Move some comparison simplifications to match.pd
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blob4feab782bd29bdb704a00b7bf2e8e0b77b52cd0d
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "backend.h"
27 #include "cfghooks.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "hard-reg-set.h"
31 #include "ssa.h"
32 #include "alias.h"
33 #include "fold-const.h"
34 #include "cfganal.h"
35 #include "gimple-pretty-print.h"
36 #include "internal-fn.h"
37 #include "gimplify.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
40 #include "tree-cfg.h"
41 #include "tree-ssa-loop-manip.h"
42 #include "tree-into-ssa.h"
43 #include "tree-ssa.h"
44 #include "tree-pass.h"
45 #include "cfgloop.h"
46 #include "diagnostic-core.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "langhooks.h"
51 /*************************************************************************
52 Simple Loop Peeling Utilities
54 Utilities to support loop peeling for vectorization purposes.
55 *************************************************************************/
58 /* Renames the use *OP_P. */
60 static void
61 rename_use_op (use_operand_p op_p)
63 tree new_name;
65 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
66 return;
68 new_name = get_current_def (USE_FROM_PTR (op_p));
70 /* Something defined outside of the loop. */
71 if (!new_name)
72 return;
74 /* An ordinary ssa name defined in the loop. */
76 SET_USE (op_p, new_name);
80 /* Renames the variables in basic block BB. Allow renaming of PHI argumnets
81 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
82 true. */
84 static void
85 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
87 gimple stmt;
88 use_operand_p use_p;
89 ssa_op_iter iter;
90 edge e;
91 edge_iterator ei;
92 struct loop *loop = bb->loop_father;
93 struct loop *outer_loop = NULL;
95 if (rename_from_outer_loop)
97 gcc_assert (loop);
98 outer_loop = loop_outer (loop);
101 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
102 gsi_next (&gsi))
104 stmt = gsi_stmt (gsi);
105 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
106 rename_use_op (use_p);
109 FOR_EACH_EDGE (e, ei, bb->preds)
111 if (!flow_bb_inside_loop_p (loop, e->src)
112 && (!rename_from_outer_loop || e->src != outer_loop->header))
113 continue;
114 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
115 gsi_next (&gsi))
116 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
121 struct adjust_info
123 tree from, to;
124 basic_block bb;
127 /* A stack of values to be adjusted in debug stmts. We have to
128 process them LIFO, so that the closest substitution applies. If we
129 processed them FIFO, without the stack, we might substitute uses
130 with a PHI DEF that would soon become non-dominant, and when we got
131 to the suitable one, it wouldn't have anything to substitute any
132 more. */
133 static vec<adjust_info, va_heap> adjust_vec;
135 /* Adjust any debug stmts that referenced AI->from values to use the
136 loop-closed AI->to, if the references are dominated by AI->bb and
137 not by the definition of AI->from. */
139 static void
140 adjust_debug_stmts_now (adjust_info *ai)
142 basic_block bbphi = ai->bb;
143 tree orig_def = ai->from;
144 tree new_def = ai->to;
145 imm_use_iterator imm_iter;
146 gimple stmt;
147 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
149 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
151 /* Adjust any debug stmts that held onto non-loop-closed
152 references. */
153 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
155 use_operand_p use_p;
156 basic_block bbuse;
158 if (!is_gimple_debug (stmt))
159 continue;
161 gcc_assert (gimple_debug_bind_p (stmt));
163 bbuse = gimple_bb (stmt);
165 if ((bbuse == bbphi
166 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
167 && !(bbuse == bbdef
168 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
170 if (new_def)
171 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
172 SET_USE (use_p, new_def);
173 else
175 gimple_debug_bind_reset_value (stmt);
176 update_stmt (stmt);
182 /* Adjust debug stmts as scheduled before. */
184 static void
185 adjust_vec_debug_stmts (void)
187 if (!MAY_HAVE_DEBUG_STMTS)
188 return;
190 gcc_assert (adjust_vec.exists ());
192 while (!adjust_vec.is_empty ())
194 adjust_debug_stmts_now (&adjust_vec.last ());
195 adjust_vec.pop ();
198 adjust_vec.release ();
201 /* Adjust any debug stmts that referenced FROM values to use the
202 loop-closed TO, if the references are dominated by BB and not by
203 the definition of FROM. If adjust_vec is non-NULL, adjustments
204 will be postponed until adjust_vec_debug_stmts is called. */
206 static void
207 adjust_debug_stmts (tree from, tree to, basic_block bb)
209 adjust_info ai;
211 if (MAY_HAVE_DEBUG_STMTS
212 && TREE_CODE (from) == SSA_NAME
213 && ! SSA_NAME_IS_DEFAULT_DEF (from)
214 && ! virtual_operand_p (from))
216 ai.from = from;
217 ai.to = to;
218 ai.bb = bb;
220 if (adjust_vec.exists ())
221 adjust_vec.safe_push (ai);
222 else
223 adjust_debug_stmts_now (&ai);
227 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
228 to adjust any debug stmts that referenced the old phi arg,
229 presumably non-loop-closed references left over from other
230 transformations. */
232 static void
233 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
235 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
237 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
239 if (MAY_HAVE_DEBUG_STMTS)
240 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
241 gimple_bb (update_phi));
245 /* Update PHI nodes for a guard of the LOOP.
247 Input:
248 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
249 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
250 originates from the guard-bb, skips LOOP and reaches the (unique) exit
251 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
252 We denote this bb NEW_MERGE_BB because before the guard code was added
253 it had a single predecessor (the LOOP header), and now it became a merge
254 point of two paths - the path that ends with the LOOP exit-edge, and
255 the path that ends with GUARD_EDGE.
256 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
257 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
259 ===> The CFG before the guard-code was added:
260 LOOP_header_bb:
261 loop_body
262 if (exit_loop) goto update_bb
263 else goto LOOP_header_bb
264 update_bb:
266 ==> The CFG after the guard-code was added:
267 guard_bb:
268 if (LOOP_guard_condition) goto new_merge_bb
269 else goto LOOP_header_bb
270 LOOP_header_bb:
271 loop_body
272 if (exit_loop_condition) goto new_merge_bb
273 else goto LOOP_header_bb
274 new_merge_bb:
275 goto update_bb
276 update_bb:
278 ==> The CFG after this function:
279 guard_bb:
280 if (LOOP_guard_condition) goto new_merge_bb
281 else goto LOOP_header_bb
282 LOOP_header_bb:
283 loop_body
284 if (exit_loop_condition) goto new_exit_bb
285 else goto LOOP_header_bb
286 new_exit_bb:
287 new_merge_bb:
288 goto update_bb
289 update_bb:
291 This function:
292 1. creates and updates the relevant phi nodes to account for the new
293 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
294 1.1. Create phi nodes at NEW_MERGE_BB.
295 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
296 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
297 2. preserves loop-closed-ssa-form by creating the required phi nodes
298 at the exit of LOOP (i.e, in NEW_EXIT_BB).
300 There are two flavors to this function:
302 slpeel_update_phi_nodes_for_guard1:
303 Here the guard controls whether we enter or skip LOOP, where LOOP is a
304 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
305 for variables that have phis in the loop header.
307 slpeel_update_phi_nodes_for_guard2:
308 Here the guard controls whether we enter or skip LOOP, where LOOP is an
309 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
310 for variables that have phis in the loop exit.
312 I.E., the overall structure is:
314 loop1_preheader_bb:
315 guard1 (goto loop1/merge1_bb)
316 loop1
317 loop1_exit_bb:
318 guard2 (goto merge1_bb/merge2_bb)
319 merge1_bb
320 loop2
321 loop2_exit_bb
322 merge2_bb
323 next_bb
325 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
326 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
327 that have phis in loop1->header).
329 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
330 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
331 that have phis in next_bb). It also adds some of these phis to
332 loop1_exit_bb.
334 slpeel_update_phi_nodes_for_guard1 is always called before
335 slpeel_update_phi_nodes_for_guard2. They are both needed in order
336 to create correct data-flow and loop-closed-ssa-form.
338 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
339 that change between iterations of a loop (and therefore have a phi-node
340 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
341 phis for variables that are used out of the loop (and therefore have
342 loop-closed exit phis). Some variables may be both updated between
343 iterations and used after the loop. This is why in loop1_exit_bb we
344 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
345 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
347 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
348 an original loop. i.e., we have:
350 orig_loop
351 guard_bb (goto LOOP/new_merge)
352 new_loop <-- LOOP
353 new_exit
354 new_merge
355 next_bb
357 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
358 have:
360 new_loop
361 guard_bb (goto LOOP/new_merge)
362 orig_loop <-- LOOP
363 new_exit
364 new_merge
365 next_bb
367 The SSA names defined in the original loop have a current
368 reaching definition that records the corresponding new ssa-name
369 used in the new duplicated loop copy.
