mips.h (set_volatile): Delete.
[official-gcc.git] / gcc / cse.c
blob21846f308d60cc5e71623a875eeed9b9c4797318
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "dbgcnt.h"
50 /* The basic idea of common subexpression elimination is to go
51 through the code, keeping a record of expressions that would
52 have the same value at the current scan point, and replacing
53 expressions encountered with the cheapest equivalent expression.
55 It is too complicated to keep track of the different possibilities
56 when control paths merge in this code; so, at each label, we forget all
57 that is known and start fresh. This can be described as processing each
58 extended basic block separately. We have a separate pass to perform
59 global CSE.
61 Note CSE can turn a conditional or computed jump into a nop or
62 an unconditional jump. When this occurs we arrange to run the jump
63 optimizer after CSE to delete the unreachable code.
65 We use two data structures to record the equivalent expressions:
66 a hash table for most expressions, and a vector of "quantity
67 numbers" to record equivalent (pseudo) registers.
69 The use of the special data structure for registers is desirable
70 because it is faster. It is possible because registers references
71 contain a fairly small number, the register number, taken from
72 a contiguously allocated series, and two register references are
73 identical if they have the same number. General expressions
74 do not have any such thing, so the only way to retrieve the
75 information recorded on an expression other than a register
76 is to keep it in a hash table.
78 Registers and "quantity numbers":
80 At the start of each basic block, all of the (hardware and pseudo)
81 registers used in the function are given distinct quantity
82 numbers to indicate their contents. During scan, when the code
83 copies one register into another, we copy the quantity number.
84 When a register is loaded in any other way, we allocate a new
85 quantity number to describe the value generated by this operation.
86 `REG_QTY (N)' records what quantity register N is currently thought
87 of as containing.
89 All real quantity numbers are greater than or equal to zero.
90 If register N has not been assigned a quantity, `REG_QTY (N)' will
91 equal -N - 1, which is always negative.
93 Quantity numbers below zero do not exist and none of the `qty_table'
94 entries should be referenced with a negative index.
96 We also maintain a bidirectional chain of registers for each
97 quantity number. The `qty_table` members `first_reg' and `last_reg',
98 and `reg_eqv_table' members `next' and `prev' hold these chains.
100 The first register in a chain is the one whose lifespan is least local.
101 Among equals, it is the one that was seen first.
102 We replace any equivalent register with that one.
104 If two registers have the same quantity number, it must be true that
105 REG expressions with qty_table `mode' must be in the hash table for both
106 registers and must be in the same class.
108 The converse is not true. Since hard registers may be referenced in
109 any mode, two REG expressions might be equivalent in the hash table
110 but not have the same quantity number if the quantity number of one
111 of the registers is not the same mode as those expressions.
113 Constants and quantity numbers
115 When a quantity has a known constant value, that value is stored
116 in the appropriate qty_table `const_rtx'. This is in addition to
117 putting the constant in the hash table as is usual for non-regs.
119 Whether a reg or a constant is preferred is determined by the configuration
120 macro CONST_COSTS and will often depend on the constant value. In any
121 event, expressions containing constants can be simplified, by fold_rtx.
123 When a quantity has a known nearly constant value (such as an address
124 of a stack slot), that value is stored in the appropriate qty_table
125 `const_rtx'.
127 Integer constants don't have a machine mode. However, cse
128 determines the intended machine mode from the destination
129 of the instruction that moves the constant. The machine mode
130 is recorded in the hash table along with the actual RTL
131 constant expression so that different modes are kept separate.
133 Other expressions:
135 To record known equivalences among expressions in general
136 we use a hash table called `table'. It has a fixed number of buckets
137 that contain chains of `struct table_elt' elements for expressions.
138 These chains connect the elements whose expressions have the same
139 hash codes.
141 Other chains through the same elements connect the elements which
142 currently have equivalent values.
144 Register references in an expression are canonicalized before hashing
145 the expression. This is done using `reg_qty' and qty_table `first_reg'.
146 The hash code of a register reference is computed using the quantity
147 number, not the register number.
149 When the value of an expression changes, it is necessary to remove from the
150 hash table not just that expression but all expressions whose values
151 could be different as a result.
153 1. If the value changing is in memory, except in special cases
154 ANYTHING referring to memory could be changed. That is because
155 nobody knows where a pointer does not point.
156 The function `invalidate_memory' removes what is necessary.
158 The special cases are when the address is constant or is
159 a constant plus a fixed register such as the frame pointer
160 or a static chain pointer. When such addresses are stored in,
161 we can tell exactly which other such addresses must be invalidated
162 due to overlap. `invalidate' does this.
163 All expressions that refer to non-constant
164 memory addresses are also invalidated. `invalidate_memory' does this.
166 2. If the value changing is a register, all expressions
167 containing references to that register, and only those,
168 must be removed.
170 Because searching the entire hash table for expressions that contain
171 a register is very slow, we try to figure out when it isn't necessary.
172 Precisely, this is necessary only when expressions have been
173 entered in the hash table using this register, and then the value has
174 changed, and then another expression wants to be added to refer to
175 the register's new value. This sequence of circumstances is rare
176 within any one basic block.
178 `REG_TICK' and `REG_IN_TABLE', accessors for members of
179 cse_reg_info, are used to detect this case. REG_TICK (i) is
180 incremented whenever a value is stored in register i.
181 REG_IN_TABLE (i) holds -1 if no references to register i have been
182 entered in the table; otherwise, it contains the value REG_TICK (i)
183 had when the references were entered. If we want to enter a
184 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
185 remove old references. Until we want to enter a new entry, the
186 mere fact that the two vectors don't match makes the entries be
187 ignored if anyone tries to match them.
189 Registers themselves are entered in the hash table as well as in
190 the equivalent-register chains. However, `REG_TICK' and
191 `REG_IN_TABLE' do not apply to expressions which are simple
192 register references. These expressions are removed from the table
193 immediately when they become invalid, and this can be done even if
194 we do not immediately search for all the expressions that refer to
195 the register.
197 A CLOBBER rtx in an instruction invalidates its operand for further
198 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
199 invalidates everything that resides in memory.
201 Related expressions:
203 Constant expressions that differ only by an additive integer
204 are called related. When a constant expression is put in
205 the table, the related expression with no constant term
206 is also entered. These are made to point at each other
207 so that it is possible to find out if there exists any
208 register equivalent to an expression related to a given expression. */
210 /* Length of qty_table vector. We know in advance we will not need
211 a quantity number this big. */
213 static int max_qty;
215 /* Next quantity number to be allocated.
216 This is 1 + the largest number needed so far. */
218 static int next_qty;
220 /* Per-qty information tracking.
222 `first_reg' and `last_reg' track the head and tail of the
223 chain of registers which currently contain this quantity.
225 `mode' contains the machine mode of this quantity.
227 `const_rtx' holds the rtx of the constant value of this
228 quantity, if known. A summations of the frame/arg pointer
229 and a constant can also be entered here. When this holds
230 a known value, `const_insn' is the insn which stored the
231 constant value.
233 `comparison_{code,const,qty}' are used to track when a
234 comparison between a quantity and some constant or register has
235 been passed. In such a case, we know the results of the comparison
236 in case we see it again. These members record a comparison that
237 is known to be true. `comparison_code' holds the rtx code of such
238 a comparison, else it is set to UNKNOWN and the other two
239 comparison members are undefined. `comparison_const' holds
240 the constant being compared against, or zero if the comparison
241 is not against a constant. `comparison_qty' holds the quantity
242 being compared against when the result is known. If the comparison
243 is not with a register, `comparison_qty' is -1. */
245 struct qty_table_elem
247 rtx const_rtx;
248 rtx const_insn;
249 rtx comparison_const;
250 int comparison_qty;
251 unsigned int first_reg, last_reg;
252 /* The sizes of these fields should match the sizes of the
253 code and mode fields of struct rtx_def (see rtl.h). */
254 ENUM_BITFIELD(rtx_code) comparison_code : 16;
255 ENUM_BITFIELD(machine_mode) mode : 8;
258 /* The table of all qtys, indexed by qty number. */
259 static struct qty_table_elem *qty_table;
261 /* Structure used to pass arguments via for_each_rtx to function
262 cse_change_cc_mode. */
263 struct change_cc_mode_args
265 rtx insn;
266 rtx newreg;
269 #ifdef HAVE_cc0
270 /* For machines that have a CC0, we do not record its value in the hash
271 table since its use is guaranteed to be the insn immediately following
272 its definition and any other insn is presumed to invalidate it.
274 Instead, we store below the current and last value assigned to CC0.
275 If it should happen to be a constant, it is stored in preference
276 to the actual assigned value. In case it is a constant, we store
277 the mode in which the constant should be interpreted. */
279 static rtx this_insn_cc0, prev_insn_cc0;
280 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
281 #endif
283 /* Insn being scanned. */
285 static rtx this_insn;
287 /* Index by register number, gives the number of the next (or
288 previous) register in the chain of registers sharing the same
289 value.
291 Or -1 if this register is at the end of the chain.
293 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
295 /* Per-register equivalence chain. */
296 struct reg_eqv_elem
298 int next, prev;
301 /* The table of all register equivalence chains. */
302 static struct reg_eqv_elem *reg_eqv_table;
304 struct cse_reg_info
306 /* The timestamp at which this register is initialized. */
307 unsigned int timestamp;
309 /* The quantity number of the register's current contents. */
310 int reg_qty;
312 /* The number of times the register has been altered in the current
313 basic block. */
314 int reg_tick;
316 /* The REG_TICK value at which rtx's containing this register are
317 valid in the hash table. If this does not equal the current
318 reg_tick value, such expressions existing in the hash table are
319 invalid. */
320 int reg_in_table;
322 /* The SUBREG that was set when REG_TICK was last incremented. Set
323 to -1 if the last store was to the whole register, not a subreg. */
324 unsigned int subreg_ticked;
327 /* A table of cse_reg_info indexed by register numbers. */
328 static struct cse_reg_info *cse_reg_info_table;
330 /* The size of the above table. */
331 static unsigned int cse_reg_info_table_size;
333 /* The index of the first entry that has not been initialized. */
334 static unsigned int cse_reg_info_table_first_uninitialized;
336 /* The timestamp at the beginning of the current run of
337 cse_extended_basic_block. We increment this variable at the beginning of
338 the current run of cse_extended_basic_block. The timestamp field of a
339 cse_reg_info entry matches the value of this variable if and only
340 if the entry has been initialized during the current run of
341 cse_extended_basic_block. */
342 static unsigned int cse_reg_info_timestamp;
344 /* A HARD_REG_SET containing all the hard registers for which there is
345 currently a REG expression in the hash table. Note the difference
346 from the above variables, which indicate if the REG is mentioned in some
347 expression in the table. */
349 static HARD_REG_SET hard_regs_in_table;
351 /* Nonzero if cse has altered conditional jump insns
352 in such a way that jump optimization should be redone. */
354 static int cse_jumps_altered;
356 /* Nonzero if we put a LABEL_REF into the hash table for an INSN
357 without a REG_LABEL_OPERAND, we have to rerun jump after CSE to put
358 in the note. */
359 static int recorded_label_ref;
361 /* canon_hash stores 1 in do_not_record
362 if it notices a reference to CC0, PC, or some other volatile
363 subexpression. */
365 static int do_not_record;
367 /* canon_hash stores 1 in hash_arg_in_memory
368 if it notices a reference to memory within the expression being hashed. */
370 static int hash_arg_in_memory;
372 /* The hash table contains buckets which are chains of `struct table_elt's,
373 each recording one expression's information.
374 That expression is in the `exp' field.
376 The canon_exp field contains a canonical (from the point of view of
377 alias analysis) version of the `exp' field.
379 Those elements with the same hash code are chained in both directions
380 through the `next_same_hash' and `prev_same_hash' fields.
382 Each set of expressions with equivalent values
383 are on a two-way chain through the `next_same_value'
384 and `prev_same_value' fields, and all point with
385 the `first_same_value' field at the first element in
386 that chain. The chain is in order of increasing cost.
387 Each element's cost value is in its `cost' field.
389 The `in_memory' field is nonzero for elements that
390 involve any reference to memory. These elements are removed
391 whenever a write is done to an unidentified location in memory.
392 To be safe, we assume that a memory address is unidentified unless
393 the address is either a symbol constant or a constant plus
394 the frame pointer or argument pointer.
396 The `related_value' field is used to connect related expressions
397 (that differ by adding an integer).
398 The related expressions are chained in a circular fashion.
399 `related_value' is zero for expressions for which this
400 chain is not useful.
402 The `cost' field stores the cost of this element's expression.
403 The `regcost' field stores the value returned by approx_reg_cost for
404 this element's expression.
406 The `is_const' flag is set if the element is a constant (including
407 a fixed address).
409 The `flag' field is used as a temporary during some search routines.
411 The `mode' field is usually the same as GET_MODE (`exp'), but
412 if `exp' is a CONST_INT and has no machine mode then the `mode'
413 field is the mode it was being used as. Each constant is
414 recorded separately for each mode it is used with. */
416 struct table_elt
418 rtx exp;
419 rtx canon_exp;
420 struct table_elt *next_same_hash;
421 struct table_elt *prev_same_hash;
422 struct table_elt *next_same_value;
423 struct table_elt *prev_same_value;
424 struct table_elt *first_same_value;
425 struct table_elt *related_value;
426 int cost;
427 int regcost;
428 /* The size of this field should match the size
429 of the mode field of struct rtx_def (see rtl.h). */
430 ENUM_BITFIELD(machine_mode) mode : 8;
431 char in_memory;
432 char is_const;
433 char flag;
436 /* We don't want a lot of buckets, because we rarely have very many
437 things stored in the hash table, and a lot of buckets slows
438 down a lot of loops that happen frequently. */
439 #define HASH_SHIFT 5
440 #define HASH_SIZE (1 << HASH_SHIFT)
441 #define HASH_MASK (HASH_SIZE - 1)
443 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
444 register (hard registers may require `do_not_record' to be set). */
446 #define HASH(X, M) \
447 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
448 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
449 : canon_hash (X, M)) & HASH_MASK)
451 /* Like HASH, but without side-effects. */
452 #define SAFE_HASH(X, M) \
453 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
454 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
455 : safe_hash (X, M)) & HASH_MASK)
457 /* Determine whether register number N is considered a fixed register for the
458 purpose of approximating register costs.
459 It is desirable to replace other regs with fixed regs, to reduce need for
460 non-fixed hard regs.
461 A reg wins if it is either the frame pointer or designated as fixed. */
462 #define FIXED_REGNO_P(N) \
463 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
464 || fixed_regs[N] || global_regs[N])
466 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
467 hard registers and pointers into the frame are the cheapest with a cost
468 of 0. Next come pseudos with a cost of one and other hard registers with
469 a cost of 2. Aside from these special cases, call `rtx_cost'. */
471 #define CHEAP_REGNO(N) \
472 (REGNO_PTR_FRAME_P(N) \
473 || (HARD_REGISTER_NUM_P (N) \
474 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
476 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
477 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
479 /* Get the number of times this register has been updated in this
480 basic block. */
482 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
484 /* Get the point at which REG was recorded in the table. */
486 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
488 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
489 SUBREG). */
491 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
493 /* Get the quantity number for REG. */
495 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
497 /* Determine if the quantity number for register X represents a valid index
498 into the qty_table. */
500 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
502 static struct table_elt *table[HASH_SIZE];
504 /* Chain of `struct table_elt's made so far for this function
505 but currently removed from the table. */
507 static struct table_elt *free_element_chain;
509 /* Set to the cost of a constant pool reference if one was found for a
510 symbolic constant. If this was found, it means we should try to
511 convert constants into constant pool entries if they don't fit in
512 the insn. */
514 static int constant_pool_entries_cost;
515 static int constant_pool_entries_regcost;
517 /* This data describes a block that will be processed by
518 cse_extended_basic_block. */
520 struct cse_basic_block_data
522 /* Total number of SETs in block. */
523 int nsets;
524 /* Size of current branch path, if any. */
525 int path_size;
526 /* Current path, indicating which basic_blocks will be processed. */
527 struct branch_path
529 /* The basic block for this path entry. */
530 basic_block bb;
531 } *path;
535 /* Pointers to the live in/live out bitmaps for the boundaries of the
536 current EBB. */
537 static bitmap cse_ebb_live_in, cse_ebb_live_out;
539 /* A simple bitmap to track which basic blocks have been visited
540 already as part of an already processed extended basic block. */
541 static sbitmap cse_visited_basic_blocks;
543 static bool fixed_base_plus_p (rtx x);
544 static int notreg_cost (rtx, enum rtx_code);
545 static int approx_reg_cost_1 (rtx *, void *);
546 static int approx_reg_cost (rtx);
547 static int preferable (int, int, int, int);
548 static void new_basic_block (void);
549 static void make_new_qty (unsigned int, enum machine_mode);
550 static void make_regs_eqv (unsigned int, unsigned int);
551 static void delete_reg_equiv (unsigned int);
552 static int mention_regs (rtx);
553 static int insert_regs (rtx, struct table_elt *, int);
554 static void remove_from_table (struct table_elt *, unsigned);
555 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
556 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
557 static rtx lookup_as_function (rtx, enum rtx_code);
558 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
559 enum machine_mode);
560 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
561 static void invalidate (rtx, enum machine_mode);
562 static bool cse_rtx_varies_p (const_rtx, bool);
563 static void remove_invalid_refs (unsigned int);
564 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
565 enum machine_mode);
566 static void rehash_using_reg (rtx);
567 static void invalidate_memory (void);
568 static void invalidate_for_call (void);
569 static rtx use_related_value (rtx, struct table_elt *);
571 static inline unsigned canon_hash (rtx, enum machine_mode);
572 static inline unsigned safe_hash (rtx, enum machine_mode);
573 static unsigned hash_rtx_string (const char *);
575 static rtx canon_reg (rtx, rtx);
576 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
577 enum machine_mode *,
578 enum machine_mode *);
579 static rtx fold_rtx (rtx, rtx);
580 static rtx equiv_constant (rtx);
581 static void record_jump_equiv (rtx, bool);
582 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
583 int);
584 static void cse_insn (rtx, rtx);
585 static void cse_prescan_path (struct cse_basic_block_data *);
586 static void invalidate_from_clobbers (rtx);
587 static rtx cse_process_notes (rtx, rtx, bool *);
588 static void cse_extended_basic_block (struct cse_basic_block_data *);
589 static void count_reg_usage (rtx, int *, rtx, int);
590 static int check_for_label_ref (rtx *, void *);
591 extern void dump_class (struct table_elt*);
592 static void get_cse_reg_info_1 (unsigned int regno);
593 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
594 static int check_dependence (rtx *, void *);
596 static void flush_hash_table (void);
597 static bool insn_live_p (rtx, int *);
598 static bool set_live_p (rtx, rtx, int *);
599 static bool dead_libcall_p (rtx, int *);
600 static int cse_change_cc_mode (rtx *, void *);
601 static void cse_change_cc_mode_insn (rtx, rtx);
602 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
603 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
606 #undef RTL_HOOKS_GEN_LOWPART
607 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
609 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
611 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
612 virtual regs here because the simplify_*_operation routines are called
613 by integrate.c, which is called before virtual register instantiation. */
615 static bool
616 fixed_base_plus_p (rtx x)
618 switch (GET_CODE (x))
620 case REG:
621 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
622 return true;
623 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
624 return true;
625 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
626 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
627 return true;
628 return false;
630 case PLUS:
631 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
632 return false;
633 return fixed_base_plus_p (XEXP (x, 0));
635 default:
636 return false;
640 /* Dump the expressions in the equivalence class indicated by CLASSP.
641 This function is used only for debugging. */
642 void
643 dump_class (struct table_elt *classp)
645 struct table_elt *elt;
647 fprintf (stderr, "Equivalence chain for ");
648 print_rtl (stderr, classp->exp);
649 fprintf (stderr, ": \n");
651 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
653 print_rtl (stderr, elt->exp);
654 fprintf (stderr, "\n");
658 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
660 static int
661 approx_reg_cost_1 (rtx *xp, void *data)
663 rtx x = *xp;
664 int *cost_p = data;
666 if (x && REG_P (x))
668 unsigned int regno = REGNO (x);
670 if (! CHEAP_REGNO (regno))
672 if (regno < FIRST_PSEUDO_REGISTER)
674 if (SMALL_REGISTER_CLASSES)
675 return 1;
676 *cost_p += 2;
678 else
679 *cost_p += 1;
683 return 0;
686 /* Return an estimate of the cost of the registers used in an rtx.
687 This is mostly the number of different REG expressions in the rtx;
688 however for some exceptions like fixed registers we use a cost of
689 0. If any other hard register reference occurs, return MAX_COST. */
691 static int
692 approx_reg_cost (rtx x)
694 int cost = 0;
696 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
697 return MAX_COST;
699 return cost;
702 /* Return a negative value if an rtx A, whose costs are given by COST_A
703 and REGCOST_A, is more desirable than an rtx B.
704 Return a positive value if A is less desirable, or 0 if the two are
705 equally good. */
706 static int
707 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
709 /* First, get rid of cases involving expressions that are entirely
710 unwanted. */
711 if (cost_a != cost_b)
713 if (cost_a == MAX_COST)
714 return 1;
715 if (cost_b == MAX_COST)
716 return -1;
719 /* Avoid extending lifetimes of hardregs. */
720 if (regcost_a != regcost_b)
722 if (regcost_a == MAX_COST)
723 return 1;
724 if (regcost_b == MAX_COST)
725 return -1;
728 /* Normal operation costs take precedence. */
729 if (cost_a != cost_b)
730 return cost_a - cost_b;
731 /* Only if these are identical consider effects on register pressure. */
732 if (regcost_a != regcost_b)
733 return regcost_a - regcost_b;
734 return 0;
737 /* Internal function, to compute cost when X is not a register; called
738 from COST macro to keep it simple. */
740 static int
741 notreg_cost (rtx x, enum rtx_code outer)
743 return ((GET_CODE (x) == SUBREG
744 && REG_P (SUBREG_REG (x))
745 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
746 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
747 && (GET_MODE_SIZE (GET_MODE (x))
748 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
749 && subreg_lowpart_p (x)
750 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
751 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
753 : rtx_cost (x, outer) * 2);
757 /* Initialize CSE_REG_INFO_TABLE. */
759 static void
760 init_cse_reg_info (unsigned int nregs)
762 /* Do we need to grow the table? */
763 if (nregs > cse_reg_info_table_size)
765 unsigned int new_size;
767 if (cse_reg_info_table_size < 2048)
769 /* Compute a new size that is a power of 2 and no smaller
770 than the large of NREGS and 64. */
771 new_size = (cse_reg_info_table_size
772 ? cse_reg_info_table_size : 64);
774 while (new_size < nregs)
775 new_size *= 2;
777 else
779 /* If we need a big table, allocate just enough to hold
780 NREGS registers. */
781 new_size = nregs;
784 /* Reallocate the table with NEW_SIZE entries. */
785 if (cse_reg_info_table)
786 free (cse_reg_info_table);
787 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
788 cse_reg_info_table_size = new_size;
789 cse_reg_info_table_first_uninitialized = 0;
792 /* Do we have all of the first NREGS entries initialized? */
793 if (cse_reg_info_table_first_uninitialized < nregs)
795 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
796 unsigned int i;
798 /* Put the old timestamp on newly allocated entries so that they
799 will all be considered out of date. We do not touch those
800 entries beyond the first NREGS entries to be nice to the
801 virtual memory. */
802 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
803 cse_reg_info_table[i].timestamp = old_timestamp;
805 cse_reg_info_table_first_uninitialized = nregs;
809 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
811 static void
812 get_cse_reg_info_1 (unsigned int regno)
814 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
815 entry will be considered to have been initialized. */
816 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
818 /* Initialize the rest of the entry. */
819 cse_reg_info_table[regno].reg_tick = 1;
820 cse_reg_info_table[regno].reg_in_table = -1;
821 cse_reg_info_table[regno].subreg_ticked = -1;
822 cse_reg_info_table[regno].reg_qty = -regno - 1;
825 /* Find a cse_reg_info entry for REGNO. */
827 static inline struct cse_reg_info *
828 get_cse_reg_info (unsigned int regno)
830 struct cse_reg_info *p = &cse_reg_info_table[regno];
832 /* If this entry has not been initialized, go ahead and initialize
833 it. */
834 if (p->timestamp != cse_reg_info_timestamp)
835 get_cse_reg_info_1 (regno);
837 return p;
840 /* Clear the hash table and initialize each register with its own quantity,
841 for a new basic block. */
843 static void
844 new_basic_block (void)
846 int i;
848 next_qty = 0;
850 /* Invalidate cse_reg_info_table. */
851 cse_reg_info_timestamp++;
853 /* Clear out hash table state for this pass. */
854 CLEAR_HARD_REG_SET (hard_regs_in_table);
856 /* The per-quantity values used to be initialized here, but it is
857 much faster to initialize each as it is made in `make_new_qty'. */
859 for (i = 0; i < HASH_SIZE; i++)
861 struct table_elt *first;
863 first = table[i];
864 if (first != NULL)
866 struct table_elt *last = first;
868 table[i] = NULL;
870 while (last->next_same_hash != NULL)
871 last = last->next_same_hash;
873 /* Now relink this hash entire chain into
874 the free element list. */
876 last->next_same_hash = free_element_chain;
877 free_element_chain = first;
881 #ifdef HAVE_cc0
882 prev_insn_cc0 = 0;
883 #endif
886 /* Say that register REG contains a quantity in mode MODE not in any
887 register before and initialize that quantity. */
889 static void
890 make_new_qty (unsigned int reg, enum machine_mode mode)
892 int q;
893 struct qty_table_elem *ent;
894 struct reg_eqv_elem *eqv;
896 gcc_assert (next_qty < max_qty);
898 q = REG_QTY (reg) = next_qty++;
899 ent = &qty_table[q];
900 ent->first_reg = reg;
901 ent->last_reg = reg;
902 ent->mode = mode;
903 ent->const_rtx = ent->const_insn = NULL_RTX;
904 ent->comparison_code = UNKNOWN;
906 eqv = &reg_eqv_table[reg];
907 eqv->next = eqv->prev = -1;
910 /* Make reg NEW equivalent to reg OLD.
