mips.h (set_volatile): Delete.
[official-gcc.git] / gcc / local-alloc.c
blob4ef1f021f03404e2ca2f3632a89cad94fc1fcb3b
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "coretypes.h"
65 #include "tm.h"
66 #include "hard-reg-set.h"
67 #include "rtl.h"
68 #include "tm_p.h"
69 #include "flags.h"
70 #include "regs.h"
71 #include "function.h"
72 #include "insn-config.h"
73 #include "insn-attr.h"
74 #include "recog.h"
75 #include "output.h"
76 #include "toplev.h"
77 #include "except.h"
78 #include "integrate.h"
79 #include "reload.h"
80 #include "ggc.h"
81 #include "timevar.h"
82 #include "tree-pass.h"
83 #include "df.h"
84 #include "dbgcnt.h"
87 /* Next quantity number available for allocation. */
89 static int next_qty;
91 /* Information we maintain about each quantity. */
92 struct qty
94 /* The number of refs to quantity Q. */
96 int n_refs;
98 /* The frequency of uses of quantity Q. */
100 int freq;
102 /* Insn number (counting from head of basic block)
103 where quantity Q was born. -1 if birth has not been recorded. */
105 int birth;
107 /* Insn number (counting from head of basic block)
108 where given quantity died. Due to the way tying is done,
109 and the fact that we consider in this pass only regs that die but once,
110 a quantity can die only once. Each quantity's life span
111 is a set of consecutive insns. -1 if death has not been recorded. */
113 int death;
115 /* Number of words needed to hold the data in given quantity.
116 This depends on its machine mode. It is used for these purposes:
117 1. It is used in computing the relative importance of qtys,
118 which determines the order in which we look for regs for them.
119 2. It is used in rules that prevent tying several registers of
120 different sizes in a way that is geometrically impossible
121 (see combine_regs). */
123 int size;
125 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
127 int n_calls_crossed;
129 /* Number of times a reg tied to given qty lives across a CALL_INSN
130 that might throw. */
132 int n_throwing_calls_crossed;
134 /* The register number of one pseudo register whose reg_qty value is Q.
135 This register should be the head of the chain
136 maintained in reg_next_in_qty. */
138 int first_reg;
140 /* Reg class contained in (smaller than) the preferred classes of all
141 the pseudo regs that are tied in given quantity.
142 This is the preferred class for allocating that quantity. */
144 enum reg_class min_class;
146 /* Register class within which we allocate given qty if we can't get
147 its preferred class. */
149 enum reg_class alternate_class;
151 /* This holds the mode of the registers that are tied to given qty,
152 or VOIDmode if registers with differing modes are tied together. */
154 enum machine_mode mode;
156 /* the hard reg number chosen for given quantity,
157 or -1 if none was found. */
159 short phys_reg;
162 static struct qty *qty;
164 /* These fields are kept separately to speedup their clearing. */
166 /* We maintain two hard register sets that indicate suggested hard registers
167 for each quantity. The first, phys_copy_sugg, contains hard registers
168 that are tied to the quantity by a simple copy. The second contains all
169 hard registers that are tied to the quantity via an arithmetic operation.
171 The former register set is given priority for allocation. This tends to
172 eliminate copy insns. */
174 /* Element Q is a set of hard registers that are suggested for quantity Q by
175 copy insns. */
177 static HARD_REG_SET *qty_phys_copy_sugg;
179 /* Element Q is a set of hard registers that are suggested for quantity Q by
180 arithmetic insns. */
182 static HARD_REG_SET *qty_phys_sugg;
184 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
186 static short *qty_phys_num_copy_sugg;
188 /* Element Q is the number of suggested registers in qty_phys_sugg. */
190 static short *qty_phys_num_sugg;
192 /* If (REG N) has been assigned a quantity number, is a register number
193 of another register assigned the same quantity number, or -1 for the
194 end of the chain. qty->first_reg point to the head of this chain. */
196 static int *reg_next_in_qty;
198 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
199 if it is >= 0,
200 of -1 if this register cannot be allocated by local-alloc,
201 or -2 if not known yet.
203 Note that if we see a use or death of pseudo register N with
204 reg_qty[N] == -2, register N must be local to the current block. If
205 it were used in more than one block, we would have reg_qty[N] == -1.
206 This relies on the fact that if reg_basic_block[N] is >= 0, register N
207 will not appear in any other block. We save a considerable number of
208 tests by exploiting this.
210 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
211 be referenced. */
213 static int *reg_qty;
215 /* The offset (in words) of register N within its quantity.
216 This can be nonzero if register N is SImode, and has been tied
217 to a subreg of a DImode register. */
219 static char *reg_offset;
221 /* Vector of substitutions of register numbers,
222 used to map pseudo regs into hardware regs.
223 This is set up as a result of register allocation.
224 Element N is the hard reg assigned to pseudo reg N,
225 or is -1 if no hard reg was assigned.
226 If N is a hard reg number, element N is N. */
228 short *reg_renumber;
230 /* Set of hard registers live at the current point in the scan
231 of the instructions in a basic block. */
233 static HARD_REG_SET regs_live;
235 /* Each set of hard registers indicates registers live at a particular
236 point in the basic block. For N even, regs_live_at[N] says which
237 hard registers are needed *after* insn N/2 (i.e., they may not
238 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
240 If an object is to conflict with the inputs of insn J but not the
241 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
242 if it is to conflict with the outputs of insn J but not the inputs of
243 insn J + 1, it is said to die at index J*2 + 1. */
245 static HARD_REG_SET *regs_live_at;
247 /* Communicate local vars `insn_number' and `insn'
248 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
249 static int this_insn_number;
250 static rtx this_insn;
252 struct equivalence
254 /* Set when an attempt should be made to replace a register
255 with the associated src_p entry. */
257 char replace;
259 /* Set when a REG_EQUIV note is found or created. Use to
260 keep track of what memory accesses might be created later,
261 e.g. by reload. */
263 rtx replacement;
265 rtx *src_p;
267 /* Loop depth is used to recognize equivalences which appear
268 to be present within the same loop (or in an inner loop). */
270 int loop_depth;
272 /* The list of each instruction which initializes this register. */
274 rtx init_insns;
276 /* Nonzero if this had a preexisting REG_EQUIV note. */
278 int is_arg_equivalence;
281 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
282 structure for that register. */
284 static struct equivalence *reg_equiv;
286 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
287 static int recorded_label_ref;
289 static void alloc_qty (int, enum machine_mode, int, int);
290 static void validate_equiv_mem_from_store (rtx, const_rtx, void *);
291 static int validate_equiv_mem (rtx, rtx, rtx);
292 static int equiv_init_varies_p (rtx);
293 static int equiv_init_movable_p (rtx, int);
294 static int contains_replace_regs (rtx);
295 static int memref_referenced_p (rtx, rtx);
296 static int memref_used_between_p (rtx, rtx, rtx);
297 static void update_equiv_regs (void);
298 static void no_equiv (rtx, const_rtx, void *);
299 static void block_alloc (int);
300 static int qty_sugg_compare (int, int);
301 static int qty_sugg_compare_1 (const void *, const void *);
302 static int qty_compare (int, int);
303 static int qty_compare_1 (const void *, const void *);
304 static int combine_regs (rtx, rtx, int, int, rtx, int);
305 static int reg_meets_class_p (int, enum reg_class);
306 static void update_qty_class (int, int);
307 static void reg_is_set (rtx, const_rtx, void *);
308 static void reg_is_born (rtx, int);
309 static void wipe_dead_reg (rtx, int);
310 static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
311 int, int);
312 static void mark_life (int, enum machine_mode, int);
313 static void post_mark_life (int, enum machine_mode, int, int, int);
314 static int no_conflict_p (rtx, rtx, rtx);
315 static int requires_inout (const char *);
317 /* Allocate a new quantity (new within current basic block)
318 for register number REGNO which is born at index BIRTH
319 within the block. MODE and SIZE are info on reg REGNO. */
321 static void
322 alloc_qty (int regno, enum machine_mode mode, int size, int birth)
324 int qtyno = next_qty++;
326 reg_qty[regno] = qtyno;
327 reg_offset[regno] = 0;
328 reg_next_in_qty[regno] = -1;
330 qty[qtyno].first_reg = regno;
331 qty[qtyno].size = size;
332 qty[qtyno].mode = mode;
333 qty[qtyno].birth = birth;
334 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
335 qty[qtyno].n_throwing_calls_crossed = REG_N_THROWING_CALLS_CROSSED (regno);
336 qty[qtyno].min_class = reg_preferred_class (regno);
337 qty[qtyno].alternate_class = reg_alternate_class (regno);
338 qty[qtyno].n_refs = REG_N_REFS (regno);
339 qty[qtyno].freq = REG_FREQ (regno);
342 /* Main entry point of this file. */
344 static int
345 local_alloc (void)
347 int i;
348 int max_qty;
349 basic_block b;
351 /* We need to keep track of whether or not we recorded a LABEL_REF so
352 that we know if the jump optimizer needs to be rerun. */
353 recorded_label_ref = 0;
355 /* Leaf functions and non-leaf functions have different needs.
356 If defined, let the machine say what kind of ordering we
357 should use. */
358 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
359 ORDER_REGS_FOR_LOCAL_ALLOC;
360 #endif
362 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
363 registers. */
364 update_equiv_regs ();
366 /* This sets the maximum number of quantities we can have. Quantity
367 numbers start at zero and we can have one for each pseudo. */
368 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
370 /* Allocate vectors of temporary data.
