mips.h (set_volatile): Delete.
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob69064c28a80e5f5d7bd84987bbc1417fcf0c581b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Fname; use Fname;
38 with Freeze; use Freeze;
39 with Itypes; use Itypes;
40 with Lib.Xref; use Lib.Xref;
41 with Layout; use Layout;
42 with Namet; use Namet;
43 with Lib; use Lib;
44 with Nlists; use Nlists;
45 with Nmake; use Nmake;
46 with Opt; use Opt;
47 with Output; use Output;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch3; use Sem_Ch3;
52 with Sem_Ch4; use Sem_Ch4;
53 with Sem_Ch5; use Sem_Ch5;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Ch10; use Sem_Ch10;
56 with Sem_Ch12; use Sem_Ch12;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Dist; use Sem_Dist;
59 with Sem_Elim; use Sem_Elim;
60 with Sem_Eval; use Sem_Eval;
61 with Sem_Mech; use Sem_Mech;
62 with Sem_Prag; use Sem_Prag;
63 with Sem_Res; use Sem_Res;
64 with Sem_Util; use Sem_Util;
65 with Sem_Type; use Sem_Type;
66 with Sem_Warn; use Sem_Warn;
67 with Sinput; use Sinput;
68 with Stand; use Stand;
69 with Sinfo; use Sinfo;
70 with Sinfo.CN; use Sinfo.CN;
71 with Snames; use Snames;
72 with Stringt; use Stringt;
73 with Style;
74 with Stylesw; use Stylesw;
75 with Tbuild; use Tbuild;
76 with Uintp; use Uintp;
77 with Urealp; use Urealp;
78 with Validsw; use Validsw;
80 package body Sem_Ch6 is
82 May_Hide_Profile : Boolean := False;
83 -- This flag is used to indicate that two formals in two subprograms being
84 -- checked for conformance differ only in that one is an access parameter
85 -- while the other is of a general access type with the same designated
86 -- type. In this case, if the rest of the signatures match, a call to
87 -- either subprogram may be ambiguous, which is worth a warning. The flag
88 -- is set in Compatible_Types, and the warning emitted in
89 -- New_Overloaded_Entity.
91 -----------------------
92 -- Local Subprograms --
93 -----------------------
95 procedure Analyze_Return_Statement (N : Node_Id);
96 -- Common processing for simple_ and extended_return_statements
98 procedure Analyze_Function_Return (N : Node_Id);
99 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
100 -- applies to a [generic] function.
102 procedure Analyze_Return_Type (N : Node_Id);
103 -- Subsidiary to Process_Formals: analyze subtype mark in function
104 -- specification, in a context where the formals are visible and hide
105 -- outer homographs.
107 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
108 -- Analyze a generic subprogram body. N is the body to be analyzed, and
109 -- Gen_Id is the defining entity Id for the corresponding spec.
111 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
112 -- If a subprogram has pragma Inline and inlining is active, use generic
113 -- machinery to build an unexpanded body for the subprogram. This body is
114 -- subsequenty used for inline expansions at call sites. If subprogram can
115 -- be inlined (depending on size and nature of local declarations) this
116 -- function returns true. Otherwise subprogram body is treated normally.
117 -- If proper warnings are enabled and the subprogram contains a construct
118 -- that cannot be inlined, the offending construct is flagged accordingly.
120 procedure Check_Conformance
121 (New_Id : Entity_Id;
122 Old_Id : Entity_Id;
123 Ctype : Conformance_Type;
124 Errmsg : Boolean;
125 Conforms : out Boolean;
126 Err_Loc : Node_Id := Empty;
127 Get_Inst : Boolean := False;
128 Skip_Controlling_Formals : Boolean := False);
129 -- Given two entities, this procedure checks that the profiles associated
130 -- with these entities meet the conformance criterion given by the third
131 -- parameter. If they conform, Conforms is set True and control returns
132 -- to the caller. If they do not conform, Conforms is set to False, and
133 -- in addition, if Errmsg is True on the call, proper messages are output
134 -- to complain about the conformance failure. If Err_Loc is non_Empty
135 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
136 -- error messages are placed on the appropriate part of the construct
137 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
138 -- against a formal access-to-subprogram type so Get_Instance_Of must
139 -- be called.
141 procedure Check_Overriding_Indicator
142 (Subp : Entity_Id;
143 Overridden_Subp : Entity_Id;
144 Is_Primitive : Boolean);
145 -- Verify the consistency of an overriding_indicator given for subprogram
146 -- declaration, body, renaming, or instantiation. Overridden_Subp is set
147 -- if the scope where we are introducing the subprogram contains a
148 -- type-conformant subprogram that becomes hidden by the new subprogram.
149 -- Is_Primitive indicates whether the subprogram is primitive.
151 procedure Check_Subprogram_Order (N : Node_Id);
152 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
153 -- the alpha ordering rule for N if this ordering requirement applicable.
155 procedure Check_Returns
156 (HSS : Node_Id;
157 Mode : Character;
158 Err : out Boolean;
159 Proc : Entity_Id := Empty);
160 -- Called to check for missing return statements in a function body, or for
161 -- returns present in a procedure body which has No_Return set. HSS is the
162 -- handled statement sequence for the subprogram body. This procedure
163 -- checks all flow paths to make sure they either have return (Mode = 'F',
164 -- used for functions) or do not have a return (Mode = 'P', used for
165 -- No_Return procedures). The flag Err is set if there are any control
166 -- paths not explicitly terminated by a return in the function case, and is
167 -- True otherwise. Proc is the entity for the procedure case and is used
168 -- in posting the warning message.
170 procedure Enter_Overloaded_Entity (S : Entity_Id);
171 -- This procedure makes S, a new overloaded entity, into the first visible
172 -- entity with that name.
174 procedure Install_Entity (E : Entity_Id);
175 -- Make single entity visible. Used for generic formals as well
177 procedure Install_Formals (Id : Entity_Id);
178 -- On entry to a subprogram body, make the formals visible. Note that
179 -- simply placing the subprogram on the scope stack is not sufficient:
180 -- the formals must become the current entities for their names.
182 function Is_Non_Overriding_Operation
183 (Prev_E : Entity_Id;
184 New_E : Entity_Id) return Boolean;
185 -- Enforce the rule given in 12.3(18): a private operation in an instance
186 -- overrides an inherited operation only if the corresponding operation
187 -- was overriding in the generic. This can happen for primitive operations
188 -- of types derived (in the generic unit) from formal private or formal
189 -- derived types.
191 procedure Make_Inequality_Operator (S : Entity_Id);
192 -- Create the declaration for an inequality operator that is implicitly
193 -- created by a user-defined equality operator that yields a boolean.
195 procedure May_Need_Actuals (Fun : Entity_Id);
196 -- Flag functions that can be called without parameters, i.e. those that
197 -- have no parameters, or those for which defaults exist for all parameters
199 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id);
200 -- If there is a separate spec for a subprogram or generic subprogram, the
201 -- formals of the body are treated as references to the corresponding
202 -- formals of the spec. This reference does not count as an actual use of
203 -- the formal, in order to diagnose formals that are unused in the body.
205 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
206 -- Formal_Id is an formal parameter entity. This procedure deals with
207 -- setting the proper validity status for this entity, which depends
208 -- on the kind of parameter and the validity checking mode.
210 ------------------------------
211 -- Analyze_Return_Statement --
212 ------------------------------
214 procedure Analyze_Return_Statement (N : Node_Id) is
216 pragma Assert (Nkind (N) = N_Simple_Return_Statement
217 or else
218 Nkind (N) = N_Extended_Return_Statement);
220 Returns_Object : constant Boolean :=
221 Nkind (N) = N_Extended_Return_Statement
222 or else
223 (Nkind (N) = N_Simple_Return_Statement
224 and then Present (Expression (N)));
225 -- True if we're returning something; that is, "return <expression>;"
226 -- or "return Result : T [:= ...]". False for "return;". Used for error
227 -- checking: If Returns_Object is True, N should apply to a function
228 -- body; otherwise N should apply to a procedure body, entry body,
229 -- accept statement, or extended return statement.
231 function Find_What_It_Applies_To return Entity_Id;
232 -- Find the entity representing the innermost enclosing body, accept
233 -- statement, or extended return statement. If the result is a callable
234 -- construct or extended return statement, then this will be the value
235 -- of the Return_Applies_To attribute. Otherwise, the program is
236 -- illegal. See RM-6.5(4/2).
238 -----------------------------
239 -- Find_What_It_Applies_To --
240 -----------------------------
242 function Find_What_It_Applies_To return Entity_Id is
243 Result : Entity_Id := Empty;
245 begin
246 -- Loop outward through the Scope_Stack, skipping blocks and loops
248 for J in reverse 0 .. Scope_Stack.Last loop
249 Result := Scope_Stack.Table (J).Entity;
250 exit when Ekind (Result) /= E_Block and then
251 Ekind (Result) /= E_Loop;
252 end loop;
254 pragma Assert (Present (Result));
255 return Result;
256 end Find_What_It_Applies_To;
258 -- Local declarations
260 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
261 Kind : constant Entity_Kind := Ekind (Scope_Id);
262 Loc : constant Source_Ptr := Sloc (N);
263 Stm_Entity : constant Entity_Id :=
264 New_Internal_Entity
265 (E_Return_Statement, Current_Scope, Loc, 'R');
267 -- Start of processing for Analyze_Return_Statement
269 begin
270 Set_Return_Statement_Entity (N, Stm_Entity);
272 Set_Etype (Stm_Entity, Standard_Void_Type);
273 Set_Return_Applies_To (Stm_Entity, Scope_Id);
275 -- Place Return entity on scope stack, to simplify enforcement of 6.5
276 -- (4/2): an inner return statement will apply to this extended return.
278 if Nkind (N) = N_Extended_Return_Statement then
279 Push_Scope (Stm_Entity);
280 end if;
282 -- Check that pragma No_Return is obeyed
284 if No_Return (Scope_Id) then
285 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
286 end if;
288 -- Warn on any unassigned OUT parameters if in procedure
290 if Ekind (Scope_Id) = E_Procedure then
291 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
292 end if;
294 -- Check that functions return objects, and other things do not
296 if Kind = E_Function or else Kind = E_Generic_Function then
297 if not Returns_Object then
298 Error_Msg_N ("missing expression in return from function", N);
299 end if;
301 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
302 if Returns_Object then
303 Error_Msg_N ("procedure cannot return value (use function)", N);
304 end if;
306 elsif Kind = E_Entry or else Kind = E_Entry_Family then
307 if Returns_Object then
308 if Is_Protected_Type (Scope (Scope_Id)) then
309 Error_Msg_N ("entry body cannot return value", N);
310 else
311 Error_Msg_N ("accept statement cannot return value", N);
312 end if;
313 end if;
315 elsif Kind = E_Return_Statement then
317 -- We are nested within another return statement, which must be an
318 -- extended_return_statement.
320 if Returns_Object then
321 Error_Msg_N
322 ("extended_return_statement cannot return value; " &
323 "use `""RETURN;""`", N);
324 end if;
326 else
327 Error_Msg_N ("illegal context for return statement", N);
328 end if;
330 if Kind = E_Function or else Kind = E_Generic_Function then
331 Analyze_Function_Return (N);
332 end if;
334 if Nkind (N) = N_Extended_Return_Statement then
335 End_Scope;
336 end if;
338 Kill_Current_Values (Last_Assignment_Only => True);
339 Check_Unreachable_Code (N);
340 end Analyze_Return_Statement;
342 ---------------------------------------------
343 -- Analyze_Abstract_Subprogram_Declaration --
344 ---------------------------------------------
346 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
347 Designator : constant Entity_Id :=
348 Analyze_Subprogram_Specification (Specification (N));
349 Scop : constant Entity_Id := Current_Scope;
351 begin
352 Generate_Definition (Designator);
353 Set_Is_Abstract_Subprogram (Designator);
354 New_Overloaded_Entity (Designator);
355 Check_Delayed_Subprogram (Designator);
357 Set_Categorization_From_Scope (Designator, Scop);
359 if Ekind (Scope (Designator)) = E_Protected_Type then
360 Error_Msg_N
361 ("abstract subprogram not allowed in protected type", N);
363 -- Issue a warning if the abstract subprogram is neither a dispatching
364 -- operation nor an operation that overrides an inherited subprogram or
365 -- predefined operator, since this most likely indicates a mistake.
367 elsif Warn_On_Redundant_Constructs
368 and then not Is_Dispatching_Operation (Designator)
369 and then not Is_Overriding_Operation (Designator)
370 and then (not Is_Operator_Symbol_Name (Chars (Designator))
371 or else Scop /= Scope (Etype (First_Formal (Designator))))
372 then
373 Error_Msg_N
374 ("?abstract subprogram is not dispatching or overriding", N);
375 end if;
377 Generate_Reference_To_Formals (Designator);
378 end Analyze_Abstract_Subprogram_Declaration;
380 ----------------------------------------
381 -- Analyze_Extended_Return_Statement --
382 ----------------------------------------
384 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
385 begin
386 Analyze_Return_Statement (N);
387 end Analyze_Extended_Return_Statement;
389 ----------------------------
390 -- Analyze_Function_Call --
391 ----------------------------
393 procedure Analyze_Function_Call (N : Node_Id) is
394 P : constant Node_Id := Name (N);
395 L : constant List_Id := Parameter_Associations (N);
396 Actual : Node_Id;
398 begin
399 Analyze (P);
401 -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
402 -- as B (A, X). If the rewriting is successful, the call has been
403 -- analyzed and we just return.
405 if Nkind (P) = N_Selected_Component
406 and then Name (N) /= P
407 and then Is_Rewrite_Substitution (N)
408 and then Present (Etype (N))
409 then
410 return;
411 end if;
413 -- If error analyzing name, then set Any_Type as result type and return
415 if Etype (P) = Any_Type then
416 Set_Etype (N, Any_Type);
417 return;
418 end if;
420 -- Otherwise analyze the parameters
422 if Present (L) then
423 Actual := First (L);
424 while Present (Actual) loop
425 Analyze (Actual);
426 Check_Parameterless_Call (Actual);
427 Next (Actual);
428 end loop;
429 end if;
431 Analyze_Call (N);
432 end Analyze_Function_Call;
434 -----------------------------
435 -- Analyze_Function_Return --
436 -----------------------------
438 procedure Analyze_Function_Return (N : Node_Id) is
439 Loc : constant Source_Ptr := Sloc (N);
440 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
441 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
443 R_Type : constant Entity_Id := Etype (Scope_Id);
444 -- Function result subtype
446 procedure Check_Limited_Return (Expr : Node_Id);
447 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
448 -- limited types. Used only for simple return statements.
449 -- Expr is the expression returned.
451 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
452 -- Check that the return_subtype_indication properly matches the result
453 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
455 --------------------------
456 -- Check_Limited_Return --
457 --------------------------
459 procedure Check_Limited_Return (Expr : Node_Id) is
460 begin
461 -- Ada 2005 (AI-318-02): Return-by-reference types have been
462 -- removed and replaced by anonymous access results. This is an
463 -- incompatibility with Ada 95. Not clear whether this should be
464 -- enforced yet or perhaps controllable with special switch. ???
466 if Is_Limited_Type (R_Type)
467 and then Comes_From_Source (N)
468 and then not In_Instance_Body
469 and then not OK_For_Limited_Init_In_05 (Expr)
470 then
471 -- Error in Ada 2005
473 if Ada_Version >= Ada_05
474 and then not Debug_Flag_Dot_L
475 and then not GNAT_Mode
476 then
477 Error_Msg_N
478 ("(Ada 2005) cannot copy object of a limited type " &
479 "(RM-2005 6.5(5.5/2))", Expr);
480 if Is_Inherently_Limited_Type (R_Type) then
481 Error_Msg_N
482 ("\return by reference not permitted in Ada 2005", Expr);
483 end if;
485 -- Warn in Ada 95 mode, to give folks a heads up about this
486 -- incompatibility.
488 -- In GNAT mode, this is just a warning, to allow it to be
489 -- evilly turned off. Otherwise it is a real error.
491 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
492 if Is_Inherently_Limited_Type (R_Type) then
493 Error_Msg_N
494 ("return by reference not permitted in Ada 2005 " &
495 "(RM-2005 6.5(5.5/2))?", Expr);
496 else
497 Error_Msg_N
498 ("cannot copy object of a limited type in Ada 2005 " &
499 "(RM-2005 6.5(5.5/2))?", Expr);
500 end if;
502 -- Ada 95 mode, compatibility warnings disabled
504 else
505 return; -- skip continuation messages below
506 end if;
508 Error_Msg_N
509 ("\consider switching to return of access type", Expr);
510 Explain_Limited_Type (R_Type, Expr);
511 end if;
512 end Check_Limited_Return;
514 -------------------------------------
515 -- Check_Return_Subtype_Indication --
516 -------------------------------------
518 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
519 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
520 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
521 -- Subtype given in the extended return statement;
522 -- this must match R_Type.
524 Subtype_Ind : constant Node_Id :=
525 Object_Definition (Original_Node (Obj_Decl));
527 R_Type_Is_Anon_Access :
528 constant Boolean :=
529 Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
530 or else
531 Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
532 or else
533 Ekind (R_Type) = E_Anonymous_Access_Type;
534 -- True if return type of the function is an anonymous access type
535 -- Can't we make Is_Anonymous_Access_Type in einfo ???
537 R_Stm_Type_Is_Anon_Access :
538 constant Boolean :=
539 Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
540 or else
541 Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
542 or else
543 Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
544 -- True if type of the return object is an anonymous access type
546 begin
547 -- First, avoid cascade errors:
549 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
550 return;
551 end if;
553 -- "return access T" case; check that the return statement also has
554 -- "access T", and that the subtypes statically match:
556 if R_Type_Is_Anon_Access then
557 if R_Stm_Type_Is_Anon_Access then
558 if Base_Type (Designated_Type (R_Stm_Type)) /=
559 Base_Type (Designated_Type (R_Type))
560 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
561 then
562 Error_Msg_N
563 ("subtype must statically match function result subtype",
564 Subtype_Mark (Subtype_Ind));
565 end if;
567 else
568 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
569 end if;
571 -- Subtype_indication case; check that the types are the same, and
572 -- statically match if appropriate:
574 elsif Base_Type (R_Stm_Type) = Base_Type (R_Type) then
575 if Is_Constrained (R_Type) then
576 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
577 Error_Msg_N
578 ("subtype must statically match function result subtype",
579 Subtype_Ind);
580 end if;
581 end if;
583 -- If the function's result type doesn't match the return object
584 -- entity's type, then we check for the case where the result type
585 -- is class-wide, and allow the declaration if the type of the object
586 -- definition matches the class-wide type. This prevents rejection
587 -- in the case where the object declaration is initialized by a call
588 -- to a build-in-place function with a specific result type and the
589 -- object entity had its type changed to that specific type. (Note
590 -- that the ARG believes that return objects should be allowed to
591 -- have a type covered by a class-wide result type in any case, so
592 -- once that relaxation is made (see AI05-32), the above check for
593 -- type compatibility should be changed to test Covers rather than
594 -- equality, and then the following special test will no longer be
595 -- needed. ???)
597 elsif Is_Class_Wide_Type (R_Type)
598 and then
599 R_Type = Etype (Object_Definition (Original_Node (Obj_Decl)))
600 then
601 null;
603 else
604 Error_Msg_N
605 ("wrong type for return_subtype_indication", Subtype_Ind);
606 end if;
607 end Check_Return_Subtype_Indication;
609 ---------------------
610 -- Local Variables --
611 ---------------------
613 Expr : Node_Id;
615 -- Start of processing for Analyze_Function_Return
617 begin
618 Set_Return_Present (Scope_Id);
620 if Nkind (N) = N_Simple_Return_Statement then
621 Expr := Expression (N);
622 Analyze_And_Resolve (Expr, R_Type);
623 Check_Limited_Return (Expr);
625 else
626 -- Analyze parts specific to extended_return_statement:
628 declare
629 Obj_Decl : constant Node_Id :=
630 Last (Return_Object_Declarations (N));
632 HSS : constant Node_Id := Handled_Statement_Sequence (N);
634 begin
635 Expr := Expression (Obj_Decl);
637 -- Note: The check for OK_For_Limited_Init will happen in
638 -- Analyze_Object_Declaration; we treat it as a normal
639 -- object declaration.
641 Analyze (Obj_Decl);
643 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
644 Check_Return_Subtype_Indication (Obj_Decl);
646 if Present (HSS) then
647 Analyze (HSS);
649 if Present (Exception_Handlers (HSS)) then
651 -- ???Has_Nested_Block_With_Handler needs to be set.
652 -- Probably by creating an actual N_Block_Statement.
653 -- Probably in Expand.
655 null;
656 end if;
657 end if;
659 Check_References (Stm_Entity);
660 end;
661 end if;
663 -- Case of Expr present (Etype check defends against previous errors)
665 if Present (Expr)
666 and then Present (Etype (Expr))
667 then
668 -- Apply constraint check. Note that this is done before the implicit
669 -- conversion of the expression done for anonymous access types to
670 -- ensure correct generation of the null-excluding check asssociated
671 -- with null-excluding expressions found in return statements.
673 Apply_Constraint_Check (Expr, R_Type);
675 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
676 -- type, apply an implicit conversion of the expression to that type
677 -- to force appropriate static and run-time accessibility checks.
679 if Ada_Version >= Ada_05
680 and then Ekind (R_Type) = E_Anonymous_Access_Type
681 then
682 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
683 Analyze_And_Resolve (Expr, R_Type);
684 end if;
686 if (Is_Class_Wide_Type (Etype (Expr))
687 or else Is_Dynamically_Tagged (Expr))
688 and then not Is_Class_Wide_Type (R_Type)
689 then
690 Error_Msg_N
691 ("dynamically tagged expression not allowed!", Expr);
692 end if;
694 -- ??? A real run-time accessibility check is needed in cases
695 -- involving dereferences of access parameters. For now we just
696 -- check the static cases.
698 if (Ada_Version < Ada_05 or else Debug_Flag_Dot_L)
699 and then Is_Inherently_Limited_Type (Etype (Scope_Id))
700 and then Object_Access_Level (Expr) >
701 Subprogram_Access_Level (Scope_Id)
702 then
703 Rewrite (N,
704 Make_Raise_Program_Error (Loc,
705 Reason => PE_Accessibility_Check_Failed));
706 Analyze (N);
708 Error_Msg_N
709 ("cannot return a local value by reference?", N);
710 Error_Msg_NE
711 ("\& will be raised at run time?",
712 N, Standard_Program_Error);
713 end if;
715 if Known_Null (Expr)
716 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
717 and then Null_Exclusion_Present (Parent (Scope_Id))
718 then
719 Apply_Compile_Time_Constraint_Error
720 (N => Expr,
721 Msg => "(Ada 2005) null not allowed for "
722 & "null-excluding return?",
723 Reason => CE_Null_Not_Allowed);
724 end if;
725 end if;
726 end Analyze_Function_Return;
728 -------------------------------------
729 -- Analyze_Generic_Subprogram_Body --
730 -------------------------------------
732 procedure Analyze_Generic_Subprogram_Body
733 (N : Node_Id;
734 Gen_Id : Entity_Id)
736 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
737 Kind : constant Entity_Kind := Ekind (Gen_Id);
738 Body_Id : Entity_Id;
739 New_N : Node_Id;
740 Spec : Node_Id;
742 begin
743 -- Copy body and disable expansion while analyzing the generic For a
744 -- stub, do not copy the stub (which would load the proper body), this
745 -- will be done when the proper body is analyzed.
747 if Nkind (N) /= N_Subprogram_Body_Stub then
748 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
749 Rewrite (N, New_N);
750 Start_Generic;
751 end if;
753 Spec := Specification (N);
755 -- Within the body of the generic, the subprogram is callable, and
756 -- behaves like the corresponding non-generic unit.
758 Body_Id := Defining_Entity (Spec);
760 if Kind = E_Generic_Procedure
761 and then Nkind (Spec) /= N_Procedure_Specification
762 then
763 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
764 return;
766 elsif Kind = E_Generic_Function
767 and then Nkind (Spec) /= N_Function_Specification
768 then
769 Error_Msg_N ("invalid body for generic function ", Body_Id);
770 return;
771 end if;
773 Set_Corresponding_Body (Gen_Decl, Body_Id);
775 if Has_Completion (Gen_Id)
776 and then Nkind (Parent (N)) /= N_Subunit
777 then
778 Error_Msg_N ("duplicate generic body", N);
779 return;
780 else
781 Set_Has_Completion (Gen_Id);
782 end if;
784 if Nkind (N) = N_Subprogram_Body_Stub then
785 Set_Ekind (Defining_Entity (Specification (N)), Kind);
786 else
787 Set_Corresponding_Spec (N, Gen_Id);
788 end if;
790 if Nkind (Parent (N)) = N_Compilation_Unit then
791 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
792 end if;
794 -- Make generic parameters immediately visible in the body. They are
795 -- needed to process the formals declarations. Then make the formals
796 -- visible in a separate step.
798 Push_Scope (Gen_Id);
800 declare
801 E : Entity_Id;
802 First_Ent : Entity_Id;
804 begin
805 First_Ent := First_Entity (Gen_Id);
807 E := First_Ent;
808 while Present (E) and then not Is_Formal (E) loop
809 Install_Entity (E);
810 Next_Entity (E);
811 end loop;
813 Set_Use (Generic_Formal_Declarations (Gen_Decl));
815 -- Now generic formals are visible, and the specification can be
816 -- analyzed, for subsequent conformance check.
818 Body_Id := Analyze_Subprogram_Specification (Spec);
820 -- Make formal parameters visible
822 if Present (E) then
824 -- E is the first formal parameter, we loop through the formals
825 -- installing them so that they will be visible.
827 Set_First_Entity (Gen_Id, E);
828 while Present (E) loop
829 Install_Entity (E);
830 Next_Formal (E);
831 end loop;
832 end if;
834 -- Visible generic entity is callable within its own body
836 Set_Ekind (Gen_Id, Ekind (Body_Id));
837 Set_Ekind (Body_Id, E_Subprogram_Body);
838 Set_Convention (Body_Id, Convention (Gen_Id));
839 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
840 Set_Scope (Body_Id, Scope (Gen_Id));
841 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
843 if Nkind (N) = N_Subprogram_Body_Stub then
845 -- No body to analyze, so restore state of generic unit
847 Set_Ekind (Gen_Id, Kind);
848 Set_Ekind (Body_Id, Kind);
850 if Present (First_Ent) then
851 Set_First_Entity (Gen_Id, First_Ent);
852 end if;
854 End_Scope;
855 return;
856 end if;
858 -- If this is a compilation unit, it must be made visible explicitly,
859 -- because the compilation of the declaration, unlike other library
860 -- unit declarations, does not. If it is not a unit, the following
861 -- is redundant but harmless.
863 Set_Is_Immediately_Visible (Gen_Id);
864 Reference_Body_Formals (Gen_Id, Body_Id);
866 if Is_Child_Unit (Gen_Id) then
867 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
868 end if;
870 Set_Actual_Subtypes (N, Current_Scope);
871 Analyze_Declarations (Declarations (N));
872 Check_Completion;
873 Analyze (Handled_Statement_Sequence (N));
875 Save_Global_References (Original_Node (N));
877 -- Prior to exiting the scope, include generic formals again (if any
878 -- are present) in the set of local entities.
880 if Present (First_Ent) then
881 Set_First_Entity (Gen_Id, First_Ent);
882 end if;
884 Check_References (Gen_Id);
885 end;
887 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
888 End_Scope;
889 Check_Subprogram_Order (N);
891 -- Outside of its body, unit is generic again
893 Set_Ekind (Gen_Id, Kind);
894 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
896 if Style_Check then
897 Style.Check_Identifier (Body_Id, Gen_Id);
898 end if;
899 End_Generic;
900 end Analyze_Generic_Subprogram_Body;
902 -----------------------------
903 -- Analyze_Operator_Symbol --
904 -----------------------------
906 -- An operator symbol such as "+" or "and" may appear in context where the
907 -- literal denotes an entity name, such as "+"(x, y) or in context when it
908 -- is just a string, as in (conjunction = "or"). In these cases the parser
909 -- generates this node, and the semantics does the disambiguation. Other
910 -- such case are actuals in an instantiation, the generic unit in an
911 -- instantiation, and pragma arguments.