911 OLD is not changing; NEW is. */
913 static void
914 make_regs_eqv (unsigned int new, unsigned int old)
916 unsigned int lastr, firstr;
917 int q = REG_QTY (old);
918 struct qty_table_elem *ent;
920 ent = &qty_table[q];
922 /* Nothing should become eqv until it has a "non-invalid" qty number. */
923 gcc_assert (REGNO_QTY_VALID_P (old));
925 REG_QTY (new) = q;
926 firstr = ent->first_reg;
927 lastr = ent->last_reg;
929 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
930 hard regs. Among pseudos, if NEW will live longer than any other reg
931 of the same qty, and that is beyond the current basic block,
932 make it the new canonical replacement for this qty. */
933 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
934 /* Certain fixed registers might be of the class NO_REGS. This means
935 that not only can they not be allocated by the compiler, but
936 they cannot be used in substitutions or canonicalizations
937 either. */
938 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
939 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
940 || (new >= FIRST_PSEUDO_REGISTER
941 && (firstr < FIRST_PSEUDO_REGISTER
942 || (bitmap_bit_p (cse_ebb_live_out, new)
943 && !bitmap_bit_p (cse_ebb_live_out, firstr))
944 || (bitmap_bit_p (cse_ebb_live_in, new)
945 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
947 reg_eqv_table[firstr].prev = new;
948 reg_eqv_table[new].next = firstr;
949 reg_eqv_table[new].prev = -1;
950 ent->first_reg = new;
952 else
954 /* If NEW is a hard reg (known to be non-fixed), insert at end.
955 Otherwise, insert before any non-fixed hard regs that are at the
956 end. Registers of class NO_REGS cannot be used as an
957 equivalent for anything. */
958 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
959 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
960 && new >= FIRST_PSEUDO_REGISTER)
961 lastr = reg_eqv_table[lastr].prev;
962 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
963 if (reg_eqv_table[lastr].next >= 0)
964 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
965 else
966 qty_table[q].last_reg = new;
967 reg_eqv_table[lastr].next = new;
968 reg_eqv_table[new].prev = lastr;
972 /* Remove REG from its equivalence class. */
974 static void
975 delete_reg_equiv (unsigned int reg)
977 struct qty_table_elem *ent;
978 int q = REG_QTY (reg);
979 int p, n;
981 /* If invalid, do nothing. */
982 if (! REGNO_QTY_VALID_P (reg))
983 return;
985 ent = &qty_table[q];
987 p = reg_eqv_table[reg].prev;
988 n = reg_eqv_table[reg].next;
990 if (n != -1)
991 reg_eqv_table[n].prev = p;
992 else
993 ent->last_reg = p;
994 if (p != -1)
995 reg_eqv_table[p].next = n;
996 else
997 ent->first_reg = n;
999 REG_QTY (reg) = -reg - 1;
1002 /* Remove any invalid expressions from the hash table
1003 that refer to any of the registers contained in expression X.
1005 Make sure that newly inserted references to those registers
1006 as subexpressions will be considered valid.
1008 mention_regs is not called when a register itself
1009 is being stored in the table.
1011 Return 1 if we have done something that may have changed the hash code
1012 of X. */
1014 static int
1015 mention_regs (rtx x)
1017 enum rtx_code code;
1018 int i, j;
1019 const char *fmt;
1020 int changed = 0;
1022 if (x == 0)
1023 return 0;
1025 code = GET_CODE (x);
1026 if (code == REG)
1028 unsigned int regno = REGNO (x);
1029 unsigned int endregno = END_REGNO (x);
1030 unsigned int i;
1032 for (i = regno; i < endregno; i++)
1034 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1035 remove_invalid_refs (i);
1037 REG_IN_TABLE (i) = REG_TICK (i);
1038 SUBREG_TICKED (i) = -1;
1041 return 0;
1044 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1045 pseudo if they don't use overlapping words. We handle only pseudos
1046 here for simplicity. */
1047 if (code == SUBREG && REG_P (SUBREG_REG (x))
1048 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1050 unsigned int i = REGNO (SUBREG_REG (x));
1052 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1054 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1055 the last store to this register really stored into this
1056 subreg, then remove the memory of this subreg.
1057 Otherwise, remove any memory of the entire register and
1058 all its subregs from the table. */
1059 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1060 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1061 remove_invalid_refs (i);
1062 else
1063 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1066 REG_IN_TABLE (i) = REG_TICK (i);
1067 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1068 return 0;
1071 /* If X is a comparison or a COMPARE and either operand is a register
1072 that does not have a quantity, give it one. This is so that a later
1073 call to record_jump_equiv won't cause X to be assigned a different
1074 hash code and not found in the table after that call.
1076 It is not necessary to do this here, since rehash_using_reg can
1077 fix up the table later, but doing this here eliminates the need to
1078 call that expensive function in the most common case where the only
1079 use of the register is in the comparison. */
1081 if (code == COMPARE || COMPARISON_P (x))
1083 if (REG_P (XEXP (x, 0))
1084 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1085 if (insert_regs (XEXP (x, 0), NULL, 0))
1087 rehash_using_reg (XEXP (x, 0));
1088 changed = 1;
1091 if (REG_P (XEXP (x, 1))
1092 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1093 if (insert_regs (XEXP (x, 1), NULL, 0))
1095 rehash_using_reg (XEXP (x, 1));
1096 changed = 1;
1100 fmt = GET_RTX_FORMAT (code);
1101 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1102 if (fmt[i] == 'e')
1103 changed |= mention_regs (XEXP (x, i));
1104 else if (fmt[i] == 'E')
1105 for (j = 0; j < XVECLEN (x, i); j++)
1106 changed |= mention_regs (XVECEXP (x, i, j));
1108 return changed;
1111 /* Update the register quantities for inserting X into the hash table
1112 with a value equivalent to CLASSP.
1113 (If the class does not contain a REG, it is irrelevant.)
1114 If MODIFIED is nonzero, X is a destination; it is being modified.
1115 Note that delete_reg_equiv should be called on a register
1116 before insert_regs is done on that register with MODIFIED != 0.
1118 Nonzero value means that elements of reg_qty have changed
1119 so X's hash code may be different. */
1121 static int
1122 insert_regs (rtx x, struct table_elt *classp, int modified)
1124 if (REG_P (x))
1126 unsigned int regno = REGNO (x);
1127 int qty_valid;
1129 /* If REGNO is in the equivalence table already but is of the
1130 wrong mode for that equivalence, don't do anything here. */
1132 qty_valid = REGNO_QTY_VALID_P (regno);
1133 if (qty_valid)
1135 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1137 if (ent->mode != GET_MODE (x))
1138 return 0;
1141 if (modified || ! qty_valid)
1143 if (classp)
1144 for (classp = classp->first_same_value;
1145 classp != 0;
1146 classp = classp->next_same_value)
1147 if (REG_P (classp->exp)
1148 && GET_MODE (classp->exp) == GET_MODE (x))
1150 unsigned c_regno = REGNO (classp->exp);
1152 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1154 /* Suppose that 5 is hard reg and 100 and 101 are
1155 pseudos. Consider
1157 (set (reg:si 100) (reg:si 5))
1158 (set (reg:si 5) (reg:si 100))
1159 (set (reg:di 101) (reg:di 5))
1161 We would now set REG_QTY (101) = REG_QTY (5), but the
1162 entry for 5 is in SImode. When we use this later in
1163 copy propagation, we get the register in wrong mode. */
1164 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1165 continue;
1167 make_regs_eqv (regno, c_regno);
1168 return 1;
1171 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1172 than REG_IN_TABLE to find out if there was only a single preceding
1173 invalidation - for the SUBREG - or another one, which would be
1174 for the full register. However, if we find here that REG_TICK
1175 indicates that the register is invalid, it means that it has
1176 been invalidated in a separate operation. The SUBREG might be used
1177 now (then this is a recursive call), or we might use the full REG
1178 now and a SUBREG of it later. So bump up REG_TICK so that
1179 mention_regs will do the right thing. */
1180 if (! modified
1181 && REG_IN_TABLE (regno) >= 0
1182 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1183 REG_TICK (regno)++;
1184 make_new_qty (regno, GET_MODE (x));
1185 return 1;
1188 return 0;
1191 /* If X is a SUBREG, we will likely be inserting the inner register in the
1192 table. If that register doesn't have an assigned quantity number at
1193 this point but does later, the insertion that we will be doing now will
1194 not be accessible because its hash code will have changed. So assign
1195 a quantity number now. */
1197 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1198 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1200 insert_regs (SUBREG_REG (x), NULL, 0);
1201 mention_regs (x);
1202 return 1;
1204 else
1205 return mention_regs (x);
1208 /* Look in or update the hash table. */
1210 /* Remove table element ELT from use in the table.
1211 HASH is its hash code, made using the HASH macro.
1212 It's an argument because often that is known in advance
1213 and we save much time not recomputing it. */
1215 static void
1216 remove_from_table (struct table_elt *elt, unsigned int hash)
1218 if (elt == 0)
1219 return;
1221 /* Mark this element as removed. See cse_insn. */
1222 elt->first_same_value = 0;
1224 /* Remove the table element from its equivalence class. */
1227 struct table_elt *prev = elt->prev_same_value;
1228 struct table_elt *next = elt->next_same_value;
1230 if (next)
1231 next->prev_same_value = prev;
1233 if (prev)
1234 prev->next_same_value = next;
1235 else
1237 struct table_elt *newfirst = next;
1238 while (next)
1240 next->first_same_value = newfirst;
1241 next = next->next_same_value;
1246 /* Remove the table element from its hash bucket. */
1249 struct table_elt *prev = elt->prev_same_hash;
1250 struct table_elt *next = elt->next_same_hash;
1252 if (next)
1253 next->prev_same_hash = prev;
1255 if (prev)
1256 prev->next_same_hash = next;
1257 else if (table[hash] == elt)
1258 table[hash] = next;
1259 else
1261 /* This entry is not in the proper hash bucket. This can happen
1262 when two classes were merged by `merge_equiv_classes'. Search
1263 for the hash bucket that it heads. This happens only very
1264 rarely, so the cost is acceptable. */
1265 for (hash = 0; hash < HASH_SIZE; hash++)
1266 if (table[hash] == elt)
1267 table[hash] = next;
1271 /* Remove the table element from its related-value circular chain. */
1273 if (elt->related_value != 0 && elt->related_value != elt)
1275 struct table_elt *p = elt->related_value;
1277 while (p->related_value != elt)
1278 p = p->related_value;
1279 p->related_value = elt->related_value;
1280 if (p->related_value == p)
1281 p->related_value = 0;
1284 /* Now add it to the free element chain. */
1285 elt->next_same_hash = free_element_chain;
1286 free_element_chain = elt;
1289 /* Look up X in the hash table and return its table element,
1290 or 0 if X is not in the table.
1292 MODE is the machine-mode of X, or if X is an integer constant
1293 with VOIDmode then MODE is the mode with which X will be used.
1295 Here we are satisfied to find an expression whose tree structure
1296 looks like X. */
1298 static struct table_elt *
1299 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1301 struct table_elt *p;
1303 for (p = table[hash]; p; p = p->next_same_hash)
1304 if (mode == p->mode && ((x == p->exp && REG_P (x))
1305 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1306 return p;
1308 return 0;
1311 /* Like `lookup' but don't care whether the table element uses invalid regs.
1312 Also ignore discrepancies in the machine mode of a register. */
1314 static struct table_elt *
1315 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1317 struct table_elt *p;
1319 if (REG_P (x))
1321 unsigned int regno = REGNO (x);
1323 /* Don't check the machine mode when comparing registers;
1324 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1325 for (p = table[hash]; p; p = p->next_same_hash)
1326 if (REG_P (p->exp)
1327 && REGNO (p->exp) == regno)
1328 return p;
1330 else
1332 for (p = table[hash]; p; p = p->next_same_hash)
1333 if (mode == p->mode
1334 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1335 return p;
1338 return 0;
1341 /* Look for an expression equivalent to X and with code CODE.
1342 If one is found, return that expression. */
1344 static rtx
1345 lookup_as_function (rtx x, enum rtx_code code)
1347 struct table_elt *p
1348 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1350 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1351 long as we are narrowing. So if we looked in vain for a mode narrower
1352 than word_mode before, look for word_mode now. */
1353 if (p == 0 && code == CONST_INT
1354 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1356 x = copy_rtx (x);
1357 PUT_MODE (x, word_mode);
1358 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1361 if (p == 0)
1362 return 0;
1364 for (p = p->first_same_value; p; p = p->next_same_value)
1365 if (GET_CODE (p->exp) == code
1366 /* Make sure this is a valid entry in the table. */
1367 && exp_equiv_p (p->exp, p->exp, 1, false))
1368 return p->exp;
1370 return 0;
1373 /* Insert X in the hash table, assuming HASH is its hash code
1374 and CLASSP is an element of the class it should go in
1375 (or 0 if a new class should be made).
1376 It is inserted at the proper position to keep the class in
1377 the order cheapest first.
1379 MODE is the machine-mode of X, or if X is an integer constant
1380 with VOIDmode then MODE is the mode with which X will be used.
1382 For elements of equal cheapness, the most recent one
1383 goes in front, except that the first element in the list
1384 remains first unless a cheaper element is added. The order of
1385 pseudo-registers does not matter, as canon_reg will be called to
1386 find the cheapest when a register is retrieved from the table.
1388 The in_memory field in the hash table element is set to 0.
1389 The caller must set it nonzero if appropriate.
1391 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1392 and if insert_regs returns a nonzero value
1393 you must then recompute its hash code before calling here.
1395 If necessary, update table showing constant values of quantities. */
1397 #define CHEAPER(X, Y) \
1398 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1400 static struct table_elt *
1401 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1403 struct table_elt *elt;
1405 /* If X is a register and we haven't made a quantity for it,
1406 something is wrong. */
1407 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1409 /* If X is a hard register, show it is being put in the table. */
1410 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1411 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1413 /* Put an element for X into the right hash bucket. */
1415 elt = free_element_chain;
1416 if (elt)
1417 free_element_chain = elt->next_same_hash;
1418 else
1419 elt = XNEW (struct table_elt);
1421 elt->exp = x;
1422 elt->canon_exp = NULL_RTX;
1423 elt->cost = COST (x);
1424 elt->regcost = approx_reg_cost (x);
1425 elt->next_same_value = 0;
1426 elt->prev_same_value = 0;
1427 elt->next_same_hash = table[hash];
1428 elt->prev_same_hash = 0;
1429 elt->related_value = 0;
1430 elt->in_memory = 0;
1431 elt->mode = mode;
1432 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1434 if (table[hash])
1435 table[hash]->prev_same_hash = elt;
1436 table[hash] = elt;
1438 /* Put it into the proper value-class. */
1439 if (classp)
1441 classp = classp->first_same_value;
1442 if (CHEAPER (elt, classp))
1443 /* Insert at the head of the class. */
1445 struct table_elt *p;
1446 elt->next_same_value = classp;
1447 classp->prev_same_value = elt;
1448 elt->first_same_value = elt;
1450 for (p = classp; p; p = p->next_same_value)
1451 p->first_same_value = elt;
1453 else
1455 /* Insert not at head of the class. */
1456 /* Put it after the last element cheaper than X. */
1457 struct table_elt *p, *next;
1459 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1460 p = next);
1462 /* Put it after P and before NEXT. */
1463 elt->next_same_value = next;
1464 if (next)
1465 next->prev_same_value = elt;
1467 elt->prev_same_value = p;
1468 p->next_same_value = elt;
1469 elt->first_same_value = classp;
1472 else
1473 elt->first_same_value = elt;
1475 /* If this is a constant being set equivalent to a register or a register
1476 being set equivalent to a constant, note the constant equivalence.
1478 If this is a constant, it cannot be equivalent to a different constant,
1479 and a constant is the only thing that can be cheaper than a register. So
1480 we know the register is the head of the class (before the constant was
1481 inserted).
1483 If this is a register that is not already known equivalent to a
1484 constant, we must check the entire class.
1486 If this is a register that is already known equivalent to an insn,
1487 update the qtys `const_insn' to show that `this_insn' is the latest
1488 insn making that quantity equivalent to the constant. */
1490 if (elt->is_const && classp && REG_P (classp->exp)
1491 && !REG_P (x))
1493 int exp_q = REG_QTY (REGNO (classp->exp));
1494 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1496 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1497 exp_ent->const_insn = this_insn;
1500 else if (REG_P (x)
1501 && classp
1502 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1503 && ! elt->is_const)
1505 struct table_elt *p;
1507 for (p = classp; p != 0; p = p->next_same_value)
1509 if (p->is_const && !REG_P (p->exp))
1511 int x_q = REG_QTY (REGNO (x));
1512 struct qty_table_elem *x_ent = &qty_table[x_q];
1514 x_ent->const_rtx
1515 = gen_lowpart (GET_MODE (x), p->exp);
1516 x_ent->const_insn = this_insn;
1517 break;
1522 else if (REG_P (x)
1523 && qty_table[REG_QTY (REGNO (x))].const_rtx
1524 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1525 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1527 /* If this is a constant with symbolic value,
1528 and it has a term with an explicit integer value,
1529 link it up with related expressions. */
1530 if (GET_CODE (x) == CONST)
1532 rtx subexp = get_related_value (x);
1533 unsigned subhash;
1534 struct table_elt *subelt, *subelt_prev;
1536 if (subexp != 0)
1538 /* Get the integer-free subexpression in the hash table. */
1539 subhash = SAFE_HASH (subexp, mode);
1540 subelt = lookup (subexp, subhash, mode);
1541 if (subelt == 0)
1542 subelt = insert (subexp, NULL, subhash, mode);
1543 /* Initialize SUBELT's circular chain if it has none. */
1544 if (subelt->related_value == 0)
1545 subelt->related_value = subelt;
1546 /* Find the element in the circular chain that precedes SUBELT. */
1547 subelt_prev = subelt;
1548 while (subelt_prev->related_value != subelt)
1549 subelt_prev = subelt_prev->related_value;
1550 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1551 This way the element that follows SUBELT is the oldest one. */
1552 elt->related_value = subelt_prev->related_value;
1553 subelt_prev->related_value = elt;
1557 return elt;
1560 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1561 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1562 the two classes equivalent.
1564 CLASS1 will be the surviving class; CLASS2 should not be used after this
1565 call.
1567 Any invalid entries in CLASS2 will not be copied. */
1569 static void
1570 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1572 struct table_elt *elt, *next, *new;
1574 /* Ensure we start with the head of the classes. */
1575 class1 = class1->first_same_value;
1576 class2 = class2->first_same_value;
1578 /* If they were already equal, forget it. */
1579 if (class1 == class2)
1580 return;
1582 for (elt = class2; elt; elt = next)
1584 unsigned int hash;
1585 rtx exp = elt->exp;
1586 enum machine_mode mode = elt->mode;
1588 next = elt->next_same_value;
1590 /* Remove old entry, make a new one in CLASS1's class.
1591 Don't do this for invalid entries as we cannot find their
1592 hash code (it also isn't necessary). */
1593 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1595 bool need_rehash = false;
1597 hash_arg_in_memory = 0;
1598 hash = HASH (exp, mode);
1600 if (REG_P (exp))
1602 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1603 delete_reg_equiv (REGNO (exp));
1606 remove_from_table (elt, hash);
1608 if (insert_regs (exp, class1, 0) || need_rehash)
1610 rehash_using_reg (exp);
1611 hash = HASH (exp, mode);
1613 new = insert (exp, class1, hash, mode);
1614 new->in_memory = hash_arg_in_memory;
1619 /* Flush the entire hash table. */
1621 static void
1622 flush_hash_table (void)
1624 int i;
1625 struct table_elt *p;
1627 for (i = 0; i < HASH_SIZE; i++)
1628 for (p = table[i]; p; p = table[i])
1630 /* Note that invalidate can remove elements
1631 after P in the current hash chain. */
1632 if (REG_P (p->exp))
1633 invalidate (p->exp, VOIDmode);
1634 else
1635 remove_from_table (p, i);
1639 /* Function called for each rtx to check whether true dependence exist. */
1640 struct check_dependence_data
1642 enum machine_mode mode;
1643 rtx exp;
1644 rtx addr;
1647 static int
1648 check_dependence (rtx *x, void *data)
1650 struct check_dependence_data *d = (struct check_dependence_data *) data;
1651 if (*x && MEM_P (*x))
1652 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1653 cse_rtx_varies_p);
1654 else
1655 return 0;
1658 /* Remove from the hash table, or mark as invalid, all expressions whose
1659 values could be altered by storing in X. X is a register, a subreg, or
1660 a memory reference with nonvarying address (because, when a memory
1661 reference with a varying address is stored in, all memory references are
1662 removed by invalidate_memory so specific invalidation is superfluous).
1663 FULL_MODE, if not VOIDmode, indicates that this much should be
1664 invalidated instead of just the amount indicated by the mode of X. This
1665 is only used for bitfield stores into memory.
1667 A nonvarying address may be just a register or just a symbol reference,
1668 or it may be either of those plus a numeric offset. */
1670 static void
1671 invalidate (rtx x, enum machine_mode full_mode)
1673 int i;
1674 struct table_elt *p;
1675 rtx addr;
1677 switch (GET_CODE (x))
1679 case REG:
1681 /* If X is a register, dependencies on its contents are recorded
1682 through the qty number mechanism. Just change the qty number of
1683 the register, mark it as invalid for expressions that refer to it,
1684 and remove it itself. */
1685 unsigned int regno = REGNO (x);
1686 unsigned int hash = HASH (x, GET_MODE (x));
1688 /* Remove REGNO from any quantity list it might be on and indicate
1689 that its value might have changed. If it is a pseudo, remove its
1690 entry from the hash table.
