in rank
4428 order and trying to allow operations to be executed in
4432 rewrite_expr_tree_parallel (gassign
*stmt
, int width
,
4433 vec
<operand_entry
*> ops
)
4435 enum tree_code opcode
= gimple_assign_rhs_code (stmt
);
4436 int op_num
= ops
.length ();
4437 gcc_assert (op_num
> 0);
4438 int stmt_num
= op_num
- 1;
4439 gimple
**stmts
= XALLOCAVEC (gimple
*, stmt_num
);
4440 int op_index
= op_num
- 1;
4442 int ready_stmts_end
= 0;
4444 gimple
*stmt1
= NULL
, *stmt2
= NULL
;
4445 tree last_rhs1
= gimple_assign_rhs1 (stmt
);
4447 /* We start expression rewriting from the top statements.
4448 So, in this loop we create a full list of statements
4449 we will work with. */
4450 stmts
[stmt_num
- 1] = stmt
;
4451 for (i
= stmt_num
- 2; i
>= 0; i
--)
4452 stmts
[i
] = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmts
[i
+1]));
4454 for (i
= 0; i
< stmt_num
; i
++)
4458 /* Determine whether we should use results of
4459 already handled statements or not. */
4460 if (ready_stmts_end
== 0
4461 && (i
- stmt_index
>= width
|| op_index
< 1))
4462 ready_stmts_end
= i
;
4464 /* Now we choose operands for the next statement. Non zero
4465 value in ready_stmts_end means here that we should use
4466 the result of already generated statements as new operand. */
4467 if (ready_stmts_end
> 0)
4469 op1
= gimple_assign_lhs (stmts
[stmt_index
++]);
4470 if (ready_stmts_end
> stmt_index
)
4471 op2
= gimple_assign_lhs (stmts
[stmt_index
++]);
4472 else if (op_index
>= 0)
4474 operand_entry
*oe
= ops
[op_index
--];
4475 stmt2
= oe
->stmt_to_insert
;
4480 gcc_assert (stmt_index
< i
);
4481 op2
= gimple_assign_lhs (stmts
[stmt_index
++]);
4484 if (stmt_index
>= ready_stmts_end
)
4485 ready_stmts_end
= 0;
4490 swap_ops_for_binary_stmt (ops
, op_index
- 2, NULL
);
4491 operand_entry
*oe2
= ops
[op_index
--];
4492 operand_entry
*oe1
= ops
[op_index
--];
4494 stmt2
= oe2
->stmt_to_insert
;
4496 stmt1
= oe1
->stmt_to_insert
;
4499 /* If we emit the last statement then we should put
4500 operands into the last statement. It will also
4502 if (op_index
< 0 && stmt_index
== i
)
4505 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4507 fprintf (dump_file
, "Transforming ");
4508 print_gimple_stmt (dump_file
, stmts
[i
], 0);
4511 /* If the stmt that defines operand has to be inserted, insert it
4514 insert_stmt_before_use (stmts
[i
], stmt1
);
4516 insert_stmt_before_use (stmts
[i
], stmt2
);
4517 stmt1
= stmt2
= NULL
;
4519 /* We keep original statement only for the last one. All
4520 others are recreated. */
4521 if (i
== stmt_num
- 1)
4523 gimple_assign_set_rhs1 (stmts
[i
], op1
);
4524 gimple_assign_set_rhs2 (stmts
[i
], op2
);
4525 update_stmt (stmts
[i
]);
4529 stmts
[i
] = build_and_add_sum (TREE_TYPE (last_rhs1
), op1
, op2
, opcode
);
4531 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4533 fprintf (dump_file
, " into ");
4534 print_gimple_stmt (dump_file
, stmts
[i
], 0);
4538 remove_visited_stmt_chain (last_rhs1
);
4541 /* Transform STMT, which is really (A +B) + (C + D) into the left
4542 linear form, ((A+B)+C)+D.
4543 Recurse on D if necessary. */
4546 linearize_expr (gimple
*stmt
)
4548 gimple_stmt_iterator gsi
;
4549 gimple
*binlhs
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
4550 gimple
*binrhs
= SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt
));
4551 gimple
*oldbinrhs
= binrhs
;
4552 enum tree_code rhscode
= gimple_assign_rhs_code (stmt
);
4553 gimple
*newbinrhs
= NULL
;
4554 struct loop
*loop
= loop_containing_stmt (stmt
);
4555 tree lhs
= gimple_assign_lhs (stmt
);
4557 gcc_assert (is_reassociable_op (binlhs
, rhscode
, loop
)
4558 && is_reassociable_op (binrhs
, rhscode
, loop
));
4560 gsi
= gsi_for_stmt (stmt
);
4562 gimple_assign_set_rhs2 (stmt
, gimple_assign_rhs1 (binrhs
));
4563 binrhs
= gimple_build_assign (make_ssa_name (TREE_TYPE (lhs
)),
4564 gimple_assign_rhs_code (binrhs
),
4565 gimple_assign_lhs (binlhs
),
4566 gimple_assign_rhs2 (binrhs
));
4567 gimple_assign_set_rhs1 (stmt
, gimple_assign_lhs (binrhs
));
4568 gsi_insert_before (&gsi
, binrhs
, GSI_SAME_STMT
);
4569 gimple_set_uid (binrhs
, gimple_uid (stmt
));
4571 if (TREE_CODE (gimple_assign_rhs2 (stmt
)) == SSA_NAME
)
4572 newbinrhs
= SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt
));
4574 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4576 fprintf (dump_file
, "Linearized: ");
4577 print_gimple_stmt (dump_file
, stmt
, 0);
4580 reassociate_stats
.linearized
++;
4583 gsi
= gsi_for_stmt (oldbinrhs
);
4584 reassoc_remove_stmt (&gsi
);
4585 release_defs (oldbinrhs
);
4587 gimple_set_visited (stmt
, true);
4588 gimple_set_visited (binlhs
, true);
4589 gimple_set_visited (binrhs
, true);
4591 /* Tail recurse on the new rhs if it still needs reassociation. */
4592 if (newbinrhs
&& is_reassociable_op (newbinrhs
, rhscode
, loop
))
4593 /* ??? This should probably be linearize_expr (newbinrhs) but I don't
4594 want to change the algorithm while converting to tuples. */
4595 linearize_expr (stmt
);
4598 /* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
4599 it. Otherwise, return NULL. */
4602 get_single_immediate_use (tree lhs
)
4604 use_operand_p immuse
;
4607 if (TREE_CODE (lhs
) == SSA_NAME
4608 && single_imm_use (lhs
, &immuse
, &immusestmt
)
4609 && is_gimple_assign (immusestmt
))
4615 /* Recursively negate the value of TONEGATE, and return the SSA_NAME
4616 representing the negated value. Insertions of any necessary
4617 instructions go before GSI.