913 procedure Analyze_Operator_Symbol (N : Node_Id) is
914 Par : constant Node_Id := Parent (N);
916 begin
917 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
918 or else Nkind (Par) = N_Function_Instantiation
919 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
920 or else (Nkind (Par) = N_Pragma_Argument_Association
921 and then not Is_Pragma_String_Literal (Par))
922 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
923 or else (Nkind (Par) = N_Attribute_Reference
924 and then Attribute_Name (Par) /= Name_Value)
925 then
926 Find_Direct_Name (N);
928 else
929 Change_Operator_Symbol_To_String_Literal (N);
930 Analyze (N);
931 end if;
932 end Analyze_Operator_Symbol;
934 -----------------------------------
935 -- Analyze_Parameter_Association --
936 -----------------------------------
938 procedure Analyze_Parameter_Association (N : Node_Id) is
939 begin
940 Analyze (Explicit_Actual_Parameter (N));
941 end Analyze_Parameter_Association;
943 ----------------------------
944 -- Analyze_Procedure_Call --
945 ----------------------------
947 procedure Analyze_Procedure_Call (N : Node_Id) is
948 Loc : constant Source_Ptr := Sloc (N);
949 P : constant Node_Id := Name (N);
950 Actuals : constant List_Id := Parameter_Associations (N);
951 Actual : Node_Id;
952 New_N : Node_Id;
954 procedure Analyze_Call_And_Resolve;
955 -- Do Analyze and Resolve calls for procedure call
957 ------------------------------
958 -- Analyze_Call_And_Resolve --
959 ------------------------------
961 procedure Analyze_Call_And_Resolve is
962 begin
963 if Nkind (N) = N_Procedure_Call_Statement then
964 Analyze_Call (N);
965 Resolve (N, Standard_Void_Type);
966 else
967 Analyze (N);
968 end if;
969 end Analyze_Call_And_Resolve;
971 -- Start of processing for Analyze_Procedure_Call
973 begin
974 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
975 -- a procedure call or an entry call. The prefix may denote an access
976 -- to subprogram type, in which case an implicit dereference applies.
977 -- If the prefix is an indexed component (without implicit defererence)
978 -- then the construct denotes a call to a member of an entire family.
979 -- If the prefix is a simple name, it may still denote a call to a
980 -- parameterless member of an entry family. Resolution of these various
981 -- interpretations is delicate.
983 Analyze (P);
985 -- If this is a call of the form Obj.Op, the call may have been
986 -- analyzed and possibly rewritten into a block, in which case
987 -- we are done.
989 if Analyzed (N) then
990 return;
991 end if;
993 -- If error analyzing prefix, then set Any_Type as result and return
995 if Etype (P) = Any_Type then
996 Set_Etype (N, Any_Type);
997 return;
998 end if;
1000 -- Otherwise analyze the parameters
1002 if Present (Actuals) then
1003 Actual := First (Actuals);
1005 while Present (Actual) loop
1006 Analyze (Actual);
1007 Check_Parameterless_Call (Actual);
1008 Next (Actual);
1009 end loop;
1010 end if;
1012 -- Special processing for Elab_Spec and Elab_Body calls
1014 if Nkind (P) = N_Attribute_Reference
1015 and then (Attribute_Name (P) = Name_Elab_Spec
1016 or else Attribute_Name (P) = Name_Elab_Body)
1017 then
1018 if Present (Actuals) then
1019 Error_Msg_N
1020 ("no parameters allowed for this call", First (Actuals));
1021 return;
1022 end if;
1024 Set_Etype (N, Standard_Void_Type);
1025 Set_Analyzed (N);
1027 elsif Is_Entity_Name (P)
1028 and then Is_Record_Type (Etype (Entity (P)))
1029 and then Remote_AST_I_Dereference (P)
1030 then
1031 return;
1033 elsif Is_Entity_Name (P)
1034 and then Ekind (Entity (P)) /= E_Entry_Family
1035 then
1036 if Is_Access_Type (Etype (P))
1037 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1038 and then No (Actuals)
1039 and then Comes_From_Source (N)
1040 then
1041 Error_Msg_N ("missing explicit dereference in call", N);
1042 end if;
1044 Analyze_Call_And_Resolve;
1046 -- If the prefix is the simple name of an entry family, this is
1047 -- a parameterless call from within the task body itself.
1049 elsif Is_Entity_Name (P)
1050 and then Nkind (P) = N_Identifier
1051 and then Ekind (Entity (P)) = E_Entry_Family
1052 and then Present (Actuals)
1053 and then No (Next (First (Actuals)))
1054 then
1055 -- Can be call to parameterless entry family. What appears to be the
1056 -- sole argument is in fact the entry index. Rewrite prefix of node
1057 -- accordingly. Source representation is unchanged by this
1058 -- transformation.
1060 New_N :=
1061 Make_Indexed_Component (Loc,
1062 Prefix =>
1063 Make_Selected_Component (Loc,
1064 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1065 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1066 Expressions => Actuals);
1067 Set_Name (N, New_N);
1068 Set_Etype (New_N, Standard_Void_Type);
1069 Set_Parameter_Associations (N, No_List);
1070 Analyze_Call_And_Resolve;
1072 elsif Nkind (P) = N_Explicit_Dereference then
1073 if Ekind (Etype (P)) = E_Subprogram_Type then
1074 Analyze_Call_And_Resolve;
1075 else
1076 Error_Msg_N ("expect access to procedure in call", P);
1077 end if;
1079 -- The name can be a selected component or an indexed component that
1080 -- yields an access to subprogram. Such a prefix is legal if the call
1081 -- has parameter associations.
1083 elsif Is_Access_Type (Etype (P))
1084 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1085 then
1086 if Present (Actuals) then
1087 Analyze_Call_And_Resolve;
1088 else
1089 Error_Msg_N ("missing explicit dereference in call ", N);
1090 end if;
1092 -- If not an access to subprogram, then the prefix must resolve to the
1093 -- name of an entry, entry family, or protected operation.
1095 -- For the case of a simple entry call, P is a selected component where
1096 -- the prefix is the task and the selector name is the entry. A call to
1097 -- a protected procedure will have the same syntax. If the protected
1098 -- object contains overloaded operations, the entity may appear as a
1099 -- function, the context will select the operation whose type is Void.
1101 elsif Nkind (P) = N_Selected_Component
1102 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
1103 or else
1104 Ekind (Entity (Selector_Name (P))) = E_Procedure
1105 or else
1106 Ekind (Entity (Selector_Name (P))) = E_Function)
1107 then
1108 Analyze_Call_And_Resolve;
1110 elsif Nkind (P) = N_Selected_Component
1111 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1112 and then Present (Actuals)
1113 and then No (Next (First (Actuals)))
1114 then
1115 -- Can be call to parameterless entry family. What appears to be the
1116 -- sole argument is in fact the entry index. Rewrite prefix of node
1117 -- accordingly. Source representation is unchanged by this
1118 -- transformation.
1120 New_N :=
1121 Make_Indexed_Component (Loc,
1122 Prefix => New_Copy (P),
1123 Expressions => Actuals);
1124 Set_Name (N, New_N);
1125 Set_Etype (New_N, Standard_Void_Type);
1126 Set_Parameter_Associations (N, No_List);
1127 Analyze_Call_And_Resolve;
1129 -- For the case of a reference to an element of an entry family, P is
1130 -- an indexed component whose prefix is a selected component (task and
1131 -- entry family), and whose index is the entry family index.
1133 elsif Nkind (P) = N_Indexed_Component
1134 and then Nkind (Prefix (P)) = N_Selected_Component
1135 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1136 then
1137 Analyze_Call_And_Resolve;
1139 -- If the prefix is the name of an entry family, it is a call from
1140 -- within the task body itself.
1142 elsif Nkind (P) = N_Indexed_Component
1143 and then Nkind (Prefix (P)) = N_Identifier
1144 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1145 then
1146 New_N :=
1147 Make_Selected_Component (Loc,
1148 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1149 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1150 Rewrite (Prefix (P), New_N);
1151 Analyze (P);
1152 Analyze_Call_And_Resolve;
1154 -- Anything else is an error
1156 else
1157 Error_Msg_N ("invalid procedure or entry call", N);
1158 end if;
1159 end Analyze_Procedure_Call;
1161 -------------------------------------
1162 -- Analyze_Simple_Return_Statement --
1163 -------------------------------------
1165 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1166 begin
1167 if Present (Expression (N)) then
1168 Mark_Coextensions (N, Expression (N));
1169 end if;
1171 Analyze_Return_Statement (N);
1172 end Analyze_Simple_Return_Statement;
1174 -------------------------
1175 -- Analyze_Return_Type --
1176 -------------------------
1178 procedure Analyze_Return_Type (N : Node_Id) is
1179 Designator : constant Entity_Id := Defining_Entity (N);
1180 Typ : Entity_Id := Empty;
1182 begin
1183 -- Normal case where result definition does not indicate an error
1185 if Result_Definition (N) /= Error then
1186 if Nkind (Result_Definition (N)) = N_Access_Definition then
1187 Typ := Access_Definition (N, Result_Definition (N));
1188 Set_Parent (Typ, Result_Definition (N));
1189 Set_Is_Local_Anonymous_Access (Typ);
1190 Set_Etype (Designator, Typ);
1192 -- Subtype_Mark case
1194 else
1195 Find_Type (Result_Definition (N));
1196 Typ := Entity (Result_Definition (N));
1197 Set_Etype (Designator, Typ);
1199 if Ekind (Typ) = E_Incomplete_Type
1200 and then Is_Value_Type (Typ)
1201 then
1202 null;
1204 elsif Ekind (Typ) = E_Incomplete_Type
1205 or else (Is_Class_Wide_Type (Typ)
1206 and then
1207 Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1208 then
1209 Error_Msg_N
1210 ("invalid use of incomplete type", Result_Definition (N));
1211 end if;
1212 end if;
1214 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1216 Null_Exclusion_Static_Checks (N);
1218 -- Case where result definition does indicate an error
1220 else
1221 Set_Etype (Designator, Any_Type);
1222 end if;
1223 end Analyze_Return_Type;
1225 -----------------------------
1226 -- Analyze_Subprogram_Body --
1227 -----------------------------
1229 -- This procedure is called for regular subprogram bodies, generic bodies,
1230 -- and for subprogram stubs of both kinds. In the case of stubs, only the
1231 -- specification matters, and is used to create a proper declaration for
1232 -- the subprogram, or to perform conformance checks.
1234 procedure Analyze_Subprogram_Body (N : Node_Id) is
1235 Loc : constant Source_Ptr := Sloc (N);
1236 Body_Spec : constant Node_Id := Specification (N);
1237 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
1238 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
1239 Body_Deleted : constant Boolean := False;
1241 HSS : Node_Id;
1242 Spec_Id : Entity_Id;
1243 Spec_Decl : Node_Id := Empty;
1244 Last_Formal : Entity_Id := Empty;
1245 Conformant : Boolean;
1246 Missing_Ret : Boolean;
1247 P_Ent : Entity_Id;
1249 procedure Check_Anonymous_Return;
1250 -- (Ada 2005): if a function returns an access type that denotes a task,
1251 -- or a type that contains tasks, we must create a master entity for
1252 -- the anonymous type, which typically will be used in an allocator
1253 -- in the body of the function.
1255 procedure Check_Inline_Pragma (Spec : in out Node_Id);
1256 -- Look ahead to recognize a pragma that may appear after the body.
1257 -- If there is a previous spec, check that it appears in the same
1258 -- declarative part. If the pragma is Inline_Always, perform inlining
1259 -- unconditionally, otherwise only if Front_End_Inlining is requested.
1260 -- If the body acts as a spec, and inlining is required, we create a
1261 -- subprogram declaration for it, in order to attach the body to inline.
1263 procedure Copy_Parameter_List (Plist : List_Id);
1264 -- Utility to create a parameter profile for a new subprogram spec,
1265 -- when the subprogram has a body that acts as spec. This is done for
1266 -- some cases of inlining, and for private protected ops.
1268 procedure Verify_Overriding_Indicator;
1269 -- If there was a previous spec, the entity has been entered in the
1270 -- current scope previously. If the body itself carries an overriding
1271 -- indicator, check that it is consistent with the known status of the
1272 -- entity.
1274 ----------------------------
1275 -- Check_Anonymous_Return --
1276 ----------------------------
1278 procedure Check_Anonymous_Return is
1279 Decl : Node_Id;
1280 Scop : Entity_Id;
1282 begin
1283 if Present (Spec_Id) then
1284 Scop := Spec_Id;
1285 else
1286 Scop := Body_Id;
1287 end if;
1289 if Ekind (Scop) = E_Function
1290 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
1291 and then Has_Task (Designated_Type (Etype (Scop)))
1292 and then Expander_Active
1293 then
1294 Decl :=
1295 Make_Object_Declaration (Loc,
1296 Defining_Identifier =>
1297 Make_Defining_Identifier (Loc, Name_uMaster),
1298 Constant_Present => True,
1299 Object_Definition =>
1300 New_Reference_To (RTE (RE_Master_Id), Loc),
1301 Expression =>
1302 Make_Explicit_Dereference (Loc,
1303 New_Reference_To (RTE (RE_Current_Master), Loc)));
1305 if Present (Declarations (N)) then
1306 Prepend (Decl, Declarations (N));
1307 else
1308 Set_Declarations (N, New_List (Decl));
1309 end if;
1311 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
1312 Set_Has_Master_Entity (Scop);
1313 end if;
1314 end Check_Anonymous_Return;
1316 -------------------------
1317 -- Check_Inline_Pragma --
1318 -------------------------
1320 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
1321 Prag : Node_Id;
1322 Plist : List_Id;
1324 begin
1325 if not Expander_Active then
1326 return;
1327 end if;
1329 if Is_List_Member (N)
1330 and then Present (Next (N))
1331 and then Nkind (Next (N)) = N_Pragma
1332 then
1333 Prag := Next (N);
1335 if Nkind (Prag) = N_Pragma
1336 and then
1337 (Get_Pragma_Id (Chars (Prag)) = Pragma_Inline_Always
1338 or else
1339 (Front_End_Inlining
1340 and then Get_Pragma_Id (Chars (Prag)) = Pragma_Inline))
1341 and then
1342 Chars
1343 (Expression (First (Pragma_Argument_Associations (Prag))))
1344 = Chars (Body_Id)
1345 then
1346 Prag := Next (N);
1347 else
1348 Prag := Empty;
1349 end if;
1350 else
1351 Prag := Empty;
1352 end if;
1354 if Present (Prag) then
1355 if Present (Spec_Id) then
1356 if List_Containing (N) =
1357 List_Containing (Unit_Declaration_Node (Spec_Id))
1358 then
1359 Analyze (Prag);
1360 end if;
1362 else
1363 -- Create a subprogram declaration, to make treatment uniform
1365 declare
1366 Subp : constant Entity_Id :=
1367 Make_Defining_Identifier (Loc, Chars (Body_Id));
1368 Decl : constant Node_Id :=
1369 Make_Subprogram_Declaration (Loc,
1370 Specification => New_Copy_Tree (Specification (N)));
1371 begin
1372 Set_Defining_Unit_Name (Specification (Decl), Subp);
1374 if Present (First_Formal (Body_Id)) then
1375 Plist := New_List;
1376 Copy_Parameter_List (Plist);
1377 Set_Parameter_Specifications
1378 (Specification (Decl), Plist);
1379 end if;
1381 Insert_Before (N, Decl);
1382 Analyze (Decl);
1383 Analyze (Prag);
1384 Set_Has_Pragma_Inline (Subp);
1386 if Get_Pragma_Id (Chars (Prag)) = Pragma_Inline_Always then
1387 Set_Is_Inlined (Subp);
1388 Set_Next_Rep_Item (Prag, First_Rep_Item (Subp));
1389 Set_First_Rep_Item (Subp, Prag);
1390 end if;
1392 Spec := Subp;
1393 end;
1394 end if;
1395 end if;
1396 end Check_Inline_Pragma;
1398 -------------------------
1399 -- Copy_Parameter_List --
1400 -------------------------
1402 procedure Copy_Parameter_List (Plist : List_Id) is
1403 Formal : Entity_Id;
1405 begin
1406 Formal := First_Formal (Body_Id);
1408 while Present (Formal) loop
1409 Append
1410 (Make_Parameter_Specification (Loc,
1411 Defining_Identifier =>
1412 Make_Defining_Identifier (Sloc (Formal),
1413 Chars => Chars (Formal)),
1414 In_Present => In_Present (Parent (Formal)),
1415 Out_Present => Out_Present (Parent (Formal)),
1416 Parameter_Type =>
1417 New_Reference_To (Etype (Formal), Loc),
1418 Expression =>
1419 New_Copy_Tree (Expression (Parent (Formal)))),
1420 Plist);
1422 Next_Formal (Formal);
1423 end loop;
1424 end Copy_Parameter_List;
1426 ---------------------------------
1427 -- Verify_Overriding_Indicator --
1428 ---------------------------------
1430 procedure Verify_Overriding_Indicator is
1431 begin
1432 if Must_Override (Body_Spec)
1433 and then not Is_Overriding_Operation (Spec_Id)
1434 then
1435 Error_Msg_NE
1436 ("subprogram& is not overriding", Body_Spec, Spec_Id);
1438 elsif Must_Not_Override (Body_Spec) then
1439 if Is_Overriding_Operation (Spec_Id) then
1440 Error_Msg_NE
1441 ("subprogram& overrides inherited operation",
1442 Body_Spec, Spec_Id);
1444 -- If this is not a primitive operation the overriding indicator
1445 -- is altogether illegal.
1447 elsif not Is_Primitive (Spec_Id) then
1448 Error_Msg_N ("overriding indicator only allowed " &
1449 "if subprogram is primitive",
1450 Body_Spec);
1451 end if;
1452 end if;
1453 end Verify_Overriding_Indicator;
1455 -- Start of processing for Analyze_Subprogram_Body
1457 begin
1458 if Debug_Flag_C then
1459 Write_Str ("==== Compiling subprogram body ");
1460 Write_Name (Chars (Body_Id));
1461 Write_Str (" from ");
1462 Write_Location (Loc);
1463 Write_Eol;
1464 end if;
1466 Trace_Scope (N, Body_Id, " Analyze subprogram");
1468 -- Generic subprograms are handled separately. They always have a
1469 -- generic specification. Determine whether current scope has a
1470 -- previous declaration.
1472 -- If the subprogram body is defined within an instance of the same
1473 -- name, the instance appears as a package renaming, and will be hidden
1474 -- within the subprogram.
1476 if Present (Prev_Id)
1477 and then not Is_Overloadable (Prev_Id)
1478 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
1479 or else Comes_From_Source (Prev_Id))
1480 then
1481 if Is_Generic_Subprogram (Prev_Id) then
1482 Spec_Id := Prev_Id;
1483 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1484 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1486 Analyze_Generic_Subprogram_Body (N, Spec_Id);
1487 return;
1489 else
1490 -- Previous entity conflicts with subprogram name. Attempting to
1491 -- enter name will post error.
1493 Enter_Name (Body_Id);
1494 return;
1495 end if;
1497 -- Non-generic case, find the subprogram declaration, if one was seen,
1498 -- or enter new overloaded entity in the current scope. If the
1499 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
1500 -- part of the context of one of its subunits. No need to redo the
1501 -- analysis.
1503 elsif Prev_Id = Body_Id
1504 and then Has_Completion (Body_Id)
1505 then
1506 return;
1508 else
1509 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
1511 if Nkind (N) = N_Subprogram_Body_Stub
1512 or else No (Corresponding_Spec (N))
1513 then
1514 Spec_Id := Find_Corresponding_Spec (N);
1516 -- If this is a duplicate body, no point in analyzing it
1518 if Error_Posted (N) then
1519 return;
1520 end if;
1522 -- A subprogram body should cause freezing of its own declaration,
1523 -- but if there was no previous explicit declaration, then the
1524 -- subprogram will get frozen too late (there may be code within
1525 -- the body that depends on the subprogram having been frozen,
1526 -- such as uses of extra formals), so we force it to be frozen
1527 -- here. Same holds if the body and the spec are compilation
1528 -- units.
1530 if No (Spec_Id) then
1531 Freeze_Before (N, Body_Id);
1533 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1534 Freeze_Before (N, Spec_Id);
1535 end if;
1536 else
1537 Spec_Id := Corresponding_Spec (N);
1538 end if;
1539 end if;
1541 -- Do not inline any subprogram that contains nested subprograms, since
1542 -- the backend inlining circuit seems to generate uninitialized
1543 -- references in this case. We know this happens in the case of front
1544 -- end ZCX support, but it also appears it can happen in other cases as
1545 -- well. The backend often rejects attempts to inline in the case of
1546 -- nested procedures anyway, so little if anything is lost by this.
1547 -- Note that this is test is for the benefit of the back-end. There is
1548 -- a separate test for front-end inlining that also rejects nested
1549 -- subprograms.
1551 -- Do not do this test if errors have been detected, because in some
1552 -- error cases, this code blows up, and we don't need it anyway if
1553 -- there have been errors, since we won't get to the linker anyway.
1555 if Comes_From_Source (Body_Id)
1556 and then Serious_Errors_Detected = 0
1557 then
1558 P_Ent := Body_Id;
1559 loop
1560 P_Ent := Scope (P_Ent);
1561 exit when No (P_Ent) or else P_Ent = Standard_Standard;
1563 if Is_Subprogram (P_Ent) then
1564 Set_Is_Inlined (P_Ent, False);
1566 if Comes_From_Source (P_Ent)
1567 and then Has_Pragma_Inline (P_Ent)
1568 then
1569 Cannot_Inline
1570 ("cannot inline& (nested subprogram)?",
1571 N, P_Ent);
1572 end if;
1573 end if;
1574 end loop;
1575 end if;
1577 Check_Inline_Pragma (Spec_Id);
1579 -- Case of fully private operation in the body of the protected type.
1580 -- We must create a declaration for the subprogram, in order to attach
1581 -- the protected subprogram that will be used in internal calls.
1583 if No (Spec_Id)
1584 and then Comes_From_Source (N)
1585 and then Is_Protected_Type (Current_Scope)
1586 then
1587 declare
1588 Decl : Node_Id;
1589 Plist : List_Id;
1590 Formal : Entity_Id;
1591 New_Spec : Node_Id;
1593 begin
1594 Formal := First_Formal (Body_Id);
1596 -- The protected operation always has at least one formal, namely
1597 -- the object itself, but it is only placed in the parameter list
1598 -- if expansion is enabled.
1600 if Present (Formal)
1601 or else Expander_Active
1602 then
1603 Plist := New_List;
1605 else
1606 Plist := No_List;
1607 end if;
1609 Copy_Parameter_List (Plist);
1611 if Nkind (Body_Spec) = N_Procedure_Specification then
1612 New_Spec :=
1613 Make_Procedure_Specification (Loc,
1614 Defining_Unit_Name =>
1615 Make_Defining_Identifier (Sloc (Body_Id),
1616 Chars => Chars (Body_Id)),
1617 Parameter_Specifications => Plist);
1618 else
1619 New_Spec :=
1620 Make_Function_Specification (Loc,
1621 Defining_Unit_Name =>
1622 Make_Defining_Identifier (Sloc (Body_Id),
1623 Chars => Chars (Body_Id)),
1624 Parameter_Specifications => Plist,
1625 Result_Definition =>
1626 New_Occurrence_Of (Etype (Body_Id), Loc));
1627 end if;
1629 Decl :=
1630 Make_Subprogram_Declaration (Loc,
1631 Specification => New_Spec);
1632 Insert_Before (N, Decl);
1633 Spec_Id := Defining_Unit_Name (New_Spec);
1635 -- Indicate that the entity comes from source, to ensure that
1636 -- cross-reference information is properly generated. The body
1637 -- itself is rewritten during expansion, and the body entity will
1638 -- not appear in calls to the operation.
1640 Set_Comes_From_Source (Spec_Id, True);
1641 Analyze (Decl);
1642 Set_Has_Completion (Spec_Id);
1643 Set_Convention (Spec_Id, Convention_Protected);
1644 end;
1646 elsif Present (Spec_Id) then
1647 Spec_Decl := Unit_Declaration_Node (Spec_Id);
1648 Verify_Overriding_Indicator;
1650 -- In general, the spec will be frozen when we start analyzing the
1651 -- body. However, for internally generated operations, such as
1652 -- wrapper functions for inherited operations with controlling
1653 -- results, the spec may not have been frozen by the time we
1654 -- expand the freeze actions that include the bodies. In particular,
1655 -- extra formals for accessibility or for return-in-place may need
1656 -- to be generated. Freeze nodes, if any, are inserted before the
1657 -- current body.
1659 if not Is_Frozen (Spec_Id)
1660 and then Expander_Active
1661 then
1662 -- Force the generation of its freezing node to ensure proper
1663 -- management of access types in the backend.
1665 -- This is definitely needed for some cases, but it is not clear
1666 -- why, to be investigated further???
1668 Set_Has_Delayed_Freeze (Spec_Id);
1669 Insert_Actions (N, Freeze_Entity (Spec_Id, Loc));
1670 end if;
1671 end if;
1673 -- Place subprogram on scope stack, and make formals visible. If there
1674 -- is a spec, the visible entity remains that of the spec.
1676 if Present (Spec_Id) then
1677 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
1679 if Is_Child_Unit (Spec_Id) then
1680 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
1681 end if;
1683 if Style_Check then
1684 Style.Check_Identifier (Body_Id, Spec_Id);
1685 end if;
1687 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1688 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1690 if Is_Abstract_Subprogram (Spec_Id) then
1691 Error_Msg_N ("an abstract subprogram cannot have a body", N);
1692 return;
1693 else
1694 Set_Convention (Body_Id, Convention (Spec_Id));
1695 Set_Has_Completion (Spec_Id);
1697 if Is_Protected_Type (Scope (Spec_Id)) then
1698 Set_Privals_Chain (Spec_Id, New_Elmt_List);
1699 end if;
1701 -- If this is a body generated for a renaming, do not check for
1702 -- full conformance. The check is redundant, because the spec of
1703 -- the body is a copy of the spec in the renaming declaration,
1704 -- and the test can lead to spurious errors on nested defaults.
1706 if Present (Spec_Decl)
1707 and then not Comes_From_Source (N)
1708 and then
1709 (Nkind (Original_Node (Spec_Decl)) =
1710 N_Subprogram_Renaming_Declaration
1711 or else (Present (Corresponding_Body (Spec_Decl))
1712 and then
1713 Nkind (Unit_Declaration_Node
1714 (Corresponding_Body (Spec_Decl))) =
1715 N_Subprogram_Renaming_Declaration))
1716 then
1717 Conformant := True;
1718 else
1719 Check_Conformance
1720 (Body_Id, Spec_Id,
1721 Fully_Conformant, True, Conformant, Body_Id);
1722 end if;
1724 -- If the body is not fully conformant, we have to decide if we
1725 -- should analyze it or not. If it has a really messed up profile
1726 -- then we probably should not analyze it, since we will get too
1727 -- many bogus messages.
1729 -- Our decision is to go ahead in the non-fully conformant case
1730 -- only if it is at least mode conformant with the spec. Note
1731 -- that the call to Check_Fully_Conformant has issued the proper
1732 -- error messages to complain about the lack of conformance.
1734 if not Conformant
1735 and then not Mode_Conformant (Body_Id, Spec_Id)
1736 then
1737 return;
1738 end if;
1739 end if;
1741 if Spec_Id /= Body_Id then
1742 Reference_Body_Formals (Spec_Id, Body_Id);
1743 end if;
1745 if Nkind (N) /= N_Subprogram_Body_Stub then
1746 Set_Corresponding_Spec (N, Spec_Id);
1748 -- Ada 2005 (AI-345): If the operation is a primitive operation
1749 -- of a concurrent type, the type of the first parameter has been
1750 -- replaced with the corresponding record, which is the proper
1751 -- run-time structure to use. However, within the body there may
1752 -- be uses of the formals that depend on primitive operations
1753 -- of the type (in particular calls in prefixed form) for which
1754 -- we need the original concurrent type. The operation may have
1755 -- several controlling formals, so the replacement must be done
1756 -- for all of them.
1758 if Comes_From_Source (Spec_Id)
1759 and then Present (First_Entity (Spec_Id))
1760 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
1761 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
1762 and then
1763 Present (Abstract_Interfaces (Etype (First_Entity (Spec_Id))))
1764 and then
1765 Present
1766 (Corresponding_Concurrent_Type
1767 (Etype (First_Entity (Spec_Id))))
1768 then
1769 declare
1770 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
1771 Form : Entity_Id;
1773 begin
1774 Form := First_Formal (Spec_Id);
1775 while Present (Form) loop
1776 if Etype (Form) = Typ then
1777 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
1778 end if;
1780 Next_Formal (Form);
1781 end loop;
1782 end;
1783 end if;
1785 -- Now make the formals visible, and place subprogram
1786 -- on scope stack.
1788 Install_Formals (Spec_Id);
1789 Last_Formal := Last_Entity (Spec_Id);
1790 Push_Scope (Spec_Id);
1792 -- Make sure that the subprogram is immediately visible. For
1793 -- child units that have no separate spec this is indispensable.
1794 -- Otherwise it is safe albeit redundant.
1796 Set_Is_Immediately_Visible (Spec_Id);
1797 end if;
1799 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
1800 Set_Ekind (Body_Id, E_Subprogram_Body);
1801 Set_Scope (Body_Id, Scope (Spec_Id));
1802 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
1804 -- Case of subprogram body with no previous spec
1806 else
1807 if Style_Check
1808 and then Comes_From_Source (Body_Id)
1809 and then not Suppress_Style_Checks (Body_Id)
1810 and then not In_Instance
1811 then
1812 Style.Body_With_No_Spec (N);
1813 end if;
1815 New_Overloaded_Entity (Body_Id);
1817 if Nkind (N) /= N_Subprogram_Body_Stub then
1818 Set_Acts_As_Spec (N);
1819 Generate_Definition (Body_Id);
1820 Generate_Reference
1821 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
1822 Generate_Reference_To_Formals (Body_Id);
1823 Install_Formals (Body_Id);
1824 Push_Scope (Body_Id);
1825 end if;
1826 end if;
1828 -- Ada 2005 (AI-251): Check wrong placement of abstract interface
1829 -- primitives, and update anonymous access returns with limited views.