371 See the declarations of these variables, above,
372 for what they mean. */
374 qty = XNEWVEC (struct qty, max_qty);
375 qty_phys_copy_sugg = XNEWVEC (HARD_REG_SET, max_qty);
376 qty_phys_num_copy_sugg = XNEWVEC (short, max_qty);
377 qty_phys_sugg = XNEWVEC (HARD_REG_SET, max_qty);
378 qty_phys_num_sugg = XNEWVEC (short, max_qty);
380 reg_qty = XNEWVEC (int, max_regno);
381 reg_offset = XNEWVEC (char, max_regno);
382 reg_next_in_qty = XNEWVEC (int, max_regno);
384 /* Determine which pseudo-registers can be allocated by local-alloc.
385 In general, these are the registers used only in a single block and
386 which only die once.
388 We need not be concerned with which block actually uses the register
389 since we will never see it outside that block. */
391 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
393 if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS && REG_N_DEATHS (i) == 1)
394 reg_qty[i] = -2;
395 else
396 reg_qty[i] = -1;
399 /* Force loop below to initialize entire quantity array. */
400 next_qty = max_qty;
402 /* Allocate each block's local registers, block by block. */
404 FOR_EACH_BB (b)
406 /* NEXT_QTY indicates which elements of the `qty_...'
407 vectors might need to be initialized because they were used
408 for the previous block; it is set to the entire array before
409 block 0. Initialize those, with explicit loop if there are few,
410 else with bzero and bcopy. Do not initialize vectors that are
411 explicit set by `alloc_qty'. */
413 if (next_qty < 6)
415 for (i = 0; i < next_qty; i++)
417 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
418 qty_phys_num_copy_sugg[i] = 0;
419 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
420 qty_phys_num_sugg[i] = 0;
423 else
425 #define CLEAR(vector) \
426 memset ((vector), 0, (sizeof (*(vector))) * next_qty);
428 CLEAR (qty_phys_copy_sugg);
429 CLEAR (qty_phys_num_copy_sugg);
430 CLEAR (qty_phys_sugg);
431 CLEAR (qty_phys_num_sugg);
434 next_qty = 0;
436 block_alloc (b->index);
439 free (qty);
440 free (qty_phys_copy_sugg);
441 free (qty_phys_num_copy_sugg);
442 free (qty_phys_sugg);
443 free (qty_phys_num_sugg);
445 free (reg_qty);
446 free (reg_offset);
447 free (reg_next_in_qty);
449 return recorded_label_ref;
452 /* Used for communication between the following two functions: contains
453 a MEM that we wish to ensure remains unchanged. */
454 static rtx equiv_mem;
456 /* Set nonzero if EQUIV_MEM is modified. */
457 static int equiv_mem_modified;
459 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
460 Called via note_stores. */
462 static void
463 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
464 void *data ATTRIBUTE_UNUSED)
466 if ((REG_P (dest)
467 && reg_overlap_mentioned_p (dest, equiv_mem))
468 || (MEM_P (dest)
469 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
470 equiv_mem_modified = 1;
473 /* Verify that no store between START and the death of REG invalidates
474 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
475 by storing into an overlapping memory location, or with a non-const
476 CALL_INSN.
478 Return 1 if MEMREF remains valid. */
480 static int
481 validate_equiv_mem (rtx start, rtx reg, rtx memref)
483 rtx insn;
484 rtx note;
486 equiv_mem = memref;
487 equiv_mem_modified = 0;
489 /* If the memory reference has side effects or is volatile, it isn't a
490 valid equivalence. */
491 if (side_effects_p (memref))
492 return 0;
494 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
496 if (! INSN_P (insn))
497 continue;
499 if (find_reg_note (insn, REG_DEAD, reg))
500 return 1;
502 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
503 && ! CONST_OR_PURE_CALL_P (insn))
504 return 0;
506 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
508 /* If a register mentioned in MEMREF is modified via an
509 auto-increment, we lose the equivalence. Do the same if one
510 dies; although we could extend the life, it doesn't seem worth
511 the trouble. */
513 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
514 if ((REG_NOTE_KIND (note) == REG_INC
515 || REG_NOTE_KIND (note) == REG_DEAD)
516 && REG_P (XEXP (note, 0))
517 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
518 return 0;
521 return 0;
524 /* Returns zero if X is known to be invariant. */
526 static int
527 equiv_init_varies_p (rtx x)
529 RTX_CODE code = GET_CODE (x);
530 int i;
531 const char *fmt;
533 switch (code)
535 case MEM:
536 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
538 case CONST:
539 case CONST_INT:
540 case CONST_DOUBLE:
541 case CONST_FIXED:
542 case CONST_VECTOR:
543 case SYMBOL_REF:
544 case LABEL_REF:
545 return 0;
547 case REG:
548 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
550 case ASM_OPERANDS:
551 if (MEM_VOLATILE_P (x))
552 return 1;
554 /* Fall through. */
556 default:
557 break;
560 fmt = GET_RTX_FORMAT (code);
561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
562 if (fmt[i] == 'e')
564 if (equiv_init_varies_p (XEXP (x, i)))
565 return 1;
567 else if (fmt[i] == 'E')
569 int j;
570 for (j = 0; j < XVECLEN (x, i); j++)
571 if (equiv_init_varies_p (XVECEXP (x, i, j)))
572 return 1;
575 return 0;
578 /* Returns nonzero if X (used to initialize register REGNO) is movable.
579 X is only movable if the registers it uses have equivalent initializations
580 which appear to be within the same loop (or in an inner loop) and movable
581 or if they are not candidates for local_alloc and don't vary. */
583 static int
584 equiv_init_movable_p (rtx x, int regno)
586 int i, j;
587 const char *fmt;
588 enum rtx_code code = GET_CODE (x);
590 switch (code)
592 case SET:
593 return equiv_init_movable_p (SET_SRC (x), regno);
595 case CC0:
596 case CLOBBER:
597 return 0;
599 case PRE_INC:
600 case PRE_DEC:
601 case POST_INC:
602 case POST_DEC:
603 case PRE_MODIFY:
604 case POST_MODIFY:
605 return 0;
607 case REG:
608 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
609 && reg_equiv[REGNO (x)].replace)
610 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
612 case UNSPEC_VOLATILE:
613 return 0;
615 case ASM_OPERANDS:
616 if (MEM_VOLATILE_P (x))
617 return 0;
619 /* Fall through. */
621 default:
622 break;
625 fmt = GET_RTX_FORMAT (code);
626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
627 switch (fmt[i])
629 case 'e':
630 if (! equiv_init_movable_p (XEXP (x, i), regno))
631 return 0;
632 break;
633 case 'E':
634 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
635 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
636 return 0;
637 break;
640 return 1;
643 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
645 static int
646 contains_replace_regs (rtx x)
648 int i, j;
649 const char *fmt;
650 enum rtx_code code = GET_CODE (x);
652 switch (code)
654 case CONST_INT:
655 case CONST:
656 case LABEL_REF:
657 case SYMBOL_REF:
658 case CONST_DOUBLE:
659 case CONST_FIXED:
660 case CONST_VECTOR:
661 case PC:
662 case CC0:
663 case HIGH:
664 return 0;
666 case REG:
667 return reg_equiv[REGNO (x)].replace;
669 default:
670 break;
673 fmt = GET_RTX_FORMAT (code);
674 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
675 switch (fmt[i])
677 case 'e':
678 if (contains_replace_regs (XEXP (x, i)))
679 return 1;
680 break;
681 case 'E':
682 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
683 if (contains_replace_regs (XVECEXP (x, i, j)))
684 return 1;
685 break;
688 return 0;
691 /* TRUE if X references a memory location that would be affected by a store
692 to MEMREF. */
694 static int
695 memref_referenced_p (rtx memref, rtx x)
697 int i, j;
698 const char *fmt;
699 enum rtx_code code = GET_CODE (x);
701 switch (code)
703 case CONST_INT:
704 case CONST:
705 case LABEL_REF:
706 case SYMBOL_REF:
707 case CONST_DOUBLE:
708 case CONST_FIXED:
709 case CONST_VECTOR:
710 case PC:
711 case CC0:
712 case HIGH:
713 case LO_SUM:
714 return 0;
716 case REG:
717 return (reg_equiv[REGNO (x)].replacement
718 && memref_referenced_p (memref,
719 reg_equiv[REGNO (x)].replacement));
721 case MEM:
722 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
723 return 1;
724 break;
726 case SET:
727 /* If we are setting a MEM, it doesn't count (its address does), but any
728 other SET_DEST that has a MEM in it is referencing the MEM. */
729 if (MEM_P (SET_DEST (x)))
731 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
732 return 1;
734 else if (memref_referenced_p (memref, SET_DEST (x)))
735 return 1;
737 return memref_referenced_p (memref, SET_SRC (x));
739 default:
740 break;
743 fmt = GET_RTX_FORMAT (code);
744 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
745 switch (fmt[i])
747 case 'e':
748 if (memref_referenced_p (memref, XEXP (x, i)))
749 return 1;
750 break;
751 case 'E':
752 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
753 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
754 return 1;
755 break;
758 return 0;
761 /* TRUE if some insn in the range (START, END] references a memory location
762 that would be affected by a store to MEMREF. */
764 static int
765 memref_used_between_p (rtx memref, rtx start, rtx end)
767 rtx insn;
769 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
770 insn = NEXT_INSN (insn))
772 if (!INSN_P (insn))
773 continue;
775 if (memref_referenced_p (memref, PATTERN (insn)))
776 return 1;
778 /* Nonconst functions may access memory. */
779 if (CALL_P (insn)
780 && (! CONST_OR_PURE_CALL_P (insn)
781 || pure_call_p (insn)))
782 return 1;
785 return 0;
788 /* Find registers that are equivalent to a single value throughout the
789 compilation (either because they can be referenced in memory or are set once
790 from a single constant). Lower their priority for a register.