372 /* Function slpeel_update_phi_nodes_for_guard1
374 Input:
375 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
376 - DEFS - a bitmap of ssa names to mark new names for which we recorded
377 information.
379 In the context of the overall structure, we have:
381 loop1_preheader_bb:
382 guard1 (goto loop1/merge1_bb)
383 LOOP-> loop1
384 loop1_exit_bb:
385 guard2 (goto merge1_bb/merge2_bb)
386 merge1_bb
387 loop2
388 loop2_exit_bb
389 merge2_bb
390 next_bb
392 For each name updated between loop iterations (i.e - for each name that has
393 an entry (loop-header) phi in LOOP) we create a new phi in:
394 1. merge1_bb (to account for the edge from guard1)
395 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
398 static void
399 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
400 bool is_new_loop, basic_block *new_exit_bb)
402 gphi *orig_phi, *new_phi;
403 gphi *update_phi, *update_phi2;
404 tree guard_arg, loop_arg;
405 basic_block new_merge_bb = guard_edge->dest;
406 edge e = EDGE_SUCC (new_merge_bb, 0);
407 basic_block update_bb = e->dest;
408 basic_block orig_bb = loop->header;
409 edge new_exit_e;
410 tree current_new_name;
411 gphi_iterator gsi_orig, gsi_update;
413 /* Create new bb between loop and new_merge_bb. */
414 *new_exit_bb = split_edge (single_exit (loop));
416 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
418 for (gsi_orig = gsi_start_phis (orig_bb),
419 gsi_update = gsi_start_phis (update_bb);
420 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
421 gsi_next (&gsi_orig), gsi_next (&gsi_update))
423 source_location loop_locus, guard_locus;
424 tree new_res;
425 orig_phi = gsi_orig.phi ();
426 update_phi = gsi_update.phi ();
428 /** 1. Handle new-merge-point phis **/
430 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
431 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
432 new_phi = create_phi_node (new_res, new_merge_bb);
434 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
435 of LOOP. Set the two phi args in NEW_PHI for these edges: */
436 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
437 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
438 EDGE_SUCC (loop->latch,
439 0));
440 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
441 guard_locus
442 = gimple_phi_arg_location_from_edge (orig_phi,
443 loop_preheader_edge (loop));
445 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
446 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
448 /* 1.3. Update phi in successor block. */
449 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
450 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
451 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
452 update_phi2 = new_phi;
455 /** 2. Handle loop-closed-ssa-form phis **/
457 if (virtual_operand_p (PHI_RESULT (orig_phi)))
458 continue;
460 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
461 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
462 new_phi = create_phi_node (new_res, *new_exit_bb);
464 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
465 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
467 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
468 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
469 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
470 PHI_RESULT (new_phi));
472 /* 2.4. Record the newly created name with set_current_def.
473 We want to find a name such that
474 name = get_current_def (orig_loop_name)
475 and to set its current definition as follows:
476 set_current_def (name, new_phi_name)
478 If LOOP is a new loop then loop_arg is already the name we're
479 looking for. If LOOP is the original loop, then loop_arg is
480 the orig_loop_name and the relevant name is recorded in its
481 current reaching definition. */
482 if (is_new_loop)
483 current_new_name = loop_arg;
484 else
486 current_new_name = get_current_def (loop_arg);
487 /* current_def is not available only if the variable does not
488 change inside the loop, in which case we also don't care
489 about recording a current_def for it because we won't be
490 trying to create loop-exit-phis for it. */
491 if (!current_new_name)
492 continue;
494 tree new_name = get_current_def (current_new_name);
495 /* Because of peeled_chrec optimization it is possible that we have
496 set this earlier. Verify the PHI has the same value. */
497 if (new_name)
499 gimple phi = SSA_NAME_DEF_STMT (new_name);
500 gcc_assert (gimple_code (phi) == GIMPLE_PHI
501 && gimple_bb (phi) == *new_exit_bb
502 && (PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop))
503 == loop_arg));
504 continue;
507 set_current_def (current_new_name, PHI_RESULT (new_phi));
512 /* Function slpeel_update_phi_nodes_for_guard2
514 Input:
515 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
517 In the context of the overall structure, we have:
519 loop1_preheader_bb:
520 guard1 (goto loop1/merge1_bb)
521 loop1
522 loop1_exit_bb:
523 guard2 (goto merge1_bb/merge2_bb)
524 merge1_bb
525 LOOP-> loop2
526 loop2_exit_bb
527 merge2_bb
528 next_bb
530 For each name used out side the loop (i.e - for each name that has an exit
531 phi in next_bb) we create a new phi in:
532 1. merge2_bb (to account for the edge from guard_bb)
533 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
534 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
535 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
538 static void
539 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
540 bool is_new_loop, basic_block *new_exit_bb)
542 gphi *orig_phi, *new_phi;
543 gphi *update_phi, *update_phi2;
544 tree guard_arg, loop_arg;
545 basic_block new_merge_bb = guard_edge->dest;
546 edge e = EDGE_SUCC (new_merge_bb, 0);
547 basic_block update_bb = e->dest;
548 edge new_exit_e;
549 tree orig_def, orig_def_new_name;
550 tree new_name, new_name2;
551 tree arg;
552 gphi_iterator gsi;
554 /* Create new bb between loop and new_merge_bb. */
555 *new_exit_bb = split_edge (single_exit (loop));
557 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
559 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
561 tree new_res;
562 update_phi = gsi.phi ();
563 orig_phi = update_phi;
564 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
565 /* This loop-closed-phi actually doesn't represent a use
566 out of the loop - the phi arg is a constant. */
567 if (TREE_CODE (orig_def) != SSA_NAME)
568 continue;
569 orig_def_new_name = get_current_def (orig_def);
570 arg = NULL_TREE;
572 /** 1. Handle new-merge-point phis **/
574 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
575 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
576 new_phi = create_phi_node (new_res, new_merge_bb);
578 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
579 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
580 new_name = orig_def;
581 new_name2 = NULL_TREE;
582 if (orig_def_new_name)
584 new_name = orig_def_new_name;
585 /* Some variables have both loop-entry-phis and loop-exit-phis.
586 Such variables were given yet newer names by phis placed in
587 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
588 new_name2 = get_current_def (get_current_def (orig_name)). */
589 new_name2 = get_current_def (new_name);
592 if (is_new_loop)
594 guard_arg = orig_def;
595 loop_arg = new_name;
597 else
599 guard_arg = new_name;
600 loop_arg = orig_def;
602 if (new_name2)
603 guard_arg = new_name2;
605 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
606 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
608 /* 1.3. Update phi in successor block. */
609 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
610 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
611 update_phi2 = new_phi;
614 /** 2. Handle loop-closed-ssa-form phis **/
616 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
617 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
618 new_phi = create_phi_node (new_res, *new_exit_bb);
620 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
621 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
623 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
624 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
625 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
626 PHI_RESULT (new_phi));
629 /** 3. Handle loop-closed-ssa-form phis for first loop **/
631 /* 3.1. Find the relevant names that need an exit-phi in
632 GUARD_BB, i.e. names for which
633 slpeel_update_phi_nodes_for_guard1 had not already created a
634 phi node. This is the case for names that are used outside
635 the loop (and therefore need an exit phi) but are not updated
636 across loop iterations (and therefore don't have a
637 loop-header-phi).
639 slpeel_update_phi_nodes_for_guard1 is responsible for
640 creating loop-exit phis in GUARD_BB for names that have a
641 loop-header-phi. When such a phi is created we also record
642 the new name in its current definition. If this new name
643 exists, then guard_arg was set to this new name (see 1.2
644 above). Therefore, if guard_arg is not this new name, this
645 is an indication that an exit-phi in GUARD_BB was not yet
646 created, so we take care of it here. */
647 if (guard_arg == new_name2)
648 continue;
649 arg = guard_arg;
651 /* 3.2. Generate new phi node in GUARD_BB: */
652 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
653 new_phi = create_phi_node (new_res, guard_edge->src);
655 /* 3.3. GUARD_BB has one incoming edge: */
656 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
657 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
658 UNKNOWN_LOCATION);
660 /* 3.4. Update phi in successor of GUARD_BB: */
661 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
662 == guard_arg);
663 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
664 PHI_RESULT (new_phi));
669 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
670 that starts at zero, increases by one and its limit is NITERS.