1692 For a hard register, we do the first two actions above for any
1693 additional hard registers corresponding to X. Then, if any of these
1694 registers are in the table, we must remove any REG entries that
1695 overlap these registers. */
1697 delete_reg_equiv (regno);
1698 REG_TICK (regno)++;
1699 SUBREG_TICKED (regno) = -1;
1701 if (regno >= FIRST_PSEUDO_REGISTER)
1703 /* Because a register can be referenced in more than one mode,
1704 we might have to remove more than one table entry. */
1705 struct table_elt *elt;
1707 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1708 remove_from_table (elt, hash);
1710 else
1712 HOST_WIDE_INT in_table
1713 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1714 unsigned int endregno = END_HARD_REGNO (x);
1715 unsigned int tregno, tendregno, rn;
1716 struct table_elt *p, *next;
1718 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1720 for (rn = regno + 1; rn < endregno; rn++)
1722 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1723 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1724 delete_reg_equiv (rn);
1725 REG_TICK (rn)++;
1726 SUBREG_TICKED (rn) = -1;
1729 if (in_table)
1730 for (hash = 0; hash < HASH_SIZE; hash++)
1731 for (p = table[hash]; p; p = next)
1733 next = p->next_same_hash;
1735 if (!REG_P (p->exp)
1736 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1737 continue;
1739 tregno = REGNO (p->exp);
1740 tendregno = END_HARD_REGNO (p->exp);
1741 if (tendregno > regno && tregno < endregno)
1742 remove_from_table (p, hash);
1746 return;
1748 case SUBREG:
1749 invalidate (SUBREG_REG (x), VOIDmode);
1750 return;
1752 case PARALLEL:
1753 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1754 invalidate (XVECEXP (x, 0, i), VOIDmode);
1755 return;
1757 case EXPR_LIST:
1758 /* This is part of a disjoint return value; extract the location in
1759 question ignoring the offset. */
1760 invalidate (XEXP (x, 0), VOIDmode);
1761 return;
1763 case MEM:
1764 addr = canon_rtx (get_addr (XEXP (x, 0)));
1765 /* Calculate the canonical version of X here so that
1766 true_dependence doesn't generate new RTL for X on each call. */
1767 x = canon_rtx (x);
1769 /* Remove all hash table elements that refer to overlapping pieces of
1770 memory. */
1771 if (full_mode == VOIDmode)
1772 full_mode = GET_MODE (x);
1774 for (i = 0; i < HASH_SIZE; i++)
1776 struct table_elt *next;
1778 for (p = table[i]; p; p = next)
1780 next = p->next_same_hash;
1781 if (p->in_memory)
1783 struct check_dependence_data d;
1785 /* Just canonicalize the expression once;
1786 otherwise each time we call invalidate
1787 true_dependence will canonicalize the
1788 expression again. */
1789 if (!p->canon_exp)
1790 p->canon_exp = canon_rtx (p->exp);
1791 d.exp = x;
1792 d.addr = addr;
1793 d.mode = full_mode;
1794 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1795 remove_from_table (p, i);
1799 return;
1801 default:
1802 gcc_unreachable ();
1806 /* Remove all expressions that refer to register REGNO,
1807 since they are already invalid, and we are about to
1808 mark that register valid again and don't want the old
1809 expressions to reappear as valid. */
1811 static void
1812 remove_invalid_refs (unsigned int regno)
1814 unsigned int i;
1815 struct table_elt *p, *next;
1817 for (i = 0; i < HASH_SIZE; i++)
1818 for (p = table[i]; p; p = next)
1820 next = p->next_same_hash;
1821 if (!REG_P (p->exp)
1822 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1823 remove_from_table (p, i);
1827 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1828 and mode MODE. */
1829 static void
1830 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1831 enum machine_mode mode)
1833 unsigned int i;
1834 struct table_elt *p, *next;
1835 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1837 for (i = 0; i < HASH_SIZE; i++)
1838 for (p = table[i]; p; p = next)
1840 rtx exp = p->exp;
1841 next = p->next_same_hash;
1843 if (!REG_P (exp)
1844 && (GET_CODE (exp) != SUBREG
1845 || !REG_P (SUBREG_REG (exp))
1846 || REGNO (SUBREG_REG (exp)) != regno
1847 || (((SUBREG_BYTE (exp)
1848 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1849 && SUBREG_BYTE (exp) <= end))
1850 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1851 remove_from_table (p, i);
1855 /* Recompute the hash codes of any valid entries in the hash table that
1856 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1858 This is called when we make a jump equivalence. */
1860 static void
1861 rehash_using_reg (rtx x)
1863 unsigned int i;
1864 struct table_elt *p, *next;
1865 unsigned hash;
1867 if (GET_CODE (x) == SUBREG)
1868 x = SUBREG_REG (x);
1870 /* If X is not a register or if the register is known not to be in any
1871 valid entries in the table, we have no work to do. */
1873 if (!REG_P (x)
1874 || REG_IN_TABLE (REGNO (x)) < 0
1875 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1876 return;
1878 /* Scan all hash chains looking for valid entries that mention X.
1879 If we find one and it is in the wrong hash chain, move it. */
1881 for (i = 0; i < HASH_SIZE; i++)
1882 for (p = table[i]; p; p = next)
1884 next = p->next_same_hash;
1885 if (reg_mentioned_p (x, p->exp)
1886 && exp_equiv_p (p->exp, p->exp, 1, false)
1887 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1889 if (p->next_same_hash)
1890 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1892 if (p->prev_same_hash)
1893 p->prev_same_hash->next_same_hash = p->next_same_hash;
1894 else
1895 table[i] = p->next_same_hash;
1897 p->next_same_hash = table[hash];
1898 p->prev_same_hash = 0;
1899 if (table[hash])
1900 table[hash]->prev_same_hash = p;
1901 table[hash] = p;
1906 /* Remove from the hash table any expression that is a call-clobbered
1907 register. Also update their TICK values. */
1909 static void
1910 invalidate_for_call (void)
1912 unsigned int regno, endregno;
1913 unsigned int i;
1914 unsigned hash;
1915 struct table_elt *p, *next;
1916 int in_table = 0;
1918 /* Go through all the hard registers. For each that is clobbered in
1919 a CALL_INSN, remove the register from quantity chains and update
1920 reg_tick if defined. Also see if any of these registers is currently
1921 in the table. */
1923 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1924 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1926 delete_reg_equiv (regno);
1927 if (REG_TICK (regno) >= 0)
1929 REG_TICK (regno)++;
1930 SUBREG_TICKED (regno) = -1;
1933 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1936 /* In the case where we have no call-clobbered hard registers in the
1937 table, we are done. Otherwise, scan the table and remove any
1938 entry that overlaps a call-clobbered register. */
1940 if (in_table)
1941 for (hash = 0; hash < HASH_SIZE; hash++)
1942 for (p = table[hash]; p; p = next)
1944 next = p->next_same_hash;
1946 if (!REG_P (p->exp)
1947 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1948 continue;
1950 regno = REGNO (p->exp);
1951 endregno = END_HARD_REGNO (p->exp);
1953 for (i = regno; i < endregno; i++)
1954 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1956 remove_from_table (p, hash);
1957 break;
1962 /* Given an expression X of type CONST,
1963 and ELT which is its table entry (or 0 if it
1964 is not in the hash table),
1965 return an alternate expression for X as a register plus integer.
1966 If none can be found, return 0. */
1968 static rtx
1969 use_related_value (rtx x, struct table_elt *elt)
1971 struct table_elt *relt = 0;
1972 struct table_elt *p, *q;
1973 HOST_WIDE_INT offset;
1975 /* First, is there anything related known?
1976 If we have a table element, we can tell from that.
1977 Otherwise, must look it up. */
1979 if (elt != 0 && elt->related_value != 0)
1980 relt = elt;
1981 else if (elt == 0 && GET_CODE (x) == CONST)
1983 rtx subexp = get_related_value (x);
1984 if (subexp != 0)
1985 relt = lookup (subexp,
1986 SAFE_HASH (subexp, GET_MODE (subexp)),
1987 GET_MODE (subexp));
1990 if (relt == 0)
1991 return 0;
1993 /* Search all related table entries for one that has an
1994 equivalent register. */
1996 p = relt;
1997 while (1)
1999 /* This loop is strange in that it is executed in two different cases.
2000 The first is when X is already in the table. Then it is searching
2001 the RELATED_VALUE list of X's class (RELT). The second case is when
2002 X is not in the table. Then RELT points to a class for the related
2003 value.
2005 Ensure that, whatever case we are in, that we ignore classes that have
2006 the same value as X. */
2008 if (rtx_equal_p (x, p->exp))
2009 q = 0;
2010 else
2011 for (q = p->first_same_value; q; q = q->next_same_value)
2012 if (REG_P (q->exp))
2013 break;
2015 if (q)
2016 break;
2018 p = p->related_value;
2020 /* We went all the way around, so there is nothing to be found.
2021 Alternatively, perhaps RELT was in the table for some other reason
2022 and it has no related values recorded. */
2023 if (p == relt || p == 0)
2024 break;
2027 if (q == 0)
2028 return 0;
2030 offset = (get_integer_term (x) - get_integer_term (p->exp));
2031 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2032 return plus_constant (q->exp, offset);
2035 /* Hash a string. Just add its bytes up. */
2036 static inline unsigned
2037 hash_rtx_string (const char *ps)
2039 unsigned hash = 0;
2040 const unsigned char *p = (const unsigned char *) ps;
2042 if (p)
2043 while (*p)
2044 hash += *p++;
2046 return hash;
2049 /* Hash an rtx. We are careful to make sure the value is never negative.
2050 Equivalent registers hash identically.
2051 MODE is used in hashing for CONST_INTs only;
2052 otherwise the mode of X is used.
2054 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2056 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2057 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2059 Note that cse_insn knows that the hash code of a MEM expression
2060 is just (int) MEM plus the hash code of the address. */
2062 unsigned
2063 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2064 int *hash_arg_in_memory_p, bool have_reg_qty)
2066 int i, j;
2067 unsigned hash = 0;
2068 enum rtx_code code;
2069 const char *fmt;
2071 /* Used to turn recursion into iteration. We can't rely on GCC's
2072 tail-recursion elimination since we need to keep accumulating values
2073 in HASH. */
2074 repeat:
2075 if (x == 0)
2076 return hash;
2078 code = GET_CODE (x);
2079 switch (code)
2081 case REG:
2083 unsigned int regno = REGNO (x);
2085 if (!reload_completed)
2087 /* On some machines, we can't record any non-fixed hard register,
2088 because extending its life will cause reload problems. We
2089 consider ap, fp, sp, gp to be fixed for this purpose.
2091 We also consider CCmode registers to be fixed for this purpose;
2092 failure to do so leads to failure to simplify 0<100 type of
2093 conditionals.
2095 On all machines, we can't record any global registers.
2096 Nor should we record any register that is in a small
2097 class, as defined by CLASS_LIKELY_SPILLED_P. */
2098 bool record;
2100 if (regno >= FIRST_PSEUDO_REGISTER)
2101 record = true;
2102 else if (x == frame_pointer_rtx
2103 || x == hard_frame_pointer_rtx
2104 || x == arg_pointer_rtx
2105 || x == stack_pointer_rtx
2106 || x == pic_offset_table_rtx)
2107 record = true;
2108 else if (global_regs[regno])
2109 record = false;
2110 else if (fixed_regs[regno])
2111 record = true;
2112 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2113 record = true;
2114 else if (SMALL_REGISTER_CLASSES)
2115 record = false;
2116 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2117 record = false;
2118 else
2119 record = true;
2121 if (!record)
2123 *do_not_record_p = 1;
2124 return 0;
2128 hash += ((unsigned int) REG << 7);
2129 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2130 return hash;
2133 /* We handle SUBREG of a REG specially because the underlying
2134 reg changes its hash value with every value change; we don't
2135 want to have to forget unrelated subregs when one subreg changes. */
2136 case SUBREG:
2138 if (REG_P (SUBREG_REG (x)))
2140 hash += (((unsigned int) SUBREG << 7)
2141 + REGNO (SUBREG_REG (x))
2142 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2143 return hash;
2145 break;
2148 case CONST_INT:
2149 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2150 + (unsigned int) INTVAL (x));
2151 return hash;
2153 case CONST_DOUBLE:
2154 /* This is like the general case, except that it only counts
2155 the integers representing the constant. */
2156 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2157 if (GET_MODE (x) != VOIDmode)
2158 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2159 else
2160 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2161 + (unsigned int) CONST_DOUBLE_HIGH (x));
2162 return hash;
2164 case CONST_FIXED:
2165 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2166 hash += fixed_hash (CONST_FIXED_VALUE (x));
2167 return hash;
2169 case CONST_VECTOR:
2171 int units;
2172 rtx elt;
2174 units = CONST_VECTOR_NUNITS (x);
2176 for (i = 0; i < units; ++i)
2178 elt = CONST_VECTOR_ELT (x, i);
2179 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2180 hash_arg_in_memory_p, have_reg_qty);
2183 return hash;
2186 /* Assume there is only one rtx object for any given label. */
2187 case LABEL_REF:
2188 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2189 differences and differences between each stage's debugging dumps. */
2190 hash += (((unsigned int) LABEL_REF << 7)
2191 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2192 return hash;
2194 case SYMBOL_REF:
2196 /* Don't hash on the symbol's address to avoid bootstrap differences.
2197 Different hash values may cause expressions to be recorded in
2198 different orders and thus different registers to be used in the
2199 final assembler. This also avoids differences in the dump files
2200 between various stages. */
2201 unsigned int h = 0;
2202 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2204 while (*p)
2205 h += (h << 7) + *p++; /* ??? revisit */
2207 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2208 return hash;
2211 case MEM:
2212 /* We don't record if marked volatile or if BLKmode since we don't
2213 know the size of the move. */
2214 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2216 *do_not_record_p = 1;
2217 return 0;
2219 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2220 *hash_arg_in_memory_p = 1;
2222 /* Now that we have already found this special case,
2223 might as well speed it up as much as possible. */
2224 hash += (unsigned) MEM;
2225 x = XEXP (x, 0);
2226 goto repeat;
2228 case USE:
2229 /* A USE that mentions non-volatile memory needs special
2230 handling since the MEM may be BLKmode which normally
2231 prevents an entry from being made. Pure calls are
2232 marked by a USE which mentions BLKmode memory.
2233 See calls.c:emit_call_1. */
2234 if (MEM_P (XEXP (x, 0))
2235 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2237 hash += (unsigned) USE;
2238 x = XEXP (x, 0);
2240 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2241 *hash_arg_in_memory_p = 1;
2243 /* Now that we have already found this special case,
2244 might as well speed it up as much as possible. */
2245 hash += (unsigned) MEM;
2246 x = XEXP (x, 0);
2247 goto repeat;
2249 break;
2251 case PRE_DEC:
2252 case PRE_INC:
2253 case POST_DEC:
2254 case POST_INC:
2255 case PRE_MODIFY:
2256 case POST_MODIFY:
2257 case PC:
2258 case CC0:
2259 case CALL:
2260 case UNSPEC_VOLATILE:
2261 *do_not_record_p = 1;
2262 return 0;
2264 case ASM_OPERANDS:
2265 if (MEM_VOLATILE_P (x))
2267 *do_not_record_p = 1;
2268 return 0;
2270 else
2272 /* We don't want to take the filename and line into account. */
2273 hash += (unsigned) code + (unsigned) GET_MODE (x)
2274 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2275 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2276 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2278 if (ASM_OPERANDS_INPUT_LENGTH (x))
2280 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2282 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2283 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2284 do_not_record_p, hash_arg_in_memory_p,
2285 have_reg_qty)
2286 + hash_rtx_string
2287 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2290 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2291 x = ASM_OPERANDS_INPUT (x, 0);
2292 mode = GET_MODE (x);
2293 goto repeat;
2296 return hash;
2298 break;
2300 default:
2301 break;
2304 i = GET_RTX_LENGTH (code) - 1;
2305 hash += (unsigned) code + (unsigned) GET_MODE (x);
2306 fmt = GET_RTX_FORMAT (code);
2307 for (; i >= 0; i--)
2309 switch (fmt[i])
2311 case 'e':
2312 /* If we are about to do the last recursive call
2313 needed at this level, change it into iteration.
2314 This function is called enough to be worth it. */
2315 if (i == 0)
2317 x = XEXP (x, i);
2318 goto repeat;
2321 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2322 hash_arg_in_memory_p, have_reg_qty);
2323 break;
2325 case 'E':
2326 for (j = 0; j < XVECLEN (x, i); j++)
2327 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2328 hash_arg_in_memory_p, have_reg_qty);
2329 break;
2331 case 's':
2332 hash += hash_rtx_string (XSTR (x, i));
2333 break;
2335 case 'i':
2336 hash += (unsigned int) XINT (x, i);
2337 break;
2339 case '0': case 't':
2340 /* Unused. */
2341 break;
2343 default:
2344 gcc_unreachable ();
2348 return hash;
2351 /* Hash an rtx X for cse via hash_rtx.
2352 Stores 1 in do_not_record if any subexpression is volatile.
2353 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2354 does not have the RTX_UNCHANGING_P bit set. */
2356 static inline unsigned
2357 canon_hash (rtx x, enum machine_mode mode)
2359 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2362 /* Like canon_hash but with no side effects, i.e. do_not_record
2363 and hash_arg_in_memory are not changed. */
2365 static inline unsigned
2366 safe_hash (rtx x, enum machine_mode mode)
2368 int dummy_do_not_record;
2369 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2372 /* Return 1 iff X and Y would canonicalize into the same thing,
2373 without actually constructing the canonicalization of either one.
2374 If VALIDATE is nonzero,
2375 we assume X is an expression being processed from the rtl
2376 and Y was found in the hash table. We check register refs
2377 in Y for being marked as valid.
2379 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2382 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2384 int i, j;
2385 enum rtx_code code;
2386 const char *fmt;
2388 /* Note: it is incorrect to assume an expression is equivalent to itself
2389 if VALIDATE is nonzero. */
2390 if (x == y && !validate)
2391 return 1;
2393 if (x == 0 || y == 0)
2394 return x == y;
2396 code = GET_CODE (x);
2397 if (code != GET_CODE (y))
2398 return 0;
2400 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2401 if (GET_MODE (x) != GET_MODE (y))
2402 return 0;
2404 switch (code)
2406 case PC:
2407 case CC0:
2408 case CONST_INT:
2409 case CONST_DOUBLE:
2410 case CONST_FIXED:
2411 return x == y;
2413 case LABEL_REF:
2414 return XEXP (x, 0) == XEXP (y, 0);
2416 case SYMBOL_REF:
2417 return XSTR (x, 0) == XSTR (y, 0);
2419 case REG:
2420 if (for_gcse)
2421 return REGNO (x) == REGNO (y);
2422 else
2424 unsigned int regno = REGNO (y);
2425 unsigned int i;
2426 unsigned int endregno = END_REGNO (y);
2428 /* If the quantities are not the same, the expressions are not
2429 equivalent. If there are and we are not to validate, they
2430 are equivalent. Otherwise, ensure all regs are up-to-date. */
2432 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2433 return 0;
2435 if (! validate)
2436 return 1;
2438 for (i = regno; i < endregno; i++)
2439 if (REG_IN_TABLE (i) != REG_TICK (i))
2440 return 0;
2442 return 1;
2445 case MEM:
2446 if (for_gcse)
2448 /* A volatile mem should not be considered equivalent to any
2449 other. */
2450 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2451 return 0;
2453 /* Can't merge two expressions in different alias sets, since we
2454 can decide that the expression is transparent in a block when
2455 it isn't, due to it being set with the different alias set.
2457 Also, can't merge two expressions with different MEM_ATTRS.
2458 They could e.g. be two different entities allocated into the
2459 same space on the stack (see e.g. PR25130). In that case, the
2460 MEM addresses can be the same, even though the two MEMs are
2461 absolutely not equivalent.
2463 But because really all MEM attributes should be the same for
2464 equivalent MEMs, we just use the invariant that MEMs that have
2465 the same attributes share the same mem_attrs data structure. */
2466 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2467 return 0;
2469 break;
2471 /* For commutative operations, check both orders. */
2472 case PLUS:
2473 case MULT:
2474 case AND:
2475 case IOR:
2476 case XOR:
2477 case NE:
2478 case EQ:
2479 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2480 validate, for_gcse)
2481 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2482 validate, for_gcse))
2483 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2484 validate, for_gcse)
2485 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2486 validate, for_gcse)));
2488 case ASM_OPERANDS:
2489 /* We don't use the generic code below because we want to
2490 disregard filename and line numbers. */
2492 /* A volatile asm isn't equivalent to any other. */
2493 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2494 return 0;
2496 if (GET_MODE (x) != GET_MODE (y)
2497 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2498 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2499 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2500 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2501 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2502 return 0;
2504 if (ASM_OPERANDS_INPUT_LENGTH (x))
2506 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2507 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2508 ASM_OPERANDS_INPUT (y, i),
2509 validate, for_gcse)
2510 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2511 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2512 return 0;
2515 return 1;
2517 default:
2518 break;
2521 /* Compare the elements. If any pair of corresponding elements
2522 fail to match, return 0 for the whole thing. */
2524 fmt = GET_RTX_FORMAT (code);
2525 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2527 switch (fmt[i])
2529 case 'e':
2530 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2531 validate, for_gcse))
2532 return 0;
2533 break;
2535 case 'E':
2536 if (XVECLEN (x, i) != XVECLEN (y, i))
2537 return 0;
2538 for (j = 0; j < XVECLEN (x, i); j++)
2539 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2540 validate, for_gcse))
2541 return 0;
2542 break;
2544 case 's':
2545 if (strcmp (XSTR (x, i), XSTR (y, i)))
2546 return 0;
2547 break;
2549 case 'i':
2550 if (XINT (x, i) != XINT (y, i))
2551 return 0;
2552 break;
2554 case 'w':
2555 if (XWINT (x, i) != XWINT (y, i))
2556 return 0;
2557 break;
2559 case '0':
2560 case 't':
2561 break;
2563 default:
2564 gcc_unreachable ();
2568 return 1;
2571 /* Return 1 if X has a value that can vary even between two
2572 executions of the program. 0 means X can be compared reliably
2573 against certain constants or near-constants. */
2575 static bool
2576 cse_rtx_varies_p (const_rtx x, bool from_alias)
2578 /* We need not check for X and the equivalence class being of the same
2579 mode because if X is equivalent to a constant in some mode, it
2580 doesn't vary in any mode. */
2582 if (REG_P (x)
2583 && REGNO_QTY_VALID_P (REGNO (x)))
2585 int x_q = REG_QTY (REGNO (x));
2586 struct qty_table_elem *x_ent = &qty_table[x_q];
2588 if (GET_MODE (x) == x_ent->mode
2589 && x_ent->const_rtx != NULL_RTX)
2590 return 0;
2593 if (GET_CODE (x) == PLUS
2594 && GET_CODE (XEXP (x, 1)) == CONST_INT
2595 && REG_P (XEXP (x, 0))
2596 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2598 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2599 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2601 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2602 && x0_ent->const_rtx != NULL_RTX)
2603 return 0;
2606 /* This can happen as the result of virtual register instantiation, if
2607 the initial constant is too large to be a valid address. This gives
2608 us a three instruction sequence, load large offset into a register,
2609 load fp minus a constant into a register, then a MEM which is the
2610 sum of the two `constant' registers. */
2611 if (GET_CODE (x) == PLUS
2612 && REG_P (XEXP (x, 0))
2613 && REG_P (XEXP (x, 1))
2614 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2615 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2617 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2618 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2619 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2620 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2622 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2623 && x0_ent->const_rtx != NULL_RTX
2624 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2625 && x1_ent->const_rtx != NULL_RTX)
2626 return 0;
2629 return rtx_varies_p (x, from_alias);
2632 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2633 the result if necessary. INSN is as for canon_reg. */
2635 static void
2636 validate_canon_reg (rtx *xloc, rtx insn)
2638 if (*xloc)
2640 rtx new = canon_reg (*xloc, insn);
2642 /* If replacing pseudo with hard reg or vice versa, ensure the
2643 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2644 gcc_assert (insn && new);
2645 validate_change (insn, xloc, new, 1);
2649 /* Canonicalize an expression:
2650 replace each register reference inside it
2651 with the "oldest" equivalent register.
2653 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2654 after we make our substitution. The calls are made with IN_GROUP nonzero
2655 so apply_change_group must be called upon the outermost return from this
2656 function (unless INSN is zero). The result of apply_change_group can
2657 generally be discarded since the changes we are making are optional. */
2659 static rtx
2660 canon_reg (rtx x, rtx insn)
2662 int i;
2663 enum rtx_code code;
2664 const char *fmt;
2666 if (x == 0)
2667 return x;
2669 code = GET_CODE (x);
2670 switch (code)
2672 case PC:
2673 case CC0:
2674 case CONST:
2675 case CONST_INT:
2676 case CONST_DOUBLE:
2677 case CONST_FIXED:
2678 case CONST_VECTOR:
2679 case SYMBOL_REF:
2680 case LABEL_REF:
2681 case ADDR_VEC:
2682 case ADDR_DIFF_VEC:
2683 return x;
2685 case REG:
2687 int first;
2688 int q;
2689 struct qty_table_elem *ent;
2691 /* Never replace a hard reg, because hard regs can appear
2692 in more than one machine mode, and we must preserve the mode
2693 of each occurrence. Also, some hard regs appear in
2694 MEMs that are shared and mustn't be altered. Don't try to
2695 replace any reg that maps to a reg of class NO_REGS. */
2696 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2697 || ! REGNO_QTY_VALID_P (REGNO (x)))
2698 return x;
2700 q = REG_QTY (REGNO (x));
2701 ent = &qty_table[q];
2702 first = ent->first_reg;
2703 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2704 : REGNO_REG_CLASS (first) == NO_REGS ? x
2705 : gen_rtx_REG (ent->mode, first));
2708 default:
2709 break;
2712 fmt = GET_RTX_FORMAT (code);
2713 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2715 int j;
2717 if (fmt[i] == 'e')
2718 validate_canon_reg (&XEXP (x, i), insn);
2719 else if (fmt[i] == 'E')
2720 for (j = 0; j < XVECLEN (x, i); j++)
2721 validate_canon_reg (&XVECEXP (x, i, j), insn);
2724 return x;
2727 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2728 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2729 what values are being compared.
2731 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2732 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2733 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2734 compared to produce cc0.