1831 if Ada_Version >= Ada_05
1832 and then Comes_From_Source (N)
1833 then
1834 declare
1835 E : Entity_Id;
1836 Etyp : Entity_Id;
1837 Rtyp : Entity_Id;
1839 begin
1840 -- Check the type of the formals
1842 E := First_Entity (Body_Id);
1843 while Present (E) loop
1844 Etyp := Etype (E);
1846 if Is_Access_Type (Etyp) then
1847 Etyp := Directly_Designated_Type (Etyp);
1848 end if;
1850 if not Is_Class_Wide_Type (Etyp)
1851 and then Is_Interface (Etyp)
1852 then
1853 Error_Msg_Name_1 := Chars (Defining_Entity (N));
1854 Error_Msg_N
1855 ("(Ada 2005) abstract interface primitives must be" &
1856 " defined in package specs", N);
1857 exit;
1858 end if;
1860 Next_Entity (E);
1861 end loop;
1863 -- In case of functions, check the type of the result
1865 if Ekind (Body_Id) = E_Function then
1866 Etyp := Etype (Body_Id);
1868 if Is_Access_Type (Etyp) then
1869 Etyp := Directly_Designated_Type (Etyp);
1870 end if;
1872 if not Is_Class_Wide_Type (Etyp)
1873 and then Is_Interface (Etyp)
1874 then
1875 Error_Msg_Name_1 := Chars (Defining_Entity (N));
1876 Error_Msg_N
1877 ("(Ada 2005) abstract interface primitives must be" &
1878 " defined in package specs", N);
1879 end if;
1880 end if;
1882 -- If the return type is an anonymous access type whose
1883 -- designated type is the limited view of a class-wide type
1884 -- and the non-limited view is available. update the return
1885 -- type accordingly.
1887 Rtyp := Etype (Current_Scope);
1889 if Ekind (Rtyp) = E_Anonymous_Access_Type then
1890 Etyp := Directly_Designated_Type (Rtyp);
1892 if Is_Class_Wide_Type (Etyp)
1893 and then From_With_Type (Etyp)
1894 then
1895 Set_Directly_Designated_Type
1896 (Etype (Current_Scope), Available_View (Etyp));
1897 end if;
1898 end if;
1899 end;
1900 end if;
1902 -- If this is the proper body of a stub, we must verify that the stub
1903 -- conforms to the body, and to the previous spec if one was present.
1904 -- we know already that the body conforms to that spec. This test is
1905 -- only required for subprograms that come from source.
1907 if Nkind (Parent (N)) = N_Subunit
1908 and then Comes_From_Source (N)
1909 and then not Error_Posted (Body_Id)
1910 and then Nkind (Corresponding_Stub (Parent (N))) =
1911 N_Subprogram_Body_Stub
1912 then
1913 declare
1914 Old_Id : constant Entity_Id :=
1915 Defining_Entity
1916 (Specification (Corresponding_Stub (Parent (N))));
1918 Conformant : Boolean := False;
1920 begin
1921 if No (Spec_Id) then
1922 Check_Fully_Conformant (Body_Id, Old_Id);
1924 else
1925 Check_Conformance
1926 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
1928 if not Conformant then
1930 -- The stub was taken to be a new declaration. Indicate
1931 -- that it lacks a body.
1933 Set_Has_Completion (Old_Id, False);
1934 end if;
1935 end if;
1936 end;
1937 end if;
1939 Set_Has_Completion (Body_Id);
1940 Check_Eliminated (Body_Id);
1942 if Nkind (N) = N_Subprogram_Body_Stub then
1943 return;
1945 elsif Present (Spec_Id)
1946 and then Expander_Active
1947 and then
1948 (Is_Always_Inlined (Spec_Id)
1949 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
1950 then
1951 Build_Body_To_Inline (N, Spec_Id);
1952 end if;
1954 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
1955 -- if its specification we have to install the private withed units.
1957 if Is_Compilation_Unit (Body_Id)
1958 and then Scope (Body_Id) = Standard_Standard
1959 then
1960 Install_Private_With_Clauses (Body_Id);
1961 end if;
1963 Check_Anonymous_Return;
1965 -- Set the Protected_Formal field of each extra formal of the protected
1966 -- subprogram to reference the corresponding extra formal of the
1967 -- subprogram that implements it. For regular formals this occurs when
1968 -- the protected subprogram's declaration is expanded, but the extra
1969 -- formals don't get created until the subprogram is frozen. We need to
1970 -- do this before analyzing the protected subprogram's body so that any
1971 -- references to the original subprogram's extra formals will be changed
1972 -- refer to the implementing subprogram's formals (see Expand_Formal).
1974 if Present (Spec_Id)
1975 and then Is_Protected_Type (Scope (Spec_Id))
1976 and then Present (Protected_Body_Subprogram (Spec_Id))
1977 then
1978 declare
1979 Impl_Subp : constant Entity_Id :=
1980 Protected_Body_Subprogram (Spec_Id);
1981 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
1982 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
1983 begin
1984 while Present (Prot_Ext_Formal) loop
1985 pragma Assert (Present (Impl_Ext_Formal));
1987 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
1989 Next_Formal_With_Extras (Prot_Ext_Formal);
1990 Next_Formal_With_Extras (Impl_Ext_Formal);
1991 end loop;
1992 end;
1993 end if;
1995 -- Now we can go on to analyze the body
1997 HSS := Handled_Statement_Sequence (N);
1998 Set_Actual_Subtypes (N, Current_Scope);
1999 Analyze_Declarations (Declarations (N));
2000 Check_Completion;
2001 Analyze (HSS);
2002 Process_End_Label (HSS, 't', Current_Scope);
2003 End_Scope;
2004 Check_Subprogram_Order (N);
2005 Set_Analyzed (Body_Id);
2007 -- If we have a separate spec, then the analysis of the declarations
2008 -- caused the entities in the body to be chained to the spec id, but
2009 -- we want them chained to the body id. Only the formal parameters
2010 -- end up chained to the spec id in this case.
2012 if Present (Spec_Id) then
2014 -- We must conform to the categorization of our spec
2016 Validate_Categorization_Dependency (N, Spec_Id);
2018 -- And if this is a child unit, the parent units must conform
2020 if Is_Child_Unit (Spec_Id) then
2021 Validate_Categorization_Dependency
2022 (Unit_Declaration_Node (Spec_Id), Spec_Id);
2023 end if;
2025 if Present (Last_Formal) then
2026 Set_Next_Entity
2027 (Last_Entity (Body_Id), Next_Entity (Last_Formal));
2028 Set_Next_Entity (Last_Formal, Empty);
2029 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2030 Set_Last_Entity (Spec_Id, Last_Formal);
2032 else
2033 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
2034 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2035 Set_First_Entity (Spec_Id, Empty);
2036 Set_Last_Entity (Spec_Id, Empty);
2037 end if;
2038 end if;
2040 -- If function, check return statements
2042 if Nkind (Body_Spec) = N_Function_Specification then
2043 declare
2044 Id : Entity_Id;
2046 begin
2047 if Present (Spec_Id) then
2048 Id := Spec_Id;
2049 else
2050 Id := Body_Id;
2051 end if;
2053 if Return_Present (Id) then
2054 Check_Returns (HSS, 'F', Missing_Ret);
2056 if Missing_Ret then
2057 Set_Has_Missing_Return (Id);
2058 end if;
2060 elsif not Is_Machine_Code_Subprogram (Id)
2061 and then not Body_Deleted
2062 then
2063 Error_Msg_N ("missing RETURN statement in function body", N);
2064 end if;
2065 end;
2067 -- If procedure with No_Return, check returns
2069 elsif Nkind (Body_Spec) = N_Procedure_Specification
2070 and then Present (Spec_Id)
2071 and then No_Return (Spec_Id)
2072 then
2073 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2074 end if;
2076 -- Now we are going to check for variables that are never modified in
2077 -- the body of the procedure. We omit these checks if the first
2078 -- statement of the procedure raises an exception. In particular this
2079 -- deals with the common idiom of a stubbed function, which might
2080 -- appear as something like
2082 -- function F (A : Integer) return Some_Type;
2083 -- X : Some_Type;
2084 -- begin
2085 -- raise Program_Error;
2086 -- return X;
2087 -- end F;
2089 -- Here the purpose of X is simply to satisfy the (annoying)
2090 -- requirement in Ada that there be at least one return, and we
2091 -- certainly do not want to go posting warnings on X that it is not
2092 -- initialized!
2094 declare
2095 Stm : Node_Id := First (Statements (HSS));
2097 begin
2098 -- Skip initial labels (for one thing this occurs when we are in
2099 -- front end ZCX mode, but in any case it is irrelevant), and also
2100 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
2102 while Nkind (Stm) = N_Label
2103 or else Nkind (Stm) in N_Push_xxx_Label
2104 loop
2105 Next (Stm);
2106 end loop;
2108 -- Do the test on the original statement before expansion
2110 declare
2111 Ostm : constant Node_Id := Original_Node (Stm);
2113 begin
2114 -- If explicit raise statement, return with no checks
2116 if Nkind (Ostm) = N_Raise_Statement then
2117 return;
2119 -- Check for explicit call cases which likely raise an exception
2121 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
2122 if Is_Entity_Name (Name (Ostm)) then
2123 declare
2124 Ent : constant Entity_Id := Entity (Name (Ostm));
2126 begin
2127 -- If the procedure is marked No_Return, then likely it
2128 -- raises an exception, but in any case it is not coming
2129 -- back here, so no need to check beyond the call.
2131 if Ekind (Ent) = E_Procedure
2132 and then No_Return (Ent)
2133 then
2134 return;
2136 -- If the procedure name is Raise_Exception, then also
2137 -- assume that it raises an exception. The main target
2138 -- here is Ada.Exceptions.Raise_Exception, but this name
2139 -- is pretty evocative in any context! Note that the
2140 -- procedure in Ada.Exceptions is not marked No_Return
2141 -- because of the annoying case of the null exception Id.
2143 elsif Chars (Ent) = Name_Raise_Exception then
2144 return;
2145 end if;
2146 end;
2147 end if;
2148 end if;
2149 end;
2150 end;
2152 -- Check for variables that are never modified
2154 declare
2155 E1, E2 : Entity_Id;
2157 begin
2158 -- If there is a separate spec, then transfer Never_Set_In_Source
2159 -- flags from out parameters to the corresponding entities in the
2160 -- body. The reason we do that is we want to post error flags on
2161 -- the body entities, not the spec entities.
2163 if Present (Spec_Id) then
2164 E1 := First_Entity (Spec_Id);
2165 while Present (E1) loop
2166 if Ekind (E1) = E_Out_Parameter then
2167 E2 := First_Entity (Body_Id);
2168 while Present (E2) loop
2169 exit when Chars (E1) = Chars (E2);
2170 Next_Entity (E2);
2171 end loop;
2173 if Present (E2) then
2174 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
2175 end if;
2176 end if;
2178 Next_Entity (E1);
2179 end loop;
2180 end if;
2182 -- Check references in body unless it was deleted. Note that the
2183 -- check of Body_Deleted here is not just for efficiency, it is
2184 -- necessary to avoid junk warnings on formal parameters.
2186 if not Body_Deleted then
2187 Check_References (Body_Id);
2188 end if;
2189 end;
2190 end Analyze_Subprogram_Body;
2192 ------------------------------------
2193 -- Analyze_Subprogram_Declaration --
2194 ------------------------------------
2196 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
2197 Designator : constant Entity_Id :=
2198 Analyze_Subprogram_Specification (Specification (N));
2199 Scop : constant Entity_Id := Current_Scope;
2201 -- Start of processing for Analyze_Subprogram_Declaration
2203 begin
2204 Generate_Definition (Designator);
2206 -- Check for RCI unit subprogram declarations for illegal inlined
2207 -- subprograms and subprograms having access parameter or limited
2208 -- parameter without Read and Write attributes (RM E.2.3(12-13)).
2210 Validate_RCI_Subprogram_Declaration (N);
2212 Trace_Scope
2214 Defining_Entity (N),
2215 " Analyze subprogram spec. ");
2217 if Debug_Flag_C then
2218 Write_Str ("==== Compiling subprogram spec ");
2219 Write_Name (Chars (Designator));
2220 Write_Str (" from ");
2221 Write_Location (Sloc (N));
2222 Write_Eol;
2223 end if;
2225 New_Overloaded_Entity (Designator);
2226 Check_Delayed_Subprogram (Designator);
2228 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
2229 -- or null.
2231 if Ada_Version >= Ada_05
2232 and then Comes_From_Source (N)
2233 and then Is_Dispatching_Operation (Designator)
2234 then
2235 declare
2236 E : Entity_Id;
2237 Etyp : Entity_Id;
2239 begin
2240 if Has_Controlling_Result (Designator) then
2241 Etyp := Etype (Designator);
2243 else
2244 E := First_Entity (Designator);
2245 while Present (E)
2246 and then Is_Formal (E)
2247 and then not Is_Controlling_Formal (E)
2248 loop
2249 Next_Entity (E);
2250 end loop;
2252 Etyp := Etype (E);
2253 end if;
2255 if Is_Access_Type (Etyp) then
2256 Etyp := Directly_Designated_Type (Etyp);
2257 end if;
2259 if Is_Interface (Etyp)
2260 and then not Is_Abstract_Subprogram (Designator)
2261 and then not (Ekind (Designator) = E_Procedure
2262 and then Null_Present (Specification (N)))
2263 then
2264 Error_Msg_Name_1 := Chars (Defining_Entity (N));
2265 Error_Msg_N
2266 ("(Ada 2005) interface subprogram % must be abstract or null",
2268 end if;
2269 end;
2270 end if;
2272 -- What is the following code for, it used to be
2274 -- ??? Set_Suppress_Elaboration_Checks
2275 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
2277 -- The following seems equivalent, but a bit dubious
2279 if Elaboration_Checks_Suppressed (Designator) then
2280 Set_Kill_Elaboration_Checks (Designator);
2281 end if;
2283 if Scop /= Standard_Standard
2284 and then not Is_Child_Unit (Designator)
2285 then
2286 Set_Categorization_From_Scope (Designator, Scop);
2287 else
2288 -- For a compilation unit, check for library-unit pragmas
2290 Push_Scope (Designator);
2291 Set_Categorization_From_Pragmas (N);
2292 Validate_Categorization_Dependency (N, Designator);
2293 Pop_Scope;
2294 end if;
2296 -- For a compilation unit, set body required. This flag will only be
2297 -- reset if a valid Import or Interface pragma is processed later on.
2299 if Nkind (Parent (N)) = N_Compilation_Unit then
2300 Set_Body_Required (Parent (N), True);
2302 if Ada_Version >= Ada_05
2303 and then Nkind (Specification (N)) = N_Procedure_Specification
2304 and then Null_Present (Specification (N))
2305 then
2306 Error_Msg_N
2307 ("null procedure cannot be declared at library level", N);
2308 end if;
2309 end if;
2311 Generate_Reference_To_Formals (Designator);
2312 Check_Eliminated (Designator);
2314 -- Ada 2005: if procedure is declared with "is null" qualifier,
2315 -- it requires no body.
2317 if Nkind (Specification (N)) = N_Procedure_Specification
2318 and then Null_Present (Specification (N))
2319 then
2320 Set_Has_Completion (Designator);
2321 Set_Is_Inlined (Designator);
2323 if Is_Protected_Type (Current_Scope) then
2324 Error_Msg_N
2325 ("protected operation cannot be a null procedure", N);
2326 end if;
2327 end if;
2328 end Analyze_Subprogram_Declaration;
2330 --------------------------------------
2331 -- Analyze_Subprogram_Specification --
2332 --------------------------------------
2334 -- Reminder: N here really is a subprogram specification (not a subprogram
2335 -- declaration). This procedure is called to analyze the specification in
2336 -- both subprogram bodies and subprogram declarations (specs).
2338 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
2339 Designator : constant Entity_Id := Defining_Entity (N);
2340 Formal : Entity_Id;
2341 Formal_Typ : Entity_Id;
2342 Formals : constant List_Id := Parameter_Specifications (N);
2344 -- Start of processing for Analyze_Subprogram_Specification
2346 begin
2347 Generate_Definition (Designator);
2349 if Nkind (N) = N_Function_Specification then
2350 Set_Ekind (Designator, E_Function);
2351 Set_Mechanism (Designator, Default_Mechanism);
2353 else
2354 Set_Ekind (Designator, E_Procedure);
2355 Set_Etype (Designator, Standard_Void_Type);
2356 end if;
2358 -- Introduce new scope for analysis of the formals and of the
2359 -- return type.
2361 Set_Scope (Designator, Current_Scope);
2363 if Present (Formals) then
2364 Push_Scope (Designator);
2365 Process_Formals (Formals, N);
2367 -- Ada 2005 (AI-345): Allow the overriding of interface primitives
2368 -- by subprograms which belong to a concurrent type implementing an
2369 -- interface. Set the parameter type of each controlling formal to
2370 -- the corresponding record type.
2372 if Ada_Version >= Ada_05 then
2373 Formal := First_Formal (Designator);
2374 while Present (Formal) loop
2375 Formal_Typ := Etype (Formal);
2377 if (Ekind (Formal_Typ) = E_Protected_Type
2378 or else Ekind (Formal_Typ) = E_Task_Type)
2379 and then Present (Corresponding_Record_Type (Formal_Typ))
2380 and then Present (Abstract_Interfaces
2381 (Corresponding_Record_Type (Formal_Typ)))
2382 then
2383 Set_Etype (Formal,
2384 Corresponding_Record_Type (Formal_Typ));
2385 end if;
2387 Formal := Next_Formal (Formal);
2388 end loop;
2389 end if;
2391 End_Scope;
2393 elsif Nkind (N) = N_Function_Specification then
2394 Analyze_Return_Type (N);
2395 end if;
2397 if Nkind (N) = N_Function_Specification then
2398 if Nkind (Designator) = N_Defining_Operator_Symbol then
2399 Valid_Operator_Definition (Designator);
2400 end if;
2402 May_Need_Actuals (Designator);
2404 -- Ada 2005 (AI-251): In case of primitives associated with abstract
2405 -- interface types the following error message will be reported later
2406 -- (see Analyze_Subprogram_Declaration).
2408 if Is_Abstract_Type (Etype (Designator))
2409 and then not Is_Interface (Etype (Designator))
2410 and then Nkind (Parent (N))
2411 /= N_Abstract_Subprogram_Declaration
2412 and then (Nkind (Parent (N)))
2413 /= N_Formal_Abstract_Subprogram_Declaration
2414 and then (Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2415 or else not Is_Entity_Name (Name (Parent (N)))
2416 or else not Is_Abstract_Subprogram
2417 (Entity (Name (Parent (N)))))
2418 then
2419 Error_Msg_N
2420 ("function that returns abstract type must be abstract", N);
2421 end if;
2422 end if;
2424 return Designator;
2425 end Analyze_Subprogram_Specification;
2427 --------------------------
2428 -- Build_Body_To_Inline --
2429 --------------------------
2431 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
2432 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
2433 Original_Body : Node_Id;
2434 Body_To_Analyze : Node_Id;
2435 Max_Size : constant := 10;
2436 Stat_Count : Integer := 0;
2438 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
2439 -- Check for declarations that make inlining not worthwhile
2441 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
2442 -- Check for statements that make inlining not worthwhile: any tasking
2443 -- statement, nested at any level. Keep track of total number of
2444 -- elementary statements, as a measure of acceptable size.
2446 function Has_Pending_Instantiation return Boolean;
2447 -- If some enclosing body contains instantiations that appear before the
2448 -- corresponding generic body, the enclosing body has a freeze node so
2449 -- that it can be elaborated after the generic itself. This might
2450 -- conflict with subsequent inlinings, so that it is unsafe to try to
2451 -- inline in such a case.
2453 function Has_Single_Return return Boolean;
2454 -- In general we cannot inline functions that return unconstrained type.
2455 -- However, we can handle such functions if all return statements return
2456 -- a local variable that is the only declaration in the body of the
2457 -- function. In that case the call can be replaced by that local
2458 -- variable as is done for other inlined calls.
2460 procedure Remove_Pragmas;
2461 -- A pragma Unreferenced that mentions a formal parameter has no meaning
2462 -- when the body is inlined and the formals are rewritten. Remove it
2463 -- from body to inline. The analysis of the non-inlined body will handle
2464 -- the pragma properly.
2466 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
2467 -- If the body of the subprogram includes a call that returns an
2468 -- unconstrained type, the secondary stack is involved, and it
2469 -- is not worth inlining.
2471 ------------------------------
2472 -- Has_Excluded_Declaration --
2473 ------------------------------
2475 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
2476 D : Node_Id;
2478 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
2479 -- Nested subprograms make a given body ineligible for inlining, but
2480 -- we make an exception for instantiations of unchecked conversion.
2481 -- The body has not been analyzed yet, so check the name, and verify
2482 -- that the visible entity with that name is the predefined unit.
2484 -----------------------------
2485 -- Is_Unchecked_Conversion --
2486 -----------------------------
2488 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
2489 Id : constant Node_Id := Name (D);
2490 Conv : Entity_Id;
2492 begin
2493 if Nkind (Id) = N_Identifier
2494 and then Chars (Id) = Name_Unchecked_Conversion
2495 then
2496 Conv := Current_Entity (Id);
2498 elsif (Nkind (Id) = N_Selected_Component
2499 or else Nkind (Id) = N_Expanded_Name)
2500 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
2501 then
2502 Conv := Current_Entity (Selector_Name (Id));
2504 else
2505 return False;
2506 end if;
2508 return Present (Conv)
2509 and then Is_Predefined_File_Name
2510 (Unit_File_Name (Get_Source_Unit (Conv)))
2511 and then Is_Intrinsic_Subprogram (Conv);
2512 end Is_Unchecked_Conversion;
2514 -- Start of processing for Has_Excluded_Declaration
2516 begin
2517 D := First (Decls);
2519 while Present (D) loop
2520 if (Nkind (D) = N_Function_Instantiation
2521 and then not Is_Unchecked_Conversion (D))
2522 or else Nkind (D) = N_Protected_Type_Declaration
2523 or else Nkind (D) = N_Package_Declaration
2524 or else Nkind (D) = N_Package_Instantiation
2525 or else Nkind (D) = N_Subprogram_Body
2526 or else Nkind (D) = N_Procedure_Instantiation
2527 or else Nkind (D) = N_Task_Type_Declaration
2528 then
2529 Cannot_Inline
2530 ("cannot inline & (non-allowed declaration)?", D, Subp);
2531 return True;
2532 end if;
2534 Next (D);
2535 end loop;
2537 return False;
2538 end Has_Excluded_Declaration;
2540 ----------------------------
2541 -- Has_Excluded_Statement --
2542 ----------------------------
2544 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
2545 S : Node_Id;
2546 E : Node_Id;
2548 begin
2549 S := First (Stats);
2550 while Present (S) loop
2551 Stat_Count := Stat_Count + 1;
2553 if Nkind (S) = N_Abort_Statement
2554 or else Nkind (S) = N_Asynchronous_Select
2555 or else Nkind (S) = N_Conditional_Entry_Call
2556 or else Nkind (S) = N_Delay_Relative_Statement
2557 or else Nkind (S) = N_Delay_Until_Statement
2558 or else Nkind (S) = N_Selective_Accept
2559 or else Nkind (S) = N_Timed_Entry_Call
2560 then
2561 Cannot_Inline
2562 ("cannot inline & (non-allowed statement)?", S, Subp);
2563 return True;
2565 elsif Nkind (S) = N_Block_Statement then
2566 if Present (Declarations (S))
2567 and then Has_Excluded_Declaration (Declarations (S))
2568 then
2569 return True;
2571 elsif Present (Handled_Statement_Sequence (S))
2572 and then
2573 (Present
2574 (Exception_Handlers (Handled_Statement_Sequence (S)))
2575 or else
2576 Has_Excluded_Statement
2577 (Statements (Handled_Statement_Sequence (S))))
2578 then
2579 return True;
2580 end if;
2582 elsif Nkind (S) = N_Case_Statement then
2583 E := First (Alternatives (S));
2584 while Present (E) loop
2585 if Has_Excluded_Statement (Statements (E)) then
2586 return True;
2587 end if;
2589 Next (E);
2590 end loop;
2592 elsif Nkind (S) = N_If_Statement then
2593 if Has_Excluded_Statement (Then_Statements (S)) then
2594 return True;
2595 end if;
2597 if Present (Elsif_Parts (S)) then
2598 E := First (Elsif_Parts (S));
2599 while Present (E) loop
2600 if Has_Excluded_Statement (Then_Statements (E)) then
2601 return True;
2602 end if;
2603 Next (E);
2604 end loop;
2605 end if;
2607 if Present (Else_Statements (S))
2608 and then Has_Excluded_Statement (Else_Statements (S))
2609 then
2610 return True;
2611 end if;
2613 elsif Nkind (S) = N_Loop_Statement
2614 and then Has_Excluded_Statement (Statements (S))
2615 then
2616 return True;
2617 end if;
2619 Next (S);
2620 end loop;
2622 return False;
2623 end Has_Excluded_Statement;
2625 -------------------------------
2626 -- Has_Pending_Instantiation --
2627 -------------------------------
2629 function Has_Pending_Instantiation return Boolean is
2630 S : Entity_Id;
2632 begin
2633 S := Current_Scope;
2634 while Present (S) loop
2635 if Is_Compilation_Unit (S)
2636 or else Is_Child_Unit (S)
2637 then
2638 return False;
2639 elsif Ekind (S) = E_Package
2640 and then Has_Forward_Instantiation (S)
2641 then
2642 return True;
2643 end if;
2645 S := Scope (S);
2646 end loop;
2648 return False;
2649 end Has_Pending_Instantiation;
2651 ------------------------
2652 -- Has_Single_Return --
2653 ------------------------
2655 function Has_Single_Return return Boolean is
2656 Return_Statement : Node_Id := Empty;
2658 function Check_Return (N : Node_Id) return Traverse_Result;
2660 ------------------
2661 -- Check_Return --
2662 ------------------
2664 function Check_Return (N : Node_Id) return Traverse_Result is
2665 begin
2666 if Nkind (N) = N_Simple_Return_Statement then
2667 if Present (Expression (N))
2668 and then Is_Entity_Name (Expression (N))
2669 then
2670 if No (Return_Statement) then
2671 Return_Statement := N;
2672 return OK;
2674 elsif Chars (Expression (N)) =
2675 Chars (Expression (Return_Statement))
2676 then
2677 return OK;
2679 else
2680 return Abandon;
2681 end if;
2683 else
2684 -- Expression has wrong form
2686 return Abandon;
2687 end if;
2689 else
2690 return OK;
2691 end if;
2692 end Check_Return;
2694 function Check_All_Returns is new Traverse_Func (Check_Return);
2696 -- Start of processing for Has_Single_Return
2698 begin
2699 return Check_All_Returns (N) = OK
2700 and then Present (Declarations (N))
2701 and then Present (First (Declarations (N)))
2702 and then Chars (Expression (Return_Statement)) =
2703 Chars (Defining_Identifier (First (Declarations (N))));
2704 end Has_Single_Return;
2706 --------------------
2707 -- Remove_Pragmas --
2708 --------------------
2710 procedure Remove_Pragmas is
2711 Decl : Node_Id;
2712 Nxt : Node_Id;
2714 begin
2715 Decl := First (Declarations (Body_To_Analyze));
2716 while Present (Decl) loop
2717 Nxt := Next (Decl);
2719 if Nkind (Decl) = N_Pragma
2720 and then Chars (Decl) = Name_Unreferenced
2721 then
2722 Remove (Decl);
2723 end if;
2725 Decl := Nxt;
2726 end loop;
2727 end Remove_Pragmas;
2729 --------------------------
2730 -- Uses_Secondary_Stack --
2731 --------------------------
2733 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
2734 function Check_Call (N : Node_Id) return Traverse_Result;
2735 -- Look for function calls that return an unconstrained type
2737 ----------------
2738 -- Check_Call --
2739 ----------------
2741 function Check_Call (N : Node_Id) return Traverse_Result is
2742 begin
2743 if Nkind (N) = N_Function_Call
2744 and then Is_Entity_Name (Name (N))
2745 and then Is_Composite_Type (Etype (Entity (Name (N))))
2746 and then not Is_Constrained (Etype (Entity (Name (N))))
2747 then
2748 Cannot_Inline
2749 ("cannot inline & (call returns unconstrained type)?",
2750 N, Subp);
2751 return Abandon;
2752 else
2753 return OK;
2754 end if;
2755 end Check_Call;
2757 function Check_Calls is new Traverse_Func (Check_Call);
2759 begin
2760 return Check_Calls (Bod) = Abandon;
2761 end Uses_Secondary_Stack;
2763 -- Start of processing for Build_Body_To_Inline
2765 begin
2766 if Nkind (Decl) = N_Subprogram_Declaration
2767 and then Present (Body_To_Inline (Decl))
2768 then
2769 return; -- Done already.