792 If such a register is only referenced once, try substituting its value
793 into the using insn. If it succeeds, we can eliminate the register
794 completely.
796 Initialize the REG_EQUIV_INIT array of initializing insns. */
798 static void
799 update_equiv_regs (void)
801 rtx insn;
802 basic_block bb;
803 int loop_depth;
804 bitmap cleared_regs;
806 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
807 reg_equiv_init = ggc_alloc_cleared (max_regno * sizeof (rtx));
808 reg_equiv_init_size = max_regno;
810 init_alias_analysis ();
812 /* Scan the insns and find which registers have equivalences. Do this
813 in a separate scan of the insns because (due to -fcse-follow-jumps)
814 a register can be set below its use. */
815 FOR_EACH_BB (bb)
817 loop_depth = bb->loop_depth;
819 for (insn = BB_HEAD (bb);
820 insn != NEXT_INSN (BB_END (bb));
821 insn = NEXT_INSN (insn))
823 rtx note;
824 rtx set;
825 rtx dest, src;
826 int regno;
828 if (! INSN_P (insn))
829 continue;
831 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
832 if (REG_NOTE_KIND (note) == REG_INC)
833 no_equiv (XEXP (note, 0), note, NULL);
835 set = single_set (insn);
837 /* If this insn contains more (or less) than a single SET,
838 only mark all destinations as having no known equivalence. */
839 if (set == 0)
841 note_stores (PATTERN (insn), no_equiv, NULL);
842 continue;
844 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
846 int i;
848 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
850 rtx part = XVECEXP (PATTERN (insn), 0, i);
851 if (part != set)
852 note_stores (part, no_equiv, NULL);
856 dest = SET_DEST (set);
857 src = SET_SRC (set);
859 /* See if this is setting up the equivalence between an argument
860 register and its stack slot. */
861 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
862 if (note)
864 gcc_assert (REG_P (dest));
865 regno = REGNO (dest);
867 /* Note that we don't want to clear reg_equiv_init even if there
868 are multiple sets of this register. */
869 reg_equiv[regno].is_arg_equivalence = 1;
871 /* Record for reload that this is an equivalencing insn. */
872 if (rtx_equal_p (src, XEXP (note, 0)))
873 reg_equiv_init[regno]
874 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
876 /* Continue normally in case this is a candidate for
877 replacements. */
880 if (!optimize)
881 continue;
883 /* We only handle the case of a pseudo register being set
884 once, or always to the same value. */
885 /* ??? The mn10200 port breaks if we add equivalences for
886 values that need an ADDRESS_REGS register and set them equivalent
887 to a MEM of a pseudo. The actual problem is in the over-conservative
888 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
889 calculate_needs, but we traditionally work around this problem
890 here by rejecting equivalences when the destination is in a register
891 that's likely spilled. This is fragile, of course, since the
892 preferred class of a pseudo depends on all instructions that set
893 or use it. */
895 if (!REG_P (dest)
896 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
897 || reg_equiv[regno].init_insns == const0_rtx
898 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
899 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
901 /* This might be setting a SUBREG of a pseudo, a pseudo that is
902 also set somewhere else to a constant. */
903 note_stores (set, no_equiv, NULL);
904 continue;
907 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
909 /* cse sometimes generates function invariants, but doesn't put a
910 REG_EQUAL note on the insn. Since this note would be redundant,
911 there's no point creating it earlier than here. */
912 if (! note && ! rtx_varies_p (src, 0))
913 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
915 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
916 since it represents a function call */
917 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
918 note = NULL_RTX;
920 if (DF_REG_DEF_COUNT (regno) != 1
921 && (! note
922 || rtx_varies_p (XEXP (note, 0), 0)
923 || (reg_equiv[regno].replacement
924 && ! rtx_equal_p (XEXP (note, 0),
925 reg_equiv[regno].replacement))))
927 no_equiv (dest, set, NULL);
928 continue;
930 /* Record this insn as initializing this register. */
931 reg_equiv[regno].init_insns
932 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
934 /* If this register is known to be equal to a constant, record that
935 it is always equivalent to the constant. */
936 if (DF_REG_DEF_COUNT (regno) == 1
937 && note && ! rtx_varies_p (XEXP (note, 0), 0))
939 rtx note_value = XEXP (note, 0);
940 remove_note (insn, note);
941 set_unique_reg_note (insn, REG_EQUIV, note_value);
944 /* If this insn introduces a "constant" register, decrease the priority
945 of that register. Record this insn if the register is only used once
946 more and the equivalence value is the same as our source.
948 The latter condition is checked for two reasons: First, it is an
949 indication that it may be more efficient to actually emit the insn
950 as written (if no registers are available, reload will substitute
951 the equivalence). Secondly, it avoids problems with any registers
952 dying in this insn whose death notes would be missed.
954 If we don't have a REG_EQUIV note, see if this insn is loading
955 a register used only in one basic block from a MEM. If so, and the
956 MEM remains unchanged for the life of the register, add a REG_EQUIV
957 note. */
959 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
961 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
962 && MEM_P (SET_SRC (set))
963 && validate_equiv_mem (insn, dest, SET_SRC (set)))
964 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
966 if (note)
968 int regno = REGNO (dest);
969 rtx x = XEXP (note, 0);
971 /* If we haven't done so, record for reload that this is an
972 equivalencing insn. */
973 if (!reg_equiv[regno].is_arg_equivalence)
974 reg_equiv_init[regno]
975 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
977 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
978 We might end up substituting the LABEL_REF for uses of the
979 pseudo here or later. That kind of transformation may turn an
980 indirect jump into a direct jump, in which case we must rerun the
981 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
982 if (GET_CODE (x) == LABEL_REF
983 || (GET_CODE (x) == CONST
984 && GET_CODE (XEXP (x, 0)) == PLUS
985 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
986 recorded_label_ref = 1;
988 reg_equiv[regno].replacement = x;
989 reg_equiv[regno].src_p = &SET_SRC (set);
990 reg_equiv[regno].loop_depth = loop_depth;
992 /* Don't mess with things live during setjmp. */
993 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
995 /* Note that the statement below does not affect the priority
996 in local-alloc! */
997 REG_LIVE_LENGTH (regno) *= 2;
999 /* If the register is referenced exactly twice, meaning it is
1000 set once and used once, indicate that the reference may be
1001 replaced by the equivalence we computed above. Do this
1002 even if the register is only used in one block so that
1003 dependencies can be handled where the last register is
1004 used in a different block (i.e. HIGH / LO_SUM sequences)
1005 and to reduce the number of registers alive across
1006 calls. */
1008 if (REG_N_REFS (regno) == 2
1009 && (rtx_equal_p (x, src)
1010 || ! equiv_init_varies_p (src))
1011 && NONJUMP_INSN_P (insn)
1012 && equiv_init_movable_p (PATTERN (insn), regno))
1013 reg_equiv[regno].replace = 1;
1019 if (!optimize)
1020 goto out;
1022 /* A second pass, to gather additional equivalences with memory. This needs
1023 to be done after we know which registers we are going to replace. */
1025 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1027 rtx set, src, dest;
1028 unsigned regno;
1030 if (! INSN_P (insn))
1031 continue;
1033 set = single_set (insn);
1034 if (! set)
1035 continue;
1037 dest = SET_DEST (set);
1038 src = SET_SRC (set);
1040 /* If this sets a MEM to the contents of a REG that is only used
1041 in a single basic block, see if the register is always equivalent
1042 to that memory location and if moving the store from INSN to the
1043 insn that set REG is safe. If so, put a REG_EQUIV note on the
1044 initializing insn.
