target-supports.exp (check_effective_target_mips16_attribute): Reject hard-float...
[official-gcc.git] / gcc / combine.c
blob392dedb3da547abdc858c463f0529d4849cfaea7
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
302 /* Length of the currently allocated uid_insn_cost array. */
304 static int max_uid_known;
306 /* The following array records the insn_rtx_cost for every insn
307 in the instruction stream. */
309 static int *uid_insn_cost;
311 /* The following array records the LOG_LINKS for every insn in the
312 instruction stream as an INSN_LIST rtx. */
314 static rtx *uid_log_links;
316 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
317 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319 /* Incremented for each basic block. */
321 static int label_tick;
323 /* Reset to label_tick for each label. */
325 static int label_tick_ebb_start;
327 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
328 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330 static enum machine_mode nonzero_bits_mode;
332 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
333 be safely used. It is zero while computing them and after combine has
334 completed. This former test prevents propagating values based on
335 previously set values, which can be incorrect if a variable is modified
336 in a loop. */
338 static int nonzero_sign_valid;
341 /* Record one modification to rtl structure
342 to be undone by storing old_contents into *where. */
344 struct undo
346 struct undo *next;
347 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
348 union { rtx r; int i; enum machine_mode m; } old_contents;
349 union { rtx *r; int *i; } where;
352 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
353 num_undo says how many are currently recorded.
355 other_insn is nonzero if we have modified some other insn in the process
356 of working on subst_insn. It must be verified too. */
358 struct undobuf
360 struct undo *undos;
361 struct undo *frees;
362 rtx other_insn;
365 static struct undobuf undobuf;
367 /* Number of times the pseudo being substituted for
368 was found and replaced. */
370 static int n_occurrences;
372 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
373 enum machine_mode,
374 unsigned HOST_WIDE_INT,
375 unsigned HOST_WIDE_INT *);
376 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
377 enum machine_mode,
378 unsigned int, unsigned int *);
379 static void do_SUBST (rtx *, rtx);
380 static void do_SUBST_INT (int *, int);
381 static void init_reg_last (void);
382 static void setup_incoming_promotions (rtx);
383 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
384 static int cant_combine_insn_p (rtx);
385 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
386 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
387 static int contains_muldiv (rtx);
388 static rtx try_combine (rtx, rtx, rtx, int *);
389 static void undo_all (void);
390 static void undo_commit (void);
391 static rtx *find_split_point (rtx *, rtx);
392 static rtx subst (rtx, rtx, rtx, int, int);
393 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
394 static rtx simplify_if_then_else (rtx);
395 static rtx simplify_set (rtx);
396 static rtx simplify_logical (rtx);
397 static rtx expand_compound_operation (rtx);
398 static const_rtx expand_field_assignment (const_rtx);
399 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
400 rtx, unsigned HOST_WIDE_INT, int, int, int);
401 static rtx extract_left_shift (rtx, int);
402 static rtx make_compound_operation (rtx, enum rtx_code);
403 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
404 unsigned HOST_WIDE_INT *);
405 static rtx canon_reg_for_combine (rtx, rtx);
406 static rtx force_to_mode (rtx, enum machine_mode,
407 unsigned HOST_WIDE_INT, int);
408 static rtx if_then_else_cond (rtx, rtx *, rtx *);
409 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
410 static int rtx_equal_for_field_assignment_p (rtx, rtx);
411 static rtx make_field_assignment (rtx);
412 static rtx apply_distributive_law (rtx);
413 static rtx distribute_and_simplify_rtx (rtx, int);
414 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
415 unsigned HOST_WIDE_INT);
416 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
417 unsigned HOST_WIDE_INT);
418 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
419 HOST_WIDE_INT, enum machine_mode, int *);
420 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
421 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
422 int);
423 static int recog_for_combine (rtx *, rtx, rtx *);
424 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
425 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
426 static void update_table_tick (rtx);
427 static void record_value_for_reg (rtx, rtx, rtx);
428 static void check_conversions (rtx, rtx);
429 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
430 static void record_dead_and_set_regs (rtx);
431 static int get_last_value_validate (rtx *, rtx, int, int);
432 static rtx get_last_value (const_rtx);
433 static int use_crosses_set_p (const_rtx, int);
434 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
435 static int reg_dead_at_p (rtx, rtx);
436 static void move_deaths (rtx, rtx, int, rtx, rtx *);
437 static int reg_bitfield_target_p (rtx, rtx);
438 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
439 static void distribute_links (rtx);
440 static void mark_used_regs_combine (rtx);
441 static void record_promoted_value (rtx, rtx);
442 static int unmentioned_reg_p_1 (rtx *, void *);
443 static bool unmentioned_reg_p (rtx, rtx);
444 static void record_truncated_value (rtx);
445 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
446 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
449 /* It is not safe to use ordinary gen_lowpart in combine.
450 See comments in gen_lowpart_for_combine. */
451 #undef RTL_HOOKS_GEN_LOWPART
452 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
454 /* Our implementation of gen_lowpart never emits a new pseudo. */
455 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
456 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
458 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
459 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
461 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
462 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
464 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
465 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
467 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
470 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
471 PATTERN can not be split. Otherwise, it returns an insn sequence.
472 This is a wrapper around split_insns which ensures that the
473 reg_stat vector is made larger if the splitter creates a new
474 register. */
476 static rtx
477 combine_split_insns (rtx pattern, rtx insn)
479 rtx ret;
480 unsigned int nregs;
482 ret = split_insns (pattern, insn);
483 nregs = max_reg_num ();
484 if (nregs > VEC_length (reg_stat_type, reg_stat))
485 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
486 return ret;
489 /* This is used by find_single_use to locate an rtx in LOC that
490 contains exactly one use of DEST, which is typically either a REG
491 or CC0. It returns a pointer to the innermost rtx expression
492 containing DEST. Appearances of DEST that are being used to
493 totally replace it are not counted. */
495 static rtx *
496 find_single_use_1 (rtx dest, rtx *loc)
498 rtx x = *loc;
499 enum rtx_code code = GET_CODE (x);
500 rtx *result = NULL;
501 rtx *this_result;
502 int i;
503 const char *fmt;
505 switch (code)
507 case CONST_INT:
508 case CONST:
509 case LABEL_REF:
510 case SYMBOL_REF:
511 case CONST_DOUBLE:
512 case CONST_VECTOR:
513 case CLOBBER:
514 return 0;
516 case SET:
517 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
518 of a REG that occupies all of the REG, the insn uses DEST if
519 it is mentioned in the destination or the source. Otherwise, we
520 need just check the source. */
521 if (GET_CODE (SET_DEST (x)) != CC0
522 && GET_CODE (SET_DEST (x)) != PC
523 && !REG_P (SET_DEST (x))
524 && ! (GET_CODE (SET_DEST (x)) == SUBREG
525 && REG_P (SUBREG_REG (SET_DEST (x)))
526 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
527 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
528 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
529 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
530 break;
532 return find_single_use_1 (dest, &SET_SRC (x));
534 case MEM:
535 case SUBREG:
536 return find_single_use_1 (dest, &XEXP (x, 0));
538 default:
539 break;
542 /* If it wasn't one of the common cases above, check each expression and
543 vector of this code. Look for a unique usage of DEST. */
545 fmt = GET_RTX_FORMAT (code);
546 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
548 if (fmt[i] == 'e')
550 if (dest == XEXP (x, i)
551 || (REG_P (dest) && REG_P (XEXP (x, i))
552 && REGNO (dest) == REGNO (XEXP (x, i))))
553 this_result = loc;
554 else
555 this_result = find_single_use_1 (dest, &XEXP (x, i));
557 if (result == NULL)
558 result = this_result;
559 else if (this_result)
560 /* Duplicate usage. */
561 return NULL;
563 else if (fmt[i] == 'E')
565 int j;
567 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
569 if (XVECEXP (x, i, j) == dest
570 || (REG_P (dest)
571 && REG_P (XVECEXP (x, i, j))
572 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
573 this_result = loc;
574 else
575 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
577 if (result == NULL)
578 result = this_result;
579 else if (this_result)
580 return NULL;
585 return result;
589 /* See if DEST, produced in INSN, is used only a single time in the
590 sequel. If so, return a pointer to the innermost rtx expression in which
591 it is used.
593 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
595 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
596 care about REG_DEAD notes or LOG_LINKS.
598 Otherwise, we find the single use by finding an insn that has a
599 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
600 only referenced once in that insn, we know that it must be the first
601 and last insn referencing DEST. */
603 static rtx *
604 find_single_use (rtx dest, rtx insn, rtx *ploc)
606 rtx next;
607 rtx *result;
608 rtx link;
610 #ifdef HAVE_cc0
611 if (dest == cc0_rtx)
613 next = NEXT_INSN (insn);
614 if (next == 0
615 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
616 return 0;
618 result = find_single_use_1 (dest, &PATTERN (next));
619 if (result && ploc)
620 *ploc = next;
621 return result;
623 #endif
625 if (!REG_P (dest))
626 return 0;
628 for (next = next_nonnote_insn (insn);
629 next != 0 && !LABEL_P (next);
630 next = next_nonnote_insn (next))
631 if (INSN_P (next) && dead_or_set_p (next, dest))
633 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
634 if (XEXP (link, 0) == insn)
635 break;
637 if (link)
639 result = find_single_use_1 (dest, &PATTERN (next));
640 if (ploc)
641 *ploc = next;
642 return result;
646 return 0;
649 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
650 insn. The substitution can be undone by undo_all. If INTO is already
651 set to NEWVAL, do not record this change. Because computing NEWVAL might
652 also call SUBST, we have to compute it before we put anything into
653 the undo table. */
655 static void
656 do_SUBST (rtx *into, rtx newval)
658 struct undo *buf;
659 rtx oldval = *into;
661 if (oldval == newval)
662 return;
664 /* We'd like to catch as many invalid transformations here as
665 possible. Unfortunately, there are way too many mode changes
666 that are perfectly valid, so we'd waste too much effort for
667 little gain doing the checks here. Focus on catching invalid
668 transformations involving integer constants. */
669 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
670 && GET_CODE (newval) == CONST_INT)
672 /* Sanity check that we're replacing oldval with a CONST_INT
673 that is a valid sign-extension for the original mode. */
674 gcc_assert (INTVAL (newval)
675 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
677 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
678 CONST_INT is not valid, because after the replacement, the
679 original mode would be gone. Unfortunately, we can't tell
680 when do_SUBST is called to replace the operand thereof, so we
681 perform this test on oldval instead, checking whether an
682 invalid replacement took place before we got here. */
683 gcc_assert (!(GET_CODE (oldval) == SUBREG
684 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
685 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
686 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
689 if (undobuf.frees)
690 buf = undobuf.frees, undobuf.frees = buf->next;
691 else
692 buf = XNEW (struct undo);
694 buf->kind = UNDO_RTX;
695 buf->where.r = into;
696 buf->old_contents.r = oldval;
697 *into = newval;
699 buf->next = undobuf.undos, undobuf.undos = buf;
702 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
704 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
705 for the value of a HOST_WIDE_INT value (including CONST_INT) is
706 not safe. */
708 static void
709 do_SUBST_INT (int *into, int newval)
711 struct undo *buf;
712 int oldval = *into;
714 if (oldval == newval)
715 return;
717 if (undobuf.frees)
718 buf = undobuf.frees, undobuf.frees = buf->next;
719 else
720 buf = XNEW (struct undo);
722 buf->kind = UNDO_INT;
723 buf->where.i = into;
724 buf->old_contents.i = oldval;
725 *into = newval;
727 buf->next = undobuf.undos, undobuf.undos = buf;
730 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
732 /* Similar to SUBST, but just substitute the mode. This is used when
733 changing the mode of a pseudo-register, so that any other
734 references to the entry in the regno_reg_rtx array will change as
735 well. */
737 static void
738 do_SUBST_MODE (rtx *into, enum machine_mode newval)
740 struct undo *buf;
741 enum machine_mode oldval = GET_MODE (*into);
743 if (oldval == newval)
744 return;
746 if (undobuf.frees)
747 buf = undobuf.frees, undobuf.frees = buf->next;
748 else
749 buf = XNEW (struct undo);
751 buf->kind = UNDO_MODE;
752 buf->where.r = into;
753 buf->old_contents.m = oldval;
754 PUT_MODE (*into, newval);
756 buf->next = undobuf.undos, undobuf.undos = buf;
759 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
761 /* Subroutine of try_combine. Determine whether the combine replacement
762 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
763 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
764 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
765 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
766 function returns false, if the costs of all instructions can be
767 estimated, and the replacements are more expensive than the original
768 sequence. */
770 static bool
771 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
772 rtx newotherpat)
774 int i1_cost, i2_cost, i3_cost;
775 int new_i2_cost, new_i3_cost;
776 int old_cost, new_cost;
778 /* Lookup the original insn_rtx_costs. */
779 i2_cost = INSN_COST (i2);
780 i3_cost = INSN_COST (i3);
782 if (i1)
784 i1_cost = INSN_COST (i1);
785 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
786 ? i1_cost + i2_cost + i3_cost : 0;
788 else
790 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
791 i1_cost = 0;
794 /* Calculate the replacement insn_rtx_costs. */
795 new_i3_cost = insn_rtx_cost (newpat);
796 if (newi2pat)
798 new_i2_cost = insn_rtx_cost (newi2pat);
799 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
800 ? new_i2_cost + new_i3_cost : 0;
802 else
804 new_cost = new_i3_cost;
805 new_i2_cost = 0;
808 if (undobuf.other_insn)
810 int old_other_cost, new_other_cost;
812 old_other_cost = INSN_COST (undobuf.other_insn);
813 new_other_cost = insn_rtx_cost (newotherpat);
814 if (old_other_cost > 0 && new_other_cost > 0)
816 old_cost += old_other_cost;
817 new_cost += new_other_cost;
819 else
820 old_cost = 0;
823 /* Disallow this recombination if both new_cost and old_cost are
824 greater than zero, and new_cost is greater than old cost. */
825 if (old_cost > 0
826 && new_cost > old_cost)
828 if (dump_file)
830 if (i1)
832 fprintf (dump_file,
833 "rejecting combination of insns %d, %d and %d\n",
834 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
835 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
836 i1_cost, i2_cost, i3_cost, old_cost);
838 else
840 fprintf (dump_file,
841 "rejecting combination of insns %d and %d\n",
842 INSN_UID (i2), INSN_UID (i3));
843 fprintf (dump_file, "original costs %d + %d = %d\n",
844 i2_cost, i3_cost, old_cost);
847 if (newi2pat)
849 fprintf (dump_file, "replacement costs %d + %d = %d\n",
850 new_i2_cost, new_i3_cost, new_cost);
852 else
853 fprintf (dump_file, "replacement cost %d\n", new_cost);
856 return false;
859 /* Update the uid_insn_cost array with the replacement costs. */
860 INSN_COST (i2) = new_i2_cost;
861 INSN_COST (i3) = new_i3_cost;
862 if (i1)
863 INSN_COST (i1) = 0;
865 return true;
869 /* Delete any insns that copy a register to itself. */
871 static void
872 delete_noop_moves (void)
874 rtx insn, next;
875 basic_block bb;
877 FOR_EACH_BB (bb)
879 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
881 next = NEXT_INSN (insn);
882 if (INSN_P (insn) && noop_move_p (insn))
884 rtx note;
886 /* If we're about to remove the first insn of a libcall
887 then move the libcall note to the next real insn and
888 update the retval note. */
889 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
890 && XEXP (note, 0) != insn)
892 rtx new_libcall_insn = next_real_insn (insn);
893 rtx retval_note = find_reg_note (XEXP (note, 0),
894 REG_RETVAL, NULL_RTX);
895 REG_NOTES (new_libcall_insn)
896 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
897 REG_NOTES (new_libcall_insn));
898 XEXP (retval_note, 0) = new_libcall_insn;
901 if (dump_file)
902 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
904 delete_insn_and_edges (insn);
911 /* Fill in log links field for all insns. */
913 static void
914 create_log_links (void)
916 basic_block bb;
917 rtx *next_use, insn;
918 struct df_ref **def_vec, **use_vec;
920 next_use = XCNEWVEC (rtx, max_reg_num ());
922 /* Pass through each block from the end, recording the uses of each
923 register and establishing log links when def is encountered.
924 Note that we do not clear next_use array in order to save time,
925 so we have to test whether the use is in the same basic block as def.
927 There are a few cases below when we do not consider the definition or
928 usage -- these are taken from original flow.c did. Don't ask me why it is
929 done this way; I don't know and if it works, I don't want to know. */
931 FOR_EACH_BB (bb)
933 FOR_BB_INSNS_REVERSE (bb, insn)
935 if (!INSN_P (insn))
936 continue;
938 /* Log links are created only once. */
939 gcc_assert (!LOG_LINKS (insn));
941 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
943 struct df_ref *def = *def_vec;
944 int regno = DF_REF_REGNO (def);
945 rtx use_insn;
947 if (!next_use[regno])
948 continue;
950 /* Do not consider if it is pre/post modification in MEM. */
951 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
952 continue;
954 /* Do not make the log link for frame pointer. */
955 if ((regno == FRAME_POINTER_REGNUM
956 && (! reload_completed || frame_pointer_needed))
957 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
958 || (regno == HARD_FRAME_POINTER_REGNUM
959 && (! reload_completed || frame_pointer_needed))
960 #endif
961 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
962 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
963 #endif
965 continue;
967 use_insn = next_use[regno];
968 if (BLOCK_FOR_INSN (use_insn) == bb)
970 /* flow.c claimed:
972 We don't build a LOG_LINK for hard registers contained
973 in ASM_OPERANDs. If these registers get replaced,
974 we might wind up changing the semantics of the insn,
975 even if reload can make what appear to be valid
976 assignments later. */
977 if (regno >= FIRST_PSEUDO_REGISTER
978 || asm_noperands (PATTERN (use_insn)) < 0)
979 LOG_LINKS (use_insn) =
980 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
982 next_use[regno] = NULL_RTX;
985 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
987 struct df_ref *use = *use_vec;
988 int regno = DF_REF_REGNO (use);
990 /* Do not consider the usage of the stack pointer
991 by function call. */
992 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
993 continue;
995 next_use[regno] = insn;
1000 free (next_use);
1003 /* Clear LOG_LINKS fields of insns. */
1005 static void
1006 clear_log_links (void)
1008 rtx insn;
1010 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1011 if (INSN_P (insn))
1012 free_INSN_LIST_list (&LOG_LINKS (insn));
1018 /* Main entry point for combiner. F is the first insn of the function.
1019 NREGS is the first unused pseudo-reg number.
1021 Return nonzero if the combiner has turned an indirect jump
1022 instruction into a direct jump. */
1023 static int
1024 combine_instructions (rtx f, unsigned int nregs)
1026 rtx insn, next;
1027 #ifdef HAVE_cc0
1028 rtx prev;
1029 #endif
1030 rtx links, nextlinks;
1031 rtx first;
1033 int new_direct_jump_p = 0;
1035 for (first = f; first && !INSN_P (first); )
1036 first = NEXT_INSN (first);
1037 if (!first)
1038 return 0;
1040 combine_attempts = 0;
1041 combine_merges = 0;
1042 combine_extras = 0;
1043 combine_successes = 0;
1045 rtl_hooks = combine_rtl_hooks;
1047 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1049 init_recog_no_volatile ();
1051 /* Allocate array for insn info. */
1052 max_uid_known = get_max_uid ();
1053 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1054 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1056 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1058 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1059 problems when, for example, we have j <<= 1 in a loop. */
1061 nonzero_sign_valid = 0;
1063 /* Scan all SETs and see if we can deduce anything about what
1064 bits are known to be zero for some registers and how many copies
1065 of the sign bit are known to exist for those registers.
1067 Also set any known values so that we can use it while searching
1068 for what bits are known to be set. */
1070 label_tick = label_tick_ebb_start = 1;
1072 setup_incoming_promotions (first);
1074 create_log_links ();
1075 FOR_EACH_BB (this_basic_block)
1077 last_call_luid = 0;
1078 mem_last_set = -1;
1079 label_tick++;
1080 FOR_BB_INSNS (this_basic_block, insn)
1081 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1083 subst_low_luid = DF_INSN_LUID (insn);
1084 subst_insn = insn;
1086 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1087 insn);
1088 record_dead_and_set_regs (insn);
1090 #ifdef AUTO_INC_DEC
1091 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1092 if (REG_NOTE_KIND (links) == REG_INC)
1093 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1094 insn);
1095 #endif
1097 /* Record the current insn_rtx_cost of this instruction. */
1098 if (NONJUMP_INSN_P (insn))
1099 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn));
1100 if (dump_file)
1101 fprintf(dump_file, "insn_cost %d: %d\n",
1102 INSN_UID (insn), INSN_COST (insn));
1104 else if (LABEL_P (insn))
1105 label_tick_ebb_start = label_tick;
1108 nonzero_sign_valid = 1;
1110 /* Now scan all the insns in forward order. */
1112 label_tick = label_tick_ebb_start = 1;
1113 init_reg_last ();
1114 setup_incoming_promotions (first);
1116 FOR_EACH_BB (this_basic_block)
1118 last_call_luid = 0;
1119 mem_last_set = -1;
1120 label_tick++;
1121 for (insn = BB_HEAD (this_basic_block);
1122 insn != NEXT_INSN (BB_END (this_basic_block));
1123 insn = next ? next : NEXT_INSN (insn))
1125 next = 0;
1126 if (INSN_P (insn))
1128 /* See if we know about function return values before this
1129 insn based upon SUBREG flags. */
1130 check_conversions (insn, PATTERN (insn));
1132 /* Try this insn with each insn it links back to. */
1134 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1135 if ((next = try_combine (insn, XEXP (links, 0),
1136 NULL_RTX, &new_direct_jump_p)) != 0)
1137 goto retry;
1139 /* Try each sequence of three linked insns ending with this one. */
1141 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1143 rtx link = XEXP (links, 0);
1145 /* If the linked insn has been replaced by a note, then there
1146 is no point in pursuing this chain any further. */
1147 if (NOTE_P (link))
1148 continue;
1150 for (nextlinks = LOG_LINKS (link);
1151 nextlinks;
1152 nextlinks = XEXP (nextlinks, 1))
1153 if ((next = try_combine (insn, link,
1154 XEXP (nextlinks, 0),
1155 &new_direct_jump_p)) != 0)
1156 goto retry;
1159 #ifdef HAVE_cc0
1160 /* Try to combine a jump insn that uses CC0
1161 with a preceding insn that sets CC0, and maybe with its
1162 logical predecessor as well.
1163 This is how we make decrement-and-branch insns.
1164 We need this special code because data flow connections
1165 via CC0 do not get entered in LOG_LINKS. */
1167 if (JUMP_P (insn)
1168 && (prev = prev_nonnote_insn (insn)) != 0
1169 && NONJUMP_INSN_P (prev)
1170 && sets_cc0_p (PATTERN (prev)))
1172 if ((next = try_combine (insn, prev,
1173 NULL_RTX, &new_direct_jump_p)) != 0)
1174 goto retry;
1176 for (nextlinks = LOG_LINKS (prev); nextlinks;
1177 nextlinks = XEXP (nextlinks, 1))
1178 if ((next = try_combine (insn, prev,
1179 XEXP (nextlinks, 0),
1180 &new_direct_jump_p)) != 0)
1181 goto retry;
1184 /* Do the same for an insn that explicitly references CC0. */
1185 if (NONJUMP_INSN_P (insn)
1186 && (prev = prev_nonnote_insn (insn)) != 0
1187 && NONJUMP_INSN_P (prev)
1188 && sets_cc0_p (PATTERN (prev))
1189 && GET_CODE (PATTERN (insn)) == SET
1190 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1192 if ((next = try_combine (insn, prev,
1193 NULL_RTX, &new_direct_jump_p)) != 0)
1194 goto retry;
1196 for (nextlinks = LOG_LINKS (prev); nextlinks;
1197 nextlinks = XEXP (nextlinks, 1))
1198 if ((next = try_combine (insn, prev,
1199 XEXP (nextlinks, 0),
1200 &new_direct_jump_p)) != 0)
1201 goto retry;
1204 /* Finally, see if any of the insns that this insn links to
1205 explicitly references CC0. If so, try this insn, that insn,
1206 and its predecessor if it sets CC0. */
1207 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1208 if (NONJUMP_INSN_P (XEXP (links, 0))
1209 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1210 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1211 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1212 && NONJUMP_INSN_P (prev)
1213 && sets_cc0_p (PATTERN (prev))
1214 && (next = try_combine (insn, XEXP (links, 0),
1215 prev, &new_direct_jump_p)) != 0)
1216 goto retry;
1217 #endif
1219 /* Try combining an insn with two different insns whose results it
1220 uses. */
1221 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1222 for (nextlinks = XEXP (links, 1); nextlinks;
1223 nextlinks = XEXP (nextlinks, 1))
1224 if ((next = try_combine (insn, XEXP (links, 0),
1225 XEXP (nextlinks, 0),
1226 &new_direct_jump_p)) != 0)
1227 goto retry;
1229 /* Try this insn with each REG_EQUAL note it links back to. */
1230 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1232 rtx set, note;
1233 rtx temp = XEXP (links, 0);
1234 if ((set = single_set (temp)) != 0
1235 && (note = find_reg_equal_equiv_note (temp)) != 0
1236 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1237 /* Avoid using a register that may already been marked
1238 dead by an earlier instruction. */
1239 && ! unmentioned_reg_p (note, SET_SRC (set))
1240 && (GET_MODE (note) == VOIDmode
1241 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1242 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1244 /* Temporarily replace the set's source with the
1245 contents of the REG_EQUAL note. The insn will
1246 be deleted or recognized by try_combine. */
1247 rtx orig = SET_SRC (set);
1248 SET_SRC (set) = note;
1249 i2mod = temp;
1250 i2mod_old_rhs = copy_rtx (orig);
1251 i2mod_new_rhs = copy_rtx (note);
1252 next = try_combine (insn, i2mod, NULL_RTX,
1253 &new_direct_jump_p);
1254 i2mod = NULL_RTX;
1255 if (next)
1256 goto retry;
1257 SET_SRC (set) = orig;
1261 if (!NOTE_P (insn))
1262 record_dead_and_set_regs (insn);
1264 retry:
1267 else if (LABEL_P (insn))
1268 label_tick_ebb_start = label_tick;
1272 clear_log_links ();
1273 clear_bb_flags ();
1274 new_direct_jump_p |= purge_all_dead_edges ();
1275 delete_noop_moves ();
1277 /* Clean up. */
1278 free (uid_log_links);
1279 free (uid_insn_cost);
1280 VEC_free (reg_stat_type, heap, reg_stat);
1283 struct undo *undo, *next;
1284 for (undo = undobuf.frees; undo; undo = next)
1286 next = undo->next;
1287 free (undo);
1289 undobuf.frees = 0;
1292 total_attempts += combine_attempts;
1293 total_merges += combine_merges;
1294 total_extras += combine_extras;
1295 total_successes += combine_successes;
1297 nonzero_sign_valid = 0;
1298 rtl_hooks = general_rtl_hooks;
1300 /* Make recognizer allow volatile MEMs again. */
1301 init_recog ();
1303 return new_direct_jump_p;
1306 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1308 static void
1309 init_reg_last (void)
1311 unsigned int i;
1312 reg_stat_type *p;
1314 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1315 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1318 /* Set up any promoted values for incoming argument registers. */
1320 static void
1321 setup_incoming_promotions (rtx first)
1323 tree arg;
1324 bool strictly_local = false;
1326 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1327 return;
1329 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1330 arg = TREE_CHAIN (arg))
1332 rtx reg = DECL_INCOMING_RTL (arg);
1333 int uns1, uns3;
1334 enum machine_mode mode1, mode2, mode3, mode4;
1336 /* Only continue if the incoming argument is in a register. */
1337 if (!REG_P (reg))
1338 continue;
1340 /* Determine, if possible, whether all call sites of the current
1341 function lie within the current compilation unit. (This does
1342 take into account the exporting of a function via taking its
1343 address, and so forth.) */
1344 if (flag_unit_at_a_time)
1345 strictly_local = cgraph_local_info (current_function_decl)->local;
1347 /* The mode and signedness of the argument before any promotions happen
1348 (equal to the mode of the pseudo holding it at that stage). */
1349 mode1 = TYPE_MODE (TREE_TYPE (arg));
1350 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1352 /* The mode and signedness of the argument after any source language and
1353 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1354 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1355 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1357 /* The mode and signedness of the argument as it is actually passed,
1358 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1359 mode3 = promote_mode (DECL_ARG_TYPE (arg), mode2, &uns3, 1);
1361 /* The mode of the register in which the argument is being passed. */
1362 mode4 = GET_MODE (reg);
1364 /* Eliminate sign extensions in the callee when possible. Only
1365 do this when:
1366 (a) the mode of the register is the same as the mode of
1367 the argument as it is passed; and
1368 (b) the signedness does not change across any of the promotions; and
1369 (c) when no language-level promotions (which we cannot guarantee
1370 will have been done by an external caller) are necessary,
1371 unless we know that this function is only ever called from
1372 the current compilation unit -- all of whose call sites will
1373 do the mode1 --> mode2 promotion. */
1374 if (mode3 == mode4
1375 && uns1 == uns3
1376 && (mode1 == mode2 || strictly_local))
1378 /* Record that the value was promoted from mode1 to mode3,
1379 so that any sign extension at the head of the current
1380 function may be eliminated. */
1381 rtx x;
1382 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1383 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1384 record_value_for_reg (reg, first, x);
1389 /* Called via note_stores. If X is a pseudo that is narrower than
1390 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1392 If we are setting only a portion of X and we can't figure out what
1393 portion, assume all bits will be used since we don't know what will
1394 be happening.
1396 Similarly, set how many bits of X are known to be copies of the sign bit
1397 at all locations in the function. This is the smallest number implied
1398 by any set of X. */
1400 static void
1401 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1403 rtx insn = (rtx) data;
1404 unsigned int num;
1406 if (REG_P (x)
1407 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1408 /* If this register is undefined at the start of the file, we can't
1409 say what its contents were. */
1410 && ! REGNO_REG_SET_P
1411 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1412 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1414 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1416 if (set == 0 || GET_CODE (set) == CLOBBER)
1418 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1419 rsp->sign_bit_copies = 1;
1420 return;
1423 /* If this register is being initialized using itself, and the
1424 register is uninitialized in this basic block, and there are
1425 no LOG_LINKS which set the register, then part of the
1426 register is uninitialized. In that case we can't assume
1427 anything about the number of nonzero bits.
1429 ??? We could do better if we checked this in
1430 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1431 could avoid making assumptions about the insn which initially
1432 sets the register, while still using the information in other
1433 insns. We would have to be careful to check every insn
1434 involved in the combination. */
1436 if (insn
1437 && reg_referenced_p (x, PATTERN (insn))
1438 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1439 REGNO (x)))
1441 rtx link;
1443 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1445 if (dead_or_set_p (XEXP (link, 0), x))
1446 break;
1448 if (!link)
1450 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1451 rsp->sign_bit_copies = 1;
1452 return;
1456 /* If this is a complex assignment, see if we can convert it into a
1457 simple assignment. */
1458 set = expand_field_assignment (set);
1460 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1461 set what we know about X. */
1463 if (SET_DEST (set) == x
1464 || (GET_CODE (SET_DEST (set)) == SUBREG
1465 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1466 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1467 && SUBREG_REG (SET_DEST (set)) == x))
1469 rtx src = SET_SRC (set);
1471 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1472 /* If X is narrower than a word and SRC is a non-negative
1473 constant that would appear negative in the mode of X,
1474 sign-extend it for use in reg_stat[].nonzero_bits because some
1475 machines (maybe most) will actually do the sign-extension
1476 and this is the conservative approach.
1478 ??? For 2.5, try to tighten up the MD files in this regard
1479 instead of this kludge. */
1481 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1482 && GET_CODE (src) == CONST_INT
1483 && INTVAL (src) > 0
1484 && 0 != (INTVAL (src)
1485 & ((HOST_WIDE_INT) 1
1486 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1487 src = GEN_INT (INTVAL (src)
1488 | ((HOST_WIDE_INT) (-1)
1489 << GET_MODE_BITSIZE (GET_MODE (x))));
1490 #endif
1492 /* Don't call nonzero_bits if it cannot change anything. */
1493 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1494 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1495 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1496 if (rsp->sign_bit_copies == 0
1497 || rsp->sign_bit_copies > num)
1498 rsp->sign_bit_copies = num;
1500 else
1502 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1503 rsp->sign_bit_copies = 1;
1508 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1509 insns that were previously combined into I3 or that will be combined
1510 into the merger of INSN and I3.
1512 Return 0 if the combination is not allowed for any reason.
1514 If the combination is allowed, *PDEST will be set to the single
1515 destination of INSN and *PSRC to the single source, and this function
1516 will return 1. */
1518 static int
1519 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1520 rtx *pdest, rtx *psrc)
1522 int i;
1523 const_rtx set = 0;
1524 rtx src, dest;
1525 rtx p;
1526 #ifdef AUTO_INC_DEC
1527 rtx link;
1528 #endif
1529 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1530 && next_active_insn (succ) == i3)
1531 : next_active_insn (insn) == i3);
1533 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1534 or a PARALLEL consisting of such a SET and CLOBBERs.
1536 If INSN has CLOBBER parallel parts, ignore them for our processing.
1537 By definition, these happen during the execution of the insn. When it
1538 is merged with another insn, all bets are off. If they are, in fact,
1539 needed and aren't also supplied in I3, they may be added by
1540 recog_for_combine. Otherwise, it won't match.
1542 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1543 note.
1545 Get the source and destination of INSN. If more than one, can't
1546 combine. */
1548 if (GET_CODE (PATTERN (insn)) == SET)
1549 set = PATTERN (insn);
1550 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1551 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1553 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1555 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1556 rtx note;
1558 switch (GET_CODE (elt))
1560 /* This is important to combine floating point insns
1561 for the SH4 port. */
1562 case USE:
1563 /* Combining an isolated USE doesn't make sense.
1564 We depend here on combinable_i3pat to reject them. */
1565 /* The code below this loop only verifies that the inputs of
1566 the SET in INSN do not change. We call reg_set_between_p
1567 to verify that the REG in the USE does not change between
1568 I3 and INSN.
1569 If the USE in INSN was for a pseudo register, the matching
1570 insn pattern will likely match any register; combining this
1571 with any other USE would only be safe if we knew that the
1572 used registers have identical values, or if there was
1573 something to tell them apart, e.g. different modes. For
1574 now, we forgo such complicated tests and simply disallow
1575 combining of USES of pseudo registers with any other USE. */
1576 if (REG_P (XEXP (elt, 0))
1577 && GET_CODE (PATTERN (i3)) == PARALLEL)
1579 rtx i3pat = PATTERN (i3);
1580 int i = XVECLEN (i3pat, 0) - 1;
1581 unsigned int regno = REGNO (XEXP (elt, 0));
1585 rtx i3elt = XVECEXP (i3pat, 0, i);
1587 if (GET_CODE (i3elt) == USE
1588 && REG_P (XEXP (i3elt, 0))
1589 && (REGNO (XEXP (i3elt, 0)) == regno
1590 ? reg_set_between_p (XEXP (elt, 0),
1591 PREV_INSN (insn), i3)
1592 : regno >= FIRST_PSEUDO_REGISTER))
1593 return 0;
1595 while (--i >= 0);
1597 break;
1599 /* We can ignore CLOBBERs. */
1600 case CLOBBER:
1601 break;
1603 case SET:
1604 /* Ignore SETs whose result isn't used but not those that
1605 have side-effects. */
1606 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1607 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1608 || INTVAL (XEXP (note, 0)) <= 0)
1609 && ! side_effects_p (elt))
1610 break;
1612 /* If we have already found a SET, this is a second one and
1613 so we cannot combine with this insn. */
1614 if (set)
1615 return 0;
1617 set = elt;
1618 break;
1620 default:
1621 /* Anything else means we can't combine. */
1622 return 0;
1626 if (set == 0
1627 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1628 so don't do anything with it. */
1629 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1630 return 0;
1632 else
1633 return 0;
1635 if (set == 0)
1636 return 0;
1638 set = expand_field_assignment (set);
1639 src = SET_SRC (set), dest = SET_DEST (set);
1641 /* Don't eliminate a store in the stack pointer. */
1642 if (dest == stack_pointer_rtx
1643 /* Don't combine with an insn that sets a register to itself if it has
1644 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1645 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1646 /* Can't merge an ASM_OPERANDS. */
1647 || GET_CODE (src) == ASM_OPERANDS
1648 /* Can't merge a function call. */
1649 || GET_CODE (src) == CALL
1650 /* Don't eliminate a function call argument. */
1651 || (CALL_P (i3)
1652 && (find_reg_fusage (i3, USE, dest)
1653 || (REG_P (dest)
1654 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1655 && global_regs[REGNO (dest)])))
1656 /* Don't substitute into an incremented register. */
1657 || FIND_REG_INC_NOTE (i3, dest)
1658 || (succ && FIND_REG_INC_NOTE (succ, dest))
1659 /* Don't substitute into a non-local goto, this confuses CFG. */
1660 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1661 #if 0
1662 /* Don't combine the end of a libcall into anything. */
1663 /* ??? This gives worse code, and appears to be unnecessary, since no
1664 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1665 use REG_RETVAL notes for noconflict blocks, but other code here
1666 makes sure that those insns don't disappear. */
1667 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1668 #endif
1669 /* Make sure that DEST is not used after SUCC but before I3. */
1670 || (succ && ! all_adjacent
1671 && reg_used_between_p (dest, succ, i3))
1672 /* Make sure that the value that is to be substituted for the register
1673 does not use any registers whose values alter in between. However,
1674 If the insns are adjacent, a use can't cross a set even though we
1675 think it might (this can happen for a sequence of insns each setting
1676 the same destination; last_set of that register might point to
1677 a NOTE). If INSN has a REG_EQUIV note, the register is always
1678 equivalent to the memory so the substitution is valid even if there
1679 are intervening stores. Also, don't move a volatile asm or
1680 UNSPEC_VOLATILE across any other insns. */
1681 || (! all_adjacent
1682 && (((!MEM_P (src)
1683 || ! find_reg_note (insn, REG_EQUIV, src))
1684 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1685 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1686 || GET_CODE (src) == UNSPEC_VOLATILE))
1687 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1688 better register allocation by not doing the combine. */
1689 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1690 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1691 /* Don't combine across a CALL_INSN, because that would possibly
1692 change whether the life span of some REGs crosses calls or not,
1693 and it is a pain to update that information.
1694 Exception: if source is a constant, moving it later can't hurt.
1695 Accept that special case, because it helps -fforce-addr a lot. */
1696 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1697 return 0;
1699 /* DEST must either be a REG or CC0. */
1700 if (REG_P (dest))
1702 /* If register alignment is being enforced for multi-word items in all
1703 cases except for parameters, it is possible to have a register copy
1704 insn referencing a hard register that is not allowed to contain the
1705 mode being copied and which would not be valid as an operand of most
1706 insns. Eliminate this problem by not combining with such an insn.
1708 Also, on some machines we don't want to extend the life of a hard
1709 register. */
1711 if (REG_P (src)
1712 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1713 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1714 /* Don't extend the life of a hard register unless it is
1715 user variable (if we have few registers) or it can't
1716 fit into the desired register (meaning something special
1717 is going on).
1718 Also avoid substituting a return register into I3, because
1719 reload can't handle a conflict with constraints of other
1720 inputs. */
1721 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1722 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1723 return 0;
1725 else if (GET_CODE (dest) != CC0)
1726 return 0;
1729 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1730 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1731 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1733 /* Don't substitute for a register intended as a clobberable
1734 operand. */
1735 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1736 if (rtx_equal_p (reg, dest))
1737 return 0;
1739 /* If the clobber represents an earlyclobber operand, we must not
1740 substitute an expression containing the clobbered register.