672 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
674 void
675 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
677 tree indx_before_incr, indx_after_incr;
678 gcond *cond_stmt;
679 gcond *orig_cond;
680 edge exit_edge = single_exit (loop);
681 gimple_stmt_iterator loop_cond_gsi;
682 gimple_stmt_iterator incr_gsi;
683 bool insert_after;
684 tree init = build_int_cst (TREE_TYPE (niters), 0);
685 tree step = build_int_cst (TREE_TYPE (niters), 1);
686 source_location loop_loc;
687 enum tree_code code;
689 orig_cond = get_loop_exit_condition (loop);
690 gcc_assert (orig_cond);
691 loop_cond_gsi = gsi_for_stmt (orig_cond);
693 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
694 create_iv (init, step, NULL_TREE, loop,
695 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
697 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
698 true, NULL_TREE, true,
699 GSI_SAME_STMT);
700 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
701 true, GSI_SAME_STMT);
703 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
704 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
705 NULL_TREE);
707 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
709 /* Remove old loop exit test: */
710 gsi_remove (&loop_cond_gsi, true);
711 free_stmt_vec_info (orig_cond);
713 loop_loc = find_loop_location (loop);
714 if (dump_enabled_p ())
716 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
717 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
718 LOCATION_LINE (loop_loc));
719 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
720 dump_printf (MSG_NOTE, "\n");
722 loop->nb_iterations = niters;
725 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
726 For all PHI arguments in FROM->dest and TO->dest from those
727 edges ensure that TO->dest PHI arguments have current_def
728 to that in from. */
730 static void
731 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
733 gimple_stmt_iterator gsi_from, gsi_to;
735 for (gsi_from = gsi_start_phis (from->dest),
736 gsi_to = gsi_start_phis (to->dest);
737 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
738 gsi_next (&gsi_from), gsi_next (&gsi_to))
740 gimple from_phi = gsi_stmt (gsi_from);
741 gimple to_phi = gsi_stmt (gsi_to);
742 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
743 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
744 if (TREE_CODE (from_arg) == SSA_NAME
745 && TREE_CODE (to_arg) == SSA_NAME
746 && get_current_def (to_arg) == NULL_TREE)
747 set_current_def (to_arg, get_current_def (from_arg));
752 /* Given LOOP this function generates a new copy of it and puts it
753 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
754 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
755 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
756 entry or exit of LOOP. */
758 struct loop *
759 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
760 struct loop *scalar_loop, edge e)
762 struct loop *new_loop;
763 basic_block *new_bbs, *bbs;
764 bool at_exit;
765 bool was_imm_dom;
766 basic_block exit_dest;
767 edge exit, new_exit;
768 bool duplicate_outer_loop = false;
770 exit = single_exit (loop);
771 at_exit = (e == exit);
772 if (!at_exit && e != loop_preheader_edge (loop))
773 return NULL;
775 if (scalar_loop == NULL)
776 scalar_loop = loop;
778 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
779 get_loop_body_with_size (scalar_loop, bbs, scalar_loop->num_nodes);
780 /* Allow duplication of outer loops. */
781 if (scalar_loop->inner)
782 duplicate_outer_loop = true;
783 /* Check whether duplication is possible. */
784 if (!can_copy_bbs_p (bbs, scalar_loop->num_nodes))
786 free (bbs);
787 return NULL;
790 /* Generate new loop structure. */
791 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
792 duplicate_subloops (scalar_loop, new_loop);
794 exit_dest = exit->dest;
795 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
796 exit_dest) == loop->header ?
797 true : false);
799 /* Also copy the pre-header, this avoids jumping through hoops to
800 duplicate the loop entry PHI arguments. Create an empty
801 pre-header unconditionally for this. */
802 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
803 edge entry_e = single_pred_edge (preheader);
804 bbs[scalar_loop->num_nodes] = preheader;
805 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
807 exit = single_exit (scalar_loop);
808 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
809 &exit, 1, &new_exit, NULL,
810 e->src, true);
811 exit = single_exit (loop);
812 basic_block new_preheader = new_bbs[scalar_loop->num_nodes];
814 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
816 if (scalar_loop != loop)
818 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
819 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
820 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
821 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
822 header) to have current_def set, so copy them over. */
823 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
824 exit);
825 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
827 EDGE_SUCC (loop->latch, 0));
830 if (at_exit) /* Add the loop copy at exit. */
832 if (scalar_loop != loop)
834 gphi_iterator gsi;
835 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
837 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
838 gsi_next (&gsi))
840 gphi *phi = gsi.phi ();
841 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
842 location_t orig_locus
843 = gimple_phi_arg_location_from_edge (phi, e);
845 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
848 redirect_edge_and_branch_force (e, new_preheader);
849 flush_pending_stmts (e);
850 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
851 if (was_imm_dom || duplicate_outer_loop)
852 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
854 /* And remove the non-necessary forwarder again. Keep the other
855 one so we have a proper pre-header for the loop at the exit edge. */
856 redirect_edge_pred (single_succ_edge (preheader),
857 single_pred (preheader));
858 delete_basic_block (preheader);
859 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
860 loop_preheader_edge (scalar_loop)->src);
862 else /* Add the copy at entry. */
864 if (scalar_loop != loop)
866 /* Remove the non-necessary forwarder of scalar_loop again. */
867 redirect_edge_pred (single_succ_edge (preheader),
868 single_pred (preheader));
869 delete_basic_block (preheader);
870 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
871 loop_preheader_edge (scalar_loop)->src);
872 preheader = split_edge (loop_preheader_edge (loop));
873 entry_e = single_pred_edge (preheader);
876 redirect_edge_and_branch_force (entry_e, new_preheader);
877 flush_pending_stmts (entry_e);
878 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
880 redirect_edge_and_branch_force (new_exit, preheader);
881 flush_pending_stmts (new_exit);
882 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
884 /* And remove the non-necessary forwarder again. Keep the other
885 one so we have a proper pre-header for the loop at the exit edge. */
886 redirect_edge_pred (single_succ_edge (new_preheader),
887 single_pred (new_preheader));
888 delete_basic_block (new_preheader);
889 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
890 loop_preheader_edge (new_loop)->src);
893 for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
894 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
896 if (scalar_loop != loop)
898 /* Update new_loop->header PHIs, so that on the preheader
899 edge they are the ones from loop rather than scalar_loop. */
900 gphi_iterator gsi_orig, gsi_new;
901 edge orig_e = loop_preheader_edge (loop);
902 edge new_e = loop_preheader_edge (new_loop);
904 for (gsi_orig = gsi_start_phis (loop->header),
905 gsi_new = gsi_start_phis (new_loop->header);
906 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
907 gsi_next (&gsi_orig), gsi_next (&gsi_new))
909 gphi *orig_phi = gsi_orig.phi ();
910 gphi *new_phi = gsi_new.phi ();
911 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
912 location_t orig_locus
913 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
915 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
919 free (new_bbs);
920 free (bbs);
922 #ifdef ENABLE_CHECKING
923 verify_dominators (CDI_DOMINATORS);
924 #endif
926 return new_loop;
930 /* Given the condition statement COND, put it as the last statement
931 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
932 Assumes that this is the single exit of the guarded loop.
933 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
935 static edge
936 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
937 gimple_seq cond_expr_stmt_list,
938 basic_block exit_bb, basic_block dom_bb,
939 int probability)
941 gimple_stmt_iterator gsi;
942 edge new_e, enter_e;
943 gcond *cond_stmt;
944 gimple_seq gimplify_stmt_list = NULL;
946 enter_e = EDGE_SUCC (guard_bb, 0);
947 enter_e->flags &= ~EDGE_FALLTHRU;
948 enter_e->flags |= EDGE_FALSE_VALUE;
949 gsi = gsi_last_bb (guard_bb);
951 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
952 NULL_TREE);
953 if (gimplify_stmt_list)
954 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
955 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
956 if (cond_expr_stmt_list)
957 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
959 gsi = gsi_last_bb (guard_bb);
960 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
962 /* Add new edge to connect guard block to the merge/loop-exit block. */
963 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
965 new_e->count = guard_bb->count;
966 new_e->probability = probability;
967 new_e->count = apply_probability (enter_e->count, probability);
968 enter_e->count -= new_e->count;
969 enter_e->probability = inverse_probability (probability);
970 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
971 return new_e;
975 /* This function verifies that the following restrictions apply to LOOP:
976 (1) it consists of exactly 2 basic blocks - header, and an empty latch
977 for innermost loop and 5 basic blocks for outer-loop.