1046 Don't add a REG_EQUIV note if the insn already has one. The existing
1047 REG_EQUIV is likely more useful than the one we are adding.
1049 If one of the regs in the address has reg_equiv[REGNO].replace set,
1050 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
1051 optimization may move the set of this register immediately before
1052 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
1053 the mention in the REG_EQUIV note would be to an uninitialized
1054 pseudo. */
1056 if (MEM_P (dest) && REG_P (src)
1057 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1058 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
1059 && DF_REG_DEF_COUNT (regno) == 1
1060 && reg_equiv[regno].init_insns != 0
1061 && reg_equiv[regno].init_insns != const0_rtx
1062 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
1063 REG_EQUIV, NULL_RTX)
1064 && ! contains_replace_regs (XEXP (dest, 0)))
1066 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
1067 if (validate_equiv_mem (init_insn, src, dest)
1068 && ! memref_used_between_p (dest, init_insn, insn)
1069 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
1070 multiple sets. */
1071 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
1073 /* This insn makes the equivalence, not the one initializing
1074 the register. */
1075 reg_equiv_init[regno]
1076 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
1077 df_notes_rescan (init_insn);
1082 cleared_regs = BITMAP_ALLOC (NULL);
1083 /* Now scan all regs killed in an insn to see if any of them are
1084 registers only used that once. If so, see if we can replace the
1085 reference with the equivalent form. If we can, delete the
1086 initializing reference and this register will go away. If we
1087 can't replace the reference, and the initializing reference is
1088 within the same loop (or in an inner loop), then move the register
1089 initialization just before the use, so that they are in the same
1090 basic block. */
1091 FOR_EACH_BB_REVERSE (bb)
1093 loop_depth = bb->loop_depth;
1094 for (insn = BB_END (bb);
1095 insn != PREV_INSN (BB_HEAD (bb));
1096 insn = PREV_INSN (insn))
1098 rtx link;
1100 if (! INSN_P (insn))
1101 continue;
1103 /* Don't substitute into a non-local goto, this confuses CFG. */
1104 if (JUMP_P (insn)
1105 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1106 continue;
1108 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1110 if (REG_NOTE_KIND (link) == REG_DEAD
1111 /* Make sure this insn still refers to the register. */
1112 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1114 int regno = REGNO (XEXP (link, 0));
1115 rtx equiv_insn;
1117 if (! reg_equiv[regno].replace
1118 || reg_equiv[regno].loop_depth < loop_depth)
1119 continue;
1121 /* reg_equiv[REGNO].replace gets set only when
1122 REG_N_REFS[REGNO] is 2, i.e. the register is set
1123 once and used once. (If it were only set, but not used,
1124 flow would have deleted the setting insns.) Hence
1125 there can only be one insn in reg_equiv[REGNO].init_insns. */
1126 gcc_assert (reg_equiv[regno].init_insns
1127 && !XEXP (reg_equiv[regno].init_insns, 1));
1128 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1130 /* We may not move instructions that can throw, since
1131 that changes basic block boundaries and we are not
1132 prepared to adjust the CFG to match. */
1133 if (can_throw_internal (equiv_insn))
1134 continue;
1136 if (asm_noperands (PATTERN (equiv_insn)) < 0
1137 && validate_replace_rtx (regno_reg_rtx[regno],
1138 *(reg_equiv[regno].src_p), insn))
1140 rtx equiv_link;
1141 rtx last_link;
1142 rtx note;
1144 /* Find the last note. */
1145 for (last_link = link; XEXP (last_link, 1);
1146 last_link = XEXP (last_link, 1))
1149 /* Append the REG_DEAD notes from equiv_insn. */
1150 equiv_link = REG_NOTES (equiv_insn);
1151 while (equiv_link)
1153 note = equiv_link;
1154 equiv_link = XEXP (equiv_link, 1);
1155 if (REG_NOTE_KIND (note) == REG_DEAD)
1157 remove_note (equiv_insn, note);
1158 XEXP (last_link, 1) = note;
1159 XEXP (note, 1) = NULL_RTX;
1160 last_link = note;
1164 remove_death (regno, insn);
1165 SET_REG_N_REFS (regno, 0);
1166 REG_FREQ (regno) = 0;
1167 delete_insn (equiv_insn);
1169 reg_equiv[regno].init_insns
1170 = XEXP (reg_equiv[regno].init_insns, 1);
1172 reg_equiv_init[regno] = NULL_RTX;
1173 bitmap_set_bit (cleared_regs, regno);
1175 /* Move the initialization of the register to just before
1176 INSN. Update the flow information. */
1177 else if (PREV_INSN (insn) != equiv_insn)
1179 rtx new_insn;
1181 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1182 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1183 REG_NOTES (equiv_insn) = 0;
1185 /* Make sure this insn is recognized before
1186 reload begins, otherwise
1187 eliminate_regs_in_insn will die. */
1188 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1190 delete_insn (equiv_insn);
1192 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1194 REG_BASIC_BLOCK (regno) = bb->index;
1195 REG_N_CALLS_CROSSED (regno) = 0;
1196 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
1197 REG_LIVE_LENGTH (regno) = 2;
1199 if (insn == BB_HEAD (bb))
1200 BB_HEAD (bb) = PREV_INSN (insn);
1202 reg_equiv_init[regno]
1203 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
1204 bitmap_set_bit (cleared_regs, regno);
1211 if (!bitmap_empty_p (cleared_regs))
1212 FOR_EACH_BB (bb)
1214 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
1215 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
1216 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
1217 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
1220 BITMAP_FREE (cleared_regs);
1222 out:
1223 /* Clean up. */
1225 end_alias_analysis ();
1226 free (reg_equiv);
1229 /* Mark REG as having no known equivalence.
1230 Some instructions might have been processed before and furnished
1231 with REG_EQUIV notes for this register; these notes will have to be
1232 removed.
1233 STORE is the piece of RTL that does the non-constant / conflicting
1234 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1235 but needs to be there because this function is called from note_stores. */
1236 static void
1237 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1239 int regno;
1240 rtx list;
1242 if (!REG_P (reg))
1243 return;
1244 regno = REGNO (reg);
1245 list = reg_equiv[regno].init_insns;
1246 if (list == const0_rtx)
1247 return;
1248 reg_equiv[regno].init_insns = const0_rtx;
1249 reg_equiv[regno].replacement = NULL_RTX;
1250 /* This doesn't matter for equivalences made for argument registers, we
1251 should keep their initialization insns. */
1252 if (reg_equiv[regno].is_arg_equivalence)
1253 return;
1254 reg_equiv_init[regno] = NULL_RTX;
1255 for (; list; list = XEXP (list, 1))
1257 rtx insn = XEXP (list, 0);
1258 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1262 /* Allocate hard regs to the pseudo regs used only within block number B.
1263 Only the pseudos that die but once can be handled. */
1265 static void
1266 block_alloc (int b)
1268 int i, q;
1269 rtx insn;
1270 rtx note, hard_reg;
1271 int insn_number = 0;
1272 int insn_count = 0;
1273 int max_uid = get_max_uid ();
1274 int *qty_order;
1275 int no_conflict_combined_regno = -1;
1276 struct df_ref ** def_rec;
1278 /* Count the instructions in the basic block. */
1280 insn = BB_END (BASIC_BLOCK (b));
1281 while (1)
1283 if (!NOTE_P (insn))
1285 ++insn_count;
1286 gcc_assert (insn_count <= max_uid);
1288 if (insn == BB_HEAD (BASIC_BLOCK (b)))
1289 break;
1290 insn = PREV_INSN (insn);
1293 /* +2 to leave room for a post_mark_life at the last insn and for
1294 the birth of a CLOBBER in the first insn. */
1295 regs_live_at = XCNEWVEC (HARD_REG_SET, 2 * insn_count + 2);
1297 /* Initialize table of hardware registers currently live. */
1299 REG_SET_TO_HARD_REG_SET (regs_live, DF_LR_IN (BASIC_BLOCK (b)));
1301 /* This is conservative, as this would include registers that are
1302 artificial-def'ed-but-not-used. However, artificial-defs are
1303 rare, and such uninitialized use is rarer still, and the chance
1304 of this having any performance impact is even less, while the
1305 benefit is not having to compute and keep the TOP set around. */
1306 for (def_rec = df_get_artificial_defs (b); *def_rec; def_rec++)
1308 int regno = DF_REF_REGNO (*def_rec);
1309 if (regno < FIRST_PSEUDO_REGISTER)
1310 SET_HARD_REG_BIT (regs_live, regno);
1313 /* This loop scans the instructions of the basic block
1314 and assigns quantities to registers.
1315 It computes which registers to tie. */
1317 insn = BB_HEAD (BASIC_BLOCK (b));
1318 while (1)
1320 if (!NOTE_P (insn))
1321 insn_number++;
1323 if (INSN_P (insn))
1325 rtx link, set;
1326 int win = 0;
1327 rtx r0, r1 = NULL_RTX;
1328 int combined_regno = -1;
1329 int i;
1331 this_insn_number = insn_number;
1332 this_insn = insn;
1334 extract_insn (insn);
1335 which_alternative = -1;
1337 /* Is this insn suitable for tying two registers?
1338 If so, try doing that.
1339 Suitable insns are those with at least two operands and where
1340 operand 0 is an output that is a register that is not
1341 earlyclobber.
1343 We can tie operand 0 with some operand that dies in this insn.
1344 First look for operands that are required to be in the same
1345 register as operand 0. If we find such, only try tying that
1346 operand or one that can be put into that operand if the
1347 operation is commutative. If we don't find an operand
1348 that is required to be in the same register as operand 0,
1349 we can tie with any operand.