1741 As we do not analyze the constraint strings here, we have to
1742 make the conservative assumption. However, if the register is
1743 a fixed hard reg, the clobber cannot represent any operand;
1744 we leave it up to the machine description to either accept or
1745 reject use-and-clobber patterns. */
1746 if (!REG_P (reg)
1747 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1748 || !fixed_regs[REGNO (reg)])
1749 if (reg_overlap_mentioned_p (reg, src))
1750 return 0;
1753 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1754 or not), reject, unless nothing volatile comes between it and I3 */
1756 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1758 /* Make sure succ doesn't contain a volatile reference. */
1759 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1760 return 0;
1762 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1763 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1764 return 0;
1767 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1768 to be an explicit register variable, and was chosen for a reason. */
1770 if (GET_CODE (src) == ASM_OPERANDS
1771 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1772 return 0;
1774 /* If there are any volatile insns between INSN and I3, reject, because
1775 they might affect machine state. */
1777 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1778 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1779 return 0;
1781 /* If INSN contains an autoincrement or autodecrement, make sure that
1782 register is not used between there and I3, and not already used in
1783 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1784 Also insist that I3 not be a jump; if it were one
1785 and the incremented register were spilled, we would lose. */
1787 #ifdef AUTO_INC_DEC
1788 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1789 if (REG_NOTE_KIND (link) == REG_INC
1790 && (JUMP_P (i3)
1791 || reg_used_between_p (XEXP (link, 0), insn, i3)
1792 || (pred != NULL_RTX
1793 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1794 || (succ != NULL_RTX
1795 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1796 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1797 return 0;
1798 #endif
1800 #ifdef HAVE_cc0
1801 /* Don't combine an insn that follows a CC0-setting insn.
1802 An insn that uses CC0 must not be separated from the one that sets it.
1803 We do, however, allow I2 to follow a CC0-setting insn if that insn
1804 is passed as I1; in that case it will be deleted also.
1805 We also allow combining in this case if all the insns are adjacent
1806 because that would leave the two CC0 insns adjacent as well.
1807 It would be more logical to test whether CC0 occurs inside I1 or I2,
1808 but that would be much slower, and this ought to be equivalent. */
1810 p = prev_nonnote_insn (insn);
1811 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1812 && ! all_adjacent)
1813 return 0;
1814 #endif
1816 /* If we get here, we have passed all the tests and the combination is
1817 to be allowed. */
1819 *pdest = dest;
1820 *psrc = src;
1822 return 1;
1825 /* LOC is the location within I3 that contains its pattern or the component
1826 of a PARALLEL of the pattern. We validate that it is valid for combining.
1828 One problem is if I3 modifies its output, as opposed to replacing it
1829 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1830 so would produce an insn that is not equivalent to the original insns.
1832 Consider:
1834 (set (reg:DI 101) (reg:DI 100))
1835 (set (subreg:SI (reg:DI 101) 0) <foo>)
1837 This is NOT equivalent to:
1839 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1840 (set (reg:DI 101) (reg:DI 100))])
1842 Not only does this modify 100 (in which case it might still be valid
1843 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1845 We can also run into a problem if I2 sets a register that I1
1846 uses and I1 gets directly substituted into I3 (not via I2). In that
1847 case, we would be getting the wrong value of I2DEST into I3, so we
1848 must reject the combination. This case occurs when I2 and I1 both
1849 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1850 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1851 of a SET must prevent combination from occurring.
1853 Before doing the above check, we first try to expand a field assignment
1854 into a set of logical operations.
1856 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1857 we place a register that is both set and used within I3. If more than one
1858 such register is detected, we fail.
1860 Return 1 if the combination is valid, zero otherwise. */
1862 static int
1863 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1864 int i1_not_in_src, rtx *pi3dest_killed)
1866 rtx x = *loc;
1868 if (GET_CODE (x) == SET)
1870 rtx set = x ;
1871 rtx dest = SET_DEST (set);
1872 rtx src = SET_SRC (set);
1873 rtx inner_dest = dest;
1874 rtx subdest;
1876 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1877 || GET_CODE (inner_dest) == SUBREG
1878 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1879 inner_dest = XEXP (inner_dest, 0);
1881 /* Check for the case where I3 modifies its output, as discussed
1882 above. We don't want to prevent pseudos from being combined
1883 into the address of a MEM, so only prevent the combination if
1884 i1 or i2 set the same MEM. */
1885 if ((inner_dest != dest &&
1886 (!MEM_P (inner_dest)
1887 || rtx_equal_p (i2dest, inner_dest)
1888 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1889 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1890 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1892 /* This is the same test done in can_combine_p except we can't test
1893 all_adjacent; we don't have to, since this instruction will stay
1894 in place, thus we are not considering increasing the lifetime of
1895 INNER_DEST.
1897 Also, if this insn sets a function argument, combining it with
1898 something that might need a spill could clobber a previous
1899 function argument; the all_adjacent test in can_combine_p also
1900 checks this; here, we do a more specific test for this case. */
1902 || (REG_P (inner_dest)
1903 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1904 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1905 GET_MODE (inner_dest))))
1906 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1907 return 0;
1909 /* If DEST is used in I3, it is being killed in this insn, so
1910 record that for later. We have to consider paradoxical
1911 subregs here, since they kill the whole register, but we
1912 ignore partial subregs, STRICT_LOW_PART, etc.
1913 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1914 STACK_POINTER_REGNUM, since these are always considered to be
1915 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1916 subdest = dest;
1917 if (GET_CODE (subdest) == SUBREG
1918 && (GET_MODE_SIZE (GET_MODE (subdest))
1919 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1920 subdest = SUBREG_REG (subdest);
1921 if (pi3dest_killed
1922 && REG_P (subdest)
1923 && reg_referenced_p (subdest, PATTERN (i3))
1924 && REGNO (subdest) != FRAME_POINTER_REGNUM
1925 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1926 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1927 #endif
1928 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1929 && (REGNO (subdest) != ARG_POINTER_REGNUM
1930 || ! fixed_regs [REGNO (subdest)])
1931 #endif
1932 && REGNO (subdest) != STACK_POINTER_REGNUM)
1934 if (*pi3dest_killed)
1935 return 0;
1937 *pi3dest_killed = subdest;
1941 else if (GET_CODE (x) == PARALLEL)
1943 int i;
1945 for (i = 0; i < XVECLEN (x, 0); i++)
1946 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1947 i1_not_in_src, pi3dest_killed))
1948 return 0;
1951 return 1;
1954 /* Return 1 if X is an arithmetic expression that contains a multiplication
1955 and division. We don't count multiplications by powers of two here. */
1957 static int
1958 contains_muldiv (rtx x)
1960 switch (GET_CODE (x))
1962 case MOD: case DIV: case UMOD: case UDIV:
1963 return 1;
1965 case MULT:
1966 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1967 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1968 default:
1969 if (BINARY_P (x))
1970 return contains_muldiv (XEXP (x, 0))
1971 || contains_muldiv (XEXP (x, 1));
1973 if (UNARY_P (x))
1974 return contains_muldiv (XEXP (x, 0));
1976 return 0;
1980 /* Determine whether INSN can be used in a combination. Return nonzero if
1981 not. This is used in try_combine to detect early some cases where we
1982 can't perform combinations. */
1984 static int
1985 cant_combine_insn_p (rtx insn)
1987 rtx set;
1988 rtx src, dest;
1990 /* If this isn't really an insn, we can't do anything.
1991 This can occur when flow deletes an insn that it has merged into an
1992 auto-increment address. */
1993 if (! INSN_P (insn))
1994 return 1;
1996 /* Never combine loads and stores involving hard regs that are likely
1997 to be spilled. The register allocator can usually handle such
1998 reg-reg moves by tying. If we allow the combiner to make
1999 substitutions of likely-spilled regs, reload might die.
2000 As an exception, we allow combinations involving fixed regs; these are
2001 not available to the register allocator so there's no risk involved. */
2003 set = single_set (insn);
2004 if (! set)
2005 return 0;
2006 src = SET_SRC (set);
2007 dest = SET_DEST (set);
2008 if (GET_CODE (src) == SUBREG)
2009 src = SUBREG_REG (src);
2010 if (GET_CODE (dest) == SUBREG)
2011 dest = SUBREG_REG (dest);
2012 if (REG_P (src) && REG_P (dest)
2013 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2014 && ! fixed_regs[REGNO (src)]
2015 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2016 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2017 && ! fixed_regs[REGNO (dest)]
2018 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2019 return 1;
2021 return 0;
2024 struct likely_spilled_retval_info
2026 unsigned regno, nregs;
2027 unsigned mask;
2030 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2031 hard registers that are known to be written to / clobbered in full. */
2032 static void
2033 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2035 struct likely_spilled_retval_info *info = data;
2036 unsigned regno, nregs;
2037 unsigned new_mask;
2039 if (!REG_P (XEXP (set, 0)))
2040 return;
2041 regno = REGNO (x);
2042 if (regno >= info->regno + info->nregs)
2043 return;
2044 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2045 if (regno + nregs <= info->regno)
2046 return;
2047 new_mask = (2U << (nregs - 1)) - 1;
2048 if (regno < info->regno)
2049 new_mask >>= info->regno - regno;
2050 else
2051 new_mask <<= regno - info->regno;
2052 info->mask &= ~new_mask;
2055 /* Return nonzero iff part of the return value is live during INSN, and
2056 it is likely spilled. This can happen when more than one insn is needed
2057 to copy the return value, e.g. when we consider to combine into the
2058 second copy insn for a complex value. */
2060 static int
2061 likely_spilled_retval_p (rtx insn)
2063 rtx use = BB_END (this_basic_block);
2064 rtx reg, p;
2065 unsigned regno, nregs;
2066 /* We assume here that no machine mode needs more than
2067 32 hard registers when the value overlaps with a register
2068 for which FUNCTION_VALUE_REGNO_P is true. */
2069 unsigned mask;
2070 struct likely_spilled_retval_info info;
2072 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2073 return 0;
2074 reg = XEXP (PATTERN (use), 0);
2075 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2076 return 0;
2077 regno = REGNO (reg);
2078 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2079 if (nregs == 1)
2080 return 0;
2081 mask = (2U << (nregs - 1)) - 1;
2083 /* Disregard parts of the return value that are set later. */
2084 info.regno = regno;
2085 info.nregs = nregs;
2086 info.mask = mask;
2087 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2088 if (INSN_P (p))
2089 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2090 mask = info.mask;
2092 /* Check if any of the (probably) live return value registers is
2093 likely spilled. */
2094 nregs --;
2097 if ((mask & 1 << nregs)
2098 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2099 return 1;
2100 } while (nregs--);
2101 return 0;
2104 /* Adjust INSN after we made a change to its destination.
2106 Changing the destination can invalidate notes that say something about
2107 the results of the insn and a LOG_LINK pointing to the insn. */
2109 static void
2110 adjust_for_new_dest (rtx insn)
2112 /* For notes, be conservative and simply remove them. */
2113 remove_reg_equal_equiv_notes (insn);
2115 /* The new insn will have a destination that was previously the destination
2116 of an insn just above it. Call distribute_links to make a LOG_LINK from
2117 the next use of that destination. */
2118 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2120 df_insn_rescan (insn);
2123 /* Return TRUE if combine can reuse reg X in mode MODE.
2124 ADDED_SETS is nonzero if the original set is still required. */
2125 static bool
2126 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2128 unsigned int regno;
2130 if (!REG_P(x))
2131 return false;
2133 regno = REGNO (x);
2134 /* Allow hard registers if the new mode is legal, and occupies no more
2135 registers than the old mode. */
2136 if (regno < FIRST_PSEUDO_REGISTER)
2137 return (HARD_REGNO_MODE_OK (regno, mode)
2138 && (hard_regno_nregs[regno][GET_MODE (x)]
2139 >= hard_regno_nregs[regno][mode]));
2141 /* Or a pseudo that is only used once. */
2142 return (REG_N_SETS (regno) == 1 && !added_sets
2143 && !REG_USERVAR_P (x));
2147 /* Check whether X, the destination of a set, refers to part of
2148 the register specified by REG. */
2150 static bool
2151 reg_subword_p (rtx x, rtx reg)
2153 /* Check that reg is an integer mode register. */
2154 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2155 return false;
2157 if (GET_CODE (x) == STRICT_LOW_PART
2158 || GET_CODE (x) == ZERO_EXTRACT)
2159 x = XEXP (x, 0);
2161 return GET_CODE (x) == SUBREG
2162 && SUBREG_REG (x) == reg
2163 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2167 /* Try to combine the insns I1 and I2 into I3.
2168 Here I1 and I2 appear earlier than I3.
2169 I1 can be zero; then we combine just I2 into I3.
2171 If we are combining three insns and the resulting insn is not recognized,
2172 try splitting it into two insns. If that happens, I2 and I3 are retained
2173 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2174 are pseudo-deleted.
2176 Return 0 if the combination does not work. Then nothing is changed.
2177 If we did the combination, return the insn at which combine should
2178 resume scanning.
2180 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2181 new direct jump instruction. */
2183 static rtx
2184 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2186 /* New patterns for I3 and I2, respectively. */
2187 rtx newpat, newi2pat = 0;
2188 rtvec newpat_vec_with_clobbers = 0;
2189 int substed_i2 = 0, substed_i1 = 0;
2190 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2191 int added_sets_1, added_sets_2;
2192 /* Total number of SETs to put into I3. */
2193 int total_sets;
2194 /* Nonzero if I2's body now appears in I3. */
2195 int i2_is_used;
2196 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2197 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2198 /* Contains I3 if the destination of I3 is used in its source, which means
2199 that the old life of I3 is being killed. If that usage is placed into
2200 I2 and not in I3, a REG_DEAD note must be made. */
2201 rtx i3dest_killed = 0;
2202 /* SET_DEST and SET_SRC of I2 and I1. */
2203 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2204 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2205 rtx i1pat = 0, i2pat = 0;
2206 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2207 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2208 int i2dest_killed = 0, i1dest_killed = 0;
2209 int i1_feeds_i3 = 0;
2210 /* Notes that must be added to REG_NOTES in I3 and I2. */
2211 rtx new_i3_notes, new_i2_notes;
2212 /* Notes that we substituted I3 into I2 instead of the normal case. */
2213 int i3_subst_into_i2 = 0;
2214 /* Notes that I1, I2 or I3 is a MULT operation. */
2215 int have_mult = 0;
2216 int swap_i2i3 = 0;
2218 int maxreg;
2219 rtx temp;
2220 rtx link;
2221 rtx other_pat = 0;
2222 rtx new_other_notes;
2223 int i;
2225 /* Exit early if one of the insns involved can't be used for
2226 combinations. */
2227 if (cant_combine_insn_p (i3)
2228 || cant_combine_insn_p (i2)
2229 || (i1 && cant_combine_insn_p (i1))
2230 || likely_spilled_retval_p (i3)
2231 /* We also can't do anything if I3 has a
2232 REG_LIBCALL note since we don't want to disrupt the contiguity of a
2233 libcall. */
2234 #if 0
2235 /* ??? This gives worse code, and appears to be unnecessary, since no
2236 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
2237 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
2238 #endif
2240 return 0;
2242 combine_attempts++;
2243 undobuf.other_insn = 0;
2245 /* Reset the hard register usage information. */
2246 CLEAR_HARD_REG_SET (newpat_used_regs);
2248 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2249 code below, set I1 to be the earlier of the two insns. */
2250 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2251 temp = i1, i1 = i2, i2 = temp;
2253 added_links_insn = 0;
2255 /* First check for one important special-case that the code below will
2256 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2257 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2258 we may be able to replace that destination with the destination of I3.
2259 This occurs in the common code where we compute both a quotient and
2260 remainder into a structure, in which case we want to do the computation
2261 directly into the structure to avoid register-register copies.
2263 Note that this case handles both multiple sets in I2 and also
2264 cases where I2 has a number of CLOBBER or PARALLELs.
2266 We make very conservative checks below and only try to handle the
2267 most common cases of this. For example, we only handle the case
2268 where I2 and I3 are adjacent to avoid making difficult register
2269 usage tests. */
2271 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2272 && REG_P (SET_SRC (PATTERN (i3)))
2273 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2274 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2275 && GET_CODE (PATTERN (i2)) == PARALLEL
2276 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2277 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2278 below would need to check what is inside (and reg_overlap_mentioned_p
2279 doesn't support those codes anyway). Don't allow those destinations;
2280 the resulting insn isn't likely to be recognized anyway. */
2281 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2282 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2283 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2284 SET_DEST (PATTERN (i3)))
2285 && next_real_insn (i2) == i3)
2287 rtx p2 = PATTERN (i2);
2289 /* Make sure that the destination of I3,
2290 which we are going to substitute into one output of I2,
2291 is not used within another output of I2. We must avoid making this:
2292 (parallel [(set (mem (reg 69)) ...)
2293 (set (reg 69) ...)])
2294 which is not well-defined as to order of actions.
2295 (Besides, reload can't handle output reloads for this.)
2297 The problem can also happen if the dest of I3 is a memory ref,
2298 if another dest in I2 is an indirect memory ref. */
2299 for (i = 0; i < XVECLEN (p2, 0); i++)
2300 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2301 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2302 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2303 SET_DEST (XVECEXP (p2, 0, i))))
2304 break;
2306 if (i == XVECLEN (p2, 0))
2307 for (i = 0; i < XVECLEN (p2, 0); i++)
2308 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2309 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2310 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2312 combine_merges++;
2314 subst_insn = i3;
2315 subst_low_luid = DF_INSN_LUID (i2);
2317 added_sets_2 = added_sets_1 = 0;
2318 i2dest = SET_SRC (PATTERN (i3));
2319 i2dest_killed = dead_or_set_p (i2, i2dest);
2321 /* Replace the dest in I2 with our dest and make the resulting
2322 insn the new pattern for I3. Then skip to where we
2323 validate the pattern. Everything was set up above. */
2324 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2325 SET_DEST (PATTERN (i3)));
2327 newpat = p2;
2328 i3_subst_into_i2 = 1;
2329 goto validate_replacement;
2333 /* If I2 is setting a pseudo to a constant and I3 is setting some
2334 sub-part of it to another constant, merge them by making a new
2335 constant. */
2336 if (i1 == 0
2337 && (temp = single_set (i2)) != 0
2338 && (GET_CODE (SET_SRC (temp)) == CONST_INT
2339 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2340 && GET_CODE (PATTERN (i3)) == SET
2341 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
2342 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2343 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2345 rtx dest = SET_DEST (PATTERN (i3));
2346 int offset = -1;
2347 int width = 0;
2349 if (GET_CODE (dest) == ZERO_EXTRACT)
2351 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
2352 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
2354 width = INTVAL (XEXP (dest, 1));
2355 offset = INTVAL (XEXP (dest, 2));
2356 dest = XEXP (dest, 0);
2357 if (BITS_BIG_ENDIAN)
2358 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2361 else
2363 if (GET_CODE (dest) == STRICT_LOW_PART)
2364 dest = XEXP (dest, 0);
2365 width = GET_MODE_BITSIZE (GET_MODE (dest));
2366 offset = 0;
2369 if (offset >= 0)
2371 /* If this is the low part, we're done. */
2372 if (subreg_lowpart_p (dest))
2374 /* Handle the case where inner is twice the size of outer. */
2375 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2376 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2377 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2378 /* Otherwise give up for now. */
2379 else
2380 offset = -1;
2383 if (offset >= 0
2384 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2385 <= HOST_BITS_PER_WIDE_INT * 2))
2387 HOST_WIDE_INT mhi, ohi, ihi;
2388 HOST_WIDE_INT mlo, olo, ilo;
2389 rtx inner = SET_SRC (PATTERN (i3));
2390 rtx outer = SET_SRC (temp);
2392 if (GET_CODE (outer) == CONST_INT)
2394 olo = INTVAL (outer);
2395 ohi = olo < 0 ? -1 : 0;
2397 else
2399 olo = CONST_DOUBLE_LOW (outer);
2400 ohi = CONST_DOUBLE_HIGH (outer);
2403 if (GET_CODE (inner) == CONST_INT)
2405 ilo = INTVAL (inner);
2406 ihi = ilo < 0 ? -1 : 0;
2408 else
2410 ilo = CONST_DOUBLE_LOW (inner);
2411 ihi = CONST_DOUBLE_HIGH (inner);
2414 if (width < HOST_BITS_PER_WIDE_INT)
2416 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2417 mhi = 0;
2419 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2421 mhi = ((unsigned HOST_WIDE_INT) 1
2422 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2423 mlo = -1;
2425 else
2427 mlo = -1;
2428 mhi = -1;
2431 ilo &= mlo;
2432 ihi &= mhi;
2434 if (offset >= HOST_BITS_PER_WIDE_INT)
2436 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2437 mlo = 0;
2438 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2439 ilo = 0;
2441 else if (offset > 0)
2443 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2444 >> (HOST_BITS_PER_WIDE_INT - offset));
2445 mlo = mlo << offset;
2446 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2447 >> (HOST_BITS_PER_WIDE_INT - offset));
2448 ilo = ilo << offset;
2451 olo = (olo & ~mlo) | ilo;
2452 ohi = (ohi & ~mhi) | ihi;
2454 combine_merges++;
2455 subst_insn = i3;
2456 subst_low_luid = DF_INSN_LUID (i2);
2457 added_sets_2 = added_sets_1 = 0;
2458 i2dest = SET_DEST (temp);
2459 i2dest_killed = dead_or_set_p (i2, i2dest);
2461 SUBST (SET_SRC (temp),
2462 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2464 newpat = PATTERN (i2);
2465 goto validate_replacement;
2469 #ifndef HAVE_cc0
2470 /* If we have no I1 and I2 looks like:
2471 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2472 (set Y OP)])
2473 make up a dummy I1 that is
2474 (set Y OP)
2475 and change I2 to be
2476 (set (reg:CC X) (compare:CC Y (const_int 0)))
2478 (We can ignore any trailing CLOBBERs.)
2480 This undoes a previous combination and allows us to match a branch-and-
2481 decrement insn. */
2483 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2484 && XVECLEN (PATTERN (i2), 0) >= 2
2485 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2486 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2487 == MODE_CC)
2488 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2489 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2490 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2491 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2492 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2493 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2495 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2496 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2497 break;
2499 if (i == 1)
2501 /* We make I1 with the same INSN_UID as I2. This gives it
2502 the same DF_INSN_LUID for value tracking. Our fake I1 will
2503 never appear in the insn stream so giving it the same INSN_UID
2504 as I2 will not cause a problem. */
2506 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2507 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2508 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2510 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2511 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2512 SET_DEST (PATTERN (i1)));
2515 #endif
2517 /* Verify that I2 and I1 are valid for combining. */
2518 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2519 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2521 undo_all ();
2522 return 0;
2525 /* Record whether I2DEST is used in I2SRC and similarly for the other
2526 cases. Knowing this will help in register status updating below. */
2527 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2528 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2529 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2530 i2dest_killed = dead_or_set_p (i2, i2dest);
2531 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2533 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2534 in I2SRC. */
2535 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2537 /* Ensure that I3's pattern can be the destination of combines. */
2538 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2539 i1 && i2dest_in_i1src && i1_feeds_i3,
2540 &i3dest_killed))
2542 undo_all ();
2543 return 0;
2546 /* See if any of the insns is a MULT operation. Unless one is, we will
2547 reject a combination that is, since it must be slower. Be conservative
2548 here. */
2549 if (GET_CODE (i2src) == MULT
2550 || (i1 != 0 && GET_CODE (i1src) == MULT)
2551 || (GET_CODE (PATTERN (i3)) == SET
2552 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2553 have_mult = 1;
2555 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2556 We used to do this EXCEPT in one case: I3 has a post-inc in an
2557 output operand. However, that exception can give rise to insns like
2558 mov r3,(r3)+
2559 which is a famous insn on the PDP-11 where the value of r3 used as the
2560 source was model-dependent. Avoid this sort of thing. */
2562 #if 0
2563 if (!(GET_CODE (PATTERN (i3)) == SET
2564 && REG_P (SET_SRC (PATTERN (i3)))
2565 && MEM_P (SET_DEST (PATTERN (i3)))
2566 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2567 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2568 /* It's not the exception. */
2569 #endif
2570 #ifdef AUTO_INC_DEC
2571 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2572 if (REG_NOTE_KIND (link) == REG_INC
2573 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2574 || (i1 != 0
2575 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2577 undo_all ();
2578 return 0;
2580 #endif
2582 /* See if the SETs in I1 or I2 need to be kept around in the merged
2583 instruction: whenever the value set there is still needed past I3.
2584 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2586 For the SET in I1, we have two cases: If I1 and I2 independently
2587 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2588 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2589 in I1 needs to be kept around unless I1DEST dies or is set in either
2590 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2591 I1DEST. If so, we know I1 feeds into I2. */
2593 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2595 added_sets_1
2596 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2597 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2599 /* If the set in I2 needs to be kept around, we must make a copy of
2600 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2601 PATTERN (I2), we are only substituting for the original I1DEST, not into
2602 an already-substituted copy. This also prevents making self-referential
2603 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2604 I2DEST. */
2606 if (added_sets_2)
2608 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2609 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2610 else
2611 i2pat = copy_rtx (PATTERN (i2));
2614 if (added_sets_1)
2616 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2617 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2618 else
2619 i1pat = copy_rtx (PATTERN (i1));
2622 combine_merges++;
2624 /* Substitute in the latest insn for the regs set by the earlier ones. */
2626 maxreg = max_reg_num ();
2628 subst_insn = i3;
2630 #ifndef HAVE_cc0
2631 /* Many machines that don't use CC0 have insns that can both perform an
2632 arithmetic operation and set the condition code. These operations will
2633 be represented as a PARALLEL with the first element of the vector
2634 being a COMPARE of an arithmetic operation with the constant zero.
2635 The second element of the vector will set some pseudo to the result
2636 of the same arithmetic operation. If we simplify the COMPARE, we won't
2637 match such a pattern and so will generate an extra insn. Here we test
2638 for this case, where both the comparison and the operation result are
2639 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2640 I2SRC. Later we will make the PARALLEL that contains I2. */
2642 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2643 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2644 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2645 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2647 #ifdef SELECT_CC_MODE
2648 rtx *cc_use;
2649 enum machine_mode compare_mode;
2650 #endif
2652 newpat = PATTERN (i3);
2653 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2655 i2_is_used = 1;
2657 #ifdef SELECT_CC_MODE
2658 /* See if a COMPARE with the operand we substituted in should be done
2659 with the mode that is currently being used. If not, do the same
2660 processing we do in `subst' for a SET; namely, if the destination
2661 is used only once, try to replace it with a register of the proper
2662 mode and also replace the COMPARE. */
2663 if (undobuf.other_insn == 0
2664 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2665 &undobuf.other_insn))
2666 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2667 i2src, const0_rtx))
2668 != GET_MODE (SET_DEST (newpat))))
2670 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2671 compare_mode))
2673 unsigned int regno = REGNO (SET_DEST (newpat));
2674 rtx new_dest;
2676 if (regno < FIRST_PSEUDO_REGISTER)
2677 new_dest = gen_rtx_REG (compare_mode, regno);
2678 else
2680 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2681 new_dest = regno_reg_rtx[regno];
2684 SUBST (SET_DEST (newpat), new_dest);
2685 SUBST (XEXP (*cc_use, 0), new_dest);
2686 SUBST (SET_SRC (newpat),
2687 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2689 else
2690 undobuf.other_insn = 0;
2692 #endif
2694 else
2695 #endif
2697 /* It is possible that the source of I2 or I1 may be performing
2698 an unneeded operation, such as a ZERO_EXTEND of something
2699 that is known to have the high part zero. Handle that case
2700 by letting subst look at the innermost one of them.
2702 Another way to do this would be to have a function that tries
2703 to simplify a single insn instead of merging two or more
2704 insns. We don't do this because of the potential of infinite
2705 loops and because of the potential extra memory required.
2706 However, doing it the way we are is a bit of a kludge and
2707 doesn't catch all cases.
2709 But only do this if -fexpensive-optimizations since it slows
2710 things down and doesn't usually win.
2712 This is not done in the COMPARE case above because the
2713 unmodified I2PAT is used in the PARALLEL and so a pattern
2714 with a modified I2SRC would not match. */
2716 if (flag_expensive_optimizations)
2718 /* Pass pc_rtx so no substitutions are done, just
2719 simplifications. */
2720 if (i1)
2722 subst_low_luid = DF_INSN_LUID (i1);
2723 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2725 else
2727 subst_low_luid = DF_INSN_LUID (i2);
2728 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2732 n_occurrences = 0; /* `subst' counts here */
2734 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2735 need to make a unique copy of I2SRC each time we substitute it
2736 to avoid self-referential rtl. */
2738 subst_low_luid = DF_INSN_LUID (i2);
2739 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2740 ! i1_feeds_i3 && i1dest_in_i1src);
2741 substed_i2 = 1;
2743 /* Record whether i2's body now appears within i3's body. */
2744 i2_is_used = n_occurrences;
2747 /* If we already got a failure, don't try to do more. Otherwise,
2748 try to substitute in I1 if we have it. */
2750 if (i1 && GET_CODE (newpat) != CLOBBER)
2752 /* Before we can do this substitution, we must redo the test done
2753 above (see detailed comments there) that ensures that I1DEST
2754 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2756 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2757 0, (rtx*) 0))
2759 undo_all ();
2760 return 0;
2763 n_occurrences = 0;
2764 subst_low_luid = DF_INSN_LUID (i1);
2765 newpat = subst (newpat, i1dest, i1src, 0, 0);
2766 substed_i1 = 1;
2769 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2770 to count all the ways that I2SRC and I1SRC can be used. */
2771 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2772 && i2_is_used + added_sets_2 > 1)
2773 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2774 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2775 > 1))
2776 /* Fail if we tried to make a new register. */
2777 || max_reg_num () != maxreg
2778 /* Fail if we couldn't do something and have a CLOBBER. */
2779 || GET_CODE (newpat) == CLOBBER
2780 /* Fail if this new pattern is a MULT and we didn't have one before
2781 at the outer level. */
2782 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2783 && ! have_mult))
2785 undo_all ();
2786 return 0;
2789 /* If the actions of the earlier insns must be kept
2790 in addition to substituting them into the latest one,
2791 we must make a new PARALLEL for the latest insn
2792 to hold additional the SETs. */
2794 if (added_sets_1 || added_sets_2)
2796 combine_extras++;
2798 if (GET_CODE (newpat) == PARALLEL)
2800 rtvec old = XVEC (newpat, 0);
2801 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2802 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2803 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2804 sizeof (old->elem[0]) * old->num_elem);
2806 else
2808 rtx old = newpat;
2809 total_sets = 1 + added_sets_1 + added_sets_2;
2810 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2811 XVECEXP (newpat, 0, 0) = old;
2814 if (added_sets_1)
2815 XVECEXP (newpat, 0, --total_sets) = i1pat;
2817 if (added_sets_2)
2819 /* If there is no I1, use I2's body as is. We used to also not do
2820 the subst call below if I2 was substituted into I3,
2821 but that could lose a simplification. */
2822 if (i1 == 0)
2823 XVECEXP (newpat, 0, --total_sets) = i2pat;
2824 else
2825 /* See comment where i2pat is assigned. */
2826 XVECEXP (newpat, 0, --total_sets)
2827 = subst (i2pat, i1dest, i1src, 0, 0);
2831 /* We come here when we are replacing a destination in I2 with the
2832 destination of I3. */
2833 validate_replacement:
2835 /* Note which hard regs this insn has as inputs. */
2836 mark_used_regs_combine (newpat);
2838 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2839 consider splitting this pattern, we might need these clobbers. */
2840 if (i1 && GET_CODE (newpat) == PARALLEL
2841 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2843 int len = XVECLEN (newpat, 0);
2845 newpat_vec_with_clobbers = rtvec_alloc (len);
2846 for (i = 0; i < len; i++)
2847 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2850 /* Is the result of combination a valid instruction? */
2851 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2853 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2854 the second SET's destination is a register that is unused and isn't
2855 marked as an instruction that might trap in an EH region. In that case,
2856 we just need the first SET. This can occur when simplifying a divmod
2857 insn. We *must* test for this case here because the code below that
2858 splits two independent SETs doesn't handle this case correctly when it
2859 updates the register status.
2861 It's pointless doing this if we originally had two sets, one from
2862 i3, and one from i2. Combining then splitting the parallel results
2863 in the original i2 again plus an invalid insn (which we delete).
2864 The net effect is only to move instructions around, which makes
2865 debug info less accurate.
2867 Also check the case where the first SET's destination is unused.
2868 That would not cause incorrect code, but does cause an unneeded
2869 insn to remain. */
2871 if (insn_code_number < 0
2872 && !(added_sets_2 && i1 == 0)
2873 && GET_CODE (newpat) == PARALLEL
2874 && XVECLEN (newpat, 0) == 2
2875 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2876 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2877 && asm_noperands (newpat) < 0)
2879 rtx set0 = XVECEXP (newpat, 0, 0);
2880 rtx set1 = XVECEXP (newpat, 0, 1);
2881 rtx note;
2883 if (((REG_P (SET_DEST (set1))
2884 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2885 || (GET_CODE (SET_DEST (set1)) == SUBREG
2886 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2887 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2888 || INTVAL (XEXP (note, 0)) <= 0)
2889 && ! side_effects_p (SET_SRC (set1)))
2891 newpat = set0;
2892 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2895 else if (((REG_P (SET_DEST (set0))
2896 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2897 || (GET_CODE (SET_DEST (set0)) == SUBREG
2898 && find_reg_note (i3, REG_UNUSED,
2899 SUBREG_REG (SET_DEST (set0)))))
2900 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2901 || INTVAL (XEXP (note, 0)) <= 0)
2902 && ! side_effects_p (SET_SRC (set0)))
2904 newpat = set1;
2905 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2907 if (insn_code_number >= 0)
2909 /* If we will be able to accept this, we have made a
2910 change to the destination of I3. This requires us to
2911 do a few adjustments. */
2913 PATTERN (i3) = newpat;
2914 adjust_for_new_dest (i3);
2919 /* If we were combining three insns and the result is a simple SET
2920 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2921 insns. There are two ways to do this. It can be split using a
2922 machine-specific method (like when you have an addition of a large
2923 constant) or by combine in the function find_split_point. */
2925 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2926 && asm_noperands (newpat) < 0)
2928 rtx parallel, m_split, *split;
2930 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2931 use I2DEST as a scratch register will help. In the latter case,
2932 convert I2DEST to the mode of the source of NEWPAT if we can. */
2934 m_split = combine_split_insns (newpat, i3);
2936 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2937 inputs of NEWPAT. */
2939 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2940 possible to try that as a scratch reg. This would require adding
2941 more code to make it work though. */
2943 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2945 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2947 /* First try to split using the original register as a
2948 scratch register. */
2949 parallel = gen_rtx_PARALLEL (VOIDmode,
2950 gen_rtvec (2, newpat,
2951 gen_rtx_CLOBBER (VOIDmode,
2952 i2dest)));
2953 m_split = combine_split_insns (parallel, i3);
2955 /* If that didn't work, try changing the mode of I2DEST if
2956 we can. */
2957 if (m_split == 0
2958 && new_mode != GET_MODE (i2dest)
2959 && new_mode != VOIDmode
2960 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2962 enum machine_mode old_mode = GET_MODE (i2dest);
2963 rtx ni2dest;
2965 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2966 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2967 else
2969 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2970 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2973 parallel = (gen_rtx_PARALLEL
2974 (VOIDmode,
2975 gen_rtvec (2, newpat,
2976 gen_rtx_CLOBBER (VOIDmode,
2977 ni2dest))));
2978 m_split = combine_split_insns (parallel, i3);
2980 if (m_split == 0
2981 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2983 struct undo *buf;
2985 PUT_MODE (regno_reg_rtx[REGNO (i2dest)], old_mode);
2986 buf = undobuf.undos;
2987 undobuf.undos = buf->next;
2988 buf->next = undobuf.frees;
2989 undobuf.frees = buf;
2994 /* If recog_for_combine has discarded clobbers, try to use them
2995 again for the split. */
2996 if (m_split == 0 && newpat_vec_with_clobbers)
2998 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
2999 m_split = combine_split_insns (parallel, i3);
3002 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3004 m_split = PATTERN (m_split);
3005 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3006 if (insn_code_number >= 0)
3007 newpat = m_split;
3009 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3010 && (next_real_insn (i2) == i3
3011 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3013 rtx i2set, i3set;
3014 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3015 newi2pat = PATTERN (m_split);
3017 i3set = single_set (NEXT_INSN (m_split));
3018 i2set = single_set (m_split);
3020 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3022 /* If I2 or I3 has multiple SETs, we won't know how to track
3023 register status, so don't use these insns. If I2's destination
3024 is used between I2 and I3, we also can't use these insns. */
3026 if (i2_code_number >= 0 && i2set && i3set
3027 && (next_real_insn (i2) == i3
3028 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3029 insn_code_number = recog_for_combine (&newi3pat, i3,
3030 &new_i3_notes);
3031 if (insn_code_number >= 0)
3032 newpat = newi3pat;
3034 /* It is possible that both insns now set the destination of I3.
3035 If so, we must show an extra use of it. */
3037 if (insn_code_number >= 0)
3039 rtx new_i3_dest = SET_DEST (i3set);
3040 rtx new_i2_dest = SET_DEST (i2set);
3042 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3043 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3044 || GET_CODE (new_i3_dest) == SUBREG)
3045 new_i3_dest = XEXP (new_i3_dest, 0);
3047 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3048 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3049 || GET_CODE (new_i2_dest) == SUBREG)
3050 new_i2_dest = XEXP (new_i2_dest, 0);
3052 if (REG_P (new_i3_dest)
3053 && REG_P (new_i2_dest)
3054 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3055 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3059 /* If we can split it and use I2DEST, go ahead and see if that
3060 helps things be recognized. Verify that none of the registers
3061 are set between I2 and I3. */
3062 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3063 #ifdef HAVE_cc0
3064 && REG_P (i2dest)
3065 #endif
3066 /* We need I2DEST in the proper mode. If it is a hard register
3067 or the only use of a pseudo, we can change its mode.
3068 Make sure we don't change a hard register to have a mode that
3069 isn't valid for it, or change the number of registers. */
3070 && (GET_MODE (*split) == GET_MODE (i2dest)
3071 || GET_MODE (*split) == VOIDmode
3072 || can_change_dest_mode (i2dest, added_sets_2,
3073 GET_MODE (*split)))
3074 && (next_real_insn (i2) == i3
3075 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3076 /* We can't overwrite I2DEST if its value is still used by
3077 NEWPAT. */
3078 && ! reg_referenced_p (i2dest, newpat))
3080 rtx newdest = i2dest;
3081 enum rtx_code split_code = GET_CODE (*split);
3082 enum machine_mode split_mode = GET_MODE (*split);
3083 bool subst_done = false;
3084 newi2pat = NULL_RTX;
3086 /* Get NEWDEST as a register in the proper mode. We have already
3087 validated that we can do this. */
3088 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3090 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3091 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3092 else
3094 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3095 newdest = regno_reg_rtx[REGNO (i2dest)];
3099 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3100 an ASHIFT. This can occur if it was inside a PLUS and hence
3101 appeared to be a memory address. This is a kludge. */
3102 if (split_code == MULT
3103 && GET_CODE (XEXP (*split, 1)) == CONST_INT
3104 && INTVAL (XEXP (*split, 1)) > 0
3105 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3107 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3108 XEXP (*split, 0), GEN_INT (i)));
3109 /* Update split_code because we may not have a multiply
3110 anymore. */
3111 split_code = GET_CODE (*split);
3114 #ifdef INSN_SCHEDULING
3115 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3116 be written as a ZERO_EXTEND. */
3117 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3119 #ifdef LOAD_EXTEND_OP
3120 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3121 what it really is. */
3122 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3123 == SIGN_EXTEND)
3124 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3125 SUBREG_REG (*split)));
3126 else
3127 #endif
3128 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3129 SUBREG_REG (*split)));
3131 #endif
3133 /* Attempt to split binary operators using arithmetic identities. */
3134 if (BINARY_P (SET_SRC (newpat))
3135 && split_mode == GET_MODE (SET_SRC (newpat))
3136 && ! side_effects_p (SET_SRC (newpat)))
3138 rtx setsrc = SET_SRC (newpat);
3139 enum machine_mode mode = GET_MODE (setsrc);
3140 enum rtx_code code = GET_CODE (setsrc);
3141 rtx src_op0 = XEXP (setsrc, 0);
3142 rtx src_op1 = XEXP (setsrc, 1);
3144 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3145 if (rtx_equal_p (src_op0, src_op1))
3147 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3148 SUBST (XEXP (setsrc, 0), newdest);
3149 SUBST (XEXP (setsrc, 1), newdest);
3150 subst_done = true;
3152 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3153 else if ((code == PLUS || code == MULT)
3154 && GET_CODE (src_op0) == code
3155 && GET_CODE (XEXP (src_op0, 0)) == code
3156 && (INTEGRAL_MODE_P (mode)
3157 || (FLOAT_MODE_P (mode)
3158 && flag_unsafe_math_optimizations)))
3160 rtx p = XEXP (XEXP (src_op0, 0), 0);
3161 rtx q = XEXP (XEXP (src_op0, 0), 1);
3162 rtx r = XEXP (src_op0, 1);
3163 rtx s = src_op1;
3165 /* Split both "((X op Y) op X) op Y" and
3166 "((X op Y) op Y) op X" as "T op T" where T is
3167 "X op Y". */
3168 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3169 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3171 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3172 XEXP (src_op0, 0));
3173 SUBST (XEXP (setsrc, 0), newdest);
3174 SUBST (XEXP (setsrc, 1), newdest);
3175 subst_done = true;
3177 /* Split "((X op X) op Y) op Y)" as "T op T" where
3178 T is "X op Y". */
3179 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3181 rtx tmp = simplify_gen_binary (code, mode, p, r);
3182 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3183 SUBST (XEXP (setsrc, 0), newdest);
3184 SUBST (XEXP (setsrc, 1), newdest);
3185 subst_done = true;
3190 if (!subst_done)
3192 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3193 SUBST (*split, newdest);
3196 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3198 /* recog_for_combine might have added CLOBBERs to newi2pat.