2736 The return value is the comparison operator and is either the code of
2737 A or the code corresponding to the inverse of the comparison. */
2739 static enum rtx_code
2740 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2741 enum machine_mode *pmode1, enum machine_mode *pmode2)
2743 rtx arg1, arg2;
2745 arg1 = *parg1, arg2 = *parg2;
2747 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2749 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2751 /* Set nonzero when we find something of interest. */
2752 rtx x = 0;
2753 int reverse_code = 0;
2754 struct table_elt *p = 0;
2756 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2757 On machines with CC0, this is the only case that can occur, since
2758 fold_rtx will return the COMPARE or item being compared with zero
2759 when given CC0. */
2761 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2762 x = arg1;
2764 /* If ARG1 is a comparison operator and CODE is testing for
2765 STORE_FLAG_VALUE, get the inner arguments. */
2767 else if (COMPARISON_P (arg1))
2769 #ifdef FLOAT_STORE_FLAG_VALUE
2770 REAL_VALUE_TYPE fsfv;
2771 #endif
2773 if (code == NE
2774 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2775 && code == LT && STORE_FLAG_VALUE == -1)
2776 #ifdef FLOAT_STORE_FLAG_VALUE
2777 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2778 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2779 REAL_VALUE_NEGATIVE (fsfv)))
2780 #endif
2782 x = arg1;
2783 else if (code == EQ
2784 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2785 && code == GE && STORE_FLAG_VALUE == -1)
2786 #ifdef FLOAT_STORE_FLAG_VALUE
2787 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2788 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2789 REAL_VALUE_NEGATIVE (fsfv)))
2790 #endif
2792 x = arg1, reverse_code = 1;
2795 /* ??? We could also check for
2797 (ne (and (eq (...) (const_int 1))) (const_int 0))
2799 and related forms, but let's wait until we see them occurring. */
2801 if (x == 0)
2802 /* Look up ARG1 in the hash table and see if it has an equivalence
2803 that lets us see what is being compared. */
2804 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2805 if (p)
2807 p = p->first_same_value;
2809 /* If what we compare is already known to be constant, that is as
2810 good as it gets.
2811 We need to break the loop in this case, because otherwise we
2812 can have an infinite loop when looking at a reg that is known
2813 to be a constant which is the same as a comparison of a reg
2814 against zero which appears later in the insn stream, which in
2815 turn is constant and the same as the comparison of the first reg
2816 against zero... */
2817 if (p->is_const)
2818 break;
2821 for (; p; p = p->next_same_value)
2823 enum machine_mode inner_mode = GET_MODE (p->exp);
2824 #ifdef FLOAT_STORE_FLAG_VALUE
2825 REAL_VALUE_TYPE fsfv;
2826 #endif
2828 /* If the entry isn't valid, skip it. */
2829 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2830 continue;
2832 if (GET_CODE (p->exp) == COMPARE
2833 /* Another possibility is that this machine has a compare insn
2834 that includes the comparison code. In that case, ARG1 would
2835 be equivalent to a comparison operation that would set ARG1 to
2836 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2837 ORIG_CODE is the actual comparison being done; if it is an EQ,
2838 we must reverse ORIG_CODE. On machine with a negative value
2839 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2840 || ((code == NE
2841 || (code == LT
2842 && GET_MODE_CLASS (inner_mode) == MODE_INT
2843 && (GET_MODE_BITSIZE (inner_mode)
2844 <= HOST_BITS_PER_WIDE_INT)
2845 && (STORE_FLAG_VALUE
2846 & ((HOST_WIDE_INT) 1
2847 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2848 #ifdef FLOAT_STORE_FLAG_VALUE
2849 || (code == LT
2850 && SCALAR_FLOAT_MODE_P (inner_mode)
2851 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2852 REAL_VALUE_NEGATIVE (fsfv)))
2853 #endif
2855 && COMPARISON_P (p->exp)))
2857 x = p->exp;
2858 break;
2860 else if ((code == EQ
2861 || (code == GE
2862 && GET_MODE_CLASS (inner_mode) == MODE_INT
2863 && (GET_MODE_BITSIZE (inner_mode)
2864 <= HOST_BITS_PER_WIDE_INT)
2865 && (STORE_FLAG_VALUE
2866 & ((HOST_WIDE_INT) 1
2867 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2868 #ifdef FLOAT_STORE_FLAG_VALUE
2869 || (code == GE
2870 && SCALAR_FLOAT_MODE_P (inner_mode)
2871 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2872 REAL_VALUE_NEGATIVE (fsfv)))
2873 #endif
2875 && COMPARISON_P (p->exp))
2877 reverse_code = 1;
2878 x = p->exp;
2879 break;
2882 /* If this non-trapping address, e.g. fp + constant, the
2883 equivalent is a better operand since it may let us predict
2884 the value of the comparison. */
2885 else if (!rtx_addr_can_trap_p (p->exp))
2887 arg1 = p->exp;
2888 continue;
2892 /* If we didn't find a useful equivalence for ARG1, we are done.
2893 Otherwise, set up for the next iteration. */
2894 if (x == 0)
2895 break;
2897 /* If we need to reverse the comparison, make sure that that is
2898 possible -- we can't necessarily infer the value of GE from LT
2899 with floating-point operands. */
2900 if (reverse_code)
2902 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2903 if (reversed == UNKNOWN)
2904 break;
2905 else
2906 code = reversed;
2908 else if (COMPARISON_P (x))
2909 code = GET_CODE (x);
2910 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2913 /* Return our results. Return the modes from before fold_rtx
2914 because fold_rtx might produce const_int, and then it's too late. */
2915 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2916 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2918 return code;
2921 /* If X is a nontrivial arithmetic operation on an argument for which
2922 a constant value can be determined, return the result of operating
2923 on that value, as a constant. Otherwise, return X, possibly with
2924 one or more operands changed to a forward-propagated constant.
2926 If X is a register whose contents are known, we do NOT return
2927 those contents here; equiv_constant is called to perform that task.
2928 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2930 INSN is the insn that we may be modifying. If it is 0, make a copy
2931 of X before modifying it. */
2933 static rtx
2934 fold_rtx (rtx x, rtx insn)
2936 enum rtx_code code;
2937 enum machine_mode mode;
2938 const char *fmt;
2939 int i;
2940 rtx new = 0;
2941 int changed = 0;
2943 /* Operands of X. */
2944 rtx folded_arg0;
2945 rtx folded_arg1;
2947 /* Constant equivalents of first three operands of X;
2948 0 when no such equivalent is known. */
2949 rtx const_arg0;
2950 rtx const_arg1;
2951 rtx const_arg2;
2953 /* The mode of the first operand of X. We need this for sign and zero
2954 extends. */
2955 enum machine_mode mode_arg0;
2957 if (x == 0)
2958 return x;
2960 /* Try to perform some initial simplifications on X. */
2961 code = GET_CODE (x);
2962 switch (code)
2964 case MEM:
2965 case SUBREG:
2966 if ((new = equiv_constant (x)) != NULL_RTX)
2967 return new;
2968 return x;
2970 case CONST:
2971 case CONST_INT:
2972 case CONST_DOUBLE:
2973 case CONST_FIXED:
2974 case CONST_VECTOR:
2975 case SYMBOL_REF:
2976 case LABEL_REF:
2977 case REG:
2978 case PC:
2979 /* No use simplifying an EXPR_LIST
2980 since they are used only for lists of args
2981 in a function call's REG_EQUAL note. */
2982 case EXPR_LIST:
2983 return x;
2985 #ifdef HAVE_cc0
2986 case CC0:
2987 return prev_insn_cc0;
2988 #endif
2990 case ASM_OPERANDS:
2991 if (insn)
2993 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2994 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
2995 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
2997 return x;
2999 #ifdef NO_FUNCTION_CSE
3000 case CALL:
3001 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3002 return x;
3003 break;
3004 #endif
3006 /* Anything else goes through the loop below. */
3007 default:
3008 break;
3011 mode = GET_MODE (x);
3012 const_arg0 = 0;
3013 const_arg1 = 0;
3014 const_arg2 = 0;
3015 mode_arg0 = VOIDmode;
3017 /* Try folding our operands.
3018 Then see which ones have constant values known. */
3020 fmt = GET_RTX_FORMAT (code);
3021 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3022 if (fmt[i] == 'e')
3024 rtx folded_arg = XEXP (x, i), const_arg;
3025 enum machine_mode mode_arg = GET_MODE (folded_arg);
3027 switch (GET_CODE (folded_arg))
3029 case MEM:
3030 case REG:
3031 case SUBREG:
3032 const_arg = equiv_constant (folded_arg);
3033 break;
3035 case CONST:
3036 case CONST_INT:
3037 case SYMBOL_REF:
3038 case LABEL_REF:
3039 case CONST_DOUBLE:
3040 case CONST_FIXED:
3041 case CONST_VECTOR:
3042 const_arg = folded_arg;
3043 break;
3045 #ifdef HAVE_cc0
3046 case CC0:
3047 folded_arg = prev_insn_cc0;
3048 mode_arg = prev_insn_cc0_mode;
3049 const_arg = equiv_constant (folded_arg);
3050 break;
3051 #endif
3053 default:
3054 folded_arg = fold_rtx (folded_arg, insn);
3055 const_arg = equiv_constant (folded_arg);
3056 break;
3059 /* For the first three operands, see if the operand
3060 is constant or equivalent to a constant. */
3061 switch (i)
3063 case 0:
3064 folded_arg0 = folded_arg;
3065 const_arg0 = const_arg;
3066 mode_arg0 = mode_arg;
3067 break;
3068 case 1:
3069 folded_arg1 = folded_arg;
3070 const_arg1 = const_arg;
3071 break;
3072 case 2:
3073 const_arg2 = const_arg;
3074 break;
3077 /* Pick the least expensive of the argument and an equivalent constant
3078 argument. */
3079 if (const_arg != 0
3080 && const_arg != folded_arg
3081 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3083 /* It's not safe to substitute the operand of a conversion
3084 operator with a constant, as the conversion's identity
3085 depends upon the mode of its operand. This optimization
3086 is handled by the call to simplify_unary_operation. */
3087 && (GET_RTX_CLASS (code) != RTX_UNARY
3088 || GET_MODE (const_arg) == mode_arg0
3089 || (code != ZERO_EXTEND
3090 && code != SIGN_EXTEND
3091 && code != TRUNCATE
3092 && code != FLOAT_TRUNCATE
3093 && code != FLOAT_EXTEND
3094 && code != FLOAT
3095 && code != FIX
3096 && code != UNSIGNED_FLOAT
3097 && code != UNSIGNED_FIX)))
3098 folded_arg = const_arg;
3100 if (folded_arg == XEXP (x, i))
3101 continue;
3103 if (insn == NULL_RTX && !changed)
3104 x = copy_rtx (x);
3105 changed = 1;
3106 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3109 if (changed)
3111 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3112 consistent with the order in X. */
3113 if (canonicalize_change_group (insn, x))
3115 rtx tem;
3116 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3117 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3120 apply_change_group ();
3123 /* If X is an arithmetic operation, see if we can simplify it. */
3125 switch (GET_RTX_CLASS (code))
3127 case RTX_UNARY:
3129 int is_const = 0;
3131 /* We can't simplify extension ops unless we know the
3132 original mode. */
3133 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3134 && mode_arg0 == VOIDmode)
3135 break;
3137 /* If we had a CONST, strip it off and put it back later if we
3138 fold. */
3139 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3140 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3142 new = simplify_unary_operation (code, mode,
3143 const_arg0 ? const_arg0 : folded_arg0,
3144 mode_arg0);
3145 /* NEG of PLUS could be converted into MINUS, but that causes
3146 expressions of the form
3147 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3148 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3149 FIXME: those ports should be fixed. */
3150 if (new != 0 && is_const
3151 && GET_CODE (new) == PLUS
3152 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3153 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3154 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3155 new = gen_rtx_CONST (mode, new);
3157 break;
3159 case RTX_COMPARE:
3160 case RTX_COMM_COMPARE:
3161 /* See what items are actually being compared and set FOLDED_ARG[01]
3162 to those values and CODE to the actual comparison code. If any are
3163 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3164 do anything if both operands are already known to be constant. */
3166 /* ??? Vector mode comparisons are not supported yet. */
3167 if (VECTOR_MODE_P (mode))
3168 break;
3170 if (const_arg0 == 0 || const_arg1 == 0)
3172 struct table_elt *p0, *p1;
3173 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3174 enum machine_mode mode_arg1;
3176 #ifdef FLOAT_STORE_FLAG_VALUE
3177 if (SCALAR_FLOAT_MODE_P (mode))
3179 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3180 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3181 false_rtx = CONST0_RTX (mode);
3183 #endif
3185 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3186 &mode_arg0, &mode_arg1);
3188 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3189 what kinds of things are being compared, so we can't do
3190 anything with this comparison. */
3192 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3193 break;
3195 const_arg0 = equiv_constant (folded_arg0);
3196 const_arg1 = equiv_constant (folded_arg1);
3198 /* If we do not now have two constants being compared, see
3199 if we can nevertheless deduce some things about the
3200 comparison. */
3201 if (const_arg0 == 0 || const_arg1 == 0)
3203 if (const_arg1 != NULL)
3205 rtx cheapest_simplification;
3206 int cheapest_cost;
3207 rtx simp_result;
3208 struct table_elt *p;
3210 /* See if we can find an equivalent of folded_arg0
3211 that gets us a cheaper expression, possibly a
3212 constant through simplifications. */
3213 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3214 mode_arg0);
3216 if (p != NULL)
3218 cheapest_simplification = x;
3219 cheapest_cost = COST (x);
3221 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3223 int cost;
3225 /* If the entry isn't valid, skip it. */
3226 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3227 continue;
3229 /* Try to simplify using this equivalence. */
3230 simp_result
3231 = simplify_relational_operation (code, mode,
3232 mode_arg0,
3233 p->exp,
3234 const_arg1);
3236 if (simp_result == NULL)
3237 continue;
3239 cost = COST (simp_result);
3240 if (cost < cheapest_cost)
3242 cheapest_cost = cost;
3243 cheapest_simplification = simp_result;
3247 /* If we have a cheaper expression now, use that
3248 and try folding it further, from the top. */
3249 if (cheapest_simplification != x)
3250 return fold_rtx (copy_rtx (cheapest_simplification),
3251 insn);
3255 /* See if the two operands are the same. */
3257 if ((REG_P (folded_arg0)
3258 && REG_P (folded_arg1)
3259 && (REG_QTY (REGNO (folded_arg0))
3260 == REG_QTY (REGNO (folded_arg1))))
3261 || ((p0 = lookup (folded_arg0,
3262 SAFE_HASH (folded_arg0, mode_arg0),
3263 mode_arg0))
3264 && (p1 = lookup (folded_arg1,
3265 SAFE_HASH (folded_arg1, mode_arg0),
3266 mode_arg0))
3267 && p0->first_same_value == p1->first_same_value))
3268 folded_arg1 = folded_arg0;
3270 /* If FOLDED_ARG0 is a register, see if the comparison we are
3271 doing now is either the same as we did before or the reverse
3272 (we only check the reverse if not floating-point). */
3273 else if (REG_P (folded_arg0))
3275 int qty = REG_QTY (REGNO (folded_arg0));
3277 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3279 struct qty_table_elem *ent = &qty_table[qty];
3281 if ((comparison_dominates_p (ent->comparison_code, code)
3282 || (! FLOAT_MODE_P (mode_arg0)
3283 && comparison_dominates_p (ent->comparison_code,
3284 reverse_condition (code))))
3285 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3286 || (const_arg1
3287 && rtx_equal_p (ent->comparison_const,
3288 const_arg1))
3289 || (REG_P (folded_arg1)
3290 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3291 return (comparison_dominates_p (ent->comparison_code, code)
3292 ? true_rtx : false_rtx);
3298 /* If we are comparing against zero, see if the first operand is
3299 equivalent to an IOR with a constant. If so, we may be able to
3300 determine the result of this comparison. */
3301 if (const_arg1 == const0_rtx && !const_arg0)
3303 rtx y = lookup_as_function (folded_arg0, IOR);
3304 rtx inner_const;
3306 if (y != 0
3307 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3308 && GET_CODE (inner_const) == CONST_INT
3309 && INTVAL (inner_const) != 0)
3310 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3314 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3315 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3316 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3318 break;
3320 case RTX_BIN_ARITH:
3321 case RTX_COMM_ARITH:
3322 switch (code)
3324 case PLUS:
3325 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3326 with that LABEL_REF as its second operand. If so, the result is
3327 the first operand of that MINUS. This handles switches with an
3328 ADDR_DIFF_VEC table. */
3329 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3331 rtx y
3332 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3333 : lookup_as_function (folded_arg0, MINUS);
3335 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3336 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3337 return XEXP (y, 0);
3339 /* Now try for a CONST of a MINUS like the above. */
3340 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3341 : lookup_as_function (folded_arg0, CONST))) != 0
3342 && GET_CODE (XEXP (y, 0)) == MINUS
3343 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3344 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3345 return XEXP (XEXP (y, 0), 0);
3348 /* Likewise if the operands are in the other order. */
3349 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3351 rtx y
3352 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3353 : lookup_as_function (folded_arg1, MINUS);
3355 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3356 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3357 return XEXP (y, 0);
3359 /* Now try for a CONST of a MINUS like the above. */
3360 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3361 : lookup_as_function (folded_arg1, CONST))) != 0
3362 && GET_CODE (XEXP (y, 0)) == MINUS
3363 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3364 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3365 return XEXP (XEXP (y, 0), 0);
3368 /* If second operand is a register equivalent to a negative
3369 CONST_INT, see if we can find a register equivalent to the
3370 positive constant. Make a MINUS if so. Don't do this for
3371 a non-negative constant since we might then alternate between
3372 choosing positive and negative constants. Having the positive
3373 constant previously-used is the more common case. Be sure
3374 the resulting constant is non-negative; if const_arg1 were
3375 the smallest negative number this would overflow: depending
3376 on the mode, this would either just be the same value (and
3377 hence not save anything) or be incorrect. */
3378 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3379 && INTVAL (const_arg1) < 0
3380 /* This used to test
3382 -INTVAL (const_arg1) >= 0
3384 But The Sun V5.0 compilers mis-compiled that test. So
3385 instead we test for the problematic value in a more direct
3386 manner and hope the Sun compilers get it correct. */
3387 && INTVAL (const_arg1) !=
3388 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3389 && REG_P (folded_arg1))
3391 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3392 struct table_elt *p
3393 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3395 if (p)
3396 for (p = p->first_same_value; p; p = p->next_same_value)
3397 if (REG_P (p->exp))
3398 return simplify_gen_binary (MINUS, mode, folded_arg0,
3399 canon_reg (p->exp, NULL_RTX));
3401 goto from_plus;
3403 case MINUS:
3404 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3405 If so, produce (PLUS Z C2-C). */
3406 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3408 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3409 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3410 return fold_rtx (plus_constant (copy_rtx (y),
3411 -INTVAL (const_arg1)),
3412 NULL_RTX);
3415 /* Fall through. */
3417 from_plus:
3418 case SMIN: case SMAX: case UMIN: case UMAX:
3419 case IOR: case AND: case XOR:
3420 case MULT:
3421 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3422 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3423 is known to be of similar form, we may be able to replace the
3424 operation with a combined operation. This may eliminate the
3425 intermediate operation if every use is simplified in this way.
3426 Note that the similar optimization done by combine.c only works
3427 if the intermediate operation's result has only one reference. */
3429 if (REG_P (folded_arg0)
3430 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3432 int is_shift
3433 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3434 rtx y, inner_const, new_const;
3435 enum rtx_code associate_code;
3437 if (is_shift
3438 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3439 || INTVAL (const_arg1) < 0))
3441 if (SHIFT_COUNT_TRUNCATED)
3442 const_arg1 = GEN_INT (INTVAL (const_arg1)
3443 & (GET_MODE_BITSIZE (mode) - 1));
3444 else
3445 break;
3448 y = lookup_as_function (folded_arg0, code);
3449 if (y == 0)
3450 break;
3452 /* If we have compiled a statement like
3453 "if (x == (x & mask1))", and now are looking at
3454 "x & mask2", we will have a case where the first operand
3455 of Y is the same as our first operand. Unless we detect
3456 this case, an infinite loop will result. */
3457 if (XEXP (y, 0) == folded_arg0)
3458 break;
3460 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3461 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3462 break;
3464 /* Don't associate these operations if they are a PLUS with the
3465 same constant and it is a power of two. These might be doable
3466 with a pre- or post-increment. Similarly for two subtracts of
3467 identical powers of two with post decrement. */
3469 if (code == PLUS && const_arg1 == inner_const
3470 && ((HAVE_PRE_INCREMENT
3471 && exact_log2 (INTVAL (const_arg1)) >= 0)
3472 || (HAVE_POST_INCREMENT
3473 && exact_log2 (INTVAL (const_arg1)) >= 0)
3474 || (HAVE_PRE_DECREMENT
3475 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3476 || (HAVE_POST_DECREMENT
3477 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3478 break;
3480 if (is_shift
3481 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3482 || INTVAL (inner_const) < 0))
3484 if (SHIFT_COUNT_TRUNCATED)
3485 inner_const = GEN_INT (INTVAL (inner_const)
3486 & (GET_MODE_BITSIZE (mode) - 1));
3487 else
3488 break;
3491 /* Compute the code used to compose the constants. For example,
3492 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3494 associate_code = (is_shift || code == MINUS ? PLUS : code);
3496 new_const = simplify_binary_operation (associate_code, mode,
3497 const_arg1, inner_const);
3499 if (new_const == 0)
3500 break;
3502 /* If we are associating shift operations, don't let this
3503 produce a shift of the size of the object or larger.
3504 This could occur when we follow a sign-extend by a right
3505 shift on a machine that does a sign-extend as a pair
3506 of shifts. */
3508 if (is_shift
3509 && GET_CODE (new_const) == CONST_INT
3510 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3512 /* As an exception, we can turn an ASHIFTRT of this
3513 form into a shift of the number of bits - 1. */
3514 if (code == ASHIFTRT)
3515 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3516 else if (!side_effects_p (XEXP (y, 0)))
3517 return CONST0_RTX (mode);
3518 else
3519 break;
3522 y = copy_rtx (XEXP (y, 0));
3524 /* If Y contains our first operand (the most common way this
3525 can happen is if Y is a MEM), we would do into an infinite
3526 loop if we tried to fold it. So don't in that case. */
3528 if (! reg_mentioned_p (folded_arg0, y))
3529 y = fold_rtx (y, insn);
3531 return simplify_gen_binary (code, mode, y, new_const);
3533 break;
3535 case DIV: case UDIV:
3536 /* ??? The associative optimization performed immediately above is
3537 also possible for DIV and UDIV using associate_code of MULT.
3538 However, we would need extra code to verify that the
3539 multiplication does not overflow, that is, there is no overflow
3540 in the calculation of new_const. */
3541 break;
3543 default:
3544 break;
3547 new = simplify_binary_operation (code, mode,
3548 const_arg0 ? const_arg0 : folded_arg0,
3549 const_arg1 ? const_arg1 : folded_arg1);
3550 break;
3552 case RTX_OBJ:
3553 /* (lo_sum (high X) X) is simply X. */
3554 if (code == LO_SUM && const_arg0 != 0
3555 && GET_CODE (const_arg0) == HIGH
3556 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3557 return const_arg1;
3558 break;
3560 case RTX_TERNARY:
3561 case RTX_BITFIELD_OPS:
3562 new = simplify_ternary_operation (code, mode, mode_arg0,
3563 const_arg0 ? const_arg0 : folded_arg0,
3564 const_arg1 ? const_arg1 : folded_arg1,
3565 const_arg2 ? const_arg2 : XEXP (x, 2));
3566 break;
3568 default:
3569 break;
3572 return new ? new : x;
3575 /* Return a constant value currently equivalent to X.
3576 Return 0 if we don't know one. */
3578 static rtx
3579 equiv_constant (rtx x)
3581 if (REG_P (x)
3582 && REGNO_QTY_VALID_P (REGNO (x)))
3584 int x_q = REG_QTY (REGNO (x));
3585 struct qty_table_elem *x_ent = &qty_table[x_q];
3587 if (x_ent->const_rtx)
3588 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3591 if (x == 0 || CONSTANT_P (x))
3592 return x;
3594 if (GET_CODE (x) == SUBREG)
3596 rtx new;
3598 /* See if we previously assigned a constant value to this SUBREG. */
3599 if ((new = lookup_as_function (x, CONST_INT)) != 0
3600 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0
3601 || (new = lookup_as_function (x, CONST_FIXED)) != 0)
3602 return new;
3604 if (REG_P (SUBREG_REG (x))
3605 && (new = equiv_constant (SUBREG_REG (x))) != 0)
3606 return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
3607 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3609 return 0;
3612 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3613 the hash table in case its value was seen before. */
3615 if (MEM_P (x))
3617 struct table_elt *elt;
3619 x = avoid_constant_pool_reference (x);
3620 if (CONSTANT_P (x))
3621 return x;
3623 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3624 if (elt == 0)
3625 return 0;
3627 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3628 if (elt->is_const && CONSTANT_P (elt->exp))
3629 return elt->exp;
3632 return 0;
3635 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3636 "taken" branch.
3638 In certain cases, this can cause us to add an equivalence. For example,
3639 if we are following the taken case of
3640 if (i == 2)
3641 we can add the fact that `i' and '2' are now equivalent.