1351 Subregs in place of regs are also ok.
1353 If tying is done, WIN is set nonzero. */
1355 if (optimize
1356 && recog_data.n_operands > 1
1357 && recog_data.constraints[0][0] == '='
1358 && recog_data.constraints[0][1] != '&')
1360 /* If non-negative, is an operand that must match operand 0. */
1361 int must_match_0 = -1;
1362 /* Counts number of alternatives that require a match with
1363 operand 0. */
1364 int n_matching_alts = 0;
1366 for (i = 1; i < recog_data.n_operands; i++)
1368 const char *p = recog_data.constraints[i];
1369 int this_match = requires_inout (p);
1371 n_matching_alts += this_match;
1372 if (this_match == recog_data.n_alternatives)
1373 must_match_0 = i;
1376 r0 = recog_data.operand[0];
1377 for (i = 1; i < recog_data.n_operands; i++)
1379 /* Skip this operand if we found an operand that
1380 must match operand 0 and this operand isn't it
1381 and can't be made to be it by commutativity. */
1383 if (must_match_0 >= 0 && i != must_match_0
1384 && ! (i == must_match_0 + 1
1385 && recog_data.constraints[i-1][0] == '%')
1386 && ! (i == must_match_0 - 1
1387 && recog_data.constraints[i][0] == '%'))
1388 continue;
1390 /* Likewise if each alternative has some operand that
1391 must match operand zero. In that case, skip any
1392 operand that doesn't list operand 0 since we know that
1393 the operand always conflicts with operand 0. We
1394 ignore commutativity in this case to keep things simple. */
1395 if (n_matching_alts == recog_data.n_alternatives
1396 && 0 == requires_inout (recog_data.constraints[i]))
1397 continue;
1399 r1 = recog_data.operand[i];
1401 /* If the operand is an address, find a register in it.
1402 There may be more than one register, but we only try one
1403 of them. */
1404 if (recog_data.constraints[i][0] == 'p'
1405 || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1406 recog_data.constraints[i]))
1407 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1408 r1 = XEXP (r1, 0);
1410 /* Avoid making a call-saved register unnecessarily
1411 clobbered. */
1412 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1413 if (hard_reg != NULL_RTX)
1415 if (REG_P (hard_reg)
1416 && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1417 && !call_used_regs[REGNO (hard_reg)])
1418 continue;
1421 if (REG_P (r0) || GET_CODE (r0) == SUBREG)
1423 /* We have two priorities for hard register preferences.
1424 If we have a move insn or an insn whose first input
1425 can only be in the same register as the output, give
1426 priority to an equivalence found from that insn. */
1427 int may_save_copy
1428 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1430 if (REG_P (r1) || GET_CODE (r1) == SUBREG)
1431 win = combine_regs (r1, r0, may_save_copy,
1432 insn_number, insn, 0);
1434 if (win)
1435 break;
1439 /* Recognize an insn sequence with an ultimate result
1440 which can safely overlap one of the inputs.
1441 The sequence begins with a CLOBBER of its result,
1442 and ends with an insn that copies the result to itself
1443 and has a REG_EQUAL note for an equivalent formula.
1444 That note indicates what the inputs are.
1445 The result and the input can overlap if each insn in
1446 the sequence either doesn't mention the input
1447 or has a REG_NO_CONFLICT note to inhibit the conflict.
1449 We do the combining test at the CLOBBER so that the
1450 destination register won't have had a quantity number
1451 assigned, since that would prevent combining. */
1453 if (optimize
1454 && GET_CODE (PATTERN (insn)) == CLOBBER
1455 && (r0 = XEXP (PATTERN (insn), 0),
1456 REG_P (r0))
1457 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1458 && XEXP (link, 0) != 0
1459 && NONJUMP_INSN_P (XEXP (link, 0))
1460 && (set = single_set (XEXP (link, 0))) != 0
1461 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1462 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1463 NULL_RTX)) != 0)
1465 if (r1 = XEXP (note, 0), REG_P (r1)
1466 /* Check that we have such a sequence. */
1467 && no_conflict_p (insn, r0, r1))
1468 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1469 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1470 && (r1 = XEXP (XEXP (note, 0), 0),
1471 REG_P (r1) || GET_CODE (r1) == SUBREG)
1472 && no_conflict_p (insn, r0, r1))
1473 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1475 /* Here we care if the operation to be computed is
1476 commutative. */
1477 else if (COMMUTATIVE_P (XEXP (note, 0))
1478 && (r1 = XEXP (XEXP (note, 0), 1),
1479 (REG_P (r1) || GET_CODE (r1) == SUBREG))
1480 && no_conflict_p (insn, r0, r1))
1481 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1483 /* If we did combine something, show the register number
1484 in question so that we know to ignore its death. */
1485 if (win)
1486 no_conflict_combined_regno = REGNO (r1);
1489 /* If registers were just tied, set COMBINED_REGNO
1490 to the number of the register used in this insn
1491 that was tied to the register set in this insn.
1492 This register's qty should not be "killed". */
1494 if (win)
1496 while (GET_CODE (r1) == SUBREG)
1497 r1 = SUBREG_REG (r1);
1498 combined_regno = REGNO (r1);
1501 /* Mark the death of everything that dies in this instruction,
1502 except for anything that was just combined. */
1504 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1505 if (REG_NOTE_KIND (link) == REG_DEAD
1506 && REG_P (XEXP (link, 0))
1507 && combined_regno != (int) REGNO (XEXP (link, 0))
1508 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1509 || ! find_reg_note (insn, REG_NO_CONFLICT,
1510 XEXP (link, 0))))
1511 wipe_dead_reg (XEXP (link, 0), 0);
1513 /* Allocate qty numbers for all registers local to this block
1514 that are born (set) in this instruction.
1515 A pseudo that already has a qty is not changed. */
1517 note_stores (PATTERN (insn), reg_is_set, NULL);
1519 /* If anything is set in this insn and then unused, mark it as dying
1520 after this insn, so it will conflict with our outputs. This
1521 can't match with something that combined, and it doesn't matter
1522 if it did. Do this after the calls to reg_is_set since these
1523 die after, not during, the current insn. */
1525 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1526 if (REG_NOTE_KIND (link) == REG_UNUSED
1527 && REG_P (XEXP (link, 0)))
1528 wipe_dead_reg (XEXP (link, 0), 1);
1530 /* If this is an insn that has a REG_RETVAL note pointing at a
1531 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1532 block, so clear any register number that combined within it. */
1533 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1534 && NONJUMP_INSN_P (XEXP (note, 0))
1535 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1536 no_conflict_combined_regno = -1;
1539 /* Set the registers live after INSN_NUMBER. Note that we never
1540 record the registers live before the block's first insn, since no
1541 pseudos we care about are live before that insn. */
1543 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1544 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1546 if (insn == BB_END (BASIC_BLOCK (b)))
1547 break;
1549 insn = NEXT_INSN (insn);
1552 /* Now every register that is local to this basic block
1553 should have been given a quantity, or else -1 meaning ignore it.
1554 Every quantity should have a known birth and death.
1556 Order the qtys so we assign them registers in order of the
1557 number of suggested registers they need so we allocate those with
1558 the most restrictive needs first. */
1560 qty_order = XNEWVEC (int, next_qty);
1561 for (i = 0; i < next_qty; i++)
1562 qty_order[i] = i;
1564 #define EXCHANGE(I1, I2) \
1565 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1567 switch (next_qty)
1569 case 3:
1570 /* Make qty_order[2] be the one to allocate last. */
1571 if (qty_sugg_compare (0, 1) > 0)
1572 EXCHANGE (0, 1);
1573 if (qty_sugg_compare (1, 2) > 0)
1574 EXCHANGE (2, 1);
1576 /* ... Fall through ... */
1577 case 2:
1578 /* Put the best one to allocate in qty_order[0]. */
1579 if (qty_sugg_compare (0, 1) > 0)
1580 EXCHANGE (0, 1);
1582 /* ... Fall through ... */
1584 case 1:
1585 case 0:
1586 /* Nothing to do here. */
1587 break;
1589 default:
1590 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1593 /* Try to put each quantity in a suggested physical register, if it has one.
1594 This may cause registers to be allocated that otherwise wouldn't be, but
1595 this seems acceptable in local allocation (unlike global allocation). */
1596 for (i = 0; i < next_qty; i++)
1598 q = qty_order[i];
1599 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1600 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1601 0, 1, qty[q].birth, qty[q].death);
1602 else
1603 qty[q].phys_reg = -1;
1606 /* Order the qtys so we assign them registers in order of
1607 decreasing length of life. Normally call qsort, but if we
1608 have only a very small number of quantities, sort them ourselves. */
1610 for (i = 0; i < next_qty; i++)
1611 qty_order[i] = i;
1613 #define EXCHANGE(I1, I2) \
1614 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1616 switch (next_qty)
1618 case 3:
1619 /* Make qty_order[2] be the one to allocate last. */
1620 if (qty_compare (0, 1) > 0)
1621 EXCHANGE (0, 1);
1622 if (qty_compare (1, 2) > 0)
1623 EXCHANGE (2, 1);
1625 /* ... Fall through ... */
1626 case 2:
1627 /* Put the best one to allocate in qty_order[0]. */
1628 if (qty_compare (0, 1) > 0)
1629 EXCHANGE (0, 1);
1631 /* ... Fall through ... */
1633 case 1:
1634 case 0:
1635 /* Nothing to do here. */
1636 break;
1638 default:
1639 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1642 /* Now for each qty that is not a hardware register,
1643 look for a hardware register to put it in.
1644 First try the register class that is cheapest for this qty,
1645 if there is more than one class. */
1647 for (i = 0; i < next_qty; i++)
1649 q = qty_order[i];
1650 if (qty[q].phys_reg < 0)
1652 #ifdef INSN_SCHEDULING
1653 /* These values represent the adjusted lifetime of a qty so
1654 that it conflicts with qtys which appear near the start/end
1655 of this qty's lifetime.
1657 The purpose behind extending the lifetime of this qty is to
1658 discourage the register allocator from creating false
1659 dependencies.
1661 The adjustment value is chosen to indicate that this qty
1662 conflicts with all the qtys in the instructions immediately
1663 before and after the lifetime of this qty.