3199 Make sure NEWPAT does not depend on the clobbered regs. */
3200 if (GET_CODE (newi2pat) == PARALLEL)
3201 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3202 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3204 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3205 if (reg_overlap_mentioned_p (reg, newpat))
3207 undo_all ();
3208 return 0;
3212 /* If the split point was a MULT and we didn't have one before,
3213 don't use one now. */
3214 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3215 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3219 /* Check for a case where we loaded from memory in a narrow mode and
3220 then sign extended it, but we need both registers. In that case,
3221 we have a PARALLEL with both loads from the same memory location.
3222 We can split this into a load from memory followed by a register-register
3223 copy. This saves at least one insn, more if register allocation can
3224 eliminate the copy.
3226 We cannot do this if the destination of the first assignment is a
3227 condition code register or cc0. We eliminate this case by making sure
3228 the SET_DEST and SET_SRC have the same mode.
3230 We cannot do this if the destination of the second assignment is
3231 a register that we have already assumed is zero-extended. Similarly
3232 for a SUBREG of such a register. */
3234 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3235 && GET_CODE (newpat) == PARALLEL
3236 && XVECLEN (newpat, 0) == 2
3237 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3238 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3239 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3240 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3241 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3242 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3243 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3244 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3245 DF_INSN_LUID (i2))
3246 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3247 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3248 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3249 (REG_P (temp)
3250 && VEC_index (reg_stat_type, reg_stat,
3251 REGNO (temp))->nonzero_bits != 0
3252 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3253 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3254 && (VEC_index (reg_stat_type, reg_stat,
3255 REGNO (temp))->nonzero_bits
3256 != GET_MODE_MASK (word_mode))))
3257 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3258 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3259 (REG_P (temp)
3260 && VEC_index (reg_stat_type, reg_stat,
3261 REGNO (temp))->nonzero_bits != 0
3262 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3263 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3264 && (VEC_index (reg_stat_type, reg_stat,
3265 REGNO (temp))->nonzero_bits
3266 != GET_MODE_MASK (word_mode)))))
3267 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3268 SET_SRC (XVECEXP (newpat, 0, 1)))
3269 && ! find_reg_note (i3, REG_UNUSED,
3270 SET_DEST (XVECEXP (newpat, 0, 0))))
3272 rtx ni2dest;
3274 newi2pat = XVECEXP (newpat, 0, 0);
3275 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3276 newpat = XVECEXP (newpat, 0, 1);
3277 SUBST (SET_SRC (newpat),
3278 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3279 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3281 if (i2_code_number >= 0)
3282 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3284 if (insn_code_number >= 0)
3285 swap_i2i3 = 1;
3288 /* Similarly, check for a case where we have a PARALLEL of two independent
3289 SETs but we started with three insns. In this case, we can do the sets
3290 as two separate insns. This case occurs when some SET allows two
3291 other insns to combine, but the destination of that SET is still live. */
3293 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3294 && GET_CODE (newpat) == PARALLEL
3295 && XVECLEN (newpat, 0) == 2
3296 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3297 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3298 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3299 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3300 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3301 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3302 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3303 DF_INSN_LUID (i2))
3304 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3305 XVECEXP (newpat, 0, 0))
3306 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3307 XVECEXP (newpat, 0, 1))
3308 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3309 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3310 #ifdef HAVE_cc0
3311 /* We cannot split the parallel into two sets if both sets
3312 reference cc0. */
3313 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3314 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3315 #endif
3318 /* Normally, it doesn't matter which of the two is done first,
3319 but it does if one references cc0. In that case, it has to
3320 be first. */
3321 #ifdef HAVE_cc0
3322 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3324 newi2pat = XVECEXP (newpat, 0, 0);
3325 newpat = XVECEXP (newpat, 0, 1);
3327 else
3328 #endif
3330 newi2pat = XVECEXP (newpat, 0, 1);
3331 newpat = XVECEXP (newpat, 0, 0);
3334 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3336 if (i2_code_number >= 0)
3337 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3340 /* If it still isn't recognized, fail and change things back the way they
3341 were. */
3342 if ((insn_code_number < 0
3343 /* Is the result a reasonable ASM_OPERANDS? */
3344 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3346 undo_all ();
3347 return 0;
3350 /* If we had to change another insn, make sure it is valid also. */
3351 if (undobuf.other_insn)
3353 CLEAR_HARD_REG_SET (newpat_used_regs);
3355 other_pat = PATTERN (undobuf.other_insn);
3356 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3357 &new_other_notes);
3359 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3361 undo_all ();
3362 return 0;
3366 #ifdef HAVE_cc0
3367 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3368 they are adjacent to each other or not. */
3370 rtx p = prev_nonnote_insn (i3);
3371 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3372 && sets_cc0_p (newi2pat))
3374 undo_all ();
3375 return 0;
3378 #endif
3380 /* Only allow this combination if insn_rtx_costs reports that the
3381 replacement instructions are cheaper than the originals. */
3382 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3384 undo_all ();
3385 return 0;
3388 /* We now know that we can do this combination. Merge the insns and
3389 update the status of registers and LOG_LINKS. */
3391 if (undobuf.other_insn)
3393 rtx note, next;
3395 PATTERN (undobuf.other_insn) = other_pat;
3397 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3398 are still valid. Then add any non-duplicate notes added by
3399 recog_for_combine. */
3400 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3402 next = XEXP (note, 1);
3404 if (REG_NOTE_KIND (note) == REG_UNUSED
3405 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3406 remove_note (undobuf.other_insn, note);
3409 distribute_notes (new_other_notes, undobuf.other_insn,
3410 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3413 if (swap_i2i3)
3415 rtx insn;
3416 rtx link;
3417 rtx ni2dest;
3419 /* I3 now uses what used to be its destination and which is now
3420 I2's destination. This requires us to do a few adjustments. */
3421 PATTERN (i3) = newpat;
3422 adjust_for_new_dest (i3);
3424 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3425 so we still will.
3427 However, some later insn might be using I2's dest and have
3428 a LOG_LINK pointing at I3. We must remove this link.
3429 The simplest way to remove the link is to point it at I1,
3430 which we know will be a NOTE. */
3432 /* newi2pat is usually a SET here; however, recog_for_combine might
3433 have added some clobbers. */
3434 if (GET_CODE (newi2pat) == PARALLEL)
3435 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3436 else
3437 ni2dest = SET_DEST (newi2pat);
3439 for (insn = NEXT_INSN (i3);
3440 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3441 || insn != BB_HEAD (this_basic_block->next_bb));
3442 insn = NEXT_INSN (insn))
3444 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3446 for (link = LOG_LINKS (insn); link;
3447 link = XEXP (link, 1))
3448 if (XEXP (link, 0) == i3)
3449 XEXP (link, 0) = i1;
3451 break;
3457 rtx i3notes, i2notes, i1notes = 0;
3458 rtx i3links, i2links, i1links = 0;
3459 rtx midnotes = 0;
3460 unsigned int regno;
3461 /* Compute which registers we expect to eliminate. newi2pat may be setting
3462 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3463 same as i3dest, in which case newi2pat may be setting i1dest. */
3464 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3465 || i2dest_in_i2src || i2dest_in_i1src
3466 || !i2dest_killed
3467 ? 0 : i2dest);
3468 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3469 || (newi2pat && reg_set_p (i1dest, newi2pat))
3470 || !i1dest_killed
3471 ? 0 : i1dest);
3473 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3474 clear them. */
3475 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3476 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3477 if (i1)
3478 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3480 /* Ensure that we do not have something that should not be shared but
3481 occurs multiple times in the new insns. Check this by first
3482 resetting all the `used' flags and then copying anything is shared. */
3484 reset_used_flags (i3notes);
3485 reset_used_flags (i2notes);
3486 reset_used_flags (i1notes);
3487 reset_used_flags (newpat);
3488 reset_used_flags (newi2pat);
3489 if (undobuf.other_insn)
3490 reset_used_flags (PATTERN (undobuf.other_insn));
3492 i3notes = copy_rtx_if_shared (i3notes);
3493 i2notes = copy_rtx_if_shared (i2notes);
3494 i1notes = copy_rtx_if_shared (i1notes);
3495 newpat = copy_rtx_if_shared (newpat);
3496 newi2pat = copy_rtx_if_shared (newi2pat);
3497 if (undobuf.other_insn)
3498 reset_used_flags (PATTERN (undobuf.other_insn));
3500 INSN_CODE (i3) = insn_code_number;
3501 PATTERN (i3) = newpat;
3503 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3505 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3507 reset_used_flags (call_usage);
3508 call_usage = copy_rtx (call_usage);
3510 if (substed_i2)
3511 replace_rtx (call_usage, i2dest, i2src);
3513 if (substed_i1)
3514 replace_rtx (call_usage, i1dest, i1src);
3516 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3519 if (undobuf.other_insn)
3520 INSN_CODE (undobuf.other_insn) = other_code_number;
3522 /* We had one special case above where I2 had more than one set and
3523 we replaced a destination of one of those sets with the destination
3524 of I3. In that case, we have to update LOG_LINKS of insns later
3525 in this basic block. Note that this (expensive) case is rare.
3527 Also, in this case, we must pretend that all REG_NOTEs for I2
3528 actually came from I3, so that REG_UNUSED notes from I2 will be
3529 properly handled. */
3531 if (i3_subst_into_i2)
3533 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3534 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3535 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3536 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3537 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3538 && ! find_reg_note (i2, REG_UNUSED,
3539 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3540 for (temp = NEXT_INSN (i2);
3541 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3542 || BB_HEAD (this_basic_block) != temp);
3543 temp = NEXT_INSN (temp))
3544 if (temp != i3 && INSN_P (temp))
3545 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3546 if (XEXP (link, 0) == i2)
3547 XEXP (link, 0) = i3;
3549 if (i3notes)
3551 rtx link = i3notes;
3552 while (XEXP (link, 1))
3553 link = XEXP (link, 1);
3554 XEXP (link, 1) = i2notes;
3556 else
3557 i3notes = i2notes;
3558 i2notes = 0;
3561 LOG_LINKS (i3) = 0;
3562 REG_NOTES (i3) = 0;
3563 LOG_LINKS (i2) = 0;
3564 REG_NOTES (i2) = 0;
3566 if (newi2pat)
3568 INSN_CODE (i2) = i2_code_number;
3569 PATTERN (i2) = newi2pat;
3571 else
3572 SET_INSN_DELETED (i2);
3574 if (i1)
3576 LOG_LINKS (i1) = 0;
3577 REG_NOTES (i1) = 0;
3578 SET_INSN_DELETED (i1);
3581 /* Get death notes for everything that is now used in either I3 or
3582 I2 and used to die in a previous insn. If we built two new
3583 patterns, move from I1 to I2 then I2 to I3 so that we get the
3584 proper movement on registers that I2 modifies. */
3586 if (newi2pat)
3588 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3589 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3591 else
3592 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3593 i3, &midnotes);
3595 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3596 if (i3notes)
3597 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3598 elim_i2, elim_i1);
3599 if (i2notes)
3600 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3601 elim_i2, elim_i1);
3602 if (i1notes)
3603 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3604 elim_i2, elim_i1);
3605 if (midnotes)
3606 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3607 elim_i2, elim_i1);
3609 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3610 know these are REG_UNUSED and want them to go to the desired insn,
3611 so we always pass it as i3. */
3613 if (newi2pat && new_i2_notes)
3614 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3616 if (new_i3_notes)
3617 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3619 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3620 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3621 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3622 in that case, it might delete I2. Similarly for I2 and I1.
3623 Show an additional death due to the REG_DEAD note we make here. If
3624 we discard it in distribute_notes, we will decrement it again. */
3626 if (i3dest_killed)
3628 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3629 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3630 NULL_RTX),
3631 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3632 else
3633 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3634 NULL_RTX),
3635 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3636 elim_i2, elim_i1);
3639 if (i2dest_in_i2src)
3641 if (newi2pat && reg_set_p (i2dest, newi2pat))
3642 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3643 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3644 else
3645 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3646 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3647 NULL_RTX, NULL_RTX);
3650 if (i1dest_in_i1src)
3652 if (newi2pat && reg_set_p (i1dest, newi2pat))
3653 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3654 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3655 else
3656 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3657 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3658 NULL_RTX, NULL_RTX);
3661 distribute_links (i3links);
3662 distribute_links (i2links);
3663 distribute_links (i1links);
3665 if (REG_P (i2dest))
3667 rtx link;
3668 rtx i2_insn = 0, i2_val = 0, set;
3670 /* The insn that used to set this register doesn't exist, and
3671 this life of the register may not exist either. See if one of
3672 I3's links points to an insn that sets I2DEST. If it does,
3673 that is now the last known value for I2DEST. If we don't update
3674 this and I2 set the register to a value that depended on its old
3675 contents, we will get confused. If this insn is used, thing
3676 will be set correctly in combine_instructions. */
3678 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3679 if ((set = single_set (XEXP (link, 0))) != 0
3680 && rtx_equal_p (i2dest, SET_DEST (set)))
3681 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3683 record_value_for_reg (i2dest, i2_insn, i2_val);
3685 /* If the reg formerly set in I2 died only once and that was in I3,
3686 zero its use count so it won't make `reload' do any work. */
3687 if (! added_sets_2
3688 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3689 && ! i2dest_in_i2src)
3691 regno = REGNO (i2dest);
3692 INC_REG_N_SETS (regno, -1);
3696 if (i1 && REG_P (i1dest))
3698 rtx link;
3699 rtx i1_insn = 0, i1_val = 0, set;
3701 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3702 if ((set = single_set (XEXP (link, 0))) != 0
3703 && rtx_equal_p (i1dest, SET_DEST (set)))
3704 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3706 record_value_for_reg (i1dest, i1_insn, i1_val);
3708 regno = REGNO (i1dest);
3709 if (! added_sets_1 && ! i1dest_in_i1src)
3710 INC_REG_N_SETS (regno, -1);
3713 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3714 been made to this insn. The order of
3715 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3716 can affect nonzero_bits of newpat */
3717 if (newi2pat)
3718 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3719 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3721 /* Set new_direct_jump_p if a new return or simple jump instruction
3722 has been created.
3724 If I3 is now an unconditional jump, ensure that it has a
3725 BARRIER following it since it may have initially been a
3726 conditional jump. It may also be the last nonnote insn. */
3728 if (returnjump_p (i3) || any_uncondjump_p (i3))
3730 *new_direct_jump_p = 1;
3731 mark_jump_label (PATTERN (i3), i3, 0);
3733 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3734 || !BARRIER_P (temp))
3735 emit_barrier_after (i3);
3738 if (undobuf.other_insn != NULL_RTX
3739 && (returnjump_p (undobuf.other_insn)
3740 || any_uncondjump_p (undobuf.other_insn)))
3742 *new_direct_jump_p = 1;
3744 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3745 || !BARRIER_P (temp))
3746 emit_barrier_after (undobuf.other_insn);
3749 /* An NOOP jump does not need barrier, but it does need cleaning up
3750 of CFG. */
3751 if (GET_CODE (newpat) == SET
3752 && SET_SRC (newpat) == pc_rtx
3753 && SET_DEST (newpat) == pc_rtx)
3754 *new_direct_jump_p = 1;
3757 if (undobuf.other_insn != NULL_RTX)
3759 if (dump_file)
3761 fprintf (dump_file, "modifying other_insn ");
3762 dump_insn_slim (dump_file, undobuf.other_insn);
3764 df_insn_rescan (undobuf.other_insn);
3767 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3769 if (dump_file)
3771 fprintf (dump_file, "modifying insn i1 ");
3772 dump_insn_slim (dump_file, i1);
3774 df_insn_rescan (i1);
3777 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3779 if (dump_file)
3781 fprintf (dump_file, "modifying insn i2 ");
3782 dump_insn_slim (dump_file, i2);
3784 df_insn_rescan (i2);
3787 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3789 if (dump_file)
3791 fprintf (dump_file, "modifying insn i3 ");
3792 dump_insn_slim (dump_file, i3);
3794 df_insn_rescan (i3);
3797 combine_successes++;
3798 undo_commit ();
3800 if (added_links_insn
3801 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3802 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3803 return added_links_insn;
3804 else
3805 return newi2pat ? i2 : i3;
3808 /* Undo all the modifications recorded in undobuf. */
3810 static void
3811 undo_all (void)
3813 struct undo *undo, *next;
3815 for (undo = undobuf.undos; undo; undo = next)
3817 next = undo->next;
3818 switch (undo->kind)
3820 case UNDO_RTX:
3821 *undo->where.r = undo->old_contents.r;
3822 break;
3823 case UNDO_INT:
3824 *undo->where.i = undo->old_contents.i;
3825 break;
3826 case UNDO_MODE:
3827 PUT_MODE (*undo->where.r, undo->old_contents.m);
3828 break;
3829 default:
3830 gcc_unreachable ();
3833 undo->next = undobuf.frees;
3834 undobuf.frees = undo;
3837 undobuf.undos = 0;
3840 /* We've committed to accepting the changes we made. Move all
3841 of the undos to the free list. */
3843 static void
3844 undo_commit (void)
3846 struct undo *undo, *next;
3848 for (undo = undobuf.undos; undo; undo = next)
3850 next = undo->next;
3851 undo->next = undobuf.frees;
3852 undobuf.frees = undo;
3854 undobuf.undos = 0;
3857 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3858 where we have an arithmetic expression and return that point. LOC will
3859 be inside INSN.
3861 try_combine will call this function to see if an insn can be split into
3862 two insns. */
3864 static rtx *
3865 find_split_point (rtx *loc, rtx insn)
3867 rtx x = *loc;
3868 enum rtx_code code = GET_CODE (x);
3869 rtx *split;
3870 unsigned HOST_WIDE_INT len = 0;
3871 HOST_WIDE_INT pos = 0;
3872 int unsignedp = 0;
3873 rtx inner = NULL_RTX;
3875 /* First special-case some codes. */
3876 switch (code)
3878 case SUBREG:
3879 #ifdef INSN_SCHEDULING
3880 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3881 point. */
3882 if (MEM_P (SUBREG_REG (x)))
3883 return loc;
3884 #endif
3885 return find_split_point (&SUBREG_REG (x), insn);
3887 case MEM:
3888 #ifdef HAVE_lo_sum
3889 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3890 using LO_SUM and HIGH. */
3891 if (GET_CODE (XEXP (x, 0)) == CONST
3892 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3894 SUBST (XEXP (x, 0),
3895 gen_rtx_LO_SUM (Pmode,
3896 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3897 XEXP (x, 0)));
3898 return &XEXP (XEXP (x, 0), 0);
3900 #endif
3902 /* If we have a PLUS whose second operand is a constant and the
3903 address is not valid, perhaps will can split it up using
3904 the machine-specific way to split large constants. We use
3905 the first pseudo-reg (one of the virtual regs) as a placeholder;
3906 it will not remain in the result. */
3907 if (GET_CODE (XEXP (x, 0)) == PLUS
3908 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3909 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3911 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3912 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3913 XEXP (x, 0)),
3914 subst_insn);
3916 /* This should have produced two insns, each of which sets our
3917 placeholder. If the source of the second is a valid address,
3918 we can make put both sources together and make a split point
3919 in the middle. */
3921 if (seq
3922 && NEXT_INSN (seq) != NULL_RTX
3923 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3924 && NONJUMP_INSN_P (seq)
3925 && GET_CODE (PATTERN (seq)) == SET
3926 && SET_DEST (PATTERN (seq)) == reg
3927 && ! reg_mentioned_p (reg,
3928 SET_SRC (PATTERN (seq)))
3929 && NONJUMP_INSN_P (NEXT_INSN (seq))
3930 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3931 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3932 && memory_address_p (GET_MODE (x),
3933 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3935 rtx src1 = SET_SRC (PATTERN (seq));
3936 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3938 /* Replace the placeholder in SRC2 with SRC1. If we can
3939 find where in SRC2 it was placed, that can become our
3940 split point and we can replace this address with SRC2.
3941 Just try two obvious places. */
3943 src2 = replace_rtx (src2, reg, src1);
3944 split = 0;
3945 if (XEXP (src2, 0) == src1)
3946 split = &XEXP (src2, 0);
3947 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3948 && XEXP (XEXP (src2, 0), 0) == src1)
3949 split = &XEXP (XEXP (src2, 0), 0);
3951 if (split)
3953 SUBST (XEXP (x, 0), src2);
3954 return split;
3958 /* If that didn't work, perhaps the first operand is complex and
3959 needs to be computed separately, so make a split point there.
3960 This will occur on machines that just support REG + CONST
3961 and have a constant moved through some previous computation. */
3963 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3964 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3965 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3966 return &XEXP (XEXP (x, 0), 0);
3968 break;
3970 case SET:
3971 #ifdef HAVE_cc0
3972 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3973 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3974 we need to put the operand into a register. So split at that
3975 point. */
3977 if (SET_DEST (x) == cc0_rtx
3978 && GET_CODE (SET_SRC (x)) != COMPARE
3979 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3980 && !OBJECT_P (SET_SRC (x))
3981 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3982 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3983 return &SET_SRC (x);
3984 #endif
3986 /* See if we can split SET_SRC as it stands. */
3987 split = find_split_point (&SET_SRC (x), insn);
3988 if (split && split != &SET_SRC (x))
3989 return split;
3991 /* See if we can split SET_DEST as it stands. */
3992 split = find_split_point (&SET_DEST (x), insn);
3993 if (split && split != &SET_DEST (x))
3994 return split;
3996 /* See if this is a bitfield assignment with everything constant. If
3997 so, this is an IOR of an AND, so split it into that. */
3998 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3999 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4000 <= HOST_BITS_PER_WIDE_INT)
4001 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
4002 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
4003 && GET_CODE (SET_SRC (x)) == CONST_INT
4004 && ((INTVAL (XEXP (SET_DEST (x), 1))
4005 + INTVAL (XEXP (SET_DEST (x), 2)))
4006 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4007 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4009 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4010 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4011 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4012 rtx dest = XEXP (SET_DEST (x), 0);
4013 enum machine_mode mode = GET_MODE (dest);
4014 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4015 rtx or_mask;
4017 if (BITS_BIG_ENDIAN)
4018 pos = GET_MODE_BITSIZE (mode) - len - pos;
4020 or_mask = gen_int_mode (src << pos, mode);
4021 if (src == mask)
4022 SUBST (SET_SRC (x),
4023 simplify_gen_binary (IOR, mode, dest, or_mask));
4024 else
4026 rtx negmask = gen_int_mode (~(mask << pos), mode);
4027 SUBST (SET_SRC (x),
4028 simplify_gen_binary (IOR, mode,
4029 simplify_gen_binary (AND, mode,
4030 dest, negmask),
4031 or_mask));
4034 SUBST (SET_DEST (x), dest);
4036 split = find_split_point (&SET_SRC (x), insn);
4037 if (split && split != &SET_SRC (x))
4038 return split;
4041 /* Otherwise, see if this is an operation that we can split into two.
4042 If so, try to split that. */
4043 code = GET_CODE (SET_SRC (x));
4045 switch (code)
4047 case AND:
4048 /* If we are AND'ing with a large constant that is only a single
4049 bit and the result is only being used in a context where we
4050 need to know if it is zero or nonzero, replace it with a bit
4051 extraction. This will avoid the large constant, which might
4052 have taken more than one insn to make. If the constant were
4053 not a valid argument to the AND but took only one insn to make,
4054 this is no worse, but if it took more than one insn, it will
4055 be better. */
4057 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4058 && REG_P (XEXP (SET_SRC (x), 0))
4059 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4060 && REG_P (SET_DEST (x))
4061 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4062 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4063 && XEXP (*split, 0) == SET_DEST (x)
4064 && XEXP (*split, 1) == const0_rtx)
4066 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4067 XEXP (SET_SRC (x), 0),
4068 pos, NULL_RTX, 1, 1, 0, 0);
4069 if (extraction != 0)
4071 SUBST (SET_SRC (x), extraction);
4072 return find_split_point (loc, insn);
4075 break;
4077 case NE:
4078 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4079 is known to be on, this can be converted into a NEG of a shift. */
4080 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4081 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4082 && 1 <= (pos = exact_log2
4083 (nonzero_bits (XEXP (SET_SRC (x), 0),
4084 GET_MODE (XEXP (SET_SRC (x), 0))))))
4086 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4088 SUBST (SET_SRC (x),
4089 gen_rtx_NEG (mode,
4090 gen_rtx_LSHIFTRT (mode,
4091 XEXP (SET_SRC (x), 0),
4092 GEN_INT (pos))));
4094 split = find_split_point (&SET_SRC (x), insn);
4095 if (split && split != &SET_SRC (x))
4096 return split;
4098 break;
4100 case SIGN_EXTEND:
4101 inner = XEXP (SET_SRC (x), 0);
4103 /* We can't optimize if either mode is a partial integer
4104 mode as we don't know how many bits are significant
4105 in those modes. */
4106 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4107 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4108 break;
4110 pos = 0;
4111 len = GET_MODE_BITSIZE (GET_MODE (inner));
4112 unsignedp = 0;
4113 break;
4115 case SIGN_EXTRACT:
4116 case ZERO_EXTRACT:
4117 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4118 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
4120 inner = XEXP (SET_SRC (x), 0);
4121 len = INTVAL (XEXP (SET_SRC (x), 1));
4122 pos = INTVAL (XEXP (SET_SRC (x), 2));
4124 if (BITS_BIG_ENDIAN)
4125 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4126 unsignedp = (code == ZERO_EXTRACT);
4128 break;
4130 default:
4131 break;
4134 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4136 enum machine_mode mode = GET_MODE (SET_SRC (x));
4138 /* For unsigned, we have a choice of a shift followed by an
4139 AND or two shifts. Use two shifts for field sizes where the
4140 constant might be too large. We assume here that we can
4141 always at least get 8-bit constants in an AND insn, which is
4142 true for every current RISC. */
4144 if (unsignedp && len <= 8)
4146 SUBST (SET_SRC (x),
4147 gen_rtx_AND (mode,
4148 gen_rtx_LSHIFTRT
4149 (mode, gen_lowpart (mode, inner),
4150 GEN_INT (pos)),
4151 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4153 split = find_split_point (&SET_SRC (x), insn);
4154 if (split && split != &SET_SRC (x))
4155 return split;
4157 else
4159 SUBST (SET_SRC (x),
4160 gen_rtx_fmt_ee
4161 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4162 gen_rtx_ASHIFT (mode,
4163 gen_lowpart (mode, inner),
4164 GEN_INT (GET_MODE_BITSIZE (mode)
4165 - len - pos)),
4166 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4168 split = find_split_point (&SET_SRC (x), insn);
4169 if (split && split != &SET_SRC (x))
4170 return split;
4174 /* See if this is a simple operation with a constant as the second
4175 operand. It might be that this constant is out of range and hence
4176 could be used as a split point. */
4177 if (BINARY_P (SET_SRC (x))
4178 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4179 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4180 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4181 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4182 return &XEXP (SET_SRC (x), 1);
4184 /* Finally, see if this is a simple operation with its first operand
4185 not in a register. The operation might require this operand in a
4186 register, so return it as a split point. We can always do this
4187 because if the first operand were another operation, we would have
4188 already found it as a split point. */
4189 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4190 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4191 return &XEXP (SET_SRC (x), 0);
4193 return 0;
4195 case AND:
4196 case IOR:
4197 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4198 it is better to write this as (not (ior A B)) so we can split it.
4199 Similarly for IOR. */
4200 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4202 SUBST (*loc,
4203 gen_rtx_NOT (GET_MODE (x),
4204 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4205 GET_MODE (x),
4206 XEXP (XEXP (x, 0), 0),
4207 XEXP (XEXP (x, 1), 0))));
4208 return find_split_point (loc, insn);
4211 /* Many RISC machines have a large set of logical insns. If the
4212 second operand is a NOT, put it first so we will try to split the
4213 other operand first. */
4214 if (GET_CODE (XEXP (x, 1)) == NOT)
4216 rtx tem = XEXP (x, 0);
4217 SUBST (XEXP (x, 0), XEXP (x, 1));
4218 SUBST (XEXP (x, 1), tem);
4220 break;
4222 default:
4223 break;
4226 /* Otherwise, select our actions depending on our rtx class. */
4227 switch (GET_RTX_CLASS (code))
4229 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4230 case RTX_TERNARY:
4231 split = find_split_point (&XEXP (x, 2), insn);
4232 if (split)
4233 return split;
4234 /* ... fall through ... */
4235 case RTX_BIN_ARITH:
4236 case RTX_COMM_ARITH:
4237 case RTX_COMPARE:
4238 case RTX_COMM_COMPARE:
4239 split = find_split_point (&XEXP (x, 1), insn);
4240 if (split)
4241 return split;
4242 /* ... fall through ... */
4243 case RTX_UNARY:
4244 /* Some machines have (and (shift ...) ...) insns. If X is not
4245 an AND, but XEXP (X, 0) is, use it as our split point. */
4246 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4247 return &XEXP (x, 0);
4249 split = find_split_point (&XEXP (x, 0), insn);
4250 if (split)
4251 return split;
4252 return loc;
4254 default:
4255 /* Otherwise, we don't have a split point. */
4256 return 0;
4260 /* Throughout X, replace FROM with TO, and return the result.
4261 The result is TO if X is FROM;
4262 otherwise the result is X, but its contents may have been modified.
4263 If they were modified, a record was made in undobuf so that
4264 undo_all will (among other things) return X to its original state.
4266 If the number of changes necessary is too much to record to undo,
4267 the excess changes are not made, so the result is invalid.
4268 The changes already made can still be undone.
4269 undobuf.num_undo is incremented for such changes, so by testing that
4270 the caller can tell whether the result is valid.
4272 `n_occurrences' is incremented each time FROM is replaced.
4274 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4276 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4277 by copying if `n_occurrences' is nonzero. */
4279 static rtx
4280 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4282 enum rtx_code code = GET_CODE (x);
4283 enum machine_mode op0_mode = VOIDmode;
4284 const char *fmt;
4285 int len, i;
4286 rtx new;
4288 /* Two expressions are equal if they are identical copies of a shared
4289 RTX or if they are both registers with the same register number
4290 and mode. */
4292 #define COMBINE_RTX_EQUAL_P(X,Y) \
4293 ((X) == (Y) \
4294 || (REG_P (X) && REG_P (Y) \
4295 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4297 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4299 n_occurrences++;
4300 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4303 /* If X and FROM are the same register but different modes, they
4304 will not have been seen as equal above. However, the log links code
4305 will make a LOG_LINKS entry for that case. If we do nothing, we
4306 will try to rerecognize our original insn and, when it succeeds,
4307 we will delete the feeding insn, which is incorrect.
4309 So force this insn not to match in this (rare) case. */
4310 if (! in_dest && code == REG && REG_P (from)
4311 && reg_overlap_mentioned_p (x, from))
4312 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4314 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4315 of which may contain things that can be combined. */
4316 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4317 return x;
4319 /* It is possible to have a subexpression appear twice in the insn.
4320 Suppose that FROM is a register that appears within TO.
4321 Then, after that subexpression has been scanned once by `subst',
4322 the second time it is scanned, TO may be found. If we were
4323 to scan TO here, we would find FROM within it and create a
4324 self-referent rtl structure which is completely wrong. */
4325 if (COMBINE_RTX_EQUAL_P (x, to))
4326 return to;
4328 /* Parallel asm_operands need special attention because all of the
4329 inputs are shared across the arms. Furthermore, unsharing the
4330 rtl results in recognition failures. Failure to handle this case
4331 specially can result in circular rtl.
4333 Solve this by doing a normal pass across the first entry of the
4334 parallel, and only processing the SET_DESTs of the subsequent
4335 entries. Ug. */
4337 if (code == PARALLEL
4338 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4339 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4341 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4343 /* If this substitution failed, this whole thing fails. */
4344 if (GET_CODE (new) == CLOBBER
4345 && XEXP (new, 0) == const0_rtx)
4346 return new;
4348 SUBST (XVECEXP (x, 0, 0), new);
4350 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4352 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4354 if (!REG_P (dest)
4355 && GET_CODE (dest) != CC0
4356 && GET_CODE (dest) != PC)
4358 new = subst (dest, from, to, 0, unique_copy);
4360 /* If this substitution failed, this whole thing fails. */
4361 if (GET_CODE (new) == CLOBBER
4362 && XEXP (new, 0) == const0_rtx)
4363 return new;
4365 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
4369 else
4371 len = GET_RTX_LENGTH (code);
4372 fmt = GET_RTX_FORMAT (code);
4374 /* We don't need to process a SET_DEST that is a register, CC0,
4375 or PC, so set up to skip this common case. All other cases
4376 where we want to suppress replacing something inside a
4377 SET_SRC are handled via the IN_DEST operand. */
4378 if (code == SET
4379 && (REG_P (SET_DEST (x))
4380 || GET_CODE (SET_DEST (x)) == CC0
4381 || GET_CODE (SET_DEST (x)) == PC))
4382 fmt = "ie";
4384 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4385 constant. */
4386 if (fmt[0] == 'e')
4387 op0_mode = GET_MODE (XEXP (x, 0));
4389 for (i = 0; i < len; i++)
4391 if (fmt[i] == 'E')
4393 int j;
4394 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4396 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4398 new = (unique_copy && n_occurrences
4399 ? copy_rtx (to) : to);
4400 n_occurrences++;
4402 else
4404 new = subst (XVECEXP (x, i, j), from, to, 0,
4405 unique_copy);
4407 /* If this substitution failed, this whole thing
4408 fails. */
4409 if (GET_CODE (new) == CLOBBER
4410 && XEXP (new, 0) == const0_rtx)
4411 return new;
4414 SUBST (XVECEXP (x, i, j), new);
4417 else if (fmt[i] == 'e')
4419 /* If this is a register being set, ignore it. */
4420 new = XEXP (x, i);
4421 if (in_dest
4422 && i == 0
4423 && (((code == SUBREG || code == ZERO_EXTRACT)
4424 && REG_P (new))
4425 || code == STRICT_LOW_PART))
4428 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4430 /* In general, don't install a subreg involving two
4431 modes not tieable. It can worsen register
4432 allocation, and can even make invalid reload
4433 insns, since the reg inside may need to be copied
4434 from in the outside mode, and that may be invalid
4435 if it is an fp reg copied in integer mode.
4437 We allow two exceptions to this: It is valid if
4438 it is inside another SUBREG and the mode of that
4439 SUBREG and the mode of the inside of TO is
4440 tieable and it is valid if X is a SET that copies
4441 FROM to CC0. */
4443 if (GET_CODE (to) == SUBREG
4444 && ! MODES_TIEABLE_P (GET_MODE (to),
4445 GET_MODE (SUBREG_REG (to)))
4446 && ! (code == SUBREG
4447 && MODES_TIEABLE_P (GET_MODE (x),
4448 GET_MODE (SUBREG_REG (to))))
4449 #ifdef HAVE_cc0
4450 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4451 #endif
4453 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4455 #ifdef CANNOT_CHANGE_MODE_CLASS
4456 if (code == SUBREG
4457 && REG_P (to)
4458 && REGNO (to) < FIRST_PSEUDO_REGISTER
4459 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4460 GET_MODE (to),
4461 GET_MODE (x)))
4462 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4463 #endif
4465 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4466 n_occurrences++;
4468 else
4469 /* If we are in a SET_DEST, suppress most cases unless we
4470 have gone inside a MEM, in which case we want to
4471 simplify the address. We assume here that things that
4472 are actually part of the destination have their inner
4473 parts in the first expression. This is true for SUBREG,
4474 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4475 things aside from REG and MEM that should appear in a
4476 SET_DEST. */
4477 new = subst (XEXP (x, i), from, to,
4478 (((in_dest
4479 && (code == SUBREG || code == STRICT_LOW_PART
4480 || code == ZERO_EXTRACT))
4481 || code == SET)
4482 && i == 0), unique_copy);
4484 /* If we found that we will have to reject this combination,
4485 indicate that by returning the CLOBBER ourselves, rather than
4486 an expression containing it. This will speed things up as
4487 well as prevent accidents where two CLOBBERs are considered
4488 to be equal, thus producing an incorrect simplification. */
4490 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
4491 return new;
4493 if (GET_CODE (x) == SUBREG
4494 && (GET_CODE (new) == CONST_INT
4495 || GET_CODE (new) == CONST_DOUBLE))
4497 enum machine_mode mode = GET_MODE (x);
4499 x = simplify_subreg (GET_MODE (x), new,
4500 GET_MODE (SUBREG_REG (x)),
4501 SUBREG_BYTE (x));
4502 if (! x)
4503 x = gen_rtx_CLOBBER (mode, const0_rtx);
4505 else if (GET_CODE (new) == CONST_INT
4506 && GET_CODE (x) == ZERO_EXTEND)
4508 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4509 new, GET_MODE (XEXP (x, 0)));
4510 gcc_assert (x);
4512 else
4513 SUBST (XEXP (x, i), new);
4518 /* Check if we are loading something from the constant pool via float
4519 extension; in this case we would undo compress_float_constant
4520 optimization and degenerate constant load to an immediate value. */
4521 if (GET_CODE (x) == FLOAT_EXTEND
4522 && MEM_P (XEXP (x, 0))
4523 && MEM_READONLY_P (XEXP (x, 0)))
4525 rtx tmp = avoid_constant_pool_reference (x);
4526 if (x != tmp)
4527 return x;
4530 /* Try to simplify X. If the simplification changed the code, it is likely
4531 that further simplification will help, so loop, but limit the number
4532 of repetitions that will be performed. */
4534 for (i = 0; i < 4; i++)
4536 /* If X is sufficiently simple, don't bother trying to do anything
4537 with it. */
4538 if (code != CONST_INT && code != REG && code != CLOBBER)
4539 x = combine_simplify_rtx (x, op0_mode, in_dest);
4541 if (GET_CODE (x) == code)
4542 break;
4544 code = GET_CODE (x);
4546 /* We no longer know the original mode of operand 0 since we
4547 have changed the form of X) */
4548 op0_mode = VOIDmode;
4551 return x;
4554 /* Simplify X, a piece of RTL. We just operate on the expression at the
4555 outer level; call `subst' to simplify recursively. Return the new
4556 expression.