4618 This function is recursive in that, if you hand it "a_5" as the
4619 value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
4620 transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
4623 negate_value (tree tonegate
, gimple_stmt_iterator
*gsip
)
4625 gimple
*negatedefstmt
= NULL
;
4626 tree resultofnegate
;
4627 gimple_stmt_iterator gsi
;
4630 /* If we are trying to negate a name, defined by an add, negate the
4631 add operands instead. */
4632 if (TREE_CODE (tonegate
) == SSA_NAME
)
4633 negatedefstmt
= SSA_NAME_DEF_STMT (tonegate
);
4634 if (TREE_CODE (tonegate
) == SSA_NAME
4635 && is_gimple_assign (negatedefstmt
)
4636 && TREE_CODE (gimple_assign_lhs (negatedefstmt
)) == SSA_NAME
4637 && has_single_use (gimple_assign_lhs (negatedefstmt
))
4638 && gimple_assign_rhs_code (negatedefstmt
) == PLUS_EXPR
)
4640 tree rhs1
= gimple_assign_rhs1 (negatedefstmt
);
4641 tree rhs2
= gimple_assign_rhs2 (negatedefstmt
);
4642 tree lhs
= gimple_assign_lhs (negatedefstmt
);
4645 gsi
= gsi_for_stmt (negatedefstmt
);
4646 rhs1
= negate_value (rhs1
, &gsi
);
4648 gsi
= gsi_for_stmt (negatedefstmt
);
4649 rhs2
= negate_value (rhs2
, &gsi
);
4651 gsi
= gsi_for_stmt (negatedefstmt
);
4652 lhs
= make_ssa_name (TREE_TYPE (lhs
));
4653 gimple_set_visited (negatedefstmt
, true);
4654 g
= gimple_build_assign (lhs
, PLUS_EXPR
, rhs1
, rhs2
);
4655 gimple_set_uid (g
, gimple_uid (negatedefstmt
));
4656 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
4660 tonegate
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (tonegate
), tonegate
);
4661 resultofnegate
= force_gimple_operand_gsi (gsip
, tonegate
, true,
4662 NULL_TREE
, true, GSI_SAME_STMT
);
4664 uid
= gimple_uid (gsi_stmt (gsi
));
4665 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
4667 gimple
*stmt
= gsi_stmt (gsi
);
4668 if (gimple_uid (stmt
) != 0)
4670 gimple_set_uid (stmt
, uid
);
4672 return resultofnegate
;
4675 /* Return true if we should break up the subtract in STMT into an add
4676 with negate. This is true when we the subtract operands are really
4677 adds, or the subtract itself is used in an add expression. In
4678 either case, breaking up the subtract into an add with negate
4679 exposes the adds to reassociation. */
4682 should_break_up_subtract (gimple
*stmt
)
4684 tree lhs
= gimple_assign_lhs (stmt
);
4685 tree binlhs
= gimple_assign_rhs1 (stmt
);
4686 tree binrhs
= gimple_assign_rhs2 (stmt
);
4688 struct loop
*loop
= loop_containing_stmt (stmt
);
4690 if (TREE_CODE (binlhs
) == SSA_NAME
4691 && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs
), PLUS_EXPR
, loop
))
4694 if (TREE_CODE (binrhs
) == SSA_NAME
4695 && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs
), PLUS_EXPR
, loop
))
4698 if (TREE_CODE (lhs
) == SSA_NAME
4699 && (immusestmt
= get_single_immediate_use (lhs
))
4700 && is_gimple_assign (immusestmt
)
4701 && (gimple_assign_rhs_code (immusestmt
) == PLUS_EXPR
4702 || gimple_assign_rhs_code (immusestmt
) == MULT_EXPR
))
4707 /* Transform STMT from A - B into A + -B. */
4710 break_up_subtract (gimple
*stmt
, gimple_stmt_iterator
*gsip
)
4712 tree rhs1
= gimple_assign_rhs1 (stmt
);
4713 tree rhs2
= gimple_assign_rhs2 (stmt
);
4715 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4717 fprintf (dump_file
, "Breaking up subtract ");
4718 print_gimple_stmt (dump_file
, stmt
, 0);
4721 rhs2
= negate_value (rhs2
, gsip
);
4722 gimple_assign_set_rhs_with_ops (gsip
, PLUS_EXPR
, rhs1
, rhs2
);
4726 /* Determine whether STMT is a builtin call that raises an SSA name
4727 to an integer power and has only one use. If so, and this is early
4728 reassociation and unsafe math optimizations are permitted, place
4729 the SSA name in *BASE and the exponent in *EXPONENT, and return TRUE.
4730 If any of these conditions does not hold, return FALSE. */
4733 acceptable_pow_call (gcall
*stmt
, tree
*base
, HOST_WIDE_INT
*exponent
)
4736 REAL_VALUE_TYPE c
, cint
;
4738 switch (gimple_call_combined_fn (stmt
))
4741 if (flag_errno_math
)
4744 *base
= gimple_call_arg (stmt
, 0);
4745 arg1
= gimple_call_arg (stmt
, 1);
4747 if (TREE_CODE (arg1
) != REAL_CST
)
4750 c
= TREE_REAL_CST (arg1
);
4752 if (REAL_EXP (&c
) > HOST_BITS_PER_WIDE_INT
)
4755 *exponent
= real_to_integer (&c
);
4756 real_from_integer (&cint
, VOIDmode
, *exponent
, SIGNED
);
4757 if (!real_identical (&c
, &cint
))
4763 *base
= gimple_call_arg (stmt
, 0);
4764 arg1
= gimple_call_arg (stmt
, 1);
4766 if (!tree_fits_shwi_p (arg1
))
4769 *exponent
= tree_to_shwi (arg1
);
4776 /* Expanding negative exponents is generally unproductive, so we don't
4777 complicate matters with those. Exponents of zero and one should
4778 have been handled by expression folding. */
4779 if (*exponent
< 2 || TREE_CODE (*base
) != SSA_NAME
)
4785 /* Try to derive and add operand entry for OP to *OPS. Return false if
4789 try_special_add_to_ops (vec
<operand_entry
*> *ops
,
4790 enum tree_code code
,
4791 tree op
, gimple
* def_stmt
)
4793 tree base
= NULL_TREE
;
4794 HOST_WIDE_INT exponent
= 0;
4796 if (TREE_CODE (op
) != SSA_NAME
4797 || ! has_single_use (op
))
4800 if (code
== MULT_EXPR
4801 && reassoc_insert_powi_p
4802 && flag_unsafe_math_optimizations
4803 && is_gimple_call (def_stmt
)
4804 && acceptable_pow_call (as_a
<gcall
*> (def_stmt
), &base
, &exponent
))
4806 add_repeat_to_ops_vec (ops
, base
, exponent
);
4807 gimple_set_visited (def_stmt
, true);
4810 else if (code
== MULT_EXPR
4811 && is_gimple_assign (def_stmt
)
4812 && gimple_assign_rhs_code (def_stmt
) == NEGATE_EXPR
4813 && !HONOR_SNANS (TREE_TYPE (op
))
4814 && (!HONOR_SIGNED_ZEROS (TREE_TYPE (op
))
4815 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (op
))))
4817 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
4818 tree cst
= build_minus_one_cst (TREE_TYPE (op
));
4819 add_to_ops_vec (ops
, rhs1
);
4820 add_to_ops_vec (ops
, cst
);
4821 gimple_set_visited (def_stmt
, true);
4828 /* Recursively linearize a binary expression that is the RHS of STMT.