1665 Experiments have shown that higher values tend to hurt
1666 overall code performance.
1668 If allocation using the extended lifetime fails we will try
1669 again with the qty's unadjusted lifetime. */
1670 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1671 int fake_death = MIN (insn_number * 2 + 1,
1672 qty[q].death + 2 - qty[q].death % 2);
1673 #endif
1675 if (N_REG_CLASSES > 1)
1677 #ifdef INSN_SCHEDULING
1678 /* We try to avoid using hard registers allocated to qtys which
1679 are born immediately after this qty or die immediately before
1680 this qty.
1682 This optimization is only appropriate when we will run
1683 a scheduling pass after reload and we are not optimizing
1684 for code size. */
1685 if (flag_schedule_insns_after_reload && dbg_cnt (local_alloc_for_sched)
1686 && !optimize_size
1687 && !SMALL_REGISTER_CLASSES)
1689 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1690 qty[q].mode, q, 0, 0,
1691 fake_birth, fake_death);
1692 if (qty[q].phys_reg >= 0)
1693 continue;
1695 #endif
1696 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1697 qty[q].mode, q, 0, 0,
1698 qty[q].birth, qty[q].death);
1699 if (qty[q].phys_reg >= 0)
1700 continue;
1703 #ifdef INSN_SCHEDULING
1704 /* Similarly, avoid false dependencies. */
1705 if (flag_schedule_insns_after_reload && dbg_cnt (local_alloc_for_sched)
1706 && !optimize_size
1707 && !SMALL_REGISTER_CLASSES
1708 && qty[q].alternate_class != NO_REGS)
1709 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1710 qty[q].mode, q, 0, 0,
1711 fake_birth, fake_death);
1712 #endif
1713 if (qty[q].alternate_class != NO_REGS)
1714 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1715 qty[q].mode, q, 0, 0,
1716 qty[q].birth, qty[q].death);
1720 /* Now propagate the register assignments
1721 to the pseudo regs belonging to the qtys. */
1723 for (q = 0; q < next_qty; q++)
1724 if (qty[q].phys_reg >= 0)
1726 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1727 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1730 /* Clean up. */
1731 free (regs_live_at);
1732 free (qty_order);
1735 /* Compare two quantities' priority for getting real registers.
1736 We give shorter-lived quantities higher priority.
1737 Quantities with more references are also preferred, as are quantities that
1738 require multiple registers. This is the identical prioritization as
1739 done by global-alloc.
1741 We used to give preference to registers with *longer* lives, but using
1742 the same algorithm in both local- and global-alloc can speed up execution
1743 of some programs by as much as a factor of three! */
1745 /* Note that the quotient will never be bigger than
1746 the value of floor_log2 times the maximum number of
1747 times a register can occur in one insn (surely less than 100)
1748 weighted by frequency (max REG_FREQ_MAX).
1749 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1750 QTY_CMP_PRI is also used by qty_sugg_compare. */
1752 #define QTY_CMP_PRI(q) \
1753 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1754 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1756 static int
1757 qty_compare (int q1, int q2)
1759 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1762 static int
1763 qty_compare_1 (const void *q1p, const void *q2p)
1765 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1766 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1768 if (tem != 0)
1769 return tem;
1771 /* If qtys are equally good, sort by qty number,
1772 so that the results of qsort leave nothing to chance. */
1773 return q1 - q2;
1776 /* Compare two quantities' priority for getting real registers. This version
1777 is called for quantities that have suggested hard registers. First priority
1778 goes to quantities that have copy preferences, then to those that have
1779 normal preferences. Within those groups, quantities with the lower
1780 number of preferences have the highest priority. Of those, we use the same
1781 algorithm as above. */
1783 #define QTY_CMP_SUGG(q) \
1784 (qty_phys_num_copy_sugg[q] \
1785 ? qty_phys_num_copy_sugg[q] \
1786 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1788 static int
1789 qty_sugg_compare (int q1, int q2)
1791 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1793 if (tem != 0)
1794 return tem;
1796 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1799 static int
1800 qty_sugg_compare_1 (const void *q1p, const void *q2p)
1802 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1803 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1805 if (tem != 0)
1806 return tem;
1808 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1809 if (tem != 0)
1810 return tem;
1812 /* If qtys are equally good, sort by qty number,
1813 so that the results of qsort leave nothing to chance. */
1814 return q1 - q2;
1817 #undef QTY_CMP_SUGG
1818 #undef QTY_CMP_PRI
1820 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1821 Returns 1 if have done so, or 0 if cannot.
1823 Combining registers means marking them as having the same quantity
1824 and adjusting the offsets within the quantity if either of
1825 them is a SUBREG.
1827 We don't actually combine a hard reg with a pseudo; instead
1828 we just record the hard reg as the suggestion for the pseudo's quantity.
1829 If we really combined them, we could lose if the pseudo lives
1830 across an insn that clobbers the hard reg (eg, movmem).
1832 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1833 there is no REG_DEAD note on INSN. This occurs during the processing
1834 of REG_NO_CONFLICT blocks.
1836 MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1837 SETREG or if the input and output must share a register.
1838 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1840 There are elaborate checks for the validity of combining. */
1842 static int
1843 combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1844 rtx insn, int already_dead)
1846 int ureg, sreg;
1847 int offset = 0;
1848 int usize, ssize;
1849 int sqty;
1851 /* Determine the numbers and sizes of registers being used. If a subreg
1852 is present that does not change the entire register, don't consider
1853 this a copy insn. */
1855 while (GET_CODE (usedreg) == SUBREG)
1857 rtx subreg = SUBREG_REG (usedreg);
1859 if (REG_P (subreg))
1861 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1862 may_save_copy = 0;
1864 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1865 offset += subreg_regno_offset (REGNO (subreg),
1866 GET_MODE (subreg),
1867 SUBREG_BYTE (usedreg),
1868 GET_MODE (usedreg));
1869 else
1870 offset += (SUBREG_BYTE (usedreg)
1871 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1874 usedreg = subreg;
1877 if (!REG_P (usedreg))
1878 return 0;
1880 ureg = REGNO (usedreg);
1881 if (ureg < FIRST_PSEUDO_REGISTER)
1882 usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
1883 else
1884 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1885 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1886 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1888 while (GET_CODE (setreg) == SUBREG)
1890 rtx subreg = SUBREG_REG (setreg);
1892 if (REG_P (subreg))
1894 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1895 may_save_copy = 0;
1897 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1898 offset -= subreg_regno_offset (REGNO (subreg),
1899 GET_MODE (subreg),
1900 SUBREG_BYTE (setreg),
1901 GET_MODE (setreg));
1902 else
1903 offset -= (SUBREG_BYTE (setreg)
1904 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1907 setreg = subreg;
1910 if (!REG_P (setreg))
1911 return 0;
1913 sreg = REGNO (setreg);
1914 if (sreg < FIRST_PSEUDO_REGISTER)
1915 ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
1916 else
1917 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1918 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1919 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1921 /* If UREG is a pseudo-register that hasn't already been assigned a
1922 quantity number, it means that it is not local to this block or dies
1923 more than once. In either event, we can't do anything with it. */
1924 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1925 /* Do not combine registers unless one fits within the other. */
1926 || (offset > 0 && usize + offset > ssize)
1927 || (offset < 0 && usize + offset < ssize)
1928 /* Do not combine with a smaller already-assigned object
1929 if that smaller object is already combined with something bigger. */
1930 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1931 && usize < qty[reg_qty[ureg]].size)
1932 /* Can't combine if SREG is not a register we can allocate. */
1933 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1934 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1935 These have already been taken care of. This probably wouldn't
1936 combine anyway, but don't take any chances. */
1937 || (ureg >= FIRST_PSEUDO_REGISTER
1938 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1939 /* Don't tie something to itself. In most cases it would make no
1940 difference, but it would screw up if the reg being tied to itself
1941 also dies in this insn. */
1942 || ureg == sreg
1943 /* Don't try to connect two different hardware registers. */
1944 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1945 /* Don't connect two different machine modes if they have different
1946 implications as to which registers may be used. */
1947 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1948 return 0;
1950 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1951 qty_phys_sugg for the pseudo instead of tying them.
1953 Return "failure" so that the lifespan of UREG is terminated here;
1954 that way the two lifespans will be disjoint and nothing will prevent
1955 the pseudo reg from being given this hard reg. */
1957 if (ureg < FIRST_PSEUDO_REGISTER)
1959 /* Allocate a quantity number so we have a place to put our
1960 suggestions. */
1961 if (reg_qty[sreg] == -2)
1962 reg_is_born (setreg, 2 * insn_number);
1964 if (reg_qty[sreg] >= 0)
1966 if (may_save_copy
1967 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1969 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1970 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1972 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1974 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1975 qty_phys_num_sugg[reg_qty[sreg]]++;
1978 return 0;
1981 /* Similarly for SREG a hard register and UREG a pseudo register. */
1983 if (sreg < FIRST_PSEUDO_REGISTER)
1985 if (may_save_copy
1986 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1988 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1989 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1991 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1993 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1994 qty_phys_num_sugg[reg_qty[ureg]]++;
1996 return 0;
1999 /* At this point we know that SREG and UREG are both pseudos.
