1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "hard-reg-set.h"
30 #include "fold-const.h"
33 #include "gimple-pretty-print.h"
34 #include "internal-fn.h"
35 #include "gimple-iterator.h"
37 #include "tree-inline.h"
38 #include "tree-pass.h"
39 #include "diagnostic-core.h"
43 /* This implements the pass that does predicate aware warning on uses of
44 possibly uninitialized variables. The pass first collects the set of
45 possibly uninitialized SSA names. For each such name, it walks through
46 all its immediate uses. For each immediate use, it rebuilds the condition
47 expression (the predicate) that guards the use. The predicate is then
48 examined to see if the variable is always defined under that same condition.
49 This is done either by pruning the unrealizable paths that lead to the
50 default definitions or by checking if the predicate set that guards the
51 defining paths is a superset of the use predicate. */
54 /* Pointer set of potentially undefined ssa names, i.e.,
55 ssa names that are defined by phi with operands that
56 are not defined or potentially undefined. */
57 static hash_set
<tree
> *possibly_undefined_names
= 0;
59 /* Bit mask handling macros. */
60 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
61 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
62 #define MASK_EMPTY(mask) (mask == 0)
64 /* Returns the first bit position (starting from LSB)
65 in mask that is non zero. Returns -1 if the mask is empty. */
67 get_mask_first_set_bit (unsigned mask
)
73 while ((mask
& (1 << pos
)) == 0)
78 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
80 /* Return true if T, an SSA_NAME, has an undefined value. */
82 has_undefined_value_p (tree t
)
84 return (ssa_undefined_value_p (t
)
85 || (possibly_undefined_names
86 && possibly_undefined_names
->contains (t
)));
91 /* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
92 is set on SSA_NAME_VAR. */
95 uninit_undefined_value_p (tree t
) {
96 if (!has_undefined_value_p (t
))
98 if (SSA_NAME_VAR (t
) && TREE_NO_WARNING (SSA_NAME_VAR (t
)))
103 /* Emit warnings for uninitialized variables. This is done in two passes.
105 The first pass notices real uses of SSA names with undefined values.
106 Such uses are unconditionally uninitialized, and we can be certain that
107 such a use is a mistake. This pass is run before most optimizations,
108 so that we catch as many as we can.
110 The second pass follows PHI nodes to find uses that are potentially
111 uninitialized. In this case we can't necessarily prove that the use
112 is really uninitialized. This pass is run after most optimizations,
113 so that we thread as many jumps and possible, and delete as much dead
114 code as possible, in order to reduce false positives. We also look
115 again for plain uninitialized variables, since optimization may have
116 changed conditionally uninitialized to unconditionally uninitialized. */
118 /* Emit a warning for EXPR based on variable VAR at the point in the
119 program T, an SSA_NAME, is used being uninitialized. The exact
120 warning text is in MSGID and DATA is the gimple stmt with info about
121 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
122 gives which argument of the phi node to take the location from. WC
123 is the warning code. */
126 warn_uninit (enum opt_code wc
, tree t
, tree expr
, tree var
,
127 const char *gmsgid
, void *data
, location_t phiarg_loc
)
129 gimple context
= (gimple
) data
;
130 location_t location
, cfun_loc
;
131 expanded_location xloc
, floc
;
133 /* Ignore COMPLEX_EXPR as initializing only a part of a complex
134 turns in a COMPLEX_EXPR with the not initialized part being
135 set to its previous (undefined) value. */
136 if (is_gimple_assign (context
)
137 && gimple_assign_rhs_code (context
) == COMPLEX_EXPR
)
139 if (!has_undefined_value_p (t
))
142 /* TREE_NO_WARNING either means we already warned, or the front end
143 wishes to suppress the warning. */
145 && (gimple_no_warning_p (context
)
146 || (gimple_assign_single_p (context
)
147 && TREE_NO_WARNING (gimple_assign_rhs1 (context
)))))
148 || TREE_NO_WARNING (expr
))
151 if (context
!= NULL
&& gimple_has_location (context
))
152 location
= gimple_location (context
);
153 else if (phiarg_loc
!= UNKNOWN_LOCATION
)
154 location
= phiarg_loc
;
156 location
= DECL_SOURCE_LOCATION (var
);
157 location
= linemap_resolve_location (line_table
, location
,
158 LRK_SPELLING_LOCATION
,
160 cfun_loc
= DECL_SOURCE_LOCATION (cfun
->decl
);
161 xloc
= expand_location (location
);
162 floc
= expand_location (cfun_loc
);
163 if (warning_at (location
, wc
, gmsgid
, expr
))
165 TREE_NO_WARNING (expr
) = 1;
167 if (location
== DECL_SOURCE_LOCATION (var
))
169 if (xloc
.file
!= floc
.file
170 || linemap_location_before_p (line_table
,
172 || linemap_location_before_p (line_table
,
173 cfun
->function_end_locus
,
175 inform (DECL_SOURCE_LOCATION (var
), "%qD was declared here", var
);
180 warn_uninitialized_vars (bool warn_possibly_uninitialized
)
182 gimple_stmt_iterator gsi
;
185 FOR_EACH_BB_FN (bb
, cfun
)
187 bool always_executed
= dominated_by_p (CDI_POST_DOMINATORS
,
188 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
)), bb
);
189 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
191 gimple stmt
= gsi_stmt (gsi
);
196 if (is_gimple_debug (stmt
))
199 /* We only do data flow with SSA_NAMEs, so that's all we
201 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, op_iter
, SSA_OP_USE
)
203 use
= USE_FROM_PTR (use_p
);
205 warn_uninit (OPT_Wuninitialized
, use
,
206 SSA_NAME_VAR (use
), SSA_NAME_VAR (use
),
207 "%qD is used uninitialized in this function",
208 stmt
, UNKNOWN_LOCATION
);
209 else if (warn_possibly_uninitialized
)
210 warn_uninit (OPT_Wmaybe_uninitialized
, use
,
211 SSA_NAME_VAR (use
), SSA_NAME_VAR (use
),
212 "%qD may be used uninitialized in this function",
213 stmt
, UNKNOWN_LOCATION
);
216 /* For memory the only cheap thing we can do is see if we
217 have a use of the default def of the virtual operand.