4558 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4559 if we are inside a SET_DEST. */
4561 static rtx
4562 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4564 enum rtx_code code = GET_CODE (x);
4565 enum machine_mode mode = GET_MODE (x);
4566 rtx temp;
4567 int i;
4569 /* If this is a commutative operation, put a constant last and a complex
4570 expression first. We don't need to do this for comparisons here. */
4571 if (COMMUTATIVE_ARITH_P (x)
4572 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4574 temp = XEXP (x, 0);
4575 SUBST (XEXP (x, 0), XEXP (x, 1));
4576 SUBST (XEXP (x, 1), temp);
4579 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4580 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4581 things. Check for cases where both arms are testing the same
4582 condition.
4584 Don't do anything if all operands are very simple. */
4586 if ((BINARY_P (x)
4587 && ((!OBJECT_P (XEXP (x, 0))
4588 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4589 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4590 || (!OBJECT_P (XEXP (x, 1))
4591 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4592 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4593 || (UNARY_P (x)
4594 && (!OBJECT_P (XEXP (x, 0))
4595 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4596 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4598 rtx cond, true_rtx, false_rtx;
4600 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4601 if (cond != 0
4602 /* If everything is a comparison, what we have is highly unlikely
4603 to be simpler, so don't use it. */
4604 && ! (COMPARISON_P (x)
4605 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4607 rtx cop1 = const0_rtx;
4608 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4610 if (cond_code == NE && COMPARISON_P (cond))
4611 return x;
4613 /* Simplify the alternative arms; this may collapse the true and
4614 false arms to store-flag values. Be careful to use copy_rtx
4615 here since true_rtx or false_rtx might share RTL with x as a
4616 result of the if_then_else_cond call above. */
4617 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4618 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4620 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4621 is unlikely to be simpler. */
4622 if (general_operand (true_rtx, VOIDmode)
4623 && general_operand (false_rtx, VOIDmode))
4625 enum rtx_code reversed;
4627 /* Restarting if we generate a store-flag expression will cause
4628 us to loop. Just drop through in this case. */
4630 /* If the result values are STORE_FLAG_VALUE and zero, we can
4631 just make the comparison operation. */
4632 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4633 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4634 cond, cop1);
4635 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4636 && ((reversed = reversed_comparison_code_parts
4637 (cond_code, cond, cop1, NULL))
4638 != UNKNOWN))
4639 x = simplify_gen_relational (reversed, mode, VOIDmode,
4640 cond, cop1);
4642 /* Likewise, we can make the negate of a comparison operation
4643 if the result values are - STORE_FLAG_VALUE and zero. */
4644 else if (GET_CODE (true_rtx) == CONST_INT
4645 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4646 && false_rtx == const0_rtx)
4647 x = simplify_gen_unary (NEG, mode,
4648 simplify_gen_relational (cond_code,
4649 mode, VOIDmode,
4650 cond, cop1),
4651 mode);
4652 else if (GET_CODE (false_rtx) == CONST_INT
4653 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4654 && true_rtx == const0_rtx
4655 && ((reversed = reversed_comparison_code_parts
4656 (cond_code, cond, cop1, NULL))
4657 != UNKNOWN))
4658 x = simplify_gen_unary (NEG, mode,
4659 simplify_gen_relational (reversed,
4660 mode, VOIDmode,
4661 cond, cop1),
4662 mode);
4663 else
4664 return gen_rtx_IF_THEN_ELSE (mode,
4665 simplify_gen_relational (cond_code,
4666 mode,
4667 VOIDmode,
4668 cond,
4669 cop1),
4670 true_rtx, false_rtx);
4672 code = GET_CODE (x);
4673 op0_mode = VOIDmode;
4678 /* Try to fold this expression in case we have constants that weren't
4679 present before. */
4680 temp = 0;
4681 switch (GET_RTX_CLASS (code))
4683 case RTX_UNARY:
4684 if (op0_mode == VOIDmode)
4685 op0_mode = GET_MODE (XEXP (x, 0));
4686 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4687 break;
4688 case RTX_COMPARE:
4689 case RTX_COMM_COMPARE:
4691 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4692 if (cmp_mode == VOIDmode)
4694 cmp_mode = GET_MODE (XEXP (x, 1));
4695 if (cmp_mode == VOIDmode)
4696 cmp_mode = op0_mode;
4698 temp = simplify_relational_operation (code, mode, cmp_mode,
4699 XEXP (x, 0), XEXP (x, 1));
4701 break;
4702 case RTX_COMM_ARITH:
4703 case RTX_BIN_ARITH:
4704 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4705 break;
4706 case RTX_BITFIELD_OPS:
4707 case RTX_TERNARY:
4708 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4709 XEXP (x, 1), XEXP (x, 2));
4710 break;
4711 default:
4712 break;
4715 if (temp)
4717 x = temp;
4718 code = GET_CODE (temp);
4719 op0_mode = VOIDmode;
4720 mode = GET_MODE (temp);
4723 /* First see if we can apply the inverse distributive law. */
4724 if (code == PLUS || code == MINUS
4725 || code == AND || code == IOR || code == XOR)
4727 x = apply_distributive_law (x);
4728 code = GET_CODE (x);
4729 op0_mode = VOIDmode;
4732 /* If CODE is an associative operation not otherwise handled, see if we
4733 can associate some operands. This can win if they are constants or
4734 if they are logically related (i.e. (a & b) & a). */
4735 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4736 || code == AND || code == IOR || code == XOR
4737 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4738 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4739 || (flag_associative_math && FLOAT_MODE_P (mode))))
4741 if (GET_CODE (XEXP (x, 0)) == code)
4743 rtx other = XEXP (XEXP (x, 0), 0);
4744 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4745 rtx inner_op1 = XEXP (x, 1);
4746 rtx inner;
4748 /* Make sure we pass the constant operand if any as the second
4749 one if this is a commutative operation. */
4750 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4752 rtx tem = inner_op0;
4753 inner_op0 = inner_op1;
4754 inner_op1 = tem;
4756 inner = simplify_binary_operation (code == MINUS ? PLUS
4757 : code == DIV ? MULT
4758 : code,
4759 mode, inner_op0, inner_op1);
4761 /* For commutative operations, try the other pair if that one
4762 didn't simplify. */
4763 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4765 other = XEXP (XEXP (x, 0), 1);
4766 inner = simplify_binary_operation (code, mode,
4767 XEXP (XEXP (x, 0), 0),
4768 XEXP (x, 1));
4771 if (inner)
4772 return simplify_gen_binary (code, mode, other, inner);
4776 /* A little bit of algebraic simplification here. */
4777 switch (code)
4779 case MEM:
4780 /* Ensure that our address has any ASHIFTs converted to MULT in case
4781 address-recognizing predicates are called later. */
4782 temp = make_compound_operation (XEXP (x, 0), MEM);
4783 SUBST (XEXP (x, 0), temp);
4784 break;
4786 case SUBREG:
4787 if (op0_mode == VOIDmode)
4788 op0_mode = GET_MODE (SUBREG_REG (x));
4790 /* See if this can be moved to simplify_subreg. */
4791 if (CONSTANT_P (SUBREG_REG (x))
4792 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4793 /* Don't call gen_lowpart if the inner mode
4794 is VOIDmode and we cannot simplify it, as SUBREG without
4795 inner mode is invalid. */
4796 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4797 || gen_lowpart_common (mode, SUBREG_REG (x))))
4798 return gen_lowpart (mode, SUBREG_REG (x));
4800 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4801 break;
4803 rtx temp;
4804 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4805 SUBREG_BYTE (x));
4806 if (temp)
4807 return temp;
4810 /* Don't change the mode of the MEM if that would change the meaning
4811 of the address. */
4812 if (MEM_P (SUBREG_REG (x))
4813 && (MEM_VOLATILE_P (SUBREG_REG (x))
4814 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4815 return gen_rtx_CLOBBER (mode, const0_rtx);
4817 /* Note that we cannot do any narrowing for non-constants since
4818 we might have been counting on using the fact that some bits were
4819 zero. We now do this in the SET. */
4821 break;
4823 case NEG:
4824 temp = expand_compound_operation (XEXP (x, 0));
4826 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4827 replaced by (lshiftrt X C). This will convert
4828 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4830 if (GET_CODE (temp) == ASHIFTRT
4831 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4832 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4833 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4834 INTVAL (XEXP (temp, 1)));
4836 /* If X has only a single bit that might be nonzero, say, bit I, convert
4837 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4838 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4839 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4840 or a SUBREG of one since we'd be making the expression more
4841 complex if it was just a register. */
4843 if (!REG_P (temp)
4844 && ! (GET_CODE (temp) == SUBREG
4845 && REG_P (SUBREG_REG (temp)))
4846 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4848 rtx temp1 = simplify_shift_const
4849 (NULL_RTX, ASHIFTRT, mode,
4850 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4851 GET_MODE_BITSIZE (mode) - 1 - i),
4852 GET_MODE_BITSIZE (mode) - 1 - i);
4854 /* If all we did was surround TEMP with the two shifts, we
4855 haven't improved anything, so don't use it. Otherwise,
4856 we are better off with TEMP1. */
4857 if (GET_CODE (temp1) != ASHIFTRT
4858 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4859 || XEXP (XEXP (temp1, 0), 0) != temp)
4860 return temp1;
4862 break;
4864 case TRUNCATE:
4865 /* We can't handle truncation to a partial integer mode here
4866 because we don't know the real bitsize of the partial
4867 integer mode. */
4868 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4869 break;
4871 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4872 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4873 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4874 SUBST (XEXP (x, 0),
4875 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4876 GET_MODE_MASK (mode), 0));
4878 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4879 whose value is a comparison can be replaced with a subreg if
4880 STORE_FLAG_VALUE permits. */
4881 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4882 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4883 && (temp = get_last_value (XEXP (x, 0)))
4884 && COMPARISON_P (temp))
4885 return gen_lowpart (mode, XEXP (x, 0));
4886 break;
4888 #ifdef HAVE_cc0
4889 case COMPARE:
4890 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4891 using cc0, in which case we want to leave it as a COMPARE
4892 so we can distinguish it from a register-register-copy. */
4893 if (XEXP (x, 1) == const0_rtx)
4894 return XEXP (x, 0);
4896 /* x - 0 is the same as x unless x's mode has signed zeros and
4897 allows rounding towards -infinity. Under those conditions,
4898 0 - 0 is -0. */
4899 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4900 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4901 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4902 return XEXP (x, 0);
4903 break;
4904 #endif
4906 case CONST:
4907 /* (const (const X)) can become (const X). Do it this way rather than
4908 returning the inner CONST since CONST can be shared with a
4909 REG_EQUAL note. */
4910 if (GET_CODE (XEXP (x, 0)) == CONST)
4911 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4912 break;
4914 #ifdef HAVE_lo_sum
4915 case LO_SUM:
4916 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4917 can add in an offset. find_split_point will split this address up
4918 again if it doesn't match. */
4919 if (GET_CODE (XEXP (x, 0)) == HIGH
4920 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4921 return XEXP (x, 1);
4922 break;
4923 #endif
4925 case PLUS:
4926 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4927 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4928 bit-field and can be replaced by either a sign_extend or a
4929 sign_extract. The `and' may be a zero_extend and the two
4930 <c>, -<c> constants may be reversed. */
4931 if (GET_CODE (XEXP (x, 0)) == XOR
4932 && GET_CODE (XEXP (x, 1)) == CONST_INT
4933 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4934 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4935 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4936 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4937 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4938 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4939 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4940 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4941 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4942 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4943 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4944 == (unsigned int) i + 1))))
4945 return simplify_shift_const
4946 (NULL_RTX, ASHIFTRT, mode,
4947 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4948 XEXP (XEXP (XEXP (x, 0), 0), 0),
4949 GET_MODE_BITSIZE (mode) - (i + 1)),
4950 GET_MODE_BITSIZE (mode) - (i + 1));
4952 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4953 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4954 the bitsize of the mode - 1. This allows simplification of
4955 "a = (b & 8) == 0;" */
4956 if (XEXP (x, 1) == constm1_rtx
4957 && !REG_P (XEXP (x, 0))
4958 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4959 && REG_P (SUBREG_REG (XEXP (x, 0))))
4960 && nonzero_bits (XEXP (x, 0), mode) == 1)
4961 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4962 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4963 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4964 GET_MODE_BITSIZE (mode) - 1),
4965 GET_MODE_BITSIZE (mode) - 1);
4967 /* If we are adding two things that have no bits in common, convert
4968 the addition into an IOR. This will often be further simplified,
4969 for example in cases like ((a & 1) + (a & 2)), which can
4970 become a & 3. */
4972 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4973 && (nonzero_bits (XEXP (x, 0), mode)
4974 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4976 /* Try to simplify the expression further. */
4977 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4978 temp = combine_simplify_rtx (tor, mode, in_dest);
4980 /* If we could, great. If not, do not go ahead with the IOR
4981 replacement, since PLUS appears in many special purpose
4982 address arithmetic instructions. */
4983 if (GET_CODE (temp) != CLOBBER && temp != tor)
4984 return temp;
4986 break;
4988 case MINUS:
4989 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4990 (and <foo> (const_int pow2-1)) */
4991 if (GET_CODE (XEXP (x, 1)) == AND
4992 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4993 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4994 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4995 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4996 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4997 break;
4999 case MULT:
5000 /* If we have (mult (plus A B) C), apply the distributive law and then
5001 the inverse distributive law to see if things simplify. This
5002 occurs mostly in addresses, often when unrolling loops. */
5004 if (GET_CODE (XEXP (x, 0)) == PLUS)
5006 rtx result = distribute_and_simplify_rtx (x, 0);
5007 if (result)
5008 return result;
5011 /* Try simplify a*(b/c) as (a*b)/c. */
5012 if (FLOAT_MODE_P (mode) && flag_associative_math
5013 && GET_CODE (XEXP (x, 0)) == DIV)
5015 rtx tem = simplify_binary_operation (MULT, mode,
5016 XEXP (XEXP (x, 0), 0),
5017 XEXP (x, 1));
5018 if (tem)
5019 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5021 break;
5023 case UDIV:
5024 /* If this is a divide by a power of two, treat it as a shift if
5025 its first operand is a shift. */
5026 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5027 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5028 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5029 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5030 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5031 || GET_CODE (XEXP (x, 0)) == ROTATE
5032 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5033 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5034 break;
5036 case EQ: case NE:
5037 case GT: case GTU: case GE: case GEU:
5038 case LT: case LTU: case LE: case LEU:
5039 case UNEQ: case LTGT:
5040 case UNGT: case UNGE:
5041 case UNLT: case UNLE:
5042 case UNORDERED: case ORDERED:
5043 /* If the first operand is a condition code, we can't do anything
5044 with it. */
5045 if (GET_CODE (XEXP (x, 0)) == COMPARE
5046 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5047 && ! CC0_P (XEXP (x, 0))))
5049 rtx op0 = XEXP (x, 0);
5050 rtx op1 = XEXP (x, 1);
5051 enum rtx_code new_code;
5053 if (GET_CODE (op0) == COMPARE)
5054 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5056 /* Simplify our comparison, if possible. */
5057 new_code = simplify_comparison (code, &op0, &op1);
5059 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5060 if only the low-order bit is possibly nonzero in X (such as when
5061 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5062 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5063 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5064 (plus X 1).
5066 Remove any ZERO_EXTRACT we made when thinking this was a
5067 comparison. It may now be simpler to use, e.g., an AND. If a
5068 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5069 the call to make_compound_operation in the SET case. */
5071 if (STORE_FLAG_VALUE == 1
5072 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5073 && op1 == const0_rtx
5074 && mode == GET_MODE (op0)
5075 && nonzero_bits (op0, mode) == 1)
5076 return gen_lowpart (mode,
5077 expand_compound_operation (op0));
5079 else if (STORE_FLAG_VALUE == 1
5080 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5081 && op1 == const0_rtx
5082 && mode == GET_MODE (op0)
5083 && (num_sign_bit_copies (op0, mode)
5084 == GET_MODE_BITSIZE (mode)))
5086 op0 = expand_compound_operation (op0);
5087 return simplify_gen_unary (NEG, mode,
5088 gen_lowpart (mode, op0),
5089 mode);
5092 else if (STORE_FLAG_VALUE == 1
5093 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5094 && op1 == const0_rtx
5095 && mode == GET_MODE (op0)
5096 && nonzero_bits (op0, mode) == 1)
5098 op0 = expand_compound_operation (op0);
5099 return simplify_gen_binary (XOR, mode,
5100 gen_lowpart (mode, op0),
5101 const1_rtx);
5104 else if (STORE_FLAG_VALUE == 1
5105 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5106 && op1 == const0_rtx
5107 && mode == GET_MODE (op0)
5108 && (num_sign_bit_copies (op0, mode)
5109 == GET_MODE_BITSIZE (mode)))
5111 op0 = expand_compound_operation (op0);
5112 return plus_constant (gen_lowpart (mode, op0), 1);
5115 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5116 those above. */
5117 if (STORE_FLAG_VALUE == -1
5118 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5119 && op1 == const0_rtx
5120 && (num_sign_bit_copies (op0, mode)
5121 == GET_MODE_BITSIZE (mode)))
5122 return gen_lowpart (mode,
5123 expand_compound_operation (op0));
5125 else if (STORE_FLAG_VALUE == -1
5126 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5127 && op1 == const0_rtx
5128 && mode == GET_MODE (op0)
5129 && nonzero_bits (op0, mode) == 1)
5131 op0 = expand_compound_operation (op0);
5132 return simplify_gen_unary (NEG, mode,
5133 gen_lowpart (mode, op0),
5134 mode);
5137 else if (STORE_FLAG_VALUE == -1
5138 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5139 && op1 == const0_rtx
5140 && mode == GET_MODE (op0)
5141 && (num_sign_bit_copies (op0, mode)
5142 == GET_MODE_BITSIZE (mode)))
5144 op0 = expand_compound_operation (op0);
5145 return simplify_gen_unary (NOT, mode,
5146 gen_lowpart (mode, op0),
5147 mode);
5150 /* If X is 0/1, (eq X 0) is X-1. */
5151 else if (STORE_FLAG_VALUE == -1
5152 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5153 && op1 == const0_rtx
5154 && mode == GET_MODE (op0)
5155 && nonzero_bits (op0, mode) == 1)
5157 op0 = expand_compound_operation (op0);
5158 return plus_constant (gen_lowpart (mode, op0), -1);
5161 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5162 one bit that might be nonzero, we can convert (ne x 0) to
5163 (ashift x c) where C puts the bit in the sign bit. Remove any
5164 AND with STORE_FLAG_VALUE when we are done, since we are only
5165 going to test the sign bit. */
5166 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5167 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5168 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5169 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5170 && op1 == const0_rtx
5171 && mode == GET_MODE (op0)
5172 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5174 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5175 expand_compound_operation (op0),
5176 GET_MODE_BITSIZE (mode) - 1 - i);
5177 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5178 return XEXP (x, 0);
5179 else
5180 return x;
5183 /* If the code changed, return a whole new comparison. */
5184 if (new_code != code)
5185 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5187 /* Otherwise, keep this operation, but maybe change its operands.
5188 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5189 SUBST (XEXP (x, 0), op0);
5190 SUBST (XEXP (x, 1), op1);
5192 break;
5194 case IF_THEN_ELSE:
5195 return simplify_if_then_else (x);
5197 case ZERO_EXTRACT:
5198 case SIGN_EXTRACT:
5199 case ZERO_EXTEND:
5200 case SIGN_EXTEND:
5201 /* If we are processing SET_DEST, we are done. */
5202 if (in_dest)
5203 return x;
5205 return expand_compound_operation (x);
5207 case SET:
5208 return simplify_set (x);
5210 case AND:
5211 case IOR:
5212 return simplify_logical (x);
5214 case ASHIFT:
5215 case LSHIFTRT:
5216 case ASHIFTRT:
5217 case ROTATE:
5218 case ROTATERT:
5219 /* If this is a shift by a constant amount, simplify it. */
5220 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5221 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5222 INTVAL (XEXP (x, 1)));
5224 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5225 SUBST (XEXP (x, 1),
5226 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5227 ((HOST_WIDE_INT) 1
5228 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5229 - 1,
5230 0));
5231 break;
5233 default:
5234 break;
5237 return x;
5240 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5242 static rtx
5243 simplify_if_then_else (rtx x)
5245 enum machine_mode mode = GET_MODE (x);
5246 rtx cond = XEXP (x, 0);
5247 rtx true_rtx = XEXP (x, 1);
5248 rtx false_rtx = XEXP (x, 2);
5249 enum rtx_code true_code = GET_CODE (cond);
5250 int comparison_p = COMPARISON_P (cond);
5251 rtx temp;
5252 int i;
5253 enum rtx_code false_code;
5254 rtx reversed;
5256 /* Simplify storing of the truth value. */
5257 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5258 return simplify_gen_relational (true_code, mode, VOIDmode,
5259 XEXP (cond, 0), XEXP (cond, 1));
5261 /* Also when the truth value has to be reversed. */
5262 if (comparison_p
5263 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5264 && (reversed = reversed_comparison (cond, mode)))
5265 return reversed;
5267 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5268 in it is being compared against certain values. Get the true and false
5269 comparisons and see if that says anything about the value of each arm. */
5271 if (comparison_p
5272 && ((false_code = reversed_comparison_code (cond, NULL))
5273 != UNKNOWN)
5274 && REG_P (XEXP (cond, 0)))
5276 HOST_WIDE_INT nzb;
5277 rtx from = XEXP (cond, 0);
5278 rtx true_val = XEXP (cond, 1);
5279 rtx false_val = true_val;
5280 int swapped = 0;
5282 /* If FALSE_CODE is EQ, swap the codes and arms. */
5284 if (false_code == EQ)
5286 swapped = 1, true_code = EQ, false_code = NE;
5287 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5290 /* If we are comparing against zero and the expression being tested has
5291 only a single bit that might be nonzero, that is its value when it is
5292 not equal to zero. Similarly if it is known to be -1 or 0. */
5294 if (true_code == EQ && true_val == const0_rtx
5295 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5297 false_code = EQ;
5298 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5300 else if (true_code == EQ && true_val == const0_rtx
5301 && (num_sign_bit_copies (from, GET_MODE (from))
5302 == GET_MODE_BITSIZE (GET_MODE (from))))
5304 false_code = EQ;
5305 false_val = constm1_rtx;
5308 /* Now simplify an arm if we know the value of the register in the
5309 branch and it is used in the arm. Be careful due to the potential
5310 of locally-shared RTL. */
5312 if (reg_mentioned_p (from, true_rtx))
5313 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5314 from, true_val),
5315 pc_rtx, pc_rtx, 0, 0);
5316 if (reg_mentioned_p (from, false_rtx))
5317 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5318 from, false_val),
5319 pc_rtx, pc_rtx, 0, 0);
5321 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5322 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5324 true_rtx = XEXP (x, 1);
5325 false_rtx = XEXP (x, 2);
5326 true_code = GET_CODE (cond);
5329 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5330 reversed, do so to avoid needing two sets of patterns for
5331 subtract-and-branch insns. Similarly if we have a constant in the true
5332 arm, the false arm is the same as the first operand of the comparison, or
5333 the false arm is more complicated than the true arm. */
5335 if (comparison_p
5336 && reversed_comparison_code (cond, NULL) != UNKNOWN
5337 && (true_rtx == pc_rtx
5338 || (CONSTANT_P (true_rtx)
5339 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
5340 || true_rtx == const0_rtx
5341 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5342 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5343 && !OBJECT_P (false_rtx))
5344 || reg_mentioned_p (true_rtx, false_rtx)
5345 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5347 true_code = reversed_comparison_code (cond, NULL);
5348 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5349 SUBST (XEXP (x, 1), false_rtx);
5350 SUBST (XEXP (x, 2), true_rtx);
5352 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5353 cond = XEXP (x, 0);
5355 /* It is possible that the conditional has been simplified out. */
5356 true_code = GET_CODE (cond);
5357 comparison_p = COMPARISON_P (cond);
5360 /* If the two arms are identical, we don't need the comparison. */
5362 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5363 return true_rtx;
5365 /* Convert a == b ? b : a to "a". */
5366 if (true_code == EQ && ! side_effects_p (cond)
5367 && !HONOR_NANS (mode)
5368 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5369 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5370 return false_rtx;
5371 else if (true_code == NE && ! side_effects_p (cond)
5372 && !HONOR_NANS (mode)
5373 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5374 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5375 return true_rtx;
5377 /* Look for cases where we have (abs x) or (neg (abs X)). */
5379 if (GET_MODE_CLASS (mode) == MODE_INT
5380 && GET_CODE (false_rtx) == NEG
5381 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5382 && comparison_p
5383 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5384 && ! side_effects_p (true_rtx))
5385 switch (true_code)
5387 case GT:
5388 case GE:
5389 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5390 case LT:
5391 case LE:
5392 return
5393 simplify_gen_unary (NEG, mode,
5394 simplify_gen_unary (ABS, mode, true_rtx, mode),
5395 mode);
5396 default:
5397 break;
5400 /* Look for MIN or MAX. */
5402 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5403 && comparison_p
5404 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5405 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5406 && ! side_effects_p (cond))
5407 switch (true_code)
5409 case GE:
5410 case GT:
5411 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5412 case LE:
5413 case LT:
5414 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5415 case GEU:
5416 case GTU:
5417 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5418 case LEU:
5419 case LTU:
5420 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5421 default:
5422 break;
5425 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5426 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5427 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5428 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5429 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5430 neither 1 or -1, but it isn't worth checking for. */
5432 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5433 && comparison_p
5434 && GET_MODE_CLASS (mode) == MODE_INT
5435 && ! side_effects_p (x))
5437 rtx t = make_compound_operation (true_rtx, SET);
5438 rtx f = make_compound_operation (false_rtx, SET);
5439 rtx cond_op0 = XEXP (cond, 0);
5440 rtx cond_op1 = XEXP (cond, 1);
5441 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5442 enum machine_mode m = mode;
5443 rtx z = 0, c1 = NULL_RTX;
5445 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5446 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5447 || GET_CODE (t) == ASHIFT
5448 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5449 && rtx_equal_p (XEXP (t, 0), f))
5450 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5452 /* If an identity-zero op is commutative, check whether there
5453 would be a match if we swapped the operands. */
5454 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5455 || GET_CODE (t) == XOR)
5456 && rtx_equal_p (XEXP (t, 1), f))
5457 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5458 else if (GET_CODE (t) == SIGN_EXTEND
5459 && (GET_CODE (XEXP (t, 0)) == PLUS
5460 || GET_CODE (XEXP (t, 0)) == MINUS
5461 || GET_CODE (XEXP (t, 0)) == IOR
5462 || GET_CODE (XEXP (t, 0)) == XOR
5463 || GET_CODE (XEXP (t, 0)) == ASHIFT
5464 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5465 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5466 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5467 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5468 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5469 && (num_sign_bit_copies (f, GET_MODE (f))
5470 > (unsigned int)
5471 (GET_MODE_BITSIZE (mode)
5472 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5474 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5475 extend_op = SIGN_EXTEND;
5476 m = GET_MODE (XEXP (t, 0));
5478 else if (GET_CODE (t) == SIGN_EXTEND
5479 && (GET_CODE (XEXP (t, 0)) == PLUS
5480 || GET_CODE (XEXP (t, 0)) == IOR
5481 || GET_CODE (XEXP (t, 0)) == XOR)
5482 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5483 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5484 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5485 && (num_sign_bit_copies (f, GET_MODE (f))
5486 > (unsigned int)
5487 (GET_MODE_BITSIZE (mode)
5488 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5490 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5491 extend_op = SIGN_EXTEND;
5492 m = GET_MODE (XEXP (t, 0));
5494 else if (GET_CODE (t) == ZERO_EXTEND
5495 && (GET_CODE (XEXP (t, 0)) == PLUS
5496 || GET_CODE (XEXP (t, 0)) == MINUS
5497 || GET_CODE (XEXP (t, 0)) == IOR
5498 || GET_CODE (XEXP (t, 0)) == XOR
5499 || GET_CODE (XEXP (t, 0)) == ASHIFT
5500 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5501 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5502 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5503 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5504 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5505 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5506 && ((nonzero_bits (f, GET_MODE (f))
5507 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5508 == 0))
5510 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5511 extend_op = ZERO_EXTEND;
5512 m = GET_MODE (XEXP (t, 0));
5514 else if (GET_CODE (t) == ZERO_EXTEND
5515 && (GET_CODE (XEXP (t, 0)) == PLUS
5516 || GET_CODE (XEXP (t, 0)) == IOR
5517 || GET_CODE (XEXP (t, 0)) == XOR)
5518 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5519 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5520 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5521 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5522 && ((nonzero_bits (f, GET_MODE (f))
5523 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5524 == 0))
5526 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5527 extend_op = ZERO_EXTEND;
5528 m = GET_MODE (XEXP (t, 0));
5531 if (z)
5533 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5534 cond_op0, cond_op1),
5535 pc_rtx, pc_rtx, 0, 0);
5536 temp = simplify_gen_binary (MULT, m, temp,
5537 simplify_gen_binary (MULT, m, c1,
5538 const_true_rtx));
5539 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5540 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5542 if (extend_op != UNKNOWN)
5543 temp = simplify_gen_unary (extend_op, mode, temp, m);
5545 return temp;
5549 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5550 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5551 negation of a single bit, we can convert this operation to a shift. We
5552 can actually do this more generally, but it doesn't seem worth it. */
5554 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5555 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5556 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5557 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5558 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5559 == GET_MODE_BITSIZE (mode))
5560 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5561 return
5562 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5563 gen_lowpart (mode, XEXP (cond, 0)), i);
5565 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5566 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5567 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5568 && GET_MODE (XEXP (cond, 0)) == mode
5569 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5570 == nonzero_bits (XEXP (cond, 0), mode)
5571 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5572 return XEXP (cond, 0);
5574 return x;
5577 /* Simplify X, a SET expression. Return the new expression. */
5579 static rtx
5580 simplify_set (rtx x)
5582 rtx src = SET_SRC (x);
5583 rtx dest = SET_DEST (x);
5584 enum machine_mode mode
5585 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5586 rtx other_insn;
5587 rtx *cc_use;
5589 /* (set (pc) (return)) gets written as (return). */
5590 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5591 return src;
5593 /* Now that we know for sure which bits of SRC we are using, see if we can
5594 simplify the expression for the object knowing that we only need the
5595 low-order bits. */
5597 if (GET_MODE_CLASS (mode) == MODE_INT
5598 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5600 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5601 SUBST (SET_SRC (x), src);
5604 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5605 the comparison result and try to simplify it unless we already have used
5606 undobuf.other_insn. */
5607 if ((GET_MODE_CLASS (mode) == MODE_CC
5608 || GET_CODE (src) == COMPARE
5609 || CC0_P (dest))
5610 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5611 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5612 && COMPARISON_P (*cc_use)
5613 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5615 enum rtx_code old_code = GET_CODE (*cc_use);
5616 enum rtx_code new_code;
5617 rtx op0, op1, tmp;
5618 int other_changed = 0;
5619 enum machine_mode compare_mode = GET_MODE (dest);
5621 if (GET_CODE (src) == COMPARE)
5622 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5623 else
5624 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5626 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5627 op0, op1);
5628 if (!tmp)
5629 new_code = old_code;
5630 else if (!CONSTANT_P (tmp))
5632 new_code = GET_CODE (tmp);
5633 op0 = XEXP (tmp, 0);
5634 op1 = XEXP (tmp, 1);
5636 else
5638 rtx pat = PATTERN (other_insn);
5639 undobuf.other_insn = other_insn;
5640 SUBST (*cc_use, tmp);
5642 /* Attempt to simplify CC user. */
5643 if (GET_CODE (pat) == SET)
5645 rtx new = simplify_rtx (SET_SRC (pat));
5646 if (new != NULL_RTX)
5647 SUBST (SET_SRC (pat), new);
5650 /* Convert X into a no-op move. */
5651 SUBST (SET_DEST (x), pc_rtx);
5652 SUBST (SET_SRC (x), pc_rtx);
5653 return x;
5656 /* Simplify our comparison, if possible. */
5657 new_code = simplify_comparison (new_code, &op0, &op1);
5659 #ifdef SELECT_CC_MODE
5660 /* If this machine has CC modes other than CCmode, check to see if we
5661 need to use a different CC mode here. */
5662 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5663 compare_mode = GET_MODE (op0);
5664 else
5665 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5667 #ifndef HAVE_cc0
5668 /* If the mode changed, we have to change SET_DEST, the mode in the
5669 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5670 a hard register, just build new versions with the proper mode. If it
5671 is a pseudo, we lose unless it is only time we set the pseudo, in
5672 which case we can safely change its mode. */
5673 if (compare_mode != GET_MODE (dest))
5675 if (can_change_dest_mode (dest, 0, compare_mode))
5677 unsigned int regno = REGNO (dest);
5678 rtx new_dest;
5680 if (regno < FIRST_PSEUDO_REGISTER)
5681 new_dest = gen_rtx_REG (compare_mode, regno);
5682 else
5684 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5685 new_dest = regno_reg_rtx[regno];
5688 SUBST (SET_DEST (x), new_dest);
5689 SUBST (XEXP (*cc_use, 0), new_dest);
5690 other_changed = 1;
5692 dest = new_dest;
5695 #endif /* cc0 */
5696 #endif /* SELECT_CC_MODE */
5698 /* If the code changed, we have to build a new comparison in
5699 undobuf.other_insn. */
5700 if (new_code != old_code)
5702 int other_changed_previously = other_changed;
5703 unsigned HOST_WIDE_INT mask;
5705 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5706 dest, const0_rtx));
5707 other_changed = 1;
5709 /* If the only change we made was to change an EQ into an NE or
5710 vice versa, OP0 has only one bit that might be nonzero, and OP1
5711 is zero, check if changing the user of the condition code will
5712 produce a valid insn. If it won't, we can keep the original code
5713 in that insn by surrounding our operation with an XOR. */
5715 if (((old_code == NE && new_code == EQ)
5716 || (old_code == EQ && new_code == NE))
5717 && ! other_changed_previously && op1 == const0_rtx
5718 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5719 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5721 rtx pat = PATTERN (other_insn), note = 0;
5723 if ((recog_for_combine (&pat, other_insn, &note) < 0
5724 && ! check_asm_operands (pat)))
5726 PUT_CODE (*cc_use, old_code);
5727 other_changed = 0;
5729 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5730 op0, GEN_INT (mask));
5735 if (other_changed)
5736 undobuf.other_insn = other_insn;
5738 #ifdef HAVE_cc0
5739 /* If we are now comparing against zero, change our source if
5740 needed. If we do not use cc0, we always have a COMPARE. */
5741 if (op1 == const0_rtx && dest == cc0_rtx)
5743 SUBST (SET_SRC (x), op0);
5744 src = op0;
5746 else
5747 #endif
5749 /* Otherwise, if we didn't previously have a COMPARE in the
5750 correct mode, we need one. */
5751 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5753 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5754 src = SET_SRC (x);
5756 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5758 SUBST (SET_SRC (x), op0);
5759 src = SET_SRC (x);
5761 /* Otherwise, update the COMPARE if needed. */
5762 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5764 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5765 src = SET_SRC (x);
5768 else
5770 /* Get SET_SRC in a form where we have placed back any
5771 compound expressions. Then do the checks below. */
5772 src = make_compound_operation (src, SET);
5773 SUBST (SET_SRC (x), src);
5776 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5777 and X being a REG or (subreg (reg)), we may be able to convert this to
5778 (set (subreg:m2 x) (op)).
5780 We can always do this if M1 is narrower than M2 because that means that
5781 we only care about the low bits of the result.
5783 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5784 perform a narrower operation than requested since the high-order bits will
5785 be undefined. On machine where it is defined, this transformation is safe
5786 as long as M1 and M2 have the same number of words. */
5788 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5789 && !OBJECT_P (SUBREG_REG (src))
5790 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5791 / UNITS_PER_WORD)
5792 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5793 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5794 #ifndef WORD_REGISTER_OPERATIONS
5795 && (GET_MODE_SIZE (GET_MODE (src))
5796 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5797 #endif
5798 #ifdef CANNOT_CHANGE_MODE_CLASS
5799 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5800 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5801 GET_MODE (SUBREG_REG (src)),
5802 GET_MODE (src)))
5803 #endif
5804 && (REG_P (dest)
5805 || (GET_CODE (dest) == SUBREG
5806 && REG_P (SUBREG_REG (dest)))))
5808 SUBST (SET_DEST (x),
5809 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5810 dest));
5811 SUBST (SET_SRC (x), SUBREG_REG (src));
5813 src = SET_SRC (x), dest = SET_DEST (x);
5816 #ifdef HAVE_cc0
5817 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5818 in SRC. */
5819 if (dest == cc0_rtx
5820 && GET_CODE (src) == SUBREG
5821 && subreg_lowpart_p (src)
5822 && (GET_MODE_BITSIZE (GET_MODE (src))
5823 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5825 rtx inner = SUBREG_REG (src);
5826 enum machine_mode inner_mode = GET_MODE (inner);
5828 /* Here we make sure that we don't have a sign bit on. */
5829 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5830 && (nonzero_bits (inner, inner_mode)
5831 < ((unsigned HOST_WIDE_INT) 1
5832 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5834 SUBST (SET_SRC (x), inner);
5835 src = SET_SRC (x);
5838 #endif
5840 #ifdef LOAD_EXTEND_OP
5841 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5842 would require a paradoxical subreg. Replace the subreg with a
5843 zero_extend to avoid the reload that would otherwise be required. */
5845 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5846 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5847 && SUBREG_BYTE (src) == 0
5848 && (GET_MODE_SIZE (GET_MODE (src))
5849 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5850 && MEM_P (SUBREG_REG (src)))
5852 SUBST (SET_SRC (x),
5853 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5854 GET_MODE (src), SUBREG_REG (src)));
5856 src = SET_SRC (x);
5858 #endif
5860 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5861 are comparing an item known to be 0 or -1 against 0, use a logical
5862 operation instead. Check for one of the arms being an IOR of the other
5863 arm with some value. We compute three terms to be IOR'ed together. In
5864 practice, at most two will be nonzero. Then we do the IOR's. */
5866 if (GET_CODE (dest) != PC
5867 && GET_CODE (src) == IF_THEN_ELSE
5868 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5869 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5870 && XEXP (XEXP (src, 0), 1) == const0_rtx
5871 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5872 #ifdef HAVE_conditional_move
5873 && ! can_conditionally_move_p (GET_MODE (src))
5874 #endif
5875 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5876 GET_MODE (XEXP (XEXP (src, 0), 0)))
5877 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5878 && ! side_effects_p (src))
5880 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5881 ? XEXP (src, 1) : XEXP (src, 2));
5882 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5883 ? XEXP (src, 2) : XEXP (src, 1));
5884 rtx term1 = const0_rtx, term2, term3;
5886 if (GET_CODE (true_rtx) == IOR
5887 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5888 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5889 else if (GET_CODE (true_rtx) == IOR
5890 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5891 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5892 else if (GET_CODE (false_rtx) == IOR
5893 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5894 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5895 else if (GET_CODE (false_rtx) == IOR
5896 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5897 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5899 term2 = simplify_gen_binary (AND, GET_MODE (src),
5900 XEXP (XEXP (src, 0), 0), true_rtx);
5901 term3 = simplify_gen_binary (AND, GET_MODE (src),
5902 simplify_gen_unary (NOT, GET_MODE (src),
5903 XEXP (XEXP (src, 0), 0),
5904 GET_MODE (src)),
5905 false_rtx);
5907 SUBST (SET_SRC (x),
5908 simplify_gen_binary (IOR, GET_MODE (src),
5909 simplify_gen_binary (IOR, GET_MODE (src),
5910 term1, term2),
5911 term3));
5913 src = SET_SRC (x);
5916 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5917 whole thing fail. */
5918 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5919 return src;
5920 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5921 return dest;
5922 else
5923 /* Convert this into a field assignment operation, if possible. */
5924 return make_field_assignment (x);
5927 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5928 result. */
5930 static rtx
5931 simplify_logical (rtx x)
5933 enum machine_mode mode = GET_MODE (x);
5934 rtx op0 = XEXP (x, 0);
5935 rtx op1 = XEXP (x, 1);
5937 switch (GET_CODE (x))
5939 case AND:
5940 /* We can call simplify_and_const_int only if we don't lose
5941 any (sign) bits when converting INTVAL (op1) to
5942 "unsigned HOST_WIDE_INT". */
5943 if (GET_CODE (op1) == CONST_INT
5944 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5945 || INTVAL (op1) > 0))
5947 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5948 if (GET_CODE (x) != AND)
5949 return x;
5951 op0 = XEXP (x, 0);
5952 op1 = XEXP (x, 1);
5955 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5956 apply the distributive law and then the inverse distributive
5957 law to see if things simplify. */
5958 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5960 rtx result = distribute_and_simplify_rtx (x, 0);
5961 if (result)
5962 return result;
5964 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5966 rtx result = distribute_and_simplify_rtx (x, 1);
5967 if (result)
5968 return result;
5970 break;
5972 case IOR:
5973 /* If we have (ior (and A B) C), apply the distributive law and then
5974 the inverse distributive law to see if things simplify. */
5976 if (GET_CODE (op0) == AND)
5978 rtx result = distribute_and_simplify_rtx (x, 0);
5979 if (result)
5980 return result;
5983 if (GET_CODE (op1) == AND)
5985 rtx result = distribute_and_simplify_rtx (x, 1);
5986 if (result)
5987 return result;
5989 break;
5991 default:
5992 gcc_unreachable ();
5995 return x;
5998 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5999 operations" because they can be replaced with two more basic operations.