2000 Do nothing if SREG already has a quantity or is a register that we
2001 don't allocate. */
2002 if (reg_qty[sreg] >= -1
2003 /* If we are not going to let any regs live across calls,
2004 don't tie a call-crossing reg to a non-call-crossing reg. */
2005 || (current_function_has_nonlocal_label
2006 && ((REG_N_CALLS_CROSSED (ureg) > 0)
2007 != (REG_N_CALLS_CROSSED (sreg) > 0))))
2008 return 0;
2010 /* We don't already know about SREG, so tie it to UREG
2011 if this is the last use of UREG, provided the classes they want
2012 are compatible. */
2014 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
2015 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
2017 /* Add SREG to UREG's quantity. */
2018 sqty = reg_qty[ureg];
2019 reg_qty[sreg] = sqty;
2020 reg_offset[sreg] = reg_offset[ureg] + offset;
2021 reg_next_in_qty[sreg] = qty[sqty].first_reg;
2022 qty[sqty].first_reg = sreg;
2024 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
2025 update_qty_class (sqty, sreg);
2027 /* Update info about quantity SQTY. */
2028 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
2029 qty[sqty].n_throwing_calls_crossed
2030 += REG_N_THROWING_CALLS_CROSSED (sreg);
2031 qty[sqty].n_refs += REG_N_REFS (sreg);
2032 qty[sqty].freq += REG_FREQ (sreg);
2033 if (usize < ssize)
2035 int i;
2037 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
2038 reg_offset[i] -= offset;
2040 qty[sqty].size = ssize;
2041 qty[sqty].mode = GET_MODE (setreg);
2044 else
2045 return 0;
2047 return 1;
2050 /* Return 1 if the preferred class of REG allows it to be tied
2051 to a quantity or register whose class is CLASS.
2052 True if REG's reg class either contains or is contained in CLASS. */
2054 static int
2055 reg_meets_class_p (int reg, enum reg_class class)
2057 enum reg_class rclass = reg_preferred_class (reg);
2058 return (reg_class_subset_p (rclass, class)
2059 || reg_class_subset_p (class, rclass));
2062 /* Update the class of QTYNO assuming that REG is being tied to it. */
2064 static void
2065 update_qty_class (int qtyno, int reg)
2067 enum reg_class rclass = reg_preferred_class (reg);
2068 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2069 qty[qtyno].min_class = rclass;
2071 rclass = reg_alternate_class (reg);
2072 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2073 qty[qtyno].alternate_class = rclass;
2076 /* Handle something which alters the value of an rtx REG.
2078 REG is whatever is set or clobbered. SETTER is the rtx that
2079 is modifying the register.
2081 If it is not really a register, we do nothing.
2082 The file-global variables `this_insn' and `this_insn_number'
2083 carry info from `block_alloc'. */
2085 static void
2086 reg_is_set (rtx reg, const_rtx setter, void *data ATTRIBUTE_UNUSED)
2088 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2089 a hard register. These may actually not exist any more. */
2091 if (GET_CODE (reg) != SUBREG
2092 && !REG_P (reg))
2093 return;
2095 /* Mark this register as being born. If it is used in a CLOBBER, mark
2096 it as being born halfway between the previous insn and this insn so that
2097 it conflicts with our inputs but not the outputs of the previous insn. */
2099 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2102 /* Handle beginning of the life of register REG.
2103 BIRTH is the index at which this is happening. */
2105 static void
2106 reg_is_born (rtx reg, int birth)
2108 int regno;
2110 if (GET_CODE (reg) == SUBREG)
2112 regno = REGNO (SUBREG_REG (reg));
2113 if (regno < FIRST_PSEUDO_REGISTER)
2114 regno = subreg_regno (reg);
2116 else
2117 regno = REGNO (reg);
2119 if (regno < FIRST_PSEUDO_REGISTER)
2121 mark_life (regno, GET_MODE (reg), 1);
2123 /* If the register was to have been born earlier that the present
2124 insn, mark it as live where it is actually born. */
2125 if (birth < 2 * this_insn_number)
2126 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2128 else
2130 if (reg_qty[regno] == -2)
2131 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2133 /* If this register has a quantity number, show that it isn't dead. */
2134 if (reg_qty[regno] >= 0)
2135 qty[reg_qty[regno]].death = -1;
2139 /* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2140 REG is an output that is dying (i.e., it is never used), otherwise it
2141 is an input (the normal case).
2142 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2144 static void
2145 wipe_dead_reg (rtx reg, int output_p)
2147 int regno = REGNO (reg);
2149 /* If this insn has multiple results,
2150 and the dead reg is used in one of the results,
2151 extend its life to after this insn,
2152 so it won't get allocated together with any other result of this insn.
2154 It is unsafe to use !single_set here since it will ignore an unused
2155 output. Just because an output is unused does not mean the compiler
2156 can assume the side effect will not occur. Consider if REG appears
2157 in the address of an output and we reload the output. If we allocate
2158 REG to the same hard register as an unused output we could set the hard
2159 register before the output reload insn. */
2160 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2161 && multiple_sets (this_insn))
2163 int i;
2164 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2166 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2167 if (GET_CODE (set) == SET
2168 && !REG_P (SET_DEST (set))
2169 && !rtx_equal_p (reg, SET_DEST (set))
2170 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2171 output_p = 1;
2175 /* If this register is used in an auto-increment address, then extend its
2176 life to after this insn, so that it won't get allocated together with
2177 the result of this insn. */
2178 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2179 output_p = 1;
2181 if (regno < FIRST_PSEUDO_REGISTER)
2183 mark_life (regno, GET_MODE (reg), 0);
2185 /* If a hard register is dying as an output, mark it as in use at
2186 the beginning of this insn (the above statement would cause this
2187 not to happen). */
2188 if (output_p)
2189 post_mark_life (regno, GET_MODE (reg), 1,
2190 2 * this_insn_number, 2 * this_insn_number + 1);
2193 else if (reg_qty[regno] >= 0)
2194 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2197 /* Find a block of SIZE words of hard regs in reg_class CLASS
2198 that can hold something of machine-mode MODE
2199 (but actually we test only the first of the block for holding MODE)
2200 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2201 and return the number of the first of them.
2202 Return -1 if such a block cannot be found.
2203 If QTYNO crosses calls, insist on a register preserved by calls,
2204 unless ACCEPT_CALL_CLOBBERED is nonzero.
2206 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2207 register is available. If not, return -1. */
2209 static int
2210 find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2211 int accept_call_clobbered, int just_try_suggested,
2212 int born_index, int dead_index)
2214 int i, ins;
2215 HARD_REG_SET first_used, used;
2216 #ifdef ELIMINABLE_REGS
2217 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2218 #endif
2220 /* Validate our parameters. */
2221 gcc_assert (born_index >= 0 && born_index <= dead_index);
2223 /* Don't let a pseudo live in a reg across a function call
2224 if we might get a nonlocal goto. */
2225 if (current_function_has_nonlocal_label
2226 && qty[qtyno].n_calls_crossed > 0)
2227 return -1;
2229 if (accept_call_clobbered)
2230 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2231 else if (qty[qtyno].n_calls_crossed == 0)
2232 COPY_HARD_REG_SET (used, fixed_reg_set);
2233 else
2234 COPY_HARD_REG_SET (used, call_used_reg_set);
2236 if (accept_call_clobbered)
2237 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2239 for (ins = born_index; ins < dead_index; ins++)
2240 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2242 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2244 /* Don't use the frame pointer reg in local-alloc even if
2245 we may omit the frame pointer, because if we do that and then we
2246 need a frame pointer, reload won't know how to move the pseudo
2247 to another hard reg. It can move only regs made by global-alloc.