218 ??? Not so cheap would be to use the alias oracle via
219 walk_aliased_vdefs, if we don't find any aliasing vdef
220 warn as is-used-uninitialized, if we don't find an aliasing
221 vdef that kills our use (stmt_kills_ref_p), warn as
222 may-be-used-uninitialized. But this walk is quadratic and
223 so must be limited which means we would miss warning
225 use
= gimple_vuse (stmt
);
227 && gimple_assign_single_p (stmt
)
228 && !gimple_vdef (stmt
)
229 && SSA_NAME_IS_DEFAULT_DEF (use
))
231 tree rhs
= gimple_assign_rhs1 (stmt
);
232 tree base
= get_base_address (rhs
);
234 /* Do not warn if it can be initialized outside this function. */
235 if (TREE_CODE (base
) != VAR_DECL
236 || DECL_HARD_REGISTER (base
)
237 || is_global_var (base
))
241 warn_uninit (OPT_Wuninitialized
, use
,
242 gimple_assign_rhs1 (stmt
), base
,
243 "%qE is used uninitialized in this function",
244 stmt
, UNKNOWN_LOCATION
);
245 else if (warn_possibly_uninitialized
)
246 warn_uninit (OPT_Wmaybe_uninitialized
, use
,
247 gimple_assign_rhs1 (stmt
), base
,
248 "%qE may be used uninitialized in this function",
249 stmt
, UNKNOWN_LOCATION
);
257 /* Checks if the operand OPND of PHI is defined by
258 another phi with one operand defined by this PHI,
259 but the rest operands are all defined. If yes,
260 returns true to skip this operand as being
261 redundant. Can be enhanced to be more general. */
264 can_skip_redundant_opnd (tree opnd
, gimple phi
)
270 phi_def
= gimple_phi_result (phi
);
271 op_def
= SSA_NAME_DEF_STMT (opnd
);
272 if (gimple_code (op_def
) != GIMPLE_PHI
)
274 n
= gimple_phi_num_args (op_def
);
275 for (i
= 0; i
< n
; ++i
)
277 tree op
= gimple_phi_arg_def (op_def
, i
);
278 if (TREE_CODE (op
) != SSA_NAME
)
280 if (op
!= phi_def
&& uninit_undefined_value_p (op
))
287 /* Returns a bit mask holding the positions of arguments in PHI
288 that have empty (or possibly empty) definitions. */
291 compute_uninit_opnds_pos (gphi
*phi
)
294 unsigned uninit_opnds
= 0;
296 n
= gimple_phi_num_args (phi
);
297 /* Bail out for phi with too many args. */
301 for (i
= 0; i
< n
; ++i
)
303 tree op
= gimple_phi_arg_def (phi
, i
);
304 if (TREE_CODE (op
) == SSA_NAME
305 && uninit_undefined_value_p (op
)
306 && !can_skip_redundant_opnd (op
, phi
))
308 if (cfun
->has_nonlocal_label
|| cfun
->calls_setjmp
)
310 /* Ignore SSA_NAMEs that appear on abnormal edges
312 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
315 MASK_SET_BIT (uninit_opnds
, i
);
321 /* Find the immediate postdominator PDOM of the specified
322 basic block BLOCK. */
324 static inline basic_block
325 find_pdom (basic_block block
)
327 if (block
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
328 return EXIT_BLOCK_PTR_FOR_FN (cfun
);
332 = get_immediate_dominator (CDI_POST_DOMINATORS
, block
);
334 return EXIT_BLOCK_PTR_FOR_FN (cfun
);
339 /* Find the immediate DOM of the specified
340 basic block BLOCK. */
342 static inline basic_block
343 find_dom (basic_block block
)
345 if (block
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
346 return ENTRY_BLOCK_PTR_FOR_FN (cfun
);
349 basic_block bb
= get_immediate_dominator (CDI_DOMINATORS
, block
);
351 return ENTRY_BLOCK_PTR_FOR_FN (cfun
);
356 /* Returns true if BB1 is postdominating BB2 and BB1 is
357 not a loop exit bb. The loop exit bb check is simple and does
358 not cover all cases. */
361 is_non_loop_exit_postdominating (basic_block bb1
, basic_block bb2
)
363 if (!dominated_by_p (CDI_POST_DOMINATORS
, bb2
, bb1
))
366 if (single_pred_p (bb1
) && !single_succ_p (bb2
))
372 /* Find the closest postdominator of a specified BB, which is control
375 static inline basic_block
376 find_control_equiv_block (basic_block bb
)
380 pdom
= find_pdom (bb
);
382 /* Skip the postdominating bb that is also loop exit. */
383 if (!is_non_loop_exit_postdominating (pdom
, bb
))
386 if (dominated_by_p (CDI_DOMINATORS
, pdom
, bb
))
392 #define MAX_NUM_CHAINS 8
393 #define MAX_CHAIN_LEN 5
394 #define MAX_POSTDOM_CHECK 8
395 #define MAX_SWITCH_CASES 40
397 /* Computes the control dependence chains (paths of edges)
398 for DEP_BB up to the dominating basic block BB (the head node of a
399 chain should be dominated by it). CD_CHAINS is pointer to an
400 array holding the result chains. CUR_CD_CHAIN is the current
401 chain being computed. *NUM_CHAINS is total number of chains. The
402 function returns true if the information is successfully computed,
403 return false if there is no control dependence or not computed. */
406 compute_control_dep_chain (basic_block bb
, basic_block dep_bb
,
407 vec
<edge
> *cd_chains
,
409 vec
<edge
> *cur_cd_chain
,
415 bool found_cd_chain
= false;
416 size_t cur_chain_len
= 0;
418 if (EDGE_COUNT (bb
->succs
) < 2)
421 if (*num_calls
> PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS
))
425 /* Could use a set instead. */
426 cur_chain_len
= cur_cd_chain
->length ();
427 if (cur_chain_len
> MAX_CHAIN_LEN
)
430 for (i
= 0; i
< cur_chain_len
; i
++)
432 edge e
= (*cur_cd_chain
)[i
];
433 /* Cycle detected. */
438 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
441 int post_dom_check
= 0;
442 if (e
->flags
& (EDGE_FAKE
| EDGE_ABNORMAL
))
446 cur_cd_chain
->safe_push (e
);
447 while (!is_non_loop_exit_postdominating (cd_bb
, bb
))
451 /* Found a direct control dependence. */
452 if (*num_chains
< MAX_NUM_CHAINS
)
454 cd_chains
[*num_chains
] = cur_cd_chain
->copy ();
457 found_cd_chain
= true;
458 /* Check path from next edge. */
462 /* Now check if DEP_BB is indirectly control dependent on BB. */
463 if (compute_control_dep_chain (cd_bb
, dep_bb
, cd_chains
,
464 num_chains
, cur_cd_chain
, num_calls
))
466 found_cd_chain
= true;
470 cd_bb
= find_pdom (cd_bb
);
472 if (cd_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
) || post_dom_check
>
476 cur_cd_chain
->pop ();
477 gcc_assert (cur_cd_chain
->length () == cur_chain_len
);
479 gcc_assert (cur_cd_chain
->length () == cur_chain_len
);
481 return found_cd_chain
;
484 /* The type to represent a simple predicate */
490 enum tree_code cond_code
;
494 /* The type to represent a sequence of predicates grouped
495 with .AND. operation. */
497 typedef vec
<pred_info
, va_heap
, vl_ptr
> pred_chain
;
499 /* The type to represent a sequence of pred_chains grouped
500 with .OR. operation. */
502 typedef vec
<pred_chain
, va_heap
, vl_ptr
> pred_chain_union
;
504 /* Converts the chains of control dependence edges into a set of
505 predicates. A control dependence chain is represented by a vector
506 edges. DEP_CHAINS points to an array of dependence chains.
507 NUM_CHAINS is the size of the chain array. One edge in a dependence
508 chain is mapped to predicate expression represented by pred_info
509 type. One dependence chain is converted to a composite predicate that
510 is the result of AND operation of pred_info mapped to each edge.
511 A composite predicate is presented by a vector of pred_info. On
512 return, *PREDS points to the resulting array of composite predicates.
513 *NUM_PREDS is the number of composite predictes. */
516 convert_control_dep_chain_into_preds (vec
<edge
> *dep_chains
,
518 pred_chain_union
*preds
)
520 bool has_valid_pred
= false;
522 if (num_chains
== 0 || num_chains
>= MAX_NUM_CHAINS
)
525 /* Now convert the control dep chain into a set
527 preds
->reserve (num_chains
);
529 for (i
= 0; i
< num_chains
; i
++)
531 vec
<edge
> one_cd_chain
= dep_chains
[i
];
533 has_valid_pred
= false;
534 pred_chain t_chain
= vNULL
;
535 for (j
= 0; j
< one_cd_chain
.length (); j
++)
538 gimple_stmt_iterator gsi
;
539 basic_block guard_bb
;
545 gsi
= gsi_last_bb (guard_bb
);
548 has_valid_pred
= false;
551 cond_stmt
= gsi_stmt (gsi
);
552 if (is_gimple_call (cond_stmt
)
553 && EDGE_COUNT (e
->src
->succs
) >= 2)
555 /* Ignore EH edge. Can add assertion
556 on the other edge's flag. */
559 /* Skip if there is essentially one succesor. */