4829 Place the operands of the expression tree in the vector named OPS. */
4832 linearize_expr_tree (vec
<operand_entry
*> *ops
, gimple
*stmt
,
4833 bool is_associative
, bool set_visited
)
4835 tree binlhs
= gimple_assign_rhs1 (stmt
);
4836 tree binrhs
= gimple_assign_rhs2 (stmt
);
4837 gimple
*binlhsdef
= NULL
, *binrhsdef
= NULL
;
4838 bool binlhsisreassoc
= false;
4839 bool binrhsisreassoc
= false;
4840 enum tree_code rhscode
= gimple_assign_rhs_code (stmt
);
4841 struct loop
*loop
= loop_containing_stmt (stmt
);
4844 gimple_set_visited (stmt
, true);
4846 if (TREE_CODE (binlhs
) == SSA_NAME
)
4848 binlhsdef
= SSA_NAME_DEF_STMT (binlhs
);
4849 binlhsisreassoc
= (is_reassociable_op (binlhsdef
, rhscode
, loop
)
4850 && !stmt_could_throw_p (binlhsdef
));
4853 if (TREE_CODE (binrhs
) == SSA_NAME
)
4855 binrhsdef
= SSA_NAME_DEF_STMT (binrhs
);
4856 binrhsisreassoc
= (is_reassociable_op (binrhsdef
, rhscode
, loop
)
4857 && !stmt_could_throw_p (binrhsdef
));
4860 /* If the LHS is not reassociable, but the RHS is, we need to swap
4861 them. If neither is reassociable, there is nothing we can do, so
4862 just put them in the ops vector. If the LHS is reassociable,
4863 linearize it. If both are reassociable, then linearize the RHS
4866 if (!binlhsisreassoc
)
4868 /* If this is not a associative operation like division, give up. */
4869 if (!is_associative
)
4871 add_to_ops_vec (ops
, binrhs
);
4875 if (!binrhsisreassoc
)
4877 if (!try_special_add_to_ops (ops
, rhscode
, binrhs
, binrhsdef
))
4878 add_to_ops_vec (ops
, binrhs
);
4880 if (!try_special_add_to_ops (ops
, rhscode
, binlhs
, binlhsdef
))
4881 add_to_ops_vec (ops
, binlhs
);
4886 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4888 fprintf (dump_file
, "swapping operands of ");
4889 print_gimple_stmt (dump_file
, stmt
, 0);
4892 swap_ssa_operands (stmt
,
4893 gimple_assign_rhs1_ptr (stmt
),
4894 gimple_assign_rhs2_ptr (stmt
));
4897 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4899 fprintf (dump_file
, " is now ");
4900 print_gimple_stmt (dump_file
, stmt
, 0);
4903 /* We want to make it so the lhs is always the reassociative op,
4905 std::swap (binlhs
, binrhs
);
4907 else if (binrhsisreassoc
)
4909 linearize_expr (stmt
);
4910 binlhs
= gimple_assign_rhs1 (stmt
);
4911 binrhs
= gimple_assign_rhs2 (stmt
);
4914 gcc_assert (TREE_CODE (binrhs
) != SSA_NAME
4915 || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs
),
4917 linearize_expr_tree (ops
, SSA_NAME_DEF_STMT (binlhs
),
4918 is_associative
, set_visited
);
4920 if (!try_special_add_to_ops (ops
, rhscode
, binrhs
, binrhsdef
))
4921 add_to_ops_vec (ops
, binrhs
);
4924 /* Repropagate the negates back into subtracts, since no other pass
4925 currently does it. */
4928 repropagate_negates (void)
4933 FOR_EACH_VEC_ELT (plus_negates
, i
, negate
)
4935 gimple
*user
= get_single_immediate_use (negate
);
4937 if (!user
|| !is_gimple_assign (user
))
4940 /* The negate operand can be either operand of a PLUS_EXPR
4941 (it can be the LHS if the RHS is a constant for example).
4943 Force the negate operand to the RHS of the PLUS_EXPR, then
4944 transform the PLUS_EXPR into a MINUS_EXPR. */
4945 if (gimple_assign_rhs_code (user
) == PLUS_EXPR
)
4947 /* If the negated operand appears on the LHS of the
4948 PLUS_EXPR, exchange the operands of the PLUS_EXPR
4949 to force the negated operand to the RHS of the PLUS_EXPR. */
4950 if (gimple_assign_rhs1 (user
) == negate
)
4952 swap_ssa_operands (user
,
4953 gimple_assign_rhs1_ptr (user
),
4954 gimple_assign_rhs2_ptr (user
));
4957 /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
4958 the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
4959 if (gimple_assign_rhs2 (user
) == negate
)
4961 tree rhs1
= gimple_assign_rhs1 (user
);
4962 tree rhs2
= gimple_assign_rhs1 (SSA_NAME_DEF_STMT (negate
));
4963 gimple_stmt_iterator gsi
= gsi_for_stmt (user
);
4964 gimple_assign_set_rhs_with_ops (&gsi
, MINUS_EXPR
, rhs1
, rhs2
);
4968 else if (gimple_assign_rhs_code (user
) == MINUS_EXPR
)
4970 if (gimple_assign_rhs1 (user
) == negate
)
4975 which we transform into
4978 This pushes down the negate which we possibly can merge
4979 into some other operation, hence insert it into the
4980 plus_negates vector. */
4981 gimple
*feed
= SSA_NAME_DEF_STMT (negate
);
4982 tree a
= gimple_assign_rhs1 (feed
);
4983 tree b
= gimple_assign_rhs2 (user
);
4984 gimple_stmt_iterator gsi
= gsi_for_stmt (feed
);
4985 gimple_stmt_iterator gsi2
= gsi_for_stmt (user
);
4986 tree x
= make_ssa_name (TREE_TYPE (gimple_assign_lhs (feed
)));
4987 gimple
*g
= gimple_build_assign (x
, PLUS_EXPR
, a
, b
);
4988 gsi_insert_before (&gsi2
, g
, GSI_SAME_STMT
);
4989 gimple_assign_set_rhs_with_ops (&gsi2
, NEGATE_EXPR
, x
);
4990 user
= gsi_stmt (gsi2
);
4992 reassoc_remove_stmt (&gsi
);
4993 release_defs (feed
);
4994 plus_negates
.safe_push (gimple_assign_lhs (user
));
4998 /* Transform "x = -a; y = b - x" into "y = b + a", getting
4999 rid of one operation. */
5000 gimple
*feed
= SSA_NAME_DEF_STMT (negate
);
5001 tree a
= gimple_assign_rhs1 (feed
);
5002 tree rhs1
= gimple_assign_rhs1 (user
);
5003 gimple_stmt_iterator gsi
= gsi_for_stmt (user
);
5004 gimple_assign_set_rhs_with_ops (&gsi
, PLUS_EXPR
, rhs1
, a
);
5005 update_stmt (gsi_stmt (gsi
));
5011 /* Returns true if OP is of a type for which we can do reassociation.