6000 ZERO_EXTEND is also considered "compound" because it can be replaced with
6001 an AND operation, which is simpler, though only one operation.
6003 The function expand_compound_operation is called with an rtx expression
6004 and will convert it to the appropriate shifts and AND operations,
6005 simplifying at each stage.
6007 The function make_compound_operation is called to convert an expression
6008 consisting of shifts and ANDs into the equivalent compound expression.
6009 It is the inverse of this function, loosely speaking. */
6011 static rtx
6012 expand_compound_operation (rtx x)
6014 unsigned HOST_WIDE_INT pos = 0, len;
6015 int unsignedp = 0;
6016 unsigned int modewidth;
6017 rtx tem;
6019 switch (GET_CODE (x))
6021 case ZERO_EXTEND:
6022 unsignedp = 1;
6023 case SIGN_EXTEND:
6024 /* We can't necessarily use a const_int for a multiword mode;
6025 it depends on implicitly extending the value.
6026 Since we don't know the right way to extend it,
6027 we can't tell whether the implicit way is right.
6029 Even for a mode that is no wider than a const_int,
6030 we can't win, because we need to sign extend one of its bits through
6031 the rest of it, and we don't know which bit. */
6032 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
6033 return x;
6035 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6036 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6037 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6038 reloaded. If not for that, MEM's would very rarely be safe.
6040 Reject MODEs bigger than a word, because we might not be able
6041 to reference a two-register group starting with an arbitrary register
6042 (and currently gen_lowpart might crash for a SUBREG). */
6044 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6045 return x;
6047 /* Reject MODEs that aren't scalar integers because turning vector
6048 or complex modes into shifts causes problems. */
6050 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6051 return x;
6053 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6054 /* If the inner object has VOIDmode (the only way this can happen
6055 is if it is an ASM_OPERANDS), we can't do anything since we don't
6056 know how much masking to do. */
6057 if (len == 0)
6058 return x;
6060 break;
6062 case ZERO_EXTRACT:
6063 unsignedp = 1;
6065 /* ... fall through ... */
6067 case SIGN_EXTRACT:
6068 /* If the operand is a CLOBBER, just return it. */
6069 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6070 return XEXP (x, 0);
6072 if (GET_CODE (XEXP (x, 1)) != CONST_INT
6073 || GET_CODE (XEXP (x, 2)) != CONST_INT
6074 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6075 return x;
6077 /* Reject MODEs that aren't scalar integers because turning vector
6078 or complex modes into shifts causes problems. */
6080 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6081 return x;
6083 len = INTVAL (XEXP (x, 1));
6084 pos = INTVAL (XEXP (x, 2));
6086 /* This should stay within the object being extracted, fail otherwise. */
6087 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6088 return x;
6090 if (BITS_BIG_ENDIAN)
6091 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6093 break;
6095 default:
6096 return x;
6098 /* Convert sign extension to zero extension, if we know that the high
6099 bit is not set, as this is easier to optimize. It will be converted
6100 back to cheaper alternative in make_extraction. */
6101 if (GET_CODE (x) == SIGN_EXTEND
6102 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6103 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6104 & ~(((unsigned HOST_WIDE_INT)
6105 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6106 >> 1))
6107 == 0)))
6109 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6110 rtx temp2 = expand_compound_operation (temp);
6112 /* Make sure this is a profitable operation. */
6113 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
6114 return temp2;
6115 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
6116 return temp;
6117 else
6118 return x;
6121 /* We can optimize some special cases of ZERO_EXTEND. */
6122 if (GET_CODE (x) == ZERO_EXTEND)
6124 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6125 know that the last value didn't have any inappropriate bits
6126 set. */
6127 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6128 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6129 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6130 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6131 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6132 return XEXP (XEXP (x, 0), 0);
6134 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6135 if (GET_CODE (XEXP (x, 0)) == SUBREG
6136 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6137 && subreg_lowpart_p (XEXP (x, 0))
6138 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6139 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6140 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6141 return SUBREG_REG (XEXP (x, 0));
6143 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6144 is a comparison and STORE_FLAG_VALUE permits. This is like
6145 the first case, but it works even when GET_MODE (x) is larger
6146 than HOST_WIDE_INT. */
6147 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6148 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6149 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6150 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6151 <= HOST_BITS_PER_WIDE_INT)
6152 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6153 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6154 return XEXP (XEXP (x, 0), 0);
6156 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6157 if (GET_CODE (XEXP (x, 0)) == SUBREG
6158 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6159 && subreg_lowpart_p (XEXP (x, 0))
6160 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6161 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6162 <= HOST_BITS_PER_WIDE_INT)
6163 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6164 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6165 return SUBREG_REG (XEXP (x, 0));
6169 /* If we reach here, we want to return a pair of shifts. The inner
6170 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6171 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6172 logical depending on the value of UNSIGNEDP.
6174 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6175 converted into an AND of a shift.
6177 We must check for the case where the left shift would have a negative
6178 count. This can happen in a case like (x >> 31) & 255 on machines
6179 that can't shift by a constant. On those machines, we would first
6180 combine the shift with the AND to produce a variable-position
6181 extraction. Then the constant of 31 would be substituted in to produce
6182 a such a position. */
6184 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6185 if (modewidth + len >= pos)
6187 enum machine_mode mode = GET_MODE (x);
6188 tem = gen_lowpart (mode, XEXP (x, 0));
6189 if (!tem || GET_CODE (tem) == CLOBBER)
6190 return x;
6191 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6192 tem, modewidth - pos - len);
6193 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6194 mode, tem, modewidth - len);
6196 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6197 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6198 simplify_shift_const (NULL_RTX, LSHIFTRT,
6199 GET_MODE (x),
6200 XEXP (x, 0), pos),
6201 ((HOST_WIDE_INT) 1 << len) - 1);
6202 else
6203 /* Any other cases we can't handle. */
6204 return x;
6206 /* If we couldn't do this for some reason, return the original
6207 expression. */
6208 if (GET_CODE (tem) == CLOBBER)
6209 return x;
6211 return tem;
6214 /* X is a SET which contains an assignment of one object into
6215 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6216 or certain SUBREGS). If possible, convert it into a series of
6217 logical operations.
6219 We half-heartedly support variable positions, but do not at all
6220 support variable lengths. */
6222 static const_rtx
6223 expand_field_assignment (const_rtx x)
6225 rtx inner;
6226 rtx pos; /* Always counts from low bit. */
6227 int len;
6228 rtx mask, cleared, masked;
6229 enum machine_mode compute_mode;
6231 /* Loop until we find something we can't simplify. */
6232 while (1)
6234 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6235 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6237 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6238 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6239 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6241 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6242 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6244 inner = XEXP (SET_DEST (x), 0);
6245 len = INTVAL (XEXP (SET_DEST (x), 1));
6246 pos = XEXP (SET_DEST (x), 2);
6248 /* A constant position should stay within the width of INNER. */
6249 if (GET_CODE (pos) == CONST_INT
6250 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6251 break;
6253 if (BITS_BIG_ENDIAN)
6255 if (GET_CODE (pos) == CONST_INT)
6256 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6257 - INTVAL (pos));
6258 else if (GET_CODE (pos) == MINUS
6259 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6260 && (INTVAL (XEXP (pos, 1))
6261 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6262 /* If position is ADJUST - X, new position is X. */
6263 pos = XEXP (pos, 0);
6264 else
6265 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6266 GEN_INT (GET_MODE_BITSIZE (
6267 GET_MODE (inner))
6268 - len),
6269 pos);
6273 /* A SUBREG between two modes that occupy the same numbers of words
6274 can be done by moving the SUBREG to the source. */
6275 else if (GET_CODE (SET_DEST (x)) == SUBREG
6276 /* We need SUBREGs to compute nonzero_bits properly. */
6277 && nonzero_sign_valid
6278 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6279 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6280 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6281 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6283 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6284 gen_lowpart
6285 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6286 SET_SRC (x)));
6287 continue;
6289 else
6290 break;
6292 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6293 inner = SUBREG_REG (inner);
6295 compute_mode = GET_MODE (inner);
6297 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6298 if (! SCALAR_INT_MODE_P (compute_mode))
6300 enum machine_mode imode;
6302 /* Don't do anything for vector or complex integral types. */
6303 if (! FLOAT_MODE_P (compute_mode))
6304 break;
6306 /* Try to find an integral mode to pun with. */
6307 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6308 if (imode == BLKmode)
6309 break;
6311 compute_mode = imode;
6312 inner = gen_lowpart (imode, inner);
6315 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6316 if (len >= HOST_BITS_PER_WIDE_INT)
6317 break;
6319 /* Now compute the equivalent expression. Make a copy of INNER
6320 for the SET_DEST in case it is a MEM into which we will substitute;
6321 we don't want shared RTL in that case. */
6322 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6323 cleared = simplify_gen_binary (AND, compute_mode,
6324 simplify_gen_unary (NOT, compute_mode,
6325 simplify_gen_binary (ASHIFT,
6326 compute_mode,
6327 mask, pos),
6328 compute_mode),
6329 inner);
6330 masked = simplify_gen_binary (ASHIFT, compute_mode,
6331 simplify_gen_binary (
6332 AND, compute_mode,
6333 gen_lowpart (compute_mode, SET_SRC (x)),
6334 mask),
6335 pos);
6337 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6338 simplify_gen_binary (IOR, compute_mode,
6339 cleared, masked));
6342 return x;
6345 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6346 it is an RTX that represents a variable starting position; otherwise,
6347 POS is the (constant) starting bit position (counted from the LSB).
6349 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6350 signed reference.
6352 IN_DEST is nonzero if this is a reference in the destination of a
6353 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6354 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6355 be used.
6357 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6358 ZERO_EXTRACT should be built even for bits starting at bit 0.
6360 MODE is the desired mode of the result (if IN_DEST == 0).
6362 The result is an RTX for the extraction or NULL_RTX if the target
6363 can't handle it. */
6365 static rtx
6366 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6367 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6368 int in_dest, int in_compare)
6370 /* This mode describes the size of the storage area
6371 to fetch the overall value from. Within that, we
6372 ignore the POS lowest bits, etc. */
6373 enum machine_mode is_mode = GET_MODE (inner);
6374 enum machine_mode inner_mode;
6375 enum machine_mode wanted_inner_mode;
6376 enum machine_mode wanted_inner_reg_mode = word_mode;
6377 enum machine_mode pos_mode = word_mode;
6378 enum machine_mode extraction_mode = word_mode;
6379 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6380 rtx new = 0;
6381 rtx orig_pos_rtx = pos_rtx;
6382 HOST_WIDE_INT orig_pos;
6384 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6386 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6387 consider just the QI as the memory to extract from.
6388 The subreg adds or removes high bits; its mode is
6389 irrelevant to the meaning of this extraction,
6390 since POS and LEN count from the lsb. */
6391 if (MEM_P (SUBREG_REG (inner)))
6392 is_mode = GET_MODE (SUBREG_REG (inner));
6393 inner = SUBREG_REG (inner);
6395 else if (GET_CODE (inner) == ASHIFT
6396 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6397 && pos_rtx == 0 && pos == 0
6398 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6400 /* We're extracting the least significant bits of an rtx
6401 (ashift X (const_int C)), where LEN > C. Extract the
6402 least significant (LEN - C) bits of X, giving an rtx
6403 whose mode is MODE, then shift it left C times. */
6404 new = make_extraction (mode, XEXP (inner, 0),
6405 0, 0, len - INTVAL (XEXP (inner, 1)),
6406 unsignedp, in_dest, in_compare);
6407 if (new != 0)
6408 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6411 inner_mode = GET_MODE (inner);
6413 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6414 pos = INTVAL (pos_rtx), pos_rtx = 0;
6416 /* See if this can be done without an extraction. We never can if the
6417 width of the field is not the same as that of some integer mode. For
6418 registers, we can only avoid the extraction if the position is at the
6419 low-order bit and this is either not in the destination or we have the
6420 appropriate STRICT_LOW_PART operation available.
6422 For MEM, we can avoid an extract if the field starts on an appropriate
6423 boundary and we can change the mode of the memory reference. */
6425 if (tmode != BLKmode
6426 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6427 && !MEM_P (inner)
6428 && (inner_mode == tmode
6429 || !REG_P (inner)
6430 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6431 GET_MODE_BITSIZE (inner_mode))
6432 || reg_truncated_to_mode (tmode, inner))
6433 && (! in_dest
6434 || (REG_P (inner)
6435 && have_insn_for (STRICT_LOW_PART, tmode))))
6436 || (MEM_P (inner) && pos_rtx == 0
6437 && (pos
6438 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6439 : BITS_PER_UNIT)) == 0
6440 /* We can't do this if we are widening INNER_MODE (it
6441 may not be aligned, for one thing). */
6442 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6443 && (inner_mode == tmode
6444 || (! mode_dependent_address_p (XEXP (inner, 0))
6445 && ! MEM_VOLATILE_P (inner))))))
6447 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6448 field. If the original and current mode are the same, we need not
6449 adjust the offset. Otherwise, we do if bytes big endian.
6451 If INNER is not a MEM, get a piece consisting of just the field
6452 of interest (in this case POS % BITS_PER_WORD must be 0). */
6454 if (MEM_P (inner))
6456 HOST_WIDE_INT offset;
6458 /* POS counts from lsb, but make OFFSET count in memory order. */
6459 if (BYTES_BIG_ENDIAN)
6460 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6461 else
6462 offset = pos / BITS_PER_UNIT;
6464 new = adjust_address_nv (inner, tmode, offset);
6466 else if (REG_P (inner))
6468 if (tmode != inner_mode)
6470 /* We can't call gen_lowpart in a DEST since we
6471 always want a SUBREG (see below) and it would sometimes
6472 return a new hard register. */
6473 if (pos || in_dest)
6475 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6477 if (WORDS_BIG_ENDIAN
6478 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6479 final_word = ((GET_MODE_SIZE (inner_mode)
6480 - GET_MODE_SIZE (tmode))
6481 / UNITS_PER_WORD) - final_word;
6483 final_word *= UNITS_PER_WORD;
6484 if (BYTES_BIG_ENDIAN &&
6485 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6486 final_word += (GET_MODE_SIZE (inner_mode)
6487 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6489 /* Avoid creating invalid subregs, for example when
6490 simplifying (x>>32)&255. */
6491 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6492 return NULL_RTX;
6494 new = gen_rtx_SUBREG (tmode, inner, final_word);
6496 else
6497 new = gen_lowpart (tmode, inner);
6499 else
6500 new = inner;
6502 else
6503 new = force_to_mode (inner, tmode,
6504 len >= HOST_BITS_PER_WIDE_INT
6505 ? ~(unsigned HOST_WIDE_INT) 0
6506 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6509 /* If this extraction is going into the destination of a SET,
6510 make a STRICT_LOW_PART unless we made a MEM. */
6512 if (in_dest)
6513 return (MEM_P (new) ? new
6514 : (GET_CODE (new) != SUBREG
6515 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6516 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6518 if (mode == tmode)
6519 return new;
6521 if (GET_CODE (new) == CONST_INT)
6522 return gen_int_mode (INTVAL (new), mode);
6524 /* If we know that no extraneous bits are set, and that the high
6525 bit is not set, convert the extraction to the cheaper of
6526 sign and zero extension, that are equivalent in these cases. */
6527 if (flag_expensive_optimizations
6528 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6529 && ((nonzero_bits (new, tmode)
6530 & ~(((unsigned HOST_WIDE_INT)
6531 GET_MODE_MASK (tmode))
6532 >> 1))
6533 == 0)))
6535 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6536 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6538 /* Prefer ZERO_EXTENSION, since it gives more information to
6539 backends. */
6540 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6541 return temp;
6542 return temp1;
6545 /* Otherwise, sign- or zero-extend unless we already are in the
6546 proper mode. */
6548 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6549 mode, new));
6552 /* Unless this is a COMPARE or we have a funny memory reference,
6553 don't do anything with zero-extending field extracts starting at
6554 the low-order bit since they are simple AND operations. */
6555 if (pos_rtx == 0 && pos == 0 && ! in_dest
6556 && ! in_compare && unsignedp)
6557 return 0;
6559 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6560 if the position is not a constant and the length is not 1. In all
6561 other cases, we would only be going outside our object in cases when
6562 an original shift would have been undefined. */
6563 if (MEM_P (inner)
6564 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6565 || (pos_rtx != 0 && len != 1)))
6566 return 0;
6568 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6569 and the mode for the result. */
6570 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6572 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6573 pos_mode = mode_for_extraction (EP_insv, 2);
6574 extraction_mode = mode_for_extraction (EP_insv, 3);
6577 if (! in_dest && unsignedp
6578 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6580 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6581 pos_mode = mode_for_extraction (EP_extzv, 3);
6582 extraction_mode = mode_for_extraction (EP_extzv, 0);
6585 if (! in_dest && ! unsignedp
6586 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6588 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6589 pos_mode = mode_for_extraction (EP_extv, 3);
6590 extraction_mode = mode_for_extraction (EP_extv, 0);
6593 /* Never narrow an object, since that might not be safe. */
6595 if (mode != VOIDmode
6596 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6597 extraction_mode = mode;
6599 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6600 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6601 pos_mode = GET_MODE (pos_rtx);
6603 /* If this is not from memory, the desired mode is the preferred mode
6604 for an extraction pattern's first input operand, or word_mode if there
6605 is none. */
6606 if (!MEM_P (inner))
6607 wanted_inner_mode = wanted_inner_reg_mode;
6608 else
6610 /* Be careful not to go beyond the extracted object and maintain the
6611 natural alignment of the memory. */
6612 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6613 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6614 > GET_MODE_BITSIZE (wanted_inner_mode))
6616 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6617 gcc_assert (wanted_inner_mode != VOIDmode);
6620 /* If we have to change the mode of memory and cannot, the desired mode
6621 is EXTRACTION_MODE. */
6622 if (inner_mode != wanted_inner_mode
6623 && (mode_dependent_address_p (XEXP (inner, 0))
6624 || MEM_VOLATILE_P (inner)
6625 || pos_rtx))
6626 wanted_inner_mode = extraction_mode;
6629 orig_pos = pos;
6631 if (BITS_BIG_ENDIAN)
6633 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6634 BITS_BIG_ENDIAN style. If position is constant, compute new
6635 position. Otherwise, build subtraction.
6636 Note that POS is relative to the mode of the original argument.
6637 If it's a MEM we need to recompute POS relative to that.
6638 However, if we're extracting from (or inserting into) a register,
6639 we want to recompute POS relative to wanted_inner_mode. */
6640 int width = (MEM_P (inner)
6641 ? GET_MODE_BITSIZE (is_mode)
6642 : GET_MODE_BITSIZE (wanted_inner_mode));
6644 if (pos_rtx == 0)
6645 pos = width - len - pos;
6646 else
6647 pos_rtx
6648 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6649 /* POS may be less than 0 now, but we check for that below.
6650 Note that it can only be less than 0 if !MEM_P (inner). */
6653 /* If INNER has a wider mode, and this is a constant extraction, try to
6654 make it smaller and adjust the byte to point to the byte containing
6655 the value. */
6656 if (wanted_inner_mode != VOIDmode
6657 && inner_mode != wanted_inner_mode
6658 && ! pos_rtx
6659 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6660 && MEM_P (inner)
6661 && ! mode_dependent_address_p (XEXP (inner, 0))
6662 && ! MEM_VOLATILE_P (inner))
6664 int offset = 0;
6666 /* The computations below will be correct if the machine is big
6667 endian in both bits and bytes or little endian in bits and bytes.
6668 If it is mixed, we must adjust. */
6670 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6671 adjust OFFSET to compensate. */
6672 if (BYTES_BIG_ENDIAN
6673 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6674 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6676 /* We can now move to the desired byte. */
6677 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6678 * GET_MODE_SIZE (wanted_inner_mode);
6679 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6681 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6682 && is_mode != wanted_inner_mode)
6683 offset = (GET_MODE_SIZE (is_mode)
6684 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6686 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6689 /* If INNER is not memory, we can always get it into the proper mode. If we
6690 are changing its mode, POS must be a constant and smaller than the size
6691 of the new mode. */
6692 else if (!MEM_P (inner))
6694 if (GET_MODE (inner) != wanted_inner_mode
6695 && (pos_rtx != 0
6696 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6697 return 0;
6699 if (orig_pos < 0)
6700 return 0;
6702 inner = force_to_mode (inner, wanted_inner_mode,
6703 pos_rtx
6704 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6705 ? ~(unsigned HOST_WIDE_INT) 0
6706 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6707 << orig_pos),
6711 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6712 have to zero extend. Otherwise, we can just use a SUBREG. */
6713 if (pos_rtx != 0
6714 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6716 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6718 /* If we know that no extraneous bits are set, and that the high
6719 bit is not set, convert extraction to cheaper one - either
6720 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6721 cases. */
6722 if (flag_expensive_optimizations
6723 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6724 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6725 & ~(((unsigned HOST_WIDE_INT)
6726 GET_MODE_MASK (GET_MODE (pos_rtx)))
6727 >> 1))
6728 == 0)))
6730 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6732 /* Prefer ZERO_EXTENSION, since it gives more information to
6733 backends. */
6734 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6735 temp = temp1;
6737 pos_rtx = temp;
6739 else if (pos_rtx != 0
6740 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6741 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6743 /* Make POS_RTX unless we already have it and it is correct. If we don't
6744 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6745 be a CONST_INT. */
6746 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6747 pos_rtx = orig_pos_rtx;
6749 else if (pos_rtx == 0)
6750 pos_rtx = GEN_INT (pos);
6752 /* Make the required operation. See if we can use existing rtx. */
6753 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6754 extraction_mode, inner, GEN_INT (len), pos_rtx);
6755 if (! in_dest)
6756 new = gen_lowpart (mode, new);
6758 return new;
6761 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6762 with any other operations in X. Return X without that shift if so. */
6764 static rtx
6765 extract_left_shift (rtx x, int count)
6767 enum rtx_code code = GET_CODE (x);
6768 enum machine_mode mode = GET_MODE (x);
6769 rtx tem;
6771 switch (code)
6773 case ASHIFT:
6774 /* This is the shift itself. If it is wide enough, we will return
6775 either the value being shifted if the shift count is equal to
6776 COUNT or a shift for the difference. */
6777 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6778 && INTVAL (XEXP (x, 1)) >= count)
6779 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6780 INTVAL (XEXP (x, 1)) - count);
6781 break;
6783 case NEG: case NOT:
6784 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6785 return simplify_gen_unary (code, mode, tem, mode);
6787 break;
6789 case PLUS: case IOR: case XOR: case AND:
6790 /* If we can safely shift this constant and we find the inner shift,
6791 make a new operation. */
6792 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6793 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6794 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6795 return simplify_gen_binary (code, mode, tem,
6796 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6798 break;
6800 default:
6801 break;
6804 return 0;
6807 /* Look at the expression rooted at X. Look for expressions
6808 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6809 Form these expressions.
6811 Return the new rtx, usually just X.
6813 Also, for machines like the VAX that don't have logical shift insns,
6814 try to convert logical to arithmetic shift operations in cases where
6815 they are equivalent. This undoes the canonicalizations to logical
6816 shifts done elsewhere.
6818 We try, as much as possible, to re-use rtl expressions to save memory.
6820 IN_CODE says what kind of expression we are processing. Normally, it is
6821 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6822 being kludges), it is MEM. When processing the arguments of a comparison
6823 or a COMPARE against zero, it is COMPARE. */
6825 static rtx
6826 make_compound_operation (rtx x, enum rtx_code in_code)
6828 enum rtx_code code = GET_CODE (x);
6829 enum machine_mode mode = GET_MODE (x);
6830 int mode_width = GET_MODE_BITSIZE (mode);
6831 rtx rhs, lhs;
6832 enum rtx_code next_code;
6833 int i;
6834 rtx new = 0;
6835 rtx tem;
6836 const char *fmt;
6838 /* Select the code to be used in recursive calls. Once we are inside an
6839 address, we stay there. If we have a comparison, set to COMPARE,
6840 but once inside, go back to our default of SET. */
6842 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6843 : ((code == COMPARE || COMPARISON_P (x))
6844 && XEXP (x, 1) == const0_rtx) ? COMPARE
6845 : in_code == COMPARE ? SET : in_code);
6847 /* Process depending on the code of this operation. If NEW is set
6848 nonzero, it will be returned. */
6850 switch (code)
6852 case ASHIFT:
6853 /* Convert shifts by constants into multiplications if inside
6854 an address. */
6855 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6856 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6857 && INTVAL (XEXP (x, 1)) >= 0)
6859 new = make_compound_operation (XEXP (x, 0), next_code);
6860 new = gen_rtx_MULT (mode, new,
6861 GEN_INT ((HOST_WIDE_INT) 1
6862 << INTVAL (XEXP (x, 1))));
6864 break;
6866 case AND:
6867 /* If the second operand is not a constant, we can't do anything
6868 with it. */
6869 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6870 break;
6872 /* If the constant is a power of two minus one and the first operand
6873 is a logical right shift, make an extraction. */
6874 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6875 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6877 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6878 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6879 0, in_code == COMPARE);
6882 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6883 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6884 && subreg_lowpart_p (XEXP (x, 0))
6885 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6886 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6888 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6889 next_code);
6890 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6891 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6892 0, in_code == COMPARE);
6894 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6895 else if ((GET_CODE (XEXP (x, 0)) == XOR
6896 || GET_CODE (XEXP (x, 0)) == IOR)
6897 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6898 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6899 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6901 /* Apply the distributive law, and then try to make extractions. */
6902 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6903 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6904 XEXP (x, 1)),
6905 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6906 XEXP (x, 1)));
6907 new = make_compound_operation (new, in_code);
6910 /* If we are have (and (rotate X C) M) and C is larger than the number
6911 of bits in M, this is an extraction. */
6913 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6914 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6915 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6916 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6918 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6919 new = make_extraction (mode, new,
6920 (GET_MODE_BITSIZE (mode)
6921 - INTVAL (XEXP (XEXP (x, 0), 1))),
6922 NULL_RTX, i, 1, 0, in_code == COMPARE);
6925 /* On machines without logical shifts, if the operand of the AND is
6926 a logical shift and our mask turns off all the propagated sign
6927 bits, we can replace the logical shift with an arithmetic shift. */
6928 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6929 && !have_insn_for (LSHIFTRT, mode)
6930 && have_insn_for (ASHIFTRT, mode)
6931 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6932 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6933 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6934 && mode_width <= HOST_BITS_PER_WIDE_INT)
6936 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6938 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6939 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6940 SUBST (XEXP (x, 0),
6941 gen_rtx_ASHIFTRT (mode,
6942 make_compound_operation
6943 (XEXP (XEXP (x, 0), 0), next_code),
6944 XEXP (XEXP (x, 0), 1)));
6947 /* If the constant is one less than a power of two, this might be
6948 representable by an extraction even if no shift is present.
6949 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6950 we are in a COMPARE. */
6951 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6952 new = make_extraction (mode,
6953 make_compound_operation (XEXP (x, 0),
6954 next_code),
6955 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6957 /* If we are in a comparison and this is an AND with a power of two,
6958 convert this into the appropriate bit extract. */
6959 else if (in_code == COMPARE
6960 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6961 new = make_extraction (mode,
6962 make_compound_operation (XEXP (x, 0),
6963 next_code),
6964 i, NULL_RTX, 1, 1, 0, 1);
6966 break;
6968 case LSHIFTRT:
6969 /* If the sign bit is known to be zero, replace this with an
6970 arithmetic shift. */
6971 if (have_insn_for (ASHIFTRT, mode)
6972 && ! have_insn_for (LSHIFTRT, mode)
6973 && mode_width <= HOST_BITS_PER_WIDE_INT
6974 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6976 new = gen_rtx_ASHIFTRT (mode,
6977 make_compound_operation (XEXP (x, 0),
6978 next_code),
6979 XEXP (x, 1));
6980 break;
6983 /* ... fall through ... */
6985 case ASHIFTRT:
6986 lhs = XEXP (x, 0);
6987 rhs = XEXP (x, 1);
6989 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6990 this is a SIGN_EXTRACT. */
6991 if (GET_CODE (rhs) == CONST_INT
6992 && GET_CODE (lhs) == ASHIFT
6993 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6994 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6996 new = make_compound_operation (XEXP (lhs, 0), next_code);
6997 new = make_extraction (mode, new,
6998 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6999 NULL_RTX, mode_width - INTVAL (rhs),
7000 code == LSHIFTRT, 0, in_code == COMPARE);
7001 break;
7004 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7005 If so, try to merge the shifts into a SIGN_EXTEND. We could
7006 also do this for some cases of SIGN_EXTRACT, but it doesn't
7007 seem worth the effort; the case checked for occurs on Alpha. */
7009 if (!OBJECT_P (lhs)
7010 && ! (GET_CODE (lhs) == SUBREG
7011 && (OBJECT_P (SUBREG_REG (lhs))))
7012 && GET_CODE (rhs) == CONST_INT
7013 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7014 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7015 new = make_extraction (mode, make_compound_operation (new, next_code),
7016 0, NULL_RTX, mode_width - INTVAL (rhs),
7017 code == LSHIFTRT, 0, in_code == COMPARE);
7019 break;
7021 case SUBREG:
7022 /* Call ourselves recursively on the inner expression. If we are
7023 narrowing the object and it has a different RTL code from
7024 what it originally did, do this SUBREG as a force_to_mode. */
7026 tem = make_compound_operation (SUBREG_REG (x), in_code);
7029 rtx simplified;
7030 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7031 SUBREG_BYTE (x));
7033 if (simplified)
7034 tem = simplified;
7036 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7037 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7038 && subreg_lowpart_p (x))
7040 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7043 /* If we have something other than a SUBREG, we might have
7044 done an expansion, so rerun ourselves. */
7045 if (GET_CODE (newer) != SUBREG)
7046 newer = make_compound_operation (newer, in_code);
7048 return newer;
7051 if (simplified)
7052 return tem;
7054 break;
7056 default:
7057 break;
7060 if (new)
7062 x = gen_lowpart (mode, new);
7063 code = GET_CODE (x);
7066 /* Now recursively process each operand of this operation. */
7067 fmt = GET_RTX_FORMAT (code);
7068 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7069 if (fmt[i] == 'e')
7071 new = make_compound_operation (XEXP (x, i), next_code);
7072 SUBST (XEXP (x, i), new);
7075 /* If this is a commutative operation, the changes to the operands
7076 may have made it noncanonical. */
7077 if (COMMUTATIVE_ARITH_P (x)
7078 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7080 tem = XEXP (x, 0);
7081 SUBST (XEXP (x, 0), XEXP (x, 1));
7082 SUBST (XEXP (x, 1), tem);
7085 return x;
7088 /* Given M see if it is a value that would select a field of bits
7089 within an item, but not the entire word. Return -1 if not.
7090 Otherwise, return the starting position of the field, where 0 is the
7091 low-order bit.
7093 *PLEN is set to the length of the field. */
7095 static int
7096 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7098 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7099 int pos = exact_log2 (m & -m);
7100 int len = 0;
7102 if (pos >= 0)
7103 /* Now shift off the low-order zero bits and see if we have a
7104 power of two minus 1. */
7105 len = exact_log2 ((m >> pos) + 1);
7107 if (len <= 0)
7108 pos = -1;
7110 *plen = len;
7111 return pos;
7114 /* If X refers to a register that equals REG in value, replace these
7115 references with REG. */
7116 static rtx
7117 canon_reg_for_combine (rtx x, rtx reg)
7119 rtx op0, op1, op2;
7120 const char *fmt;
7121 int i;
7122 bool copied;
7124 enum rtx_code code = GET_CODE (x);
7125 switch (GET_RTX_CLASS (code))
7127 case RTX_UNARY:
7128 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7129 if (op0 != XEXP (x, 0))
7130 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7131 GET_MODE (reg));
7132 break;
7134 case RTX_BIN_ARITH:
7135 case RTX_COMM_ARITH:
7136 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7137 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7138 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7139 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7140 break;
7142 case RTX_COMPARE:
7143 case RTX_COMM_COMPARE:
7144 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7145 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7146 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7147 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7148 GET_MODE (op0), op0, op1);
7149 break;
7151 case RTX_TERNARY:
7152 case RTX_BITFIELD_OPS:
7153 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7154 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7155 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7156 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7157 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7158 GET_MODE (op0), op0, op1, op2);
7160 case RTX_OBJ:
7161 if (REG_P (x))
7163 if (rtx_equal_p (get_last_value (reg), x)
7164 || rtx_equal_p (reg, get_last_value (x)))
7165 return reg;
7166 else
7167 break;
7170 /* fall through */
7172 default:
7173 fmt = GET_RTX_FORMAT (code);
7174 copied = false;
7175 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7176 if (fmt[i] == 'e')
7178 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7179 if (op != XEXP (x, i))
7181 if (!copied)
7183 copied = true;
7184 x = copy_rtx (x);
7186 XEXP (x, i) = op;
7189 else if (fmt[i] == 'E')
7191 int j;
7192 for (j = 0; j < XVECLEN (x, i); j++)
7194 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7195 if (op != XVECEXP (x, i, j))
7197 if (!copied)
7199 copied = true;
7200 x = copy_rtx (x);
7202 XVECEXP (x, i, j) = op;
7207 break;
7210 return x;
7213 /* Return X converted to MODE. If the value is already truncated to
7214 MODE we can just return a subreg even though in the general case we
7215 would need an explicit truncation. */
7217 static rtx
7218 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7220 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
7221 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7222 GET_MODE_BITSIZE (GET_MODE (x)))
7223 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
7224 return gen_lowpart (mode, x);
7225 else
7226 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
7229 /* See if X can be simplified knowing that we will only refer to it in
7230 MODE and will only refer to those bits that are nonzero in MASK.
7231 If other bits are being computed or if masking operations are done
7232 that select a superset of the bits in MASK, they can sometimes be
7233 ignored.
7235 Return a possibly simplified expression, but always convert X to
7236 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7238 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7239 are all off in X. This is used when X will be complemented, by either
7240 NOT, NEG, or XOR. */
7242 static rtx
7243 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7244 int just_select)
7246 enum rtx_code code = GET_CODE (x);
7247 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7248 enum machine_mode op_mode;
7249 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7250 rtx op0, op1, temp;
7252 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7253 code below will do the wrong thing since the mode of such an
7254 expression is VOIDmode.
7256 Also do nothing if X is a CLOBBER; this can happen if X was
7257 the return value from a call to gen_lowpart. */
7258 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7259 return x;
7261 /* We want to perform the operation is its present mode unless we know
7262 that the operation is valid in MODE, in which case we do the operation
7263 in MODE. */
7264 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7265 && have_insn_for (code, mode))
7266 ? mode : GET_MODE (x));
7268 /* It is not valid to do a right-shift in a narrower mode
7269 than the one it came in with. */
7270 if ((code == LSHIFTRT || code == ASHIFTRT)
7271 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7272 op_mode = GET_MODE (x);
7274 /* Truncate MASK to fit OP_MODE. */
7275 if (op_mode)
7276 mask &= GET_MODE_MASK (op_mode);
7278 /* When we have an arithmetic operation, or a shift whose count we
7279 do not know, we need to assume that all bits up to the highest-order
7280 bit in MASK will be needed. This is how we form such a mask. */
7281 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7282 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7283 else
7284 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7285 - 1);
7287 /* Determine what bits of X are guaranteed to be (non)zero. */
7288 nonzero = nonzero_bits (x, mode);
7290 /* If none of the bits in X are needed, return a zero. */
7291 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7292 x = const0_rtx;
7294 /* If X is a CONST_INT, return a new one. Do this here since the
7295 test below will fail. */
7296 if (GET_CODE (x) == CONST_INT)
7298 if (SCALAR_INT_MODE_P (mode))
7299 return gen_int_mode (INTVAL (x) & mask, mode);
7300 else
7302 x = GEN_INT (INTVAL (x) & mask);
7303 return gen_lowpart_common (mode, x);
7307 /* If X is narrower than MODE and we want all the bits in X's mode, just
7308 get X in the proper mode. */
7309 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7310 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7311 return gen_lowpart (mode, x);
7313 switch (code)
7315 case CLOBBER:
7316 /* If X is a (clobber (const_int)), return it since we know we are
7317 generating something that won't match. */
7318 return x;
7320 case SIGN_EXTEND:
7321 case ZERO_EXTEND:
7322 case ZERO_EXTRACT:
7323 case SIGN_EXTRACT:
7324 x = expand_compound_operation (x);
7325 if (GET_CODE (x) != code)
7326 return force_to_mode (x, mode, mask, next_select);
7327 break;
7329 case SUBREG:
7330 if (subreg_lowpart_p (x)
7331 /* We can ignore the effect of this SUBREG if it narrows the mode or
7332 if the constant masks to zero all the bits the mode doesn't
7333 have. */
7334 && ((GET_MODE_SIZE (GET_MODE (x))
7335 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7336 || (0 == (mask
7337 & GET_MODE_MASK (GET_MODE (x))
7338 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7339 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7340 break;
7342 case AND:
7343 /* If this is an AND with a constant, convert it into an AND
7344 whose constant is the AND of that constant with MASK. If it
7345 remains an AND of MASK, delete it since it is redundant. */
7347 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7349 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7350 mask & INTVAL (XEXP (x, 1)));
7352 /* If X is still an AND, see if it is an AND with a mask that
7353 is just some low-order bits. If so, and it is MASK, we don't
7354 need it. */
7356 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7357 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7358 == mask))
7359 x = XEXP (x, 0);
7361 /* If it remains an AND, try making another AND with the bits
7362 in the mode mask that aren't in MASK turned on. If the
7363 constant in the AND is wide enough, this might make a
7364 cheaper constant. */
7366 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7367 && GET_MODE_MASK (GET_MODE (x)) != mask
7368 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7370 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7371 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7372 int width = GET_MODE_BITSIZE (GET_MODE (x));
7373 rtx y;
7375 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7376 number, sign extend it. */
7377 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7378 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7379 cval |= (HOST_WIDE_INT) -1 << width;
7381 y = simplify_gen_binary (AND, GET_MODE (x),
7382 XEXP (x, 0), GEN_INT (cval));
7383 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7384 x = y;
7387 break;
7390 goto binop;
7392 case PLUS:
7393 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7394 low-order bits (as in an alignment operation) and FOO is already
7395 aligned to that boundary, mask C1 to that boundary as well.