2249 This is true of any register that can be eliminated. */
2250 #ifdef ELIMINABLE_REGS
2251 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2252 SET_HARD_REG_BIT (used, eliminables[i].from);
2253 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2254 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2255 that it might be eliminated into. */
2256 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2257 #endif
2258 #else
2259 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2260 #endif
2262 #ifdef CANNOT_CHANGE_MODE_CLASS
2263 cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2264 #endif
2266 /* Normally, the registers that can be used for the first register in
2267 a multi-register quantity are the same as those that can be used for
2268 subsequent registers. However, if just trying suggested registers,
2269 restrict our consideration to them. If there are copy-suggested
2270 register, try them. Otherwise, try the arithmetic-suggested
2271 registers. */
2272 COPY_HARD_REG_SET (first_used, used);
2274 if (just_try_suggested)
2276 if (qty_phys_num_copy_sugg[qtyno] != 0)
2277 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2278 else
2279 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2282 /* If at least one would be suitable, test each hard reg. */
2283 if (!hard_reg_set_subset_p (reg_class_contents[(int) ALL_REGS], first_used))
2284 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2286 #ifdef REG_ALLOC_ORDER
2287 int regno = reg_alloc_order[i];
2288 #else
2289 int regno = i;
2290 #endif
2291 if (!TEST_HARD_REG_BIT (first_used, regno)
2292 && HARD_REGNO_MODE_OK (regno, mode)
2293 && (qty[qtyno].n_calls_crossed == 0
2294 || accept_call_clobbered
2295 || !HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2297 int j;
2298 int size1 = hard_regno_nregs[regno][mode];
2299 j = 1;
2300 while (j < size1 && !TEST_HARD_REG_BIT (used, regno + j))
2301 j++;
2302 if (j == size1)
2304 /* Mark that this register is in use between its birth
2305 and death insns. */
2306 post_mark_life (regno, mode, 1, born_index, dead_index);
2307 return regno;
2309 #ifndef REG_ALLOC_ORDER
2310 /* Skip starting points we know will lose. */
2311 i += j;
2312 #endif
2316 /* If we are just trying suggested register, we have just tried copy-
2317 suggested registers, and there are arithmetic-suggested registers,
2318 try them. */
2320 /* If it would be profitable to allocate a call-clobbered register
2321 and save and restore it around calls, do that. */
2322 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2323 && qty_phys_num_sugg[qtyno] != 0)
2325 /* Don't try the copy-suggested regs again. */
2326 qty_phys_num_copy_sugg[qtyno] = 0;
2327 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2328 born_index, dead_index);
2331 /* We need not check to see if the current function has nonlocal
2332 labels because we don't put any pseudos that are live over calls in
2333 registers in that case. Avoid putting pseudos crossing calls that
2334 might throw into call used registers. */
2336 if (! accept_call_clobbered
2337 && flag_caller_saves
2338 && ! just_try_suggested
2339 && qty[qtyno].n_calls_crossed != 0
2340 && qty[qtyno].n_throwing_calls_crossed == 0
2341 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2342 qty[qtyno].n_calls_crossed))
2344 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2345 if (i >= 0)
2346 caller_save_needed = 1;
2347 return i;
2349 return -1;
2352 /* Mark that REGNO with machine-mode MODE is live starting from the current
2353 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2354 is zero). */
2356 static void
2357 mark_life (int regno, enum machine_mode mode, int life)
2359 if (life)
2360 add_to_hard_reg_set (&regs_live, mode, regno);
2361 else
2362 remove_from_hard_reg_set (&regs_live, mode, regno);
2365 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2366 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2367 to insn number DEATH (exclusive). */
2369 static void
2370 post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2371 int death)
2373 HARD_REG_SET this_reg;
2375 CLEAR_HARD_REG_SET (this_reg);
2376 add_to_hard_reg_set (&this_reg, mode, regno);
2378 if (life)
2379 while (birth < death)
2381 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2382 birth++;
2384 else
2385 while (birth < death)
2387 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2388 birth++;
2392 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2393 is the register being clobbered, and R1 is a register being used in
2394 the equivalent expression.
2396 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2397 in which it is used, return 1.
2399 Otherwise, return 0. */
2401 static int
2402 no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2404 int ok = 0;
2405 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2406 rtx p, last;
2408 /* If R1 is a hard register, return 0 since we handle this case
2409 when we scan the insns that actually use it. */
2411 if (note == 0
2412 || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2413 || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2414 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2415 return 0;
2417 last = XEXP (note, 0);
2419 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2420 if (INSN_P (p))
2422 if (find_reg_note (p, REG_DEAD, r1))
2423 ok = 1;
2425 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2426 some earlier optimization pass has inserted instructions into
2427 the sequence, and it is not safe to perform this optimization.
2428 Note that emit_no_conflict_block always ensures that this is
2429 true when these sequences are created. */
2430 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2431 return 0;
2434 return ok;
2437 /* Return the number of alternatives for which the constraint string P
2438 indicates that the operand must be equal to operand 0 and that no register
2439 is acceptable. */
2441 static int
2442 requires_inout (const char *p)
2444 char c;
2445 int found_zero = 0;
2446 int reg_allowed = 0;
2447 int num_matching_alts = 0;
2448 int len;
2450 for ( ; (c = *p); p += len)
2452 len = CONSTRAINT_LEN (c, p);
2453 switch (c)
2455 case '=': case '+': case '?':
2456 case '#': case '&': case '!':
2457 case '*': case '%':
2458 case 'm': case '<': case '>': case 'V': case 'o':
2459 case 'E': case 'F': case 'G': case 'H':
2460 case 's': case 'i': case 'n':
2461 case 'I': case 'J': case 'K': case 'L':
2462 case 'M': case 'N': case 'O': case 'P':
2463 case 'X':
2464 /* These don't say anything we care about. */
2465 break;
2467 case ',':
2468 if (found_zero && ! reg_allowed)
2469 num_matching_alts++;
2471 found_zero = reg_allowed = 0;
2472 break;
2474 case '0':
2475 found_zero = 1;
2476 break;
2478 case '1': case '2': case '3': case '4': case '5':
2479 case '6': case '7': case '8': case '9':
2480 /* Skip the balance of the matching constraint. */
2482 p++;
2483 while (ISDIGIT (*p));
2484 len = 0;
2485 break;
2487 default:
2488 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2489 && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2490 break;
2491 /* Fall through. */
2492 case 'p':
2493 case 'g': case 'r':
2494 reg_allowed = 1;
2495 break;
2499 if (found_zero && ! reg_allowed)
2500 num_matching_alts++;
2502 return num_matching_alts;
2505 void
2506 dump_local_alloc (FILE *file)
2508 int i;
2509 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2510 if (reg_renumber[i] != -1)
2511 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2514 #ifdef STACK_REGS
2515 static void
2516 find_stack_regs (void)
2518 bitmap stack_regs = BITMAP_ALLOC (NULL);
2519 int i;
2520 HARD_REG_SET stack_hard_regs, used;
2521 basic_block bb;
2523 /* Any register that MAY be allocated to a register stack (like the
2524 387) is treated poorly. Each such register is marked as being
2525 live everywhere. This keeps the register allocator and the
2526 subsequent passes from doing anything useful with these values.
2528 FIXME: This seems like an incredibly poor idea. */
2530 CLEAR_HARD_REG_SET (stack_hard_regs);
2531 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
2532 SET_HARD_REG_BIT (stack_hard_regs, i);
2534 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2536 COPY_HARD_REG_SET (used, reg_class_contents[reg_preferred_class (i)]);
2537 IOR_HARD_REG_SET (used, reg_class_contents[reg_alternate_class (i)]);
2538 AND_HARD_REG_SET (used, stack_hard_regs);
2539 if (!hard_reg_set_empty_p (used))
2540 bitmap_set_bit (stack_regs, i);
2543 if (dump_file)
2544 bitmap_print (dump_file, stack_regs, "stack regs:", "\n");
2546 FOR_EACH_BB (bb)
2548 bitmap_ior_into (DF_LIVE_IN (bb), stack_regs);
2549 bitmap_and_into (DF_LIVE_IN (bb), DF_LR_IN (bb));
2550 bitmap_ior_into (DF_LIVE_OUT (bb), stack_regs);
2551 bitmap_and_into (DF_LIVE_OUT (bb), DF_LR_OUT (bb));
2553 BITMAP_FREE (stack_regs);
2555 #endif
2557 /* Run old register allocator. Return TRUE if we must exit
2558 rest_of_compilation upon return. */
2559 static unsigned int
2560 rest_of_handle_local_alloc (void)
2562 int rebuild_notes;
2563 int max_regno = max_reg_num ();
2565 df_note_add_problem ();
2567 if (optimize == 1)
2569 df_live_add_problem ();
2570 df_live_set_all_dirty ();
2572 #ifdef ENABLE_CHECKING
2573 df->changeable_flags |= DF_VERIFY_SCHEDULED;
2574 #endif
2575 df_analyze ();
2576 #ifdef STACK_REGS
2577 if (optimize)
2578 find_stack_regs ();
2579 #endif
2580 regstat_init_n_sets_and_refs ();
2581 regstat_compute_ri ();
2583 /* If we are not optimizing, then this is the only place before
2584 register allocation where dataflow is done. And that is needed
2585 to generate these warnings. */
2586 if (warn_clobbered)
2587 generate_setjmp_warnings ();
2589 /* Determine if the current function is a leaf before running reload
2590 since this can impact optimizations done by the prologue and
2591 epilogue thus changing register elimination offsets. */
2592 current_function_is_leaf = leaf_function_p ();
2594 /* And the reg_equiv_memory_loc array. */
2595 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
2596 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
2597 sizeof (rtx) * max_regno);
2598 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
2600 allocate_initial_values (reg_equiv_memory_loc);
2602 regclass (get_insns (), max_regno);
2603 rebuild_notes = local_alloc ();
2605 /* Local allocation may have turned an indirect jump into a direct
2606 jump. If so, we must rebuild the JUMP_LABEL fields of jumping
2607 instructions. */
2608 if (rebuild_notes)
2610 timevar_push (TV_JUMP);
2612 rebuild_jump_labels (get_insns ());
2613 purge_all_dead_edges ();
2614 timevar_pop (TV_JUMP);
2617 if (dump_file && (dump_flags & TDF_DETAILS))
2619 timevar_push (TV_DUMP);
2620 dump_flow_info (dump_file, dump_flags);
2621 dump_local_alloc (dump_file);
2622 timevar_pop (TV_DUMP);
2624 return 0;
2627 struct tree_opt_pass pass_local_alloc =
2629 "lreg", /* name */
2630 NULL, /* gate */
2631 rest_of_handle_local_alloc, /* execute */
2632 NULL, /* sub */
2633 NULL, /* next */
2634 0, /* static_pass_number */
2635 TV_LOCAL_ALLOC, /* tv_id */
2636 0, /* properties_required */
2637 0, /* properties_provided */
2638 0, /* properties_destroyed */
2639 0, /* todo_flags_start */
2640 TODO_dump_func |
2641 TODO_ggc_collect, /* todo_flags_finish */
2642 'l' /* letter */