5012 That is for integral or non-saturating fixed-point types, and for
5013 floating point type when associative-math is enabled. */
5016 can_reassociate_p (tree op
)
5018 tree type
= TREE_TYPE (op
);
5019 if (TREE_CODE (op
) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
5021 if ((ANY_INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_WRAPS (type
))
5022 || NON_SAT_FIXED_POINT_TYPE_P (type
)
5023 || (flag_associative_math
&& FLOAT_TYPE_P (type
)))
5028 /* Break up subtract operations in block BB.
5030 We do this top down because we don't know whether the subtract is
5031 part of a possible chain of reassociation except at the top.
5040 we want to break up k = t - q, but we won't until we've transformed q
5041 = b - r, which won't be broken up until we transform b = c - d.
5043 En passant, clear the GIMPLE visited flag on every statement
5044 and set UIDs within each basic block. */
5047 break_up_subtract_bb (basic_block bb
)
5049 gimple_stmt_iterator gsi
;
5051 unsigned int uid
= 1;
5053 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5055 gimple
*stmt
= gsi_stmt (gsi
);
5056 gimple_set_visited (stmt
, false);
5057 gimple_set_uid (stmt
, uid
++);
5059 if (!is_gimple_assign (stmt
)
5060 || !can_reassociate_p (gimple_assign_lhs (stmt
)))
5063 /* Look for simple gimple subtract operations. */
5064 if (gimple_assign_rhs_code (stmt
) == MINUS_EXPR
)
5066 if (!can_reassociate_p (gimple_assign_rhs1 (stmt
))
5067 || !can_reassociate_p (gimple_assign_rhs2 (stmt
)))
5070 /* Check for a subtract used only in an addition. If this
5071 is the case, transform it into add of a negate for better
5072 reassociation. IE transform C = A-B into C = A + -B if C
5073 is only used in an addition. */
5074 if (should_break_up_subtract (stmt
))
5075 break_up_subtract (stmt
, &gsi
);
5077 else if (gimple_assign_rhs_code (stmt
) == NEGATE_EXPR
5078 && can_reassociate_p (gimple_assign_rhs1 (stmt
)))
5079 plus_negates
.safe_push (gimple_assign_lhs (stmt
));
5081 for (son
= first_dom_son (CDI_DOMINATORS
, bb
);
5083 son
= next_dom_son (CDI_DOMINATORS
, son
))
5084 break_up_subtract_bb (son
);
5087 /* Used for repeated factor analysis. */
5088 struct repeat_factor
5090 /* An SSA name that occurs in a multiply chain. */
5093 /* Cached rank of the factor. */
5096 /* Number of occurrences of the factor in the chain. */
5097 HOST_WIDE_INT count
;
5099 /* An SSA name representing the product of this factor and
5100 all factors appearing later in the repeated factor vector. */
5105 static vec
<repeat_factor
> repeat_factor_vec
;
5107 /* Used for sorting the repeat factor vector. Sort primarily by
5108 ascending occurrence count, secondarily by descending rank. */
5111 compare_repeat_factors (const void *x1
, const void *x2
)
5113 const repeat_factor
*rf1
= (const repeat_factor
*) x1
;
5114 const repeat_factor
*rf2
= (const repeat_factor
*) x2
;
5116 if (rf1
->count
!= rf2
->count
)
5117 return rf1
->count
- rf2
->count
;
5119 return rf2
->rank
- rf1
->rank
;
5122 /* Look for repeated operands in OPS in the multiply tree rooted at
5123 STMT. Replace them with an optimal sequence of multiplies and powi
5124 builtin calls, and remove the used operands from OPS. Return an
5125 SSA name representing the value of the replacement sequence. */
5128 attempt_builtin_powi (gimple
*stmt
, vec
<operand_entry
*> *ops
)
5130 unsigned i
, j
, vec_len
;
5133 repeat_factor
*rf1
, *rf2
;
5134 repeat_factor rfnew
;
5135 tree result
= NULL_TREE
;
5136 tree target_ssa
, iter_result
;
5137 tree type
= TREE_TYPE (gimple_get_lhs (stmt
));
5138 tree powi_fndecl
= mathfn_built_in (type
, BUILT_IN_POWI
);
5139 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
5140 gimple
*mul_stmt
, *pow_stmt
;
5142 /* Nothing to do if BUILT_IN_POWI doesn't exist for this type and
5147 /* Allocate the repeated factor vector. */
5148 repeat_factor_vec
.create (10);
5150 /* Scan the OPS vector for all SSA names in the product and build
5151 up a vector of occurrence counts for each factor. */
5152 FOR_EACH_VEC_ELT (*ops
, i
, oe
)
5154 if (TREE_CODE (oe
->op
) == SSA_NAME
)
5156 FOR_EACH_VEC_ELT (repeat_factor_vec
, j
, rf1
)
5158 if (rf1
->factor
== oe
->op
)
5160 rf1
->count
+= oe
->count
;
5165 if (j
>= repeat_factor_vec
.length ())
5167 rfnew
.factor
= oe
->op
;
5168 rfnew
.rank
= oe
->rank
;
5169 rfnew
.count
= oe
->count
;
5170 rfnew
.repr
= NULL_TREE
;
5171 repeat_factor_vec
.safe_push (rfnew
);
5176 /* Sort the repeated factor vector by (a) increasing occurrence count,
5177 and (b) decreasing rank. */
5178 repeat_factor_vec
.qsort (compare_repeat_factors
);
5180 /* It is generally best to combine as many base factors as possible
5181 into a product before applying __builtin_powi to the result.
5182 However, the sort order chosen for the repeated factor vector
5183 allows us to cache partial results for the product of the base
5184 factors for subsequent use. When we already have a cached partial
5185 result from a previous iteration, it is best to make use of it
5186 before looking for another __builtin_pow opportunity.