978 (2) it is single entry, single exit
979 (3) its exit condition is the last stmt in the header
980 (4) E is the entry/exit edge of LOOP.
983 bool
984 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
986 edge exit_e = single_exit (loop);
987 edge entry_e = loop_preheader_edge (loop);
988 gcond *orig_cond = get_loop_exit_condition (loop);
989 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
990 unsigned int num_bb = loop->inner? 5 : 2;
992 /* All loops have an outer scope; the only case loop->outer is NULL is for
993 the function itself. */
994 if (!loop_outer (loop)
995 || loop->num_nodes != num_bb
996 || !empty_block_p (loop->latch)
997 || !single_exit (loop)
998 /* Verify that new loop exit condition can be trivially modified. */
999 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1000 || (e != exit_e && e != entry_e))
1001 return false;
1003 return true;
1006 #ifdef ENABLE_CHECKING
1007 static void
1008 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1009 struct loop *second_loop)
1011 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1012 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1013 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1015 /* A guard that controls whether the second_loop is to be executed or skipped
1016 is placed in first_loop->exit. first_loop->exit therefore has two
1017 successors - one is the preheader of second_loop, and the other is a bb
1018 after second_loop.
1020 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1022 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1023 of second_loop. */
1025 /* The preheader of new_loop is expected to have two predecessors:
1026 first_loop->exit and the block that precedes first_loop. */
1028 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1029 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1030 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1031 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1032 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1034 /* Verify that the other successor of first_loop->exit is after the
1035 second_loop. */
1036 /* TODO */
1038 #endif
1040 /* If the run time cost model check determines that vectorization is
1041 not profitable and hence scalar loop should be generated then set
1042 FIRST_NITERS to prologue peeled iterations. This will allow all the
1043 iterations to be executed in the prologue peeled scalar loop. */
1045 static void
1046 set_prologue_iterations (basic_block bb_before_first_loop,
1047 tree *first_niters,
1048 struct loop *loop,
1049 unsigned int th,
1050 int probability)
1052 edge e;
1053 basic_block cond_bb, then_bb;
1054 tree var, prologue_after_cost_adjust_name;
1055 gimple_stmt_iterator gsi;
1056 gphi *newphi;
1057 edge e_true, e_false, e_fallthru;
1058 gcond *cond_stmt;
1059 gimple_seq stmts = NULL;
1060 tree cost_pre_condition = NULL_TREE;
1061 tree scalar_loop_iters =
1062 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1064 e = single_pred_edge (bb_before_first_loop);
1065 cond_bb = split_edge (e);
1067 e = single_pred_edge (bb_before_first_loop);
1068 then_bb = split_edge (e);
1069 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1071 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1072 EDGE_FALSE_VALUE);
1073 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1075 e_true = EDGE_PRED (then_bb, 0);
1076 e_true->flags &= ~EDGE_FALLTHRU;
1077 e_true->flags |= EDGE_TRUE_VALUE;
1079 e_true->probability = probability;
1080 e_false->probability = inverse_probability (probability);
1081 e_true->count = apply_probability (cond_bb->count, probability);
1082 e_false->count = cond_bb->count - e_true->count;
1083 then_bb->frequency = EDGE_FREQUENCY (e_true);
1084 then_bb->count = e_true->count;
1086 e_fallthru = EDGE_SUCC (then_bb, 0);
1087 e_fallthru->count = then_bb->count;
1089 gsi = gsi_last_bb (cond_bb);
1090 cost_pre_condition =
1091 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1092 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1093 cost_pre_condition =
1094 force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
1095 NULL_TREE, false, GSI_CONTINUE_LINKING);
1096 cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
1097 NULL_TREE, NULL_TREE);
1098 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1100 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1101 "prologue_after_cost_adjust");
1102 prologue_after_cost_adjust_name =
1103 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1105 gsi = gsi_last_bb (then_bb);
1106 if (stmts)
1107 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1109 newphi = create_phi_node (var, bb_before_first_loop);
1110 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1111 UNKNOWN_LOCATION);
1112 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
1114 *first_niters = PHI_RESULT (newphi);
1117 /* Function slpeel_tree_peel_loop_to_edge.
1119 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1120 that is placed on the entry (exit) edge E of LOOP. After this transformation
1121 we have two loops one after the other - first-loop iterates FIRST_NITERS
1122 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1123 If the cost model indicates that it is profitable to emit a scalar
1124 loop instead of the vector one, then the prolog (epilog) loop will iterate
1125 for the entire unchanged scalar iterations of the loop.
1127 Input:
1128 - LOOP: the loop to be peeled.
1129 - SCALAR_LOOP: if non-NULL, the alternate loop from which basic blocks
1130 should be copied.
1131 - E: the exit or entry edge of LOOP.
1132 If it is the entry edge, we peel the first iterations of LOOP. In this
1133 case first-loop is LOOP, and second-loop is the newly created loop.
1134 If it is the exit edge, we peel the last iterations of LOOP. In this
1135 case, first-loop is the newly created loop, and second-loop is LOOP.
1136 - NITERS: the number of iterations that LOOP iterates.
1137 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1138 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1139 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1140 is false, the caller of this function may want to take care of this
1141 (this can be useful if we don't want new stmts added to first-loop).
1142 - TH: cost model profitability threshold of iterations for vectorization.
1143 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1144 during versioning and hence needs to occur during
1145 prologue generation or whether cost model check
1146 has not occurred during prologue generation and hence
1147 needs to occur during epilogue generation.
1148 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1149 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1152 Output:
1153 The function returns a pointer to the new loop-copy, or NULL if it failed
1154 to perform the transformation.
1156 The function generates two if-then-else guards: one before the first loop,
1157 and the other before the second loop:
1158 The first guard is:
1159 if (FIRST_NITERS == 0) then skip the first loop,
1160 and go directly to the second loop.
1161 The second guard is:
1162 if (FIRST_NITERS == NITERS) then skip the second loop.
1164 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1165 then the generated condition is combined with COND_EXPR and the
1166 statements in COND_EXPR_STMT_LIST are emitted together with it.
1168 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1169 FORNOW the resulting code will not be in loop-closed-ssa form.
1172 static struct loop *
1173 slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loop *scalar_loop,
1174 edge e, tree *first_niters,
1175 tree niters, bool update_first_loop_count,
1176 unsigned int th, bool check_profitability,
1177 tree cond_expr, gimple_seq cond_expr_stmt_list,
1178 int bound1, int bound2)
1180 struct loop *new_loop = NULL, *first_loop, *second_loop;
1181 edge skip_e;
1182 tree pre_condition = NULL_TREE;
1183 basic_block bb_before_second_loop, bb_after_second_loop;
1184 basic_block bb_before_first_loop;
1185 basic_block bb_between_loops;
1186 basic_block new_exit_bb;
1187 gphi_iterator gsi;
1188 edge exit_e = single_exit (loop);
1189 source_location loop_loc;
1190 /* There are many aspects to how likely the first loop is going to be executed.
1191 Without histogram we can't really do good job. Simply set it to
1192 2/3, so the first loop is not reordered to the end of function and
1193 the hot path through stays short. */
1194 int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1195 int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1196 int probability_of_second_loop;
1198 if (!slpeel_can_duplicate_loop_p (loop, e))
1199 return NULL;
1201 /* We might have a queued need to update virtual SSA form. As we
1202 delete the update SSA machinery below after doing a regular
1203 incremental SSA update during loop copying make sure we don't
1204 lose that fact.
1205 ??? Needing to update virtual SSA form by renaming is unfortunate
1206 but not all of the vectorizer code inserting new loads / stores
1207 properly assigns virtual operands to those statements. */
1208 update_ssa (TODO_update_ssa_only_virtuals);
1210 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1211 in the exit bb and rename all the uses after the loop. This simplifies
1212 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1213 (but normally loop closed SSA form doesn't require virtual PHIs to be
1214 in the same form). Doing this early simplifies the checking what
1215 uses should be renamed. */
1216 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1217 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1219 gphi *phi = gsi.phi ();
1220 for (gsi = gsi_start_phis (exit_e->dest);
1221 !gsi_end_p (gsi); gsi_next (&gsi))
1222 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1223 break;
1224 if (gsi_end_p (gsi))
1226 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
1227 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
1228 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1229 imm_use_iterator imm_iter;
1230 gimple stmt;
1231 use_operand_p use_p;
1233 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1234 gimple_phi_set_result (new_phi, new_vop);
1235 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1236 if (stmt != new_phi
1237 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1238 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1239 SET_USE (use_p, new_vop);
1241 break;
1244 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1245 Resulting CFG would be:
1247 first_loop:
1248 do {
1249 } while ...