560 if (EDGE_COUNT (e
->src
->succs
) == 2)
566 FOR_EACH_EDGE (e1
, ei1
, e
->src
->succs
)
568 if (EDGE_COUNT (e1
->dest
->succs
) == 0)
577 if (gimple_code (cond_stmt
) == GIMPLE_COND
)
579 one_pred
.pred_lhs
= gimple_cond_lhs (cond_stmt
);
580 one_pred
.pred_rhs
= gimple_cond_rhs (cond_stmt
);
581 one_pred
.cond_code
= gimple_cond_code (cond_stmt
);
582 one_pred
.invert
= !!(e
->flags
& EDGE_FALSE_VALUE
);
583 t_chain
.safe_push (one_pred
);
584 has_valid_pred
= true;
586 else if (gswitch
*gs
= dyn_cast
<gswitch
*> (cond_stmt
))
588 /* Avoid quadratic behavior. */
589 if (gimple_switch_num_labels (gs
) > MAX_SWITCH_CASES
)
591 has_valid_pred
= false;
594 /* Find the case label. */
597 for (idx
= 0; idx
< gimple_switch_num_labels (gs
); ++idx
)
599 tree tl
= gimple_switch_label (gs
, idx
);
600 if (e
->dest
== label_to_block (CASE_LABEL (tl
)))
611 /* If more than one label reaches this block or the case
612 label doesn't have a single value (like the default one)
616 || (CASE_HIGH (l
) && !operand_equal_p (CASE_LOW (l
),
619 has_valid_pred
= false;
622 one_pred
.pred_lhs
= gimple_switch_index (gs
);
623 one_pred
.pred_rhs
= CASE_LOW (l
);
624 one_pred
.cond_code
= EQ_EXPR
;
625 one_pred
.invert
= false;
626 t_chain
.safe_push (one_pred
);
627 has_valid_pred
= true;
631 has_valid_pred
= false;
639 preds
->safe_push (t_chain
);
641 return has_valid_pred
;
644 /* Computes all control dependence chains for USE_BB. The control
645 dependence chains are then converted to an array of composite
646 predicates pointed to by PREDS. PHI_BB is the basic block of
647 the phi whose result is used in USE_BB. */
650 find_predicates (pred_chain_union
*preds
,
654 size_t num_chains
= 0, i
;
656 vec
<edge
> dep_chains
[MAX_NUM_CHAINS
];
657 auto_vec
<edge
, MAX_CHAIN_LEN
+ 1> cur_chain
;
658 bool has_valid_pred
= false;
659 basic_block cd_root
= 0;
661 /* First find the closest bb that is control equivalent to PHI_BB
662 that also dominates USE_BB. */
664 while (dominated_by_p (CDI_DOMINATORS
, use_bb
, cd_root
))
666 basic_block ctrl_eq_bb
= find_control_equiv_block (cd_root
);
667 if (ctrl_eq_bb
&& dominated_by_p (CDI_DOMINATORS
, use_bb
, ctrl_eq_bb
))
668 cd_root
= ctrl_eq_bb
;
673 compute_control_dep_chain (cd_root
, use_bb
, dep_chains
, &num_chains
,
674 &cur_chain
, &num_calls
);
677 = convert_control_dep_chain_into_preds (dep_chains
, num_chains
, preds
);
678 for (i
= 0; i
< num_chains
; i
++)
679 dep_chains
[i
].release ();
680 return has_valid_pred
;
683 /* Computes the set of incoming edges of PHI that have non empty
684 definitions of a phi chain. The collection will be done
685 recursively on operands that are defined by phis. CD_ROOT
686 is the control dependence root. *EDGES holds the result, and
687 VISITED_PHIS is a pointer set for detecting cycles. */
690 collect_phi_def_edges (gphi
*phi
, basic_block cd_root
,
692 hash_set
<gimple
> *visited_phis
)
698 if (visited_phis
->add (phi
))
701 n
= gimple_phi_num_args (phi
);
702 for (i
= 0; i
< n
; i
++)
704 opnd_edge
= gimple_phi_arg_edge (phi
, i
);
705 opnd
= gimple_phi_arg_def (phi
, i
);
707 if (TREE_CODE (opnd
) != SSA_NAME
)
709 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
711 fprintf (dump_file
, "\n[CHECK] Found def edge %d in ", (int)i
);
712 print_gimple_stmt (dump_file
, phi
, 0, 0);
714 edges
->safe_push (opnd_edge
);
718 gimple def
= SSA_NAME_DEF_STMT (opnd
);
720 if (gimple_code (def
) == GIMPLE_PHI
721 && dominated_by_p (CDI_DOMINATORS
,
722 gimple_bb (def
), cd_root
))
723 collect_phi_def_edges (as_a
<gphi
*> (def
), cd_root
, edges
,
725 else if (!uninit_undefined_value_p (opnd
))
727 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
729 fprintf (dump_file
, "\n[CHECK] Found def edge %d in ", (int)i
);
730 print_gimple_stmt (dump_file
, phi
, 0, 0);
732 edges
->safe_push (opnd_edge
);
738 /* For each use edge of PHI, computes all control dependence chains.
739 The control dependence chains are then converted to an array of
740 composite predicates pointed to by PREDS. */
743 find_def_preds (pred_chain_union
*preds
, gphi
*phi
)
745 size_t num_chains
= 0, i
, n
;
746 vec
<edge
> dep_chains
[MAX_NUM_CHAINS
];
747 auto_vec
<edge
, MAX_CHAIN_LEN
+ 1> cur_chain
;
748 vec
<edge
> def_edges
= vNULL
;
749 bool has_valid_pred
= false;
750 basic_block phi_bb
, cd_root
= 0;
752 phi_bb
= gimple_bb (phi
);
753 /* First find the closest dominating bb to be
754 the control dependence root */
755 cd_root
= find_dom (phi_bb
);
759 hash_set
<gimple
> visited_phis
;
760 collect_phi_def_edges (phi
, cd_root
, &def_edges
, &visited_phis
);
762 n
= def_edges
.length ();
766 for (i
= 0; i
< n
; i
++)
772 opnd_edge
= def_edges
[i
];
773 prev_nc
= num_chains
;
774 compute_control_dep_chain (cd_root
, opnd_edge
->src
, dep_chains
,
775 &num_chains
, &cur_chain
, &num_calls
);
777 /* Now update the newly added chains with
778 the phi operand edge: */
779 if (EDGE_COUNT (opnd_edge
->src
->succs
) > 1)
781 if (prev_nc
== num_chains
&& num_chains
< MAX_NUM_CHAINS
)
782 dep_chains
[num_chains
++] = vNULL
;
783 for (j
= prev_nc
; j
< num_chains
; j
++)
784 dep_chains
[j
].safe_push (opnd_edge
);
789 = convert_control_dep_chain_into_preds (dep_chains
, num_chains
, preds
);
790 for (i
= 0; i
< num_chains
; i
++)
791 dep_chains
[i
].release ();
792 return has_valid_pred
;
795 /* Dumps the predicates (PREDS) for USESTMT. */
798 dump_predicates (gimple usestmt
, pred_chain_union preds
,
802 pred_chain one_pred_chain
= vNULL
;
803 fprintf (dump_file
, "%s", msg
);
804 print_gimple_stmt (dump_file
, usestmt
, 0, 0);
805 fprintf (dump_file
, "is guarded by :\n\n");
806 size_t num_preds
= preds
.length ();
807 /* Do some dumping here: */
808 for (i
= 0; i
< num_preds
; i
++)
812 one_pred_chain
= preds
[i
];
813 np
= one_pred_chain
.length ();
815 for (j
= 0; j
< np
; j
++)
817 pred_info one_pred
= one_pred_chain
[j
];
819 fprintf (dump_file
, " (.NOT.) ");
820 print_generic_expr (dump_file
, one_pred
.pred_lhs
, 0);
821 fprintf (dump_file
, " %s ", op_symbol_code (one_pred
.cond_code
));
822 print_generic_expr (dump_file
, one_pred
.pred_rhs
, 0);
824 fprintf (dump_file
, " (.AND.) ");
826 fprintf (dump_file
, "\n");
828 if (i
< num_preds
- 1)
829 fprintf (dump_file
, "(.OR.)\n");
831 fprintf (dump_file
, "\n\n");
835 /* Destroys the predicate set *PREDS. */
838 destroy_predicate_vecs (pred_chain_union preds
)
842 size_t n
= preds
.length ();
843 for (i
= 0; i
< n
; i
++)
849 /* Computes the 'normalized' conditional code with operand
850 swapping and condition inversion. */
852 static enum tree_code
853 get_cmp_code (enum tree_code orig_cmp_code
,
854 bool swap_cond
, bool invert
)
856 enum tree_code tc
= orig_cmp_code
;
859 tc
= swap_tree_comparison (orig_cmp_code
);
861 tc
= invert_tree_comparison (tc
, false);
878 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
879 all values in the range satisfies (x CMPC BOUNDARY) == true. */
882 is_value_included_in (tree val
, tree boundary
, enum tree_code cmpc
)
884 bool inverted
= false;
888 /* Only handle integer constant here. */
889 if (TREE_CODE (val
) != INTEGER_CST
890 || TREE_CODE (boundary
) != INTEGER_CST
)
893 is_unsigned
= TYPE_UNSIGNED (TREE_TYPE (val
));
895 if (cmpc
== GE_EXPR
|| cmpc
== GT_EXPR
898 cmpc
= invert_tree_comparison (cmpc
, false);
905 result
= tree_int_cst_equal (val
, boundary
);
906 else if (cmpc
== LT_EXPR
)
907 result
= tree_int_cst_lt (val
, boundary
);
910 gcc_assert (cmpc
== LE_EXPR
);
911 result
= tree_int_cst_le (val
, boundary
);
917 result
= tree_int_cst_equal (val
, boundary
);
918 else if (cmpc
== LT_EXPR
)
919 result
= tree_int_cst_lt (val
, boundary
);
922 gcc_assert (cmpc
== LE_EXPR
);
923 result
= (tree_int_cst_equal (val
, boundary
)
924 || tree_int_cst_lt (val
, boundary
));
934 /* Returns true if PRED is common among all the predicate
935 chains (PREDS) (and therefore can be factored out).