7396 This may eliminate that PLUS and, later, the AND. */
7399 unsigned int width = GET_MODE_BITSIZE (mode);
7400 unsigned HOST_WIDE_INT smask = mask;
7402 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7403 number, sign extend it. */
7405 if (width < HOST_BITS_PER_WIDE_INT
7406 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7407 smask |= (HOST_WIDE_INT) -1 << width;
7409 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7410 && exact_log2 (- smask) >= 0
7411 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7412 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7413 return force_to_mode (plus_constant (XEXP (x, 0),
7414 (INTVAL (XEXP (x, 1)) & smask)),
7415 mode, smask, next_select);
7418 /* ... fall through ... */
7420 case MULT:
7421 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7422 most significant bit in MASK since carries from those bits will
7423 affect the bits we are interested in. */
7424 mask = fuller_mask;
7425 goto binop;
7427 case MINUS:
7428 /* If X is (minus C Y) where C's least set bit is larger than any bit
7429 in the mask, then we may replace with (neg Y). */
7430 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7431 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7432 & -INTVAL (XEXP (x, 0))))
7433 > mask))
7435 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7436 GET_MODE (x));
7437 return force_to_mode (x, mode, mask, next_select);
7440 /* Similarly, if C contains every bit in the fuller_mask, then we may
7441 replace with (not Y). */
7442 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7443 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7444 == INTVAL (XEXP (x, 0))))
7446 x = simplify_gen_unary (NOT, GET_MODE (x),
7447 XEXP (x, 1), GET_MODE (x));
7448 return force_to_mode (x, mode, mask, next_select);
7451 mask = fuller_mask;
7452 goto binop;
7454 case IOR:
7455 case XOR:
7456 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7457 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7458 operation which may be a bitfield extraction. Ensure that the
7459 constant we form is not wider than the mode of X. */
7461 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7462 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7463 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7464 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7465 && GET_CODE (XEXP (x, 1)) == CONST_INT
7466 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7467 + floor_log2 (INTVAL (XEXP (x, 1))))
7468 < GET_MODE_BITSIZE (GET_MODE (x)))
7469 && (INTVAL (XEXP (x, 1))
7470 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7472 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7473 << INTVAL (XEXP (XEXP (x, 0), 1)));
7474 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7475 XEXP (XEXP (x, 0), 0), temp);
7476 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7477 XEXP (XEXP (x, 0), 1));
7478 return force_to_mode (x, mode, mask, next_select);
7481 binop:
7482 /* For most binary operations, just propagate into the operation and
7483 change the mode if we have an operation of that mode. */
7485 op0 = gen_lowpart_or_truncate (op_mode,
7486 force_to_mode (XEXP (x, 0), mode, mask,
7487 next_select));
7488 op1 = gen_lowpart_or_truncate (op_mode,
7489 force_to_mode (XEXP (x, 1), mode, mask,
7490 next_select));
7492 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7493 x = simplify_gen_binary (code, op_mode, op0, op1);
7494 break;
7496 case ASHIFT:
7497 /* For left shifts, do the same, but just for the first operand.
7498 However, we cannot do anything with shifts where we cannot
7499 guarantee that the counts are smaller than the size of the mode
7500 because such a count will have a different meaning in a
7501 wider mode. */
7503 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7504 && INTVAL (XEXP (x, 1)) >= 0
7505 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7506 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7507 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7508 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7509 break;
7511 /* If the shift count is a constant and we can do arithmetic in
7512 the mode of the shift, refine which bits we need. Otherwise, use the
7513 conservative form of the mask. */
7514 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7515 && INTVAL (XEXP (x, 1)) >= 0
7516 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7517 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7518 mask >>= INTVAL (XEXP (x, 1));
7519 else
7520 mask = fuller_mask;
7522 op0 = gen_lowpart_or_truncate (op_mode,
7523 force_to_mode (XEXP (x, 0), op_mode,
7524 mask, next_select));
7526 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7527 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7528 break;
7530 case LSHIFTRT:
7531 /* Here we can only do something if the shift count is a constant,
7532 this shift constant is valid for the host, and we can do arithmetic
7533 in OP_MODE. */
7535 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7536 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7537 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7539 rtx inner = XEXP (x, 0);
7540 unsigned HOST_WIDE_INT inner_mask;
7542 /* Select the mask of the bits we need for the shift operand. */
7543 inner_mask = mask << INTVAL (XEXP (x, 1));
7545 /* We can only change the mode of the shift if we can do arithmetic
7546 in the mode of the shift and INNER_MASK is no wider than the
7547 width of X's mode. */
7548 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7549 op_mode = GET_MODE (x);
7551 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7553 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7554 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7557 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7558 shift and AND produces only copies of the sign bit (C2 is one less
7559 than a power of two), we can do this with just a shift. */
7561 if (GET_CODE (x) == LSHIFTRT
7562 && GET_CODE (XEXP (x, 1)) == CONST_INT
7563 /* The shift puts one of the sign bit copies in the least significant
7564 bit. */
7565 && ((INTVAL (XEXP (x, 1))
7566 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7567 >= GET_MODE_BITSIZE (GET_MODE (x)))
7568 && exact_log2 (mask + 1) >= 0
7569 /* Number of bits left after the shift must be more than the mask
7570 needs. */
7571 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7572 <= GET_MODE_BITSIZE (GET_MODE (x)))
7573 /* Must be more sign bit copies than the mask needs. */
7574 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7575 >= exact_log2 (mask + 1)))
7576 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7577 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7578 - exact_log2 (mask + 1)));
7580 goto shiftrt;
7582 case ASHIFTRT:
7583 /* If we are just looking for the sign bit, we don't need this shift at
7584 all, even if it has a variable count. */
7585 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7586 && (mask == ((unsigned HOST_WIDE_INT) 1
7587 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7588 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7590 /* If this is a shift by a constant, get a mask that contains those bits
7591 that are not copies of the sign bit. We then have two cases: If
7592 MASK only includes those bits, this can be a logical shift, which may
7593 allow simplifications. If MASK is a single-bit field not within
7594 those bits, we are requesting a copy of the sign bit and hence can
7595 shift the sign bit to the appropriate location. */
7597 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7598 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7600 int i;
7602 /* If the considered data is wider than HOST_WIDE_INT, we can't
7603 represent a mask for all its bits in a single scalar.
7604 But we only care about the lower bits, so calculate these. */
7606 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7608 nonzero = ~(HOST_WIDE_INT) 0;
7610 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7611 is the number of bits a full-width mask would have set.
7612 We need only shift if these are fewer than nonzero can
7613 hold. If not, we must keep all bits set in nonzero. */
7615 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7616 < HOST_BITS_PER_WIDE_INT)
7617 nonzero >>= INTVAL (XEXP (x, 1))
7618 + HOST_BITS_PER_WIDE_INT
7619 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7621 else
7623 nonzero = GET_MODE_MASK (GET_MODE (x));
7624 nonzero >>= INTVAL (XEXP (x, 1));
7627 if ((mask & ~nonzero) == 0)
7629 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7630 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7631 if (GET_CODE (x) != ASHIFTRT)
7632 return force_to_mode (x, mode, mask, next_select);
7635 else if ((i = exact_log2 (mask)) >= 0)
7637 x = simplify_shift_const
7638 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7639 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7641 if (GET_CODE (x) != ASHIFTRT)
7642 return force_to_mode (x, mode, mask, next_select);
7646 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7647 even if the shift count isn't a constant. */
7648 if (mask == 1)
7649 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7650 XEXP (x, 0), XEXP (x, 1));
7652 shiftrt:
7654 /* If this is a zero- or sign-extension operation that just affects bits
7655 we don't care about, remove it. Be sure the call above returned
7656 something that is still a shift. */
7658 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7659 && GET_CODE (XEXP (x, 1)) == CONST_INT
7660 && INTVAL (XEXP (x, 1)) >= 0
7661 && (INTVAL (XEXP (x, 1))
7662 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7663 && GET_CODE (XEXP (x, 0)) == ASHIFT
7664 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7665 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7666 next_select);
7668 break;
7670 case ROTATE:
7671 case ROTATERT:
7672 /* If the shift count is constant and we can do computations
7673 in the mode of X, compute where the bits we care about are.
7674 Otherwise, we can't do anything. Don't change the mode of
7675 the shift or propagate MODE into the shift, though. */
7676 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7677 && INTVAL (XEXP (x, 1)) >= 0)
7679 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7680 GET_MODE (x), GEN_INT (mask),
7681 XEXP (x, 1));
7682 if (temp && GET_CODE (temp) == CONST_INT)
7683 SUBST (XEXP (x, 0),
7684 force_to_mode (XEXP (x, 0), GET_MODE (x),
7685 INTVAL (temp), next_select));
7687 break;
7689 case NEG:
7690 /* If we just want the low-order bit, the NEG isn't needed since it
7691 won't change the low-order bit. */
7692 if (mask == 1)
7693 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7695 /* We need any bits less significant than the most significant bit in
7696 MASK since carries from those bits will affect the bits we are
7697 interested in. */
7698 mask = fuller_mask;
7699 goto unop;
7701 case NOT:
7702 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7703 same as the XOR case above. Ensure that the constant we form is not
7704 wider than the mode of X. */
7706 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7707 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7708 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7709 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7710 < GET_MODE_BITSIZE (GET_MODE (x)))
7711 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7713 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7714 GET_MODE (x));
7715 temp = simplify_gen_binary (XOR, GET_MODE (x),
7716 XEXP (XEXP (x, 0), 0), temp);
7717 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7718 temp, XEXP (XEXP (x, 0), 1));
7720 return force_to_mode (x, mode, mask, next_select);
7723 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7724 use the full mask inside the NOT. */
7725 mask = fuller_mask;
7727 unop:
7728 op0 = gen_lowpart_or_truncate (op_mode,
7729 force_to_mode (XEXP (x, 0), mode, mask,
7730 next_select));
7731 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7732 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7733 break;
7735 case NE:
7736 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7737 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7738 which is equal to STORE_FLAG_VALUE. */
7739 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7740 && GET_MODE (XEXP (x, 0)) == mode
7741 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7742 && (nonzero_bits (XEXP (x, 0), mode)
7743 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7744 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7746 break;
7748 case IF_THEN_ELSE:
7749 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7750 written in a narrower mode. We play it safe and do not do so. */
7752 SUBST (XEXP (x, 1),
7753 gen_lowpart_or_truncate (GET_MODE (x),
7754 force_to_mode (XEXP (x, 1), mode,
7755 mask, next_select)));
7756 SUBST (XEXP (x, 2),
7757 gen_lowpart_or_truncate (GET_MODE (x),
7758 force_to_mode (XEXP (x, 2), mode,
7759 mask, next_select)));
7760 break;
7762 default:
7763 break;
7766 /* Ensure we return a value of the proper mode. */
7767 return gen_lowpart_or_truncate (mode, x);
7770 /* Return nonzero if X is an expression that has one of two values depending on
7771 whether some other value is zero or nonzero. In that case, we return the
7772 value that is being tested, *PTRUE is set to the value if the rtx being
7773 returned has a nonzero value, and *PFALSE is set to the other alternative.
7775 If we return zero, we set *PTRUE and *PFALSE to X. */
7777 static rtx
7778 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7780 enum machine_mode mode = GET_MODE (x);
7781 enum rtx_code code = GET_CODE (x);
7782 rtx cond0, cond1, true0, true1, false0, false1;
7783 unsigned HOST_WIDE_INT nz;
7785 /* If we are comparing a value against zero, we are done. */
7786 if ((code == NE || code == EQ)
7787 && XEXP (x, 1) == const0_rtx)
7789 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7790 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7791 return XEXP (x, 0);
7794 /* If this is a unary operation whose operand has one of two values, apply
7795 our opcode to compute those values. */
7796 else if (UNARY_P (x)
7797 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7799 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7800 *pfalse = simplify_gen_unary (code, mode, false0,
7801 GET_MODE (XEXP (x, 0)));
7802 return cond0;
7805 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7806 make can't possibly match and would suppress other optimizations. */
7807 else if (code == COMPARE)
7810 /* If this is a binary operation, see if either side has only one of two
7811 values. If either one does or if both do and they are conditional on
7812 the same value, compute the new true and false values. */
7813 else if (BINARY_P (x))
7815 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7816 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7818 if ((cond0 != 0 || cond1 != 0)
7819 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7821 /* If if_then_else_cond returned zero, then true/false are the
7822 same rtl. We must copy one of them to prevent invalid rtl
7823 sharing. */
7824 if (cond0 == 0)
7825 true0 = copy_rtx (true0);
7826 else if (cond1 == 0)
7827 true1 = copy_rtx (true1);
7829 if (COMPARISON_P (x))
7831 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7832 true0, true1);
7833 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7834 false0, false1);
7836 else
7838 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7839 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7842 return cond0 ? cond0 : cond1;
7845 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7846 operands is zero when the other is nonzero, and vice-versa,
7847 and STORE_FLAG_VALUE is 1 or -1. */
7849 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7850 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7851 || code == UMAX)
7852 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7854 rtx op0 = XEXP (XEXP (x, 0), 1);
7855 rtx op1 = XEXP (XEXP (x, 1), 1);
7857 cond0 = XEXP (XEXP (x, 0), 0);
7858 cond1 = XEXP (XEXP (x, 1), 0);
7860 if (COMPARISON_P (cond0)
7861 && COMPARISON_P (cond1)
7862 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7863 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7864 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7865 || ((swap_condition (GET_CODE (cond0))
7866 == reversed_comparison_code (cond1, NULL))
7867 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7868 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7869 && ! side_effects_p (x))
7871 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7872 *pfalse = simplify_gen_binary (MULT, mode,
7873 (code == MINUS
7874 ? simplify_gen_unary (NEG, mode,
7875 op1, mode)
7876 : op1),
7877 const_true_rtx);
7878 return cond0;
7882 /* Similarly for MULT, AND and UMIN, except that for these the result
7883 is always zero. */
7884 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7885 && (code == MULT || code == AND || code == UMIN)
7886 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7888 cond0 = XEXP (XEXP (x, 0), 0);
7889 cond1 = XEXP (XEXP (x, 1), 0);
7891 if (COMPARISON_P (cond0)
7892 && COMPARISON_P (cond1)
7893 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7894 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7895 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7896 || ((swap_condition (GET_CODE (cond0))
7897 == reversed_comparison_code (cond1, NULL))
7898 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7899 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7900 && ! side_effects_p (x))
7902 *ptrue = *pfalse = const0_rtx;
7903 return cond0;
7908 else if (code == IF_THEN_ELSE)
7910 /* If we have IF_THEN_ELSE already, extract the condition and
7911 canonicalize it if it is NE or EQ. */
7912 cond0 = XEXP (x, 0);
7913 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7914 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7915 return XEXP (cond0, 0);
7916 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7918 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7919 return XEXP (cond0, 0);
7921 else
7922 return cond0;
7925 /* If X is a SUBREG, we can narrow both the true and false values
7926 if the inner expression, if there is a condition. */
7927 else if (code == SUBREG
7928 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7929 &true0, &false0)))
7931 true0 = simplify_gen_subreg (mode, true0,
7932 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7933 false0 = simplify_gen_subreg (mode, false0,
7934 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7935 if (true0 && false0)
7937 *ptrue = true0;
7938 *pfalse = false0;
7939 return cond0;
7943 /* If X is a constant, this isn't special and will cause confusions
7944 if we treat it as such. Likewise if it is equivalent to a constant. */
7945 else if (CONSTANT_P (x)
7946 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7949 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7950 will be least confusing to the rest of the compiler. */
7951 else if (mode == BImode)
7953 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7954 return x;
7957 /* If X is known to be either 0 or -1, those are the true and
7958 false values when testing X. */
7959 else if (x == constm1_rtx || x == const0_rtx
7960 || (mode != VOIDmode
7961 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7963 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7964 return x;
7967 /* Likewise for 0 or a single bit. */
7968 else if (SCALAR_INT_MODE_P (mode)
7969 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7970 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7972 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7973 return x;
7976 /* Otherwise fail; show no condition with true and false values the same. */
7977 *ptrue = *pfalse = x;
7978 return 0;
7981 /* Return the value of expression X given the fact that condition COND
7982 is known to be true when applied to REG as its first operand and VAL
7983 as its second. X is known to not be shared and so can be modified in
7984 place.
7986 We only handle the simplest cases, and specifically those cases that
7987 arise with IF_THEN_ELSE expressions. */
7989 static rtx
7990 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7992 enum rtx_code code = GET_CODE (x);
7993 rtx temp;
7994 const char *fmt;
7995 int i, j;
7997 if (side_effects_p (x))
7998 return x;
8000 /* If either operand of the condition is a floating point value,
8001 then we have to avoid collapsing an EQ comparison. */
8002 if (cond == EQ
8003 && rtx_equal_p (x, reg)
8004 && ! FLOAT_MODE_P (GET_MODE (x))
8005 && ! FLOAT_MODE_P (GET_MODE (val)))
8006 return val;
8008 if (cond == UNEQ && rtx_equal_p (x, reg))
8009 return val;
8011 /* If X is (abs REG) and we know something about REG's relationship
8012 with zero, we may be able to simplify this. */
8014 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8015 switch (cond)
8017 case GE: case GT: case EQ:
8018 return XEXP (x, 0);
8019 case LT: case LE:
8020 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8021 XEXP (x, 0),
8022 GET_MODE (XEXP (x, 0)));
8023 default:
8024 break;
8027 /* The only other cases we handle are MIN, MAX, and comparisons if the
8028 operands are the same as REG and VAL. */
8030 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8032 if (rtx_equal_p (XEXP (x, 0), val))
8033 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8035 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8037 if (COMPARISON_P (x))
8039 if (comparison_dominates_p (cond, code))
8040 return const_true_rtx;
8042 code = reversed_comparison_code (x, NULL);
8043 if (code != UNKNOWN
8044 && comparison_dominates_p (cond, code))
8045 return const0_rtx;
8046 else
8047 return x;
8049 else if (code == SMAX || code == SMIN
8050 || code == UMIN || code == UMAX)
8052 int unsignedp = (code == UMIN || code == UMAX);
8054 /* Do not reverse the condition when it is NE or EQ.
8055 This is because we cannot conclude anything about
8056 the value of 'SMAX (x, y)' when x is not equal to y,
8057 but we can when x equals y. */
8058 if ((code == SMAX || code == UMAX)
8059 && ! (cond == EQ || cond == NE))
8060 cond = reverse_condition (cond);
8062 switch (cond)
8064 case GE: case GT:
8065 return unsignedp ? x : XEXP (x, 1);
8066 case LE: case LT:
8067 return unsignedp ? x : XEXP (x, 0);
8068 case GEU: case GTU:
8069 return unsignedp ? XEXP (x, 1) : x;
8070 case LEU: case LTU:
8071 return unsignedp ? XEXP (x, 0) : x;
8072 default:
8073 break;
8078 else if (code == SUBREG)
8080 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8081 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
8083 if (SUBREG_REG (x) != r)
8085 /* We must simplify subreg here, before we lose track of the
8086 original inner_mode. */
8087 new = simplify_subreg (GET_MODE (x), r,
8088 inner_mode, SUBREG_BYTE (x));
8089 if (new)
8090 return new;
8091 else
8092 SUBST (SUBREG_REG (x), r);
8095 return x;
8097 /* We don't have to handle SIGN_EXTEND here, because even in the
8098 case of replacing something with a modeless CONST_INT, a
8099 CONST_INT is already (supposed to be) a valid sign extension for
8100 its narrower mode, which implies it's already properly
8101 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8102 story is different. */
8103 else if (code == ZERO_EXTEND)
8105 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8106 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
8108 if (XEXP (x, 0) != r)
8110 /* We must simplify the zero_extend here, before we lose
8111 track of the original inner_mode. */
8112 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8113 r, inner_mode);
8114 if (new)
8115 return new;
8116 else
8117 SUBST (XEXP (x, 0), r);
8120 return x;
8123 fmt = GET_RTX_FORMAT (code);
8124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8126 if (fmt[i] == 'e')
8127 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8128 else if (fmt[i] == 'E')
8129 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8130 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8131 cond, reg, val));
8134 return x;
8137 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8138 assignment as a field assignment. */
8140 static int
8141 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8143 if (x == y || rtx_equal_p (x, y))
8144 return 1;
8146 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8147 return 0;
8149 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8150 Note that all SUBREGs of MEM are paradoxical; otherwise they
8151 would have been rewritten. */
8152 if (MEM_P (x) && GET_CODE (y) == SUBREG
8153 && MEM_P (SUBREG_REG (y))
8154 && rtx_equal_p (SUBREG_REG (y),
8155 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8156 return 1;
8158 if (MEM_P (y) && GET_CODE (x) == SUBREG
8159 && MEM_P (SUBREG_REG (x))
8160 && rtx_equal_p (SUBREG_REG (x),
8161 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8162 return 1;
8164 /* We used to see if get_last_value of X and Y were the same but that's
8165 not correct. In one direction, we'll cause the assignment to have
8166 the wrong destination and in the case, we'll import a register into this
8167 insn that might have already have been dead. So fail if none of the
8168 above cases are true. */
8169 return 0;
8172 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8173 Return that assignment if so.
8175 We only handle the most common cases. */
8177 static rtx
8178 make_field_assignment (rtx x)
8180 rtx dest = SET_DEST (x);
8181 rtx src = SET_SRC (x);
8182 rtx assign;
8183 rtx rhs, lhs;
8184 HOST_WIDE_INT c1;
8185 HOST_WIDE_INT pos;
8186 unsigned HOST_WIDE_INT len;
8187 rtx other;
8188 enum machine_mode mode;
8190 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8191 a clear of a one-bit field. We will have changed it to
8192 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8193 for a SUBREG. */
8195 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8196 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
8197 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8198 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8200 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8201 1, 1, 1, 0);
8202 if (assign != 0)
8203 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8204 return x;
8207 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8208 && subreg_lowpart_p (XEXP (src, 0))
8209 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8210 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8211 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8212 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
8213 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8214 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8216 assign = make_extraction (VOIDmode, dest, 0,
8217 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8218 1, 1, 1, 0);
8219 if (assign != 0)
8220 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8221 return x;
8224 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8225 one-bit field. */
8226 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8227 && XEXP (XEXP (src, 0), 0) == const1_rtx
8228 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8230 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8231 1, 1, 1, 0);
8232 if (assign != 0)
8233 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8234 return x;
8237 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8238 SRC is an AND with all bits of that field set, then we can discard
8239 the AND. */
8240 if (GET_CODE (dest) == ZERO_EXTRACT
8241 && GET_CODE (XEXP (dest, 1)) == CONST_INT
8242 && GET_CODE (src) == AND
8243 && GET_CODE (XEXP (src, 1)) == CONST_INT)
8245 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8246 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8247 unsigned HOST_WIDE_INT ze_mask;
8249 if (width >= HOST_BITS_PER_WIDE_INT)
8250 ze_mask = -1;
8251 else
8252 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8254 /* Complete overlap. We can remove the source AND. */
8255 if ((and_mask & ze_mask) == ze_mask)
8256 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8258 /* Partial overlap. We can reduce the source AND. */
8259 if ((and_mask & ze_mask) != and_mask)
8261 mode = GET_MODE (src);
8262 src = gen_rtx_AND (mode, XEXP (src, 0),
8263 gen_int_mode (and_mask & ze_mask, mode));
8264 return gen_rtx_SET (VOIDmode, dest, src);
8268 /* The other case we handle is assignments into a constant-position
8269 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8270 a mask that has all one bits except for a group of zero bits and
8271 OTHER is known to have zeros where C1 has ones, this is such an
8272 assignment. Compute the position and length from C1. Shift OTHER
8273 to the appropriate position, force it to the required mode, and
8274 make the extraction. Check for the AND in both operands. */
8276 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8277 return x;
8279 rhs = expand_compound_operation (XEXP (src, 0));
8280 lhs = expand_compound_operation (XEXP (src, 1));
8282 if (GET_CODE (rhs) == AND
8283 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8284 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8285 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8286 else if (GET_CODE (lhs) == AND
8287 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8288 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8289 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8290 else
8291 return x;
8293 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8294 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8295 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8296 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8297 return x;
8299 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8300 if (assign == 0)
8301 return x;
8303 /* The mode to use for the source is the mode of the assignment, or of
8304 what is inside a possible STRICT_LOW_PART. */
8305 mode = (GET_CODE (assign) == STRICT_LOW_PART
8306 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8308 /* Shift OTHER right POS places and make it the source, restricting it
8309 to the proper length and mode. */
8311 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8312 GET_MODE (src),
8313 other, pos),
8314 dest);
8315 src = force_to_mode (src, mode,
8316 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8317 ? ~(unsigned HOST_WIDE_INT) 0
8318 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8321 /* If SRC is masked by an AND that does not make a difference in
8322 the value being stored, strip it. */
8323 if (GET_CODE (assign) == ZERO_EXTRACT
8324 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8325 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8326 && GET_CODE (src) == AND
8327 && GET_CODE (XEXP (src, 1)) == CONST_INT
8328 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8329 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8330 src = XEXP (src, 0);
8332 return gen_rtx_SET (VOIDmode, assign, src);
8335 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8336 if so. */
8338 static rtx
8339 apply_distributive_law (rtx x)
8341 enum rtx_code code = GET_CODE (x);
8342 enum rtx_code inner_code;
8343 rtx lhs, rhs, other;
8344 rtx tem;
8346 /* Distributivity is not true for floating point as it can change the
8347 value. So we don't do it unless -funsafe-math-optimizations. */
8348 if (FLOAT_MODE_P (GET_MODE (x))
8349 && ! flag_unsafe_math_optimizations)
8350 return x;
8352 /* The outer operation can only be one of the following: */
8353 if (code != IOR && code != AND && code != XOR
8354 && code != PLUS && code != MINUS)
8355 return x;
8357 lhs = XEXP (x, 0);
8358 rhs = XEXP (x, 1);
8360 /* If either operand is a primitive we can't do anything, so get out
8361 fast. */
8362 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8363 return x;
8365 lhs = expand_compound_operation (lhs);
8366 rhs = expand_compound_operation (rhs);
8367 inner_code = GET_CODE (lhs);
8368 if (inner_code != GET_CODE (rhs))
8369 return x;
8371 /* See if the inner and outer operations distribute. */
8372 switch (inner_code)
8374 case LSHIFTRT:
8375 case ASHIFTRT:
8376 case AND:
8377 case IOR:
8378 /* These all distribute except over PLUS. */
8379 if (code == PLUS || code == MINUS)
8380 return x;
8381 break;
8383 case MULT:
8384 if (code != PLUS && code != MINUS)
8385 return x;
8386 break;
8388 case ASHIFT:
8389 /* This is also a multiply, so it distributes over everything. */
8390 break;
8392 case SUBREG:
8393 /* Non-paradoxical SUBREGs distributes over all operations,
8394 provided the inner modes and byte offsets are the same, this
8395 is an extraction of a low-order part, we don't convert an fp
8396 operation to int or vice versa, this is not a vector mode,
8397 and we would not be converting a single-word operation into a
8398 multi-word operation. The latter test is not required, but
8399 it prevents generating unneeded multi-word operations. Some
8400 of the previous tests are redundant given the latter test,
8401 but are retained because they are required for correctness.
8403 We produce the result slightly differently in this case. */
8405 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8406 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8407 || ! subreg_lowpart_p (lhs)
8408 || (GET_MODE_CLASS (GET_MODE (lhs))
8409 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8410 || (GET_MODE_SIZE (GET_MODE (lhs))
8411 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8412 || VECTOR_MODE_P (GET_MODE (lhs))
8413 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8414 /* Result might need to be truncated. Don't change mode if
8415 explicit truncation is needed. */
8416 || !TRULY_NOOP_TRUNCATION
8417 (GET_MODE_BITSIZE (GET_MODE (x)),
8418 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8419 return x;
8421 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8422 SUBREG_REG (lhs), SUBREG_REG (rhs));
8423 return gen_lowpart (GET_MODE (x), tem);
8425 default:
8426 return x;
8429 /* Set LHS and RHS to the inner operands (A and B in the example
8430 above) and set OTHER to the common operand (C in the example).
8431 There is only one way to do this unless the inner operation is
8432 commutative. */
8433 if (COMMUTATIVE_ARITH_P (lhs)
8434 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8435 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8436 else if (COMMUTATIVE_ARITH_P (lhs)
8437 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8438 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8439 else if (COMMUTATIVE_ARITH_P (lhs)
8440 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8441 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8442 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8443 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8444 else
8445 return x;
8447 /* Form the new inner operation, seeing if it simplifies first. */
8448 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8450 /* There is one exception to the general way of distributing:
8451 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8452 if (code == XOR && inner_code == IOR)
8454 inner_code = AND;
8455 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8458 /* We may be able to continuing distributing the result, so call
8459 ourselves recursively on the inner operation before forming the
8460 outer operation, which we return. */
8461 return simplify_gen_binary (inner_code, GET_MODE (x),
8462 apply_distributive_law (tem), other);
8465 /* See if X is of the form (* (+ A B) C), and if so convert to
8466 (+ (* A C) (* B C)) and try to simplify.
8468 Most of the time, this results in no change. However, if some of
8469 the operands are the same or inverses of each other, simplifications
8470 will result.
8472 For example, (and (ior A B) (not B)) can occur as the result of
8473 expanding a bit field assignment. When we apply the distributive
8474 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8475 which then simplifies to (and (A (not B))).
8477 Note that no checks happen on the validity of applying the inverse
8478 distributive law. This is pointless since we can do it in the
8479 few places where this routine is called.
8481 N is the index of the term that is decomposed (the arithmetic operation,
8482 i.e. (+ A B) in the first example above). !N is the index of the term that
8483 is distributed, i.e. of C in the first example above. */
8484 static rtx
8485 distribute_and_simplify_rtx (rtx x, int n)
8487 enum machine_mode mode;
8488 enum rtx_code outer_code, inner_code;
8489 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8491 decomposed = XEXP (x, n);
8492 if (!ARITHMETIC_P (decomposed))
8493 return NULL_RTX;
8495 mode = GET_MODE (x);
8496 outer_code = GET_CODE (x);
8497 distributed = XEXP (x, !n);
8499 inner_code = GET_CODE (decomposed);
8500 inner_op0 = XEXP (decomposed, 0);
8501 inner_op1 = XEXP (decomposed, 1);
8503 /* Special case (and (xor B C) (not A)), which is equivalent to
8504 (xor (ior A B) (ior A C)) */
8505 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8507 distributed = XEXP (distributed, 0);
8508 outer_code = IOR;
8511 if (n == 0)
8513 /* Distribute the second term. */
8514 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8515 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8517 else
8519 /* Distribute the first term. */
8520 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8521 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8524 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8525 new_op0, new_op1));
8526 if (GET_CODE (tmp) != outer_code
8527 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8528 return tmp;
8530 return NULL_RTX;
8533 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8534 in MODE. Return an equivalent form, if different from (and VAROP
8535 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8537 static rtx
8538 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8539 unsigned HOST_WIDE_INT constop)
8541 unsigned HOST_WIDE_INT nonzero;
8542 unsigned HOST_WIDE_INT orig_constop;
8543 rtx orig_varop;
8544 int i;
8546 orig_varop = varop;
8547 orig_constop = constop;
8548 if (GET_CODE (varop) == CLOBBER)
8549 return NULL_RTX;
8551 /* Simplify VAROP knowing that we will be only looking at some of the
8552 bits in it.
8554 Note by passing in CONSTOP, we guarantee that the bits not set in
8555 CONSTOP are not significant and will never be examined. We must
8556 ensure that is the case by explicitly masking out those bits
8557 before returning. */
8558 varop = force_to_mode (varop, mode, constop, 0);
8560 /* If VAROP is a CLOBBER, we will fail so return it. */
8561 if (GET_CODE (varop) == CLOBBER)
8562 return varop;
8564 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8565 to VAROP and return the new constant. */
8566 if (GET_CODE (varop) == CONST_INT)
8567 return gen_int_mode (INTVAL (varop) & constop, mode);
8569 /* See what bits may be nonzero in VAROP. Unlike the general case of
8570 a call to nonzero_bits, here we don't care about bits outside
8571 MODE. */
8573 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8575 /* Turn off all bits in the constant that are known to already be zero.
8576 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8577 which is tested below. */
8579 constop &= nonzero;
8581 /* If we don't have any bits left, return zero. */
8582 if (constop == 0)
8583 return const0_rtx;
8585 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8586 a power of two, we can replace this with an ASHIFT. */
8587 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8588 && (i = exact_log2 (constop)) >= 0)
8589 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8591 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8592 or XOR, then try to apply the distributive law. This may eliminate
8593 operations if either branch can be simplified because of the AND.
8594 It may also make some cases more complex, but those cases probably
8595 won't match a pattern either with or without this. */
8597 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8598 return
8599 gen_lowpart
8600 (mode,
8601 apply_distributive_law
8602 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8603 simplify_and_const_int (NULL_RTX,
8604 GET_MODE (varop),
8605 XEXP (varop, 0),
8606 constop),
8607 simplify_and_const_int (NULL_RTX,
8608 GET_MODE (varop),
8609 XEXP (varop, 1),
8610 constop))));
8612 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8613 the AND and see if one of the operands simplifies to zero. If so, we
8614 may eliminate it. */
8616 if (GET_CODE (varop) == PLUS
8617 && exact_log2 (constop + 1) >= 0)
8619 rtx o0, o1;
8621 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8622 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8623 if (o0 == const0_rtx)
8624 return o1;
8625 if (o1 == const0_rtx)
8626 return o0;
8629 /* Make a SUBREG if necessary. If we can't make it, fail. */
8630 varop = gen_lowpart (mode, varop);
8631 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8632 return NULL_RTX;
8634 /* If we are only masking insignificant bits, return VAROP. */
8635 if (constop == nonzero)
8636 return varop;
8638 if (varop == orig_varop && constop == orig_constop)
8639 return NULL_RTX;
8641 /* Otherwise, return an AND. */
8642 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8646 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8647 in MODE.
8649 Return an equivalent form, if different from X. Otherwise, return X. If
8650 X is zero, we are to always construct the equivalent form. */
8652 static rtx
8653 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8654 unsigned HOST_WIDE_INT constop)
8656 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8657 if (tem)
8658 return tem;
8660 if (!x)
8661 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8662 gen_int_mode (constop, mode));
8663 if (GET_MODE (x) != mode)
8664 x = gen_lowpart (mode, x);
8665 return x;
8668 /* Given a REG, X, compute which bits in X can be nonzero.
8669 We don't care about bits outside of those defined in MODE.
8671 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8672 a shift, AND, or zero_extract, we can do better. */
8674 static rtx
8675 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8676 const_rtx known_x ATTRIBUTE_UNUSED,
8677 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8678 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8679 unsigned HOST_WIDE_INT *nonzero)
8681 rtx tem;
8682 reg_stat_type *rsp;
8684 /* If X is a register whose nonzero bits value is current, use it.
8685 Otherwise, if X is a register whose value we can find, use that
8686 value. Otherwise, use the previously-computed global nonzero bits
8687 for this register. */
8689 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8690 if (rsp->last_set_value != 0
8691 && (rsp->last_set_mode == mode
8692 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8693 && GET_MODE_CLASS (mode) == MODE_INT))
8694 && ((rsp->last_set_label >= label_tick_ebb_start
8695 && rsp->last_set_label < label_tick)
8696 || (rsp->last_set_label == label_tick
8697 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8698 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8699 && REG_N_SETS (REGNO (x)) == 1
8700 && !REGNO_REG_SET_P
8701 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8703 *nonzero &= rsp->last_set_nonzero_bits;
8704 return NULL;
8707 tem = get_last_value (x);
8709 if (tem)
8711 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8712 /* If X is narrower than MODE and TEM is a non-negative
8713 constant that would appear negative in the mode of X,
8714 sign-extend it for use in reg_nonzero_bits because some
8715 machines (maybe most) will actually do the sign-extension
8716 and this is the conservative approach.
8718 ??? For 2.5, try to tighten up the MD files in this regard
8719 instead of this kludge. */
8721 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8722 && GET_CODE (tem) == CONST_INT
8723 && INTVAL (tem) > 0
8724 && 0 != (INTVAL (tem)
8725 & ((HOST_WIDE_INT) 1
8726 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8727 tem = GEN_INT (INTVAL (tem)
8728 | ((HOST_WIDE_INT) (-1)
8729 << GET_MODE_BITSIZE (GET_MODE (x))));
8730 #endif
8731 return tem;
8733 else if (nonzero_sign_valid && rsp->nonzero_bits)
8735 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8737 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8738 /* We don't know anything about the upper bits. */
8739 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8740 *nonzero &= mask;
8743 return NULL;
8746 /* Return the number of bits at the high-order end of X that are known to
8747 be equal to the sign bit. X will be used in mode MODE; if MODE is
8748 VOIDmode, X will be used in its own mode. The returned value will always
8749 be between 1 and the number of bits in MODE. */
8751 static rtx
8752 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8753 const_rtx known_x ATTRIBUTE_UNUSED,
8754 enum machine_mode known_mode
8755 ATTRIBUTE_UNUSED,
8756 unsigned int known_ret ATTRIBUTE_UNUSED,
8757 unsigned int *result)
8759 rtx tem;
8760 reg_stat_type *rsp;
8762 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8763 if (rsp->last_set_value != 0
8764 && rsp->last_set_mode == mode
8765 && ((rsp->last_set_label >= label_tick_ebb_start
8766 && rsp->last_set_label < label_tick)
8767 || (rsp->last_set_label == label_tick
8768 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8769 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8770 && REG_N_SETS (REGNO (x)) == 1
8771 && !REGNO_REG_SET_P
8772 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8774 *result = rsp->last_set_sign_bit_copies;
8775 return NULL;
8778 tem = get_last_value (x);
8779 if (tem != 0)
8780 return tem;
8782 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8783 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8784 *result = rsp->sign_bit_copies;
8786 return NULL;
8789 /* Return the number of "extended" bits there are in X, when interpreted
8790 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8791 unsigned quantities, this is the number of high-order zero bits.
8792 For signed quantities, this is the number of copies of the sign bit
8793 minus 1. In both case, this function returns the number of "spare"
8794 bits. For example, if two quantities for which this function returns
8795 at least 1 are added, the addition is known not to overflow.
8797 This function will always return 0 unless called during combine, which
8798 implies that it must be called from a define_split. */
8800 unsigned int
8801 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8803 if (nonzero_sign_valid == 0)
8804 return 0;
8806 return (unsignedp
8807 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8808 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8809 - floor_log2 (nonzero_bits (x, mode)))
8810 : 0)
8811 : num_sign_bit_copies (x, mode) - 1);
8814 /* This function is called from `simplify_shift_const' to merge two
8815 outer operations. Specifically, we have already found that we need
8816 to perform operation *POP0 with constant *PCONST0 at the outermost
8817 position. We would now like to also perform OP1 with constant CONST1
8818 (with *POP0 being done last).
8820 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8821 the resulting operation. *PCOMP_P is set to 1 if we would need to
8822 complement the innermost operand, otherwise it is unchanged.
8824 MODE is the mode in which the operation will be done. No bits outside
8825 the width of this mode matter. It is assumed that the width of this mode
8826 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8828 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8829 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8830 result is simply *PCONST0.