1251 second_loop:
1252 do {
1253 } while ...
1255 orig_exit_bb:
1258 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop,
1259 e)))
1261 loop_loc = find_loop_location (loop);
1262 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1263 "tree_duplicate_loop_to_edge_cfg failed.\n");
1264 return NULL;
1267 if (MAY_HAVE_DEBUG_STMTS)
1269 gcc_assert (!adjust_vec.exists ());
1270 adjust_vec.create (32);
1273 if (e == exit_e)
1275 /* NEW_LOOP was placed after LOOP. */
1276 first_loop = loop;
1277 second_loop = new_loop;
1279 else
1281 /* NEW_LOOP was placed before LOOP. */
1282 first_loop = new_loop;
1283 second_loop = loop;
1286 /* 2. Add the guard code in one of the following ways:
1288 2.a Add the guard that controls whether the first loop is executed.
1289 This occurs when this function is invoked for prologue or epilogue
1290 generation and when the cost model check can be done at compile time.
1292 Resulting CFG would be:
1294 bb_before_first_loop:
1295 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1296 GOTO first-loop
1298 first_loop:
1299 do {
1300 } while ...
1302 bb_before_second_loop:
1304 second_loop:
1305 do {
1306 } while ...
1308 orig_exit_bb:
1310 2.b Add the cost model check that allows the prologue
1311 to iterate for the entire unchanged scalar
1312 iterations of the loop in the event that the cost
1313 model indicates that the scalar loop is more
1314 profitable than the vector one. This occurs when
1315 this function is invoked for prologue generation
1316 and the cost model check needs to be done at run
1317 time.
1319 Resulting CFG after prologue peeling would be:
1321 if (scalar_loop_iterations <= th)
1322 FIRST_NITERS = scalar_loop_iterations
1324 bb_before_first_loop:
1325 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1326 GOTO first-loop
1328 first_loop:
1329 do {
1330 } while ...
1332 bb_before_second_loop:
1334 second_loop:
1335 do {
1336 } while ...
1338 orig_exit_bb:
1340 2.c Add the cost model check that allows the epilogue
1341 to iterate for the entire unchanged scalar
1342 iterations of the loop in the event that the cost
1343 model indicates that the scalar loop is more
1344 profitable than the vector one. This occurs when
1345 this function is invoked for epilogue generation
1346 and the cost model check needs to be done at run
1347 time. This check is combined with any pre-existing
1348 check in COND_EXPR to avoid versioning.
1350 Resulting CFG after prologue peeling would be:
1352 bb_before_first_loop:
1353 if ((scalar_loop_iterations <= th)
1355 FIRST_NITERS == 0) GOTO bb_before_second_loop
1356 GOTO first-loop
1358 first_loop:
1359 do {
1360 } while ...
1362 bb_before_second_loop:
1364 second_loop:
1365 do {
1366 } while ...
1368 orig_exit_bb:
1371 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1372 /* Loop copying insterted a forwarder block for us here. */
1373 bb_before_second_loop = single_exit (first_loop)->dest;
1375 probability_of_second_loop = (inverse_probability (first_guard_probability)
1376 + combine_probabilities (second_guard_probability,
1377 first_guard_probability));
1378 /* Theoretically preheader edge of first loop and exit edge should have
1379 same frequencies. Loop exit probablities are however easy to get wrong.
1380 It is safer to copy value from original loop entry. */
1381 bb_before_second_loop->frequency
1382 = combine_probabilities (bb_before_first_loop->frequency,
1383 probability_of_second_loop);
1384 bb_before_second_loop->count
1385 = apply_probability (bb_before_first_loop->count,
1386 probability_of_second_loop);
1387 single_succ_edge (bb_before_second_loop)->count
1388 = bb_before_second_loop->count;
1390 /* Epilogue peeling. */
1391 if (!update_first_loop_count)
1393 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
1394 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
1395 unsigned limit = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1;
1396 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1397 limit = limit + 1;
1398 if (check_profitability
1399 && th > limit)
1400 limit = th;
1401 pre_condition =
1402 fold_build2 (LT_EXPR, boolean_type_node, scalar_loop_iters,
1403 build_int_cst (TREE_TYPE (scalar_loop_iters), limit));
1404 if (cond_expr)
1406 pre_condition =
1407 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1408 pre_condition,
1409 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1410 cond_expr));
1414 /* Prologue peeling. */
1415 else
1417 if (check_profitability)
1418 set_prologue_iterations (bb_before_first_loop, first_niters,
1419 loop, th, first_guard_probability);
1421 pre_condition =
1422 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1423 build_int_cst (TREE_TYPE (*first_niters), 0));
1426 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1427 cond_expr_stmt_list,
1428 bb_before_second_loop, bb_before_first_loop,
1429 inverse_probability (first_guard_probability));
1430 scale_loop_profile (first_loop, first_guard_probability,
1431 check_profitability && (int)th > bound1 ? th : bound1);
1432 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1433 first_loop == new_loop,
1434 &new_exit_bb);
1437 /* 3. Add the guard that controls whether the second loop is executed.
1438 Resulting CFG would be:
1440 bb_before_first_loop:
1441 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1442 GOTO first-loop
1444 first_loop:
1445 do {
1446 } while ...
1448 bb_between_loops:
1449 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1450 GOTO bb_before_second_loop
1452 bb_before_second_loop:
1454 second_loop:
1455 do {
1456 } while ...
1458 bb_after_second_loop:
1460 orig_exit_bb:
1463 bb_between_loops = new_exit_bb;
1464 bb_after_second_loop = split_edge (single_exit (second_loop));
1466 pre_condition =
1467 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1468 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1469 bb_after_second_loop, bb_before_first_loop,
1470 inverse_probability (second_guard_probability));
1471 scale_loop_profile (second_loop, probability_of_second_loop, bound2);
1472 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1473 second_loop == new_loop, &new_exit_bb);
1475 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1477 if (update_first_loop_count)
1478 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1480 delete_update_ssa ();
1482 adjust_vec_debug_stmts ();
1484 return new_loop;
1487 /* Function vect_get_loop_location.
1489 Extract the location of the loop in the source code.
1490 If the loop is not well formed for vectorization, an estimated
1491 location is calculated.
1492 Return the loop location if succeed and NULL if not. */
1494 source_location
1495 find_loop_location (struct loop *loop)
1497 gimple stmt = NULL;
1498 basic_block bb;
1499 gimple_stmt_iterator si;
1501 if (!loop)
1502 return UNKNOWN_LOCATION;
1504 stmt = get_loop_exit_condition (loop);
1506 if (stmt
1507 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1508 return gimple_location (stmt);
1510 /* If we got here the loop is probably not "well formed",
1511 try to estimate the loop location */
1513 if (!loop->header)
1514 return UNKNOWN_LOCATION;
1516 bb = loop->header;
1518 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1520 stmt = gsi_stmt (si);
1521 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1522 return gimple_location (stmt);
1525 return UNKNOWN_LOCATION;
1529 /* Function vect_can_advance_ivs_p
1531 In case the number of iterations that LOOP iterates is unknown at compile
1532 time, an epilog loop will be generated, and the loop induction variables
1533 (IVs) will be "advanced" to the value they are supposed to take just before
1534 the epilog loop. Here we check that the access function of the loop IVs
1535 and the expression that represents the loop bound are simple enough.
1536 These restrictions will be relaxed in the future. */
1538 bool
1539 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1541 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1542 basic_block bb = loop->header;
1543 gimple phi;
1544 gphi_iterator gsi;
1546 /* Analyze phi functions of the loop header. */
1548 if (dump_enabled_p ())
1549 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1550 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1552 tree evolution_part;
1554 phi = gsi.phi ();
1555 if (dump_enabled_p ())
1557 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1558 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1559 dump_printf (MSG_NOTE, "\n");
1562 /* Skip virtual phi's. The data dependences that are associated with
1563 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1565 if (virtual_operand_p (PHI_RESULT (phi)))
1567 if (dump_enabled_p ())
1568 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1569 "virtual phi. skip.\n");
1570 continue;
1573 /* Skip reduction phis. */
1575 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1577 if (dump_enabled_p ())
1578 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1579 "reduc phi. skip.\n");
1580 continue;
1583 /* Analyze the evolution function. */
1585 evolution_part
1586 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1587 if (evolution_part == NULL_TREE)
1589 if (dump_enabled_p ())
1590 dump_printf (MSG_MISSED_OPTIMIZATION,
1591 "No access function or evolution.\n");
1592 return false;
1595 /* FORNOW: We do not transform initial conditions of IVs
1596 which evolution functions are a polynomial of degree >= 2. */
1598 if (tree_is_chrec (evolution_part))
1599 return false;
1602 return true;
1606 /* Function vect_update_ivs_after_vectorizer.