936 NUM_PRED_CHAIN is the size of array PREDS. */
939 find_matching_predicate_in_rest_chains (pred_info pred
,
940 pred_chain_union preds
,
941 size_t num_pred_chains
)
946 if (num_pred_chains
== 1)
949 for (i
= 1; i
< num_pred_chains
; i
++)
952 pred_chain one_chain
= preds
[i
];
953 n
= one_chain
.length ();
954 for (j
= 0; j
< n
; j
++)
956 pred_info pred2
= one_chain
[j
];
957 /* Can relax the condition comparison to not
958 use address comparison. However, the most common
959 case is that multiple control dependent paths share
960 a common path prefix, so address comparison should
963 if (operand_equal_p (pred2
.pred_lhs
, pred
.pred_lhs
, 0)
964 && operand_equal_p (pred2
.pred_rhs
, pred
.pred_rhs
, 0)
965 && pred2
.invert
== pred
.invert
)
977 /* Forward declaration. */
979 is_use_properly_guarded (gimple use_stmt
,
982 unsigned uninit_opnds
,
983 pred_chain_union
*def_preds
,
984 hash_set
<gphi
*> *visited_phis
);
986 /* Returns true if all uninitialized opnds are pruned. Returns false
987 otherwise. PHI is the phi node with uninitialized operands,
988 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
989 FLAG_DEF is the statement defining the flag guarding the use of the
990 PHI output, BOUNDARY_CST is the const value used in the predicate
991 associated with the flag, CMP_CODE is the comparison code used in
992 the predicate, VISITED_PHIS is the pointer set of phis visited, and
993 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
999 flag_1 = phi <0, 1> // (1)
1000 var_1 = phi <undef, some_val>
1004 flag_2 = phi <0, flag_1, flag_1> // (2)
1005 var_2 = phi <undef, var_1, var_1>
1012 Because some flag arg in (1) is not constant, if we do not look into the
1013 flag phis recursively, it is conservatively treated as unknown and var_1
1014 is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
1015 a false warning will be emitted. Checking recursively into (1), the compiler can
1016 find out that only some_val (which is defined) can flow into (3) which is OK.
1021 prune_uninit_phi_opnds_in_unrealizable_paths (gphi
*phi
,
1022 unsigned uninit_opnds
,
1025 enum tree_code cmp_code
,
1026 hash_set
<gphi
*> *visited_phis
,
1027 bitmap
*visited_flag_phis
)
1031 for (i
= 0; i
< MIN (32, gimple_phi_num_args (flag_def
)); i
++)
1035 if (!MASK_TEST_BIT (uninit_opnds
, i
))
1038 flag_arg
= gimple_phi_arg_def (flag_def
, i
);
1039 if (!is_gimple_constant (flag_arg
))
1041 gphi
*flag_arg_def
, *phi_arg_def
;
1043 unsigned uninit_opnds_arg_phi
;
1045 if (TREE_CODE (flag_arg
) != SSA_NAME
)
1047 flag_arg_def
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (flag_arg
));
1051 phi_arg
= gimple_phi_arg_def (phi
, i
);
1052 if (TREE_CODE (phi_arg
) != SSA_NAME
)
1055 phi_arg_def
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (phi_arg
));
1059 if (gimple_bb (phi_arg_def
) != gimple_bb (flag_arg_def
))
1062 if (!*visited_flag_phis
)
1063 *visited_flag_phis
= BITMAP_ALLOC (NULL
);
1065 if (bitmap_bit_p (*visited_flag_phis
,
1066 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def
))))
1069 bitmap_set_bit (*visited_flag_phis
,
1070 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def
)));
1072 /* Now recursively prune the uninitialized phi args. */
1073 uninit_opnds_arg_phi
= compute_uninit_opnds_pos (phi_arg_def
);
1074 if (!prune_uninit_phi_opnds_in_unrealizable_paths
1075 (phi_arg_def
, uninit_opnds_arg_phi
, flag_arg_def
,
1076 boundary_cst
, cmp_code
, visited_phis
, visited_flag_phis
))
1079 bitmap_clear_bit (*visited_flag_phis
,
1080 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def
)));
1084 /* Now check if the constant is in the guarded range. */
1085 if (is_value_included_in (flag_arg
, boundary_cst
, cmp_code
))
1090 /* Now that we know that this undefined edge is not
1091 pruned. If the operand is defined by another phi,
1092 we can further prune the incoming edges of that
1093 phi by checking the predicates of this operands. */
1095 opnd
= gimple_phi_arg_def (phi
, i
);
1096 opnd_def
= SSA_NAME_DEF_STMT (opnd
);
1097 if (gphi
*opnd_def_phi
= dyn_cast
<gphi
*> (opnd_def
))
1100 unsigned uninit_opnds2
1101 = compute_uninit_opnds_pos (opnd_def_phi
);
1102 pred_chain_union def_preds
= vNULL
;
1104 gcc_assert (!MASK_EMPTY (uninit_opnds2
));
1105 opnd_edge
= gimple_phi_arg_edge (phi
, i
);
1106 ok
= is_use_properly_guarded (phi
,
1112 destroy_predicate_vecs (def_preds
);
1124 /* A helper function that determines if the predicate set
1125 of the use is not overlapping with that of the uninit paths.
1126 The most common senario of guarded use is in Example 1:
1139 The real world examples are usually more complicated, but similar
1140 and usually result from inlining:
1142 bool init_func (int * x)
1161 Another possible use scenario is in the following trivial example:
1173 Predicate analysis needs to compute the composite predicate:
1175 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1176 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1177 (the predicate chain for phi operand defs can be computed
1178 starting from a bb that is control equivalent to the phi's
1179 bb and is dominating the operand def.)
1181 and check overlapping:
1182 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1185 This implementation provides framework that can handle
1186 scenarios. (Note that many simple cases are handled properly
1187 without the predicate analysis -- this is due to jump threading
1188 transformation which eliminates the merge point thus makes
1189 path sensitive analysis unnecessary.)
1191 NUM_PREDS is the number is the number predicate chains, PREDS is
1192 the array of chains, PHI is the phi node whose incoming (undefined)
1193 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
1194 uninit operand positions. VISITED_PHIS is the pointer set of phi
1195 stmts being checked. */
1199 use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds
,
1200 gphi
*phi
, unsigned uninit_opnds
,
1201 hash_set
<gphi
*> *visited_phis
)
1204 gimple flag_def
= 0;
1205 tree boundary_cst
= 0;
1206 enum tree_code cmp_code
;
1207 bool swap_cond
= false;
1208 bool invert
= false;
1209 pred_chain the_pred_chain
= vNULL
;
1210 bitmap visited_flag_phis
= NULL
;
1211 bool all_pruned
= false;
1212 size_t num_preds
= preds
.length ();
1214 gcc_assert (num_preds
> 0);
1215 /* Find within the common prefix of multiple predicate chains
1216 a predicate that is a comparison of a flag variable against
1218 the_pred_chain
= preds
[0];
1219 n
= the_pred_chain
.length ();
1220 for (i
= 0; i
< n
; i
++)
1222 tree cond_lhs
, cond_rhs
, flag
= 0;
1224 pred_info the_pred
= the_pred_chain
[i
];
1226 invert
= the_pred
.invert
;
1227 cond_lhs
= the_pred
.pred_lhs
;
1228 cond_rhs
= the_pred
.pred_rhs
;
1229 cmp_code
= the_pred
.cond_code
;
1231 if (cond_lhs
!= NULL_TREE
&& TREE_CODE (cond_lhs
) == SSA_NAME
1232 && cond_rhs
!= NULL_TREE
&& is_gimple_constant (cond_rhs
))
1234 boundary_cst
= cond_rhs
;
1237 else if (cond_rhs
!= NULL_TREE
&& TREE_CODE (cond_rhs
) == SSA_NAME
1238 && cond_lhs
!= NULL_TREE
&& is_gimple_constant (cond_lhs
))
1240 boundary_cst
= cond_lhs
;
1248 flag_def
= SSA_NAME_DEF_STMT (flag
);
1253 if ((gimple_code (flag_def
) == GIMPLE_PHI
)
1254 && (gimple_bb (flag_def
) == gimple_bb (phi
))
1255 && find_matching_predicate_in_rest_chains (the_pred
, preds
,
1265 /* Now check all the uninit incoming edge has a constant flag value
1266 that is in conflict with the use guard/predicate. */
1267 cmp_code
= get_cmp_code (cmp_code
, swap_cond
, invert
);
1269 if (cmp_code
== ERROR_MARK
)
1272 all_pruned
= prune_uninit_phi_opnds_in_unrealizable_paths (phi
,