3643 In any case, we can record that this comparison was passed. If the same
3644 comparison is seen later, we will know its value. */
3646 static void
3647 record_jump_equiv (rtx insn, bool taken)
3649 int cond_known_true;
3650 rtx op0, op1;
3651 rtx set;
3652 enum machine_mode mode, mode0, mode1;
3653 int reversed_nonequality = 0;
3654 enum rtx_code code;
3656 /* Ensure this is the right kind of insn. */
3657 gcc_assert (any_condjump_p (insn));
3659 set = pc_set (insn);
3661 /* See if this jump condition is known true or false. */
3662 if (taken)
3663 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3664 else
3665 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3667 /* Get the type of comparison being done and the operands being compared.
3668 If we had to reverse a non-equality condition, record that fact so we
3669 know that it isn't valid for floating-point. */
3670 code = GET_CODE (XEXP (SET_SRC (set), 0));
3671 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3672 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3674 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3675 if (! cond_known_true)
3677 code = reversed_comparison_code_parts (code, op0, op1, insn);
3679 /* Don't remember if we can't find the inverse. */
3680 if (code == UNKNOWN)
3681 return;
3684 /* The mode is the mode of the non-constant. */
3685 mode = mode0;
3686 if (mode1 != VOIDmode)
3687 mode = mode1;
3689 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3692 /* Yet another form of subreg creation. In this case, we want something in
3693 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3695 static rtx
3696 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3698 enum machine_mode op_mode = GET_MODE (op);
3699 if (op_mode == mode || op_mode == VOIDmode)
3700 return op;
3701 return lowpart_subreg (mode, op, op_mode);
3704 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3705 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3706 Make any useful entries we can with that information. Called from
3707 above function and called recursively. */
3709 static void
3710 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3711 rtx op1, int reversed_nonequality)
3713 unsigned op0_hash, op1_hash;
3714 int op0_in_memory, op1_in_memory;
3715 struct table_elt *op0_elt, *op1_elt;
3717 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3718 we know that they are also equal in the smaller mode (this is also
3719 true for all smaller modes whether or not there is a SUBREG, but
3720 is not worth testing for with no SUBREG). */
3722 /* Note that GET_MODE (op0) may not equal MODE. */
3723 if (code == EQ && GET_CODE (op0) == SUBREG
3724 && (GET_MODE_SIZE (GET_MODE (op0))
3725 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3727 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3728 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3729 if (tem)
3730 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3731 reversed_nonequality);
3734 if (code == EQ && GET_CODE (op1) == SUBREG
3735 && (GET_MODE_SIZE (GET_MODE (op1))
3736 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3738 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3739 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3740 if (tem)
3741 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3742 reversed_nonequality);
3745 /* Similarly, if this is an NE comparison, and either is a SUBREG
3746 making a smaller mode, we know the whole thing is also NE. */
3748 /* Note that GET_MODE (op0) may not equal MODE;
3749 if we test MODE instead, we can get an infinite recursion
3750 alternating between two modes each wider than MODE. */
3752 if (code == NE && GET_CODE (op0) == SUBREG
3753 && subreg_lowpart_p (op0)
3754 && (GET_MODE_SIZE (GET_MODE (op0))
3755 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3757 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3758 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3759 if (tem)
3760 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3761 reversed_nonequality);
3764 if (code == NE && GET_CODE (op1) == SUBREG
3765 && subreg_lowpart_p (op1)
3766 && (GET_MODE_SIZE (GET_MODE (op1))
3767 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3769 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3770 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3771 if (tem)
3772 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3773 reversed_nonequality);
3776 /* Hash both operands. */
3778 do_not_record = 0;
3779 hash_arg_in_memory = 0;
3780 op0_hash = HASH (op0, mode);
3781 op0_in_memory = hash_arg_in_memory;
3783 if (do_not_record)
3784 return;
3786 do_not_record = 0;
3787 hash_arg_in_memory = 0;
3788 op1_hash = HASH (op1, mode);
3789 op1_in_memory = hash_arg_in_memory;
3791 if (do_not_record)
3792 return;
3794 /* Look up both operands. */
3795 op0_elt = lookup (op0, op0_hash, mode);
3796 op1_elt = lookup (op1, op1_hash, mode);
3798 /* If both operands are already equivalent or if they are not in the
3799 table but are identical, do nothing. */
3800 if ((op0_elt != 0 && op1_elt != 0
3801 && op0_elt->first_same_value == op1_elt->first_same_value)
3802 || op0 == op1 || rtx_equal_p (op0, op1))
3803 return;
3805 /* If we aren't setting two things equal all we can do is save this
3806 comparison. Similarly if this is floating-point. In the latter
3807 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3808 If we record the equality, we might inadvertently delete code
3809 whose intent was to change -0 to +0. */
3811 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3813 struct qty_table_elem *ent;
3814 int qty;
3816 /* If we reversed a floating-point comparison, if OP0 is not a
3817 register, or if OP1 is neither a register or constant, we can't
3818 do anything. */
3820 if (!REG_P (op1))
3821 op1 = equiv_constant (op1);
3823 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3824 || !REG_P (op0) || op1 == 0)
3825 return;
3827 /* Put OP0 in the hash table if it isn't already. This gives it a
3828 new quantity number. */
3829 if (op0_elt == 0)
3831 if (insert_regs (op0, NULL, 0))
3833 rehash_using_reg (op0);
3834 op0_hash = HASH (op0, mode);
3836 /* If OP0 is contained in OP1, this changes its hash code
3837 as well. Faster to rehash than to check, except
3838 for the simple case of a constant. */
3839 if (! CONSTANT_P (op1))
3840 op1_hash = HASH (op1,mode);
3843 op0_elt = insert (op0, NULL, op0_hash, mode);
3844 op0_elt->in_memory = op0_in_memory;
3847 qty = REG_QTY (REGNO (op0));
3848 ent = &qty_table[qty];
3850 ent->comparison_code = code;
3851 if (REG_P (op1))
3853 /* Look it up again--in case op0 and op1 are the same. */
3854 op1_elt = lookup (op1, op1_hash, mode);
3856 /* Put OP1 in the hash table so it gets a new quantity number. */
3857 if (op1_elt == 0)
3859 if (insert_regs (op1, NULL, 0))
3861 rehash_using_reg (op1);
3862 op1_hash = HASH (op1, mode);
3865 op1_elt = insert (op1, NULL, op1_hash, mode);
3866 op1_elt->in_memory = op1_in_memory;
3869 ent->comparison_const = NULL_RTX;
3870 ent->comparison_qty = REG_QTY (REGNO (op1));
3872 else
3874 ent->comparison_const = op1;
3875 ent->comparison_qty = -1;
3878 return;
3881 /* If either side is still missing an equivalence, make it now,
3882 then merge the equivalences. */
3884 if (op0_elt == 0)
3886 if (insert_regs (op0, NULL, 0))
3888 rehash_using_reg (op0);
3889 op0_hash = HASH (op0, mode);
3892 op0_elt = insert (op0, NULL, op0_hash, mode);
3893 op0_elt->in_memory = op0_in_memory;
3896 if (op1_elt == 0)
3898 if (insert_regs (op1, NULL, 0))
3900 rehash_using_reg (op1);
3901 op1_hash = HASH (op1, mode);
3904 op1_elt = insert (op1, NULL, op1_hash, mode);
3905 op1_elt->in_memory = op1_in_memory;
3908 merge_equiv_classes (op0_elt, op1_elt);
3911 /* CSE processing for one instruction.
3912 First simplify sources and addresses of all assignments
3913 in the instruction, using previously-computed equivalents values.
3914 Then install the new sources and destinations in the table
3915 of available values.
3917 If LIBCALL_INSN is nonzero, don't record any equivalence made in
3918 the insn. It means that INSN is inside libcall block. In this
3919 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
3921 /* Data on one SET contained in the instruction. */
3923 struct set
3925 /* The SET rtx itself. */
3926 rtx rtl;
3927 /* The SET_SRC of the rtx (the original value, if it is changing). */
3928 rtx src;
3929 /* The hash-table element for the SET_SRC of the SET. */
3930 struct table_elt *src_elt;
3931 /* Hash value for the SET_SRC. */
3932 unsigned src_hash;
3933 /* Hash value for the SET_DEST. */
3934 unsigned dest_hash;
3935 /* The SET_DEST, with SUBREG, etc., stripped. */
3936 rtx inner_dest;
3937 /* Nonzero if the SET_SRC is in memory. */
3938 char src_in_memory;
3939 /* Nonzero if the SET_SRC contains something
3940 whose value cannot be predicted and understood. */
3941 char src_volatile;
3942 /* Original machine mode, in case it becomes a CONST_INT.
3943 The size of this field should match the size of the mode
3944 field of struct rtx_def (see rtl.h). */
3945 ENUM_BITFIELD(machine_mode) mode : 8;
3946 /* A constant equivalent for SET_SRC, if any. */
3947 rtx src_const;
3948 /* Original SET_SRC value used for libcall notes. */
3949 rtx orig_src;
3950 /* Hash value of constant equivalent for SET_SRC. */
3951 unsigned src_const_hash;
3952 /* Table entry for constant equivalent for SET_SRC, if any. */
3953 struct table_elt *src_const_elt;
3954 /* Table entry for the destination address. */
3955 struct table_elt *dest_addr_elt;
3958 static void
3959 cse_insn (rtx insn, rtx libcall_insn)
3961 rtx x = PATTERN (insn);
3962 int i;
3963 rtx tem;
3964 int n_sets = 0;
3966 rtx src_eqv = 0;
3967 struct table_elt *src_eqv_elt = 0;
3968 int src_eqv_volatile = 0;
3969 int src_eqv_in_memory = 0;
3970 unsigned src_eqv_hash = 0;
3972 struct set *sets = (struct set *) 0;
3974 this_insn = insn;
3975 #ifdef HAVE_cc0
3976 /* Records what this insn does to set CC0. */
3977 this_insn_cc0 = 0;
3978 this_insn_cc0_mode = VOIDmode;
3979 #endif
3981 /* Find all the SETs and CLOBBERs in this instruction.
3982 Record all the SETs in the array `set' and count them.
3983 Also determine whether there is a CLOBBER that invalidates
3984 all memory references, or all references at varying addresses. */
3986 if (CALL_P (insn))
3988 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
3990 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
3991 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
3992 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
3996 if (GET_CODE (x) == SET)
3998 sets = alloca (sizeof (struct set));
3999 sets[0].rtl = x;
4001 /* Ignore SETs that are unconditional jumps.
4002 They never need cse processing, so this does not hurt.
4003 The reason is not efficiency but rather
4004 so that we can test at the end for instructions
4005 that have been simplified to unconditional jumps
4006 and not be misled by unchanged instructions
4007 that were unconditional jumps to begin with. */
4008 if (SET_DEST (x) == pc_rtx
4009 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4012 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4013 The hard function value register is used only once, to copy to
4014 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4015 Ensure we invalidate the destination register. On the 80386 no
4016 other code would invalidate it since it is a fixed_reg.
4017 We need not check the return of apply_change_group; see canon_reg. */
4019 else if (GET_CODE (SET_SRC (x)) == CALL)
4021 canon_reg (SET_SRC (x), insn);
4022 apply_change_group ();
4023 fold_rtx (SET_SRC (x), insn);
4024 invalidate (SET_DEST (x), VOIDmode);
4026 else
4027 n_sets = 1;
4029 else if (GET_CODE (x) == PARALLEL)
4031 int lim = XVECLEN (x, 0);
4033 sets = alloca (lim * sizeof (struct set));
4035 /* Find all regs explicitly clobbered in this insn,
4036 and ensure they are not replaced with any other regs
4037 elsewhere in this insn.
4038 When a reg that is clobbered is also used for input,
4039 we should presume that that is for a reason,
4040 and we should not substitute some other register
4041 which is not supposed to be clobbered.
4042 Therefore, this loop cannot be merged into the one below
4043 because a CALL may precede a CLOBBER and refer to the
4044 value clobbered. We must not let a canonicalization do
4045 anything in that case. */
4046 for (i = 0; i < lim; i++)
4048 rtx y = XVECEXP (x, 0, i);
4049 if (GET_CODE (y) == CLOBBER)
4051 rtx clobbered = XEXP (y, 0);
4053 if (REG_P (clobbered)
4054 || GET_CODE (clobbered) == SUBREG)
4055 invalidate (clobbered, VOIDmode);
4056 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4057 || GET_CODE (clobbered) == ZERO_EXTRACT)
4058 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4062 for (i = 0; i < lim; i++)
4064 rtx y = XVECEXP (x, 0, i);
4065 if (GET_CODE (y) == SET)
4067 /* As above, we ignore unconditional jumps and call-insns and
4068 ignore the result of apply_change_group. */
4069 if (GET_CODE (SET_SRC (y)) == CALL)
4071 canon_reg (SET_SRC (y), insn);
4072 apply_change_group ();
4073 fold_rtx (SET_SRC (y), insn);
4074 invalidate (SET_DEST (y), VOIDmode);
4076 else if (SET_DEST (y) == pc_rtx
4077 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4079 else
4080 sets[n_sets++].rtl = y;
4082 else if (GET_CODE (y) == CLOBBER)
4084 /* If we clobber memory, canon the address.
4085 This does nothing when a register is clobbered
4086 because we have already invalidated the reg. */
4087 if (MEM_P (XEXP (y, 0)))
4088 canon_reg (XEXP (y, 0), insn);
4090 else if (GET_CODE (y) == USE
4091 && ! (REG_P (XEXP (y, 0))
4092 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4093 canon_reg (y, insn);
4094 else if (GET_CODE (y) == CALL)
4096 /* The result of apply_change_group can be ignored; see
4097 canon_reg. */
4098 canon_reg (y, insn);
4099 apply_change_group ();
4100 fold_rtx (y, insn);
4104 else if (GET_CODE (x) == CLOBBER)
4106 if (MEM_P (XEXP (x, 0)))
4107 canon_reg (XEXP (x, 0), insn);
4110 /* Canonicalize a USE of a pseudo register or memory location. */
4111 else if (GET_CODE (x) == USE
4112 && ! (REG_P (XEXP (x, 0))
4113 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4114 canon_reg (XEXP (x, 0), insn);
4115 else if (GET_CODE (x) == CALL)
4117 /* The result of apply_change_group can be ignored; see canon_reg. */
4118 canon_reg (x, insn);
4119 apply_change_group ();
4120 fold_rtx (x, insn);
4123 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4124 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4125 is handled specially for this case, and if it isn't set, then there will
4126 be no equivalence for the destination. */
4127 if (n_sets == 1 && REG_NOTES (insn) != 0
4128 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4129 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4130 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4132 /* The result of apply_change_group can be ignored; see canon_reg. */
4133 canon_reg (XEXP (tem, 0), insn);
4134 apply_change_group ();
4135 src_eqv = fold_rtx (XEXP (tem, 0), insn);
4136 XEXP (tem, 0) = copy_rtx (src_eqv);
4137 df_notes_rescan (insn);
4140 /* Canonicalize sources and addresses of destinations.
4141 We do this in a separate pass to avoid problems when a MATCH_DUP is
4142 present in the insn pattern. In that case, we want to ensure that
4143 we don't break the duplicate nature of the pattern. So we will replace
4144 both operands at the same time. Otherwise, we would fail to find an
4145 equivalent substitution in the loop calling validate_change below.
4147 We used to suppress canonicalization of DEST if it appears in SRC,
4148 but we don't do this any more. */
4150 for (i = 0; i < n_sets; i++)
4152 rtx dest = SET_DEST (sets[i].rtl);
4153 rtx src = SET_SRC (sets[i].rtl);
4154 rtx new = canon_reg (src, insn);
4156 sets[i].orig_src = src;
4157 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4159 if (GET_CODE (dest) == ZERO_EXTRACT)
4161 validate_change (insn, &XEXP (dest, 1),
4162 canon_reg (XEXP (dest, 1), insn), 1);
4163 validate_change (insn, &XEXP (dest, 2),
4164 canon_reg (XEXP (dest, 2), insn), 1);
4167 while (GET_CODE (dest) == SUBREG
4168 || GET_CODE (dest) == ZERO_EXTRACT
4169 || GET_CODE (dest) == STRICT_LOW_PART)
4170 dest = XEXP (dest, 0);
4172 if (MEM_P (dest))
4173 canon_reg (dest, insn);
4176 /* Now that we have done all the replacements, we can apply the change
4177 group and see if they all work. Note that this will cause some
4178 canonicalizations that would have worked individually not to be applied
4179 because some other canonicalization didn't work, but this should not
4180 occur often.
4182 The result of apply_change_group can be ignored; see canon_reg. */
4184 apply_change_group ();
4186 /* Set sets[i].src_elt to the class each source belongs to.
4187 Detect assignments from or to volatile things
4188 and set set[i] to zero so they will be ignored
4189 in the rest of this function.
4191 Nothing in this loop changes the hash table or the register chains. */
4193 for (i = 0; i < n_sets; i++)
4195 rtx src, dest;
4196 rtx src_folded;
4197 struct table_elt *elt = 0, *p;
4198 enum machine_mode mode;
4199 rtx src_eqv_here;
4200 rtx src_const = 0;
4201 rtx src_related = 0;
4202 struct table_elt *src_const_elt = 0;
4203 int src_cost = MAX_COST;
4204 int src_eqv_cost = MAX_COST;
4205 int src_folded_cost = MAX_COST;
4206 int src_related_cost = MAX_COST;
4207 int src_elt_cost = MAX_COST;
4208 int src_regcost = MAX_COST;
4209 int src_eqv_regcost = MAX_COST;
4210 int src_folded_regcost = MAX_COST;
4211 int src_related_regcost = MAX_COST;
4212 int src_elt_regcost = MAX_COST;
4213 /* Set nonzero if we need to call force_const_mem on with the
4214 contents of src_folded before using it. */
4215 int src_folded_force_flag = 0;
4217 dest = SET_DEST (sets[i].rtl);
4218 src = SET_SRC (sets[i].rtl);
4220 /* If SRC is a constant that has no machine mode,
4221 hash it with the destination's machine mode.
4222 This way we can keep different modes separate. */
4224 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4225 sets[i].mode = mode;
4227 if (src_eqv)
4229 enum machine_mode eqvmode = mode;
4230 if (GET_CODE (dest) == STRICT_LOW_PART)
4231 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4232 do_not_record = 0;
4233 hash_arg_in_memory = 0;
4234 src_eqv_hash = HASH (src_eqv, eqvmode);
4236 /* Find the equivalence class for the equivalent expression. */
4238 if (!do_not_record)
4239 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4241 src_eqv_volatile = do_not_record;
4242 src_eqv_in_memory = hash_arg_in_memory;
4245 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4246 value of the INNER register, not the destination. So it is not
4247 a valid substitution for the source. But save it for later. */
4248 if (GET_CODE (dest) == STRICT_LOW_PART)
4249 src_eqv_here = 0;
4250 else
4251 src_eqv_here = src_eqv;
4253 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4254 simplified result, which may not necessarily be valid. */
4255 src_folded = fold_rtx (src, insn);
4257 #if 0
4258 /* ??? This caused bad code to be generated for the m68k port with -O2.
4259 Suppose src is (CONST_INT -1), and that after truncation src_folded
4260 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4261 At the end we will add src and src_const to the same equivalence
4262 class. We now have 3 and -1 on the same equivalence class. This
4263 causes later instructions to be mis-optimized. */
4264 /* If storing a constant in a bitfield, pre-truncate the constant
4265 so we will be able to record it later. */
4266 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4268 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4270 if (GET_CODE (src) == CONST_INT
4271 && GET_CODE (width) == CONST_INT
4272 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4273 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4274 src_folded
4275 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4276 << INTVAL (width)) - 1));
4278 #endif
4280 /* Compute SRC's hash code, and also notice if it
4281 should not be recorded at all. In that case,
4282 prevent any further processing of this assignment. */
4283 do_not_record = 0;
4284 hash_arg_in_memory = 0;
4286 sets[i].src = src;
4287 sets[i].src_hash = HASH (src, mode);
4288 sets[i].src_volatile = do_not_record;
4289 sets[i].src_in_memory = hash_arg_in_memory;
4291 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4292 a pseudo, do not record SRC. Using SRC as a replacement for
4293 anything else will be incorrect in that situation. Note that
4294 this usually occurs only for stack slots, in which case all the
4295 RTL would be referring to SRC, so we don't lose any optimization
4296 opportunities by not having SRC in the hash table. */
4298 if (MEM_P (src)
4299 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4300 && REG_P (dest)
4301 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4302 sets[i].src_volatile = 1;
4304 #if 0
4305 /* It is no longer clear why we used to do this, but it doesn't
4306 appear to still be needed. So let's try without it since this
4307 code hurts cse'ing widened ops. */
4308 /* If source is a paradoxical subreg (such as QI treated as an SI),
4309 treat it as volatile. It may do the work of an SI in one context
4310 where the extra bits are not being used, but cannot replace an SI
4311 in general. */
4312 if (GET_CODE (src) == SUBREG
4313 && (GET_MODE_SIZE (GET_MODE (src))
4314 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4315 sets[i].src_volatile = 1;
4316 #endif
4318 /* Locate all possible equivalent forms for SRC. Try to replace
4319 SRC in the insn with each cheaper equivalent.
4321 We have the following types of equivalents: SRC itself, a folded
4322 version, a value given in a REG_EQUAL note, or a value related
4323 to a constant.
4325 Each of these equivalents may be part of an additional class
4326 of equivalents (if more than one is in the table, they must be in
4327 the same class; we check for this).
4329 If the source is volatile, we don't do any table lookups.
4331 We note any constant equivalent for possible later use in a
4332 REG_NOTE. */
4334 if (!sets[i].src_volatile)
4335 elt = lookup (src, sets[i].src_hash, mode);
4337 sets[i].src_elt = elt;
4339 if (elt && src_eqv_here && src_eqv_elt)
4341 if (elt->first_same_value != src_eqv_elt->first_same_value)
4343 /* The REG_EQUAL is indicating that two formerly distinct
4344 classes are now equivalent. So merge them. */
4345 merge_equiv_classes (elt, src_eqv_elt);
4346 src_eqv_hash = HASH (src_eqv, elt->mode);
4347 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4350 src_eqv_here = 0;
4353 else if (src_eqv_elt)
4354 elt = src_eqv_elt;
4356 /* Try to find a constant somewhere and record it in `src_const'.