1608 "Advance" the induction variables of LOOP to the value they should take
1609 after the execution of LOOP. This is currently necessary because the
1610 vectorizer does not handle induction variables that are used after the
1611 loop. Such a situation occurs when the last iterations of LOOP are
1612 peeled, because:
1613 1. We introduced new uses after LOOP for IVs that were not originally used
1614 after LOOP: the IVs of LOOP are now used by an epilog loop.
1615 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1616 times, whereas the loop IVs should be bumped N times.
1618 Input:
1619 - LOOP - a loop that is going to be vectorized. The last few iterations
1620 of LOOP were peeled.
1621 - NITERS - the number of iterations that LOOP executes (before it is
1622 vectorized). i.e, the number of times the ivs should be bumped.
1623 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1624 coming out from LOOP on which there are uses of the LOOP ivs
1625 (this is the path from LOOP->exit to epilog_loop->preheader).
1627 The new definitions of the ivs are placed in LOOP->exit.
1628 The phi args associated with the edge UPDATE_E in the bb
1629 UPDATE_E->dest are updated accordingly.
1631 Assumption 1: Like the rest of the vectorizer, this function assumes
1632 a single loop exit that has a single predecessor.
1634 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1635 organized in the same order.
1637 Assumption 3: The access function of the ivs is simple enough (see
1638 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1640 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1641 coming out of LOOP on which the ivs of LOOP are used (this is the path
1642 that leads to the epilog loop; other paths skip the epilog loop). This
1643 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1644 needs to have its phis updated.
1647 static void
1648 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1649 edge update_e)
1651 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1652 basic_block exit_bb = single_exit (loop)->dest;
1653 gphi *phi, *phi1;
1654 gphi_iterator gsi, gsi1;
1655 basic_block update_bb = update_e->dest;
1657 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
1659 /* Make sure there exists a single-predecessor exit bb: */
1660 gcc_assert (single_pred_p (exit_bb));
1662 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1663 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1664 gsi_next (&gsi), gsi_next (&gsi1))
1666 tree init_expr;
1667 tree step_expr, off;
1668 tree type;
1669 tree var, ni, ni_name;
1670 gimple_stmt_iterator last_gsi;
1671 stmt_vec_info stmt_info;
1673 phi = gsi.phi ();
1674 phi1 = gsi1.phi ();
1675 if (dump_enabled_p ())
1677 dump_printf_loc (MSG_NOTE, vect_location,
1678 "vect_update_ivs_after_vectorizer: phi: ");
1679 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1680 dump_printf (MSG_NOTE, "\n");
1683 /* Skip virtual phi's. */
1684 if (virtual_operand_p (PHI_RESULT (phi)))
1686 if (dump_enabled_p ())
1687 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1688 "virtual phi. skip.\n");
1689 continue;
1692 /* Skip reduction phis. */
1693 stmt_info = vinfo_for_stmt (phi);
1694 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
1696 if (dump_enabled_p ())
1697 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1698 "reduc phi. skip.\n");
1699 continue;
1702 type = TREE_TYPE (gimple_phi_result (phi));
1703 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1704 step_expr = unshare_expr (step_expr);
1706 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1707 of degree >= 2 or exponential. */
1708 gcc_assert (!tree_is_chrec (step_expr));
1710 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1712 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1713 fold_convert (TREE_TYPE (step_expr), niters),
1714 step_expr);
1715 if (POINTER_TYPE_P (type))
1716 ni = fold_build_pointer_plus (init_expr, off);
1717 else
1718 ni = fold_build2 (PLUS_EXPR, type,
1719 init_expr, fold_convert (type, off));
1721 var = create_tmp_var (type, "tmp");
1723 last_gsi = gsi_last_bb (exit_bb);
1724 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1725 true, GSI_SAME_STMT);
1727 /* Fix phi expressions in the successor bb. */
1728 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1732 /* Function vect_do_peeling_for_loop_bound
1734 Peel the last iterations of the loop represented by LOOP_VINFO.
1735 The peeled iterations form a new epilog loop. Given that the loop now
1736 iterates NITERS times, the new epilog loop iterates
1737 NITERS % VECTORIZATION_FACTOR times.
1739 The original loop will later be made to iterate
1740 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1742 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1743 test. */
1745 void
1746 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo,
1747 tree ni_name, tree ratio_mult_vf_name,
1748 unsigned int th, bool check_profitability)
1750 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1751 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
1752 struct loop *new_loop;
1753 edge update_e;
1754 basic_block preheader;
1755 int loop_num;
1756 int max_iter;
1757 tree cond_expr = NULL_TREE;
1758 gimple_seq cond_expr_stmt_list = NULL;
1760 if (dump_enabled_p ())
1761 dump_printf_loc (MSG_NOTE, vect_location,
1762 "=== vect_do_peeling_for_loop_bound ===\n");
1764 initialize_original_copy_tables ();
1766 loop_num = loop->num;
1768 new_loop
1769 = slpeel_tree_peel_loop_to_edge (loop, scalar_loop, single_exit (loop),
1770 &ratio_mult_vf_name, ni_name, false,
1771 th, check_profitability,
1772 cond_expr, cond_expr_stmt_list,
1773 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1774 gcc_assert (new_loop);
1775 gcc_assert (loop_num == loop->num);
1776 #ifdef ENABLE_CHECKING
1777 slpeel_verify_cfg_after_peeling (loop, new_loop);
1778 #endif
1780 /* A guard that controls whether the new_loop is to be executed or skipped
1781 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1782 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1783 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1784 is on the path where the LOOP IVs are used and need to be updated. */
1786 preheader = loop_preheader_edge (new_loop)->src;
1787 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1788 update_e = EDGE_PRED (preheader, 0);
1789 else
1790 update_e = EDGE_PRED (preheader, 1);
1792 /* Update IVs of original loop as if they were advanced
1793 by ratio_mult_vf_name steps. */
1794 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1796 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1797 and this means N-2 loopback edge executions.
1799 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1800 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1801 max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1802 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
1803 : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
1804 if (check_profitability)
1805 max_iter = MAX (max_iter, (int) th - 1);
1806 record_niter_bound (new_loop, max_iter, false, true);
1807 dump_printf (MSG_NOTE,
1808 "Setting upper bound of nb iterations for epilogue "
1809 "loop to %d\n", max_iter);
1811 /* After peeling we have to reset scalar evolution analyzer. */
1812 scev_reset ();
1814 free_original_copy_tables ();
1818 /* Function vect_gen_niters_for_prolog_loop
1820 Set the number of iterations for the loop represented by LOOP_VINFO
1821 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1822 and the misalignment of DR - the data reference recorded in
1823 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1824 this loop, the data reference DR will refer to an aligned location.
1826 The following computation is generated:
1828 If the misalignment of DR is known at compile time:
1829 addr_mis = int mis = DR_MISALIGNMENT (dr);
1830 Else, compute address misalignment in bytes:
1831 addr_mis = addr & (vectype_align - 1)
1833 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1835 (elem_size = element type size; an element is the scalar element whose type
1836 is the inner type of the vectype)
1838 When the step of the data-ref in the loop is not 1 (as in interleaved data
1839 and SLP), the number of iterations of the prolog must be divided by the step
1840 (which is equal to the size of interleaved group).
1842 The above formulas assume that VF == number of elements in the vector. This
1843 may not hold when there are multiple-types in the loop.