1274 as_a
<gphi
*> (flag_def
),
1278 &visited_flag_phis
);
1280 if (visited_flag_phis
)
1281 BITMAP_FREE (visited_flag_phis
);
1286 /* The helper function returns true if two predicates X1 and X2
1287 are equivalent. It assumes the expressions have already
1288 properly re-associated. */
1291 pred_equal_p (pred_info x1
, pred_info x2
)
1293 enum tree_code c1
, c2
;
1294 if (!operand_equal_p (x1
.pred_lhs
, x2
.pred_lhs
, 0)
1295 || !operand_equal_p (x1
.pred_rhs
, x2
.pred_rhs
, 0))
1299 if (x1
.invert
!= x2
.invert
)
1300 c2
= invert_tree_comparison (x2
.cond_code
, false);
1307 /* Returns true if the predication is testing !=. */
1310 is_neq_relop_p (pred_info pred
)
1313 return (pred
.cond_code
== NE_EXPR
&& !pred
.invert
)
1314 || (pred
.cond_code
== EQ_EXPR
&& pred
.invert
);
1317 /* Returns true if pred is of the form X != 0. */
1320 is_neq_zero_form_p (pred_info pred
)
1322 if (!is_neq_relop_p (pred
) || !integer_zerop (pred
.pred_rhs
)
1323 || TREE_CODE (pred
.pred_lhs
) != SSA_NAME
)
1328 /* The helper function returns true if two predicates X1
1329 is equivalent to X2 != 0. */
1332 pred_expr_equal_p (pred_info x1
, tree x2
)
1334 if (!is_neq_zero_form_p (x1
))
1337 return operand_equal_p (x1
.pred_lhs
, x2
, 0);
1340 /* Returns true of the domain of single predicate expression
1341 EXPR1 is a subset of that of EXPR2. Returns false if it
1342 can not be proved. */
1345 is_pred_expr_subset_of (pred_info expr1
, pred_info expr2
)
1347 enum tree_code code1
, code2
;
1349 if (pred_equal_p (expr1
, expr2
))
1352 if ((TREE_CODE (expr1
.pred_rhs
) != INTEGER_CST
)
1353 || (TREE_CODE (expr2
.pred_rhs
) != INTEGER_CST
))
1356 if (!operand_equal_p (expr1
.pred_lhs
, expr2
.pred_lhs
, 0))
1359 code1
= expr1
.cond_code
;
1361 code1
= invert_tree_comparison (code1
, false);
1362 code2
= expr2
.cond_code
;
1364 code2
= invert_tree_comparison (code2
, false);
1366 if ((code1
== EQ_EXPR
|| code1
== BIT_AND_EXPR
)
1367 && code2
== BIT_AND_EXPR
)
1368 return wi::eq_p (expr1
.pred_rhs
,
1369 wi::bit_and (expr1
.pred_rhs
, expr2
.pred_rhs
));
1371 if (code1
!= code2
&& code2
!= NE_EXPR
)
1374 if (is_value_included_in (expr1
.pred_rhs
, expr2
.pred_rhs
, code2
))
1380 /* Returns true if the domain of PRED1 is a subset
1381 of that of PRED2. Returns false if it can not be proved so. */
1384 is_pred_chain_subset_of (pred_chain pred1
,
1387 size_t np1
, np2
, i1
, i2
;
1389 np1
= pred1
.length ();
1390 np2
= pred2
.length ();
1392 for (i2
= 0; i2
< np2
; i2
++)
1395 pred_info info2
= pred2
[i2
];
1396 for (i1
= 0; i1
< np1
; i1
++)
1398 pred_info info1
= pred1
[i1
];
1399 if (is_pred_expr_subset_of (info1
, info2
))
1411 /* Returns true if the domain defined by
1412 one pred chain ONE_PRED is a subset of the domain
1413 of *PREDS. It returns false if ONE_PRED's domain is
1414 not a subset of any of the sub-domains of PREDS
1415 (corresponding to each individual chains in it), even
1416 though it may be still be a subset of whole domain
1417 of PREDS which is the union (ORed) of all its subdomains.
1418 In other words, the result is conservative. */
1421 is_included_in (pred_chain one_pred
, pred_chain_union preds
)
1424 size_t n
= preds
.length ();
1426 for (i
= 0; i
< n
; i
++)
1428 if (is_pred_chain_subset_of (one_pred
, preds
[i
]))
1435 /* Compares two predicate sets PREDS1 and PREDS2 and returns
1436 true if the domain defined by PREDS1 is a superset
1437 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1438 PREDS2 respectively. The implementation chooses not to build
1439 generic trees (and relying on the folding capability of the
1440 compiler), but instead performs brute force comparison of
1441 individual predicate chains (won't be a compile time problem
1442 as the chains are pretty short). When the function returns
1443 false, it does not necessarily mean *PREDS1 is not a superset
1444 of *PREDS2, but mean it may not be so since the analysis can
1445 not prove it. In such cases, false warnings may still be
1449 is_superset_of (pred_chain_union preds1
, pred_chain_union preds2
)
1452 pred_chain one_pred_chain
= vNULL
;
1454 n2
= preds2
.length ();
1456 for (i
= 0; i
< n2
; i
++)
1458 one_pred_chain
= preds2
[i
];
1459 if (!is_included_in (one_pred_chain
, preds1
))
1466 /* Returns true if TC is AND or OR. */
1469 is_and_or_or_p (enum tree_code tc
, tree type
)
1471 return (tc
== BIT_IOR_EXPR
1472 || (tc
== BIT_AND_EXPR
1473 && (type
== 0 || TREE_CODE (type
) == BOOLEAN_TYPE
)));
1476 /* Returns true if X1 is the negate of X2. */
1479 pred_neg_p (pred_info x1
, pred_info x2
)
1481 enum tree_code c1
, c2
;
1482 if (!operand_equal_p (x1
.pred_lhs
, x2
.pred_lhs
, 0)
1483 || !operand_equal_p (x1
.pred_rhs
, x2
.pred_rhs
, 0))
1487 if (x1
.invert
== x2
.invert
)
1488 c2
= invert_tree_comparison (x2
.cond_code
, false);
1495 /* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1496 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1497 3) X OR (!X AND Y) is equivalent to (X OR Y);
1498 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1500 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1503 PREDS is the predicate chains, and N is the number of chains. */
1505 /* Helper function to implement rule 1 above. ONE_CHAIN is
1506 the AND predication to be simplified. */
1509 simplify_pred (pred_chain
*one_chain
)
1512 bool simplified
= false;
1513 pred_chain s_chain
= vNULL
;
1515 n
= one_chain
->length ();
1517 for (i
= 0; i
< n
; i
++)
1519 pred_info
*a_pred
= &(*one_chain
)[i
];
1521 if (!a_pred
->pred_lhs
)
1523 if (!is_neq_zero_form_p (*a_pred
))
1526 gimple def_stmt
= SSA_NAME_DEF_STMT (a_pred
->pred_lhs
);
1527 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1529 if (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
)
1531 for (j
= 0; j
< n
; j
++)
1533 pred_info
*b_pred
= &(*one_chain
)[j
];
1535 if (!b_pred
->pred_lhs
)
1537 if (!is_neq_zero_form_p (*b_pred
))
1540 if (pred_expr_equal_p (*b_pred
, gimple_assign_rhs1 (def_stmt
))
1541 || pred_expr_equal_p (*b_pred
, gimple_assign_rhs2 (def_stmt
)))
1543 /* Mark a_pred for removal. */
1544 a_pred
->pred_lhs
= NULL
;
1545 a_pred
->pred_rhs
= NULL
;
1556 for (i
= 0; i
< n
; i
++)
1558 pred_info
*a_pred
= &(*one_chain
)[i
];
1559 if (!a_pred
->pred_lhs
)
1561 s_chain
.safe_push (*a_pred
);
1564 one_chain
->release ();
1565 *one_chain
= s_chain
;
1568 /* The helper function implements the rule 2 for the
1571 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1574 simplify_preds_2 (pred_chain_union
*preds
)
1577 bool simplified
= false;
1578 pred_chain_union s_preds
= vNULL
;
1580 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1581 (X AND Y) OR (X AND !Y) is equivalent to X. */
1583 n
= preds
->length ();
1584 for (i
= 0; i
< n
; i
++)
1587 pred_chain
*a_chain
= &(*preds
)[i
];
1589 if (a_chain
->length () != 2)
1595 for (j
= 0; j
< n
; j
++)
1597 pred_chain
*b_chain
;
1603 b_chain
= &(*preds
)[j
];
1604 if (b_chain
->length () != 2)
1610 if (pred_equal_p (x
, x2
) && pred_neg_p (y
, y2
))
1613 a_chain
->release ();
1614 b_chain
->release ();
1615 b_chain
->safe_push (x
);
1619 if (pred_neg_p (x
, x2
) && pred_equal_p (y
, y2
))
1622 a_chain
->release ();
1623 b_chain
->release ();
1624 b_chain
->safe_push (y
);
1630 /* Now clean up the chain. */
1633 for (i
= 0; i
< n
; i
++)
1635 if ((*preds
)[i
].is_empty ())
1637 s_preds
.safe_push ((*preds
)[i
]);
1647 /* The helper function implements the rule 2 for the
1650 3) x OR (!x AND y) is equivalent to x OR y. */
1653 simplify_preds_3 (pred_chain_union
*preds
)
1656 bool simplified
= false;
1658 /* Now iteratively simplify X OR (!X AND Z ..)