2771 -- Functions that return unconstrained composite types require
2772 -- secondary stack handling, and cannot currently be inlined, unless
2773 -- all return statements return a local variable that is the first
2774 -- local declaration in the body.
2776 elsif Ekind (Subp) = E_Function
2777 and then not Is_Scalar_Type (Etype (Subp))
2778 and then not Is_Access_Type (Etype (Subp))
2779 and then not Is_Constrained (Etype (Subp))
2780 then
2781 if not Has_Single_Return then
2782 Cannot_Inline
2783 ("cannot inline & (unconstrained return type)?", N, Subp);
2784 return;
2785 end if;
2787 -- Ditto for functions that return controlled types, where controlled
2788 -- actions interfere in complex ways with inlining.
2790 elsif Ekind (Subp) = E_Function
2791 and then Controlled_Type (Etype (Subp))
2792 then
2793 Cannot_Inline
2794 ("cannot inline & (controlled return type)?", N, Subp);
2795 return;
2796 end if;
2798 if Present (Declarations (N))
2799 and then Has_Excluded_Declaration (Declarations (N))
2800 then
2801 return;
2802 end if;
2804 if Present (Handled_Statement_Sequence (N)) then
2805 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
2806 Cannot_Inline
2807 ("cannot inline& (exception handler)?",
2808 First (Exception_Handlers (Handled_Statement_Sequence (N))),
2809 Subp);
2810 return;
2811 elsif
2812 Has_Excluded_Statement
2813 (Statements (Handled_Statement_Sequence (N)))
2814 then
2815 return;
2816 end if;
2817 end if;
2819 -- We do not inline a subprogram that is too large, unless it is
2820 -- marked Inline_Always. This pragma does not suppress the other
2821 -- checks on inlining (forbidden declarations, handlers, etc).
2823 if Stat_Count > Max_Size
2824 and then not Is_Always_Inlined (Subp)
2825 then
2826 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
2827 return;
2828 end if;
2830 if Has_Pending_Instantiation then
2831 Cannot_Inline
2832 ("cannot inline& (forward instance within enclosing body)?",
2833 N, Subp);
2834 return;
2835 end if;
2837 -- Within an instance, the body to inline must be treated as a nested
2838 -- generic, so that the proper global references are preserved.
2840 if In_Instance then
2841 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
2842 Original_Body := Copy_Generic_Node (N, Empty, True);
2843 else
2844 Original_Body := Copy_Separate_Tree (N);
2845 end if;
2847 -- We need to capture references to the formals in order to substitute
2848 -- the actuals at the point of inlining, i.e. instantiation. To treat
2849 -- the formals as globals to the body to inline, we nest it within
2850 -- a dummy parameterless subprogram, declared within the real one.
2851 -- To avoid generating an internal name (which is never public, and
2852 -- which affects serial numbers of other generated names), we use
2853 -- an internal symbol that cannot conflict with user declarations.
2855 Set_Parameter_Specifications (Specification (Original_Body), No_List);
2856 Set_Defining_Unit_Name
2857 (Specification (Original_Body),
2858 Make_Defining_Identifier (Sloc (N), Name_uParent));
2859 Set_Corresponding_Spec (Original_Body, Empty);
2861 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
2863 -- Set return type of function, which is also global and does not need
2864 -- to be resolved.
2866 if Ekind (Subp) = E_Function then
2867 Set_Result_Definition (Specification (Body_To_Analyze),
2868 New_Occurrence_Of (Etype (Subp), Sloc (N)));
2869 end if;
2871 if No (Declarations (N)) then
2872 Set_Declarations (N, New_List (Body_To_Analyze));
2873 else
2874 Append (Body_To_Analyze, Declarations (N));
2875 end if;
2877 Expander_Mode_Save_And_Set (False);
2878 Remove_Pragmas;
2880 Analyze (Body_To_Analyze);
2881 Push_Scope (Defining_Entity (Body_To_Analyze));
2882 Save_Global_References (Original_Body);
2883 End_Scope;
2884 Remove (Body_To_Analyze);
2886 Expander_Mode_Restore;
2888 if In_Instance then
2889 Restore_Env;
2890 end if;
2892 -- If secondary stk used there is no point in inlining. We have
2893 -- already issued the warning in this case, so nothing to do.
2895 if Uses_Secondary_Stack (Body_To_Analyze) then
2896 return;
2897 end if;
2899 Set_Body_To_Inline (Decl, Original_Body);
2900 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
2901 Set_Is_Inlined (Subp);
2902 end Build_Body_To_Inline;
2904 -------------------
2905 -- Cannot_Inline --
2906 -------------------
2908 procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
2909 begin
2910 -- Do not emit warning if this is a predefined unit which is not
2911 -- the main unit. With validity checks enabled, some predefined
2912 -- subprograms may contain nested subprograms and become ineligible
2913 -- for inlining.
2915 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
2916 and then not In_Extended_Main_Source_Unit (Subp)
2917 then
2918 null;
2920 elsif Is_Always_Inlined (Subp) then
2922 -- Remove last character (question mark) to make this into an error,
2923 -- because the Inline_Always pragma cannot be obeyed.
2925 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
2927 elsif Ineffective_Inline_Warnings then
2928 Error_Msg_NE (Msg, N, Subp);
2929 end if;
2930 end Cannot_Inline;
2932 -----------------------
2933 -- Check_Conformance --
2934 -----------------------
2936 procedure Check_Conformance
2937 (New_Id : Entity_Id;
2938 Old_Id : Entity_Id;
2939 Ctype : Conformance_Type;
2940 Errmsg : Boolean;
2941 Conforms : out Boolean;
2942 Err_Loc : Node_Id := Empty;
2943 Get_Inst : Boolean := False;
2944 Skip_Controlling_Formals : Boolean := False)
2946 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
2947 -- Post error message for conformance error on given node. Two messages
2948 -- are output. The first points to the previous declaration with a
2949 -- general "no conformance" message. The second is the detailed reason,
2950 -- supplied as Msg. The parameter N provide information for a possible
2951 -- & insertion in the message, and also provides the location for
2952 -- posting the message in the absence of a specified Err_Loc location.
2954 -----------------------
2955 -- Conformance_Error --
2956 -----------------------
2958 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
2959 Enode : Node_Id;
2961 begin
2962 Conforms := False;
2964 if Errmsg then
2965 if No (Err_Loc) then
2966 Enode := N;
2967 else
2968 Enode := Err_Loc;
2969 end if;
2971 Error_Msg_Sloc := Sloc (Old_Id);
2973 case Ctype is
2974 when Type_Conformant =>
2975 Error_Msg_N
2976 ("not type conformant with declaration#!", Enode);
2978 when Mode_Conformant =>
2979 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
2980 Error_Msg_N
2981 ("not mode conformant with operation inherited#!",
2982 Enode);
2983 else
2984 Error_Msg_N
2985 ("not mode conformant with declaration#!", Enode);
2986 end if;
2988 when Subtype_Conformant =>
2989 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
2990 Error_Msg_N
2991 ("not subtype conformant with operation inherited#!",
2992 Enode);
2993 else
2994 Error_Msg_N
2995 ("not subtype conformant with declaration#!", Enode);
2996 end if;
2998 when Fully_Conformant =>
2999 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3000 Error_Msg_N
3001 ("not fully conformant with operation inherited#!",
3002 Enode);
3003 else
3004 Error_Msg_N
3005 ("not fully conformant with declaration#!", Enode);
3006 end if;
3007 end case;
3009 Error_Msg_NE (Msg, Enode, N);
3010 end if;
3011 end Conformance_Error;
3013 -- Local Variables
3015 Old_Type : constant Entity_Id := Etype (Old_Id);
3016 New_Type : constant Entity_Id := Etype (New_Id);
3017 Old_Formal : Entity_Id;
3018 New_Formal : Entity_Id;
3019 Access_Types_Match : Boolean;
3020 Old_Formal_Base : Entity_Id;
3021 New_Formal_Base : Entity_Id;
3023 -- Start of processing for Check_Conformance
3025 begin
3026 Conforms := True;
3028 -- We need a special case for operators, since they don't appear
3029 -- explicitly.
3031 if Ctype = Type_Conformant then
3032 if Ekind (New_Id) = E_Operator
3033 and then Operator_Matches_Spec (New_Id, Old_Id)
3034 then
3035 return;
3036 end if;
3037 end if;
3039 -- If both are functions/operators, check return types conform
3041 if Old_Type /= Standard_Void_Type
3042 and then New_Type /= Standard_Void_Type
3043 then
3044 if not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
3045 Conformance_Error ("\return type does not match!", New_Id);
3046 return;
3047 end if;
3049 -- Ada 2005 (AI-231): In case of anonymous access types check the
3050 -- null-exclusion and access-to-constant attributes match.
3052 if Ada_Version >= Ada_05
3053 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
3054 and then
3055 (Can_Never_Be_Null (Old_Type)
3056 /= Can_Never_Be_Null (New_Type)
3057 or else Is_Access_Constant (Etype (Old_Type))
3058 /= Is_Access_Constant (Etype (New_Type)))
3059 then
3060 Conformance_Error ("\return type does not match!", New_Id);
3061 return;
3062 end if;
3064 -- If either is a function/operator and the other isn't, error
3066 elsif Old_Type /= Standard_Void_Type
3067 or else New_Type /= Standard_Void_Type
3068 then
3069 Conformance_Error ("\functions can only match functions!", New_Id);
3070 return;
3071 end if;
3073 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
3074 -- If this is a renaming as body, refine error message to indicate that
3075 -- the conflict is with the original declaration. If the entity is not
3076 -- frozen, the conventions don't have to match, the one of the renamed
3077 -- entity is inherited.
3079 if Ctype >= Subtype_Conformant then
3080 if Convention (Old_Id) /= Convention (New_Id) then
3082 if not Is_Frozen (New_Id) then
3083 null;
3085 elsif Present (Err_Loc)
3086 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
3087 and then Present (Corresponding_Spec (Err_Loc))
3088 then
3089 Error_Msg_Name_1 := Chars (New_Id);
3090 Error_Msg_Name_2 :=
3091 Name_Ada + Convention_Id'Pos (Convention (New_Id));
3093 Conformance_Error ("\prior declaration for% has convention %!");
3095 else
3096 Conformance_Error ("\calling conventions do not match!");
3097 end if;
3099 return;
3101 elsif Is_Formal_Subprogram (Old_Id)
3102 or else Is_Formal_Subprogram (New_Id)
3103 then
3104 Conformance_Error ("\formal subprograms not allowed!");
3105 return;
3106 end if;
3107 end if;
3109 -- Deal with parameters
3111 -- Note: we use the entity information, rather than going directly
3112 -- to the specification in the tree. This is not only simpler, but
3113 -- absolutely necessary for some cases of conformance tests between
3114 -- operators, where the declaration tree simply does not exist!
3116 Old_Formal := First_Formal (Old_Id);
3117 New_Formal := First_Formal (New_Id);
3119 while Present (Old_Formal) and then Present (New_Formal) loop
3120 if Is_Controlling_Formal (Old_Formal)
3121 and then Is_Controlling_Formal (New_Formal)
3122 and then Skip_Controlling_Formals
3123 then
3124 goto Skip_Controlling_Formal;
3125 end if;
3127 if Ctype = Fully_Conformant then
3129 -- Names must match. Error message is more accurate if we do
3130 -- this before checking that the types of the formals match.
3132 if Chars (Old_Formal) /= Chars (New_Formal) then
3133 Conformance_Error ("\name & does not match!", New_Formal);
3135 -- Set error posted flag on new formal as well to stop
3136 -- junk cascaded messages in some cases.
3138 Set_Error_Posted (New_Formal);
3139 return;
3140 end if;
3141 end if;
3143 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
3144 -- case occurs whenever a subprogram is being renamed and one of its
3145 -- parameters imposes a null exclusion. For example:
3147 -- type T is null record;
3148 -- type Acc_T is access T;
3149 -- subtype Acc_T_Sub is Acc_T;
3151 -- procedure P (Obj : not null Acc_T_Sub); -- itype
3152 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
3153 -- renames P;
3155 Old_Formal_Base := Etype (Old_Formal);
3156 New_Formal_Base := Etype (New_Formal);
3158 if Get_Inst then
3159 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
3160 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
3161 end if;
3163 Access_Types_Match := Ada_Version >= Ada_05
3165 -- Ensure that this rule is only applied when New_Id is a
3166 -- renaming of Old_Id.
3168 and then Nkind (Parent (Parent (New_Id))) =
3169 N_Subprogram_Renaming_Declaration
3170 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
3171 and then Present (Entity (Name (Parent (Parent (New_Id)))))
3172 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
3174 -- Now handle the allowed access-type case
3176 and then Is_Access_Type (Old_Formal_Base)
3177 and then Is_Access_Type (New_Formal_Base)
3179 -- The type kinds must match. The only exception occurs with
3180 -- multiple generics of the form:
3182 -- generic generic
3183 -- type F is private; type A is private;
3184 -- type F_Ptr is access F; type A_Ptr is access A;
3185 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
3186 -- package F_Pack is ... package A_Pack is
3187 -- package F_Inst is
3188 -- new F_Pack (A, A_Ptr, A_P);
3190 -- When checking for conformance between the parameters of A_P
3191 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
3192 -- because the compiler has transformed A_Ptr into a subtype of
3193 -- F_Ptr. We catch this case in the code below.
3195 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
3196 or else
3197 (Is_Generic_Type (Old_Formal_Base)
3198 and then Is_Generic_Type (New_Formal_Base)
3199 and then Is_Internal (New_Formal_Base)
3200 and then Etype (Etype (New_Formal_Base)) =
3201 Old_Formal_Base))
3202 and then Directly_Designated_Type (Old_Formal_Base) =
3203 Directly_Designated_Type (New_Formal_Base)
3204 and then ((Is_Itype (Old_Formal_Base)
3205 and then Can_Never_Be_Null (Old_Formal_Base))
3206 or else
3207 (Is_Itype (New_Formal_Base)
3208 and then Can_Never_Be_Null (New_Formal_Base)));
3210 -- Types must always match. In the visible part of an instance,
3211 -- usual overloading rules for dispatching operations apply, and
3212 -- we check base types (not the actual subtypes).
3214 if In_Instance_Visible_Part
3215 and then Is_Dispatching_Operation (New_Id)
3216 then
3217 if not Conforming_Types
3218 (T1 => Base_Type (Etype (Old_Formal)),
3219 T2 => Base_Type (Etype (New_Formal)),
3220 Ctype => Ctype,
3221 Get_Inst => Get_Inst)
3222 and then not Access_Types_Match
3223 then
3224 Conformance_Error ("\type of & does not match!", New_Formal);
3225 return;
3226 end if;
3228 elsif not Conforming_Types
3229 (T1 => Old_Formal_Base,
3230 T2 => New_Formal_Base,
3231 Ctype => Ctype,
3232 Get_Inst => Get_Inst)
3233 and then not Access_Types_Match
3234 then
3235 Conformance_Error ("\type of & does not match!", New_Formal);
3236 return;
3237 end if;
3239 -- For mode conformance, mode must match
3241 if Ctype >= Mode_Conformant then
3242 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
3243 Conformance_Error ("\mode of & does not match!", New_Formal);
3244 return;
3246 -- Part of mode conformance for access types is having the same
3247 -- constant modifier.
3249 elsif Access_Types_Match
3250 and then Is_Access_Constant (Old_Formal_Base) /=
3251 Is_Access_Constant (New_Formal_Base)
3252 then
3253 Conformance_Error
3254 ("\constant modifier does not match!", New_Formal);
3255 return;
3256 end if;
3257 end if;
3259 if Ctype >= Subtype_Conformant then
3261 -- Ada 2005 (AI-231): In case of anonymous access types check
3262 -- the null-exclusion and access-to-constant attributes must
3263 -- match.
3265 if Ada_Version >= Ada_05
3266 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
3267 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
3268 and then
3269 (Can_Never_Be_Null (Old_Formal) /=
3270 Can_Never_Be_Null (New_Formal)
3271 or else
3272 Is_Access_Constant (Etype (Old_Formal)) /=
3273 Is_Access_Constant (Etype (New_Formal)))
3274 then
3275 -- It is allowed to omit the null-exclusion in case of stream
3276 -- attribute subprograms. We recognize stream subprograms
3277 -- through their TSS-generated suffix.
3279 declare
3280 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
3281 begin
3282 if TSS_Name /= TSS_Stream_Read
3283 and then TSS_Name /= TSS_Stream_Write
3284 and then TSS_Name /= TSS_Stream_Input
3285 and then TSS_Name /= TSS_Stream_Output
3286 then
3287 Conformance_Error
3288 ("\type of & does not match!", New_Formal);
3289 return;
3290 end if;
3291 end;
3292 end if;
3293 end if;
3295 -- Full conformance checks
3297 if Ctype = Fully_Conformant then
3299 -- We have checked already that names match
3301 if Parameter_Mode (Old_Formal) = E_In_Parameter then
3303 -- Check default expressions for in parameters
3305 declare
3306 NewD : constant Boolean :=
3307 Present (Default_Value (New_Formal));
3308 OldD : constant Boolean :=
3309 Present (Default_Value (Old_Formal));
3310 begin
3311 if NewD or OldD then
3313 -- The old default value has been analyzed because the
3314 -- current full declaration will have frozen everything
3315 -- before. The new default value has not been analyzed,
3316 -- so analyze it now before we check for conformance.
3318 if NewD then
3319 Push_Scope (New_Id);
3320 Analyze_Per_Use_Expression
3321 (Default_Value (New_Formal), Etype (New_Formal));
3322 End_Scope;
3323 end if;
3325 if not (NewD and OldD)
3326 or else not Fully_Conformant_Expressions
3327 (Default_Value (Old_Formal),
3328 Default_Value (New_Formal))
3329 then
3330 Conformance_Error
3331 ("\default expression for & does not match!",
3332 New_Formal);
3333 return;
3334 end if;
3335 end if;
3336 end;
3337 end if;
3338 end if;
3340 -- A couple of special checks for Ada 83 mode. These checks are
3341 -- skipped if either entity is an operator in package Standard,
3342 -- or if either old or new instance is not from the source program.
3344 if Ada_Version = Ada_83
3345 and then Sloc (Old_Id) > Standard_Location
3346 and then Sloc (New_Id) > Standard_Location
3347 and then Comes_From_Source (Old_Id)
3348 and then Comes_From_Source (New_Id)
3349 then
3350 declare
3351 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
3352 New_Param : constant Node_Id := Declaration_Node (New_Formal);
3354 begin
3355 -- Explicit IN must be present or absent in both cases. This
3356 -- test is required only in the full conformance case.
3358 if In_Present (Old_Param) /= In_Present (New_Param)
3359 and then Ctype = Fully_Conformant
3360 then
3361 Conformance_Error
3362 ("\(Ada 83) IN must appear in both declarations",
3363 New_Formal);
3364 return;
3365 end if;
3367 -- Grouping (use of comma in param lists) must be the same
3368 -- This is where we catch a misconformance like:
3370 -- A, B : Integer
3371 -- A : Integer; B : Integer
3373 -- which are represented identically in the tree except
3374 -- for the setting of the flags More_Ids and Prev_Ids.
3376 if More_Ids (Old_Param) /= More_Ids (New_Param)
3377 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
3378 then
3379 Conformance_Error
3380 ("\grouping of & does not match!", New_Formal);
3381 return;
3382 end if;
3383 end;
3384 end if;
3386 -- This label is required when skipping controlling formals
3388 <<Skip_Controlling_Formal>>
3390 Next_Formal (Old_Formal);
3391 Next_Formal (New_Formal);
3392 end loop;
3394 if Present (Old_Formal) then
3395 Conformance_Error ("\too few parameters!");
3396 return;
3398 elsif Present (New_Formal) then
3399 Conformance_Error ("\too many parameters!", New_Formal);
3400 return;
3401 end if;
3402 end Check_Conformance;
3404 -----------------------
3405 -- Check_Conventions --
3406 -----------------------
3408 procedure Check_Conventions (Typ : Entity_Id) is
3410 function Skip_Check (Op : Entity_Id) return Boolean;
3411 pragma Inline (Skip_Check);
3412 -- A small optimization: skip the predefined dispatching operations,
3413 -- since they always have the same convention. Also do not consider
3414 -- abstract primitives since those are left by an erroneous overriding.
3415 -- This function returns True for any operation that is thus exempted
3416 -- exempted from checking.
3418 procedure Check_Convention
3419 (Op : Entity_Id;
3420 Search_From : Elmt_Id);
3421 -- Verify that the convention of inherited dispatching operation Op is
3422 -- consistent among all subprograms it overrides. In order to minimize
3423 -- the search, Search_From is utilized to designate a specific point in
3424 -- the list rather than iterating over the whole list once more.
3426 ----------------------
3427 -- Check_Convention --
3428 ----------------------
3430 procedure Check_Convention
3431 (Op : Entity_Id;
3432 Search_From : Elmt_Id)
3434 procedure Error_Msg_Operation (Op : Entity_Id);
3435 -- Emit a continuation to an error message depicting the kind, name,
3436 -- convention and source location of subprogram Op.
3438 -------------------------
3439 -- Error_Msg_Operation --
3440 -------------------------
3442 procedure Error_Msg_Operation (Op : Entity_Id) is
3443 begin
3444 Error_Msg_Name_1 := Chars (Op);
3446 -- Error messages of primitive subprograms do not contain a
3447 -- convention attribute since the convention may have been first
3448 -- inherited from a parent subprogram, then changed by a pragma.
3450 if Comes_From_Source (Op) then
3451 Error_Msg_Sloc := Sloc (Op);
3452 Error_Msg_N
3453 ("\ primitive % defined #", Typ);
3455 else
3456 Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
3458 if Present (Abstract_Interface_Alias (Op)) then
3459 Error_Msg_Sloc := Sloc (Abstract_Interface_Alias (Op));
3460 Error_Msg_N ("\\overridden operation % with " &
3461 "convention % defined #", Typ);
3463 else pragma Assert (Present (Alias (Op)));
3464 Error_Msg_Sloc := Sloc (Alias (Op));
3465 Error_Msg_N ("\\inherited operation % with " &
3466 "convention % defined #", Typ);
3467 end if;
3468 end if;
3469 end Error_Msg_Operation;
3471 -- Local variables
3473 Second_Prim_Op : Entity_Id;
3474 Second_Prim_Op_Elmt : Elmt_Id;
3476 -- Start of processing for Check_Convention
3478 begin
3479 Second_Prim_Op_Elmt := Next_Elmt (Search_From);
3480 while Present (Second_Prim_Op_Elmt) loop
3481 Second_Prim_Op := Node (Second_Prim_Op_Elmt);
3483 if not Skip_Check (Second_Prim_Op)
3484 and then Chars (Second_Prim_Op) = Chars (Op)
3485 and then Type_Conformant (Second_Prim_Op, Op)
3486 and then Convention (Second_Prim_Op) /= Convention (Op)
3487 then
3488 Error_Msg_N
3489 ("inconsistent conventions in primitive operations", Typ);
3491 Error_Msg_Operation (Op);
3492 Error_Msg_Operation (Second_Prim_Op);
3494 -- Avoid cascading errors
3496 return;
3497 end if;
3499 Next_Elmt (Second_Prim_Op_Elmt);
3500 end loop;
3501 end Check_Convention;
3503 ----------------
3504 -- Skip_Check --
3505 ----------------
3507 function Skip_Check (Op : Entity_Id) return Boolean is
3508 begin
3509 return Is_Predefined_Dispatching_Operation (Op)
3510 or else Is_Abstract_Subprogram (Op);
3511 end Skip_Check;
3513 -- Local variables
3515 Prim_Op : Entity_Id;
3516 Prim_Op_Elmt : Elmt_Id;
3518 -- Start of processing for Check_Conventions
3520 begin
3521 -- The algorithm checks every overriding dispatching operation against
3522 -- all the corresponding overridden dispatching operations, detecting
3523 -- differences in coventions.
3525 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
3526 while Present (Prim_Op_Elmt) loop
3527 Prim_Op := Node (Prim_Op_Elmt);
3529 -- A small optimization: skip the predefined dispatching operations
3530 -- since they always have the same convention. Also avoid processing
3531 -- of abstract primitives left from an erroneous overriding.
3533 if not Skip_Check (Prim_Op) then
3534 Check_Convention
3535 (Op => Prim_Op,
3536 Search_From => Prim_Op_Elmt);
3537 end if;
3539 Next_Elmt (Prim_Op_Elmt);
3540 end loop;
3541 end Check_Conventions;
3543 ------------------------------
3544 -- Check_Delayed_Subprogram --
3545 ------------------------------
3547 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
3548 F : Entity_Id;
3550 procedure Possible_Freeze (T : Entity_Id);
3551 -- T is the type of either a formal parameter or of the return type.
3552 -- If T is not yet frozen and needs a delayed freeze, then the
3553 -- subprogram itself must be delayed.
3555 ---------------------
3556 -- Possible_Freeze --
3557 ---------------------
3559 procedure Possible_Freeze (T : Entity_Id) is
3560 begin
3561 if Has_Delayed_Freeze (T)
3562 and then not Is_Frozen (T)
3563 then
3564 Set_Has_Delayed_Freeze (Designator);
3566 elsif Is_Access_Type (T)
3567 and then Has_Delayed_Freeze (Designated_Type (T))
3568 and then not Is_Frozen (Designated_Type (T))
3569 then
3570 Set_Has_Delayed_Freeze (Designator);
3571 end if;
3572 end Possible_Freeze;
3574 -- Start of processing for Check_Delayed_Subprogram
3576 begin
3577 -- Never need to freeze abstract subprogram
3579 if Ekind (Designator) /= E_Subprogram_Type
3580 and then Is_Abstract_Subprogram (Designator)
3581 then
3582 null;
3583 else
3584 -- Need delayed freeze if return type itself needs a delayed
3585 -- freeze and is not yet frozen.
3587 Possible_Freeze (Etype (Designator));
3588 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
3590 -- Need delayed freeze if any of the formal types themselves need
3591 -- a delayed freeze and are not yet frozen.
3593 F := First_Formal (Designator);
3594 while Present (F) loop
3595 Possible_Freeze (Etype (F));
3596 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
3597 Next_Formal (F);
3598 end loop;
3599 end if;
3601 -- Mark functions that return by reference. Note that it cannot be
3602 -- done for delayed_freeze subprograms because the underlying
3603 -- returned type may not be known yet (for private types)
3605 if not Has_Delayed_Freeze (Designator)
3606 and then Expander_Active
3607 then
3608 declare
3609 Typ : constant Entity_Id := Etype (Designator);
3610 Utyp : constant Entity_Id := Underlying_Type (Typ);
3612 begin
3613 if Is_Inherently_Limited_Type (Typ) then
3614 Set_Returns_By_Ref (Designator);
3616 elsif Present (Utyp) and then CW_Or_Controlled_Type (Utyp) then
3617 Set_Returns_By_Ref (Designator);
3618 end if;
3619 end;
3620 end if;
3621 end Check_Delayed_Subprogram;
3623 ------------------------------------
3624 -- Check_Discriminant_Conformance --
3625 ------------------------------------
3627 procedure Check_Discriminant_Conformance
3628 (N : Node_Id;
3629 Prev : Entity_Id;
3630 Prev_Loc : Node_Id)
3632 Old_Discr : Entity_Id := First_Discriminant (Prev);
3633 New_Discr : Node_Id := First (Discriminant_Specifications (N));
3634 New_Discr_Id : Entity_Id;
3635 New_Discr_Type : Entity_Id;
3637 procedure Conformance_Error (Msg : String; N : Node_Id);
3638 -- Post error message for conformance error on given node. Two messages
3639 -- are output. The first points to the previous declaration with a
3640 -- general "no conformance" message. The second is the detailed reason,
3641 -- supplied as Msg. The parameter N provide information for a possible
3642 -- & insertion in the message.
3644 -----------------------
3645 -- Conformance_Error --
3646 -----------------------
3648 procedure Conformance_Error (Msg : String; N : Node_Id) is
3649 begin
3650 Error_Msg_Sloc := Sloc (Prev_Loc);
3651 Error_Msg_N ("not fully conformant with declaration#!", N);
3652 Error_Msg_NE (Msg, N, N);
3653 end Conformance_Error;
3655 -- Start of processing for Check_Discriminant_Conformance
3657 begin
3658 while Present (Old_Discr) and then Present (New_Discr) loop
3660 New_Discr_Id := Defining_Identifier (New_Discr);
3662 -- The subtype mark of the discriminant on the full type has not
3663 -- been analyzed so we do it here. For an access discriminant a new
3664 -- type is created.
3666 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
3667 New_Discr_Type :=
3668 Access_Definition (N, Discriminant_Type (New_Discr));
3670 else
3671 Analyze (Discriminant_Type (New_Discr));
3672 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
3673 end if;
3675 if not Conforming_Types
3676 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
3677 then
3678 Conformance_Error ("type of & does not match!", New_Discr_Id);
3679 return;
3680 else
3681 -- Treat the new discriminant as an occurrence of the old one,
3682 -- for navigation purposes, and fill in some semantic
3683 -- information, for completeness.