1844 In this case, for some data-references in the loop the VF does not represent
1845 the number of elements that fit in the vector. Therefore, instead of VF we
1846 use TYPE_VECTOR_SUBPARTS. */
1848 static tree
1849 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
1851 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1852 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1853 tree var;
1854 gimple_seq stmts;
1855 tree iters, iters_name;
1856 edge pe;
1857 basic_block new_bb;
1858 gimple dr_stmt = DR_STMT (dr);
1859 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1860 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1861 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
1862 tree niters_type = TREE_TYPE (loop_niters);
1863 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1865 pe = loop_preheader_edge (loop);
1867 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1869 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1871 if (dump_enabled_p ())
1872 dump_printf_loc (MSG_NOTE, vect_location,
1873 "known peeling = %d.\n", npeel);
1875 iters = build_int_cst (niters_type, npeel);
1876 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1878 else
1880 gimple_seq new_stmts = NULL;
1881 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1882 tree offset = negative
1883 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
1884 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
1885 &new_stmts, offset, loop);
1886 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1887 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
1888 HOST_WIDE_INT elem_size =
1889 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1890 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1891 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
1892 tree nelements_tree = build_int_cst (type, nelements);
1893 tree byte_misalign;
1894 tree elem_misalign;
1896 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
1897 gcc_assert (!new_bb);
1899 /* Create: byte_misalign = addr & (vectype_align - 1) */
1900 byte_misalign =
1901 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
1902 vectype_align_minus_1);
1904 /* Create: elem_misalign = byte_misalign / element_size */
1905 elem_misalign =
1906 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1908 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1909 if (negative)
1910 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1911 else
1912 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1913 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1914 iters = fold_convert (niters_type, iters);
1915 *bound = nelements;
1918 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1919 /* If the loop bound is known at compile time we already verified that it is
1920 greater than vf; since the misalignment ('iters') is at most vf, there's
1921 no need to generate the MIN_EXPR in this case. */
1922 if (TREE_CODE (loop_niters) != INTEGER_CST)
1923 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
1925 if (dump_enabled_p ())
1927 dump_printf_loc (MSG_NOTE, vect_location,
1928 "niters for prolog loop: ");
1929 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1930 dump_printf (MSG_NOTE, "\n");
1933 var = create_tmp_var (niters_type, "prolog_loop_niters");
1934 stmts = NULL;
1935 iters_name = force_gimple_operand (iters, &stmts, false, var);
1937 /* Insert stmt on loop preheader edge. */
1938 if (stmts)
1940 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1941 gcc_assert (!new_bb);
1944 return iters_name;
1948 /* Function vect_update_init_of_dr
1950 NITERS iterations were peeled from LOOP. DR represents a data reference
1951 in LOOP. This function updates the information recorded in DR to
1952 account for the fact that the first NITERS iterations had already been
1953 executed. Specifically, it updates the OFFSET field of DR. */
1955 static void
1956 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1958 tree offset = DR_OFFSET (dr);
1960 niters = fold_build2 (MULT_EXPR, sizetype,
1961 fold_convert (sizetype, niters),
1962 fold_convert (sizetype, DR_STEP (dr)));
1963 offset = fold_build2 (PLUS_EXPR, sizetype,
1964 fold_convert (sizetype, offset), niters);
1965 DR_OFFSET (dr) = offset;
1969 /* Function vect_update_inits_of_drs
1971 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1972 This function updates the information recorded for the data references in
1973 the loop to account for the fact that the first NITERS iterations had
1974 already been executed. Specifically, it updates the initial_condition of
1975 the access_function of all the data_references in the loop. */
1977 static void
1978 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1980 unsigned int i;
1981 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1982 struct data_reference *dr;
1984 if (dump_enabled_p ())
1985 dump_printf_loc (MSG_NOTE, vect_location,
1986 "=== vect_update_inits_of_dr ===\n");
1988 FOR_EACH_VEC_ELT (datarefs, i, dr)
1989 vect_update_init_of_dr (dr, niters);
1993 /* Function vect_do_peeling_for_alignment
1995 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
1996 'niters' is set to the misalignment of one of the data references in the
1997 loop, thereby forcing it to refer to an aligned location at the beginning
1998 of the execution of this loop. The data reference for which we are
1999 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2001 void
2002 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, tree ni_name,
2003 unsigned int th, bool check_profitability)
2005 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2006 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2007 tree niters_of_prolog_loop;
2008 tree wide_prolog_niters;
2009 struct loop *new_loop;
2010 int max_iter;
2011 int bound = 0;
2013 if (dump_enabled_p ())
2014 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2015 "loop peeled for vectorization to enhance"
2016 " alignment\n");
2018 initialize_original_copy_tables ();
2020 gimple_seq stmts = NULL;
2021 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2022 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2023 ni_name,
2024 &bound);
2026 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2027 new_loop =
2028 slpeel_tree_peel_loop_to_edge (loop, scalar_loop,
2029 loop_preheader_edge (loop),
2030 &niters_of_prolog_loop, ni_name, true,
2031 th, check_profitability, NULL_TREE, NULL,
2032 bound, 0);
2034 gcc_assert (new_loop);
2035 #ifdef ENABLE_CHECKING
2036 slpeel_verify_cfg_after_peeling (new_loop, loop);
2037 #endif
2038 /* For vectorization factor N, we need to copy at most N-1 values
2039 for alignment and this means N-2 loopback edge executions. */
2040 max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
2041 if (check_profitability)
2042 max_iter = MAX (max_iter, (int) th - 1);
2043 record_niter_bound (new_loop, max_iter, false, true);
2044 dump_printf (MSG_NOTE,
2045 "Setting upper bound of nb iterations for prologue "
2046 "loop to %d\n", max_iter);
2048 /* Update number of times loop executes. */
2049 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2050 TREE_TYPE (ni_name), ni_name, niters_of_prolog_loop);
2051 LOOP_VINFO_NITERSM1 (loop_vinfo) = fold_build2 (MINUS_EXPR,
2052 TREE_TYPE (ni_name),
2053 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_of_prolog_loop);
2055 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2056 wide_prolog_niters = niters_of_prolog_loop;
2057 else
2059 gimple_seq seq = NULL;
2060 edge pe = loop_preheader_edge (loop);
2061 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2062 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2063 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2064 var);
2065 if (seq)
2067 /* Insert stmt on loop preheader edge. */
2068 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2069 gcc_assert (!new_bb);
2073 /* Update the init conditions of the access functions of all data refs. */
2074 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2076 /* After peeling we have to reset scalar evolution analyzer. */
2077 scev_reset ();
2079 free_original_copy_tables ();
2083 /* Function vect_create_cond_for_align_checks.
2085 Create a conditional expression that represents the alignment checks for
2086 all of data references (array element references) whose alignment must be
2087 checked at runtime.
2089 Input:
2090 COND_EXPR - input conditional expression. New conditions will be chained
2091 with logical AND operation.
2092 LOOP_VINFO - two fields of the loop information are used.
2093 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2094 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2096 Output:
2097 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2098 expression.
2099 The returned value is the conditional expression to be used in the if
2100 statement that controls which version of the loop gets executed at runtime.
2102 The algorithm makes two assumptions:
2103 1) The number of bytes "n" in a vector is a power of 2.
2104 2) An address "a" is aligned if a%n is zero and that this
2105 test can be done as a&(n-1) == 0. For example, for 16
2106 byte vectors the test is a&0xf == 0. */
2108 static void
2109 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2110 tree *cond_expr,
2111 gimple_seq *cond_expr_stmt_list)
2113 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2114 vec<gimple> may_misalign_stmts
2115 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2116 gimple ref_stmt;
2117 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2118 tree mask_cst;
2119 unsigned int i;
2120 tree int_ptrsize_type;
2121 char tmp_name[20];
2122 tree or_tmp_name = NULL_TREE;
2123 tree and_tmp_name;
2124 gimple and_stmt;
2125 tree ptrsize_zero;
2126 tree part_cond_expr;
2128 /* Check that mask is one less than a power of 2, i.e., mask is
2129 all zeros followed by all ones. */
2130 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2132 int_ptrsize_type = signed_type_for (ptr_type_node);
2134 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2135 of the first vector of the i'th data reference. */
2137 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2139 gimple_seq new_stmt_list = NULL;
2140 tree addr_base;
2141 tree addr_tmp_name;
2142 tree new_or_tmp_name;
2143 gimple addr_stmt, or_stmt;
2144 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2145 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2146 bool negative = tree_int_cst_compare
2147 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2148 tree offset = negative
2149 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
2151 /* create: addr_tmp = (int)(address_of_first_vector) */
2152 addr_base =
2153 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2154 offset, loop);
2155 if (new_stmt_list != NULL)
2156 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2158 sprintf (tmp_name, "addr2int%d", i);
2159 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2160 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2161 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2163 /* The addresses are OR together. */
2165 if (or_tmp_name != NULL_TREE)
2167 /* create: or_tmp = or_tmp | addr_tmp */
2168 sprintf (tmp_name, "orptrs%d", i);
2169 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2170 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2171 or_tmp_name, addr_tmp_name);
2172 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2173 or_tmp_name = new_or_tmp_name;
2175 else
2176 or_tmp_name = addr_tmp_name;
2178 } /* end for i */
2180 mask_cst = build_int_cst (int_ptrsize_type, mask);
2182 /* create: and_tmp = or_tmp & mask */
2183 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2185 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2186 or_tmp_name, mask_cst);
2187 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2189 /* Make and_tmp the left operand of the conditional test against zero.