5188 As an example, consider x * x * y * y * y * z * z * z * z.
5189 We want to first compose the product x * y * z, raise it to the
5190 second power, then multiply this by y * z, and finally multiply
5191 by z. This can be done in 5 multiplies provided we cache y * z
5192 for use in both expressions:
5200 If we instead ignored the cached y * z and first multiplied by
5201 the __builtin_pow opportunity z * z, we would get the inferior:
5210 vec_len
= repeat_factor_vec
.length ();
5212 /* Repeatedly look for opportunities to create a builtin_powi call. */
5215 HOST_WIDE_INT power
;
5217 /* First look for the largest cached product of factors from
5218 preceding iterations. If found, create a builtin_powi for
5219 it if the minimum occurrence count for its factors is at
5220 least 2, or just use this cached product as our next
5221 multiplicand if the minimum occurrence count is 1. */
5222 FOR_EACH_VEC_ELT (repeat_factor_vec
, j
, rf1
)
5224 if (rf1
->repr
&& rf1
->count
> 0)
5234 iter_result
= rf1
->repr
;
5236 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5240 fputs ("Multiplying by cached product ", dump_file
);
5241 for (elt
= j
; elt
< vec_len
; elt
++)
5243 rf
= &repeat_factor_vec
[elt
];
5244 print_generic_expr (dump_file
, rf
->factor
);
5245 if (elt
< vec_len
- 1)
5246 fputs (" * ", dump_file
);
5248 fputs ("\n", dump_file
);
5253 iter_result
= make_temp_ssa_name (type
, NULL
, "reassocpow");
5254 pow_stmt
= gimple_build_call (powi_fndecl
, 2, rf1
->repr
,
5255 build_int_cst (integer_type_node
,
5257 gimple_call_set_lhs (pow_stmt
, iter_result
);
5258 gimple_set_location (pow_stmt
, gimple_location (stmt
));
5259 gimple_set_uid (pow_stmt
, gimple_uid (stmt
));
5260 gsi_insert_before (&gsi
, pow_stmt
, GSI_SAME_STMT
);
5262 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5266 fputs ("Building __builtin_pow call for cached product (",
5268 for (elt
= j
; elt
< vec_len
; elt
++)
5270 rf
= &repeat_factor_vec
[elt
];
5271 print_generic_expr (dump_file
, rf
->factor
);
5272 if (elt
< vec_len
- 1)
5273 fputs (" * ", dump_file
);
5275 fprintf (dump_file
, ")^" HOST_WIDE_INT_PRINT_DEC
"\n",
5282 /* Otherwise, find the first factor in the repeated factor
5283 vector whose occurrence count is at least 2. If no such
5284 factor exists, there are no builtin_powi opportunities
5286 FOR_EACH_VEC_ELT (repeat_factor_vec
, j
, rf1
)
5288 if (rf1
->count
>= 2)
5297 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5301 fputs ("Building __builtin_pow call for (", dump_file
);
5302 for (elt
= j
; elt
< vec_len
; elt
++)
5304 rf
= &repeat_factor_vec
[elt
];
5305 print_generic_expr (dump_file
, rf
->factor
);
5306 if (elt
< vec_len
- 1)
5307 fputs (" * ", dump_file
);
5309 fprintf (dump_file
, ")^" HOST_WIDE_INT_PRINT_DEC
"\n", power
);
5312 reassociate_stats
.pows_created
++;
5314 /* Visit each element of the vector in reverse order (so that
5315 high-occurrence elements are visited first, and within the
5316 same occurrence count, lower-ranked elements are visited
5317 first). Form a linear product of all elements in this order
5318 whose occurrencce count is at least that of element J.
5319 Record the SSA name representing the product of each element
5320 with all subsequent elements in the vector. */
5321 if (j
== vec_len
- 1)
5322 rf1
->repr
= rf1
->factor
;
5325 for (ii
= vec_len
- 2; ii
>= (int)j
; ii
--)
5329 rf1
= &repeat_factor_vec
[ii
];
5330 rf2
= &repeat_factor_vec
[ii
+ 1];
5332 /* Init the last factor's representative to be itself. */
5334 rf2
->repr
= rf2
->factor
;
5339 target_ssa
= make_temp_ssa_name (type
, NULL
, "reassocpow");
5340 mul_stmt
= gimple_build_assign (target_ssa
, MULT_EXPR
,
5342 gimple_set_location (mul_stmt
, gimple_location (stmt
));
5343 gimple_set_uid (mul_stmt
, gimple_uid (stmt
));
5344 gsi_insert_before (&gsi
, mul_stmt
, GSI_SAME_STMT
);
5345 rf1
->repr
= target_ssa
;
5347 /* Don't reprocess the multiply we just introduced. */
5348 gimple_set_visited (mul_stmt
, true);
5352 /* Form a call to __builtin_powi for the maximum product
5353 just formed, raised to the power obtained earlier. */
5354 rf1
= &repeat_factor_vec
[j
];
5355 iter_result
= make_temp_ssa_name (type
, NULL
, "reassocpow");
5356 pow_stmt
= gimple_build_call (powi_fndecl
, 2, rf1
->repr
,
5357 build_int_cst (integer_type_node
,
5359 gimple_call_set_lhs (pow_stmt
, iter_result
);
5360 gimple_set_location (pow_stmt
, gimple_location (stmt
));
5361 gimple_set_uid (pow_stmt
, gimple_uid (stmt
));
5362 gsi_insert_before (&gsi
, pow_stmt
, GSI_SAME_STMT
);
5365 /* If we previously formed at least one other builtin_powi call,
5366 form the product of this one and those others. */
5369 tree new_result
= make_temp_ssa_name (type
, NULL
, "reassocpow");
5370 mul_stmt
= gimple_build_assign (new_result
, MULT_EXPR
,
5371 result
, iter_result
);
5372 gimple_set_location (mul_stmt
, gimple_location (stmt
));
5373 gimple_set_uid (mul_stmt
, gimple_uid (stmt
));
5374 gsi_insert_before (&gsi
, mul_stmt
, GSI_SAME_STMT
);
5375 gimple_set_visited (mul_stmt
, true);
5376 result
= new_result
;
5379 result
= iter_result
;
5381 /* Decrement the occurrence count of each element in the product
5382 by the count found above, and remove this many copies of each
5384 for (i
= j
; i
< vec_len
; i
++)
5389 rf1
= &repeat_factor_vec
[i
];
5390 rf1
->count
-= power
;
5392 FOR_EACH_VEC_ELT_REVERSE (*ops
, n
, oe
)
5394 if (oe
->op
== rf1
->factor
)
5398 ops
->ordered_remove (n
);
5414 /* At this point all elements in the repeated factor vector have a
5415 remaining occurrence count of 0 or 1, and those with a count of 1
5416 don't have cached representatives. Re-sort the ops vector and
5418 ops
->qsort (sort_by_operand_rank
);
5419 repeat_factor_vec
.release ();
5421 /* Return the final product computed herein. Note that there may
5422 still be some elements with single occurrence count left in OPS;
5423 those will be handled by the normal reassociation logic. */
5427 /* Attempt to optimize
5428 CST1 * copysign (CST2, y) -> copysign (CST1 * CST2, y) if CST1 > 0, or
5429 CST1 * copysign (CST2, y) -> -copysign (CST1 * CST2, y) if CST1 < 0. */
5432 attempt_builtin_copysign (vec
<operand_entry
*> *ops
)
5436 unsigned int length
= ops
->length ();
5437 tree cst
= ops
->last ()->op
;
5439 if (length
== 1 || TREE_CODE (cst
) != REAL_CST
)
5442 FOR_EACH_VEC_ELT (*ops
, i
, oe
)
5444 if (TREE_CODE (oe
->op
) == SSA_NAME
5445 && has_single_use (oe
->op
))
5447 gimple
*def_stmt
= SSA_NAME_DEF_STMT (oe
->op
);
5448 if (gcall
*old_call
= dyn_cast
<gcall
*> (def_stmt
))
5451 switch (gimple_call_combined_fn (old_call
))
5454 arg0
= gimple_call_arg (old_call
, 0);
5455 arg1
= gimple_call_arg (old_call
, 1);
5456 /* The first argument of copysign must be a constant,
5457 otherwise there's nothing to do. */
5458 if (TREE_CODE (arg0
) == REAL_CST
)
5460 tree type
= TREE_TYPE (arg0
);
5461 tree mul
= const_binop (MULT_EXPR
, type
, cst
, arg0
);
5462 /* If we couldn't fold to a single constant, skip it.