3685 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
3686 Set_Etype (New_Discr_Id, Etype (Old_Discr));
3687 Set_Scope (New_Discr_Id, Scope (Old_Discr));
3688 end if;
3690 -- Names must match
3692 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
3693 Conformance_Error ("name & does not match!", New_Discr_Id);
3694 return;
3695 end if;
3697 -- Default expressions must match
3699 declare
3700 NewD : constant Boolean :=
3701 Present (Expression (New_Discr));
3702 OldD : constant Boolean :=
3703 Present (Expression (Parent (Old_Discr)));
3705 begin
3706 if NewD or OldD then
3708 -- The old default value has been analyzed and expanded,
3709 -- because the current full declaration will have frozen
3710 -- everything before. The new default values have not been
3711 -- expanded, so expand now to check conformance.
3713 if NewD then
3714 Analyze_Per_Use_Expression
3715 (Expression (New_Discr), New_Discr_Type);
3716 end if;
3718 if not (NewD and OldD)
3719 or else not Fully_Conformant_Expressions
3720 (Expression (Parent (Old_Discr)),
3721 Expression (New_Discr))
3723 then
3724 Conformance_Error
3725 ("default expression for & does not match!",
3726 New_Discr_Id);
3727 return;
3728 end if;
3729 end if;
3730 end;
3732 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
3734 if Ada_Version = Ada_83 then
3735 declare
3736 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
3738 begin
3739 -- Grouping (use of comma in param lists) must be the same
3740 -- This is where we catch a misconformance like:
3742 -- A,B : Integer
3743 -- A : Integer; B : Integer
3745 -- which are represented identically in the tree except
3746 -- for the setting of the flags More_Ids and Prev_Ids.
3748 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
3749 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
3750 then
3751 Conformance_Error
3752 ("grouping of & does not match!", New_Discr_Id);
3753 return;
3754 end if;
3755 end;
3756 end if;
3758 Next_Discriminant (Old_Discr);
3759 Next (New_Discr);
3760 end loop;
3762 if Present (Old_Discr) then
3763 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
3764 return;
3766 elsif Present (New_Discr) then
3767 Conformance_Error
3768 ("too many discriminants!", Defining_Identifier (New_Discr));
3769 return;
3770 end if;
3771 end Check_Discriminant_Conformance;
3773 ----------------------------
3774 -- Check_Fully_Conformant --
3775 ----------------------------
3777 procedure Check_Fully_Conformant
3778 (New_Id : Entity_Id;
3779 Old_Id : Entity_Id;
3780 Err_Loc : Node_Id := Empty)
3782 Result : Boolean;
3783 pragma Warnings (Off, Result);
3784 begin
3785 Check_Conformance
3786 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
3787 end Check_Fully_Conformant;
3789 ---------------------------
3790 -- Check_Mode_Conformant --
3791 ---------------------------
3793 procedure Check_Mode_Conformant
3794 (New_Id : Entity_Id;
3795 Old_Id : Entity_Id;
3796 Err_Loc : Node_Id := Empty;
3797 Get_Inst : Boolean := False)
3799 Result : Boolean;
3800 pragma Warnings (Off, Result);
3801 begin
3802 Check_Conformance
3803 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
3804 end Check_Mode_Conformant;
3806 --------------------------------
3807 -- Check_Overriding_Indicator --
3808 --------------------------------
3810 procedure Check_Overriding_Indicator
3811 (Subp : Entity_Id;
3812 Overridden_Subp : Entity_Id;
3813 Is_Primitive : Boolean)
3815 Decl : Node_Id;
3816 Spec : Node_Id;
3818 begin
3819 -- No overriding indicator for literals
3821 if Ekind (Subp) = E_Enumeration_Literal then
3822 return;
3824 elsif Ekind (Subp) = E_Entry then
3825 Decl := Parent (Subp);
3827 else
3828 Decl := Unit_Declaration_Node (Subp);
3829 end if;
3831 if Nkind (Decl) = N_Subprogram_Body
3832 or else Nkind (Decl) = N_Subprogram_Body_Stub
3833 or else Nkind (Decl) = N_Subprogram_Declaration
3834 or else Nkind (Decl) = N_Abstract_Subprogram_Declaration
3835 or else Nkind (Decl) = N_Subprogram_Renaming_Declaration
3836 then
3837 Spec := Specification (Decl);
3839 elsif Nkind (Decl) = N_Entry_Declaration then
3840 Spec := Decl;
3842 else
3843 return;
3844 end if;
3846 if Present (Overridden_Subp) then
3847 if Must_Not_Override (Spec) then
3848 Error_Msg_Sloc := Sloc (Overridden_Subp);
3850 if Ekind (Subp) = E_Entry then
3851 Error_Msg_NE
3852 ("entry & overrides inherited operation #", Spec, Subp);
3853 else
3854 Error_Msg_NE
3855 ("subprogram & overrides inherited operation #", Spec, Subp);
3856 end if;
3857 end if;
3859 -- If Subp is an operator, it may override a predefined operation.
3860 -- In that case overridden_subp is empty because of our implicit
3861 -- representation for predefined operators. We have to check whether the
3862 -- signature of Subp matches that of a predefined operator. Note that
3863 -- first argument provides the name of the operator, and the second
3864 -- argument the signature that may match that of a standard operation.
3866 elsif Nkind (Subp) = N_Defining_Operator_Symbol
3867 and then Must_Not_Override (Spec)
3868 then
3869 if Operator_Matches_Spec (Subp, Subp) then
3870 Error_Msg_NE
3871 ("subprogram & overrides predefined operator ",
3872 Spec, Subp);
3873 end if;
3875 elsif Must_Override (Spec) then
3876 if Ekind (Subp) = E_Entry then
3877 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
3879 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
3880 if not Operator_Matches_Spec (Subp, Subp) then
3881 Error_Msg_NE
3882 ("subprogram & is not overriding", Spec, Subp);
3883 end if;
3885 else
3886 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
3887 end if;
3889 -- If the operation is marked "not overriding" and it's not primitive
3890 -- then an error is issued, unless this is an operation of a task or
3891 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
3892 -- has been specified have already been checked above.
3894 elsif Must_Not_Override (Spec)
3895 and then not Is_Primitive
3896 and then Ekind (Subp) /= E_Entry
3897 and then Ekind (Scope (Subp)) /= E_Protected_Type
3898 then
3899 Error_Msg_N
3900 ("overriding indicator only allowed if subprogram is primitive",
3901 Subp);
3903 return;
3904 end if;
3905 end Check_Overriding_Indicator;
3907 -------------------
3908 -- Check_Returns --
3909 -------------------
3911 -- Note: this procedure needs to know far too much about how the expander
3912 -- messes with exceptions. The use of the flag Exception_Junk and the
3913 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
3914 -- works, but is not very clean. It would be better if the expansion
3915 -- routines would leave Original_Node working nicely, and we could use
3916 -- Original_Node here to ignore all the peculiar expander messing ???
3918 procedure Check_Returns
3919 (HSS : Node_Id;
3920 Mode : Character;
3921 Err : out Boolean;
3922 Proc : Entity_Id := Empty)
3924 Handler : Node_Id;
3926 procedure Check_Statement_Sequence (L : List_Id);
3927 -- Internal recursive procedure to check a list of statements for proper
3928 -- termination by a return statement (or a transfer of control or a
3929 -- compound statement that is itself internally properly terminated).
3931 ------------------------------
3932 -- Check_Statement_Sequence --
3933 ------------------------------
3935 procedure Check_Statement_Sequence (L : List_Id) is
3936 Last_Stm : Node_Id;
3937 Stm : Node_Id;
3938 Kind : Node_Kind;
3940 Raise_Exception_Call : Boolean;
3941 -- Set True if statement sequence terminated by Raise_Exception call
3942 -- or a Reraise_Occurrence call.
3944 begin
3945 Raise_Exception_Call := False;
3947 -- Get last real statement
3949 Last_Stm := Last (L);
3951 -- Deal with digging out exception handler statement sequences that
3952 -- have been transformed by the local raise to goto optimization.
3953 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
3954 -- optimization has occurred, we are looking at something like:
3956 -- begin
3957 -- original stmts in block
3959 -- exception \
3960 -- when excep1 => |
3961 -- goto L1; | omitted if No_Exception_Propagation
3962 -- when excep2 => |
3963 -- goto L2; /
3964 -- end;
3966 -- goto L3; -- skip handler when exception not raised
3968 -- <<L1>> -- target label for local exception
3969 -- begin
3970 -- estmts1
3971 -- end;
3973 -- goto L3;
3975 -- <<L2>>
3976 -- begin
3977 -- estmts2
3978 -- end;
3980 -- <<L3>>
3982 -- and what we have to do is to dig out the estmts1 and estmts2
3983 -- sequences (which were the original sequences of statements in
3984 -- the exception handlers) and check them.
3986 if Nkind (Last_Stm) = N_Label
3987 and then Exception_Junk (Last_Stm)
3988 then
3989 Stm := Last_Stm;
3990 loop
3991 Prev (Stm);
3992 exit when No (Stm);
3993 exit when Nkind (Stm) /= N_Block_Statement;
3994 exit when not Exception_Junk (Stm);
3995 Prev (Stm);
3996 exit when No (Stm);
3997 exit when Nkind (Stm) /= N_Label;
3998 exit when not Exception_Junk (Stm);
3999 Check_Statement_Sequence
4000 (Statements (Handled_Statement_Sequence (Next (Stm))));
4002 Prev (Stm);
4003 Last_Stm := Stm;
4004 exit when No (Stm);
4005 exit when Nkind (Stm) /= N_Goto_Statement;
4006 exit when not Exception_Junk (Stm);
4007 end loop;
4008 end if;
4010 -- Don't count pragmas
4012 while Nkind (Last_Stm) = N_Pragma
4014 -- Don't count call to SS_Release (can happen after Raise_Exception)
4016 or else
4017 (Nkind (Last_Stm) = N_Procedure_Call_Statement
4018 and then
4019 Nkind (Name (Last_Stm)) = N_Identifier
4020 and then
4021 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
4023 -- Don't count exception junk
4025 or else
4026 ((Nkind (Last_Stm) = N_Goto_Statement
4027 or else Nkind (Last_Stm) = N_Label
4028 or else Nkind (Last_Stm) = N_Object_Declaration)
4029 and then Exception_Junk (Last_Stm))
4030 or else Nkind (Last_Stm) in N_Push_xxx_Label
4031 or else Nkind (Last_Stm) in N_Pop_xxx_Label
4032 loop
4033 Prev (Last_Stm);
4034 end loop;
4036 -- Here we have the "real" last statement
4038 Kind := Nkind (Last_Stm);
4040 -- Transfer of control, OK. Note that in the No_Return procedure
4041 -- case, we already diagnosed any explicit return statements, so
4042 -- we can treat them as OK in this context.
4044 if Is_Transfer (Last_Stm) then
4045 return;
4047 -- Check cases of explicit non-indirect procedure calls
4049 elsif Kind = N_Procedure_Call_Statement
4050 and then Is_Entity_Name (Name (Last_Stm))
4051 then
4052 -- Check call to Raise_Exception procedure which is treated
4053 -- specially, as is a call to Reraise_Occurrence.
4055 -- We suppress the warning in these cases since it is likely that
4056 -- the programmer really does not expect to deal with the case
4057 -- of Null_Occurrence, and thus would find a warning about a
4058 -- missing return curious, and raising Program_Error does not
4059 -- seem such a bad behavior if this does occur.
4061 -- Note that in the Ada 2005 case for Raise_Exception, the actual
4062 -- behavior will be to raise Constraint_Error (see AI-329).
4064 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
4065 or else
4066 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
4067 then
4068 Raise_Exception_Call := True;
4070 -- For Raise_Exception call, test first argument, if it is
4071 -- an attribute reference for a 'Identity call, then we know
4072 -- that the call cannot possibly return.
4074 declare
4075 Arg : constant Node_Id :=
4076 Original_Node (First_Actual (Last_Stm));
4077 begin
4078 if Nkind (Arg) = N_Attribute_Reference
4079 and then Attribute_Name (Arg) = Name_Identity
4080 then
4081 return;
4082 end if;
4083 end;
4084 end if;
4086 -- If statement, need to look inside if there is an else and check
4087 -- each constituent statement sequence for proper termination.
4089 elsif Kind = N_If_Statement
4090 and then Present (Else_Statements (Last_Stm))
4091 then
4092 Check_Statement_Sequence (Then_Statements (Last_Stm));
4093 Check_Statement_Sequence (Else_Statements (Last_Stm));
4095 if Present (Elsif_Parts (Last_Stm)) then
4096 declare
4097 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
4099 begin
4100 while Present (Elsif_Part) loop
4101 Check_Statement_Sequence (Then_Statements (Elsif_Part));
4102 Next (Elsif_Part);
4103 end loop;
4104 end;
4105 end if;
4107 return;
4109 -- Case statement, check each case for proper termination
4111 elsif Kind = N_Case_Statement then
4112 declare
4113 Case_Alt : Node_Id;
4115 begin
4116 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
4117 while Present (Case_Alt) loop
4118 Check_Statement_Sequence (Statements (Case_Alt));
4119 Next_Non_Pragma (Case_Alt);
4120 end loop;
4121 end;
4123 return;
4125 -- Block statement, check its handled sequence of statements
4127 elsif Kind = N_Block_Statement then
4128 declare
4129 Err1 : Boolean;
4131 begin
4132 Check_Returns
4133 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
4135 if Err1 then
4136 Err := True;
4137 end if;
4139 return;
4140 end;
4142 -- Loop statement. If there is an iteration scheme, we can definitely
4143 -- fall out of the loop. Similarly if there is an exit statement, we
4144 -- can fall out. In either case we need a following return.
4146 elsif Kind = N_Loop_Statement then
4147 if Present (Iteration_Scheme (Last_Stm))
4148 or else Has_Exit (Entity (Identifier (Last_Stm)))
4149 then
4150 null;
4152 -- A loop with no exit statement or iteration scheme if either
4153 -- an inifite loop, or it has some other exit (raise/return).
4154 -- In either case, no warning is required.
4156 else
4157 return;
4158 end if;
4160 -- Timed entry call, check entry call and delay alternatives
4162 -- Note: in expanded code, the timed entry call has been converted
4163 -- to a set of expanded statements on which the check will work
4164 -- correctly in any case.
4166 elsif Kind = N_Timed_Entry_Call then
4167 declare
4168 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
4169 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
4171 begin
4172 -- If statement sequence of entry call alternative is missing,
4173 -- then we can definitely fall through, and we post the error
4174 -- message on the entry call alternative itself.
4176 if No (Statements (ECA)) then
4177 Last_Stm := ECA;
4179 -- If statement sequence of delay alternative is missing, then
4180 -- we can definitely fall through, and we post the error
4181 -- message on the delay alternative itself.
4183 -- Note: if both ECA and DCA are missing the return, then we
4184 -- post only one message, should be enough to fix the bugs.
4185 -- If not we will get a message next time on the DCA when the
4186 -- ECA is fixed!
4188 elsif No (Statements (DCA)) then
4189 Last_Stm := DCA;
4191 -- Else check both statement sequences
4193 else
4194 Check_Statement_Sequence (Statements (ECA));
4195 Check_Statement_Sequence (Statements (DCA));
4196 return;
4197 end if;
4198 end;
4200 -- Conditional entry call, check entry call and else part
4202 -- Note: in expanded code, the conditional entry call has been
4203 -- converted to a set of expanded statements on which the check
4204 -- will work correctly in any case.
4206 elsif Kind = N_Conditional_Entry_Call then
4207 declare
4208 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
4210 begin
4211 -- If statement sequence of entry call alternative is missing,
4212 -- then we can definitely fall through, and we post the error
4213 -- message on the entry call alternative itself.
4215 if No (Statements (ECA)) then
4216 Last_Stm := ECA;
4218 -- Else check statement sequence and else part
4220 else
4221 Check_Statement_Sequence (Statements (ECA));
4222 Check_Statement_Sequence (Else_Statements (Last_Stm));
4223 return;
4224 end if;
4225 end;
4226 end if;
4228 -- If we fall through, issue appropriate message
4230 if Mode = 'F' then
4231 if not Raise_Exception_Call then
4232 Error_Msg_N
4233 ("?RETURN statement missing following this statement!",
4234 Last_Stm);
4235 Error_Msg_N
4236 ("\?Program_Error may be raised at run time!",
4237 Last_Stm);
4238 end if;
4240 -- Note: we set Err even though we have not issued a warning
4241 -- because we still have a case of a missing return. This is
4242 -- an extremely marginal case, probably will never be noticed
4243 -- but we might as well get it right.
4245 Err := True;
4247 -- Otherwise we have the case of a procedure marked No_Return
4249 else
4250 Error_Msg_N
4251 ("?implied return after this statement will raise Program_Error",
4252 Last_Stm);
4253 Error_Msg_NE
4254 ("?procedure & is marked as No_Return",
4255 Last_Stm, Proc);
4257 declare
4258 RE : constant Node_Id :=
4259 Make_Raise_Program_Error (Sloc (Last_Stm),
4260 Reason => PE_Implicit_Return);
4261 begin
4262 Insert_After (Last_Stm, RE);
4263 Analyze (RE);
4264 end;
4265 end if;
4266 end Check_Statement_Sequence;
4268 -- Start of processing for Check_Returns
4270 begin
4271 Err := False;
4272 Check_Statement_Sequence (Statements (HSS));
4274 if Present (Exception_Handlers (HSS)) then
4275 Handler := First_Non_Pragma (Exception_Handlers (HSS));
4276 while Present (Handler) loop
4277 Check_Statement_Sequence (Statements (Handler));
4278 Next_Non_Pragma (Handler);
4279 end loop;
4280 end if;
4281 end Check_Returns;
4283 ----------------------------
4284 -- Check_Subprogram_Order --
4285 ----------------------------
4287 procedure Check_Subprogram_Order (N : Node_Id) is
4289 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
4290 -- This is used to check if S1 > S2 in the sense required by this
4291 -- test, for example nameab < namec, but name2 < name10.
4293 -----------------------------
4294 -- Subprogram_Name_Greater --
4295 -----------------------------
4297 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
4298 L1, L2 : Positive;
4299 N1, N2 : Natural;
4301 begin
4302 -- Remove trailing numeric parts
4304 L1 := S1'Last;
4305 while S1 (L1) in '0' .. '9' loop
4306 L1 := L1 - 1;
4307 end loop;
4309 L2 := S2'Last;
4310 while S2 (L2) in '0' .. '9' loop
4311 L2 := L2 - 1;
4312 end loop;
4314 -- If non-numeric parts non-equal, that's decisive
4316 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
4317 return False;
4319 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
4320 return True;
4322 -- If non-numeric parts equal, compare suffixed numeric parts. Note
4323 -- that a missing suffix is treated as numeric zero in this test.
4325 else
4326 N1 := 0;
4327 while L1 < S1'Last loop
4328 L1 := L1 + 1;
4329 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
4330 end loop;
4332 N2 := 0;
4333 while L2 < S2'Last loop
4334 L2 := L2 + 1;
4335 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
4336 end loop;
4338 return N1 > N2;
4339 end if;
4340 end Subprogram_Name_Greater;
4342 -- Start of processing for Check_Subprogram_Order
4344 begin
4345 -- Check body in alpha order if this is option
4347 if Style_Check
4348 and then Style_Check_Order_Subprograms
4349 and then Nkind (N) = N_Subprogram_Body
4350 and then Comes_From_Source (N)
4351 and then In_Extended_Main_Source_Unit (N)
4352 then
4353 declare
4354 LSN : String_Ptr
4355 renames Scope_Stack.Table
4356 (Scope_Stack.Last).Last_Subprogram_Name;
4358 Body_Id : constant Entity_Id :=
4359 Defining_Entity (Specification (N));
4361 begin
4362 Get_Decoded_Name_String (Chars (Body_Id));
4364 if LSN /= null then
4365 if Subprogram_Name_Greater
4366 (LSN.all, Name_Buffer (1 .. Name_Len))
4367 then
4368 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
4369 end if;
4371 Free (LSN);
4372 end if;
4374 LSN := new String'(Name_Buffer (1 .. Name_Len));
4375 end;
4376 end if;
4377 end Check_Subprogram_Order;
4379 ------------------------------
4380 -- Check_Subtype_Conformant --
4381 ------------------------------
4383 procedure Check_Subtype_Conformant
4384 (New_Id : Entity_Id;
4385 Old_Id : Entity_Id;
4386 Err_Loc : Node_Id := Empty)
4388 Result : Boolean;
4389 pragma Warnings (Off, Result);
4390 begin
4391 Check_Conformance
4392 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc);
4393 end Check_Subtype_Conformant;
4395 ---------------------------
4396 -- Check_Type_Conformant --
4397 ---------------------------
4399 procedure Check_Type_Conformant
4400 (New_Id : Entity_Id;
4401 Old_Id : Entity_Id;
4402 Err_Loc : Node_Id := Empty)
4404 Result : Boolean;
4405 pragma Warnings (Off, Result);
4406 begin
4407 Check_Conformance
4408 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
4409 end Check_Type_Conformant;
4411 ----------------------
4412 -- Conforming_Types --
4413 ----------------------
4415 function Conforming_Types
4416 (T1 : Entity_Id;
4417 T2 : Entity_Id;
4418 Ctype : Conformance_Type;
4419 Get_Inst : Boolean := False) return Boolean
4421 Type_1 : Entity_Id := T1;
4422 Type_2 : Entity_Id := T2;
4423 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
4425 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
4426 -- If neither T1 nor T2 are generic actual types, or if they are in
4427 -- different scopes (e.g. parent and child instances), then verify that
4428 -- the base types are equal. Otherwise T1 and T2 must be on the same
4429 -- subtype chain. The whole purpose of this procedure is to prevent
4430 -- spurious ambiguities in an instantiation that may arise if two
4431 -- distinct generic types are instantiated with the same actual.
4433 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
4434 -- An access parameter can designate an incomplete type. If the
4435 -- incomplete type is the limited view of a type from a limited_
4436 -- with_clause, check whether the non-limited view is available. If
4437 -- it is a (non-limited) incomplete type, get the full view.
4439 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
4440 -- Returns True if and only if either T1 denotes a limited view of T2
4441 -- or T2 denotes a limited view of T1. This can arise when the limited
4442 -- with view of a type is used in a subprogram declaration and the
4443 -- subprogram body is in the scope of a regular with clause for the
4444 -- same unit. In such a case, the two type entities can be considered
4445 -- identical for purposes of conformance checking.
4447 ----------------------
4448 -- Base_Types_Match --
4449 ----------------------
4451 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
4452 begin
4453 if T1 = T2 then
4454 return True;
4456 elsif Base_Type (T1) = Base_Type (T2) then
4458 -- The following is too permissive. A more precise test should
4459 -- check that the generic actual is an ancestor subtype of the
4460 -- other ???.
4462 return not Is_Generic_Actual_Type (T1)
4463 or else not Is_Generic_Actual_Type (T2)
4464 or else Scope (T1) /= Scope (T2);
4466 else
4467 return False;
4468 end if;
4469 end Base_Types_Match;
4471 --------------------------
4472 -- Find_Designated_Type --
4473 --------------------------
4475 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
4476 Desig : Entity_Id;
4478 begin
4479 Desig := Directly_Designated_Type (T);
4481 if Ekind (Desig) = E_Incomplete_Type then
4483 -- If regular incomplete type, get full view if available
4485 if Present (Full_View (Desig)) then
4486 Desig := Full_View (Desig);
4488 -- If limited view of a type, get non-limited view if available,
4489 -- and check again for a regular incomplete type.
4491 elsif Present (Non_Limited_View (Desig)) then
4492 Desig := Get_Full_View (Non_Limited_View (Desig));
4493 end if;
4494 end if;
4496 return Desig;
4497 end Find_Designated_Type;
4499 -------------------------------
4500 -- Matches_Limited_With_View --
4501 -------------------------------
4503 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
4504 begin
4505 -- In some cases a type imported through a limited_with clause, and
4506 -- its nonlimited view are both visible, for example in an anonymous
4507 -- access-to-class-wide type in a formal. Both entities designate the
4508 -- same type.
4510 if From_With_Type (T1)
4511 and then T2 = Available_View (T1)
4512 then
4513 return True;
4515 elsif From_With_Type (T2)
4516 and then T1 = Available_View (T2)
4517 then
4518 return True;
4520 else
4521 return False;
4522 end if;
4523 end Matches_Limited_With_View;
4525 -- Start of processing for Conforming_Types
4527 begin
4528 -- The context is an instance association for a formal
4529 -- access-to-subprogram type; the formal parameter types require
4530 -- mapping because they may denote other formal parameters of the
4531 -- generic unit.
4533 if Get_Inst then
4534 Type_1 := Get_Instance_Of (T1);
4535 Type_2 := Get_Instance_Of (T2);
4536 end if;
4538 -- If one of the types is a view of the other introduced by a limited
4539 -- with clause, treat these as conforming for all purposes.
4541 if Matches_Limited_With_View (T1, T2) then
4542 return True;
4544 elsif Base_Types_Match (Type_1, Type_2) then
4545 return Ctype <= Mode_Conformant
4546 or else Subtypes_Statically_Match (Type_1, Type_2);
4548 elsif Is_Incomplete_Or_Private_Type (Type_1)
4549 and then Present (Full_View (Type_1))
4550 and then Base_Types_Match (Full_View (Type_1), Type_2)
4551 then
4552 return Ctype <= Mode_Conformant
4553 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
4555 elsif Ekind (Type_2) = E_Incomplete_Type
4556 and then Present (Full_View (Type_2))
4557 and then Base_Types_Match (Type_1, Full_View (Type_2))
4558 then
4559 return Ctype <= Mode_Conformant
4560 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
4562 elsif Is_Private_Type (Type_2)
4563 and then In_Instance
4564 and then Present (Full_View (Type_2))
4565 and then Base_Types_Match (Type_1, Full_View (Type_2))
4566 then
4567 return Ctype <= Mode_Conformant
4568 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
4569 end if;
4571 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
4572 -- treated recursively because they carry a signature.
4574 Are_Anonymous_Access_To_Subprogram_Types :=
4575 Ekind (Type_1) = Ekind (Type_2)
4576 and then
4577 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
4578 or else
4579 Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
4581 -- Test anonymous access type case. For this case, static subtype
4582 -- matching is required for mode conformance (RM 6.3.1(15)). We check
4583 -- the base types because we may have built internal subtype entities
4584 -- to handle null-excluding types (see Process_Formals).
4586 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
4587 and then
4588 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
4589 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
4590 then
4591 declare
4592 Desig_1 : Entity_Id;
4593 Desig_2 : Entity_Id;
4595 begin
4596 -- In Ada2005, access constant indicators must match for
4597 -- subtype conformance.
4599 if Ada_Version >= Ada_05
4600 and then Ctype >= Subtype_Conformant
4601 and then
4602 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
4603 then
4604 return False;
4605 end if;
4607 Desig_1 := Find_Designated_Type (Type_1);
4609 Desig_2 := Find_Designated_Type (Type_2);
4611 -- If the context is an instance association for a formal
4612 -- access-to-subprogram type; formal access parameter designated
4613 -- types require mapping because they may denote other formal
4614 -- parameters of the generic unit.
4616 if Get_Inst then
4617 Desig_1 := Get_Instance_Of (Desig_1);
4618 Desig_2 := Get_Instance_Of (Desig_2);
4619 end if;
4621 -- It is possible for a Class_Wide_Type to be introduced for an
4622 -- incomplete type, in which case there is a separate class_ wide
4623 -- type for the full view. The types conform if their Etypes
4624 -- conform, i.e. one may be the full view of the other. This can
4625 -- only happen in the context of an access parameter, other uses
4626 -- of an incomplete Class_Wide_Type are illegal.
4628 if Is_Class_Wide_Type (Desig_1)
4629 and then Is_Class_Wide_Type (Desig_2)
4630 then
4631 return
4632 Conforming_Types
4633 (Etype (Base_Type (Desig_1)),
4634 Etype (Base_Type (Desig_2)), Ctype);
4636 elsif Are_Anonymous_Access_To_Subprogram_Types then
4637 if Ada_Version < Ada_05 then
4638 return Ctype = Type_Conformant
4639 or else
4640 Subtypes_Statically_Match (Desig_1, Desig_2);
4642 -- We must check the conformance of the signatures themselves
4644 else
4645 declare
4646 Conformant : Boolean;
4647 begin
4648 Check_Conformance
4649 (Desig_1, Desig_2, Ctype, False, Conformant);
4650 return Conformant;
4651 end;
4652 end if;
4654 else
4655 return Base_Type (Desig_1) = Base_Type (Desig_2)
4656 and then (Ctype = Type_Conformant
4657 or else
4658 Subtypes_Statically_Match (Desig_1, Desig_2));
4659 end if;
4660 end;
4662 -- Otherwise definitely no match
4664 else
4665 if ((Ekind (Type_1) = E_Anonymous_Access_Type
4666 and then Is_Access_Type (Type_2))
4667 or else (Ekind (Type_2) = E_Anonymous_Access_Type
4668 and then Is_Access_Type (Type_1)))
4669 and then
4670 Conforming_Types
4671 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
4672 then
4673 May_Hide_Profile := True;
4674 end if;
4676 return False;
4677 end if;
4678 end Conforming_Types;
4680 --------------------------
4681 -- Create_Extra_Formals --
4682 --------------------------
4684 procedure Create_Extra_Formals (E : Entity_Id) is
4685 Formal : Entity_Id;
4686 First_Extra : Entity_Id := Empty;
4687 Last_Extra : Entity_Id;
4688 Formal_Type : Entity_Id;
4689 P_Formal : Entity_Id := Empty;
4691 function Add_Extra_Formal
4692 (Assoc_Entity : Entity_Id;
4693 Typ : Entity_Id;
4694 Scope : Entity_Id;
4695 Suffix : String) return Entity_Id;
4696 -- Add an extra formal to the current list of formals and extra formals.