4357 Record its table element, if any, in `src_const_elt'. Look in
4358 any known equivalences first. (If the constant is not in the
4359 table, also set `sets[i].src_const_hash'). */
4360 if (elt)
4361 for (p = elt->first_same_value; p; p = p->next_same_value)
4362 if (p->is_const)
4364 src_const = p->exp;
4365 src_const_elt = elt;
4366 break;
4369 if (src_const == 0
4370 && (CONSTANT_P (src_folded)
4371 /* Consider (minus (label_ref L1) (label_ref L2)) as
4372 "constant" here so we will record it. This allows us
4373 to fold switch statements when an ADDR_DIFF_VEC is used. */
4374 || (GET_CODE (src_folded) == MINUS
4375 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4376 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4377 src_const = src_folded, src_const_elt = elt;
4378 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4379 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4381 /* If we don't know if the constant is in the table, get its
4382 hash code and look it up. */
4383 if (src_const && src_const_elt == 0)
4385 sets[i].src_const_hash = HASH (src_const, mode);
4386 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4389 sets[i].src_const = src_const;
4390 sets[i].src_const_elt = src_const_elt;
4392 /* If the constant and our source are both in the table, mark them as
4393 equivalent. Otherwise, if a constant is in the table but the source
4394 isn't, set ELT to it. */
4395 if (src_const_elt && elt
4396 && src_const_elt->first_same_value != elt->first_same_value)
4397 merge_equiv_classes (elt, src_const_elt);
4398 else if (src_const_elt && elt == 0)
4399 elt = src_const_elt;
4401 /* See if there is a register linearly related to a constant
4402 equivalent of SRC. */
4403 if (src_const
4404 && (GET_CODE (src_const) == CONST
4405 || (src_const_elt && src_const_elt->related_value != 0)))
4407 src_related = use_related_value (src_const, src_const_elt);
4408 if (src_related)
4410 struct table_elt *src_related_elt
4411 = lookup (src_related, HASH (src_related, mode), mode);
4412 if (src_related_elt && elt)
4414 if (elt->first_same_value
4415 != src_related_elt->first_same_value)
4416 /* This can occur when we previously saw a CONST
4417 involving a SYMBOL_REF and then see the SYMBOL_REF
4418 twice. Merge the involved classes. */
4419 merge_equiv_classes (elt, src_related_elt);
4421 src_related = 0;
4422 src_related_elt = 0;
4424 else if (src_related_elt && elt == 0)
4425 elt = src_related_elt;
4429 /* See if we have a CONST_INT that is already in a register in a
4430 wider mode. */
4432 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4433 && GET_MODE_CLASS (mode) == MODE_INT
4434 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4436 enum machine_mode wider_mode;
4438 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4439 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4440 && src_related == 0;
4441 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4443 struct table_elt *const_elt
4444 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4446 if (const_elt == 0)
4447 continue;
4449 for (const_elt = const_elt->first_same_value;
4450 const_elt; const_elt = const_elt->next_same_value)
4451 if (REG_P (const_elt->exp))
4453 src_related = gen_lowpart (mode, const_elt->exp);
4454 break;
4459 /* Another possibility is that we have an AND with a constant in
4460 a mode narrower than a word. If so, it might have been generated
4461 as part of an "if" which would narrow the AND. If we already
4462 have done the AND in a wider mode, we can use a SUBREG of that
4463 value. */
4465 if (flag_expensive_optimizations && ! src_related
4466 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4467 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4469 enum machine_mode tmode;
4470 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4472 for (tmode = GET_MODE_WIDER_MODE (mode);
4473 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4474 tmode = GET_MODE_WIDER_MODE (tmode))
4476 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4477 struct table_elt *larger_elt;
4479 if (inner)
4481 PUT_MODE (new_and, tmode);
4482 XEXP (new_and, 0) = inner;
4483 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4484 if (larger_elt == 0)
4485 continue;
4487 for (larger_elt = larger_elt->first_same_value;
4488 larger_elt; larger_elt = larger_elt->next_same_value)
4489 if (REG_P (larger_elt->exp))
4491 src_related
4492 = gen_lowpart (mode, larger_elt->exp);
4493 break;
4496 if (src_related)
4497 break;
4502 #ifdef LOAD_EXTEND_OP
4503 /* See if a MEM has already been loaded with a widening operation;
4504 if it has, we can use a subreg of that. Many CISC machines
4505 also have such operations, but this is only likely to be
4506 beneficial on these machines. */
4508 if (flag_expensive_optimizations && src_related == 0
4509 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4510 && GET_MODE_CLASS (mode) == MODE_INT
4511 && MEM_P (src) && ! do_not_record
4512 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4514 struct rtx_def memory_extend_buf;
4515 rtx memory_extend_rtx = &memory_extend_buf;
4516 enum machine_mode tmode;
4518 /* Set what we are trying to extend and the operation it might
4519 have been extended with. */
4520 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4521 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4522 XEXP (memory_extend_rtx, 0) = src;
4524 for (tmode = GET_MODE_WIDER_MODE (mode);
4525 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4526 tmode = GET_MODE_WIDER_MODE (tmode))
4528 struct table_elt *larger_elt;
4530 PUT_MODE (memory_extend_rtx, tmode);
4531 larger_elt = lookup (memory_extend_rtx,
4532 HASH (memory_extend_rtx, tmode), tmode);
4533 if (larger_elt == 0)
4534 continue;
4536 for (larger_elt = larger_elt->first_same_value;
4537 larger_elt; larger_elt = larger_elt->next_same_value)
4538 if (REG_P (larger_elt->exp))
4540 src_related = gen_lowpart (mode, larger_elt->exp);
4541 break;
4544 if (src_related)
4545 break;
4548 #endif /* LOAD_EXTEND_OP */
4550 if (src == src_folded)
4551 src_folded = 0;
4553 /* At this point, ELT, if nonzero, points to a class of expressions
4554 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4555 and SRC_RELATED, if nonzero, each contain additional equivalent
4556 expressions. Prune these latter expressions by deleting expressions
4557 already in the equivalence class.
4559 Check for an equivalent identical to the destination. If found,
4560 this is the preferred equivalent since it will likely lead to
4561 elimination of the insn. Indicate this by placing it in
4562 `src_related'. */
4564 if (elt)
4565 elt = elt->first_same_value;
4566 for (p = elt; p; p = p->next_same_value)
4568 enum rtx_code code = GET_CODE (p->exp);
4570 /* If the expression is not valid, ignore it. Then we do not
4571 have to check for validity below. In most cases, we can use
4572 `rtx_equal_p', since canonicalization has already been done. */
4573 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4574 continue;
4576 /* Also skip paradoxical subregs, unless that's what we're
4577 looking for. */
4578 if (code == SUBREG
4579 && (GET_MODE_SIZE (GET_MODE (p->exp))
4580 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4581 && ! (src != 0
4582 && GET_CODE (src) == SUBREG
4583 && GET_MODE (src) == GET_MODE (p->exp)
4584 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4585 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4586 continue;
4588 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4589 src = 0;
4590 else if (src_folded && GET_CODE (src_folded) == code
4591 && rtx_equal_p (src_folded, p->exp))
4592 src_folded = 0;
4593 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4594 && rtx_equal_p (src_eqv_here, p->exp))
4595 src_eqv_here = 0;
4596 else if (src_related && GET_CODE (src_related) == code
4597 && rtx_equal_p (src_related, p->exp))
4598 src_related = 0;
4600 /* This is the same as the destination of the insns, we want
4601 to prefer it. Copy it to src_related. The code below will
4602 then give it a negative cost. */
4603 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4604 src_related = dest;
4607 /* Find the cheapest valid equivalent, trying all the available
4608 possibilities. Prefer items not in the hash table to ones
4609 that are when they are equal cost. Note that we can never
4610 worsen an insn as the current contents will also succeed.
4611 If we find an equivalent identical to the destination, use it as best,
4612 since this insn will probably be eliminated in that case. */
4613 if (src)
4615 if (rtx_equal_p (src, dest))
4616 src_cost = src_regcost = -1;
4617 else
4619 src_cost = COST (src);
4620 src_regcost = approx_reg_cost (src);
4624 if (src_eqv_here)
4626 if (rtx_equal_p (src_eqv_here, dest))
4627 src_eqv_cost = src_eqv_regcost = -1;
4628 else
4630 src_eqv_cost = COST (src_eqv_here);
4631 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4635 if (src_folded)
4637 if (rtx_equal_p (src_folded, dest))
4638 src_folded_cost = src_folded_regcost = -1;
4639 else
4641 src_folded_cost = COST (src_folded);
4642 src_folded_regcost = approx_reg_cost (src_folded);
4646 if (src_related)
4648 if (rtx_equal_p (src_related, dest))
4649 src_related_cost = src_related_regcost = -1;
4650 else
4652 src_related_cost = COST (src_related);
4653 src_related_regcost = approx_reg_cost (src_related);
4657 /* If this was an indirect jump insn, a known label will really be
4658 cheaper even though it looks more expensive. */
4659 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4660 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4662 /* Terminate loop when replacement made. This must terminate since
4663 the current contents will be tested and will always be valid. */
4664 while (1)
4666 rtx trial;
4668 /* Skip invalid entries. */
4669 while (elt && !REG_P (elt->exp)
4670 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4671 elt = elt->next_same_value;
4673 /* A paradoxical subreg would be bad here: it'll be the right
4674 size, but later may be adjusted so that the upper bits aren't
4675 what we want. So reject it. */
4676 if (elt != 0
4677 && GET_CODE (elt->exp) == SUBREG
4678 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4679 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4680 /* It is okay, though, if the rtx we're trying to match
4681 will ignore any of the bits we can't predict. */
4682 && ! (src != 0
4683 && GET_CODE (src) == SUBREG
4684 && GET_MODE (src) == GET_MODE (elt->exp)
4685 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4686 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4688 elt = elt->next_same_value;
4689 continue;
4692 if (elt)
4694 src_elt_cost = elt->cost;
4695 src_elt_regcost = elt->regcost;
4698 /* Find cheapest and skip it for the next time. For items
4699 of equal cost, use this order:
4700 src_folded, src, src_eqv, src_related and hash table entry. */
4701 if (src_folded
4702 && preferable (src_folded_cost, src_folded_regcost,
4703 src_cost, src_regcost) <= 0
4704 && preferable (src_folded_cost, src_folded_regcost,
4705 src_eqv_cost, src_eqv_regcost) <= 0
4706 && preferable (src_folded_cost, src_folded_regcost,
4707 src_related_cost, src_related_regcost) <= 0
4708 && preferable (src_folded_cost, src_folded_regcost,
4709 src_elt_cost, src_elt_regcost) <= 0)
4711 trial = src_folded, src_folded_cost = MAX_COST;
4712 if (src_folded_force_flag)
4714 rtx forced = force_const_mem (mode, trial);
4715 if (forced)
4716 trial = forced;
4719 else if (src
4720 && preferable (src_cost, src_regcost,
4721 src_eqv_cost, src_eqv_regcost) <= 0
4722 && preferable (src_cost, src_regcost,
4723 src_related_cost, src_related_regcost) <= 0
4724 && preferable (src_cost, src_regcost,
4725 src_elt_cost, src_elt_regcost) <= 0)
4726 trial = src, src_cost = MAX_COST;
4727 else if (src_eqv_here
4728 && preferable (src_eqv_cost, src_eqv_regcost,
4729 src_related_cost, src_related_regcost) <= 0
4730 && preferable (src_eqv_cost, src_eqv_regcost,
4731 src_elt_cost, src_elt_regcost) <= 0)
4732 trial = src_eqv_here, src_eqv_cost = MAX_COST;
4733 else if (src_related
4734 && preferable (src_related_cost, src_related_regcost,
4735 src_elt_cost, src_elt_regcost) <= 0)
4736 trial = src_related, src_related_cost = MAX_COST;
4737 else
4739 trial = elt->exp;
4740 elt = elt->next_same_value;
4741 src_elt_cost = MAX_COST;
4744 /* We don't normally have an insn matching (set (pc) (pc)), so
4745 check for this separately here. We will delete such an
4746 insn below.
4748 For other cases such as a table jump or conditional jump
4749 where we know the ultimate target, go ahead and replace the
4750 operand. While that may not make a valid insn, we will
4751 reemit the jump below (and also insert any necessary
4752 barriers). */
4753 if (n_sets == 1 && dest == pc_rtx
4754 && (trial == pc_rtx
4755 || (GET_CODE (trial) == LABEL_REF
4756 && ! condjump_p (insn))))
4758 /* Don't substitute non-local labels, this confuses CFG. */
4759 if (GET_CODE (trial) == LABEL_REF
4760 && LABEL_REF_NONLOCAL_P (trial))
4761 continue;
4763 SET_SRC (sets[i].rtl) = trial;
4764 cse_jumps_altered = 1;
4765 break;
4768 /* Reject certain invalid forms of CONST that we create. */
4769 else if (CONSTANT_P (trial)
4770 && GET_CODE (trial) == CONST
4771 /* Reject cases that will cause decode_rtx_const to
4772 die. On the alpha when simplifying a switch, we
4773 get (const (truncate (minus (label_ref)
4774 (label_ref)))). */
4775 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4776 /* Likewise on IA-64, except without the
4777 truncate. */
4778 || (GET_CODE (XEXP (trial, 0)) == MINUS
4779 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4780 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4781 /* Do nothing for this case. */
4784 /* Look for a substitution that makes a valid insn. */
4785 else if (validate_unshare_change
4786 (insn, &SET_SRC (sets[i].rtl), trial, 0))
4788 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
4790 /* If we just made a substitution inside a libcall, then we
4791 need to make the same substitution in any notes attached
4792 to the RETVAL insn. */
4793 if (libcall_insn
4794 && (REG_P (sets[i].orig_src)
4795 || GET_CODE (sets[i].orig_src) == SUBREG
4796 || MEM_P (sets[i].orig_src)))
4798 rtx note = find_reg_equal_equiv_note (libcall_insn);
4799 if (note != 0)
4800 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
4801 sets[i].orig_src,
4802 copy_rtx (new));
4803 df_notes_rescan (libcall_insn);
4806 /* The result of apply_change_group can be ignored; see
4807 canon_reg. */
4809 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4810 apply_change_group ();
4812 break;
4815 /* If we previously found constant pool entries for
4816 constants and this is a constant, try making a
4817 pool entry. Put it in src_folded unless we already have done
4818 this since that is where it likely came from. */
4820 else if (constant_pool_entries_cost
4821 && CONSTANT_P (trial)
4822 && (src_folded == 0
4823 || (!MEM_P (src_folded)
4824 && ! src_folded_force_flag))
4825 && GET_MODE_CLASS (mode) != MODE_CC
4826 && mode != VOIDmode)
4828 src_folded_force_flag = 1;
4829 src_folded = trial;
4830 src_folded_cost = constant_pool_entries_cost;
4831 src_folded_regcost = constant_pool_entries_regcost;
4835 src = SET_SRC (sets[i].rtl);
4837 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4838 However, there is an important exception: If both are registers
4839 that are not the head of their equivalence class, replace SET_SRC
4840 with the head of the class. If we do not do this, we will have
4841 both registers live over a portion of the basic block. This way,
4842 their lifetimes will likely abut instead of overlapping. */
4843 if (REG_P (dest)
4844 && REGNO_QTY_VALID_P (REGNO (dest)))
4846 int dest_q = REG_QTY (REGNO (dest));
4847 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4849 if (dest_ent->mode == GET_MODE (dest)
4850 && dest_ent->first_reg != REGNO (dest)
4851 && REG_P (src) && REGNO (src) == REGNO (dest)
4852 /* Don't do this if the original insn had a hard reg as
4853 SET_SRC or SET_DEST. */
4854 && (!REG_P (sets[i].src)
4855 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4856 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4857 /* We can't call canon_reg here because it won't do anything if
4858 SRC is a hard register. */
4860 int src_q = REG_QTY (REGNO (src));
4861 struct qty_table_elem *src_ent = &qty_table[src_q];
4862 int first = src_ent->first_reg;
4863 rtx new_src
4864 = (first >= FIRST_PSEUDO_REGISTER
4865 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4867 /* We must use validate-change even for this, because this
4868 might be a special no-op instruction, suitable only to
4869 tag notes onto. */
4870 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4872 src = new_src;
4873 /* If we had a constant that is cheaper than what we are now
4874 setting SRC to, use that constant. We ignored it when we
4875 thought we could make this into a no-op. */
4876 if (src_const && COST (src_const) < COST (src)
4877 && validate_change (insn, &SET_SRC (sets[i].rtl),
4878 src_const, 0))
4879 src = src_const;
4884 /* If we made a change, recompute SRC values. */
4885 if (src != sets[i].src)
4887 do_not_record = 0;
4888 hash_arg_in_memory = 0;
4889 sets[i].src = src;
4890 sets[i].src_hash = HASH (src, mode);
4891 sets[i].src_volatile = do_not_record;
4892 sets[i].src_in_memory = hash_arg_in_memory;
4893 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4896 /* If this is a single SET, we are setting a register, and we have an
4897 equivalent constant, we want to add a REG_NOTE. We don't want
4898 to write a REG_EQUAL note for a constant pseudo since verifying that
4899 that pseudo hasn't been eliminated is a pain. Such a note also
4900 won't help anything.
4902 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4903 which can be created for a reference to a compile time computable
4904 entry in a jump table. */
4906 if (n_sets == 1 && src_const && REG_P (dest)
4907 && !REG_P (src_const)
4908 && ! (GET_CODE (src_const) == CONST
4909 && GET_CODE (XEXP (src_const, 0)) == MINUS
4910 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4911 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4913 /* We only want a REG_EQUAL note if src_const != src. */
4914 if (! rtx_equal_p (src, src_const))
4916 /* Make sure that the rtx is not shared. */
4917 src_const = copy_rtx (src_const);
4919 /* Record the actual constant value in a REG_EQUAL note,
4920 making a new one if one does not already exist. */
4921 set_unique_reg_note (insn, REG_EQUAL, src_const);
4922 df_notes_rescan (insn);
4926 /* Now deal with the destination. */
4927 do_not_record = 0;
4929 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4930 while (GET_CODE (dest) == SUBREG
4931 || GET_CODE (dest) == ZERO_EXTRACT
4932 || GET_CODE (dest) == STRICT_LOW_PART)
4933 dest = XEXP (dest, 0);
4935 sets[i].inner_dest = dest;
4937 if (MEM_P (dest))
4939 #ifdef PUSH_ROUNDING
4940 /* Stack pushes invalidate the stack pointer. */
4941 rtx addr = XEXP (dest, 0);
4942 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
4943 && XEXP (addr, 0) == stack_pointer_rtx)
4944 invalidate (stack_pointer_rtx, VOIDmode);
4945 #endif
4946 dest = fold_rtx (dest, insn);
4949 /* Compute the hash code of the destination now,
4950 before the effects of this instruction are recorded,
4951 since the register values used in the address computation
4952 are those before this instruction. */
4953 sets[i].dest_hash = HASH (dest, mode);
4955 /* Don't enter a bit-field in the hash table
4956 because the value in it after the store
4957 may not equal what was stored, due to truncation. */
4959 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4961 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4963 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
4964 && GET_CODE (width) == CONST_INT
4965 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4966 && ! (INTVAL (src_const)
4967 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4968 /* Exception: if the value is constant,
4969 and it won't be truncated, record it. */
4971 else
4973 /* This is chosen so that the destination will be invalidated
4974 but no new value will be recorded.
4975 We must invalidate because sometimes constant
4976 values can be recorded for bitfields. */
4977 sets[i].src_elt = 0;
4978 sets[i].src_volatile = 1;
4979 src_eqv = 0;
4980 src_eqv_elt = 0;
4984 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
4985 the insn. */
4986 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
4988 /* One less use of the label this insn used to jump to. */
4989 delete_insn_and_edges (insn);
4990 cse_jumps_altered = 1;
4991 /* No more processing for this set. */
4992 sets[i].rtl = 0;
4995 /* If this SET is now setting PC to a label, we know it used to
4996 be a conditional or computed branch. */
4997 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
4998 && !LABEL_REF_NONLOCAL_P (src))
5000 /* We reemit the jump in as many cases as possible just in
5001 case the form of an unconditional jump is significantly
5002 different than a computed jump or conditional jump.
5004 If this insn has multiple sets, then reemitting the
5005 jump is nontrivial. So instead we just force rerecognition
5006 and hope for the best. */
5007 if (n_sets == 1)
5009 rtx new, note;
5011 new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5012 JUMP_LABEL (new) = XEXP (src, 0);
5013 LABEL_NUSES (XEXP (src, 0))++;
5015 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5016 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5017 if (note)
5019 XEXP (note, 1) = NULL_RTX;
5020 REG_NOTES (new) = note;
5023 delete_insn_and_edges (insn);
5024 insn = new;
5026 else
5027 INSN_CODE (insn) = -1;
5029 /* Do not bother deleting any unreachable code,
5030 let jump/flow do that. */
5032 cse_jumps_altered = 1;
5033 sets[i].rtl = 0;
5036 /* If destination is volatile, invalidate it and then do no further
5037 processing for this assignment. */
5039 else if (do_not_record)
5041 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5042 invalidate (dest, VOIDmode);
5043 else if (MEM_P (dest))
5044 invalidate (dest, VOIDmode);
5045 else if (GET_CODE (dest) == STRICT_LOW_PART
5046 || GET_CODE (dest) == ZERO_EXTRACT)
5047 invalidate (XEXP (dest, 0), GET_MODE (dest));
5048 sets[i].rtl = 0;
5051 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5052 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5054 #ifdef HAVE_cc0
5055 /* If setting CC0, record what it was set to, or a constant, if it
5056 is equivalent to a constant. If it is being set to a floating-point
5057 value, make a COMPARE with the appropriate constant of 0. If we
5058 don't do this, later code can interpret this as a test against
5059 const0_rtx, which can cause problems if we try to put it into an
5060 insn as a floating-point operand. */
5061 if (dest == cc0_rtx)
5063 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5064 this_insn_cc0_mode = mode;
5065 if (FLOAT_MODE_P (mode))
5066 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5067 CONST0_RTX (mode));
5069 #endif
5072 /* Now enter all non-volatile source expressions in the hash table
5073 if they are not already present.
5074 Record their equivalence classes in src_elt.
5075 This way we can insert the corresponding destinations into
5076 the same classes even if the actual sources are no longer in them
5077 (having been invalidated). */
5079 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5080 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5082 struct table_elt *elt;
5083 struct table_elt *classp = sets[0].src_elt;
5084 rtx dest = SET_DEST (sets[0].rtl);
5085 enum machine_mode eqvmode = GET_MODE (dest);
5087 if (GET_CODE (dest) == STRICT_LOW_PART)
5089 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5090 classp = 0;
5092 if (insert_regs (src_eqv, classp, 0))
5094 rehash_using_reg (src_eqv);
5095 src_eqv_hash = HASH (src_eqv, eqvmode);
5097 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5098 elt->in_memory = src_eqv_in_memory;
5099 src_eqv_elt = elt;
5101 /* Check to see if src_eqv_elt is the same as a set source which
5102 does not yet have an elt, and if so set the elt of the set source
5103 to src_eqv_elt. */
5104 for (i = 0; i < n_sets; i++)
5105 if (sets[i].rtl && sets[i].src_elt == 0
5106 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5107 sets[i].src_elt = src_eqv_elt;
5110 for (i = 0; i < n_sets; i++)
5111 if (sets[i].rtl && ! sets[i].src_volatile
5112 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5114 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5116 /* REG_EQUAL in setting a STRICT_LOW_PART
5117 gives an equivalent for the entire destination register,
5118 not just for the subreg being stored in now.
5119 This is a more interesting equivalence, so we arrange later
5120 to treat the entire reg as the destination. */
5121 sets[i].src_elt = src_eqv_elt;
5122 sets[i].src_hash = src_eqv_hash;
5124 else
5126 /* Insert source and constant equivalent into hash table, if not
5127 already present. */
5128 struct table_elt *classp = src_eqv_elt;
5129 rtx src = sets[i].src;
5130 rtx dest = SET_DEST (sets[i].rtl);
5131 enum machine_mode mode
5132 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5134 /* It's possible that we have a source value known to be
5135 constant but don't have a REG_EQUAL note on the insn.
5136 Lack of a note will mean src_eqv_elt will be NULL. This
5137 can happen where we've generated a SUBREG to access a
5138 CONST_INT that is already in a register in a wider mode.
5139 Ensure that the source expression is put in the proper
5140 constant class. */
5141 if (!classp)
5142 classp = sets[i].src_const_elt;
5144 if (sets[i].src_elt == 0)
5146 /* Don't put a hard register source into the table if this is
5147 the last insn of a libcall. In this case, we only need
5148 to put src_eqv_elt in src_elt. */
5149 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5151 struct table_elt *elt;
5153 /* Note that these insert_regs calls cannot remove
5154 any of the src_elt's, because they would have failed to
5155 match if not still valid. */
5156 if (insert_regs (src, classp, 0))
5158 rehash_using_reg (src);
5159 sets[i].src_hash = HASH (src, mode);
5161 elt = insert (src, classp, sets[i].src_hash, mode);
5162 elt->in_memory = sets[i].src_in_memory;
5163 sets[i].src_elt = classp = elt;
5165 else
5166 sets[i].src_elt = classp;
5168 if (sets[i].src_const && sets[i].src_const_elt == 0
5169 && src != sets[i].src_const
5170 && ! rtx_equal_p (sets[i].src_const, src))
5171 sets[i].src_elt = insert (sets[i].src_const, classp,
5172 sets[i].src_const_hash, mode);
5175 else if (sets[i].src_elt == 0)
5176 /* If we did not insert the source into the hash table (e.g., it was
5177 volatile), note the equivalence class for the REG_EQUAL value, if any,
5178 so that the destination goes into that class. */
5179 sets[i].src_elt = src_eqv_elt;
5181 /* Record destination addresses in the hash table. This allows us to
5182 check if they are invalidated by other sets. */
5183 for (i = 0; i < n_sets; i++)
5185 if (sets[i].rtl)
5187 rtx x = sets[i].inner_dest;
5188 struct table_elt *elt;
5189 enum machine_mode mode;
5190 unsigned hash;
5192 if (MEM_P (x))
5194 x = XEXP (x, 0);
5195 mode = GET_MODE (x);
5196 hash = HASH (x, mode);
5197 elt = lookup (x, hash, mode);
5198 if (!elt)
5200 if (insert_regs (x, NULL, 0))
5202 rtx dest = SET_DEST (sets[i].rtl);
5204 rehash_using_reg (x);
5205 hash = HASH (x, mode);
5206 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5208 elt = insert (x, NULL, hash, mode);
5211 sets[i].dest_addr_elt = elt;
5213 else
5214 sets[i].dest_addr_elt = NULL;
5218 invalidate_from_clobbers (x);
5220 /* Some registers are invalidated by subroutine calls. Memory is
5221 invalidated by non-constant calls. */
5223 if (CALL_P (insn))
5225 if (! CONST_OR_PURE_CALL_P (insn))
5226 invalidate_memory ();
5227 invalidate_for_call ();
5230 /* Now invalidate everything set by this instruction.
5231 If a SUBREG or other funny destination is being set,
5232 sets[i].rtl is still nonzero, so here we invalidate the reg
5233 a part of which is being set. */
5235 for (i = 0; i < n_sets; i++)
5236 if (sets[i].rtl)
5238 /* We can't use the inner dest, because the mode associated with
5239 a ZERO_EXTRACT is significant. */
5240 rtx dest = SET_DEST (sets[i].rtl);
5242 /* Needed for registers to remove the register from its
5243 previous quantity's chain.