5463 That happens e.g. for inexact multiplication when
5465 if (mul
== NULL_TREE
)
5467 /* Instead of adjusting OLD_CALL, let's build a new
5468 call to not leak the LHS and prevent keeping bogus
5469 debug statements. DCE will clean up the old call. */
5471 if (gimple_call_internal_p (old_call
))
5472 new_call
= gimple_build_call_internal
5473 (IFN_COPYSIGN
, 2, mul
, arg1
);
5475 new_call
= gimple_build_call
5476 (gimple_call_fndecl (old_call
), 2, mul
, arg1
);
5477 tree lhs
= make_ssa_name (type
);
5478 gimple_call_set_lhs (new_call
, lhs
);
5479 gimple_set_location (new_call
,
5480 gimple_location (old_call
));
5481 insert_stmt_after (new_call
, old_call
);
5482 /* We've used the constant, get rid of it. */
5484 bool cst1_neg
= real_isneg (TREE_REAL_CST_PTR (cst
));
5485 /* Handle the CST1 < 0 case by negating the result. */
5488 tree negrhs
= make_ssa_name (TREE_TYPE (lhs
));
5490 = gimple_build_assign (negrhs
, NEGATE_EXPR
, lhs
);
5491 insert_stmt_after (negate_stmt
, new_call
);
5496 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5498 fprintf (dump_file
, "Optimizing copysign: ");
5499 print_generic_expr (dump_file
, cst
);
5500 fprintf (dump_file
, " * COPYSIGN (");
5501 print_generic_expr (dump_file
, arg0
);
5502 fprintf (dump_file
, ", ");
5503 print_generic_expr (dump_file
, arg1
);
5504 fprintf (dump_file
, ") into %sCOPYSIGN (",
5505 cst1_neg
? "-" : "");
5506 print_generic_expr (dump_file
, mul
);
5507 fprintf (dump_file
, ", ");
5508 print_generic_expr (dump_file
, arg1
);
5509 fprintf (dump_file
, "\n");
5522 /* Transform STMT at *GSI into a copy by replacing its rhs with NEW_RHS. */
5525 transform_stmt_to_copy (gimple_stmt_iterator
*gsi
, gimple
*stmt
, tree new_rhs
)
5529 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5531 fprintf (dump_file
, "Transforming ");
5532 print_gimple_stmt (dump_file
, stmt
, 0);
5535 rhs1
= gimple_assign_rhs1 (stmt
);
5536 gimple_assign_set_rhs_from_tree (gsi
, new_rhs
);
5538 remove_visited_stmt_chain (rhs1
);
5540 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5542 fprintf (dump_file
, " into ");
5543 print_gimple_stmt (dump_file
, stmt
, 0);
5547 /* Transform STMT at *GSI into a multiply of RHS1 and RHS2. */
5550 transform_stmt_to_multiply (gimple_stmt_iterator
*gsi
, gimple
*stmt
,
5551 tree rhs1
, tree rhs2
)
5553 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5555 fprintf (dump_file
, "Transforming ");
5556 print_gimple_stmt (dump_file
, stmt
, 0);
5559 gimple_assign_set_rhs_with_ops (gsi
, MULT_EXPR
, rhs1
, rhs2
);
5560 update_stmt (gsi_stmt (*gsi
));
5561 remove_visited_stmt_chain (rhs1
);
5563 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5565 fprintf (dump_file
, " into ");
5566 print_gimple_stmt (dump_file
, stmt
, 0);
5570 /* Reassociate expressions in basic block BB and its post-dominator as
5573 Bubble up return status from maybe_optimize_range_tests. */
5576 reassociate_bb (basic_block bb
)
5578 gimple_stmt_iterator gsi
;
5580 gimple
*stmt
= last_stmt (bb
);
5581 bool cfg_cleanup_needed
= false;
5583 if (stmt
&& !gimple_visited_p (stmt
))
5584 cfg_cleanup_needed
|= maybe_optimize_range_tests (stmt
);
5586 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
5588 stmt
= gsi_stmt (gsi
);
5590 if (is_gimple_assign (stmt
)
5591 && !stmt_could_throw_p (stmt
))
5593 tree lhs
, rhs1
, rhs2
;
5594 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
5596 /* If this is not a gimple binary expression, there is
5597 nothing for us to do with it. */
5598 if (get_gimple_rhs_class (rhs_code
) != GIMPLE_BINARY_RHS
)
5601 /* If this was part of an already processed statement,
5602 we don't need to touch it again. */
5603 if (gimple_visited_p (stmt
))
5605 /* This statement might have become dead because of previous
5607 if (has_zero_uses (gimple_get_lhs (stmt
)))
5609 reassoc_remove_stmt (&gsi
);
5610 release_defs (stmt
);
5611 /* We might end up removing the last stmt above which
5612 places the iterator to the end of the sequence.