1659 into X OR (Z ...). */
1661 n
= preds
->length ();
1665 for (i
= 0; i
< n
; i
++)
1668 pred_chain
*a_chain
= &(*preds
)[i
];
1670 if (a_chain
->length () != 1)
1675 for (j
= 0; j
< n
; j
++)
1677 pred_chain
*b_chain
;
1684 b_chain
= &(*preds
)[j
];
1685 if (b_chain
->length () < 2)
1688 for (k
= 0; k
< b_chain
->length (); k
++)
1691 if (pred_neg_p (x
, x2
))
1693 b_chain
->unordered_remove (k
);
1703 /* The helper function implements the rule 4 for the
1706 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1707 (x != 0 ANd y != 0). */
1710 simplify_preds_4 (pred_chain_union
*preds
)
1713 bool simplified
= false;
1714 pred_chain_union s_preds
= vNULL
;
1717 n
= preds
->length ();
1718 for (i
= 0; i
< n
; i
++)
1721 pred_chain
*a_chain
= &(*preds
)[i
];
1723 if (a_chain
->length () != 1)
1728 if (!is_neq_zero_form_p (z
))
1731 def_stmt
= SSA_NAME_DEF_STMT (z
.pred_lhs
);
1732 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1735 if (gimple_assign_rhs_code (def_stmt
) != BIT_AND_EXPR
)
1738 for (j
= 0; j
< n
; j
++)
1740 pred_chain
*b_chain
;
1746 b_chain
= &(*preds
)[j
];
1747 if (b_chain
->length () != 2)
1752 if (!is_neq_zero_form_p (x2
)
1753 || !is_neq_zero_form_p (y2
))
1756 if ((pred_expr_equal_p (x2
, gimple_assign_rhs1 (def_stmt
))
1757 && pred_expr_equal_p (y2
, gimple_assign_rhs2 (def_stmt
)))
1758 || (pred_expr_equal_p (x2
, gimple_assign_rhs2 (def_stmt
))
1759 && pred_expr_equal_p (y2
, gimple_assign_rhs1 (def_stmt
))))
1762 a_chain
->release ();
1768 /* Now clean up the chain. */
1771 for (i
= 0; i
< n
; i
++)
1773 if ((*preds
)[i
].is_empty ())
1775 s_preds
.safe_push ((*preds
)[i
]);
1786 /* This function simplifies predicates in PREDS. */
1789 simplify_preds (pred_chain_union
*preds
, gimple use_or_def
, bool is_use
)
1792 bool changed
= false;
1794 if (dump_file
&& dump_flags
& TDF_DETAILS
)
1796 fprintf (dump_file
, "[BEFORE SIMPLICATION -- ");
1797 dump_predicates (use_or_def
, *preds
, is_use
? "[USE]:\n" : "[DEF]:\n");
1800 for (i
= 0; i
< preds
->length (); i
++)
1801 simplify_pred (&(*preds
)[i
]);
1803 n
= preds
->length ();
1810 if (simplify_preds_2 (preds
))
1813 /* Now iteratively simplify X OR (!X AND Z ..)
1814 into X OR (Z ...). */
1815 if (simplify_preds_3 (preds
))
1818 if (simplify_preds_4 (preds
))
1826 /* This is a helper function which attempts to normalize predicate chains
1827 by following UD chains. It basically builds up a big tree of either IOR
1828 operations or AND operations, and convert the IOR tree into a
1829 pred_chain_union or BIT_AND tree into a pred_chain.
1839 then _t != 0 will be normalized into a pred_chain_union
1841 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1851 then _t != 0 will be normalized into a pred_chain:
1852 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1856 /* This is a helper function that stores a PRED into NORM_PREDS. */
1859 push_pred (pred_chain_union
*norm_preds
, pred_info pred
)
1861 pred_chain pred_chain
= vNULL
;
1862 pred_chain
.safe_push (pred
);
1863 norm_preds
->safe_push (pred_chain
);
1866 /* A helper function that creates a predicate of the form
1867 OP != 0 and push it WORK_LIST. */
1870 push_to_worklist (tree op
, vec
<pred_info
, va_heap
, vl_ptr
> *work_list
,
1871 hash_set
<tree
> *mark_set
)
1873 if (mark_set
->contains (op
))
1878 arg_pred
.pred_lhs
= op
;
1879 arg_pred
.pred_rhs
= integer_zero_node
;
1880 arg_pred
.cond_code
= NE_EXPR
;
1881 arg_pred
.invert
= false;
1882 work_list
->safe_push (arg_pred
);
1885 /* A helper that generates a pred_info from a gimple assignment
1886 CMP_ASSIGN with comparison rhs. */
1889 get_pred_info_from_cmp (gimple cmp_assign
)
1892 n_pred
.pred_lhs
= gimple_assign_rhs1 (cmp_assign
);
1893 n_pred
.pred_rhs
= gimple_assign_rhs2 (cmp_assign
);
1894 n_pred
.cond_code
= gimple_assign_rhs_code (cmp_assign
);
1895 n_pred
.invert
= false;
1899 /* Returns true if the PHI is a degenerated phi with
1900 all args with the same value (relop). In that case, *PRED
1901 will be updated to that value. */
1904 is_degenerated_phi (gimple phi
, pred_info
*pred_p
)
1911 n
= gimple_phi_num_args (phi
);
1912 op0
= gimple_phi_arg_def (phi
, 0);
1914 if (TREE_CODE (op0
) != SSA_NAME
)
1917 def0
= SSA_NAME_DEF_STMT (op0
);
1918 if (gimple_code (def0
) != GIMPLE_ASSIGN
)
1920 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0
))
1923 pred0
= get_pred_info_from_cmp (def0
);
1925 for (i
= 1; i
< n
; ++i
)
1929 tree op
= gimple_phi_arg_def (phi
, i
);
1931 if (TREE_CODE (op
) != SSA_NAME
)
1934 def
= SSA_NAME_DEF_STMT (op
);
1935 if (gimple_code (def
) != GIMPLE_ASSIGN
)
1937 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def
))
1940 pred
= get_pred_info_from_cmp (def
);
1941 if (!pred_equal_p (pred
, pred0
))
1949 /* Normalize one predicate PRED
1950 1) if PRED can no longer be normlized, put it into NORM_PREDS.