4697 -- The extra formal is added to the end of the list of extra formals,
4698 -- and also returned as the result. These formals are always of mode IN.
4699 -- The new formal has the type Typ, is declared in Scope, and its name
4700 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
4702 ----------------------
4703 -- Add_Extra_Formal --
4704 ----------------------
4706 function Add_Extra_Formal
4707 (Assoc_Entity : Entity_Id;
4708 Typ : Entity_Id;
4709 Scope : Entity_Id;
4710 Suffix : String) return Entity_Id
4712 EF : constant Entity_Id :=
4713 Make_Defining_Identifier (Sloc (Assoc_Entity),
4714 Chars => New_External_Name (Chars (Assoc_Entity),
4715 Suffix => Suffix));
4717 begin
4718 -- A little optimization. Never generate an extra formal for the
4719 -- _init operand of an initialization procedure, since it could
4720 -- never be used.
4722 if Chars (Formal) = Name_uInit then
4723 return Empty;
4724 end if;
4726 Set_Ekind (EF, E_In_Parameter);
4727 Set_Actual_Subtype (EF, Typ);
4728 Set_Etype (EF, Typ);
4729 Set_Scope (EF, Scope);
4730 Set_Mechanism (EF, Default_Mechanism);
4731 Set_Formal_Validity (EF);
4733 if No (First_Extra) then
4734 First_Extra := EF;
4735 Set_Extra_Formals (Scope, First_Extra);
4736 end if;
4738 if Present (Last_Extra) then
4739 Set_Extra_Formal (Last_Extra, EF);
4740 end if;
4742 Last_Extra := EF;
4744 return EF;
4745 end Add_Extra_Formal;
4747 -- Start of processing for Create_Extra_Formals
4749 begin
4750 -- We never generate extra formals if expansion is not active
4751 -- because we don't need them unless we are generating code.
4753 if not Expander_Active then
4754 return;
4755 end if;
4757 -- If this is a derived subprogram then the subtypes of the parent
4758 -- subprogram's formal parameters will be used to to determine the need
4759 -- for extra formals.
4761 if Is_Overloadable (E) and then Present (Alias (E)) then
4762 P_Formal := First_Formal (Alias (E));
4763 end if;
4765 Last_Extra := Empty;
4766 Formal := First_Formal (E);
4767 while Present (Formal) loop
4768 Last_Extra := Formal;
4769 Next_Formal (Formal);
4770 end loop;
4772 -- If Extra_formals were already created, don't do it again. This
4773 -- situation may arise for subprogram types created as part of
4774 -- dispatching calls (see Expand_Dispatching_Call)
4776 if Present (Last_Extra) and then
4777 Present (Extra_Formal (Last_Extra))
4778 then
4779 return;
4780 end if;
4782 -- If the subprogram is a predefined dispatching subprogram then don't
4783 -- generate any extra constrained or accessibility level formals. In
4784 -- general we suppress these for internal subprograms (by not calling
4785 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
4786 -- generated stream attributes do get passed through because extra
4787 -- build-in-place formals are needed in some cases (limited 'Input).
4789 if Is_Predefined_Dispatching_Operation (E) then
4790 goto Test_For_BIP_Extras;
4791 end if;
4793 Formal := First_Formal (E);
4794 while Present (Formal) loop
4796 -- Create extra formal for supporting the attribute 'Constrained.
4797 -- The case of a private type view without discriminants also
4798 -- requires the extra formal if the underlying type has defaulted
4799 -- discriminants.
4801 if Ekind (Formal) /= E_In_Parameter then
4802 if Present (P_Formal) then
4803 Formal_Type := Etype (P_Formal);
4804 else
4805 Formal_Type := Etype (Formal);
4806 end if;
4808 -- Do not produce extra formals for Unchecked_Union parameters.
4809 -- Jump directly to the end of the loop.
4811 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
4812 goto Skip_Extra_Formal_Generation;
4813 end if;
4815 if not Has_Discriminants (Formal_Type)
4816 and then Ekind (Formal_Type) in Private_Kind
4817 and then Present (Underlying_Type (Formal_Type))
4818 then
4819 Formal_Type := Underlying_Type (Formal_Type);
4820 end if;
4822 if Has_Discriminants (Formal_Type)
4823 and then not Is_Constrained (Formal_Type)
4824 and then not Is_Indefinite_Subtype (Formal_Type)
4825 then
4826 Set_Extra_Constrained
4827 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "F"));
4828 end if;
4829 end if;
4831 -- Create extra formal for supporting accessibility checking. This
4832 -- is done for both anonymous access formals and formals of named
4833 -- access types that are marked as controlling formals. The latter
4834 -- case can occur when Expand_Dispatching_Call creates a subprogram
4835 -- type and substitutes the types of access-to-class-wide actuals
4836 -- for the anonymous access-to-specific-type of controlling formals.
4837 -- Base_Type is applied because in cases where there is a null
4838 -- exclusion the formal may have an access subtype.
4840 -- This is suppressed if we specifically suppress accessibility
4841 -- checks at the package level for either the subprogram, or the
4842 -- package in which it resides. However, we do not suppress it
4843 -- simply if the scope has accessibility checks suppressed, since
4844 -- this could cause trouble when clients are compiled with a
4845 -- different suppression setting. The explicit checks at the
4846 -- package level are safe from this point of view.
4848 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
4849 or else (Is_Controlling_Formal (Formal)
4850 and then Is_Access_Type (Base_Type (Etype (Formal)))))
4851 and then not
4852 (Explicit_Suppress (E, Accessibility_Check)
4853 or else
4854 Explicit_Suppress (Scope (E), Accessibility_Check))
4855 and then
4856 (No (P_Formal)
4857 or else Present (Extra_Accessibility (P_Formal)))
4858 then
4859 -- Temporary kludge: for now we avoid creating the extra formal
4860 -- for access parameters of protected operations because of
4861 -- problem with the case of internal protected calls. ???
4863 if Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Definition
4864 and then Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Body
4865 then
4866 Set_Extra_Accessibility
4867 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "F"));
4868 end if;
4869 end if;
4871 -- This label is required when skipping extra formal generation for
4872 -- Unchecked_Union parameters.
4874 <<Skip_Extra_Formal_Generation>>
4876 if Present (P_Formal) then
4877 Next_Formal (P_Formal);
4878 end if;
4880 Next_Formal (Formal);
4881 end loop;
4883 <<Test_For_BIP_Extras>>
4885 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
4886 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
4888 if Ada_Version >= Ada_05 and then Is_Build_In_Place_Function (E) then
4889 declare
4890 Result_Subt : constant Entity_Id := Etype (E);
4892 Discard : Entity_Id;
4893 pragma Warnings (Off, Discard);
4895 begin
4896 -- In the case of functions with unconstrained result subtypes,
4897 -- add a 3-state formal indicating whether the return object is
4898 -- allocated by the caller (0), or should be allocated by the
4899 -- callee on the secondary stack (1) or in the global heap (2).
4900 -- For the moment we just use Natural for the type of this formal.
4901 -- Note that this formal isn't usually needed in the case where
4902 -- the result subtype is constrained, but it is needed when the
4903 -- function has a tagged result, because generally such functions
4904 -- can be called in a dispatching context and such calls must be
4905 -- handled like calls to a class-wide function.
4907 if not Is_Constrained (Result_Subt)
4908 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
4909 then
4910 Discard :=
4911 Add_Extra_Formal
4912 (E, Standard_Natural,
4913 E, BIP_Formal_Suffix (BIP_Alloc_Form));
4914 end if;
4916 -- In the case of functions whose result type has controlled
4917 -- parts, we have an extra formal of type
4918 -- System.Finalization_Implementation.Finalizable_Ptr_Ptr. That
4919 -- is, we are passing a pointer to a finalization list (which is
4920 -- itself a pointer). This extra formal is then passed along to
4921 -- Move_Final_List in case of successful completion of a return
4922 -- statement. We cannot pass an 'in out' parameter, because we
4923 -- need to update the finalization list during an abort-deferred
4924 -- region, rather than using copy-back after the function
4925 -- returns. This is true even if we are able to get away with
4926 -- having 'in out' parameters, which are normally illegal for
4927 -- functions. This formal is also needed when the function has
4928 -- a tagged result, because generally such functions can be called
4929 -- in a dispatching context and such calls must be handled like
4930 -- calls to class-wide functions.
4932 if Controlled_Type (Result_Subt)
4933 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
4934 then
4935 Discard :=
4936 Add_Extra_Formal
4937 (E, RTE (RE_Finalizable_Ptr_Ptr),
4938 E, BIP_Formal_Suffix (BIP_Final_List));
4939 end if;
4941 -- If the result type contains tasks, we have two extra formals:
4942 -- the master of the tasks to be created, and the caller's
4943 -- activation chain.
4945 if Has_Task (Result_Subt) then
4946 Discard :=
4947 Add_Extra_Formal
4948 (E, RTE (RE_Master_Id),
4949 E, BIP_Formal_Suffix (BIP_Master));
4950 Discard :=
4951 Add_Extra_Formal
4952 (E, RTE (RE_Activation_Chain_Access),
4953 E, BIP_Formal_Suffix (BIP_Activation_Chain));
4954 end if;
4956 -- All build-in-place functions get an extra formal that will be
4957 -- passed the address of the return object within the caller.
4959 declare
4960 Formal_Type : constant Entity_Id :=
4961 Create_Itype
4962 (E_Anonymous_Access_Type, E,
4963 Scope_Id => Scope (E));
4964 begin
4965 Set_Directly_Designated_Type (Formal_Type, Result_Subt);
4966 Set_Etype (Formal_Type, Formal_Type);
4967 Init_Size_Align (Formal_Type);
4968 Set_Depends_On_Private
4969 (Formal_Type, Has_Private_Component (Formal_Type));
4970 Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
4971 Set_Is_Access_Constant (Formal_Type, False);
4973 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
4974 -- the designated type comes from the limited view (for
4975 -- back-end purposes).
4977 Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));
4979 Layout_Type (Formal_Type);
4981 Discard :=
4982 Add_Extra_Formal
4983 (E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
4984 end;
4985 end;
4986 end if;
4987 end Create_Extra_Formals;
4989 -----------------------------
4990 -- Enter_Overloaded_Entity --
4991 -----------------------------
4993 procedure Enter_Overloaded_Entity (S : Entity_Id) is
4994 E : Entity_Id := Current_Entity_In_Scope (S);
4995 C_E : Entity_Id := Current_Entity (S);
4997 begin
4998 if Present (E) then
4999 Set_Has_Homonym (E);
5000 Set_Has_Homonym (S);
5001 end if;
5003 Set_Is_Immediately_Visible (S);
5004 Set_Scope (S, Current_Scope);
5006 -- Chain new entity if front of homonym in current scope, so that
5007 -- homonyms are contiguous.
5009 if Present (E)
5010 and then E /= C_E
5011 then
5012 while Homonym (C_E) /= E loop
5013 C_E := Homonym (C_E);
5014 end loop;
5016 Set_Homonym (C_E, S);
5018 else
5019 E := C_E;
5020 Set_Current_Entity (S);
5021 end if;
5023 Set_Homonym (S, E);
5025 Append_Entity (S, Current_Scope);
5026 Set_Public_Status (S);
5028 if Debug_Flag_E then
5029 Write_Str ("New overloaded entity chain: ");
5030 Write_Name (Chars (S));
5032 E := S;
5033 while Present (E) loop
5034 Write_Str (" "); Write_Int (Int (E));
5035 E := Homonym (E);
5036 end loop;
5038 Write_Eol;
5039 end if;
5041 -- Generate warning for hiding
5043 if Warn_On_Hiding
5044 and then Comes_From_Source (S)
5045 and then In_Extended_Main_Source_Unit (S)
5046 then
5047 E := S;
5048 loop
5049 E := Homonym (E);
5050 exit when No (E);
5052 -- Warn unless genuine overloading
5054 if (not Is_Overloadable (E) or else Subtype_Conformant (E, S))
5055 and then (Is_Immediately_Visible (E)
5056 or else
5057 Is_Potentially_Use_Visible (S))
5058 then
5059 Error_Msg_Sloc := Sloc (E);
5060 Error_Msg_N ("declaration of & hides one#?", S);
5061 end if;
5062 end loop;
5063 end if;
5064 end Enter_Overloaded_Entity;
5066 -----------------------------
5067 -- Find_Corresponding_Spec --
5068 -----------------------------
5070 function Find_Corresponding_Spec (N : Node_Id) return Entity_Id is
5071 Spec : constant Node_Id := Specification (N);
5072 Designator : constant Entity_Id := Defining_Entity (Spec);
5074 E : Entity_Id;
5076 begin
5077 E := Current_Entity (Designator);
5078 while Present (E) loop
5080 -- We are looking for a matching spec. It must have the same scope,
5081 -- and the same name, and either be type conformant, or be the case
5082 -- of a library procedure spec and its body (which belong to one
5083 -- another regardless of whether they are type conformant or not).
5085 if Scope (E) = Current_Scope then
5086 if Current_Scope = Standard_Standard
5087 or else (Ekind (E) = Ekind (Designator)
5088 and then Type_Conformant (E, Designator))
5089 then
5090 -- Within an instantiation, we know that spec and body are
5091 -- subtype conformant, because they were subtype conformant
5092 -- in the generic. We choose the subtype-conformant entity
5093 -- here as well, to resolve spurious ambiguities in the
5094 -- instance that were not present in the generic (i.e. when
5095 -- two different types are given the same actual). If we are
5096 -- looking for a spec to match a body, full conformance is
5097 -- expected.
5099 if In_Instance then
5100 Set_Convention (Designator, Convention (E));
5102 if Nkind (N) = N_Subprogram_Body
5103 and then Present (Homonym (E))
5104 and then not Fully_Conformant (E, Designator)
5105 then
5106 goto Next_Entity;
5108 elsif not Subtype_Conformant (E, Designator) then
5109 goto Next_Entity;
5110 end if;
5111 end if;
5113 if not Has_Completion (E) then
5115 if Nkind (N) /= N_Subprogram_Body_Stub then
5116 Set_Corresponding_Spec (N, E);
5117 end if;
5119 Set_Has_Completion (E);
5120 return E;
5122 elsif Nkind (Parent (N)) = N_Subunit then
5124 -- If this is the proper body of a subunit, the completion
5125 -- flag is set when analyzing the stub.
5127 return E;
5129 -- If E is an internal function with a controlling result
5130 -- that was created for an operation inherited by a null
5131 -- extension, it may be overridden by a body without a previous
5132 -- spec (one more reason why these should be shunned). In that
5133 -- case remove the generated body, because the current one is
5134 -- the explicit overriding.
5136 elsif Ekind (E) = E_Function
5137 and then Ada_Version >= Ada_05
5138 and then not Comes_From_Source (E)
5139 and then Has_Controlling_Result (E)
5140 and then Is_Null_Extension (Etype (E))
5141 and then Comes_From_Source (Spec)
5142 then
5143 Set_Has_Completion (E, False);
5145 if Expander_Active then
5146 Remove
5147 (Unit_Declaration_Node
5148 (Corresponding_Body (Unit_Declaration_Node (E))));
5149 return E;
5151 -- If expansion is disabled, the wrapper function has not
5152 -- been generated, and this is the standard case of a late
5153 -- body overriding an inherited operation.
5155 else
5156 return Empty;
5157 end if;
5159 -- If body already exists, this is an error unless the
5160 -- previous declaration is the implicit declaration of
5161 -- a derived subprogram, or this is a spurious overloading
5162 -- in an instance.
5164 elsif No (Alias (E))
5165 and then not Is_Intrinsic_Subprogram (E)
5166 and then not In_Instance
5167 then
5168 Error_Msg_Sloc := Sloc (E);
5169 if Is_Imported (E) then
5170 Error_Msg_NE
5171 ("body not allowed for imported subprogram & declared#",
5172 N, E);
5173 else
5174 Error_Msg_NE ("duplicate body for & declared#", N, E);
5175 end if;
5176 end if;
5178 elsif Is_Child_Unit (E)
5179 and then
5180 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
5181 and then
5182 Nkind (Parent (Unit_Declaration_Node (Designator))) =
5183 N_Compilation_Unit
5184 then
5185 -- Child units cannot be overloaded, so a conformance mismatch
5186 -- between body and a previous spec is an error.
5188 Error_Msg_N
5189 ("body of child unit does not match previous declaration", N);
5190 end if;
5191 end if;
5193 <<Next_Entity>>
5194 E := Homonym (E);
5195 end loop;
5197 -- On exit, we know that no previous declaration of subprogram exists
5199 return Empty;
5200 end Find_Corresponding_Spec;
5202 ----------------------
5203 -- Fully_Conformant --
5204 ----------------------
5206 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
5207 Result : Boolean;
5208 begin
5209 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
5210 return Result;
5211 end Fully_Conformant;
5213 ----------------------------------
5214 -- Fully_Conformant_Expressions --
5215 ----------------------------------
5217 function Fully_Conformant_Expressions
5218 (Given_E1 : Node_Id;
5219 Given_E2 : Node_Id) return Boolean
5221 E1 : constant Node_Id := Original_Node (Given_E1);
5222 E2 : constant Node_Id := Original_Node (Given_E2);
5223 -- We always test conformance on original nodes, since it is possible
5224 -- for analysis and/or expansion to make things look as though they
5225 -- conform when they do not, e.g. by converting 1+2 into 3.
5227 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
5228 renames Fully_Conformant_Expressions;
5230 function FCL (L1, L2 : List_Id) return Boolean;
5231 -- Compare elements of two lists for conformance. Elements have to
5232 -- be conformant, and actuals inserted as default parameters do not
5233 -- match explicit actuals with the same value.
5235 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
5236 -- Compare an operator node with a function call
5238 ---------
5239 -- FCL --
5240 ---------
5242 function FCL (L1, L2 : List_Id) return Boolean is
5243 N1, N2 : Node_Id;
5245 begin
5246 if L1 = No_List then
5247 N1 := Empty;
5248 else
5249 N1 := First (L1);
5250 end if;
5252 if L2 = No_List then
5253 N2 := Empty;
5254 else
5255 N2 := First (L2);
5256 end if;
5258 -- Compare two lists, skipping rewrite insertions (we want to
5259 -- compare the original trees, not the expanded versions!)
5261 loop
5262 if Is_Rewrite_Insertion (N1) then
5263 Next (N1);
5264 elsif Is_Rewrite_Insertion (N2) then
5265 Next (N2);
5266 elsif No (N1) then
5267 return No (N2);
5268 elsif No (N2) then
5269 return False;
5270 elsif not FCE (N1, N2) then
5271 return False;
5272 else
5273 Next (N1);
5274 Next (N2);
5275 end if;
5276 end loop;
5277 end FCL;
5279 ---------
5280 -- FCO --
5281 ---------
5283 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
5284 Actuals : constant List_Id := Parameter_Associations (Call_Node);
5285 Act : Node_Id;
5287 begin
5288 if No (Actuals)
5289 or else Entity (Op_Node) /= Entity (Name (Call_Node))
5290 then
5291 return False;
5293 else
5294 Act := First (Actuals);
5296 if Nkind (Op_Node) in N_Binary_Op then
5298 if not FCE (Left_Opnd (Op_Node), Act) then
5299 return False;
5300 end if;
5302 Next (Act);
5303 end if;
5305 return Present (Act)
5306 and then FCE (Right_Opnd (Op_Node), Act)
5307 and then No (Next (Act));
5308 end if;
5309 end FCO;
5311 -- Start of processing for Fully_Conformant_Expressions
5313 begin
5314 -- Non-conformant if paren count does not match. Note: if some idiot
5315 -- complains that we don't do this right for more than 3 levels of
5316 -- parentheses, they will be treated with the respect they deserve!
5318 if Paren_Count (E1) /= Paren_Count (E2) then
5319 return False;
5321 -- If same entities are referenced, then they are conformant even if
5322 -- they have different forms (RM 8.3.1(19-20)).
5324 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
5325 if Present (Entity (E1)) then
5326 return Entity (E1) = Entity (E2)
5327 or else (Chars (Entity (E1)) = Chars (Entity (E2))
5328 and then Ekind (Entity (E1)) = E_Discriminant
5329 and then Ekind (Entity (E2)) = E_In_Parameter);
5331 elsif Nkind (E1) = N_Expanded_Name
5332 and then Nkind (E2) = N_Expanded_Name
5333 and then Nkind (Selector_Name (E1)) = N_Character_Literal
5334 and then Nkind (Selector_Name (E2)) = N_Character_Literal
5335 then
5336 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
5338 else
5339 -- Identifiers in component associations don't always have
5340 -- entities, but their names must conform.
5342 return Nkind (E1) = N_Identifier
5343 and then Nkind (E2) = N_Identifier
5344 and then Chars (E1) = Chars (E2);
5345 end if;
5347 elsif Nkind (E1) = N_Character_Literal
5348 and then Nkind (E2) = N_Expanded_Name
5349 then
5350 return Nkind (Selector_Name (E2)) = N_Character_Literal
5351 and then Chars (E1) = Chars (Selector_Name (E2));
5353 elsif Nkind (E2) = N_Character_Literal
5354 and then Nkind (E1) = N_Expanded_Name
5355 then
5356 return Nkind (Selector_Name (E1)) = N_Character_Literal
5357 and then Chars (E2) = Chars (Selector_Name (E1));
5359 elsif Nkind (E1) in N_Op
5360 and then Nkind (E2) = N_Function_Call
5361 then
5362 return FCO (E1, E2);
5364 elsif Nkind (E2) in N_Op
5365 and then Nkind (E1) = N_Function_Call
5366 then
5367 return FCO (E2, E1);
5369 -- Otherwise we must have the same syntactic entity
5371 elsif Nkind (E1) /= Nkind (E2) then
5372 return False;
5374 -- At this point, we specialize by node type
5376 else
5377 case Nkind (E1) is
5379 when N_Aggregate =>
5380 return
5381 FCL (Expressions (E1), Expressions (E2))
5382 and then FCL (Component_Associations (E1),
5383 Component_Associations (E2));
5385 when N_Allocator =>
5386 if Nkind (Expression (E1)) = N_Qualified_Expression
5387 or else
5388 Nkind (Expression (E2)) = N_Qualified_Expression
5389 then
5390 return FCE (Expression (E1), Expression (E2));
5392 -- Check that the subtype marks and any constraints
5393 -- are conformant
5395 else
5396 declare
5397 Indic1 : constant Node_Id := Expression (E1);
5398 Indic2 : constant Node_Id := Expression (E2);
5399 Elt1 : Node_Id;
5400 Elt2 : Node_Id;
5402 begin
5403 if Nkind (Indic1) /= N_Subtype_Indication then
5404 return
5405 Nkind (Indic2) /= N_Subtype_Indication
5406 and then Entity (Indic1) = Entity (Indic2);
5408 elsif Nkind (Indic2) /= N_Subtype_Indication then
5409 return
5410 Nkind (Indic1) /= N_Subtype_Indication
5411 and then Entity (Indic1) = Entity (Indic2);
5413 else
5414 if Entity (Subtype_Mark (Indic1)) /=
5415 Entity (Subtype_Mark (Indic2))
5416 then
5417 return False;
5418 end if;
5420 Elt1 := First (Constraints (Constraint (Indic1)));
5421 Elt2 := First (Constraints (Constraint (Indic2)));
5423 while Present (Elt1) and then Present (Elt2) loop
5424 if not FCE (Elt1, Elt2) then
5425 return False;
5426 end if;
5428 Next (Elt1);
5429 Next (Elt2);
5430 end loop;
5432 return True;
5433 end if;
5434 end;
5435 end if;
5437 when N_Attribute_Reference =>
5438 return
5439 Attribute_Name (E1) = Attribute_Name (E2)
5440 and then FCL (Expressions (E1), Expressions (E2));
5442 when N_Binary_Op =>
5443 return
5444 Entity (E1) = Entity (E2)
5445 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
5446 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
5448 when N_And_Then | N_Or_Else | N_Membership_Test =>
5449 return
5450 FCE (Left_Opnd (E1), Left_Opnd (E2))
5451 and then
5452 FCE (Right_Opnd (E1), Right_Opnd (E2));
5454 when N_Character_Literal =>
5455 return
5456 Char_Literal_Value (E1) = Char_Literal_Value (E2);
5458 when N_Component_Association =>
5459 return
5460 FCL (Choices (E1), Choices (E2))
5461 and then FCE (Expression (E1), Expression (E2));
5463 when N_Conditional_Expression =>
5464 return
5465 FCL (Expressions (E1), Expressions (E2));
5467 when N_Explicit_Dereference =>
5468 return
5469 FCE (Prefix (E1), Prefix (E2));
5471 when N_Extension_Aggregate =>
5472 return
5473 FCL (Expressions (E1), Expressions (E2))
5474 and then Null_Record_Present (E1) =
5475 Null_Record_Present (E2)
5476 and then FCL (Component_Associations (E1),
5477 Component_Associations (E2));
5479 when N_Function_Call =>
5480 return
5481 FCE (Name (E1), Name (E2))
5482 and then FCL (Parameter_Associations (E1),
5483 Parameter_Associations (E2));
5485 when N_Indexed_Component =>
5486 return
5487 FCE (Prefix (E1), Prefix (E2))
5488 and then FCL (Expressions (E1), Expressions (E2));
5490 when N_Integer_Literal =>
5491 return (Intval (E1) = Intval (E2));
5493 when N_Null =>
5494 return True;
5496 when N_Operator_Symbol =>
5497 return
5498 Chars (E1) = Chars (E2);
5500 when N_Others_Choice =>
5501 return True;
5503 when N_Parameter_Association =>
5504 return
5505 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
5506 and then FCE (Explicit_Actual_Parameter (E1),
5507 Explicit_Actual_Parameter (E2));
5509 when N_Qualified_Expression =>
5510 return
5511 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
5512 and then FCE (Expression (E1), Expression (E2));
5514 when N_Range =>
5515 return
5516 FCE (Low_Bound (E1), Low_Bound (E2))
5517 and then FCE (High_Bound (E1), High_Bound (E2));
5519 when N_Real_Literal =>
5520 return (Realval (E1) = Realval (E2));
5522 when N_Selected_Component =>
5523 return
5524 FCE (Prefix (E1), Prefix (E2))
5525 and then FCE (Selector_Name (E1), Selector_Name (E2));
5527 when N_Slice =>
5528 return
5529 FCE (Prefix (E1), Prefix (E2))
5530 and then FCE (Discrete_Range (E1), Discrete_Range (E2));
5532 when N_String_Literal =>
5533 declare
5534 S1 : constant String_Id := Strval (E1);
5535 S2 : constant String_Id := Strval (E2);
5536 L1 : constant Nat := String_Length (S1);
5537 L2 : constant Nat := String_Length (S2);
5539 begin
5540 if L1 /= L2 then
5541 return False;
5543 else
5544 for J in 1 .. L1 loop
5545 if Get_String_Char (S1, J) /=
5546 Get_String_Char (S2, J)
5547 then
5548 return False;
5549 end if;
5550 end loop;
5552 return True;
5553 end if;
5554 end;
5556 when N_Type_Conversion =>
5557 return
5558 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
5559 and then FCE (Expression (E1), Expression (E2));
5561 when N_Unary_Op =>
5562 return
5563 Entity (E1) = Entity (E2)
5564 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
5566 when N_Unchecked_Type_Conversion =>
5567 return
5568 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
5569 and then FCE (Expression (E1), Expression (E2));
5571 -- All other node types cannot appear in this context. Strictly
5572 -- we should raise a fatal internal error. Instead we just ignore
5573 -- the nodes. This means that if anyone makes a mistake in the
5574 -- expander and mucks an expression tree irretrievably, the
5575 -- result will be a failure to detect a (probably very obscure)
5576 -- case of non-conformance, which is better than bombing on some
5577 -- case where two expressions do in fact conform.
5579 when others =>
5580 return True;
5582 end case;
5583 end if;
5584 end Fully_Conformant_Expressions;
5586 ----------------------------------------
5587 -- Fully_Conformant_Discrete_Subtypes --
5588 ----------------------------------------
5590 function Fully_Conformant_Discrete_Subtypes
5591 (Given_S1 : Node_Id;
5592 Given_S2 : Node_Id) return Boolean
5594 S1 : constant Node_Id := Original_Node (Given_S1);
5595 S2 : constant Node_Id := Original_Node (Given_S2);
5597 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
5598 -- Special-case for a bound given by a discriminant, which in the body
5599 -- is replaced with the discriminal of the enclosing type.