5613 Reset it to the last stmt in this case which might
5614 be the end of the sequence as well if we removed
5615 the last statement of the sequence. In which case
5616 we need to bail out. */
5617 if (gsi_end_p (gsi
))
5619 gsi
= gsi_last_bb (bb
);
5620 if (gsi_end_p (gsi
))
5627 lhs
= gimple_assign_lhs (stmt
);
5628 rhs1
= gimple_assign_rhs1 (stmt
);
5629 rhs2
= gimple_assign_rhs2 (stmt
);
5631 /* For non-bit or min/max operations we can't associate
5632 all types. Verify that here. */
5633 if (rhs_code
!= BIT_IOR_EXPR
5634 && rhs_code
!= BIT_AND_EXPR
5635 && rhs_code
!= BIT_XOR_EXPR
5636 && rhs_code
!= MIN_EXPR
5637 && rhs_code
!= MAX_EXPR
5638 && (!can_reassociate_p (lhs
)
5639 || !can_reassociate_p (rhs1
)
5640 || !can_reassociate_p (rhs2
)))
5643 if (associative_tree_code (rhs_code
))
5645 auto_vec
<operand_entry
*> ops
;
5646 tree powi_result
= NULL_TREE
;
5647 bool is_vector
= VECTOR_TYPE_P (TREE_TYPE (lhs
));
5649 /* There may be no immediate uses left by the time we
5650 get here because we may have eliminated them all. */
5651 if (TREE_CODE (lhs
) == SSA_NAME
&& has_zero_uses (lhs
))
5654 gimple_set_visited (stmt
, true);
5655 linearize_expr_tree (&ops
, stmt
, true, true);
5656 ops
.qsort (sort_by_operand_rank
);
5657 optimize_ops_list (rhs_code
, &ops
);
5658 if (undistribute_ops_list (rhs_code
, &ops
,
5659 loop_containing_stmt (stmt
)))
5661 ops
.qsort (sort_by_operand_rank
);
5662 optimize_ops_list (rhs_code
, &ops
);
5665 if (rhs_code
== PLUS_EXPR
5666 && transform_add_to_multiply (&ops
))
5667 ops
.qsort (sort_by_operand_rank
);
5669 if (rhs_code
== BIT_IOR_EXPR
|| rhs_code
== BIT_AND_EXPR
)
5672 optimize_vec_cond_expr (rhs_code
, &ops
);
5674 optimize_range_tests (rhs_code
, &ops
);
5677 if (rhs_code
== MULT_EXPR
&& !is_vector
)
5679 attempt_builtin_copysign (&ops
);
5681 if (reassoc_insert_powi_p
5682 && flag_unsafe_math_optimizations
)
5683 powi_result
= attempt_builtin_powi (stmt
, &ops
);
5686 operand_entry
*last
;
5687 bool negate_result
= false;
5688 if (ops
.length () > 1
5689 && rhs_code
== MULT_EXPR
)
5692 if ((integer_minus_onep (last
->op
)
5693 || real_minus_onep (last
->op
))
5694 && !HONOR_SNANS (TREE_TYPE (lhs
))
5695 && (!HONOR_SIGNED_ZEROS (TREE_TYPE (lhs
))
5696 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (lhs
))))
5699 negate_result
= true;
5704 /* If the operand vector is now empty, all operands were
5705 consumed by the __builtin_powi optimization. */
5706 if (ops
.length () == 0)
5707 transform_stmt_to_copy (&gsi
, stmt
, powi_result
);
5708 else if (ops
.length () == 1)
5710 tree last_op
= ops
.last ()->op
;
5712 /* If the stmt that defines operand has to be inserted, insert it
5714 if (ops
.last ()->stmt_to_insert
)
5715 insert_stmt_before_use (stmt
, ops
.last ()->stmt_to_insert
);
5717 transform_stmt_to_multiply (&gsi
, stmt
, last_op
,
5720 transform_stmt_to_copy (&gsi
, stmt
, last_op
);
5724 machine_mode mode
= TYPE_MODE (TREE_TYPE (lhs
));
5725 int ops_num
= ops
.length ();
5726 int width
= get_reassociation_width (ops_num
, rhs_code
, mode
);
5728 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5730 "Width = %d was chosen for reassociation\n", width
);
5733 && ops
.length () > 3)
5734 rewrite_expr_tree_parallel (as_a
<gassign
*> (stmt
),
5738 /* When there are three operands left, we want
5739 to make sure the ones that get the double
5740 binary op are chosen wisely. */
5741 int len
= ops
.length ();
5743 swap_ops_for_binary_stmt (ops
, len
- 3, stmt
);
5745 new_lhs
= rewrite_expr_tree (stmt
, 0, ops
,
5750 /* If we combined some repeated factors into a
5751 __builtin_powi call, multiply that result by the
5752 reassociated operands. */
5755 gimple
*mul_stmt
, *lhs_stmt
= SSA_NAME_DEF_STMT (lhs
);
5756 tree type
= TREE_TYPE (lhs
);
5757 tree target_ssa
= make_temp_ssa_name (type
, NULL
,
5759 gimple_set_lhs (lhs_stmt
, target_ssa
);
5760 update_stmt (lhs_stmt
);
5763 target_ssa
= new_lhs
;
5766 mul_stmt
= gimple_build_assign (lhs
, MULT_EXPR
,
5767 powi_result
, target_ssa
);
5768 gimple_set_location (mul_stmt
, gimple_location (stmt
));
5769 gimple_set_uid (mul_stmt
, gimple_uid (stmt
));
5770 gsi_insert_after (&gsi
, mul_stmt
, GSI_NEW_STMT
);
5776 stmt
= SSA_NAME_DEF_STMT (lhs
);
5777 tree tmp
= make_ssa_name (TREE_TYPE (lhs
));
5778 gimple_set_lhs (stmt
, tmp
);
5781 gassign
*neg_stmt
= gimple_build_assign (lhs
, NEGATE_EXPR
,
5783 gimple_set_uid (neg_stmt
, gimple_uid (stmt
));
5784 gsi_insert_after (&gsi
, neg_stmt
, GSI_NEW_STMT
);
5790 for (son
= first_dom_son (CDI_POST_DOMINATORS
, bb
);
5792 son
= next_dom_son (CDI_POST_DOMINATORS
, son
))
5793 cfg_cleanup_needed
|= reassociate_bb (son
);
5795 return cfg_cleanup_needed
;
5798 /* Add jumps around shifts for range tests turned into bit tests.