1951 2) otherwise if PRED is of the form x != 0, follow x's definition
1952 and put normalized predicates into WORK_LIST. */
1955 normalize_one_pred_1 (pred_chain_union
*norm_preds
,
1956 pred_chain
*norm_chain
,
1958 enum tree_code and_or_code
,
1959 vec
<pred_info
, va_heap
, vl_ptr
> *work_list
,
1960 hash_set
<tree
> *mark_set
)
1962 if (!is_neq_zero_form_p (pred
))
1964 if (and_or_code
== BIT_IOR_EXPR
)
1965 push_pred (norm_preds
, pred
);
1967 norm_chain
->safe_push (pred
);
1971 gimple def_stmt
= SSA_NAME_DEF_STMT (pred
.pred_lhs
);
1973 if (gimple_code (def_stmt
) == GIMPLE_PHI
1974 && is_degenerated_phi (def_stmt
, &pred
))
1975 work_list
->safe_push (pred
);
1976 else if (gimple_code (def_stmt
) == GIMPLE_PHI
1977 && and_or_code
== BIT_IOR_EXPR
)
1980 n
= gimple_phi_num_args (def_stmt
);
1982 /* If we see non zero constant, we should punt. The predicate
1983 * should be one guarding the phi edge. */
1984 for (i
= 0; i
< n
; ++i
)
1986 tree op
= gimple_phi_arg_def (def_stmt
, i
);
1987 if (TREE_CODE (op
) == INTEGER_CST
&& !integer_zerop (op
))
1989 push_pred (norm_preds
, pred
);
1994 for (i
= 0; i
< n
; ++i
)
1996 tree op
= gimple_phi_arg_def (def_stmt
, i
);
1997 if (integer_zerop (op
))
2000 push_to_worklist (op
, work_list
, mark_set
);
2003 else if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
2005 if (and_or_code
== BIT_IOR_EXPR
)
2006 push_pred (norm_preds
, pred
);
2008 norm_chain
->safe_push (pred
);
2010 else if (gimple_assign_rhs_code (def_stmt
) == and_or_code
)
2012 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
2013 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt
)))
2015 /* But treat x & 3 as condition. */
2016 if (and_or_code
== BIT_AND_EXPR
)
2019 n_pred
.pred_lhs
= gimple_assign_rhs1 (def_stmt
);
2020 n_pred
.pred_rhs
= gimple_assign_rhs2 (def_stmt
);
2021 n_pred
.cond_code
= and_or_code
;
2022 n_pred
.invert
= false;
2023 norm_chain
->safe_push (n_pred
);
2028 push_to_worklist (gimple_assign_rhs1 (def_stmt
), work_list
, mark_set
);
2029 push_to_worklist (gimple_assign_rhs2 (def_stmt
), work_list
, mark_set
);
2032 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
))
2035 pred_info n_pred
= get_pred_info_from_cmp (def_stmt
);
2036 if (and_or_code
== BIT_IOR_EXPR
)
2037 push_pred (norm_preds
, n_pred
);
2039 norm_chain
->safe_push (n_pred
);
2043 if (and_or_code
== BIT_IOR_EXPR
)
2044 push_pred (norm_preds
, pred
);
2046 norm_chain
->safe_push (pred
);
2050 /* Normalize PRED and store the normalized predicates into NORM_PREDS. */
2053 normalize_one_pred (pred_chain_union
*norm_preds
,
2056 vec
<pred_info
, va_heap
, vl_ptr
> work_list
= vNULL
;
2057 enum tree_code and_or_code
= ERROR_MARK
;
2058 pred_chain norm_chain
= vNULL
;
2060 if (!is_neq_zero_form_p (pred
))
2062 push_pred (norm_preds
, pred
);
2066 gimple def_stmt
= SSA_NAME_DEF_STMT (pred
.pred_lhs
);
2067 if (gimple_code (def_stmt
) == GIMPLE_ASSIGN
)
2068 and_or_code
= gimple_assign_rhs_code (def_stmt
);
2069 if (and_or_code
!= BIT_IOR_EXPR
2070 && and_or_code
!= BIT_AND_EXPR
)
2072 if (TREE_CODE_CLASS (and_or_code
)
2075 pred_info n_pred
= get_pred_info_from_cmp (def_stmt
);
2076 push_pred (norm_preds
, n_pred
);
2079 push_pred (norm_preds
, pred
);
2083 work_list
.safe_push (pred
);
2084 hash_set
<tree
> mark_set
;
2086 while (!work_list
.is_empty ())
2088 pred_info a_pred
= work_list
.pop ();
2089 normalize_one_pred_1 (norm_preds
, &norm_chain
, a_pred
,
2090 and_or_code
, &work_list
, &mark_set
);
2092 if (and_or_code
== BIT_AND_EXPR
)
2093 norm_preds
->safe_push (norm_chain
);
2095 work_list
.release ();
2099 normalize_one_pred_chain (pred_chain_union
*norm_preds
,
2100 pred_chain one_chain
)
2102 vec
<pred_info
, va_heap
, vl_ptr
> work_list
= vNULL
;
2103 hash_set
<tree
> mark_set
;
2104 pred_chain norm_chain
= vNULL
;
2107 for (i
= 0; i
< one_chain
.length (); i
++)
2109 work_list
.safe_push (one_chain
[i
]);
2110 mark_set
.add (one_chain
[i
].pred_lhs
);
2113 while (!work_list
.is_empty ())
2115 pred_info a_pred
= work_list
.pop ();
2116 normalize_one_pred_1 (0, &norm_chain
, a_pred
,
2117 BIT_AND_EXPR
, &work_list
, &mark_set
);
2120 norm_preds
->safe_push (norm_chain
);
2121 work_list
.release ();
2124 /* Normalize predicate chains PREDS and returns the normalized one. */
2126 static pred_chain_union
2127 normalize_preds (pred_chain_union preds
, gimple use_or_def
, bool is_use
)
2129 pred_chain_union norm_preds
= vNULL
;
2130 size_t n
= preds
.length ();
2133 if (dump_file
&& dump_flags
& TDF_DETAILS
)
2135 fprintf (dump_file
, "[BEFORE NORMALIZATION --");
2136 dump_predicates (use_or_def
, preds
, is_use
? "[USE]:\n" : "[DEF]:\n");
2139 for (i
= 0; i
< n
; i
++)
2141 if (preds
[i
].length () != 1)
2142 normalize_one_pred_chain (&norm_preds
, preds
[i
]);
2145 normalize_one_pred (&norm_preds
, preds
[i
][0]);
2146 preds
[i
].release ();
2152 fprintf (dump_file
, "[AFTER NORMALIZATION -- ");
2153 dump_predicates (use_or_def
, norm_preds
, is_use
? "[USE]:\n" : "[DEF]:\n");
2161 /* Computes the predicates that guard the use and checks
2162 if the incoming paths that have empty (or possibly
2163 empty) definition can be pruned/filtered. The function returns
2164 true if it can be determined that the use of PHI's def in
2165 USE_STMT is guarded with a predicate set not overlapping with
2166 predicate sets of all runtime paths that do not have a definition.
2168 Returns false if it is not or it can not be determined. USE_BB is
2169 the bb of the use (for phi operand use, the bb is not the bb of
2170 the phi stmt, but the src bb of the operand edge).
2172 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
2173 corresponding bit in the vector is 1. VISITED_PHIS is a pointer
2174 set of phis being visited.
2176 *DEF_PREDS contains the (memoized) defining predicate chains of PHI.