5601 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
5602 -- Check both bounds
5604 -----------------------
5605 -- Conforming_Bounds --
5606 -----------------------
5608 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
5609 begin
5610 if Is_Entity_Name (B1)
5611 and then Is_Entity_Name (B2)
5612 and then Ekind (Entity (B1)) = E_Discriminant
5613 then
5614 return Chars (B1) = Chars (B2);
5616 else
5617 return Fully_Conformant_Expressions (B1, B2);
5618 end if;
5619 end Conforming_Bounds;
5621 -----------------------
5622 -- Conforming_Ranges --
5623 -----------------------
5625 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
5626 begin
5627 return
5628 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
5629 and then
5630 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
5631 end Conforming_Ranges;
5633 -- Start of processing for Fully_Conformant_Discrete_Subtypes
5635 begin
5636 if Nkind (S1) /= Nkind (S2) then
5637 return False;
5639 elsif Is_Entity_Name (S1) then
5640 return Entity (S1) = Entity (S2);
5642 elsif Nkind (S1) = N_Range then
5643 return Conforming_Ranges (S1, S2);
5645 elsif Nkind (S1) = N_Subtype_Indication then
5646 return
5647 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
5648 and then
5649 Conforming_Ranges
5650 (Range_Expression (Constraint (S1)),
5651 Range_Expression (Constraint (S2)));
5652 else
5653 return True;
5654 end if;
5655 end Fully_Conformant_Discrete_Subtypes;
5657 --------------------
5658 -- Install_Entity --
5659 --------------------
5661 procedure Install_Entity (E : Entity_Id) is
5662 Prev : constant Entity_Id := Current_Entity (E);
5663 begin
5664 Set_Is_Immediately_Visible (E);
5665 Set_Current_Entity (E);
5666 Set_Homonym (E, Prev);
5667 end Install_Entity;
5669 ---------------------
5670 -- Install_Formals --
5671 ---------------------
5673 procedure Install_Formals (Id : Entity_Id) is
5674 F : Entity_Id;
5675 begin
5676 F := First_Formal (Id);
5677 while Present (F) loop
5678 Install_Entity (F);
5679 Next_Formal (F);
5680 end loop;
5681 end Install_Formals;
5683 ---------------------------------
5684 -- Is_Non_Overriding_Operation --
5685 ---------------------------------
5687 function Is_Non_Overriding_Operation
5688 (Prev_E : Entity_Id;
5689 New_E : Entity_Id) return Boolean
5691 Formal : Entity_Id;
5692 F_Typ : Entity_Id;
5693 G_Typ : Entity_Id := Empty;
5695 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
5696 -- If F_Type is a derived type associated with a generic actual subtype,
5697 -- then return its Generic_Parent_Type attribute, else return Empty.
5699 function Types_Correspond
5700 (P_Type : Entity_Id;
5701 N_Type : Entity_Id) return Boolean;
5702 -- Returns true if and only if the types (or designated types in the
5703 -- case of anonymous access types) are the same or N_Type is derived
5704 -- directly or indirectly from P_Type.
5706 -----------------------------
5707 -- Get_Generic_Parent_Type --
5708 -----------------------------
5710 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
5711 G_Typ : Entity_Id;
5712 Indic : Node_Id;
5714 begin
5715 if Is_Derived_Type (F_Typ)
5716 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
5717 then
5718 -- The tree must be traversed to determine the parent subtype in
5719 -- the generic unit, which unfortunately isn't always available
5720 -- via semantic attributes. ??? (Note: The use of Original_Node
5721 -- is needed for cases where a full derived type has been
5722 -- rewritten.)
5724 Indic := Subtype_Indication
5725 (Type_Definition (Original_Node (Parent (F_Typ))));
5727 if Nkind (Indic) = N_Subtype_Indication then
5728 G_Typ := Entity (Subtype_Mark (Indic));
5729 else
5730 G_Typ := Entity (Indic);
5731 end if;
5733 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
5734 and then Present (Generic_Parent_Type (Parent (G_Typ)))
5735 then
5736 return Generic_Parent_Type (Parent (G_Typ));
5737 end if;
5738 end if;
5740 return Empty;
5741 end Get_Generic_Parent_Type;
5743 ----------------------
5744 -- Types_Correspond --
5745 ----------------------
5747 function Types_Correspond
5748 (P_Type : Entity_Id;
5749 N_Type : Entity_Id) return Boolean
5751 Prev_Type : Entity_Id := Base_Type (P_Type);
5752 New_Type : Entity_Id := Base_Type (N_Type);
5754 begin
5755 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
5756 Prev_Type := Designated_Type (Prev_Type);
5757 end if;
5759 if Ekind (New_Type) = E_Anonymous_Access_Type then
5760 New_Type := Designated_Type (New_Type);
5761 end if;
5763 if Prev_Type = New_Type then
5764 return True;
5766 elsif not Is_Class_Wide_Type (New_Type) then
5767 while Etype (New_Type) /= New_Type loop
5768 New_Type := Etype (New_Type);
5769 if New_Type = Prev_Type then
5770 return True;
5771 end if;
5772 end loop;
5773 end if;
5774 return False;
5775 end Types_Correspond;
5777 -- Start of processing for Is_Non_Overriding_Operation
5779 begin
5780 -- In the case where both operations are implicit derived subprograms
5781 -- then neither overrides the other. This can only occur in certain
5782 -- obscure cases (e.g., derivation from homographs created in a generic
5783 -- instantiation).
5785 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
5786 return True;
5788 elsif Ekind (Current_Scope) = E_Package
5789 and then Is_Generic_Instance (Current_Scope)
5790 and then In_Private_Part (Current_Scope)
5791 and then Comes_From_Source (New_E)
5792 then
5793 -- We examine the formals and result subtype of the inherited
5794 -- operation, to determine whether their type is derived from (the
5795 -- instance of) a generic type.
5797 Formal := First_Formal (Prev_E);
5799 while Present (Formal) loop
5800 F_Typ := Base_Type (Etype (Formal));
5802 if Ekind (F_Typ) = E_Anonymous_Access_Type then
5803 F_Typ := Designated_Type (F_Typ);
5804 end if;
5806 G_Typ := Get_Generic_Parent_Type (F_Typ);
5808 Next_Formal (Formal);
5809 end loop;
5811 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
5812 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
5813 end if;
5815 if No (G_Typ) then
5816 return False;
5817 end if;
5819 -- If the generic type is a private type, then the original
5820 -- operation was not overriding in the generic, because there was
5821 -- no primitive operation to override.
5823 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
5824 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
5825 N_Formal_Private_Type_Definition
5826 then
5827 return True;
5829 -- The generic parent type is the ancestor of a formal derived
5830 -- type declaration. We need to check whether it has a primitive
5831 -- operation that should be overridden by New_E in the generic.
5833 else
5834 declare
5835 P_Formal : Entity_Id;
5836 N_Formal : Entity_Id;
5837 P_Typ : Entity_Id;
5838 N_Typ : Entity_Id;
5839 P_Prim : Entity_Id;
5840 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
5842 begin
5843 while Present (Prim_Elt) loop
5844 P_Prim := Node (Prim_Elt);
5846 if Chars (P_Prim) = Chars (New_E)
5847 and then Ekind (P_Prim) = Ekind (New_E)
5848 then
5849 P_Formal := First_Formal (P_Prim);
5850 N_Formal := First_Formal (New_E);
5851 while Present (P_Formal) and then Present (N_Formal) loop
5852 P_Typ := Etype (P_Formal);
5853 N_Typ := Etype (N_Formal);
5855 if not Types_Correspond (P_Typ, N_Typ) then
5856 exit;
5857 end if;
5859 Next_Entity (P_Formal);
5860 Next_Entity (N_Formal);
5861 end loop;
5863 -- Found a matching primitive operation belonging to the
5864 -- formal ancestor type, so the new subprogram is
5865 -- overriding.
5867 if No (P_Formal)
5868 and then No (N_Formal)
5869 and then (Ekind (New_E) /= E_Function
5870 or else
5871 Types_Correspond
5872 (Etype (P_Prim), Etype (New_E)))
5873 then
5874 return False;
5875 end if;
5876 end if;
5878 Next_Elmt (Prim_Elt);
5879 end loop;
5881 -- If no match found, then the new subprogram does not
5882 -- override in the generic (nor in the instance).
5884 return True;
5885 end;
5886 end if;
5887 else
5888 return False;
5889 end if;
5890 end Is_Non_Overriding_Operation;
5892 ------------------------------
5893 -- Make_Inequality_Operator --
5894 ------------------------------
5896 -- S is the defining identifier of an equality operator. We build a
5897 -- subprogram declaration with the right signature. This operation is
5898 -- intrinsic, because it is always expanded as the negation of the
5899 -- call to the equality function.
5901 procedure Make_Inequality_Operator (S : Entity_Id) is
5902 Loc : constant Source_Ptr := Sloc (S);
5903 Decl : Node_Id;
5904 Formals : List_Id;
5905 Op_Name : Entity_Id;
5907 FF : constant Entity_Id := First_Formal (S);
5908 NF : constant Entity_Id := Next_Formal (FF);
5910 begin
5911 -- Check that equality was properly defined, ignore call if not
5913 if No (NF) then
5914 return;
5915 end if;
5917 declare
5918 A : constant Entity_Id :=
5919 Make_Defining_Identifier (Sloc (FF),
5920 Chars => Chars (FF));
5922 B : constant Entity_Id :=
5923 Make_Defining_Identifier (Sloc (NF),
5924 Chars => Chars (NF));
5926 begin
5927 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
5929 Formals := New_List (
5930 Make_Parameter_Specification (Loc,
5931 Defining_Identifier => A,
5932 Parameter_Type =>
5933 New_Reference_To (Etype (First_Formal (S)),
5934 Sloc (Etype (First_Formal (S))))),
5936 Make_Parameter_Specification (Loc,
5937 Defining_Identifier => B,
5938 Parameter_Type =>
5939 New_Reference_To (Etype (Next_Formal (First_Formal (S))),
5940 Sloc (Etype (Next_Formal (First_Formal (S)))))));
5942 Decl :=
5943 Make_Subprogram_Declaration (Loc,
5944 Specification =>
5945 Make_Function_Specification (Loc,
5946 Defining_Unit_Name => Op_Name,
5947 Parameter_Specifications => Formals,
5948 Result_Definition =>
5949 New_Reference_To (Standard_Boolean, Loc)));
5951 -- Insert inequality right after equality if it is explicit or after
5952 -- the derived type when implicit. These entities are created only
5953 -- for visibility purposes, and eventually replaced in the course of
5954 -- expansion, so they do not need to be attached to the tree and seen
5955 -- by the back-end. Keeping them internal also avoids spurious
5956 -- freezing problems. The declaration is inserted in the tree for
5957 -- analysis, and removed afterwards. If the equality operator comes
5958 -- from an explicit declaration, attach the inequality immediately
5959 -- after. Else the equality is inherited from a derived type
5960 -- declaration, so insert inequality after that declaration.
5962 if No (Alias (S)) then
5963 Insert_After (Unit_Declaration_Node (S), Decl);
5964 elsif Is_List_Member (Parent (S)) then
5965 Insert_After (Parent (S), Decl);
5966 else
5967 Insert_After (Parent (Etype (First_Formal (S))), Decl);
5968 end if;
5970 Mark_Rewrite_Insertion (Decl);
5971 Set_Is_Intrinsic_Subprogram (Op_Name);
5972 Analyze (Decl);
5973 Remove (Decl);
5974 Set_Has_Completion (Op_Name);
5975 Set_Corresponding_Equality (Op_Name, S);
5976 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
5977 end;
5978 end Make_Inequality_Operator;
5980 ----------------------
5981 -- May_Need_Actuals --
5982 ----------------------
5984 procedure May_Need_Actuals (Fun : Entity_Id) is
5985 F : Entity_Id;
5986 B : Boolean;
5988 begin
5989 F := First_Formal (Fun);
5990 B := True;
5991 while Present (F) loop
5992 if No (Default_Value (F)) then
5993 B := False;
5994 exit;
5995 end if;
5997 Next_Formal (F);
5998 end loop;
6000 Set_Needs_No_Actuals (Fun, B);
6001 end May_Need_Actuals;
6003 ---------------------
6004 -- Mode_Conformant --
6005 ---------------------
6007 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
6008 Result : Boolean;
6009 begin
6010 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
6011 return Result;
6012 end Mode_Conformant;
6014 ---------------------------
6015 -- New_Overloaded_Entity --
6016 ---------------------------
6018 procedure New_Overloaded_Entity
6019 (S : Entity_Id;
6020 Derived_Type : Entity_Id := Empty)
6022 Overridden_Subp : Entity_Id := Empty;
6023 -- Set if the current scope has an operation that is type-conformant
6024 -- with S, and becomes hidden by S.
6026 Is_Primitive_Subp : Boolean;
6027 -- Set to True if the new subprogram is primitive
6029 E : Entity_Id;
6030 -- Entity that S overrides
6032 Prev_Vis : Entity_Id := Empty;
6033 -- Predecessor of E in Homonym chain
6035 procedure Check_For_Primitive_Subprogram
6036 (Is_Primitive : out Boolean;
6037 Is_Overriding : Boolean := False);
6038 -- If the subprogram being analyzed is a primitive operation of the type
6039 -- of a formal or result, set the Has_Primitive_Operations flag on the
6040 -- type, and set Is_Primitive to True (otherwise set to False). Set the
6041 -- corresponding flag on the entity itself for later use.
6043 procedure Check_Synchronized_Overriding
6044 (Def_Id : Entity_Id;
6045 First_Hom : Entity_Id;
6046 Overridden_Subp : out Entity_Id);
6047 -- First determine if Def_Id is an entry or a subprogram either defined
6048 -- in the scope of a task or protected type, or is a primitive of such
6049 -- a type. Check whether Def_Id overrides a subprogram of an interface
6050 -- implemented by the synchronized type, return the overridden entity
6051 -- or Empty.
6053 function Is_Private_Declaration (E : Entity_Id) return Boolean;
6054 -- Check that E is declared in the private part of the current package,
6055 -- or in the package body, where it may hide a previous declaration.
6056 -- We can't use In_Private_Part by itself because this flag is also
6057 -- set when freezing entities, so we must examine the place of the
6058 -- declaration in the tree, and recognize wrapper packages as well.
6060 ------------------------------------
6061 -- Check_For_Primitive_Subprogram --
6062 ------------------------------------
6064 procedure Check_For_Primitive_Subprogram
6065 (Is_Primitive : out Boolean;
6066 Is_Overriding : Boolean := False)
6068 Formal : Entity_Id;
6069 F_Typ : Entity_Id;
6070 B_Typ : Entity_Id;
6072 function Visible_Part_Type (T : Entity_Id) return Boolean;
6073 -- Returns true if T is declared in the visible part of
6074 -- the current package scope; otherwise returns false.
6075 -- Assumes that T is declared in a package.
6077 procedure Check_Private_Overriding (T : Entity_Id);
6078 -- Checks that if a primitive abstract subprogram of a visible
6079 -- abstract type is declared in a private part, then it must
6080 -- override an abstract subprogram declared in the visible part.
6081 -- Also checks that if a primitive function with a controlling
6082 -- result is declared in a private part, then it must override
6083 -- a function declared in the visible part.
6085 ------------------------------
6086 -- Check_Private_Overriding --
6087 ------------------------------
6089 procedure Check_Private_Overriding (T : Entity_Id) is
6090 begin
6091 if Ekind (Current_Scope) = E_Package
6092 and then In_Private_Part (Current_Scope)
6093 and then Visible_Part_Type (T)
6094 and then not In_Instance
6095 then
6096 if Is_Abstract_Type (T)
6097 and then Is_Abstract_Subprogram (S)
6098 and then (not Is_Overriding
6099 or else not Is_Abstract_Subprogram (E))
6100 then
6101 Error_Msg_N ("abstract subprograms must be visible "
6102 & "(RM 3.9.3(10))!", S);
6104 elsif Ekind (S) = E_Function
6105 and then Is_Tagged_Type (T)
6106 and then T = Base_Type (Etype (S))
6107 and then not Is_Overriding
6108 then
6109 Error_Msg_N
6110 ("private function with tagged result must"
6111 & " override visible-part function", S);
6112 Error_Msg_N
6113 ("\move subprogram to the visible part"
6114 & " (RM 3.9.3(10))", S);
6115 end if;
6116 end if;
6117 end Check_Private_Overriding;
6119 -----------------------
6120 -- Visible_Part_Type --
6121 -----------------------
6123 function Visible_Part_Type (T : Entity_Id) return Boolean is
6124 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
6125 N : Node_Id;
6127 begin
6128 -- If the entity is a private type, then it must be
6129 -- declared in a visible part.
6131 if Ekind (T) in Private_Kind then
6132 return True;
6133 end if;
6135 -- Otherwise, we traverse the visible part looking for its
6136 -- corresponding declaration. We cannot use the declaration
6137 -- node directly because in the private part the entity of a
6138 -- private type is the one in the full view, which does not
6139 -- indicate that it is the completion of something visible.
6141 N := First (Visible_Declarations (Specification (P)));
6142 while Present (N) loop
6143 if Nkind (N) = N_Full_Type_Declaration
6144 and then Present (Defining_Identifier (N))
6145 and then T = Defining_Identifier (N)
6146 then
6147 return True;
6149 elsif (Nkind (N) = N_Private_Type_Declaration
6150 or else
6151 Nkind (N) = N_Private_Extension_Declaration)
6152 and then Present (Defining_Identifier (N))
6153 and then T = Full_View (Defining_Identifier (N))
6154 then
6155 return True;
6156 end if;
6158 Next (N);
6159 end loop;
6161 return False;
6162 end Visible_Part_Type;
6164 -- Start of processing for Check_For_Primitive_Subprogram
6166 begin
6167 Is_Primitive := False;
6169 if not Comes_From_Source (S) then
6170 null;
6172 -- If subprogram is at library level, it is not primitive operation
6174 elsif Current_Scope = Standard_Standard then
6175 null;
6177 elsif ((Ekind (Current_Scope) = E_Package
6178 or else Ekind (Current_Scope) = E_Generic_Package)
6179 and then not In_Package_Body (Current_Scope))
6180 or else Is_Overriding
6181 then
6182 -- For function, check return type
6184 if Ekind (S) = E_Function then
6185 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
6186 F_Typ := Designated_Type (Etype (S));
6187 else
6188 F_Typ := Etype (S);
6189 end if;
6191 B_Typ := Base_Type (F_Typ);
6193 if Scope (B_Typ) = Current_Scope
6194 and then not Is_Class_Wide_Type (B_Typ)
6195 and then not Is_Generic_Type (B_Typ)
6196 then
6197 Is_Primitive := True;
6198 Set_Has_Primitive_Operations (B_Typ);
6199 Set_Is_Primitive (S);
6200 Check_Private_Overriding (B_Typ);
6201 end if;
6202 end if;
6204 -- For all subprograms, check formals
6206 Formal := First_Formal (S);
6207 while Present (Formal) loop
6208 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
6209 F_Typ := Designated_Type (Etype (Formal));
6210 else
6211 F_Typ := Etype (Formal);
6212 end if;
6214 B_Typ := Base_Type (F_Typ);
6216 if Ekind (B_Typ) = E_Access_Subtype then
6217 B_Typ := Base_Type (B_Typ);
6218 end if;
6220 if Scope (B_Typ) = Current_Scope
6221 and then not Is_Class_Wide_Type (B_Typ)
6222 and then not Is_Generic_Type (B_Typ)
6223 then
6224 Is_Primitive := True;
6225 Set_Is_Primitive (S);
6226 Set_Has_Primitive_Operations (B_Typ);
6227 Check_Private_Overriding (B_Typ);
6228 end if;
6230 Next_Formal (Formal);
6231 end loop;
6232 end if;
6233 end Check_For_Primitive_Subprogram;
6235 -----------------------------------
6236 -- Check_Synchronized_Overriding --
6237 -----------------------------------
6239 procedure Check_Synchronized_Overriding
6240 (Def_Id : Entity_Id;
6241 First_Hom : Entity_Id;
6242 Overridden_Subp : out Entity_Id)
6244 Formal_Typ : Entity_Id;
6245 Ifaces_List : Elist_Id;
6246 In_Scope : Boolean;
6247 Typ : Entity_Id;
6249 begin
6250 Overridden_Subp := Empty;
6252 -- Def_Id must be an entry or a subprogram
6254 if Ekind (Def_Id) /= E_Entry
6255 and then Ekind (Def_Id) /= E_Function
6256 and then Ekind (Def_Id) /= E_Procedure
6257 then
6258 return;
6259 end if;
6261 -- Search for the concurrent declaration since it contains the list
6262 -- of all implemented interfaces. In this case, the subprogram is
6263 -- declared within the scope of a protected or a task type.
6265 if Present (Scope (Def_Id))
6266 and then Is_Concurrent_Type (Scope (Def_Id))
6267 and then not Is_Generic_Actual_Type (Scope (Def_Id))
6268 then
6269 Typ := Scope (Def_Id);
6270 In_Scope := True;
6272 -- The subprogram may be a primitive of a concurrent type
6274 elsif Present (First_Formal (Def_Id)) then
6275 Formal_Typ := Etype (First_Formal (Def_Id));
6277 if Is_Concurrent_Type (Formal_Typ)
6278 and then not Is_Generic_Actual_Type (Formal_Typ)
6279 then
6280 Typ := Formal_Typ;
6281 In_Scope := False;
6283 -- This case occurs when the concurrent type is declared within
6284 -- a generic unit. As a result the corresponding record has been
6285 -- built and used as the type of the first formal, we just have
6286 -- to retrieve the corresponding concurrent type.
6288 elsif Is_Concurrent_Record_Type (Formal_Typ)
6289 and then Present (Corresponding_Concurrent_Type (Formal_Typ))
6290 then
6291 Typ := Corresponding_Concurrent_Type (Formal_Typ);
6292 In_Scope := False;
6294 else
6295 return;
6296 end if;
6297 else
6298 return;
6299 end if;
6301 -- Gather all limited, protected and task interfaces that Typ
6302 -- implements. There is no overriding to check if is an inherited
6303 -- operation in a type derivation on for a generic actual.
6305 if Nkind (Parent (Typ)) /= N_Full_Type_Declaration
6306 and then Nkind (Parent (Def_Id)) /= N_Subtype_Declaration
6307 and then Nkind (Parent (Def_Id)) /= N_Task_Type_Declaration
6308 and then Nkind (Parent (Def_Id)) /= N_Protected_Type_Declaration
6309 then
6310 Collect_Abstract_Interfaces (Typ, Ifaces_List);
6312 if not Is_Empty_Elmt_List (Ifaces_List) then
6313 Overridden_Subp :=
6314 Find_Overridden_Synchronized_Primitive
6315 (Def_Id, First_Hom, Ifaces_List, In_Scope);
6316 end if;
6317 end if;
6318 end Check_Synchronized_Overriding;
6320 ----------------------------
6321 -- Is_Private_Declaration --
6322 ----------------------------
6324 function Is_Private_Declaration (E : Entity_Id) return Boolean is
6325 Priv_Decls : List_Id;
6326 Decl : constant Node_Id := Unit_Declaration_Node (E);
6328 begin
6329 if Is_Package_Or_Generic_Package (Current_Scope)
6330 and then In_Private_Part (Current_Scope)
6331 then
6332 Priv_Decls :=
6333 Private_Declarations (
6334 Specification (Unit_Declaration_Node (Current_Scope)));
6336 return In_Package_Body (Current_Scope)
6337 or else
6338 (Is_List_Member (Decl)
6339 and then List_Containing (Decl) = Priv_Decls)
6340 or else (Nkind (Parent (Decl)) = N_Package_Specification
6341 and then not Is_Compilation_Unit (
6342 Defining_Entity (Parent (Decl)))
6343 and then List_Containing (Parent (Parent (Decl)))
6344 = Priv_Decls);
6345 else
6346 return False;
6347 end if;
6348 end Is_Private_Declaration;
6350 -- Start of processing for New_Overloaded_Entity
6352 begin
6353 -- We need to look for an entity that S may override. This must be a
6354 -- homonym in the current scope, so we look for the first homonym of
6355 -- S in the current scope as the starting point for the search.
6357 E := Current_Entity_In_Scope (S);
6359 -- If there is no homonym then this is definitely not overriding
6361 if No (E) then
6362 Enter_Overloaded_Entity (S);
6363 Check_Dispatching_Operation (S, Empty);
6364 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
6366 -- If subprogram has an explicit declaration, check whether it
6367 -- has an overriding indicator.
6369 if Comes_From_Source (S) then
6370 Check_Synchronized_Overriding (S, Homonym (S), Overridden_Subp);
6371 Check_Overriding_Indicator
6372 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
6373 end if;
6375 -- If there is a homonym that is not overloadable, then we have an
6376 -- error, except for the special cases checked explicitly below.
6378 elsif not Is_Overloadable (E) then
6380 -- Check for spurious conflict produced by a subprogram that has the
6381 -- same name as that of the enclosing generic package. The conflict
6382 -- occurs within an instance, between the subprogram and the renaming
6383 -- declaration for the package. After the subprogram, the package
6384 -- renaming declaration becomes hidden.
6386 if Ekind (E) = E_Package
6387 and then Present (Renamed_Object (E))
6388 and then Renamed_Object (E) = Current_Scope
6389 and then Nkind (Parent (Renamed_Object (E))) =
6390 N_Package_Specification
6391 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
6392 then
6393 Set_Is_Hidden (E);
6394 Set_Is_Immediately_Visible (E, False);
6395 Enter_Overloaded_Entity (S);
6396 Set_Homonym (S, Homonym (E));
6397 Check_Dispatching_Operation (S, Empty);
6398 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
6400 -- If the subprogram is implicit it is hidden by the previous
6401 -- declaration. However if it is dispatching, it must appear in the
6402 -- dispatch table anyway, because it can be dispatched to even if it
6403 -- cannot be called directly.
6405 elsif Present (Alias (S))
6406 and then not Comes_From_Source (S)
6407 then
6408 Set_Scope (S, Current_Scope);
6410 if Is_Dispatching_Operation (Alias (S)) then
6411 Check_Dispatching_Operation (S, Empty);
6412 end if;
6414 return;
6416 else
6417 Error_Msg_Sloc := Sloc (E);
6419 -- Generate message,with useful additionalwarning if in generic
6421 if Is_Generic_Unit (E) then
6422 Error_Msg_N ("previous generic unit cannot be overloaded", S);
6423 Error_Msg_N ("\& conflicts with declaration#", S);
6424 else
6425 Error_Msg_N ("& conflicts with declaration#", S);
6426 end if;
6428 return;
6429 end if;
6431 -- E exists and is overloadable
6433 else
6434 -- Ada 2005 (AI-251): Derivation of abstract interface primitives
6435 -- need no check against the homonym chain. They are directly added
6436 -- to the list of primitive operations of Derived_Type.
6438 if Ada_Version >= Ada_05
6439 and then Present (Derived_Type)
6440 and then Is_Dispatching_Operation (Alias (S))
6441 and then Present (Find_Dispatching_Type (Alias (S)))
6442 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
6443 and then not Is_Predefined_Dispatching_Operation (Alias (S))
6444 then
6445 goto Add_New_Entity;
6446 end if;
6448 Check_Synchronized_Overriding (S, E, Overridden_Subp);
6450 -- Loop through E and its homonyms to determine if any of them is
6451 -- the candidate for overriding by S.
6453 while Present (E) loop
6455 -- Definitely not interesting if not in the current scope
6457 if Scope (E) /= Current_Scope then
6458 null;
6460 -- Check if we have type conformance
6462 elsif Type_Conformant (E, S) then
6464 -- If the old and new entities have the same profile and one
6465 -- is not the body of the other, then this is an error, unless
6466 -- one of them is implicitly declared.
6468 -- There are some cases when both can be implicit, for example
6469 -- when both a literal and a function that overrides it are
6470 -- inherited in a derivation, or when an inhertited operation
6471 -- of a tagged full type overrides the inherited operation of
6472 -- a private extension. Ada 83 had a special rule for the the
6473 -- literal case. In Ada95, the later implicit operation hides
6474 -- the former, and the literal is always the former. In the
6475 -- odd case where both are derived operations declared at the
6476 -- same point, both operations should be declared, and in that
6477 -- case we bypass the following test and proceed to the next
6478 -- part (this can only occur for certain obscure cases
6479 -- involving homographs in instances and can't occur for
6480 -- dispatching operations ???). Note that the following
6481 -- condition is less than clear. For example, it's not at all
6482 -- clear why there's a test for E_Entry here. ???
6484 if Present (Alias (S))
6485 and then (No (Alias (E))
6486 or else Comes_From_Source (E)
6487 or else Is_Dispatching_Operation (E))
6488 and then
6489 (Ekind (E) = E_Entry
6490 or else Ekind (E) /= E_Enumeration_Literal)
6491 then
6492 -- When an derived operation is overloaded it may be due to
6493 -- the fact that the full view of a private extension
6494 -- re-inherits. It has to be dealt with.