5799 For each SSA_NAME VAR we have code like:
5800 VAR = ...; // final stmt of range comparison
5801 // bit test here...;
5802 OTHERVAR = ...; // final stmt of the bit test sequence
5803 RES = VAR | OTHERVAR;
5804 Turn the above into:
5811 // bit test here...;
5814 # RES = PHI<1(l1), OTHERVAR(l2)>; */
5822 FOR_EACH_VEC_ELT (reassoc_branch_fixups
, i
, var
)
5824 gimple
*def_stmt
= SSA_NAME_DEF_STMT (var
);
5827 bool ok
= single_imm_use (var
, &use
, &use_stmt
);
5829 && is_gimple_assign (use_stmt
)
5830 && gimple_assign_rhs_code (use_stmt
) == BIT_IOR_EXPR
5831 && gimple_bb (def_stmt
) == gimple_bb (use_stmt
));
5833 basic_block cond_bb
= gimple_bb (def_stmt
);
5834 basic_block then_bb
= split_block (cond_bb
, def_stmt
)->dest
;
5835 basic_block merge_bb
= split_block (then_bb
, use_stmt
)->dest
;
5837 gimple_stmt_iterator gsi
= gsi_for_stmt (def_stmt
);
5838 gimple
*g
= gimple_build_cond (NE_EXPR
, var
,
5839 build_zero_cst (TREE_TYPE (var
)),
5840 NULL_TREE
, NULL_TREE
);
5841 location_t loc
= gimple_location (use_stmt
);
5842 gimple_set_location (g
, loc
);
5843 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
5845 edge etrue
= make_edge (cond_bb
, merge_bb
, EDGE_TRUE_VALUE
);
5846 etrue
->probability
= REG_BR_PROB_BASE
/ 2;
5847 etrue
->count
= cond_bb
->count
.apply_scale (1, 2);
5848 edge efalse
= find_edge (cond_bb
, then_bb
);
5849 efalse
->flags
= EDGE_FALSE_VALUE
;
5850 efalse
->probability
-= etrue
->probability
;
5851 efalse
->count
-= etrue
->count
;
5852 then_bb
->count
-= etrue
->count
;
5854 tree othervar
= NULL_TREE
;
5855 if (gimple_assign_rhs1 (use_stmt
) == var
)
5856 othervar
= gimple_assign_rhs2 (use_stmt
);
5857 else if (gimple_assign_rhs2 (use_stmt
) == var
)
5858 othervar
= gimple_assign_rhs1 (use_stmt
);
5861 tree lhs
= gimple_assign_lhs (use_stmt
);
5862 gphi
*phi
= create_phi_node (lhs
, merge_bb
);
5863 add_phi_arg (phi
, build_one_cst (TREE_TYPE (lhs
)), etrue
, loc
);
5864 add_phi_arg (phi
, othervar
, single_succ_edge (then_bb
), loc
);
5865 gsi
= gsi_for_stmt (use_stmt
);
5866 gsi_remove (&gsi
, true);
5868 set_immediate_dominator (CDI_DOMINATORS
, merge_bb
, cond_bb
);
5869 set_immediate_dominator (CDI_POST_DOMINATORS
, cond_bb
, merge_bb
);
5871 reassoc_branch_fixups
.release ();
5874 void dump_ops_vector (FILE *file
, vec
<operand_entry
*> ops
);
5875 void debug_ops_vector (vec
<operand_entry
*> ops
);
5877 /* Dump the operand entry vector OPS to FILE. */
5880 dump_ops_vector (FILE *file
, vec
<operand_entry
*> ops
)
5885 FOR_EACH_VEC_ELT (ops
, i
, oe
)
5887 fprintf (file
, "Op %d -> rank: %d, tree: ", i
, oe
->rank
);
5888 print_generic_expr (file
, oe
->op
);
5889 fprintf (file
, "\n");
5893 /* Dump the operand entry vector OPS to STDERR. */
5896 debug_ops_vector (vec
<operand_entry
*> ops
)
5898 dump_ops_vector (stderr
, ops
);
5901 /* Bubble up return status from reassociate_bb. */
5906 break_up_subtract_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
5907 return reassociate_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
5910 /* Initialize the reassociation pass. */
5917 int *bbs
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
5919 /* Find the loops, so that we can prevent moving calculations in
5921 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
5923 memset (&reassociate_stats
, 0, sizeof (reassociate_stats
));
5925 next_operand_entry_id
= 0;
5927 /* Reverse RPO (Reverse Post Order) will give us something where
5928 deeper loops come later. */
5929 pre_and_rev_post_order_compute (NULL
, bbs
, false);
5930 bb_rank
= XCNEWVEC (long, last_basic_block_for_fn (cfun
));
5931 operand_rank
= new hash_map
<tree
, long>;
5933 /* Give each default definition a distinct rank. This includes
5934 parameters and the static chain. Walk backwards over all
5935 SSA names so that we get proper rank ordering according
5936 to tree_swap_operands_p. */
5937 for (i
= num_ssa_names
- 1; i
> 0; --i
)
5939 tree name
= ssa_name (i
);
5940 if (name
&& SSA_NAME_IS_DEFAULT_DEF (name
))
5941 insert_operand_rank (name
, ++rank
);
5944 /* Set up rank for each BB */
5945 for (i
= 0; i
< n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
; i
++)
5946 bb_rank
[bbs
[i
]] = ++rank
<< 16;
5949 calculate_dominance_info (CDI_POST_DOMINATORS
);
5950 plus_negates
= vNULL
;
5953 /* Cleanup after the reassociation pass, and print stats if
5959 statistics_counter_event (cfun
, "Linearized",
5960 reassociate_stats
.linearized
);
5961 statistics_counter_event (cfun
, "Constants eliminated",
5962 reassociate_stats
.constants_eliminated
);
5963 statistics_counter_event (cfun
, "Ops eliminated",
5964 reassociate_stats
.ops_eliminated
);
5965 statistics_counter_event (cfun
, "Statements rewritten",
5966 reassociate_stats
.rewritten
);
5967 statistics_counter_event (cfun
, "Built-in pow[i] calls encountered",
5968 reassociate_stats
.pows_encountered
);
5969 statistics_counter_event (cfun
, "Built-in powi calls created",
5970 reassociate_stats
.pows_created
);
5972 delete operand_rank
;
5973 operand_entry_pool
.release ();
5975 plus_negates
.release ();
5976 free_dominance_info (CDI_POST_DOMINATORS
);
5977 loop_optimizer_finalize ();
5980 /* Gate and execute functions for Reassociation. If INSERT_POWI_P, enable
5981 insertion of __builtin_powi calls.
5983 Returns TODO_cfg_cleanup if a CFG cleanup pass is desired due to
5984 optimization of a gimple conditional. Otherwise returns zero. */
5987 execute_reassoc (bool insert_powi_p
)
5989 reassoc_insert_powi_p
= insert_powi_p
;
5993 bool cfg_cleanup_needed
;
5994 cfg_cleanup_needed
= do_reassoc ();
5995 repropagate_negates ();
5999 return cfg_cleanup_needed
? TODO_cleanup_cfg
: 0;
6004 const pass_data pass_data_reassoc
=
6006 GIMPLE_PASS
, /* type */
6007 "reassoc", /* name */
6008 OPTGROUP_NONE
, /* optinfo_flags */
6009 TV_TREE_REASSOC
, /* tv_id */
6010 ( PROP_cfg
| PROP_ssa
), /* properties_required */
6011 0, /* properties_provided */
6012 0, /* properties_destroyed */
6013 0, /* todo_flags_start */
6014 TODO_update_ssa_only_virtuals
, /* todo_flags_finish */
6017 class pass_reassoc
: public gimple_opt_pass
6020 pass_reassoc (gcc::context
*ctxt
)
6021 : gimple_opt_pass (pass_data_reassoc
, ctxt
), insert_powi_p (false)
6024 /* opt_pass methods: */
6025 opt_pass
* clone () { return new pass_reassoc (m_ctxt
); }
6026 void set_pass_param (unsigned int n
, bool param
)
6028 gcc_assert (n
== 0);
6029 insert_powi_p
= param
;
6031 virtual bool gate (function
*) { return flag_tree_reassoc
!= 0; }
6032 virtual unsigned int execute (function
*)
6033 { return execute_reassoc (insert_powi_p
); }
6036 /* Enable insertion of __builtin_powi calls during execute_reassoc. See
6037 point 3a in the pass header comment. */
6039 }; // class pass_reassoc
6044 make_pass_reassoc (gcc::context
*ctxt
)
6046 return new pass_reassoc (ctxt
);