2177 If *DEF_PREDS is the empty vector, the defining predicate chains of
2178 PHI will be computed and stored into *DEF_PREDS as needed.
2180 VISITED_PHIS is a pointer set of phis being visited. */
2183 is_use_properly_guarded (gimple use_stmt
,
2186 unsigned uninit_opnds
,
2187 pred_chain_union
*def_preds
,
2188 hash_set
<gphi
*> *visited_phis
)
2191 pred_chain_union preds
= vNULL
;
2192 bool has_valid_preds
= false;
2193 bool is_properly_guarded
= false;
2195 if (visited_phis
->add (phi
))
2198 phi_bb
= gimple_bb (phi
);
2200 if (is_non_loop_exit_postdominating (use_bb
, phi_bb
))
2203 has_valid_preds
= find_predicates (&preds
, phi_bb
, use_bb
);
2205 if (!has_valid_preds
)
2207 destroy_predicate_vecs (preds
);
2211 /* Try to prune the dead incoming phi edges. */
2213 = use_pred_not_overlap_with_undef_path_pred (preds
, phi
, uninit_opnds
,
2216 if (is_properly_guarded
)
2218 destroy_predicate_vecs (preds
);
2222 if (def_preds
->is_empty ())
2224 has_valid_preds
= find_def_preds (def_preds
, phi
);
2226 if (!has_valid_preds
)
2228 destroy_predicate_vecs (preds
);
2232 simplify_preds (def_preds
, phi
, false);
2233 *def_preds
= normalize_preds (*def_preds
, phi
, false);
2236 simplify_preds (&preds
, use_stmt
, true);
2237 preds
= normalize_preds (preds
, use_stmt
, true);
2239 is_properly_guarded
= is_superset_of (*def_preds
, preds
);
2241 destroy_predicate_vecs (preds
);
2242 return is_properly_guarded
;
2245 /* Searches through all uses of a potentially
2246 uninitialized variable defined by PHI and returns a use
2247 statement if the use is not properly guarded. It returns
2248 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2249 holding the position(s) of uninit PHI operands. WORKLIST
2250 is the vector of candidate phis that may be updated by this
2251 function. ADDED_TO_WORKLIST is the pointer set tracking
2252 if the new phi is already in the worklist. */
2255 find_uninit_use (gphi
*phi
, unsigned uninit_opnds
,
2256 vec
<gphi
*> *worklist
,
2257 hash_set
<gphi
*> *added_to_worklist
)
2260 use_operand_p use_p
;
2262 imm_use_iterator iter
;
2263 pred_chain_union def_preds
= vNULL
;
2266 phi_result
= gimple_phi_result (phi
);
2268 FOR_EACH_IMM_USE_FAST (use_p
, iter
, phi_result
)
2272 use_stmt
= USE_STMT (use_p
);
2273 if (is_gimple_debug (use_stmt
))
2276 if (gphi
*use_phi
= dyn_cast
<gphi
*> (use_stmt
))
2277 use_bb
= gimple_phi_arg_edge (use_phi
,
2278 PHI_ARG_INDEX_FROM_USE (use_p
))->src
;
2280 use_bb
= gimple_bb (use_stmt
);
2282 hash_set
<gphi
*> visited_phis
;
2283 if (is_use_properly_guarded (use_stmt
, use_bb
, phi
, uninit_opnds
,
2284 &def_preds
, &visited_phis
))
2287 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2289 fprintf (dump_file
, "[CHECK]: Found unguarded use: ");
2290 print_gimple_stmt (dump_file
, use_stmt
, 0, 0);
2292 /* Found one real use, return. */
2293 if (gimple_code (use_stmt
) != GIMPLE_PHI
)
2299 /* Found a phi use that is not guarded,
2300 add the phi to the worklist. */
2301 if (!added_to_worklist
->add (as_a
<gphi
*> (use_stmt
)))
2303 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2305 fprintf (dump_file
, "[WORKLIST]: Update worklist with phi: ");
2306 print_gimple_stmt (dump_file
, use_stmt
, 0, 0);
2309 worklist
->safe_push (as_a
<gphi
*> (use_stmt
));
2310 possibly_undefined_names
->add (phi_result
);
2314 destroy_predicate_vecs (def_preds
);
2318 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2319 and gives warning if there exists a runtime path from the entry to a
2320 use of the PHI def that does not contain a definition. In other words,
2321 the warning is on the real use. The more dead paths that can be pruned
2322 by the compiler, the fewer false positives the warning is. WORKLIST
2323 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
2324 a pointer set tracking if the new phi is added to the worklist or not. */
2327 warn_uninitialized_phi (gphi
*phi
, vec
<gphi
*> *worklist
,
2328 hash_set
<gphi
*> *added_to_worklist
)
2330 unsigned uninit_opnds
;
2331 gimple uninit_use_stmt
= 0;
2336 /* Don't look at virtual operands. */
2337 if (virtual_operand_p (gimple_phi_result (phi
)))
2340 uninit_opnds
= compute_uninit_opnds_pos (phi
);
2342 if (MASK_EMPTY (uninit_opnds
))
2345 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2347 fprintf (dump_file
, "[CHECK]: examining phi: ");
2348 print_gimple_stmt (dump_file
, phi
, 0, 0);
2351 /* Now check if we have any use of the value without proper guard. */
2352 uninit_use_stmt
= find_uninit_use (phi
, uninit_opnds
,
2353 worklist
, added_to_worklist
);
2355 /* All uses are properly guarded. */
2356 if (!uninit_use_stmt
)
2359 phiarg_index
= MASK_FIRST_SET_BIT (uninit_opnds
);
2360 uninit_op
= gimple_phi_arg_def (phi
, phiarg_index
);
2361 if (SSA_NAME_VAR (uninit_op
) == NULL_TREE
)
2363 if (gimple_phi_arg_has_location (phi
, phiarg_index
))
2364 loc
= gimple_phi_arg_location (phi
, phiarg_index
);
2366 loc
= UNKNOWN_LOCATION
;
2367 warn_uninit (OPT_Wmaybe_uninitialized
, uninit_op
, SSA_NAME_VAR (uninit_op
),
2368 SSA_NAME_VAR (uninit_op
),
2369 "%qD may be used uninitialized in this function",
2370 uninit_use_stmt
, loc
);
2375 gate_warn_uninitialized (void)
2377 return warn_uninitialized
|| warn_maybe_uninitialized
;
2382 const pass_data pass_data_late_warn_uninitialized
=
2384 GIMPLE_PASS
, /* type */
2385 "uninit", /* name */
2386 OPTGROUP_NONE
, /* optinfo_flags */
2387 TV_NONE
, /* tv_id */
2388 PROP_ssa
, /* properties_required */
2389 0, /* properties_provided */
2390 0, /* properties_destroyed */
2391 0, /* todo_flags_start */
2392 0, /* todo_flags_finish */
2395 class pass_late_warn_uninitialized
: public gimple_opt_pass
2398 pass_late_warn_uninitialized (gcc::context
*ctxt
)
2399 : gimple_opt_pass (pass_data_late_warn_uninitialized
, ctxt
)
2402 /* opt_pass methods: */
2403 opt_pass
* clone () { return new pass_late_warn_uninitialized (m_ctxt
); }
2404 virtual bool gate (function
*) { return gate_warn_uninitialized (); }
2405 virtual unsigned int execute (function
*);
2407 }; // class pass_late_warn_uninitialized
2410 pass_late_warn_uninitialized::execute (function
*fun
)
2414 vec
<gphi
*> worklist
= vNULL
;
2416 calculate_dominance_info (CDI_DOMINATORS
);
2417 calculate_dominance_info (CDI_POST_DOMINATORS
);
2418 /* Re-do the plain uninitialized variable check, as optimization may have
2419 straightened control flow. Do this first so that we don't accidentally
2420 get a "may be" warning when we'd have seen an "is" warning later. */
2421 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2423 timevar_push (TV_TREE_UNINIT
);
2425 possibly_undefined_names
= new hash_set
<tree
>;
2426 hash_set
<gphi
*> added_to_worklist
;
2428 /* Initialize worklist */
2429 FOR_EACH_BB_FN (bb
, fun
)
2430 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2432 gphi
*phi
= gsi
.phi ();
2435 n
= gimple_phi_num_args (phi
);
2437 /* Don't look at virtual operands. */
2438 if (virtual_operand_p (gimple_phi_result (phi
)))
2441 for (i
= 0; i
< n
; ++i
)
2443 tree op
= gimple_phi_arg_def (phi
, i
);
2444 if (TREE_CODE (op
) == SSA_NAME
2445 && uninit_undefined_value_p (op
))
2447 worklist
.safe_push (phi
);
2448 added_to_worklist
.add (phi
);
2449 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2451 fprintf (dump_file
, "[WORKLIST]: add to initial list: ");
2452 print_gimple_stmt (dump_file
, phi
, 0, 0);
2459 while (worklist
.length () != 0)
2462 cur_phi
= worklist
.pop ();
2463 warn_uninitialized_phi (cur_phi
, &worklist
, &added_to_worklist
);
2466 worklist
.release ();
2467 delete possibly_undefined_names
;
2468 possibly_undefined_names
= NULL
;
2469 free_dominance_info (CDI_POST_DOMINATORS
);
2470 timevar_pop (TV_TREE_UNINIT
);
2477 make_pass_late_warn_uninitialized (gcc::context
*ctxt
)
2479 return new pass_late_warn_uninitialized (ctxt
);
2484 execute_early_warn_uninitialized (void)
2486 /* Currently, this pass runs always but
2487 execute_late_warn_uninitialized only runs with optimization. With
2488 optimization we want to warn about possible uninitialized as late
2489 as possible, thus don't do it here. However, without
2490 optimization we need to warn here about "may be uninitialized". */
2491 calculate_dominance_info (CDI_POST_DOMINATORS
);
2493 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize
);
2495 /* Post-dominator information can not be reliably updated. Free it
2498 free_dominance_info (CDI_POST_DOMINATORS
);
2505 const pass_data pass_data_early_warn_uninitialized
=
2507 GIMPLE_PASS
, /* type */
2508 "*early_warn_uninitialized", /* name */
2509 OPTGROUP_NONE
, /* optinfo_flags */
2510 TV_TREE_UNINIT
, /* tv_id */
2511 PROP_ssa
, /* properties_required */
2512 0, /* properties_provided */
2513 0, /* properties_destroyed */
2514 0, /* todo_flags_start */
2515 0, /* todo_flags_finish */
2518 class pass_early_warn_uninitialized
: public gimple_opt_pass
2521 pass_early_warn_uninitialized (gcc::context
*ctxt
)
2522 : gimple_opt_pass (pass_data_early_warn_uninitialized
, ctxt
)
2525 /* opt_pass methods: */
2526 virtual bool gate (function
*) { return gate_warn_uninitialized (); }
2527 virtual unsigned int execute (function
*)
2529 return execute_early_warn_uninitialized ();
2532 }; // class pass_early_warn_uninitialized
2537 make_pass_early_warn_uninitialized (gcc::context
*ctxt
)
2539 return new pass_early_warn_uninitialized (ctxt
);