5244 Needed for memory if this is a nonvarying address, unless
5245 we have just done an invalidate_memory that covers even those. */
5246 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5247 invalidate (dest, VOIDmode);
5248 else if (MEM_P (dest))
5249 invalidate (dest, VOIDmode);
5250 else if (GET_CODE (dest) == STRICT_LOW_PART
5251 || GET_CODE (dest) == ZERO_EXTRACT)
5252 invalidate (XEXP (dest, 0), GET_MODE (dest));
5255 /* A volatile ASM invalidates everything. */
5256 if (NONJUMP_INSN_P (insn)
5257 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5258 && MEM_VOLATILE_P (PATTERN (insn)))
5259 flush_hash_table ();
5261 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5262 the regs restored by the longjmp come from a later time
5263 than the setjmp. */
5264 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5266 flush_hash_table ();
5267 goto done;
5270 /* Make sure registers mentioned in destinations
5271 are safe for use in an expression to be inserted.
5272 This removes from the hash table
5273 any invalid entry that refers to one of these registers.
5275 We don't care about the return value from mention_regs because
5276 we are going to hash the SET_DEST values unconditionally. */
5278 for (i = 0; i < n_sets; i++)
5280 if (sets[i].rtl)
5282 rtx x = SET_DEST (sets[i].rtl);
5284 if (!REG_P (x))
5285 mention_regs (x);
5286 else
5288 /* We used to rely on all references to a register becoming
5289 inaccessible when a register changes to a new quantity,
5290 since that changes the hash code. However, that is not
5291 safe, since after HASH_SIZE new quantities we get a
5292 hash 'collision' of a register with its own invalid
5293 entries. And since SUBREGs have been changed not to
5294 change their hash code with the hash code of the register,
5295 it wouldn't work any longer at all. So we have to check
5296 for any invalid references lying around now.
5297 This code is similar to the REG case in mention_regs,
5298 but it knows that reg_tick has been incremented, and
5299 it leaves reg_in_table as -1 . */
5300 unsigned int regno = REGNO (x);
5301 unsigned int endregno = END_REGNO (x);
5302 unsigned int i;
5304 for (i = regno; i < endregno; i++)
5306 if (REG_IN_TABLE (i) >= 0)
5308 remove_invalid_refs (i);
5309 REG_IN_TABLE (i) = -1;
5316 /* We may have just removed some of the src_elt's from the hash table.
5317 So replace each one with the current head of the same class.
5318 Also check if destination addresses have been removed. */
5320 for (i = 0; i < n_sets; i++)
5321 if (sets[i].rtl)
5323 if (sets[i].dest_addr_elt
5324 && sets[i].dest_addr_elt->first_same_value == 0)
5326 /* The elt was removed, which means this destination is not
5327 valid after this instruction. */
5328 sets[i].rtl = NULL_RTX;
5330 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5331 /* If elt was removed, find current head of same class,
5332 or 0 if nothing remains of that class. */
5334 struct table_elt *elt = sets[i].src_elt;
5336 while (elt && elt->prev_same_value)
5337 elt = elt->prev_same_value;
5339 while (elt && elt->first_same_value == 0)
5340 elt = elt->next_same_value;
5341 sets[i].src_elt = elt ? elt->first_same_value : 0;
5345 /* Now insert the destinations into their equivalence classes. */
5347 for (i = 0; i < n_sets; i++)
5348 if (sets[i].rtl)
5350 rtx dest = SET_DEST (sets[i].rtl);
5351 struct table_elt *elt;
5353 /* Don't record value if we are not supposed to risk allocating
5354 floating-point values in registers that might be wider than
5355 memory. */
5356 if ((flag_float_store
5357 && MEM_P (dest)
5358 && FLOAT_MODE_P (GET_MODE (dest)))
5359 /* Don't record BLKmode values, because we don't know the
5360 size of it, and can't be sure that other BLKmode values
5361 have the same or smaller size. */
5362 || GET_MODE (dest) == BLKmode
5363 /* Don't record values of destinations set inside a libcall block
5364 since we might delete the libcall. Things should have been set
5365 up so we won't want to reuse such a value, but we play it safe
5366 here. */
5367 || libcall_insn
5368 /* If we didn't put a REG_EQUAL value or a source into the hash
5369 table, there is no point is recording DEST. */
5370 || sets[i].src_elt == 0
5371 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5372 or SIGN_EXTEND, don't record DEST since it can cause
5373 some tracking to be wrong.
5375 ??? Think about this more later. */
5376 || (GET_CODE (dest) == SUBREG
5377 && (GET_MODE_SIZE (GET_MODE (dest))
5378 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5379 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5380 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5381 continue;
5383 /* STRICT_LOW_PART isn't part of the value BEING set,
5384 and neither is the SUBREG inside it.
5385 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5386 if (GET_CODE (dest) == STRICT_LOW_PART)
5387 dest = SUBREG_REG (XEXP (dest, 0));
5389 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5390 /* Registers must also be inserted into chains for quantities. */
5391 if (insert_regs (dest, sets[i].src_elt, 1))
5393 /* If `insert_regs' changes something, the hash code must be
5394 recalculated. */
5395 rehash_using_reg (dest);
5396 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5399 elt = insert (dest, sets[i].src_elt,
5400 sets[i].dest_hash, GET_MODE (dest));
5402 elt->in_memory = (MEM_P (sets[i].inner_dest)
5403 && !MEM_READONLY_P (sets[i].inner_dest));
5405 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5406 narrower than M2, and both M1 and M2 are the same number of words,
5407 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5408 make that equivalence as well.
5410 However, BAR may have equivalences for which gen_lowpart
5411 will produce a simpler value than gen_lowpart applied to
5412 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5413 BAR's equivalences. If we don't get a simplified form, make
5414 the SUBREG. It will not be used in an equivalence, but will
5415 cause two similar assignments to be detected.
5417 Note the loop below will find SUBREG_REG (DEST) since we have
5418 already entered SRC and DEST of the SET in the table. */
5420 if (GET_CODE (dest) == SUBREG
5421 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5422 / UNITS_PER_WORD)
5423 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5424 && (GET_MODE_SIZE (GET_MODE (dest))
5425 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5426 && sets[i].src_elt != 0)
5428 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5429 struct table_elt *elt, *classp = 0;
5431 for (elt = sets[i].src_elt->first_same_value; elt;
5432 elt = elt->next_same_value)
5434 rtx new_src = 0;
5435 unsigned src_hash;
5436 struct table_elt *src_elt;
5437 int byte = 0;
5439 /* Ignore invalid entries. */
5440 if (!REG_P (elt->exp)
5441 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5442 continue;
5444 /* We may have already been playing subreg games. If the
5445 mode is already correct for the destination, use it. */
5446 if (GET_MODE (elt->exp) == new_mode)
5447 new_src = elt->exp;
5448 else
5450 /* Calculate big endian correction for the SUBREG_BYTE.
5451 We have already checked that M1 (GET_MODE (dest))
5452 is not narrower than M2 (new_mode). */
5453 if (BYTES_BIG_ENDIAN)
5454 byte = (GET_MODE_SIZE (GET_MODE (dest))
5455 - GET_MODE_SIZE (new_mode));
5457 new_src = simplify_gen_subreg (new_mode, elt->exp,
5458 GET_MODE (dest), byte);
5461 /* The call to simplify_gen_subreg fails if the value
5462 is VOIDmode, yet we can't do any simplification, e.g.
5463 for EXPR_LISTs denoting function call results.
5464 It is invalid to construct a SUBREG with a VOIDmode
5465 SUBREG_REG, hence a zero new_src means we can't do
5466 this substitution. */
5467 if (! new_src)
5468 continue;
5470 src_hash = HASH (new_src, new_mode);
5471 src_elt = lookup (new_src, src_hash, new_mode);
5473 /* Put the new source in the hash table is if isn't
5474 already. */
5475 if (src_elt == 0)
5477 if (insert_regs (new_src, classp, 0))
5479 rehash_using_reg (new_src);
5480 src_hash = HASH (new_src, new_mode);
5482 src_elt = insert (new_src, classp, src_hash, new_mode);
5483 src_elt->in_memory = elt->in_memory;
5485 else if (classp && classp != src_elt->first_same_value)
5486 /* Show that two things that we've seen before are
5487 actually the same. */
5488 merge_equiv_classes (src_elt, classp);
5490 classp = src_elt->first_same_value;
5491 /* Ignore invalid entries. */
5492 while (classp
5493 && !REG_P (classp->exp)
5494 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5495 classp = classp->next_same_value;
5500 /* Special handling for (set REG0 REG1) where REG0 is the
5501 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5502 be used in the sequel, so (if easily done) change this insn to
5503 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5504 that computed their value. Then REG1 will become a dead store
5505 and won't cloud the situation for later optimizations.
5507 Do not make this change if REG1 is a hard register, because it will
5508 then be used in the sequel and we may be changing a two-operand insn
5509 into a three-operand insn.
5511 Also do not do this if we are operating on a copy of INSN.
5513 Also don't do this if INSN ends a libcall; this would cause an unrelated
5514 register to be set in the middle of a libcall, and we then get bad code
5515 if the libcall is deleted. */
5517 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5518 && NEXT_INSN (PREV_INSN (insn)) == insn
5519 && REG_P (SET_SRC (sets[0].rtl))
5520 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5521 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5523 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5524 struct qty_table_elem *src_ent = &qty_table[src_q];
5526 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5527 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5529 /* Scan for the previous nonnote insn, but stop at a basic
5530 block boundary. */
5531 rtx prev = insn;
5532 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5535 prev = PREV_INSN (prev);
5537 while (prev != bb_head && NOTE_P (prev));
5539 /* Do not swap the registers around if the previous instruction
5540 attaches a REG_EQUIV note to REG1.
5542 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5543 from the pseudo that originally shadowed an incoming argument
5544 to another register. Some uses of REG_EQUIV might rely on it
5545 being attached to REG1 rather than REG2.
5547 This section previously turned the REG_EQUIV into a REG_EQUAL
5548 note. We cannot do that because REG_EQUIV may provide an
5549 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5550 if (NONJUMP_INSN_P (prev)
5551 && GET_CODE (PATTERN (prev)) == SET
5552 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5553 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5555 rtx dest = SET_DEST (sets[0].rtl);
5556 rtx src = SET_SRC (sets[0].rtl);
5557 rtx note;
5559 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5560 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5561 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5562 apply_change_group ();
5564 /* If INSN has a REG_EQUAL note, and this note mentions
5565 REG0, then we must delete it, because the value in
5566 REG0 has changed. If the note's value is REG1, we must
5567 also delete it because that is now this insn's dest. */
5568 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5569 if (note != 0
5570 && (reg_mentioned_p (dest, XEXP (note, 0))
5571 || rtx_equal_p (src, XEXP (note, 0))))
5572 remove_note (insn, note);
5577 done:;
5580 /* Remove from the hash table all expressions that reference memory. */
5582 static void
5583 invalidate_memory (void)
5585 int i;
5586 struct table_elt *p, *next;
5588 for (i = 0; i < HASH_SIZE; i++)
5589 for (p = table[i]; p; p = next)
5591 next = p->next_same_hash;
5592 if (p->in_memory)
5593 remove_from_table (p, i);
5597 /* Perform invalidation on the basis of everything about an insn
5598 except for invalidating the actual places that are SET in it.
5599 This includes the places CLOBBERed, and anything that might
5600 alias with something that is SET or CLOBBERed.
5602 X is the pattern of the insn. */
5604 static void
5605 invalidate_from_clobbers (rtx x)
5607 if (GET_CODE (x) == CLOBBER)
5609 rtx ref = XEXP (x, 0);
5610 if (ref)
5612 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5613 || MEM_P (ref))
5614 invalidate (ref, VOIDmode);
5615 else if (GET_CODE (ref) == STRICT_LOW_PART
5616 || GET_CODE (ref) == ZERO_EXTRACT)
5617 invalidate (XEXP (ref, 0), GET_MODE (ref));
5620 else if (GET_CODE (x) == PARALLEL)
5622 int i;
5623 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5625 rtx y = XVECEXP (x, 0, i);
5626 if (GET_CODE (y) == CLOBBER)
5628 rtx ref = XEXP (y, 0);
5629 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5630 || MEM_P (ref))
5631 invalidate (ref, VOIDmode);
5632 else if (GET_CODE (ref) == STRICT_LOW_PART
5633 || GET_CODE (ref) == ZERO_EXTRACT)
5634 invalidate (XEXP (ref, 0), GET_MODE (ref));
5640 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5641 and replace any registers in them with either an equivalent constant
5642 or the canonical form of the register. If we are inside an address,
5643 only do this if the address remains valid.
5645 OBJECT is 0 except when within a MEM in which case it is the MEM.
5647 Return the replacement for X. */
5649 static rtx
5650 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5652 enum rtx_code code = GET_CODE (x);
5653 const char *fmt = GET_RTX_FORMAT (code);
5654 int i;
5656 switch (code)
5658 case CONST_INT:
5659 case CONST:
5660 case SYMBOL_REF:
5661 case LABEL_REF:
5662 case CONST_DOUBLE:
5663 case CONST_FIXED:
5664 case CONST_VECTOR:
5665 case PC:
5666 case CC0:
5667 case LO_SUM:
5668 return x;
5670 case MEM:
5671 validate_change (x, &XEXP (x, 0),
5672 cse_process_notes (XEXP (x, 0), x, changed), 0);
5673 return x;
5675 case EXPR_LIST:
5676 case INSN_LIST:
5677 if (REG_NOTE_KIND (x) == REG_EQUAL)
5678 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
5679 if (XEXP (x, 1))
5680 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
5681 return x;
5683 case SIGN_EXTEND:
5684 case ZERO_EXTEND:
5685 case SUBREG:
5687 rtx new = cse_process_notes (XEXP (x, 0), object, changed);
5688 /* We don't substitute VOIDmode constants into these rtx,
5689 since they would impede folding. */
5690 if (GET_MODE (new) != VOIDmode)
5691 validate_change (object, &XEXP (x, 0), new, 0);
5692 return x;
5695 case REG:
5696 i = REG_QTY (REGNO (x));
5698 /* Return a constant or a constant register. */
5699 if (REGNO_QTY_VALID_P (REGNO (x)))
5701 struct qty_table_elem *ent = &qty_table[i];
5703 if (ent->const_rtx != NULL_RTX
5704 && (CONSTANT_P (ent->const_rtx)
5705 || REG_P (ent->const_rtx)))
5707 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
5708 if (new)
5709 return copy_rtx (new);
5713 /* Otherwise, canonicalize this register. */
5714 return canon_reg (x, NULL_RTX);
5716 default:
5717 break;
5720 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5721 if (fmt[i] == 'e')
5722 validate_change (object, &XEXP (x, i),
5723 cse_process_notes (XEXP (x, i), object, changed), 0);
5725 return x;
5728 static rtx
5729 cse_process_notes (rtx x, rtx object, bool *changed)
5731 rtx new = cse_process_notes_1 (x, object, changed);
5732 if (new != x)
5733 *changed = true;
5734 return new;
5738 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
5740 DATA is a pointer to a struct cse_basic_block_data, that is used to
5741 describe the path.
5742 It is filled with a queue of basic blocks, starting with FIRST_BB
5743 and following a trace through the CFG.
5745 If all paths starting at FIRST_BB have been followed, or no new path
5746 starting at FIRST_BB can be constructed, this function returns FALSE.
5747 Otherwise, DATA->path is filled and the function returns TRUE indicating
5748 that a path to follow was found.
5750 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5751 block in the path will be FIRST_BB. */
5753 static bool
5754 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5755 int follow_jumps)
5757 basic_block bb;
5758 edge e;
5759 int path_size;
5761 SET_BIT (cse_visited_basic_blocks, first_bb->index);
5763 /* See if there is a previous path. */
5764 path_size = data->path_size;
5766 /* There is a previous path. Make sure it started with FIRST_BB. */
5767 if (path_size)
5768 gcc_assert (data->path[0].bb == first_bb);
5770 /* There was only one basic block in the last path. Clear the path and
5771 return, so that paths starting at another basic block can be tried. */
5772 if (path_size == 1)
5774 path_size = 0;
5775 goto done;
5778 /* If the path was empty from the beginning, construct a new path. */
5779 if (path_size == 0)
5780 data->path[path_size++].bb = first_bb;
5781 else
5783 /* Otherwise, path_size must be equal to or greater than 2, because
5784 a previous path exists that is at least two basic blocks long.
5786 Update the previous branch path, if any. If the last branch was
5787 previously along the branch edge, take the fallthrough edge now. */
5788 while (path_size >= 2)
5790 basic_block last_bb_in_path, previous_bb_in_path;
5791 edge e;
5793 --path_size;
5794 last_bb_in_path = data->path[path_size].bb;
5795 previous_bb_in_path = data->path[path_size - 1].bb;
5797 /* If we previously followed a path along the branch edge, try
5798 the fallthru edge now. */
5799 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5800 && any_condjump_p (BB_END (previous_bb_in_path))
5801 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5802 && e == BRANCH_EDGE (previous_bb_in_path))
5804 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5805 if (bb != EXIT_BLOCK_PTR
5806 && single_pred_p (bb)
5807 /* We used to assert here that we would only see blocks
5808 that we have not visited yet. But we may end up
5809 visiting basic blocks twice if the CFG has changed
5810 in this run of cse_main, because when the CFG changes
5811 the topological sort of the CFG also changes. A basic
5812 blocks that previously had more than two predecessors
5813 may now have a single predecessor, and become part of
5814 a path that starts at another basic block.
5816 We still want to visit each basic block only once, so
5817 halt the path here if we have already visited BB. */
5818 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
5820 SET_BIT (cse_visited_basic_blocks, bb->index);
5821 data->path[path_size++].bb = bb;
5822 break;
5826 data->path[path_size].bb = NULL;
5829 /* If only one block remains in the path, bail. */
5830 if (path_size == 1)
5832 path_size = 0;
5833 goto done;
5837 /* Extend the path if possible. */
5838 if (follow_jumps)
5840 bb = data->path[path_size - 1].bb;
5841 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5843 if (single_succ_p (bb))
5844 e = single_succ_edge (bb);
5845 else if (EDGE_COUNT (bb->succs) == 2
5846 && any_condjump_p (BB_END (bb)))
5848 /* First try to follow the branch. If that doesn't lead
5849 to a useful path, follow the fallthru edge. */
5850 e = BRANCH_EDGE (bb);
5851 if (!single_pred_p (e->dest))
5852 e = FALLTHRU_EDGE (bb);
5854 else
5855 e = NULL;
5857 if (e && e->dest != EXIT_BLOCK_PTR
5858 && single_pred_p (e->dest)
5859 /* Avoid visiting basic blocks twice. The large comment
5860 above explains why this can happen. */
5861 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
5863 basic_block bb2 = e->dest;
5864 SET_BIT (cse_visited_basic_blocks, bb2->index);
5865 data->path[path_size++].bb = bb2;
5866 bb = bb2;
5868 else
5869 bb = NULL;
5873 done:
5874 data->path_size = path_size;
5875 return path_size != 0;
5878 /* Dump the path in DATA to file F. NSETS is the number of sets
5879 in the path. */
5881 static void
5882 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5884 int path_entry;
5886 fprintf (f, ";; Following path with %d sets: ", nsets);
5887 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5888 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5889 fputc ('\n', dump_file);
5890 fflush (f);
5894 /* Return true if BB has exception handling successor edges. */
5896 static bool
5897 have_eh_succ_edges (basic_block bb)
5899 edge e;
5900 edge_iterator ei;
5902 FOR_EACH_EDGE (e, ei, bb->succs)
5903 if (e->flags & EDGE_EH)
5904 return true;
5906 return false;
5910 /* Scan to the end of the path described by DATA. Return an estimate of
5911 the total number of SETs of all insns in the path. */
5913 static void
5914 cse_prescan_path (struct cse_basic_block_data *data)
5916 int nsets = 0;
5917 int path_size = data->path_size;
5918 int path_entry;
5920 /* Scan to end of each basic block in the path. */
5921 for (path_entry = 0; path_entry < path_size; path_entry++)
5923 basic_block bb;
5924 rtx insn;
5926 bb = data->path[path_entry].bb;
5928 FOR_BB_INSNS (bb, insn)
5930 if (!INSN_P (insn))
5931 continue;
5933 /* A PARALLEL can have lots of SETs in it,
5934 especially if it is really an ASM_OPERANDS. */
5935 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5936 nsets += XVECLEN (PATTERN (insn), 0);
5937 else
5938 nsets += 1;
5942 data->nsets = nsets;
5945 /* Process a single extended basic block described by EBB_DATA. */
5947 static void
5948 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
5950 int path_size = ebb_data->path_size;
5951 int path_entry;
5952 int num_insns = 0;
5954 /* Allocate the space needed by qty_table. */
5955 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
5957 new_basic_block ();
5958 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
5959 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
5960 for (path_entry = 0; path_entry < path_size; path_entry++)
5962 basic_block bb;
5963 rtx insn;
5964 rtx libcall_insn = NULL_RTX;
5965 int no_conflict = 0;
5967 bb = ebb_data->path[path_entry].bb;
5968 FOR_BB_INSNS (bb, insn)
5970 /* If we have processed 1,000 insns, flush the hash table to
5971 avoid extreme quadratic behavior. We must not include NOTEs
5972 in the count since there may be more of them when generating
5973 debugging information. If we clear the table at different
5974 times, code generated with -g -O might be different than code
5975 generated with -O but not -g.
5977 FIXME: This is a real kludge and needs to be done some other
5978 way. */
5979 if (INSN_P (insn)
5980 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
5982 flush_hash_table ();
5983 num_insns = 0;
5986 if (INSN_P (insn))
5988 /* Process notes first so we have all notes in canonical forms
5989 when looking for duplicate operations. */
5990 if (REG_NOTES (insn))
5992 bool changed = false;
5993 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
5994 NULL_RTX, &changed);
5995 if (changed)
5996 df_notes_rescan (insn);
5999 /* Track when we are inside in LIBCALL block. Inside such
6000 a block we do not want to record destinations. The last
6001 insn of a LIBCALL block is not considered to be part of
6002 the block, since its destination is the result of the
6003 block and hence should be recorded. */
6004 if (REG_NOTES (insn) != 0)
6006 rtx p;
6008 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6009 libcall_insn = XEXP (p, 0);
6010 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6012 /* Keep libcall_insn for the last SET insn of
6013 a no-conflict block to prevent changing the
6014 destination. */
6015 if (!no_conflict)
6016 libcall_insn = NULL_RTX;
6017 else
6018 no_conflict = -1;
6020 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6021 no_conflict = 1;
6024 cse_insn (insn, libcall_insn);
6026 /* If we kept libcall_insn for a no-conflict bock,
6027 clear it here. */
6028 if (no_conflict == -1)
6030 libcall_insn = NULL_RTX;
6031 no_conflict = 0;
6034 /* If we haven't already found an insn where we added a LABEL_REF,
6035 check this one. */
6036 if (INSN_P (insn) && ! recorded_label_ref
6037 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6038 (void *) insn))
6039 recorded_label_ref = 1;
6041 #ifdef HAVE_cc0
6042 /* If the previous insn set CC0 and this insn no longer
6043 references CC0, delete the previous insn. Here we use
6044 fact that nothing expects CC0 to be valid over an insn,
6045 which is true until the final pass. */
6047 rtx prev_insn, tem;
6049 prev_insn = PREV_INSN (insn);
6050 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6051 && (tem = single_set (prev_insn)) != 0
6052 && SET_DEST (tem) == cc0_rtx
6053 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6054 delete_insn (prev_insn);
6057 /* If this insn is not the last insn in the basic block,
6058 it will be PREV_INSN(insn) in the next iteration. If
6059 we recorded any CC0-related information for this insn,
6060 remember it. */
6061 if (insn != BB_END (bb))
6063 prev_insn_cc0 = this_insn_cc0;
6064 prev_insn_cc0_mode = this_insn_cc0_mode;
6066 #endif
6070 /* Make sure that libcalls don't span multiple basic blocks. */
6071 gcc_assert (libcall_insn == NULL_RTX);
6073 /* With non-call exceptions, we are not always able to update
6074 the CFG properly inside cse_insn. So clean up possibly
6075 redundant EH edges here. */
6076 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6077 purge_dead_edges (bb);
6079 /* If we changed a conditional jump, we may have terminated
6080 the path we are following. Check that by verifying that
6081 the edge we would take still exists. If the edge does
6082 not exist anymore, purge the remainder of the path.