2190 if and_tmp has a nonzero bit then some address is unaligned. */
2191 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2192 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2193 and_tmp_name, ptrsize_zero);
2194 if (*cond_expr)
2195 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2196 *cond_expr, part_cond_expr);
2197 else
2198 *cond_expr = part_cond_expr;
2201 /* Function vect_create_cond_for_alias_checks.
2203 Create a conditional expression that represents the run-time checks for
2204 overlapping of address ranges represented by a list of data references
2205 relations passed as input.
2207 Input:
2208 COND_EXPR - input conditional expression. New conditions will be chained
2209 with logical AND operation. If it is NULL, then the function
2210 is used to return the number of alias checks.
2211 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2212 to be checked.
2214 Output:
2215 COND_EXPR - conditional expression.
2217 The returned COND_EXPR is the conditional expression to be used in the if
2218 statement that controls which version of the loop gets executed at runtime.
2221 void
2222 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2224 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2225 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2226 tree part_cond_expr;
2228 /* Create expression
2229 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2230 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2234 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2235 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2237 if (comp_alias_ddrs.is_empty ())
2238 return;
2240 for (size_t i = 0, s = comp_alias_ddrs.length (); i < s; ++i)
2242 const dr_with_seg_len& dr_a = comp_alias_ddrs[i].first;
2243 const dr_with_seg_len& dr_b = comp_alias_ddrs[i].second;
2244 tree segment_length_a = dr_a.seg_len;
2245 tree segment_length_b = dr_b.seg_len;
2247 tree addr_base_a
2248 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a.dr), dr_a.offset);
2249 tree addr_base_b
2250 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b.dr), dr_b.offset);
2252 if (dump_enabled_p ())
2254 dump_printf_loc (MSG_NOTE, vect_location,
2255 "create runtime check for data references ");
2256 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a.dr));
2257 dump_printf (MSG_NOTE, " and ");
2258 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b.dr));
2259 dump_printf (MSG_NOTE, "\n");
2262 tree seg_a_min = addr_base_a;
2263 tree seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2264 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
2265 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
2266 [a, a+12) */
2267 if (tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0)
2269 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a.dr)));
2270 seg_a_min = fold_build_pointer_plus (seg_a_max, unit_size);
2271 seg_a_max = fold_build_pointer_plus (addr_base_a, unit_size);
2274 tree seg_b_min = addr_base_b;
2275 tree seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2276 if (tree_int_cst_compare (DR_STEP (dr_b.dr), size_zero_node) < 0)
2278 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b.dr)));
2279 seg_b_min = fold_build_pointer_plus (seg_b_max, unit_size);
2280 seg_b_max = fold_build_pointer_plus (addr_base_b, unit_size);
2283 part_cond_expr =
2284 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2285 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2286 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2288 if (*cond_expr)
2289 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2290 *cond_expr, part_cond_expr);
2291 else
2292 *cond_expr = part_cond_expr;
2295 if (dump_enabled_p ())
2296 dump_printf_loc (MSG_NOTE, vect_location,
2297 "created %u versioning for alias checks.\n",
2298 comp_alias_ddrs.length ());
2300 comp_alias_ddrs.release ();
2304 /* Function vect_loop_versioning.
2306 If the loop has data references that may or may not be aligned or/and
2307 has data reference relations whose independence was not proven then
2308 two versions of the loop need to be generated, one which is vectorized
2309 and one which isn't. A test is then generated to control which of the
2310 loops is executed. The test checks for the alignment of all of the
2311 data references that may or may not be aligned. An additional
2312 sequence of runtime tests is generated for each pairs of DDRs whose
2313 independence was not proven. The vectorized version of loop is
2314 executed only if both alias and alignment tests are passed.
2316 The test generated to check which version of loop is executed
2317 is modified to also check for profitability as indicated by the
2318 cost model initially.
2320 The versioning precondition(s) are placed in *COND_EXPR and
2321 *COND_EXPR_STMT_LIST. */
2323 void
2324 vect_loop_versioning (loop_vec_info loop_vinfo,
2325 unsigned int th, bool check_profitability)
2327 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2328 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2329 basic_block condition_bb;
2330 gphi_iterator gsi;
2331 gimple_stmt_iterator cond_exp_gsi;
2332 basic_block merge_bb;
2333 basic_block new_exit_bb;
2334 edge new_exit_e, e;
2335 gphi *orig_phi, *new_phi;
2336 tree cond_expr = NULL_TREE;
2337 gimple_seq cond_expr_stmt_list = NULL;
2338 tree arg;
2339 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2340 gimple_seq gimplify_stmt_list = NULL;
2341 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2342 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2343 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2345 if (check_profitability)
2347 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2348 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2349 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2350 is_gimple_condexpr, NULL_TREE);
2353 if (version_align)
2354 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2355 &cond_expr_stmt_list);
2357 if (version_alias)
2358 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2360 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2361 is_gimple_condexpr, NULL_TREE);
2362 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2364 initialize_original_copy_tables ();
2365 if (scalar_loop)
2367 edge scalar_e;
2368 basic_block preheader, scalar_preheader;
2370 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2371 scale LOOP's frequencies instead. */
2372 loop_version (scalar_loop, cond_expr, &condition_bb,
2373 prob, REG_BR_PROB_BASE, REG_BR_PROB_BASE - prob, true);
2374 scale_loop_frequencies (loop, prob, REG_BR_PROB_BASE);
2375 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2376 while we need to move it above LOOP's preheader. */
2377 e = loop_preheader_edge (loop);
2378 scalar_e = loop_preheader_edge (scalar_loop);
2379 gcc_assert (empty_block_p (e->src)
2380 && single_pred_p (e->src));
2381 gcc_assert (empty_block_p (scalar_e->src)
2382 && single_pred_p (scalar_e->src));
2383 gcc_assert (single_pred_p (condition_bb));
2384 preheader = e->src;
2385 scalar_preheader = scalar_e->src;
2386 scalar_e = find_edge (condition_bb, scalar_preheader);
2387 e = single_pred_edge (preheader);
2388 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2389 scalar_preheader);
2390 redirect_edge_and_branch_force (scalar_e, preheader);
2391 redirect_edge_and_branch_force (e, condition_bb);
2392 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2393 single_pred (condition_bb));
2394 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2395 single_pred (scalar_preheader));
2396 set_immediate_dominator (CDI_DOMINATORS, preheader,
2397 condition_bb);
2399 else
2400 loop_version (loop, cond_expr, &condition_bb,
2401 prob, prob, REG_BR_PROB_BASE - prob, true);
2403 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
2404 && dump_enabled_p ())
2406 if (version_alias)
2407 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2408 "loop versioned for vectorization because of "
2409 "possible aliasing\n");
2410 if (version_align)
2411 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2412 "loop versioned for vectorization to enhance "
2413 "alignment\n");
2416 free_original_copy_tables ();
2418 /* Loop versioning violates an assumption we try to maintain during
2419 vectorization - that the loop exit block has a single predecessor.
2420 After versioning, the exit block of both loop versions is the same
2421 basic block (i.e. it has two predecessors). Just in order to simplify
2422 following transformations in the vectorizer, we fix this situation
2423 here by adding a new (empty) block on the exit-edge of the loop,
2424 with the proper loop-exit phis to maintain loop-closed-form.
2425 If loop versioning wasn't done from loop, but scalar_loop instead,
2426 merge_bb will have already just a single successor. */
2428 merge_bb = single_exit (loop)->dest;
2429 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
2431 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2432 new_exit_bb = split_edge (single_exit (loop));
2433 new_exit_e = single_exit (loop);
2434 e = EDGE_SUCC (new_exit_bb, 0);
2436 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2438 tree new_res;
2439 orig_phi = gsi.phi ();
2440 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2441 new_phi = create_phi_node (new_res, new_exit_bb);
2442 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2443 add_phi_arg (new_phi, arg, new_exit_e,
2444 gimple_phi_arg_location_from_edge (orig_phi, e));
2445 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2449 /* End loop-exit-fixes after versioning. */
2451 if (cond_expr_stmt_list)
2453 cond_exp_gsi = gsi_last_bb (condition_bb);
2454 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2455 GSI_SAME_STMT);
2457 update_ssa (TODO_update_ssa);