8832 If the resulting operation cannot be expressed as one operation, we
8833 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8835 static int
8836 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8838 enum rtx_code op0 = *pop0;
8839 HOST_WIDE_INT const0 = *pconst0;
8841 const0 &= GET_MODE_MASK (mode);
8842 const1 &= GET_MODE_MASK (mode);
8844 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8845 if (op0 == AND)
8846 const1 &= const0;
8848 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8849 if OP0 is SET. */
8851 if (op1 == UNKNOWN || op0 == SET)
8852 return 1;
8854 else if (op0 == UNKNOWN)
8855 op0 = op1, const0 = const1;
8857 else if (op0 == op1)
8859 switch (op0)
8861 case AND:
8862 const0 &= const1;
8863 break;
8864 case IOR:
8865 const0 |= const1;
8866 break;
8867 case XOR:
8868 const0 ^= const1;
8869 break;
8870 case PLUS:
8871 const0 += const1;
8872 break;
8873 case NEG:
8874 op0 = UNKNOWN;
8875 break;
8876 default:
8877 break;
8881 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8882 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8883 return 0;
8885 /* If the two constants aren't the same, we can't do anything. The
8886 remaining six cases can all be done. */
8887 else if (const0 != const1)
8888 return 0;
8890 else
8891 switch (op0)
8893 case IOR:
8894 if (op1 == AND)
8895 /* (a & b) | b == b */
8896 op0 = SET;
8897 else /* op1 == XOR */
8898 /* (a ^ b) | b == a | b */
8900 break;
8902 case XOR:
8903 if (op1 == AND)
8904 /* (a & b) ^ b == (~a) & b */
8905 op0 = AND, *pcomp_p = 1;
8906 else /* op1 == IOR */
8907 /* (a | b) ^ b == a & ~b */
8908 op0 = AND, const0 = ~const0;
8909 break;
8911 case AND:
8912 if (op1 == IOR)
8913 /* (a | b) & b == b */
8914 op0 = SET;
8915 else /* op1 == XOR */
8916 /* (a ^ b) & b) == (~a) & b */
8917 *pcomp_p = 1;
8918 break;
8919 default:
8920 break;
8923 /* Check for NO-OP cases. */
8924 const0 &= GET_MODE_MASK (mode);
8925 if (const0 == 0
8926 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8927 op0 = UNKNOWN;
8928 else if (const0 == 0 && op0 == AND)
8929 op0 = SET;
8930 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8931 && op0 == AND)
8932 op0 = UNKNOWN;
8934 /* ??? Slightly redundant with the above mask, but not entirely.
8935 Moving this above means we'd have to sign-extend the mode mask
8936 for the final test. */
8937 const0 = trunc_int_for_mode (const0, mode);
8939 *pop0 = op0;
8940 *pconst0 = const0;
8942 return 1;
8945 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8946 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8947 simplify it. Otherwise, return a simplified value.
8949 The shift is normally computed in the widest mode we find in VAROP, as
8950 long as it isn't a different number of words than RESULT_MODE. Exceptions
8951 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8953 static rtx
8954 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8955 rtx varop, int orig_count)
8957 enum rtx_code orig_code = code;
8958 rtx orig_varop = varop;
8959 int count;
8960 enum machine_mode mode = result_mode;
8961 enum machine_mode shift_mode, tmode;
8962 unsigned int mode_words
8963 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8964 /* We form (outer_op (code varop count) (outer_const)). */
8965 enum rtx_code outer_op = UNKNOWN;
8966 HOST_WIDE_INT outer_const = 0;
8967 int complement_p = 0;
8968 rtx new, x;
8970 /* Make sure and truncate the "natural" shift on the way in. We don't
8971 want to do this inside the loop as it makes it more difficult to
8972 combine shifts. */
8973 if (SHIFT_COUNT_TRUNCATED)
8974 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8976 /* If we were given an invalid count, don't do anything except exactly
8977 what was requested. */
8979 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8980 return NULL_RTX;
8982 count = orig_count;
8984 /* Unless one of the branches of the `if' in this loop does a `continue',
8985 we will `break' the loop after the `if'. */
8987 while (count != 0)
8989 /* If we have an operand of (clobber (const_int 0)), fail. */
8990 if (GET_CODE (varop) == CLOBBER)
8991 return NULL_RTX;
8993 /* If we discovered we had to complement VAROP, leave. Making a NOT
8994 here would cause an infinite loop. */
8995 if (complement_p)
8996 break;
8998 /* Convert ROTATERT to ROTATE. */
8999 if (code == ROTATERT)
9001 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9002 code = ROTATE;
9003 if (VECTOR_MODE_P (result_mode))
9004 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9005 else
9006 count = bitsize - count;
9009 /* We need to determine what mode we will do the shift in. If the
9010 shift is a right shift or a ROTATE, we must always do it in the mode
9011 it was originally done in. Otherwise, we can do it in MODE, the
9012 widest mode encountered. */
9013 shift_mode
9014 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9015 ? result_mode : mode);
9017 /* Handle cases where the count is greater than the size of the mode
9018 minus 1. For ASHIFT, use the size minus one as the count (this can
9019 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9020 take the count modulo the size. For other shifts, the result is
9021 zero.
9023 Since these shifts are being produced by the compiler by combining
9024 multiple operations, each of which are defined, we know what the
9025 result is supposed to be. */
9027 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9029 if (code == ASHIFTRT)
9030 count = GET_MODE_BITSIZE (shift_mode) - 1;
9031 else if (code == ROTATE || code == ROTATERT)
9032 count %= GET_MODE_BITSIZE (shift_mode);
9033 else
9035 /* We can't simply return zero because there may be an
9036 outer op. */
9037 varop = const0_rtx;
9038 count = 0;
9039 break;
9043 /* An arithmetic right shift of a quantity known to be -1 or 0
9044 is a no-op. */
9045 if (code == ASHIFTRT
9046 && (num_sign_bit_copies (varop, shift_mode)
9047 == GET_MODE_BITSIZE (shift_mode)))
9049 count = 0;
9050 break;
9053 /* If we are doing an arithmetic right shift and discarding all but
9054 the sign bit copies, this is equivalent to doing a shift by the
9055 bitsize minus one. Convert it into that shift because it will often
9056 allow other simplifications. */
9058 if (code == ASHIFTRT
9059 && (count + num_sign_bit_copies (varop, shift_mode)
9060 >= GET_MODE_BITSIZE (shift_mode)))
9061 count = GET_MODE_BITSIZE (shift_mode) - 1;
9063 /* We simplify the tests below and elsewhere by converting
9064 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9065 `make_compound_operation' will convert it to an ASHIFTRT for
9066 those machines (such as VAX) that don't have an LSHIFTRT. */
9067 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9068 && code == ASHIFTRT
9069 && ((nonzero_bits (varop, shift_mode)
9070 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9071 == 0))
9072 code = LSHIFTRT;
9074 if (((code == LSHIFTRT
9075 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9076 && !(nonzero_bits (varop, shift_mode) >> count))
9077 || (code == ASHIFT
9078 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9079 && !((nonzero_bits (varop, shift_mode) << count)
9080 & GET_MODE_MASK (shift_mode))))
9081 && !side_effects_p (varop))
9082 varop = const0_rtx;
9084 switch (GET_CODE (varop))
9086 case SIGN_EXTEND:
9087 case ZERO_EXTEND:
9088 case SIGN_EXTRACT:
9089 case ZERO_EXTRACT:
9090 new = expand_compound_operation (varop);
9091 if (new != varop)
9093 varop = new;
9094 continue;
9096 break;
9098 case MEM:
9099 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9100 minus the width of a smaller mode, we can do this with a
9101 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9102 if ((code == ASHIFTRT || code == LSHIFTRT)
9103 && ! mode_dependent_address_p (XEXP (varop, 0))
9104 && ! MEM_VOLATILE_P (varop)
9105 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9106 MODE_INT, 1)) != BLKmode)
9108 new = adjust_address_nv (varop, tmode,
9109 BYTES_BIG_ENDIAN ? 0
9110 : count / BITS_PER_UNIT);
9112 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9113 : ZERO_EXTEND, mode, new);
9114 count = 0;
9115 continue;
9117 break;
9119 case SUBREG:
9120 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9121 the same number of words as what we've seen so far. Then store
9122 the widest mode in MODE. */
9123 if (subreg_lowpart_p (varop)
9124 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9125 > GET_MODE_SIZE (GET_MODE (varop)))
9126 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9127 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9128 == mode_words)
9130 varop = SUBREG_REG (varop);
9131 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9132 mode = GET_MODE (varop);
9133 continue;
9135 break;
9137 case MULT:
9138 /* Some machines use MULT instead of ASHIFT because MULT
9139 is cheaper. But it is still better on those machines to
9140 merge two shifts into one. */
9141 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9142 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9144 varop
9145 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9146 XEXP (varop, 0),
9147 GEN_INT (exact_log2 (
9148 INTVAL (XEXP (varop, 1)))));
9149 continue;
9151 break;
9153 case UDIV:
9154 /* Similar, for when divides are cheaper. */
9155 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9156 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9158 varop
9159 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9160 XEXP (varop, 0),
9161 GEN_INT (exact_log2 (
9162 INTVAL (XEXP (varop, 1)))));
9163 continue;
9165 break;
9167 case ASHIFTRT:
9168 /* If we are extracting just the sign bit of an arithmetic
9169 right shift, that shift is not needed. However, the sign
9170 bit of a wider mode may be different from what would be
9171 interpreted as the sign bit in a narrower mode, so, if
9172 the result is narrower, don't discard the shift. */
9173 if (code == LSHIFTRT
9174 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9175 && (GET_MODE_BITSIZE (result_mode)
9176 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9178 varop = XEXP (varop, 0);
9179 continue;
9182 /* ... fall through ... */
9184 case LSHIFTRT:
9185 case ASHIFT:
9186 case ROTATE:
9187 /* Here we have two nested shifts. The result is usually the
9188 AND of a new shift with a mask. We compute the result below. */
9189 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9190 && INTVAL (XEXP (varop, 1)) >= 0
9191 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9192 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9193 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9194 && !VECTOR_MODE_P (result_mode))
9196 enum rtx_code first_code = GET_CODE (varop);
9197 unsigned int first_count = INTVAL (XEXP (varop, 1));
9198 unsigned HOST_WIDE_INT mask;
9199 rtx mask_rtx;
9201 /* We have one common special case. We can't do any merging if
9202 the inner code is an ASHIFTRT of a smaller mode. However, if
9203 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9204 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9205 we can convert it to
9206 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9207 This simplifies certain SIGN_EXTEND operations. */
9208 if (code == ASHIFT && first_code == ASHIFTRT
9209 && count == (GET_MODE_BITSIZE (result_mode)
9210 - GET_MODE_BITSIZE (GET_MODE (varop))))
9212 /* C3 has the low-order C1 bits zero. */
9214 mask = (GET_MODE_MASK (mode)
9215 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9217 varop = simplify_and_const_int (NULL_RTX, result_mode,
9218 XEXP (varop, 0), mask);
9219 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9220 varop, count);
9221 count = first_count;
9222 code = ASHIFTRT;
9223 continue;
9226 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9227 than C1 high-order bits equal to the sign bit, we can convert
9228 this to either an ASHIFT or an ASHIFTRT depending on the
9229 two counts.
9231 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9233 if (code == ASHIFTRT && first_code == ASHIFT
9234 && GET_MODE (varop) == shift_mode
9235 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9236 > first_count))
9238 varop = XEXP (varop, 0);
9239 count -= first_count;
9240 if (count < 0)
9242 count = -count;
9243 code = ASHIFT;
9246 continue;
9249 /* There are some cases we can't do. If CODE is ASHIFTRT,
9250 we can only do this if FIRST_CODE is also ASHIFTRT.
9252 We can't do the case when CODE is ROTATE and FIRST_CODE is
9253 ASHIFTRT.
9255 If the mode of this shift is not the mode of the outer shift,
9256 we can't do this if either shift is a right shift or ROTATE.
9258 Finally, we can't do any of these if the mode is too wide
9259 unless the codes are the same.
9261 Handle the case where the shift codes are the same
9262 first. */
9264 if (code == first_code)
9266 if (GET_MODE (varop) != result_mode
9267 && (code == ASHIFTRT || code == LSHIFTRT
9268 || code == ROTATE))
9269 break;
9271 count += first_count;
9272 varop = XEXP (varop, 0);
9273 continue;
9276 if (code == ASHIFTRT
9277 || (code == ROTATE && first_code == ASHIFTRT)
9278 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9279 || (GET_MODE (varop) != result_mode
9280 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9281 || first_code == ROTATE
9282 || code == ROTATE)))
9283 break;
9285 /* To compute the mask to apply after the shift, shift the
9286 nonzero bits of the inner shift the same way the
9287 outer shift will. */
9289 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9291 mask_rtx
9292 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9293 GEN_INT (count));
9295 /* Give up if we can't compute an outer operation to use. */
9296 if (mask_rtx == 0
9297 || GET_CODE (mask_rtx) != CONST_INT
9298 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9299 INTVAL (mask_rtx),
9300 result_mode, &complement_p))
9301 break;
9303 /* If the shifts are in the same direction, we add the
9304 counts. Otherwise, we subtract them. */
9305 if ((code == ASHIFTRT || code == LSHIFTRT)
9306 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9307 count += first_count;
9308 else
9309 count -= first_count;
9311 /* If COUNT is positive, the new shift is usually CODE,
9312 except for the two exceptions below, in which case it is
9313 FIRST_CODE. If the count is negative, FIRST_CODE should
9314 always be used */
9315 if (count > 0
9316 && ((first_code == ROTATE && code == ASHIFT)
9317 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9318 code = first_code;
9319 else if (count < 0)
9320 code = first_code, count = -count;
9322 varop = XEXP (varop, 0);
9323 continue;
9326 /* If we have (A << B << C) for any shift, we can convert this to
9327 (A << C << B). This wins if A is a constant. Only try this if
9328 B is not a constant. */
9330 else if (GET_CODE (varop) == code
9331 && GET_CODE (XEXP (varop, 0)) == CONST_INT
9332 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
9334 rtx new = simplify_const_binary_operation (code, mode,
9335 XEXP (varop, 0),
9336 GEN_INT (count));
9337 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9338 count = 0;
9339 continue;
9341 break;
9343 case NOT:
9344 /* Make this fit the case below. */
9345 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9346 GEN_INT (GET_MODE_MASK (mode)));
9347 continue;
9349 case IOR:
9350 case AND:
9351 case XOR:
9352 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9353 with C the size of VAROP - 1 and the shift is logical if
9354 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9355 we have an (le X 0) operation. If we have an arithmetic shift
9356 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9357 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9359 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9360 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9361 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9362 && (code == LSHIFTRT || code == ASHIFTRT)
9363 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9364 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9366 count = 0;
9367 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9368 const0_rtx);
9370 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9371 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9373 continue;
9376 /* If we have (shift (logical)), move the logical to the outside
9377 to allow it to possibly combine with another logical and the
9378 shift to combine with another shift. This also canonicalizes to
9379 what a ZERO_EXTRACT looks like. Also, some machines have
9380 (and (shift)) insns. */
9382 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9383 /* We can't do this if we have (ashiftrt (xor)) and the
9384 constant has its sign bit set in shift_mode. */
9385 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9386 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9387 shift_mode))
9388 && (new = simplify_const_binary_operation (code, result_mode,
9389 XEXP (varop, 1),
9390 GEN_INT (count))) != 0
9391 && GET_CODE (new) == CONST_INT
9392 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9393 INTVAL (new), result_mode, &complement_p))
9395 varop = XEXP (varop, 0);
9396 continue;
9399 /* If we can't do that, try to simplify the shift in each arm of the
9400 logical expression, make a new logical expression, and apply
9401 the inverse distributive law. This also can't be done
9402 for some (ashiftrt (xor)). */
9403 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9404 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9405 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9406 shift_mode)))
9408 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9409 XEXP (varop, 0), count);
9410 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9411 XEXP (varop, 1), count);
9413 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9414 lhs, rhs);
9415 varop = apply_distributive_law (varop);
9417 count = 0;
9418 continue;
9420 break;
9422 case EQ:
9423 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9424 says that the sign bit can be tested, FOO has mode MODE, C is
9425 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9426 that may be nonzero. */
9427 if (code == LSHIFTRT
9428 && XEXP (varop, 1) == const0_rtx
9429 && GET_MODE (XEXP (varop, 0)) == result_mode
9430 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9431 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9432 && STORE_FLAG_VALUE == -1
9433 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9434 && merge_outer_ops (&outer_op, &outer_const, XOR,
9435 (HOST_WIDE_INT) 1, result_mode,
9436 &complement_p))
9438 varop = XEXP (varop, 0);
9439 count = 0;
9440 continue;
9442 break;
9444 case NEG:
9445 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9446 than the number of bits in the mode is equivalent to A. */
9447 if (code == LSHIFTRT
9448 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9449 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9451 varop = XEXP (varop, 0);
9452 count = 0;
9453 continue;
9456 /* NEG commutes with ASHIFT since it is multiplication. Move the
9457 NEG outside to allow shifts to combine. */
9458 if (code == ASHIFT
9459 && merge_outer_ops (&outer_op, &outer_const, NEG,
9460 (HOST_WIDE_INT) 0, result_mode,
9461 &complement_p))
9463 varop = XEXP (varop, 0);
9464 continue;
9466 break;
9468 case PLUS:
9469 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9470 is one less than the number of bits in the mode is
9471 equivalent to (xor A 1). */
9472 if (code == LSHIFTRT
9473 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9474 && XEXP (varop, 1) == constm1_rtx
9475 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9476 && merge_outer_ops (&outer_op, &outer_const, XOR,
9477 (HOST_WIDE_INT) 1, result_mode,
9478 &complement_p))
9480 count = 0;
9481 varop = XEXP (varop, 0);
9482 continue;
9485 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9486 that might be nonzero in BAR are those being shifted out and those
9487 bits are known zero in FOO, we can replace the PLUS with FOO.
9488 Similarly in the other operand order. This code occurs when
9489 we are computing the size of a variable-size array. */
9491 if ((code == ASHIFTRT || code == LSHIFTRT)
9492 && count < HOST_BITS_PER_WIDE_INT
9493 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9494 && (nonzero_bits (XEXP (varop, 1), result_mode)
9495 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9497 varop = XEXP (varop, 0);
9498 continue;
9500 else if ((code == ASHIFTRT || code == LSHIFTRT)
9501 && count < HOST_BITS_PER_WIDE_INT
9502 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9503 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9504 >> count)
9505 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9506 & nonzero_bits (XEXP (varop, 1),
9507 result_mode)))
9509 varop = XEXP (varop, 1);
9510 continue;
9513 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9514 if (code == ASHIFT
9515 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9516 && (new = simplify_const_binary_operation (ASHIFT, result_mode,
9517 XEXP (varop, 1),
9518 GEN_INT (count))) != 0
9519 && GET_CODE (new) == CONST_INT
9520 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9521 INTVAL (new), result_mode, &complement_p))
9523 varop = XEXP (varop, 0);
9524 continue;
9527 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9528 signbit', and attempt to change the PLUS to an XOR and move it to
9529 the outer operation as is done above in the AND/IOR/XOR case
9530 leg for shift(logical). See details in logical handling above
9531 for reasoning in doing so. */
9532 if (code == LSHIFTRT
9533 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9534 && mode_signbit_p (result_mode, XEXP (varop, 1))
9535 && (new = simplify_const_binary_operation (code, result_mode,
9536 XEXP (varop, 1),
9537 GEN_INT (count))) != 0
9538 && GET_CODE (new) == CONST_INT
9539 && merge_outer_ops (&outer_op, &outer_const, XOR,
9540 INTVAL (new), result_mode, &complement_p))
9542 varop = XEXP (varop, 0);
9543 continue;
9546 break;
9548 case MINUS:
9549 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9550 with C the size of VAROP - 1 and the shift is logical if
9551 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9552 we have a (gt X 0) operation. If the shift is arithmetic with
9553 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9554 we have a (neg (gt X 0)) operation. */
9556 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9557 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9558 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9559 && (code == LSHIFTRT || code == ASHIFTRT)
9560 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9561 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9562 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9564 count = 0;
9565 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9566 const0_rtx);
9568 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9569 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9571 continue;
9573 break;
9575 case TRUNCATE:
9576 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9577 if the truncate does not affect the value. */
9578 if (code == LSHIFTRT
9579 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9580 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9581 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9582 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9583 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9585 rtx varop_inner = XEXP (varop, 0);
9587 varop_inner
9588 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9589 XEXP (varop_inner, 0),
9590 GEN_INT
9591 (count + INTVAL (XEXP (varop_inner, 1))));
9592 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9593 count = 0;
9594 continue;
9596 break;
9598 default:
9599 break;
9602 break;
9605 /* We need to determine what mode to do the shift in. If the shift is
9606 a right shift or ROTATE, we must always do it in the mode it was
9607 originally done in. Otherwise, we can do it in MODE, the widest mode
9608 encountered. The code we care about is that of the shift that will
9609 actually be done, not the shift that was originally requested. */
9610 shift_mode
9611 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9612 ? result_mode : mode);
9614 /* We have now finished analyzing the shift. The result should be
9615 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9616 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9617 to the result of the shift. OUTER_CONST is the relevant constant,
9618 but we must turn off all bits turned off in the shift. */
9620 if (outer_op == UNKNOWN
9621 && orig_code == code && orig_count == count
9622 && varop == orig_varop
9623 && shift_mode == GET_MODE (varop))
9624 return NULL_RTX;
9626 /* Make a SUBREG if necessary. If we can't make it, fail. */
9627 varop = gen_lowpart (shift_mode, varop);
9628 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9629 return NULL_RTX;
9631 /* If we have an outer operation and we just made a shift, it is
9632 possible that we could have simplified the shift were it not
9633 for the outer operation. So try to do the simplification
9634 recursively. */
9636 if (outer_op != UNKNOWN)
9637 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9638 else
9639 x = NULL_RTX;
9641 if (x == NULL_RTX)
9642 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9644 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9645 turn off all the bits that the shift would have turned off. */
9646 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9647 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9648 GET_MODE_MASK (result_mode) >> orig_count);
9650 /* Do the remainder of the processing in RESULT_MODE. */
9651 x = gen_lowpart_or_truncate (result_mode, x);
9653 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9654 operation. */
9655 if (complement_p)
9656 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9658 if (outer_op != UNKNOWN)
9660 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9661 outer_const = trunc_int_for_mode (outer_const, result_mode);
9663 if (outer_op == AND)
9664 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9665 else if (outer_op == SET)
9667 /* This means that we have determined that the result is
9668 equivalent to a constant. This should be rare. */
9669 if (!side_effects_p (x))
9670 x = GEN_INT (outer_const);
9672 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9673 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9674 else
9675 x = simplify_gen_binary (outer_op, result_mode, x,
9676 GEN_INT (outer_const));
9679 return x;
9682 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9683 The result of the shift is RESULT_MODE. If we cannot simplify it,
9684 return X or, if it is NULL, synthesize the expression with
9685 simplify_gen_binary. Otherwise, return a simplified value.
9687 The shift is normally computed in the widest mode we find in VAROP, as
9688 long as it isn't a different number of words than RESULT_MODE. Exceptions
9689 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9691 static rtx
9692 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9693 rtx varop, int count)
9695 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9696 if (tem)
9697 return tem;
9699 if (!x)
9700 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9701 if (GET_MODE (x) != result_mode)
9702 x = gen_lowpart (result_mode, x);
9703 return x;
9707 /* Like recog, but we receive the address of a pointer to a new pattern.
9708 We try to match the rtx that the pointer points to.
9709 If that fails, we may try to modify or replace the pattern,
9710 storing the replacement into the same pointer object.
9712 Modifications include deletion or addition of CLOBBERs.
9714 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9715 the CLOBBERs are placed.
9717 The value is the final insn code from the pattern ultimately matched,
9718 or -1. */
9720 static int
9721 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9723 rtx pat = *pnewpat;
9724 int insn_code_number;
9725 int num_clobbers_to_add = 0;
9726 int i;
9727 rtx notes = 0;
9728 rtx old_notes, old_pat;
9730 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9731 we use to indicate that something didn't match. If we find such a
9732 thing, force rejection. */
9733 if (GET_CODE (pat) == PARALLEL)
9734 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9735 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9736 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9737 return -1;
9739 old_pat = PATTERN (insn);
9740 old_notes = REG_NOTES (insn);
9741 PATTERN (insn) = pat;
9742 REG_NOTES (insn) = 0;
9744 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9745 if (dump_file && (dump_flags & TDF_DETAILS))
9747 if (insn_code_number < 0)
9748 fputs ("Failed to match this instruction:\n", dump_file);
9749 else
9750 fputs ("Successfully matched this instruction:\n", dump_file);
9751 print_rtl_single (dump_file, pat);
9754 /* If it isn't, there is the possibility that we previously had an insn
9755 that clobbered some register as a side effect, but the combined
9756 insn doesn't need to do that. So try once more without the clobbers
9757 unless this represents an ASM insn. */
9759 if (insn_code_number < 0 && ! check_asm_operands (pat)
9760 && GET_CODE (pat) == PARALLEL)
9762 int pos;
9764 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9765 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9767 if (i != pos)
9768 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9769 pos++;
9772 SUBST_INT (XVECLEN (pat, 0), pos);
9774 if (pos == 1)
9775 pat = XVECEXP (pat, 0, 0);
9777 PATTERN (insn) = pat;
9778 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9779 if (dump_file && (dump_flags & TDF_DETAILS))
9781 if (insn_code_number < 0)
9782 fputs ("Failed to match this instruction:\n", dump_file);
9783 else
9784 fputs ("Successfully matched this instruction:\n", dump_file);
9785 print_rtl_single (dump_file, pat);
9788 PATTERN (insn) = old_pat;
9789 REG_NOTES (insn) = old_notes;
9791 /* Recognize all noop sets, these will be killed by followup pass. */
9792 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9793 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9795 /* If we had any clobbers to add, make a new pattern than contains
9796 them. Then check to make sure that all of them are dead. */
9797 if (num_clobbers_to_add)
9799 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9800 rtvec_alloc (GET_CODE (pat) == PARALLEL
9801 ? (XVECLEN (pat, 0)
9802 + num_clobbers_to_add)
9803 : num_clobbers_to_add + 1));
9805 if (GET_CODE (pat) == PARALLEL)
9806 for (i = 0; i < XVECLEN (pat, 0); i++)
9807 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9808 else
9809 XVECEXP (newpat, 0, 0) = pat;
9811 add_clobbers (newpat, insn_code_number);
9813 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9814 i < XVECLEN (newpat, 0); i++)
9816 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9817 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9818 return -1;
9819 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9821 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9822 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9823 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9826 pat = newpat;
9829 *pnewpat = pat;
9830 *pnotes = notes;
9832 return insn_code_number;
9835 /* Like gen_lowpart_general but for use by combine. In combine it
9836 is not possible to create any new pseudoregs. However, it is
9837 safe to create invalid memory addresses, because combine will
9838 try to recognize them and all they will do is make the combine
9839 attempt fail.
9841 If for some reason this cannot do its job, an rtx
9842 (clobber (const_int 0)) is returned.
9843 An insn containing that will not be recognized. */
9845 static rtx
9846 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9848 enum machine_mode imode = GET_MODE (x);
9849 unsigned int osize = GET_MODE_SIZE (omode);
9850 unsigned int isize = GET_MODE_SIZE (imode);
9851 rtx result;
9853 if (omode == imode)
9854 return x;
9856 /* Return identity if this is a CONST or symbolic reference. */
9857 if (omode == Pmode
9858 && (GET_CODE (x) == CONST
9859 || GET_CODE (x) == SYMBOL_REF
9860 || GET_CODE (x) == LABEL_REF))
9861 return x;
9863 /* We can only support MODE being wider than a word if X is a
9864 constant integer or has a mode the same size. */
9865 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9866 && ! ((imode == VOIDmode
9867 && (GET_CODE (x) == CONST_INT
9868 || GET_CODE (x) == CONST_DOUBLE))
9869 || isize == osize))
9870 goto fail;
9872 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9873 won't know what to do. So we will strip off the SUBREG here and
9874 process normally. */
9875 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9877 x = SUBREG_REG (x);
9879 /* For use in case we fall down into the address adjustments
9880 further below, we need to adjust the known mode and size of
9881 x; imode and isize, since we just adjusted x. */
9882 imode = GET_MODE (x);
9884 if (imode == omode)
9885 return x;
9887 isize = GET_MODE_SIZE (imode);
9890 result = gen_lowpart_common (omode, x);
9892 if (result)
9893 return result;
9895 if (MEM_P (x))
9897 int offset = 0;
9899 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9900 address. */
9901 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9902 goto fail;
9904 /* If we want to refer to something bigger than the original memref,
9905 generate a paradoxical subreg instead. That will force a reload
9906 of the original memref X. */
9907 if (isize < osize)
9908 return gen_rtx_SUBREG (omode, x, 0);
9910 if (WORDS_BIG_ENDIAN)
9911 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9913 /* Adjust the address so that the address-after-the-data is
9914 unchanged. */
9915 if (BYTES_BIG_ENDIAN)
9916 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9918 return adjust_address_nv (x, omode, offset);
9921 /* If X is a comparison operator, rewrite it in a new mode. This
9922 probably won't match, but may allow further simplifications. */
9923 else if (COMPARISON_P (x))
9924 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9926 /* If we couldn't simplify X any other way, just enclose it in a
9927 SUBREG. Normally, this SUBREG won't match, but some patterns may
9928 include an explicit SUBREG or we may simplify it further in combine. */
9929 else
9931 int offset = 0;
9932 rtx res;
9934 offset = subreg_lowpart_offset (omode, imode);
9935 if (imode == VOIDmode)
9937 imode = int_mode_for_mode (omode);
9938 x = gen_lowpart_common (imode, x);
9939 if (x == NULL)
9940 goto fail;
9942 res = simplify_gen_subreg (omode, x, imode, offset);
9943 if (res)
9944 return res;
9947 fail:
9948 return gen_rtx_CLOBBER (imode, const0_rtx);
9951 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9952 comparison code that will be tested.
9954 The result is a possibly different comparison code to use. *POP0 and
9955 *POP1 may be updated.
9957 It is possible that we might detect that a comparison is either always
9958 true or always false. However, we do not perform general constant
9959 folding in combine, so this knowledge isn't useful. Such tautologies
9960 should have been detected earlier. Hence we ignore all such cases. */
9962 static enum rtx_code
9963 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9965 rtx op0 = *pop0;
9966 rtx op1 = *pop1;
9967 rtx tem, tem1;
9968 int i;
9969 enum machine_mode mode, tmode;
9971 /* Try a few ways of applying the same transformation to both operands. */
9972 while (1)
9974 #ifndef WORD_REGISTER_OPERATIONS
9975 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9976 so check specially. */
9977 if (code != GTU && code != GEU && code != LTU && code != LEU
9978 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9979 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9980 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9981 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9982 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9983 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9984 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9985 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9986 && XEXP (op0, 1) == XEXP (op1, 1)
9987 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9988 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9989 && (INTVAL (XEXP (op0, 1))
9990 == (GET_MODE_BITSIZE (GET_MODE (op0))
9991 - (GET_MODE_BITSIZE
9992 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9994 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9995 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9997 #endif
9999 /* If both operands are the same constant shift, see if we can ignore the
10000 shift. We can if the shift is a rotate or if the bits shifted out of
10001 this shift are known to be zero for both inputs and if the type of
10002 comparison is compatible with the shift. */
10003 if (GET_CODE (op0) == GET_CODE (op1)
10004 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10005 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10006 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10007 && (code != GT && code != LT && code != GE && code != LE))
10008 || (GET_CODE (op0) == ASHIFTRT
10009 && (code != GTU && code != LTU
10010 && code != GEU && code != LEU)))
10011 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10012 && INTVAL (XEXP (op0, 1)) >= 0
10013 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10014 && XEXP (op0, 1) == XEXP (op1, 1))
10016 enum machine_mode mode = GET_MODE (op0);
10017 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10018 int shift_count = INTVAL (XEXP (op0, 1));
10020 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10021 mask &= (mask >> shift_count) << shift_count;
10022 else if (GET_CODE (op0) == ASHIFT)
10023 mask = (mask & (mask << shift_count)) >> shift_count;
10025 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10026 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10027 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10028 else
10029 break;
10032 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10033 SUBREGs are of the same mode, and, in both cases, the AND would
10034 be redundant if the comparison was done in the narrower mode,
10035 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10036 and the operand's possibly nonzero bits are 0xffffff01; in that case
10037 if we only care about QImode, we don't need the AND). This case
10038 occurs if the output mode of an scc insn is not SImode and
10039 STORE_FLAG_VALUE == 1 (e.g., the 386).
10041 Similarly, check for a case where the AND's are ZERO_EXTEND
10042 operations from some narrower mode even though a SUBREG is not
10043 present. */
10045 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10046 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10047 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10049 rtx inner_op0 = XEXP (op0, 0);
10050 rtx inner_op1 = XEXP (op1, 0);
10051 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10052 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10053 int changed = 0;
10055 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10056 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10057 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10058 && (GET_MODE (SUBREG_REG (inner_op0))
10059 == GET_MODE (SUBREG_REG (inner_op1)))
10060 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10061 <= HOST_BITS_PER_WIDE_INT)
10062 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10063 GET_MODE (SUBREG_REG (inner_op0)))))
10064 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10065 GET_MODE (SUBREG_REG (inner_op1))))))
10067 op0 = SUBREG_REG (inner_op0);
10068 op1 = SUBREG_REG (inner_op1);
10070 /* The resulting comparison is always unsigned since we masked
10071 off the original sign bit. */
10072 code = unsigned_condition (code);
10074 changed = 1;
10077 else if (c0 == c1)
10078 for (tmode = GET_CLASS_NARROWEST_MODE
10079 (GET_MODE_CLASS (GET_MODE (op0)));
10080 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10081 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10083 op0 = gen_lowpart (tmode, inner_op0);
10084 op1 = gen_lowpart (tmode, inner_op1);
10085 code = unsigned_condition (code);
10086 changed = 1;
10087 break;
10090 if (! changed)
10091 break;
10094 /* If both operands are NOT, we can strip off the outer operation
10095 and adjust the comparison code for swapped operands; similarly for
10096 NEG, except that this must be an equality comparison. */
10097 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10098 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10099 && (code == EQ || code == NE)))
10100 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10102 else
10103 break;
10106 /* If the first operand is a constant, swap the operands and adjust the
10107 comparison code appropriately, but don't do this if the second operand
10108 is already a constant integer. */
10109 if (swap_commutative_operands_p (op0, op1))
10111 tem = op0, op0 = op1, op1 = tem;
10112 code = swap_condition (code);
10115 /* We now enter a loop during which we will try to simplify the comparison.
10116 For the most part, we only are concerned with comparisons with zero,
10117 but some things may really be comparisons with zero but not start
10118 out looking that way. */
10120 while (GET_CODE (op1) == CONST_INT)
10122 enum machine_mode mode = GET_MODE (op0);
10123 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10124 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10125 int equality_comparison_p;
10126 int sign_bit_comparison_p;
10127 int unsigned_comparison_p;
10128 HOST_WIDE_INT const_op;
10130 /* We only want to handle integral modes. This catches VOIDmode,
10131 CCmode, and the floating-point modes. An exception is that we
10132 can handle VOIDmode if OP0 is a COMPARE or a comparison
10133 operation. */
10135 if (GET_MODE_CLASS (mode) != MODE_INT
10136 && ! (mode == VOIDmode
10137 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10138 break;
10140 /* Get the constant we are comparing against and turn off all bits
10141 not on in our mode. */
10142 const_op = INTVAL (op1);
10143 if (mode != VOIDmode)
10144 const_op = trunc_int_for_mode (const_op, mode);
10145 op1 = GEN_INT (const_op);
10147 /* If we are comparing against a constant power of two and the value
10148 being compared can only have that single bit nonzero (e.g., it was
10149 `and'ed with that bit), we can replace this with a comparison
10150 with zero. */
10151 if (const_op
10152 && (code == EQ || code == NE || code == GE || code == GEU
10153 || code == LT || code == LTU)
10154 && mode_width <= HOST_BITS_PER_WIDE_INT
10155 && exact_log2 (const_op) >= 0
10156 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10158 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10159 op1 = const0_rtx, const_op = 0;
10162 /* Similarly, if we are comparing a value known to be either -1 or
10163 0 with -1, change it to the opposite comparison against zero. */
10165 if (const_op == -1
10166 && (code == EQ || code == NE || code == GT || code == LE
10167 || code == GEU || code == LTU)
10168 && num_sign_bit_copies (op0, mode) == mode_width)
10170 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10171 op1 = const0_rtx, const_op = 0;
10174 /* Do some canonicalizations based on the comparison code. We prefer
10175 comparisons against zero and then prefer equality comparisons.