6083 Note that this will cause us to return to the caller. */
6084 if (path_entry < path_size - 1)
6086 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6087 if (!find_edge (bb, next_bb))
6091 path_size--;
6093 /* If we truncate the path, we must also reset the
6094 visited bit on the remaining blocks in the path,
6095 or we will never visit them at all. */
6096 RESET_BIT (cse_visited_basic_blocks,
6097 ebb_data->path[path_size].bb->index);
6098 ebb_data->path[path_size].bb = NULL;
6100 while (path_size - 1 != path_entry);
6101 ebb_data->path_size = path_size;
6105 /* If this is a conditional jump insn, record any known
6106 equivalences due to the condition being tested. */
6107 insn = BB_END (bb);
6108 if (path_entry < path_size - 1
6109 && JUMP_P (insn)
6110 && single_set (insn)
6111 && any_condjump_p (insn))
6113 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6114 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6115 record_jump_equiv (insn, taken);
6118 #ifdef HAVE_cc0
6119 /* Clear the CC0-tracking related insns, they can't provide
6120 useful information across basic block boundaries. */
6121 prev_insn_cc0 = 0;
6122 #endif
6125 gcc_assert (next_qty <= max_qty);
6127 free (qty_table);
6131 /* Perform cse on the instructions of a function.
6132 F is the first instruction.
6133 NREGS is one plus the highest pseudo-reg number used in the instruction.
6135 Returns 1 if jump_optimize should be redone due to simplifications
6136 in conditional jump instructions. */
6139 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6141 struct cse_basic_block_data ebb_data;
6142 basic_block bb;
6143 int *rc_order = XNEWVEC (int, last_basic_block);
6144 int i, n_blocks;
6146 df_set_flags (DF_LR_RUN_DCE);
6147 df_analyze ();
6148 df_set_flags (DF_DEFER_INSN_RESCAN);
6150 reg_scan (get_insns (), max_reg_num ());
6151 init_cse_reg_info (nregs);
6153 ebb_data.path = XNEWVEC (struct branch_path,
6154 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6156 cse_jumps_altered = 0;
6157 recorded_label_ref = 0;
6158 constant_pool_entries_cost = 0;
6159 constant_pool_entries_regcost = 0;
6160 ebb_data.path_size = 0;
6161 ebb_data.nsets = 0;
6162 rtl_hooks = cse_rtl_hooks;
6164 init_recog ();
6165 init_alias_analysis ();
6167 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6169 /* Set up the table of already visited basic blocks. */
6170 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6171 sbitmap_zero (cse_visited_basic_blocks);
6173 /* Loop over basic blocks in reverse completion order (RPO),
6174 excluding the ENTRY and EXIT blocks. */
6175 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6176 i = 0;
6177 while (i < n_blocks)
6179 /* Find the first block in the RPO queue that we have not yet
6180 processed before. */
6183 bb = BASIC_BLOCK (rc_order[i++]);
6185 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6186 && i < n_blocks);
6188 /* Find all paths starting with BB, and process them. */
6189 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6191 /* Pre-scan the path. */
6192 cse_prescan_path (&ebb_data);
6194 /* If this basic block has no sets, skip it. */
6195 if (ebb_data.nsets == 0)
6196 continue;
6198 /* Get a reasonable estimate for the maximum number of qty's
6199 needed for this path. For this, we take the number of sets
6200 and multiply that by MAX_RECOG_OPERANDS. */
6201 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6203 /* Dump the path we're about to process. */
6204 if (dump_file)
6205 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6207 cse_extended_basic_block (&ebb_data);
6211 /* Clean up. */
6212 end_alias_analysis ();
6213 free (reg_eqv_table);
6214 free (ebb_data.path);
6215 sbitmap_free (cse_visited_basic_blocks);
6216 free (rc_order);
6217 rtl_hooks = general_rtl_hooks;
6219 return cse_jumps_altered || recorded_label_ref;
6222 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6223 which there isn't a REG_LABEL_OPERAND note.
6224 Return one if so. DATA is the insn. */
6226 static int
6227 check_for_label_ref (rtx *rtl, void *data)
6229 rtx insn = (rtx) data;
6231 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6232 note for it, we must rerun jump since it needs to place the note. If
6233 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6234 don't do this since no REG_LABEL_OPERAND will be added. */
6235 return (GET_CODE (*rtl) == LABEL_REF
6236 && ! LABEL_REF_NONLOCAL_P (*rtl)
6237 && (!JUMP_P (insn)
6238 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6239 && LABEL_P (XEXP (*rtl, 0))
6240 && INSN_UID (XEXP (*rtl, 0)) != 0
6241 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6244 /* Count the number of times registers are used (not set) in X.
6245 COUNTS is an array in which we accumulate the count, INCR is how much
6246 we count each register usage.
6248 Don't count a usage of DEST, which is the SET_DEST of a SET which
6249 contains X in its SET_SRC. This is because such a SET does not
6250 modify the liveness of DEST.
6251 DEST is set to pc_rtx for a trapping insn, which means that we must count
6252 uses of a SET_DEST regardless because the insn can't be deleted here. */
6254 static void
6255 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6257 enum rtx_code code;
6258 rtx note;
6259 const char *fmt;
6260 int i, j;
6262 if (x == 0)
6263 return;
6265 switch (code = GET_CODE (x))
6267 case REG:
6268 if (x != dest)
6269 counts[REGNO (x)] += incr;
6270 return;
6272 case PC:
6273 case CC0:
6274 case CONST:
6275 case CONST_INT:
6276 case CONST_DOUBLE:
6277 case CONST_FIXED:
6278 case CONST_VECTOR:
6279 case SYMBOL_REF:
6280 case LABEL_REF:
6281 return;
6283 case CLOBBER:
6284 /* If we are clobbering a MEM, mark any registers inside the address
6285 as being used. */
6286 if (MEM_P (XEXP (x, 0)))
6287 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6288 return;
6290 case SET:
6291 /* Unless we are setting a REG, count everything in SET_DEST. */
6292 if (!REG_P (SET_DEST (x)))
6293 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6294 count_reg_usage (SET_SRC (x), counts,
6295 dest ? dest : SET_DEST (x),
6296 incr);
6297 return;
6299 case CALL_INSN:
6300 case INSN:
6301 case JUMP_INSN:
6302 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6303 this fact by setting DEST to pc_rtx. */
6304 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6305 dest = pc_rtx;
6306 if (code == CALL_INSN)
6307 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6308 count_reg_usage (PATTERN (x), counts, dest, incr);
6310 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6311 use them. */
6313 note = find_reg_equal_equiv_note (x);
6314 if (note)
6316 rtx eqv = XEXP (note, 0);
6318 if (GET_CODE (eqv) == EXPR_LIST)
6319 /* This REG_EQUAL note describes the result of a function call.
6320 Process all the arguments. */
6323 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6324 eqv = XEXP (eqv, 1);
6326 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6327 else
6328 count_reg_usage (eqv, counts, dest, incr);
6330 return;
6332 case EXPR_LIST:
6333 if (REG_NOTE_KIND (x) == REG_EQUAL
6334 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6335 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6336 involving registers in the address. */
6337 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6338 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6340 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6341 return;
6343 case ASM_OPERANDS:
6344 /* If the asm is volatile, then this insn cannot be deleted,
6345 and so the inputs *must* be live. */
6346 if (MEM_VOLATILE_P (x))
6347 dest = NULL_RTX;
6348 /* Iterate over just the inputs, not the constraints as well. */
6349 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6350 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6351 return;
6353 case INSN_LIST:
6354 gcc_unreachable ();
6356 default:
6357 break;
6360 fmt = GET_RTX_FORMAT (code);
6361 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6363 if (fmt[i] == 'e')
6364 count_reg_usage (XEXP (x, i), counts, dest, incr);
6365 else if (fmt[i] == 'E')
6366 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6367 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6371 /* Return true if set is live. */
6372 static bool
6373 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6374 int *counts)
6376 #ifdef HAVE_cc0
6377 rtx tem;
6378 #endif
6380 if (set_noop_p (set))
6383 #ifdef HAVE_cc0
6384 else if (GET_CODE (SET_DEST (set)) == CC0
6385 && !side_effects_p (SET_SRC (set))
6386 && ((tem = next_nonnote_insn (insn)) == 0
6387 || !INSN_P (tem)
6388 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6389 return false;
6390 #endif
6391 else if (!REG_P (SET_DEST (set))
6392 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6393 || counts[REGNO (SET_DEST (set))] != 0
6394 || side_effects_p (SET_SRC (set)))
6395 return true;
6396 return false;
6399 /* Return true if insn is live. */
6401 static bool
6402 insn_live_p (rtx insn, int *counts)
6404 int i;
6405 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6406 return true;
6407 else if (GET_CODE (PATTERN (insn)) == SET)
6408 return set_live_p (PATTERN (insn), insn, counts);
6409 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6411 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6413 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6415 if (GET_CODE (elt) == SET)
6417 if (set_live_p (elt, insn, counts))
6418 return true;
6420 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6421 return true;
6423 return false;
6425 else
6426 return true;
6429 /* Return true if libcall is dead as a whole. */
6431 static bool
6432 dead_libcall_p (rtx insn, int *counts)
6434 rtx note, set, new;
6436 /* See if there's a REG_EQUAL note on this insn and try to
6437 replace the source with the REG_EQUAL expression.
6439 We assume that insns with REG_RETVALs can only be reg->reg
6440 copies at this point. */
6441 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6442 if (!note)
6443 return false;
6445 set = single_set (insn);
6446 if (!set)
6447 return false;
6449 new = simplify_rtx (XEXP (note, 0));
6450 if (!new)
6451 new = XEXP (note, 0);
6453 /* While changing insn, we must update the counts accordingly. */
6454 count_reg_usage (insn, counts, NULL_RTX, -1);
6456 if (validate_change (insn, &SET_SRC (set), new, 0))
6458 count_reg_usage (insn, counts, NULL_RTX, 1);
6459 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6460 remove_note (insn, note);
6461 return true;
6464 if (CONSTANT_P (new))
6466 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
6467 if (new && validate_change (insn, &SET_SRC (set), new, 0))
6469 count_reg_usage (insn, counts, NULL_RTX, 1);
6470 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6471 remove_note (insn, note);
6472 return true;
6476 count_reg_usage (insn, counts, NULL_RTX, 1);
6477 return false;
6480 /* Scan all the insns and delete any that are dead; i.e., they store a register
6481 that is never used or they copy a register to itself.
6483 This is used to remove insns made obviously dead by cse, loop or other
6484 optimizations. It improves the heuristics in loop since it won't try to
6485 move dead invariants out of loops or make givs for dead quantities. The
6486 remaining passes of the compilation are also sped up. */
6489 delete_trivially_dead_insns (rtx insns, int nreg)
6491 int *counts;
6492 rtx insn, prev;
6493 int in_libcall = 0, dead_libcall = 0;
6494 int ndead = 0;
6496 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6497 /* First count the number of times each register is used. */
6498 counts = XCNEWVEC (int, nreg);
6499 for (insn = insns; insn; insn = NEXT_INSN (insn))
6500 if (INSN_P (insn))
6501 count_reg_usage (insn, counts, NULL_RTX, 1);
6503 /* Go from the last insn to the first and delete insns that only set unused
6504 registers or copy a register to itself. As we delete an insn, remove
6505 usage counts for registers it uses.
6507 The first jump optimization pass may leave a real insn as the last
6508 insn in the function. We must not skip that insn or we may end
6509 up deleting code that is not really dead. */
6510 for (insn = get_last_insn (); insn; insn = prev)
6512 int live_insn = 0;
6514 prev = PREV_INSN (insn);
6515 if (!INSN_P (insn))
6516 continue;
6518 /* Don't delete any insns that are part of a libcall block unless
6519 we can delete the whole libcall block.
6521 Flow or loop might get confused if we did that. Remember
6522 that we are scanning backwards. */
6523 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6525 in_libcall = 1;
6526 live_insn = 1;
6527 dead_libcall = dead_libcall_p (insn, counts);
6529 else if (in_libcall)
6530 live_insn = ! dead_libcall;
6531 else
6532 live_insn = insn_live_p (insn, counts);
6534 /* If this is a dead insn, delete it and show registers in it aren't
6535 being used. */
6537 if (! live_insn && dbg_cnt (delete_trivial_dead))
6539 count_reg_usage (insn, counts, NULL_RTX, -1);
6540 delete_insn_and_edges (insn);
6541 ndead++;
6544 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
6546 in_libcall = 0;
6547 dead_libcall = 0;
6551 if (dump_file && ndead)
6552 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6553 ndead);
6554 /* Clean up. */
6555 free (counts);
6556 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6557 return ndead;
6560 /* This function is called via for_each_rtx. The argument, NEWREG, is
6561 a condition code register with the desired mode. If we are looking
6562 at the same register in a different mode, replace it with
6563 NEWREG. */
6565 static int
6566 cse_change_cc_mode (rtx *loc, void *data)
6568 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6570 if (*loc
6571 && REG_P (*loc)
6572 && REGNO (*loc) == REGNO (args->newreg)
6573 && GET_MODE (*loc) != GET_MODE (args->newreg))
6575 validate_change (args->insn, loc, args->newreg, 1);
6577 return -1;
6579 return 0;
6582 /* Change the mode of any reference to the register REGNO (NEWREG) to
6583 GET_MODE (NEWREG) in INSN. */
6585 static void
6586 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6588 struct change_cc_mode_args args;
6589 int success;
6591 if (!INSN_P (insn))
6592 return;
6594 args.insn = insn;
6595 args.newreg = newreg;
6597 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6598 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6600 /* If the following assertion was triggered, there is most probably
6601 something wrong with the cc_modes_compatible back end function.
6602 CC modes only can be considered compatible if the insn - with the mode
6603 replaced by any of the compatible modes - can still be recognized. */
6604 success = apply_change_group ();
6605 gcc_assert (success);
6608 /* Change the mode of any reference to the register REGNO (NEWREG) to
6609 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6610 any instruction which modifies NEWREG. */
6612 static void
6613 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6615 rtx insn;
6617 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6619 if (! INSN_P (insn))
6620 continue;
6622 if (reg_set_p (newreg, insn))
6623 return;
6625 cse_change_cc_mode_insn (insn, newreg);
6629 /* BB is a basic block which finishes with CC_REG as a condition code
6630 register which is set to CC_SRC. Look through the successors of BB
6631 to find blocks which have a single predecessor (i.e., this one),
6632 and look through those blocks for an assignment to CC_REG which is
6633 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6634 permitted to change the mode of CC_SRC to a compatible mode. This
6635 returns VOIDmode if no equivalent assignments were found.
6636 Otherwise it returns the mode which CC_SRC should wind up with.
6638 The main complexity in this function is handling the mode issues.
6639 We may have more than one duplicate which we can eliminate, and we
6640 try to find a mode which will work for multiple duplicates. */
6642 static enum machine_mode
6643 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
6645 bool found_equiv;
6646 enum machine_mode mode;
6647 unsigned int insn_count;
6648 edge e;
6649 rtx insns[2];
6650 enum machine_mode modes[2];
6651 rtx last_insns[2];
6652 unsigned int i;
6653 rtx newreg;
6654 edge_iterator ei;
6656 /* We expect to have two successors. Look at both before picking
6657 the final mode for the comparison. If we have more successors
6658 (i.e., some sort of table jump, although that seems unlikely),
6659 then we require all beyond the first two to use the same
6660 mode. */
6662 found_equiv = false;
6663 mode = GET_MODE (cc_src);
6664 insn_count = 0;
6665 FOR_EACH_EDGE (e, ei, bb->succs)
6667 rtx insn;
6668 rtx end;
6670 if (e->flags & EDGE_COMPLEX)
6671 continue;
6673 if (EDGE_COUNT (e->dest->preds) != 1
6674 || e->dest == EXIT_BLOCK_PTR)
6675 continue;
6677 end = NEXT_INSN (BB_END (e->dest));
6678 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6680 rtx set;
6682 if (! INSN_P (insn))
6683 continue;
6685 /* If CC_SRC is modified, we have to stop looking for
6686 something which uses it. */
6687 if (modified_in_p (cc_src, insn))
6688 break;
6690 /* Check whether INSN sets CC_REG to CC_SRC. */
6691 set = single_set (insn);
6692 if (set
6693 && REG_P (SET_DEST (set))
6694 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6696 bool found;
6697 enum machine_mode set_mode;
6698 enum machine_mode comp_mode;
6700 found = false;
6701 set_mode = GET_MODE (SET_SRC (set));
6702 comp_mode = set_mode;
6703 if (rtx_equal_p (cc_src, SET_SRC (set)))
6704 found = true;
6705 else if (GET_CODE (cc_src) == COMPARE
6706 && GET_CODE (SET_SRC (set)) == COMPARE
6707 && mode != set_mode
6708 && rtx_equal_p (XEXP (cc_src, 0),
6709 XEXP (SET_SRC (set), 0))
6710 && rtx_equal_p (XEXP (cc_src, 1),
6711 XEXP (SET_SRC (set), 1)))
6714 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6715 if (comp_mode != VOIDmode
6716 && (can_change_mode || comp_mode == mode))
6717 found = true;
6720 if (found)
6722 found_equiv = true;
6723 if (insn_count < ARRAY_SIZE (insns))
6725 insns[insn_count] = insn;
6726 modes[insn_count] = set_mode;
6727 last_insns[insn_count] = end;
6728 ++insn_count;
6730 if (mode != comp_mode)
6732 gcc_assert (can_change_mode);
6733 mode = comp_mode;
6735 /* The modified insn will be re-recognized later. */
6736 PUT_MODE (cc_src, mode);
6739 else
6741 if (set_mode != mode)
6743 /* We found a matching expression in the
6744 wrong mode, but we don't have room to
6745 store it in the array. Punt. This case
6746 should be rare. */
6747 break;
6749 /* INSN sets CC_REG to a value equal to CC_SRC
6750 with the right mode. We can simply delete
6751 it. */
6752 delete_insn (insn);
6755 /* We found an instruction to delete. Keep looking,
6756 in the hopes of finding a three-way jump. */
6757 continue;
6760 /* We found an instruction which sets the condition
6761 code, so don't look any farther. */
6762 break;
6765 /* If INSN sets CC_REG in some other way, don't look any
6766 farther. */
6767 if (reg_set_p (cc_reg, insn))
6768 break;
6771 /* If we fell off the bottom of the block, we can keep looking
6772 through successors. We pass CAN_CHANGE_MODE as false because
6773 we aren't prepared to handle compatibility between the
6774 further blocks and this block. */
6775 if (insn == end)
6777 enum machine_mode submode;
6779 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
6780 if (submode != VOIDmode)
6782 gcc_assert (submode == mode);
6783 found_equiv = true;
6784 can_change_mode = false;
6789 if (! found_equiv)
6790 return VOIDmode;
6792 /* Now INSN_COUNT is the number of instructions we found which set
6793 CC_REG to a value equivalent to CC_SRC. The instructions are in
6794 INSNS. The modes used by those instructions are in MODES. */
6796 newreg = NULL_RTX;
6797 for (i = 0; i < insn_count; ++i)
6799 if (modes[i] != mode)
6801 /* We need to change the mode of CC_REG in INSNS[i] and
6802 subsequent instructions. */
6803 if (! newreg)
6805 if (GET_MODE (cc_reg) == mode)
6806 newreg = cc_reg;
6807 else
6808 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6810 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6811 newreg);
6814 delete_insn (insns[i]);
6817 return mode;
6820 /* If we have a fixed condition code register (or two), walk through
6821 the instructions and try to eliminate duplicate assignments. */
6823 static void
6824 cse_condition_code_reg (void)
6826 unsigned int cc_regno_1;
6827 unsigned int cc_regno_2;
6828 rtx cc_reg_1;
6829 rtx cc_reg_2;
6830 basic_block bb;
6832 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6833 return;
6835 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6836 if (cc_regno_2 != INVALID_REGNUM)
6837 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6838 else
6839 cc_reg_2 = NULL_RTX;
6841 FOR_EACH_BB (bb)
6843 rtx last_insn;
6844 rtx cc_reg;
6845 rtx insn;
6846 rtx cc_src_insn;
6847 rtx cc_src;
6848 enum machine_mode mode;
6849 enum machine_mode orig_mode;
6851 /* Look for blocks which end with a conditional jump based on a
6852 condition code register. Then look for the instruction which
6853 sets the condition code register. Then look through the
6854 successor blocks for instructions which set the condition
6855 code register to the same value. There are other possible
6856 uses of the condition code register, but these are by far the
6857 most common and the ones which we are most likely to be able
6858 to optimize. */
6860 last_insn = BB_END (bb);
6861 if (!JUMP_P (last_insn))
6862 continue;
6864 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6865 cc_reg = cc_reg_1;
6866 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6867 cc_reg = cc_reg_2;
6868 else
6869 continue;
6871 cc_src_insn = NULL_RTX;
6872 cc_src = NULL_RTX;
6873 for (insn = PREV_INSN (last_insn);
6874 insn && insn != PREV_INSN (BB_HEAD (bb));
6875 insn = PREV_INSN (insn))
6877 rtx set;
6879 if (! INSN_P (insn))
6880 continue;
6881 set = single_set (insn);
6882 if (set
6883 && REG_P (SET_DEST (set))
6884 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6886 cc_src_insn = insn;
6887 cc_src = SET_SRC (set);
6888 break;
6890 else if (reg_set_p (cc_reg, insn))
6891 break;
6894 if (! cc_src_insn)
6895 continue;
6897 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6898 continue;
6900 /* Now CC_REG is a condition code register used for a
6901 conditional jump at the end of the block, and CC_SRC, in
6902 CC_SRC_INSN, is the value to which that condition code
6903 register is set, and CC_SRC is still meaningful at the end of
6904 the basic block. */
6906 orig_mode = GET_MODE (cc_src);
6907 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
6908 if (mode != VOIDmode)
6910 gcc_assert (mode == GET_MODE (cc_src));
6911 if (mode != orig_mode)
6913 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6915 cse_change_cc_mode_insn (cc_src_insn, newreg);
6917 /* Do the same in the following insns that use the
6918 current value of CC_REG within BB. */
6919 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
6920 NEXT_INSN (last_insn),
6921 newreg);
6928 /* Perform common subexpression elimination. Nonzero value from
6929 `cse_main' means that jumps were simplified and some code may now
6930 be unreachable, so do jump optimization again. */
6931 static bool
6932 gate_handle_cse (void)
6934 return optimize > 0;
6937 static unsigned int
6938 rest_of_handle_cse (void)
6940 int tem;
6942 if (dump_file)
6943 dump_flow_info (dump_file, dump_flags);
6945 tem = cse_main (get_insns (), max_reg_num ());
6947 /* If we are not running more CSE passes, then we are no longer
6948 expecting CSE to be run. But always rerun it in a cheap mode. */
6949 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
6951 if (tem)
6952 rebuild_jump_labels (get_insns ());
6954 if (tem || optimize > 1)
6955 cleanup_cfg (0);
6957 return 0;
6960 struct tree_opt_pass pass_cse =
6962 "cse1", /* name */
6963 gate_handle_cse, /* gate */
6964 rest_of_handle_cse, /* execute */
6965 NULL, /* sub */
6966 NULL, /* next */
6967 0, /* static_pass_number */
6968 TV_CSE, /* tv_id */
6969 0, /* properties_required */
6970 0, /* properties_provided */
6971 0, /* properties_destroyed */
6972 0, /* todo_flags_start */
6973 TODO_df_finish | TODO_verify_rtl_sharing |
6974 TODO_dump_func |
6975 TODO_ggc_collect |
6976 TODO_verify_flow, /* todo_flags_finish */
6977 's' /* letter */
6981 static bool
6982 gate_handle_cse2 (void)
6984 return optimize > 0 && flag_rerun_cse_after_loop;
6987 /* Run second CSE pass after loop optimizations. */
6988 static unsigned int
6989 rest_of_handle_cse2 (void)
6991 int tem;
6993 if (dump_file)
6994 dump_flow_info (dump_file, dump_flags);
6996 tem = cse_main (get_insns (), max_reg_num ());
6998 /* Run a pass to eliminate duplicated assignments to condition code
6999 registers. We have to run this after bypass_jumps, because it
7000 makes it harder for that pass to determine whether a jump can be
7001 bypassed safely. */
7002 cse_condition_code_reg ();
7004 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7006 if (tem)
7008 timevar_push (TV_JUMP);
7009 rebuild_jump_labels (get_insns ());
7010 cleanup_cfg (0);
7011 timevar_pop (TV_JUMP);
7013 cse_not_expected = 1;
7014 return 0;
7018 struct tree_opt_pass pass_cse2 =
7020 "cse2", /* name */
7021 gate_handle_cse2, /* gate */
7022 rest_of_handle_cse2, /* execute */
7023 NULL, /* sub */
7024 NULL, /* next */
7025 0, /* static_pass_number */
7026 TV_CSE2, /* tv_id */
7027 0, /* properties_required */
7028 0, /* properties_provided */
7029 0, /* properties_destroyed */
7030 0, /* todo_flags_start */
7031 TODO_df_finish | TODO_verify_rtl_sharing |
7032 TODO_dump_func |
7033 TODO_ggc_collect |
7034 TODO_verify_flow, /* todo_flags_finish */
7035 't' /* letter */