6496 if Is_Package_Or_Generic_Package (Current_Scope)
6497 and then In_Private_Part (Current_Scope)
6498 then
6499 Check_Operation_From_Private_View (S, E);
6500 end if;
6502 -- In any case the implicit operation remains hidden by
6503 -- the existing declaration, which is overriding.
6505 Set_Is_Overriding_Operation (E);
6507 if Comes_From_Source (E) then
6508 Check_Overriding_Indicator (E, S, Is_Primitive => False);
6510 -- Indicate that E overrides the operation from which
6511 -- S is inherited.
6513 if Present (Alias (S)) then
6514 Set_Overridden_Operation (E, Alias (S));
6515 else
6516 Set_Overridden_Operation (E, S);
6517 end if;
6518 end if;
6520 return;
6522 -- Within an instance, the renaming declarations for
6523 -- actual subprograms may become ambiguous, but they do
6524 -- not hide each other.
6526 elsif Ekind (E) /= E_Entry
6527 and then not Comes_From_Source (E)
6528 and then not Is_Generic_Instance (E)
6529 and then (Present (Alias (E))
6530 or else Is_Intrinsic_Subprogram (E))
6531 and then (not In_Instance
6532 or else No (Parent (E))
6533 or else Nkind (Unit_Declaration_Node (E)) /=
6534 N_Subprogram_Renaming_Declaration)
6535 then
6536 -- A subprogram child unit is not allowed to override
6537 -- an inherited subprogram (10.1.1(20)).
6539 if Is_Child_Unit (S) then
6540 Error_Msg_N
6541 ("child unit overrides inherited subprogram in parent",
6543 return;
6544 end if;
6546 if Is_Non_Overriding_Operation (E, S) then
6547 Enter_Overloaded_Entity (S);
6548 if No (Derived_Type)
6549 or else Is_Tagged_Type (Derived_Type)
6550 then
6551 Check_Dispatching_Operation (S, Empty);
6552 end if;
6554 return;
6555 end if;
6557 -- E is a derived operation or an internal operator which
6558 -- is being overridden. Remove E from further visibility.
6559 -- Furthermore, if E is a dispatching operation, it must be
6560 -- replaced in the list of primitive operations of its type
6561 -- (see Override_Dispatching_Operation).
6563 Overridden_Subp := E;
6565 declare
6566 Prev : Entity_Id;
6568 begin
6569 Prev := First_Entity (Current_Scope);
6571 while Present (Prev)
6572 and then Next_Entity (Prev) /= E
6573 loop
6574 Next_Entity (Prev);
6575 end loop;
6577 -- It is possible for E to be in the current scope and
6578 -- yet not in the entity chain. This can only occur in a
6579 -- generic context where E is an implicit concatenation
6580 -- in the formal part, because in a generic body the
6581 -- entity chain starts with the formals.
6583 pragma Assert
6584 (Present (Prev) or else Chars (E) = Name_Op_Concat);
6586 -- E must be removed both from the entity_list of the
6587 -- current scope, and from the visibility chain
6589 if Debug_Flag_E then
6590 Write_Str ("Override implicit operation ");
6591 Write_Int (Int (E));
6592 Write_Eol;
6593 end if;
6595 -- If E is a predefined concatenation, it stands for four
6596 -- different operations. As a result, a single explicit
6597 -- declaration does not hide it. In a possible ambiguous
6598 -- situation, Disambiguate chooses the user-defined op,
6599 -- so it is correct to retain the previous internal one.
6601 if Chars (E) /= Name_Op_Concat
6602 or else Ekind (E) /= E_Operator
6603 then
6604 -- For nondispatching derived operations that are
6605 -- overridden by a subprogram declared in the private
6606 -- part of a package, we retain the derived
6607 -- subprogram but mark it as not immediately visible.
6608 -- If the derived operation was declared in the
6609 -- visible part then this ensures that it will still
6610 -- be visible outside the package with the proper
6611 -- signature (calls from outside must also be
6612 -- directed to this version rather than the
6613 -- overriding one, unlike the dispatching case).
6614 -- Calls from inside the package will still resolve
6615 -- to the overriding subprogram since the derived one
6616 -- is marked as not visible within the package.
6618 -- If the private operation is dispatching, we achieve
6619 -- the overriding by keeping the implicit operation
6620 -- but setting its alias to be the overriding one. In
6621 -- this fashion the proper body is executed in all
6622 -- cases, but the original signature is used outside
6623 -- of the package.
6625 -- If the overriding is not in the private part, we
6626 -- remove the implicit operation altogether.
6628 if Is_Private_Declaration (S) then
6630 if not Is_Dispatching_Operation (E) then
6631 Set_Is_Immediately_Visible (E, False);
6632 else
6633 -- Work done in Override_Dispatching_Operation,
6634 -- so nothing else need to be done here.
6636 null;
6637 end if;
6639 else
6640 -- Find predecessor of E in Homonym chain
6642 if E = Current_Entity (E) then
6643 Prev_Vis := Empty;
6644 else
6645 Prev_Vis := Current_Entity (E);
6646 while Homonym (Prev_Vis) /= E loop
6647 Prev_Vis := Homonym (Prev_Vis);
6648 end loop;
6649 end if;
6651 if Prev_Vis /= Empty then
6653 -- Skip E in the visibility chain
6655 Set_Homonym (Prev_Vis, Homonym (E));
6657 else
6658 Set_Name_Entity_Id (Chars (E), Homonym (E));
6659 end if;
6661 Set_Next_Entity (Prev, Next_Entity (E));
6663 if No (Next_Entity (Prev)) then
6664 Set_Last_Entity (Current_Scope, Prev);
6665 end if;
6667 end if;
6668 end if;
6670 Enter_Overloaded_Entity (S);
6671 Set_Is_Overriding_Operation (S);
6672 Check_Overriding_Indicator (S, E, Is_Primitive => True);
6674 -- Indicate that S overrides the operation from which
6675 -- E is inherited.
6677 if Comes_From_Source (S) then
6678 if Present (Alias (E)) then
6679 Set_Overridden_Operation (S, Alias (E));
6680 else
6681 Set_Overridden_Operation (S, E);
6682 end if;
6683 end if;
6685 if Is_Dispatching_Operation (E) then
6687 -- An overriding dispatching subprogram inherits the
6688 -- convention of the overridden subprogram (by
6689 -- AI-117).
6691 Set_Convention (S, Convention (E));
6692 Check_Dispatching_Operation (S, E);
6694 else
6695 Check_Dispatching_Operation (S, Empty);
6696 end if;
6698 Check_For_Primitive_Subprogram
6699 (Is_Primitive_Subp, Is_Overriding => True);
6700 goto Check_Inequality;
6701 end;
6703 -- Apparent redeclarations in instances can occur when two
6704 -- formal types get the same actual type. The subprograms in
6705 -- in the instance are legal, even if not callable from the
6706 -- outside. Calls from within are disambiguated elsewhere.
6707 -- For dispatching operations in the visible part, the usual
6708 -- rules apply, and operations with the same profile are not
6709 -- legal (B830001).
6711 elsif (In_Instance_Visible_Part
6712 and then not Is_Dispatching_Operation (E))
6713 or else In_Instance_Not_Visible
6714 then
6715 null;
6717 -- Here we have a real error (identical profile)
6719 else
6720 Error_Msg_Sloc := Sloc (E);
6722 -- Avoid cascaded errors if the entity appears in
6723 -- subsequent calls.
6725 Set_Scope (S, Current_Scope);
6727 -- Generate error, with extra useful warning for the case
6728 -- of a generic instance with no completion.
6730 if Is_Generic_Instance (S)
6731 and then not Has_Completion (E)
6732 then
6733 Error_Msg_N
6734 ("instantiation cannot provide body for&", S);
6735 Error_Msg_N ("\& conflicts with declaration#", S);
6736 else
6737 Error_Msg_N ("& conflicts with declaration#", S);
6738 end if;
6740 return;
6741 end if;
6743 else
6744 -- If one subprogram has an access parameter and the other
6745 -- a parameter of an access type, calls to either might be
6746 -- ambiguous. Verify that parameters match except for the
6747 -- access parameter.
6749 if May_Hide_Profile then
6750 declare
6751 F1 : Entity_Id;
6752 F2 : Entity_Id;
6753 begin
6754 F1 := First_Formal (S);
6755 F2 := First_Formal (E);
6756 while Present (F1) and then Present (F2) loop
6757 if Is_Access_Type (Etype (F1)) then
6758 if not Is_Access_Type (Etype (F2))
6759 or else not Conforming_Types
6760 (Designated_Type (Etype (F1)),
6761 Designated_Type (Etype (F2)),
6762 Type_Conformant)
6763 then
6764 May_Hide_Profile := False;
6765 end if;
6767 elsif
6768 not Conforming_Types
6769 (Etype (F1), Etype (F2), Type_Conformant)
6770 then
6771 May_Hide_Profile := False;
6772 end if;
6774 Next_Formal (F1);
6775 Next_Formal (F2);
6776 end loop;
6778 if May_Hide_Profile
6779 and then No (F1)
6780 and then No (F2)
6781 then
6782 Error_Msg_NE ("calls to& may be ambiguous?", S, S);
6783 end if;
6784 end;
6785 end if;
6786 end if;
6788 E := Homonym (E);
6789 end loop;
6791 <<Add_New_Entity>>
6793 -- On exit, we know that S is a new entity
6795 Enter_Overloaded_Entity (S);
6796 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
6797 Check_Overriding_Indicator
6798 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
6800 -- If S is a derived operation for an untagged type then by
6801 -- definition it's not a dispatching operation (even if the parent
6802 -- operation was dispatching), so we don't call
6803 -- Check_Dispatching_Operation in that case.
6805 if No (Derived_Type)
6806 or else Is_Tagged_Type (Derived_Type)
6807 then
6808 Check_Dispatching_Operation (S, Empty);
6809 end if;
6810 end if;
6812 -- If this is a user-defined equality operator that is not a derived
6813 -- subprogram, create the corresponding inequality. If the operation is
6814 -- dispatching, the expansion is done elsewhere, and we do not create
6815 -- an explicit inequality operation.
6817 <<Check_Inequality>>
6818 if Chars (S) = Name_Op_Eq
6819 and then Etype (S) = Standard_Boolean
6820 and then Present (Parent (S))
6821 and then not Is_Dispatching_Operation (S)
6822 then
6823 Make_Inequality_Operator (S);
6824 end if;
6825 end New_Overloaded_Entity;
6827 ---------------------
6828 -- Process_Formals --
6829 ---------------------
6831 procedure Process_Formals
6832 (T : List_Id;
6833 Related_Nod : Node_Id)
6835 Param_Spec : Node_Id;
6836 Formal : Entity_Id;
6837 Formal_Type : Entity_Id;
6838 Default : Node_Id;
6839 Ptype : Entity_Id;
6841 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
6842 -- Check whether the default has a class-wide type. After analysis the
6843 -- default has the type of the formal, so we must also check explicitly
6844 -- for an access attribute.
6846 ---------------------------
6847 -- Is_Class_Wide_Default --
6848 ---------------------------
6850 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
6851 begin
6852 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
6853 or else (Nkind (D) = N_Attribute_Reference
6854 and then Attribute_Name (D) = Name_Access
6855 and then Is_Class_Wide_Type (Etype (Prefix (D))));
6856 end Is_Class_Wide_Default;
6858 -- Start of processing for Process_Formals
6860 begin
6861 -- In order to prevent premature use of the formals in the same formal
6862 -- part, the Ekind is left undefined until all default expressions are
6863 -- analyzed. The Ekind is established in a separate loop at the end.
6865 Param_Spec := First (T);
6866 while Present (Param_Spec) loop
6867 Formal := Defining_Identifier (Param_Spec);
6868 Set_Never_Set_In_Source (Formal, True);
6869 Enter_Name (Formal);
6871 -- Case of ordinary parameters
6873 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
6874 Find_Type (Parameter_Type (Param_Spec));
6875 Ptype := Parameter_Type (Param_Spec);
6877 if Ptype = Error then
6878 goto Continue;
6879 end if;
6881 Formal_Type := Entity (Ptype);
6883 if Is_Incomplete_Type (Formal_Type)
6884 or else
6885 (Is_Class_Wide_Type (Formal_Type)
6886 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
6887 then
6888 -- Ada 2005 (AI-326): Tagged incomplete types allowed
6890 if Is_Tagged_Type (Formal_Type) then
6891 null;
6893 -- Special handling of Value_Type for CIL case
6895 elsif Is_Value_Type (Formal_Type) then
6896 null;
6898 elsif Nkind (Parent (T)) /= N_Access_Function_Definition
6899 and then Nkind (Parent (T)) /= N_Access_Procedure_Definition
6900 then
6901 Error_Msg_N ("invalid use of incomplete type", Param_Spec);
6903 -- An incomplete type that is not tagged is allowed in an
6904 -- access-to-subprogram type only if it is a local declaration
6905 -- with a forthcoming completion (3.10.1 (9.2/2)).
6907 elsif Scope (Formal_Type) /= Scope (Current_Scope) then
6908 Error_Msg_N
6909 ("invalid use of limited view of type", Param_Spec);
6910 end if;
6912 elsif Ekind (Formal_Type) = E_Void then
6913 Error_Msg_NE ("premature use of&",
6914 Parameter_Type (Param_Spec), Formal_Type);
6915 end if;
6917 -- Ada 2005 (AI-231): Create and decorate an internal subtype
6918 -- declaration corresponding to the null-excluding type of the
6919 -- formal in the enclosing scope. Finally, replace the parameter
6920 -- type of the formal with the internal subtype.
6922 if Ada_Version >= Ada_05
6923 and then Null_Exclusion_Present (Param_Spec)
6924 then
6925 if not Is_Access_Type (Formal_Type) then
6926 Error_Msg_N
6927 ("`NOT NULL` allowed only for an access type", Param_Spec);
6929 else
6930 if Can_Never_Be_Null (Formal_Type)
6931 and then Comes_From_Source (Related_Nod)
6932 then
6933 Error_Msg_NE
6934 ("`NOT NULL` not allowed (& already excludes null)",
6935 Param_Spec,
6936 Formal_Type);
6937 end if;
6939 Formal_Type :=
6940 Create_Null_Excluding_Itype
6941 (T => Formal_Type,
6942 Related_Nod => Related_Nod,
6943 Scope_Id => Scope (Current_Scope));
6945 -- If the designated type of the itype is an itype we
6946 -- decorate it with the Has_Delayed_Freeze attribute to
6947 -- avoid problems with the backend.
6949 -- Example:
6950 -- type T is access procedure;
6951 -- procedure Op (O : not null T);
6953 if Is_Itype (Directly_Designated_Type (Formal_Type)) then
6954 Set_Has_Delayed_Freeze (Formal_Type);
6955 end if;
6956 end if;
6957 end if;
6959 -- An access formal type
6961 else
6962 Formal_Type :=
6963 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
6965 -- No need to continue if we already notified errors
6967 if not Present (Formal_Type) then
6968 return;
6969 end if;
6971 -- Ada 2005 (AI-254)
6973 declare
6974 AD : constant Node_Id :=
6975 Access_To_Subprogram_Definition
6976 (Parameter_Type (Param_Spec));
6977 begin
6978 if Present (AD) and then Protected_Present (AD) then
6979 Formal_Type :=
6980 Replace_Anonymous_Access_To_Protected_Subprogram
6981 (Param_Spec);
6982 end if;
6983 end;
6984 end if;
6986 Set_Etype (Formal, Formal_Type);
6987 Default := Expression (Param_Spec);
6989 if Present (Default) then
6990 if Out_Present (Param_Spec) then
6991 Error_Msg_N
6992 ("default initialization only allowed for IN parameters",
6993 Param_Spec);
6994 end if;
6996 -- Do the special preanalysis of the expression (see section on
6997 -- "Handling of Default Expressions" in the spec of package Sem).
6999 Analyze_Per_Use_Expression (Default, Formal_Type);
7001 -- Check that the designated type of an access parameter's default
7002 -- is not a class-wide type unless the parameter's designated type
7003 -- is also class-wide.
7005 if Ekind (Formal_Type) = E_Anonymous_Access_Type
7006 and then not From_With_Type (Formal_Type)
7007 and then Is_Class_Wide_Default (Default)
7008 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
7009 then
7010 Error_Msg_N
7011 ("access to class-wide expression not allowed here", Default);
7012 end if;
7013 end if;
7015 -- Ada 2005 (AI-231): Static checks
7017 if Ada_Version >= Ada_05
7018 and then Is_Access_Type (Etype (Formal))
7019 and then Can_Never_Be_Null (Etype (Formal))
7020 then
7021 Null_Exclusion_Static_Checks (Param_Spec);
7022 end if;
7024 <<Continue>>
7025 Next (Param_Spec);
7026 end loop;
7028 -- If this is the formal part of a function specification, analyze the
7029 -- subtype mark in the context where the formals are visible but not
7030 -- yet usable, and may hide outer homographs.
7032 if Nkind (Related_Nod) = N_Function_Specification then
7033 Analyze_Return_Type (Related_Nod);
7034 end if;
7036 -- Now set the kind (mode) of each formal
7038 Param_Spec := First (T);
7040 while Present (Param_Spec) loop
7041 Formal := Defining_Identifier (Param_Spec);
7042 Set_Formal_Mode (Formal);
7044 if Ekind (Formal) = E_In_Parameter then
7045 Set_Default_Value (Formal, Expression (Param_Spec));
7047 if Present (Expression (Param_Spec)) then
7048 Default := Expression (Param_Spec);
7050 if Is_Scalar_Type (Etype (Default)) then
7051 if Nkind
7052 (Parameter_Type (Param_Spec)) /= N_Access_Definition
7053 then
7054 Formal_Type := Entity (Parameter_Type (Param_Spec));
7056 else
7057 Formal_Type := Access_Definition
7058 (Related_Nod, Parameter_Type (Param_Spec));
7059 end if;
7061 Apply_Scalar_Range_Check (Default, Formal_Type);
7062 end if;
7063 end if;
7064 end if;
7066 Next (Param_Spec);
7067 end loop;
7068 end Process_Formals;
7070 ----------------------------
7071 -- Reference_Body_Formals --
7072 ----------------------------
7074 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
7075 Fs : Entity_Id;
7076 Fb : Entity_Id;
7078 begin
7079 if Error_Posted (Spec) then
7080 return;
7081 end if;
7083 -- Iterate over both lists. They may be of different lengths if the two
7084 -- specs are not conformant.
7086 Fs := First_Formal (Spec);
7087 Fb := First_Formal (Bod);
7088 while Present (Fs) and then Present (Fb) loop
7089 Generate_Reference (Fs, Fb, 'b');
7091 if Style_Check then
7092 Style.Check_Identifier (Fb, Fs);
7093 end if;
7095 Set_Spec_Entity (Fb, Fs);
7096 Set_Referenced (Fs, False);
7097 Next_Formal (Fs);
7098 Next_Formal (Fb);
7099 end loop;
7100 end Reference_Body_Formals;
7102 -------------------------
7103 -- Set_Actual_Subtypes --
7104 -------------------------
7106 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
7107 Loc : constant Source_Ptr := Sloc (N);
7108 Decl : Node_Id;
7109 Formal : Entity_Id;
7110 T : Entity_Id;
7111 First_Stmt : Node_Id := Empty;
7112 AS_Needed : Boolean;
7114 begin
7115 -- If this is an emtpy initialization procedure, no need to create
7116 -- actual subtypes (small optimization).
7118 if Ekind (Subp) = E_Procedure
7119 and then Is_Null_Init_Proc (Subp)
7120 then
7121 return;
7122 end if;
7124 Formal := First_Formal (Subp);
7125 while Present (Formal) loop
7126 T := Etype (Formal);
7128 -- We never need an actual subtype for a constrained formal
7130 if Is_Constrained (T) then
7131 AS_Needed := False;
7133 -- If we have unknown discriminants, then we do not need an actual
7134 -- subtype, or more accurately we cannot figure it out! Note that
7135 -- all class-wide types have unknown discriminants.
7137 elsif Has_Unknown_Discriminants (T) then
7138 AS_Needed := False;
7140 -- At this stage we have an unconstrained type that may need an
7141 -- actual subtype. For sure the actual subtype is needed if we have
7142 -- an unconstrained array type.
7144 elsif Is_Array_Type (T) then
7145 AS_Needed := True;
7147 -- The only other case needing an actual subtype is an unconstrained
7148 -- record type which is an IN parameter (we cannot generate actual
7149 -- subtypes for the OUT or IN OUT case, since an assignment can
7150 -- change the discriminant values. However we exclude the case of
7151 -- initialization procedures, since discriminants are handled very
7152 -- specially in this context, see the section entitled "Handling of
7153 -- Discriminants" in Einfo.
7155 -- We also exclude the case of Discrim_SO_Functions (functions used
7156 -- in front end layout mode for size/offset values), since in such
7157 -- functions only discriminants are referenced, and not only are such
7158 -- subtypes not needed, but they cannot always be generated, because
7159 -- of order of elaboration issues.
7161 elsif Is_Record_Type (T)
7162 and then Ekind (Formal) = E_In_Parameter
7163 and then Chars (Formal) /= Name_uInit
7164 and then not Is_Unchecked_Union (T)
7165 and then not Is_Discrim_SO_Function (Subp)
7166 then
7167 AS_Needed := True;
7169 -- All other cases do not need an actual subtype
7171 else
7172 AS_Needed := False;
7173 end if;
7175 -- Generate actual subtypes for unconstrained arrays and
7176 -- unconstrained discriminated records.
7178 if AS_Needed then
7179 if Nkind (N) = N_Accept_Statement then
7181 -- If expansion is active, The formal is replaced by a local
7182 -- variable that renames the corresponding entry of the
7183 -- parameter block, and it is this local variable that may
7184 -- require an actual subtype.
7186 if Expander_Active then
7187 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
7188 else
7189 Decl := Build_Actual_Subtype (T, Formal);
7190 end if;
7192 if Present (Handled_Statement_Sequence (N)) then
7193 First_Stmt :=
7194 First (Statements (Handled_Statement_Sequence (N)));
7195 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
7196 Mark_Rewrite_Insertion (Decl);
7197 else
7198 -- If the accept statement has no body, there will be no
7199 -- reference to the actuals, so no need to compute actual
7200 -- subtypes.
7202 return;
7203 end if;
7205 else
7206 Decl := Build_Actual_Subtype (T, Formal);
7207 Prepend (Decl, Declarations (N));
7208 Mark_Rewrite_Insertion (Decl);
7209 end if;
7211 -- The declaration uses the bounds of an existing object, and
7212 -- therefore needs no constraint checks.
7214 Analyze (Decl, Suppress => All_Checks);
7216 -- We need to freeze manually the generated type when it is
7217 -- inserted anywhere else than in a declarative part.
7219 if Present (First_Stmt) then
7220 Insert_List_Before_And_Analyze (First_Stmt,
7221 Freeze_Entity (Defining_Identifier (Decl), Loc));
7222 end if;
7224 if Nkind (N) = N_Accept_Statement
7225 and then Expander_Active
7226 then
7227 Set_Actual_Subtype (Renamed_Object (Formal),
7228 Defining_Identifier (Decl));
7229 else
7230 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
7231 end if;
7232 end if;
7234 Next_Formal (Formal);
7235 end loop;
7236 end Set_Actual_Subtypes;
7238 ---------------------
7239 -- Set_Formal_Mode --
7240 ---------------------
7242 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
7243 Spec : constant Node_Id := Parent (Formal_Id);
7245 begin
7246 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
7247 -- since we ensure that corresponding actuals are always valid at the
7248 -- point of the call.
7250 if Out_Present (Spec) then
7251 if Ekind (Scope (Formal_Id)) = E_Function
7252 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
7253 then
7254 Error_Msg_N ("functions can only have IN parameters", Spec);
7255 Set_Ekind (Formal_Id, E_In_Parameter);
7257 elsif In_Present (Spec) then
7258 Set_Ekind (Formal_Id, E_In_Out_Parameter);
7260 else
7261 Set_Ekind (Formal_Id, E_Out_Parameter);
7262 Set_Never_Set_In_Source (Formal_Id, True);
7263 Set_Is_True_Constant (Formal_Id, False);
7264 Set_Current_Value (Formal_Id, Empty);
7265 end if;
7267 else
7268 Set_Ekind (Formal_Id, E_In_Parameter);
7269 end if;
7271 -- Set Is_Known_Non_Null for access parameters since the language
7272 -- guarantees that access parameters are always non-null. We also set
7273 -- Can_Never_Be_Null, since there is no way to change the value.
7275 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
7277 -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
7278 -- null; In Ada 2005, only if then null_exclusion is explicit.
7280 if Ada_Version < Ada_05
7281 or else Can_Never_Be_Null (Etype (Formal_Id))
7282 then
7283 Set_Is_Known_Non_Null (Formal_Id);
7284 Set_Can_Never_Be_Null (Formal_Id);
7285 end if;
7287 -- Ada 2005 (AI-231): Null-exclusion access subtype
7289 elsif Is_Access_Type (Etype (Formal_Id))
7290 and then Can_Never_Be_Null (Etype (Formal_Id))
7291 then
7292 Set_Is_Known_Non_Null (Formal_Id);
7293 end if;
7295 Set_Mechanism (Formal_Id, Default_Mechanism);
7296 Set_Formal_Validity (Formal_Id);
7297 end Set_Formal_Mode;
7299 -------------------------
7300 -- Set_Formal_Validity --
7301 -------------------------
7303 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
7304 begin
7305 -- If no validity checking, then we cannot assume anything about the
7306 -- validity of parameters, since we do not know there is any checking
7307 -- of the validity on the call side.
7309 if not Validity_Checks_On then
7310 return;
7312 -- If validity checking for parameters is enabled, this means we are
7313 -- not supposed to make any assumptions about argument values.
7315 elsif Validity_Check_Parameters then
7316 return;
7318 -- If we are checking in parameters, we will assume that the caller is
7319 -- also checking parameters, so we can assume the parameter is valid.
7321 elsif Ekind (Formal_Id) = E_In_Parameter
7322 and then Validity_Check_In_Params
7323 then
7324 Set_Is_Known_Valid (Formal_Id, True);
7326 -- Similar treatment for IN OUT parameters
7328 elsif Ekind (Formal_Id) = E_In_Out_Parameter
7329 and then Validity_Check_In_Out_Params
7330 then
7331 Set_Is_Known_Valid (Formal_Id, True);
7332 end if;
7333 end Set_Formal_Validity;
7335 ------------------------
7336 -- Subtype_Conformant --
7337 ------------------------
7339 function Subtype_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7340 Result : Boolean;
7341 begin
7342 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result);
7343 return Result;
7344 end Subtype_Conformant;
7346 ---------------------
7347 -- Type_Conformant --
7348 ---------------------
7350 function Type_Conformant
7351 (New_Id : Entity_Id;
7352 Old_Id : Entity_Id;
7353 Skip_Controlling_Formals : Boolean := False) return Boolean
7355 Result : Boolean;
7356 begin
7357 May_Hide_Profile := False;
7359 Check_Conformance
7360 (New_Id, Old_Id, Type_Conformant, False, Result,
7361 Skip_Controlling_Formals => Skip_Controlling_Formals);
7362 return Result;
7363 end Type_Conformant;
7365 -------------------------------
7366 -- Valid_Operator_Definition --
7367 -------------------------------
7369 procedure Valid_Operator_Definition (Designator : Entity_Id) is
7370 N : Integer := 0;
7371 F : Entity_Id;
7372 Id : constant Name_Id := Chars (Designator);
7373 N_OK : Boolean;
7375 begin
7376 F := First_Formal (Designator);
7377 while Present (F) loop
7378 N := N + 1;
7380 if Present (Default_Value (F)) then
7381 Error_Msg_N
7382 ("default values not allowed for operator parameters",
7383 Parent (F));
7384 end if;
7386 Next_Formal (F);
7387 end loop;
7389 -- Verify that user-defined operators have proper number of arguments
7390 -- First case of operators which can only be unary
7392 if Id = Name_Op_Not
7393 or else Id = Name_Op_Abs
7394 then
7395 N_OK := (N = 1);
7397 -- Case of operators which can be unary or binary
7399 elsif Id = Name_Op_Add
7400 or Id = Name_Op_Subtract
7401 then
7402 N_OK := (N in 1 .. 2);
7404 -- All other operators can only be binary
7406 else
7407 N_OK := (N = 2);
7408 end if;
7410 if not N_OK then
7411 Error_Msg_N
7412 ("incorrect number of arguments for operator", Designator);
7413 end if;
7415 if Id = Name_Op_Ne
7416 and then Base_Type (Etype (Designator)) = Standard_Boolean
7417 and then not Is_Intrinsic_Subprogram (Designator)
7418 then
7419 Error_Msg_N
7420 ("explicit definition of inequality not allowed", Designator);
7421 end if;
7422 end Valid_Operator_Definition;
7424 end Sem_Ch6;