10176 If we can reduce the size of a constant, we will do that too. */
10178 switch (code)
10180 case LT:
10181 /* < C is equivalent to <= (C - 1) */
10182 if (const_op > 0)
10184 const_op -= 1;
10185 op1 = GEN_INT (const_op);
10186 code = LE;
10187 /* ... fall through to LE case below. */
10189 else
10190 break;
10192 case LE:
10193 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10194 if (const_op < 0)
10196 const_op += 1;
10197 op1 = GEN_INT (const_op);
10198 code = LT;
10201 /* If we are doing a <= 0 comparison on a value known to have
10202 a zero sign bit, we can replace this with == 0. */
10203 else if (const_op == 0
10204 && mode_width <= HOST_BITS_PER_WIDE_INT
10205 && (nonzero_bits (op0, mode)
10206 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10207 code = EQ;
10208 break;
10210 case GE:
10211 /* >= C is equivalent to > (C - 1). */
10212 if (const_op > 0)
10214 const_op -= 1;
10215 op1 = GEN_INT (const_op);
10216 code = GT;
10217 /* ... fall through to GT below. */
10219 else
10220 break;
10222 case GT:
10223 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10224 if (const_op < 0)
10226 const_op += 1;
10227 op1 = GEN_INT (const_op);
10228 code = GE;
10231 /* If we are doing a > 0 comparison on a value known to have
10232 a zero sign bit, we can replace this with != 0. */
10233 else if (const_op == 0
10234 && mode_width <= HOST_BITS_PER_WIDE_INT
10235 && (nonzero_bits (op0, mode)
10236 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10237 code = NE;
10238 break;
10240 case LTU:
10241 /* < C is equivalent to <= (C - 1). */
10242 if (const_op > 0)
10244 const_op -= 1;
10245 op1 = GEN_INT (const_op);
10246 code = LEU;
10247 /* ... fall through ... */
10250 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10251 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10252 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10254 const_op = 0, op1 = const0_rtx;
10255 code = GE;
10256 break;
10258 else
10259 break;
10261 case LEU:
10262 /* unsigned <= 0 is equivalent to == 0 */
10263 if (const_op == 0)
10264 code = EQ;
10266 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10267 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10268 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10270 const_op = 0, op1 = const0_rtx;
10271 code = GE;
10273 break;
10275 case GEU:
10276 /* >= C is equivalent to > (C - 1). */
10277 if (const_op > 1)
10279 const_op -= 1;
10280 op1 = GEN_INT (const_op);
10281 code = GTU;
10282 /* ... fall through ... */
10285 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10286 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10287 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10289 const_op = 0, op1 = const0_rtx;
10290 code = LT;
10291 break;
10293 else
10294 break;
10296 case GTU:
10297 /* unsigned > 0 is equivalent to != 0 */
10298 if (const_op == 0)
10299 code = NE;
10301 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10302 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10303 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10305 const_op = 0, op1 = const0_rtx;
10306 code = LT;
10308 break;
10310 default:
10311 break;
10314 /* Compute some predicates to simplify code below. */
10316 equality_comparison_p = (code == EQ || code == NE);
10317 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10318 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10319 || code == GEU);
10321 /* If this is a sign bit comparison and we can do arithmetic in
10322 MODE, say that we will only be needing the sign bit of OP0. */
10323 if (sign_bit_comparison_p
10324 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10325 op0 = force_to_mode (op0, mode,
10326 ((HOST_WIDE_INT) 1
10327 << (GET_MODE_BITSIZE (mode) - 1)),
10330 /* Now try cases based on the opcode of OP0. If none of the cases
10331 does a "continue", we exit this loop immediately after the
10332 switch. */
10334 switch (GET_CODE (op0))
10336 case ZERO_EXTRACT:
10337 /* If we are extracting a single bit from a variable position in
10338 a constant that has only a single bit set and are comparing it
10339 with zero, we can convert this into an equality comparison
10340 between the position and the location of the single bit. */
10341 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10342 have already reduced the shift count modulo the word size. */
10343 if (!SHIFT_COUNT_TRUNCATED
10344 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10345 && XEXP (op0, 1) == const1_rtx
10346 && equality_comparison_p && const_op == 0
10347 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10349 if (BITS_BIG_ENDIAN)
10351 enum machine_mode new_mode
10352 = mode_for_extraction (EP_extzv, 1);
10353 if (new_mode == MAX_MACHINE_MODE)
10354 i = BITS_PER_WORD - 1 - i;
10355 else
10357 mode = new_mode;
10358 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10362 op0 = XEXP (op0, 2);
10363 op1 = GEN_INT (i);
10364 const_op = i;
10366 /* Result is nonzero iff shift count is equal to I. */
10367 code = reverse_condition (code);
10368 continue;
10371 /* ... fall through ... */
10373 case SIGN_EXTRACT:
10374 tem = expand_compound_operation (op0);
10375 if (tem != op0)
10377 op0 = tem;
10378 continue;
10380 break;
10382 case NOT:
10383 /* If testing for equality, we can take the NOT of the constant. */
10384 if (equality_comparison_p
10385 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10387 op0 = XEXP (op0, 0);
10388 op1 = tem;
10389 continue;
10392 /* If just looking at the sign bit, reverse the sense of the
10393 comparison. */
10394 if (sign_bit_comparison_p)
10396 op0 = XEXP (op0, 0);
10397 code = (code == GE ? LT : GE);
10398 continue;
10400 break;
10402 case NEG:
10403 /* If testing for equality, we can take the NEG of the constant. */
10404 if (equality_comparison_p
10405 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10407 op0 = XEXP (op0, 0);
10408 op1 = tem;
10409 continue;
10412 /* The remaining cases only apply to comparisons with zero. */
10413 if (const_op != 0)
10414 break;
10416 /* When X is ABS or is known positive,
10417 (neg X) is < 0 if and only if X != 0. */
10419 if (sign_bit_comparison_p
10420 && (GET_CODE (XEXP (op0, 0)) == ABS
10421 || (mode_width <= HOST_BITS_PER_WIDE_INT
10422 && (nonzero_bits (XEXP (op0, 0), mode)
10423 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10425 op0 = XEXP (op0, 0);
10426 code = (code == LT ? NE : EQ);
10427 continue;
10430 /* If we have NEG of something whose two high-order bits are the
10431 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10432 if (num_sign_bit_copies (op0, mode) >= 2)
10434 op0 = XEXP (op0, 0);
10435 code = swap_condition (code);
10436 continue;
10438 break;
10440 case ROTATE:
10441 /* If we are testing equality and our count is a constant, we
10442 can perform the inverse operation on our RHS. */
10443 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10444 && (tem = simplify_binary_operation (ROTATERT, mode,
10445 op1, XEXP (op0, 1))) != 0)
10447 op0 = XEXP (op0, 0);
10448 op1 = tem;
10449 continue;
10452 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10453 a particular bit. Convert it to an AND of a constant of that
10454 bit. This will be converted into a ZERO_EXTRACT. */
10455 if (const_op == 0 && sign_bit_comparison_p
10456 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10457 && mode_width <= HOST_BITS_PER_WIDE_INT)
10459 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10460 ((HOST_WIDE_INT) 1
10461 << (mode_width - 1
10462 - INTVAL (XEXP (op0, 1)))));
10463 code = (code == LT ? NE : EQ);
10464 continue;
10467 /* Fall through. */
10469 case ABS:
10470 /* ABS is ignorable inside an equality comparison with zero. */
10471 if (const_op == 0 && equality_comparison_p)
10473 op0 = XEXP (op0, 0);
10474 continue;
10476 break;
10478 case SIGN_EXTEND:
10479 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10480 (compare FOO CONST) if CONST fits in FOO's mode and we
10481 are either testing inequality or have an unsigned
10482 comparison with ZERO_EXTEND or a signed comparison with
10483 SIGN_EXTEND. But don't do it if we don't have a compare
10484 insn of the given mode, since we'd have to revert it
10485 later on, and then we wouldn't know whether to sign- or
10486 zero-extend. */
10487 mode = GET_MODE (XEXP (op0, 0));
10488 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10489 && ! unsigned_comparison_p
10490 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10491 && ((unsigned HOST_WIDE_INT) const_op
10492 < (((unsigned HOST_WIDE_INT) 1
10493 << (GET_MODE_BITSIZE (mode) - 1))))
10494 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10496 op0 = XEXP (op0, 0);
10497 continue;
10499 break;
10501 case SUBREG:
10502 /* Check for the case where we are comparing A - C1 with C2, that is
10504 (subreg:MODE (plus (A) (-C1))) op (C2)
10506 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10507 comparison in the wider mode. One of the following two conditions
10508 must be true in order for this to be valid:
10510 1. The mode extension results in the same bit pattern being added
10511 on both sides and the comparison is equality or unsigned. As
10512 C2 has been truncated to fit in MODE, the pattern can only be
10513 all 0s or all 1s.
10515 2. The mode extension results in the sign bit being copied on
10516 each side.
10518 The difficulty here is that we have predicates for A but not for
10519 (A - C1) so we need to check that C1 is within proper bounds so
10520 as to perturbate A as little as possible. */
10522 if (mode_width <= HOST_BITS_PER_WIDE_INT
10523 && subreg_lowpart_p (op0)
10524 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10525 && GET_CODE (SUBREG_REG (op0)) == PLUS
10526 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10528 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10529 rtx a = XEXP (SUBREG_REG (op0), 0);
10530 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10532 if ((c1 > 0
10533 && (unsigned HOST_WIDE_INT) c1
10534 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10535 && (equality_comparison_p || unsigned_comparison_p)
10536 /* (A - C1) zero-extends if it is positive and sign-extends
10537 if it is negative, C2 both zero- and sign-extends. */
10538 && ((0 == (nonzero_bits (a, inner_mode)
10539 & ~GET_MODE_MASK (mode))
10540 && const_op >= 0)
10541 /* (A - C1) sign-extends if it is positive and 1-extends
10542 if it is negative, C2 both sign- and 1-extends. */
10543 || (num_sign_bit_copies (a, inner_mode)
10544 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10545 - mode_width)
10546 && const_op < 0)))
10547 || ((unsigned HOST_WIDE_INT) c1
10548 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10549 /* (A - C1) always sign-extends, like C2. */
10550 && num_sign_bit_copies (a, inner_mode)
10551 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10552 - (mode_width - 1))))
10554 op0 = SUBREG_REG (op0);
10555 continue;
10559 /* If the inner mode is narrower and we are extracting the low part,
10560 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10561 if (subreg_lowpart_p (op0)
10562 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10563 /* Fall through */ ;
10564 else
10565 break;
10567 /* ... fall through ... */
10569 case ZERO_EXTEND:
10570 mode = GET_MODE (XEXP (op0, 0));
10571 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10572 && (unsigned_comparison_p || equality_comparison_p)
10573 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10574 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10575 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10577 op0 = XEXP (op0, 0);
10578 continue;
10580 break;
10582 case PLUS:
10583 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10584 this for equality comparisons due to pathological cases involving
10585 overflows. */
10586 if (equality_comparison_p
10587 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10588 op1, XEXP (op0, 1))))
10590 op0 = XEXP (op0, 0);
10591 op1 = tem;
10592 continue;
10595 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10596 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10597 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10599 op0 = XEXP (XEXP (op0, 0), 0);
10600 code = (code == LT ? EQ : NE);
10601 continue;
10603 break;
10605 case MINUS:
10606 /* We used to optimize signed comparisons against zero, but that
10607 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10608 arrive here as equality comparisons, or (GEU, LTU) are
10609 optimized away. No need to special-case them. */
10611 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10612 (eq B (minus A C)), whichever simplifies. We can only do
10613 this for equality comparisons due to pathological cases involving
10614 overflows. */
10615 if (equality_comparison_p
10616 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10617 XEXP (op0, 1), op1)))
10619 op0 = XEXP (op0, 0);
10620 op1 = tem;
10621 continue;
10624 if (equality_comparison_p
10625 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10626 XEXP (op0, 0), op1)))
10628 op0 = XEXP (op0, 1);
10629 op1 = tem;
10630 continue;
10633 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10634 of bits in X minus 1, is one iff X > 0. */
10635 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10636 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10637 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10638 == mode_width - 1
10639 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10641 op0 = XEXP (op0, 1);
10642 code = (code == GE ? LE : GT);
10643 continue;
10645 break;
10647 case XOR:
10648 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10649 if C is zero or B is a constant. */
10650 if (equality_comparison_p
10651 && 0 != (tem = simplify_binary_operation (XOR, mode,
10652 XEXP (op0, 1), op1)))
10654 op0 = XEXP (op0, 0);
10655 op1 = tem;
10656 continue;
10658 break;
10660 case EQ: case NE:
10661 case UNEQ: case LTGT:
10662 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10663 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10664 case UNORDERED: case ORDERED:
10665 /* We can't do anything if OP0 is a condition code value, rather
10666 than an actual data value. */
10667 if (const_op != 0
10668 || CC0_P (XEXP (op0, 0))
10669 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10670 break;
10672 /* Get the two operands being compared. */
10673 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10674 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10675 else
10676 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10678 /* Check for the cases where we simply want the result of the
10679 earlier test or the opposite of that result. */
10680 if (code == NE || code == EQ
10681 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10682 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10683 && (STORE_FLAG_VALUE
10684 & (((HOST_WIDE_INT) 1
10685 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10686 && (code == LT || code == GE)))
10688 enum rtx_code new_code;
10689 if (code == LT || code == NE)
10690 new_code = GET_CODE (op0);
10691 else
10692 new_code = reversed_comparison_code (op0, NULL);
10694 if (new_code != UNKNOWN)
10696 code = new_code;
10697 op0 = tem;
10698 op1 = tem1;
10699 continue;
10702 break;
10704 case IOR:
10705 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10706 iff X <= 0. */
10707 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10708 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10709 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10711 op0 = XEXP (op0, 1);
10712 code = (code == GE ? GT : LE);
10713 continue;
10715 break;
10717 case AND:
10718 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10719 will be converted to a ZERO_EXTRACT later. */
10720 if (const_op == 0 && equality_comparison_p
10721 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10722 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10724 op0 = simplify_and_const_int
10725 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10726 XEXP (op0, 1),
10727 XEXP (XEXP (op0, 0), 1)),
10728 (HOST_WIDE_INT) 1);
10729 continue;
10732 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10733 zero and X is a comparison and C1 and C2 describe only bits set
10734 in STORE_FLAG_VALUE, we can compare with X. */
10735 if (const_op == 0 && equality_comparison_p
10736 && mode_width <= HOST_BITS_PER_WIDE_INT
10737 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10738 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10739 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10740 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10741 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10743 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10744 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10745 if ((~STORE_FLAG_VALUE & mask) == 0
10746 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10747 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10748 && COMPARISON_P (tem))))
10750 op0 = XEXP (XEXP (op0, 0), 0);
10751 continue;
10755 /* If we are doing an equality comparison of an AND of a bit equal
10756 to the sign bit, replace this with a LT or GE comparison of
10757 the underlying value. */
10758 if (equality_comparison_p
10759 && const_op == 0
10760 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10761 && mode_width <= HOST_BITS_PER_WIDE_INT
10762 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10763 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10765 op0 = XEXP (op0, 0);
10766 code = (code == EQ ? GE : LT);
10767 continue;
10770 /* If this AND operation is really a ZERO_EXTEND from a narrower
10771 mode, the constant fits within that mode, and this is either an
10772 equality or unsigned comparison, try to do this comparison in
10773 the narrower mode.
10775 Note that in:
10777 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10778 -> (ne:DI (reg:SI 4) (const_int 0))
10780 unless TRULY_NOOP_TRUNCATION allows it or the register is
10781 known to hold a value of the required mode the
10782 transformation is invalid. */
10783 if ((equality_comparison_p || unsigned_comparison_p)
10784 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10785 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10786 & GET_MODE_MASK (mode))
10787 + 1)) >= 0
10788 && const_op >> i == 0
10789 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10790 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10791 GET_MODE_BITSIZE (GET_MODE (op0)))
10792 || (REG_P (XEXP (op0, 0))
10793 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10795 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10796 continue;
10799 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10800 fits in both M1 and M2 and the SUBREG is either paradoxical
10801 or represents the low part, permute the SUBREG and the AND
10802 and try again. */
10803 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10805 unsigned HOST_WIDE_INT c1;
10806 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10807 /* Require an integral mode, to avoid creating something like
10808 (AND:SF ...). */
10809 if (SCALAR_INT_MODE_P (tmode)
10810 /* It is unsafe to commute the AND into the SUBREG if the
10811 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10812 not defined. As originally written the upper bits
10813 have a defined value due to the AND operation.
10814 However, if we commute the AND inside the SUBREG then
10815 they no longer have defined values and the meaning of
10816 the code has been changed. */
10817 && (0
10818 #ifdef WORD_REGISTER_OPERATIONS
10819 || (mode_width > GET_MODE_BITSIZE (tmode)
10820 && mode_width <= BITS_PER_WORD)
10821 #endif
10822 || (mode_width <= GET_MODE_BITSIZE (tmode)
10823 && subreg_lowpart_p (XEXP (op0, 0))))
10824 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10825 && mode_width <= HOST_BITS_PER_WIDE_INT
10826 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10827 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10828 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10829 && c1 != mask
10830 && c1 != GET_MODE_MASK (tmode))
10832 op0 = simplify_gen_binary (AND, tmode,
10833 SUBREG_REG (XEXP (op0, 0)),
10834 gen_int_mode (c1, tmode));
10835 op0 = gen_lowpart (mode, op0);
10836 continue;
10840 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10841 if (const_op == 0 && equality_comparison_p
10842 && XEXP (op0, 1) == const1_rtx
10843 && GET_CODE (XEXP (op0, 0)) == NOT)
10845 op0 = simplify_and_const_int
10846 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10847 code = (code == NE ? EQ : NE);
10848 continue;
10851 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10852 (eq (and (lshiftrt X) 1) 0).
10853 Also handle the case where (not X) is expressed using xor. */
10854 if (const_op == 0 && equality_comparison_p
10855 && XEXP (op0, 1) == const1_rtx
10856 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10858 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10859 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10861 if (GET_CODE (shift_op) == NOT
10862 || (GET_CODE (shift_op) == XOR
10863 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10864 && GET_CODE (shift_count) == CONST_INT
10865 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10866 && (INTVAL (XEXP (shift_op, 1))
10867 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10869 op0 = simplify_and_const_int
10870 (NULL_RTX, mode,
10871 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10872 (HOST_WIDE_INT) 1);
10873 code = (code == NE ? EQ : NE);
10874 continue;
10877 break;
10879 case ASHIFT:
10880 /* If we have (compare (ashift FOO N) (const_int C)) and
10881 the high order N bits of FOO (N+1 if an inequality comparison)
10882 are known to be zero, we can do this by comparing FOO with C
10883 shifted right N bits so long as the low-order N bits of C are
10884 zero. */
10885 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10886 && INTVAL (XEXP (op0, 1)) >= 0
10887 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10888 < HOST_BITS_PER_WIDE_INT)
10889 && ((const_op
10890 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10891 && mode_width <= HOST_BITS_PER_WIDE_INT
10892 && (nonzero_bits (XEXP (op0, 0), mode)
10893 & ~(mask >> (INTVAL (XEXP (op0, 1))
10894 + ! equality_comparison_p))) == 0)
10896 /* We must perform a logical shift, not an arithmetic one,
10897 as we want the top N bits of C to be zero. */
10898 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10900 temp >>= INTVAL (XEXP (op0, 1));
10901 op1 = gen_int_mode (temp, mode);
10902 op0 = XEXP (op0, 0);
10903 continue;
10906 /* If we are doing a sign bit comparison, it means we are testing
10907 a particular bit. Convert it to the appropriate AND. */
10908 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10909 && mode_width <= HOST_BITS_PER_WIDE_INT)
10911 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10912 ((HOST_WIDE_INT) 1
10913 << (mode_width - 1
10914 - INTVAL (XEXP (op0, 1)))));
10915 code = (code == LT ? NE : EQ);
10916 continue;
10919 /* If this an equality comparison with zero and we are shifting
10920 the low bit to the sign bit, we can convert this to an AND of the
10921 low-order bit. */
10922 if (const_op == 0 && equality_comparison_p
10923 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10924 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10925 == mode_width - 1)
10927 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10928 (HOST_WIDE_INT) 1);
10929 continue;
10931 break;
10933 case ASHIFTRT:
10934 /* If this is an equality comparison with zero, we can do this
10935 as a logical shift, which might be much simpler. */
10936 if (equality_comparison_p && const_op == 0
10937 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10939 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10940 XEXP (op0, 0),
10941 INTVAL (XEXP (op0, 1)));
10942 continue;
10945 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10946 do the comparison in a narrower mode. */
10947 if (! unsigned_comparison_p
10948 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10949 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10950 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10951 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10952 MODE_INT, 1)) != BLKmode
10953 && (((unsigned HOST_WIDE_INT) const_op
10954 + (GET_MODE_MASK (tmode) >> 1) + 1)
10955 <= GET_MODE_MASK (tmode)))
10957 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10958 continue;
10961 /* Likewise if OP0 is a PLUS of a sign extension with a
10962 constant, which is usually represented with the PLUS
10963 between the shifts. */
10964 if (! unsigned_comparison_p
10965 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10966 && GET_CODE (XEXP (op0, 0)) == PLUS
10967 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10968 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10969 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10970 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10971 MODE_INT, 1)) != BLKmode
10972 && (((unsigned HOST_WIDE_INT) const_op
10973 + (GET_MODE_MASK (tmode) >> 1) + 1)
10974 <= GET_MODE_MASK (tmode)))
10976 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10977 rtx add_const = XEXP (XEXP (op0, 0), 1);
10978 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10979 add_const, XEXP (op0, 1));
10981 op0 = simplify_gen_binary (PLUS, tmode,
10982 gen_lowpart (tmode, inner),
10983 new_const);
10984 continue;
10987 /* ... fall through ... */
10988 case LSHIFTRT:
10989 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10990 the low order N bits of FOO are known to be zero, we can do this
10991 by comparing FOO with C shifted left N bits so long as no
10992 overflow occurs. */
10993 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10994 && INTVAL (XEXP (op0, 1)) >= 0
10995 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10996 && mode_width <= HOST_BITS_PER_WIDE_INT
10997 && (nonzero_bits (XEXP (op0, 0), mode)
10998 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10999 && (((unsigned HOST_WIDE_INT) const_op
11000 + (GET_CODE (op0) != LSHIFTRT
11001 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11002 + 1)
11003 : 0))
11004 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11006 /* If the shift was logical, then we must make the condition
11007 unsigned. */
11008 if (GET_CODE (op0) == LSHIFTRT)
11009 code = unsigned_condition (code);
11011 const_op <<= INTVAL (XEXP (op0, 1));
11012 op1 = GEN_INT (const_op);
11013 op0 = XEXP (op0, 0);
11014 continue;
11017 /* If we are using this shift to extract just the sign bit, we
11018 can replace this with an LT or GE comparison. */
11019 if (const_op == 0
11020 && (equality_comparison_p || sign_bit_comparison_p)
11021 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11022 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11023 == mode_width - 1)
11025 op0 = XEXP (op0, 0);
11026 code = (code == NE || code == GT ? LT : GE);
11027 continue;
11029 break;
11031 default:
11032 break;
11035 break;
11038 /* Now make any compound operations involved in this comparison. Then,
11039 check for an outmost SUBREG on OP0 that is not doing anything or is
11040 paradoxical. The latter transformation must only be performed when
11041 it is known that the "extra" bits will be the same in op0 and op1 or
11042 that they don't matter. There are three cases to consider:
11044 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11045 care bits and we can assume they have any convenient value. So
11046 making the transformation is safe.
11048 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11049 In this case the upper bits of op0 are undefined. We should not make
11050 the simplification in that case as we do not know the contents of
11051 those bits.
11053 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11054 UNKNOWN. In that case we know those bits are zeros or ones. We must
11055 also be sure that they are the same as the upper bits of op1.
11057 We can never remove a SUBREG for a non-equality comparison because
11058 the sign bit is in a different place in the underlying object. */
11060 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11061 op1 = make_compound_operation (op1, SET);
11063 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11064 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11065 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11066 && (code == NE || code == EQ))
11068 if (GET_MODE_SIZE (GET_MODE (op0))
11069 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11071 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11072 implemented. */
11073 if (REG_P (SUBREG_REG (op0)))
11075 op0 = SUBREG_REG (op0);
11076 op1 = gen_lowpart (GET_MODE (op0), op1);
11079 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11080 <= HOST_BITS_PER_WIDE_INT)
11081 && (nonzero_bits (SUBREG_REG (op0),
11082 GET_MODE (SUBREG_REG (op0)))
11083 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11085 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11087 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11088 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11089 op0 = SUBREG_REG (op0), op1 = tem;
11093 /* We now do the opposite procedure: Some machines don't have compare
11094 insns in all modes. If OP0's mode is an integer mode smaller than a
11095 word and we can't do a compare in that mode, see if there is a larger
11096 mode for which we can do the compare. There are a number of cases in
11097 which we can use the wider mode. */
11099 mode = GET_MODE (op0);
11100 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11101 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11102 && ! have_insn_for (COMPARE, mode))
11103 for (tmode = GET_MODE_WIDER_MODE (mode);
11104 (tmode != VOIDmode
11105 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11106 tmode = GET_MODE_WIDER_MODE (tmode))
11107 if (have_insn_for (COMPARE, tmode))
11109 int zero_extended;
11111 /* If the only nonzero bits in OP0 and OP1 are those in the
11112 narrower mode and this is an equality or unsigned comparison,
11113 we can use the wider mode. Similarly for sign-extended
11114 values, in which case it is true for all comparisons. */
11115 zero_extended = ((code == EQ || code == NE
11116 || code == GEU || code == GTU
11117 || code == LEU || code == LTU)
11118 && (nonzero_bits (op0, tmode)
11119 & ~GET_MODE_MASK (mode)) == 0
11120 && ((GET_CODE (op1) == CONST_INT
11121 || (nonzero_bits (op1, tmode)
11122 & ~GET_MODE_MASK (mode)) == 0)));
11124 if (zero_extended
11125 || ((num_sign_bit_copies (op0, tmode)
11126 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11127 - GET_MODE_BITSIZE (mode)))
11128 && (num_sign_bit_copies (op1, tmode)
11129 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11130 - GET_MODE_BITSIZE (mode)))))
11132 /* If OP0 is an AND and we don't have an AND in MODE either,
11133 make a new AND in the proper mode. */
11134 if (GET_CODE (op0) == AND
11135 && !have_insn_for (AND, mode))
11136 op0 = simplify_gen_binary (AND, tmode,
11137 gen_lowpart (tmode,
11138 XEXP (op0, 0)),
11139 gen_lowpart (tmode,
11140 XEXP (op0, 1)));
11142 op0 = gen_lowpart (tmode, op0);
11143 if (zero_extended && GET_CODE (op1) == CONST_INT)
11144 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11145 op1 = gen_lowpart (tmode, op1);
11146 break;
11149 /* If this is a test for negative, we can make an explicit
11150 test of the sign bit. */
11152 if (op1 == const0_rtx && (code == LT || code == GE)
11153 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11155 op0 = simplify_gen_binary (AND, tmode,
11156 gen_lowpart (tmode, op0),
11157 GEN_INT ((HOST_WIDE_INT) 1
11158 << (GET_MODE_BITSIZE (mode)
11159 - 1)));
11160 code = (code == LT) ? NE : EQ;
11161 break;
11165 #ifdef CANONICALIZE_COMPARISON
11166 /* If this machine only supports a subset of valid comparisons, see if we
11167 can convert an unsupported one into a supported one. */
11168 CANONICALIZE_COMPARISON (code, op0, op1);
11169 #endif
11171 *pop0 = op0;
11172 *pop1 = op1;
11174 return code;
11177 /* Utility function for record_value_for_reg. Count number of
11178 rtxs in X. */
11179 static int
11180 count_rtxs (rtx x)
11182 enum rtx_code code = GET_CODE (x);
11183 const char *fmt;
11184 int i, ret = 1;
11186 if (GET_RTX_CLASS (code) == '2'
11187 || GET_RTX_CLASS (code) == 'c')
11189 rtx x0 = XEXP (x, 0);
11190 rtx x1 = XEXP (x, 1);
11192 if (x0 == x1)
11193 return 1 + 2 * count_rtxs (x0);
11195 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11196 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11197 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11198 return 2 + 2 * count_rtxs (x0)
11199 + count_rtxs (x == XEXP (x1, 0)
11200 ? XEXP (x1, 1) : XEXP (x1, 0));
11202 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11203 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11204 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11205 return 2 + 2 * count_rtxs (x1)
11206 + count_rtxs (x == XEXP (x0, 0)
11207 ? XEXP (x0, 1) : XEXP (x0, 0));
11210 fmt = GET_RTX_FORMAT (code);
11211 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11212 if (fmt[i] == 'e')
11213 ret += count_rtxs (XEXP (x, i));
11215 return ret;
11218 /* Utility function for following routine. Called when X is part of a value
11219 being stored into last_set_value. Sets last_set_table_tick
11220 for each register mentioned. Similar to mention_regs in cse.c */
11222 static void
11223 update_table_tick (rtx x)
11225 enum rtx_code code = GET_CODE (x);
11226 const char *fmt = GET_RTX_FORMAT (code);
11227 int i;
11229 if (code == REG)
11231 unsigned int regno = REGNO (x);
11232 unsigned int endregno = END_REGNO (x);
11233 unsigned int r;
11235 for (r = regno; r < endregno; r++)
11237 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11238 rsp->last_set_table_tick = label_tick;
11241 return;
11244 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11245 /* Note that we can't have an "E" in values stored; see
11246 get_last_value_validate. */
11247 if (fmt[i] == 'e')
11249 /* Check for identical subexpressions. If x contains
11250 identical subexpression we only have to traverse one of
11251 them. */
11252 if (i == 0 && ARITHMETIC_P (x))
11254 /* Note that at this point x1 has already been
11255 processed. */
11256 rtx x0 = XEXP (x, 0);
11257 rtx x1 = XEXP (x, 1);
11259 /* If x0 and x1 are identical then there is no need to
11260 process x0. */
11261 if (x0 == x1)
11262 break;
11264 /* If x0 is identical to a subexpression of x1 then while
11265 processing x1, x0 has already been processed. Thus we
11266 are done with x. */
11267 if (ARITHMETIC_P (x1)
11268 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11269 break;
11271 /* If x1 is identical to a subexpression of x0 then we
11272 still have to process the rest of x0. */
11273 if (ARITHMETIC_P (x0)
11274 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11276 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11277 break;
11281 update_table_tick (XEXP (x, i));
11285 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11286 are saying that the register is clobbered and we no longer know its
11287 value. If INSN is zero, don't update reg_stat[].last_set; this is
11288 only permitted with VALUE also zero and is used to invalidate the
11289 register. */
11291 static void
11292 record_value_for_reg (rtx reg, rtx insn, rtx value)
11294 unsigned int regno = REGNO (reg);
11295 unsigned int endregno = END_REGNO (reg);
11296 unsigned int i;
11297 reg_stat_type *rsp;
11299 /* If VALUE contains REG and we have a previous value for REG, substitute
11300 the previous value. */
11301 if (value && insn && reg_overlap_mentioned_p (reg, value))
11303 rtx tem;
11305 /* Set things up so get_last_value is allowed to see anything set up to
11306 our insn. */
11307 subst_low_luid = DF_INSN_LUID (insn);
11308 tem = get_last_value (reg);
11310 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11311 it isn't going to be useful and will take a lot of time to process,
11312 so just use the CLOBBER. */
11314 if (tem)
11316 if (ARITHMETIC_P (tem)
11317 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11318 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11319 tem = XEXP (tem, 0);
11320 else if (count_occurrences (value, reg, 1) >= 2)
11322 /* If there are two or more occurrences of REG in VALUE,
11323 prevent the value from growing too much. */
11324 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11325 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11328 value = replace_rtx (copy_rtx (value), reg, tem);
11332 /* For each register modified, show we don't know its value, that
11333 we don't know about its bitwise content, that its value has been
11334 updated, and that we don't know the location of the death of the
11335 register. */
11336 for (i = regno; i < endregno; i++)
11338 rsp = VEC_index (reg_stat_type, reg_stat, i);
11340 if (insn)
11341 rsp->last_set = insn;
11343 rsp->last_set_value = 0;
11344 rsp->last_set_mode = 0;
11345 rsp->last_set_nonzero_bits = 0;
11346 rsp->last_set_sign_bit_copies = 0;
11347 rsp->last_death = 0;
11348 rsp->truncated_to_mode = 0;
11351 /* Mark registers that are being referenced in this value. */
11352 if (value)
11353 update_table_tick (value);
11355 /* Now update the status of each register being set.
11356 If someone is using this register in this block, set this register
11357 to invalid since we will get confused between the two lives in this
11358 basic block. This makes using this register always invalid. In cse, we
11359 scan the table to invalidate all entries using this register, but this
11360 is too much work for us. */
11362 for (i = regno; i < endregno; i++)
11364 rsp = VEC_index (reg_stat_type, reg_stat, i);
11365 rsp->last_set_label = label_tick;
11366 if (!insn
11367 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11368 rsp->last_set_invalid = 1;
11369 else
11370 rsp->last_set_invalid = 0;
11373 /* The value being assigned might refer to X (like in "x++;"). In that
11374 case, we must replace it with (clobber (const_int 0)) to prevent
11375 infinite loops. */
11376 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11377 if (value && ! get_last_value_validate (&value, insn,
11378 rsp->last_set_label, 0))
11380 value = copy_rtx (value);
11381 if (! get_last_value_validate (&value, insn,
11382 rsp->last_set_label, 1))
11383 value = 0;
11386 /* For the main register being modified, update the value, the mode, the
11387 nonzero bits, and the number of sign bit copies. */
11389 rsp->last_set_value = value;
11391 if (value)
11393 enum machine_mode mode = GET_MODE (reg);
11394 subst_low_luid = DF_INSN_LUID (insn);
11395 rsp->last_set_mode = mode;
11396 if (GET_MODE_CLASS (mode) == MODE_INT
11397 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11398 mode = nonzero_bits_mode;
11399 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11400 rsp->last_set_sign_bit_copies
11401 = num_sign_bit_copies (value, GET_MODE (reg));
11405 /* Called via note_stores from record_dead_and_set_regs to handle one
11406 SET or CLOBBER in an insn. DATA is the instruction in which the
11407 set is occurring. */
11409 static void
11410 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11412 rtx record_dead_insn = (rtx) data;
11414 if (GET_CODE (dest) == SUBREG)
11415 dest = SUBREG_REG (dest);
11417 if (!record_dead_insn)
11419 if (REG_P (dest))
11420 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11421 return;
11424 if (REG_P (dest))
11426 /* If we are setting the whole register, we know its value. Otherwise
11427 show that we don't know the value. We can handle SUBREG in
11428 some cases. */
11429 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11430 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11431 else if (GET_CODE (setter) == SET
11432 && GET_CODE (SET_DEST (setter)) == SUBREG
11433 && SUBREG_REG (SET_DEST (setter)) == dest
11434 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11435 && subreg_lowpart_p (SET_DEST (setter)))
11436 record_value_for_reg (dest, record_dead_insn,
11437 gen_lowpart (GET_MODE (dest),
11438 SET_SRC (setter)));
11439 else
11440 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11442 else if (MEM_P (dest)
11443 /* Ignore pushes, they clobber nothing. */
11444 && ! push_operand (dest, GET_MODE (dest)))
11445 mem_last_set = DF_INSN_LUID (record_dead_insn);
11448 /* Update the records of when each REG was most recently set or killed
11449 for the things done by INSN. This is the last thing done in processing
11450 INSN in the combiner loop.
11452 We update reg_stat[], in particular fields last_set, last_set_value,
11453 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11454 last_death, and also the similar information mem_last_set (which insn
11455 most recently modified memory) and last_call_luid (which insn was the
11456 most recent subroutine call). */
11458 static void
11459 record_dead_and_set_regs (rtx insn)
11461 rtx link;
11462 unsigned int i;
11464 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11466 if (REG_NOTE_KIND (link) == REG_DEAD
11467 && REG_P (XEXP (link, 0)))
11469 unsigned int regno = REGNO (XEXP (link, 0));
11470 unsigned int endregno = END_REGNO (XEXP (link, 0));
11472 for (i = regno; i < endregno; i++)
11474 reg_stat_type *rsp;
11476 rsp = VEC_index (reg_stat_type, reg_stat, i);
11477 rsp->last_death = insn;
11480 else if (REG_NOTE_KIND (link) == REG_INC)
11481 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11484 if (CALL_P (insn))
11486 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11487 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11489 reg_stat_type *rsp;
11491 rsp = VEC_index (reg_stat_type, reg_stat, i);
11492 rsp->last_set_invalid = 1;
11493 rsp->last_set = insn;
11494 rsp->last_set_value = 0;
11495 rsp->last_set_mode = 0;
11496 rsp->last_set_nonzero_bits = 0;
11497 rsp->last_set_sign_bit_copies = 0;
11498 rsp->last_death = 0;
11499 rsp->truncated_to_mode = 0;
11502 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11504 /* We can't combine into a call pattern. Remember, though, that
11505 the return value register is set at this LUID. We could
11506 still replace a register with the return value from the
11507 wrong subroutine call! */
11508 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11510 else
11511 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11514 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11515 register present in the SUBREG, so for each such SUBREG go back and
11516 adjust nonzero and sign bit information of the registers that are
11517 known to have some zero/sign bits set.
11519 This is needed because when combine blows the SUBREGs away, the
11520 information on zero/sign bits is lost and further combines can be
11521 missed because of that. */
11523 static void
11524 record_promoted_value (rtx insn, rtx subreg)
11526 rtx links, set;
11527 unsigned int regno = REGNO (SUBREG_REG (subreg));
11528 enum machine_mode mode = GET_MODE (subreg);
11530 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11531 return;
11533 for (links = LOG_LINKS (insn); links;)
11535 reg_stat_type *rsp;
11537 insn = XEXP (links, 0);
11538 set = single_set (insn);
11540 if (! set || !REG_P (SET_DEST (set))
11541 || REGNO (SET_DEST (set)) != regno
11542 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11544 links = XEXP (links, 1);
11545 continue;
11548 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11549 if (rsp->last_set == insn)
11551 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11552 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11555 if (REG_P (SET_SRC (set)))
11557 regno = REGNO (SET_SRC (set));
11558 links = LOG_LINKS (insn);
11560 else
11561 break;
11565 /* Check if X, a register, is known to contain a value already
11566 truncated to MODE. In this case we can use a subreg to refer to
11567 the truncated value even though in the generic case we would need
11568 an explicit truncation. */
11570 static bool
11571 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11573 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11574 enum machine_mode truncated = rsp->truncated_to_mode;
11576 if (truncated == 0
11577 || rsp->truncation_label < label_tick_ebb_start)
11578 return false;
11579 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11580 return true;
11581 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11582 GET_MODE_BITSIZE (truncated)))
11583 return true;
11584 return false;
11587 /* X is a REG or a SUBREG. If X is some sort of a truncation record
11588 it. For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
11589 a truncate into a subreg using this information. */
11591 static void
11592 record_truncated_value (rtx x)
11594 enum machine_mode truncated_mode;
11595 reg_stat_type *rsp;
11597 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11599 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11600 truncated_mode = GET_MODE (x);
11602 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11603 return;
11605 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11606 GET_MODE_BITSIZE (original_mode)))
11607 return;
11609 x = SUBREG_REG (x);
11611 /* ??? For hard-regs we now record everything. We might be able to
11612 optimize this using last_set_mode. */
11613 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11614 truncated_mode = GET_MODE (x);
11615 else
11616 return;
11618 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11619 if (rsp->truncated_to_mode == 0
11620 || rsp->truncation_label < label_tick_ebb_start
11621 || (GET_MODE_SIZE (truncated_mode)
11622 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11624 rsp->truncated_to_mode = truncated_mode;
11625 rsp->truncation_label = label_tick;
11629 /* Scan X for promoted SUBREGs and truncated REGs. For each one
11630 found, note what it implies to the registers used in it. */
11632 static void
11633 check_conversions (rtx insn, rtx x)
11635 if (GET_CODE (x) == SUBREG || REG_P (x))
11637 if (GET_CODE (x) == SUBREG
11638 && SUBREG_PROMOTED_VAR_P (x)
11639 && REG_P (SUBREG_REG (x)))
11640 record_promoted_value (insn, x);
11642 record_truncated_value (x);
11644 else
11646 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11647 int i, j;
11649 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11650 switch (format[i])
11652 case 'e':
11653 check_conversions (insn, XEXP (x, i));
11654 break;
11655 case 'V':
11656 case 'E':
11657 if (XVEC (x, i) != 0)
11658 for (j = 0; j < XVECLEN (x, i); j++)
11659 check_conversions (insn, XVECEXP (x, i, j));
11660 break;
11665 /* Utility routine for the following function. Verify that all the registers
11666 mentioned in *LOC are valid when *LOC was part of a value set when
11667 label_tick == TICK. Return 0 if some are not.
11669 If REPLACE is nonzero, replace the invalid reference with
11670 (clobber (const_int 0)) and return 1. This replacement is useful because
11671 we often can get useful information about the form of a value (e.g., if
11672 it was produced by a shift that always produces -1 or 0) even though
11673 we don't know exactly what registers it was produced from. */
11675 static int
11676 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11678 rtx x = *loc;
11679 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11680 int len = GET_RTX_LENGTH (GET_CODE (x));
11681 int i;
11683 if (REG_P (x))
11685 unsigned int regno = REGNO (x);
11686 unsigned int endregno = END_REGNO (x);
11687 unsigned int j;
11689 for (j = regno; j < endregno; j++)
11691 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11692 if (rsp->last_set_invalid
11693 /* If this is a pseudo-register that was only set once and not
11694 live at the beginning of the function, it is always valid. */
11695 || (! (regno >= FIRST_PSEUDO_REGISTER
11696 && REG_N_SETS (regno) == 1
11697 && (!REGNO_REG_SET_P
11698 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11699 && rsp->last_set_label > tick))
11701 if (replace)
11702 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11703 return replace;
11707 return 1;
11709 /* If this is a memory reference, make sure that there were
11710 no stores after it that might have clobbered the value. We don't
11711 have alias info, so we assume any store invalidates it. */
11712 else if (MEM_P (x) && !MEM_READONLY_P (x)
11713 && DF_INSN_LUID (insn) <= mem_last_set)
11715 if (replace)
11716 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11717 return replace;
11720 for (i = 0; i < len; i++)
11722 if (fmt[i] == 'e')
11724 /* Check for identical subexpressions. If x contains
11725 identical subexpression we only have to traverse one of
11726 them. */
11727 if (i == 1 && ARITHMETIC_P (x))
11729 /* Note that at this point x0 has already been checked
11730 and found valid. */
11731 rtx x0 = XEXP (x, 0);
11732 rtx x1 = XEXP (x, 1);
11734 /* If x0 and x1 are identical then x is also valid. */
11735 if (x0 == x1)
11736 return 1;
11738 /* If x1 is identical to a subexpression of x0 then
11739 while checking x0, x1 has already been checked. Thus
11740 it is valid and so as x. */
11741 if (ARITHMETIC_P (x0)
11742 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11743 return 1;
11745 /* If x0 is identical to a subexpression of x1 then x is
11746 valid iff the rest of x1 is valid. */
11747 if (ARITHMETIC_P (x1)
11748 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11749 return
11750 get_last_value_validate (&XEXP (x1,
11751 x0 == XEXP (x1, 0) ? 1 : 0),
11752 insn, tick, replace);
11755 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11756 replace) == 0)
11757 return 0;
11759 /* Don't bother with these. They shouldn't occur anyway. */
11760 else if (fmt[i] == 'E')
11761 return 0;
11764 /* If we haven't found a reason for it to be invalid, it is valid. */
11765 return 1;
11768 /* Get the last value assigned to X, if known. Some registers
11769 in the value may be replaced with (clobber (const_int 0)) if their value
11770 is known longer known reliably. */
11772 static rtx
11773 get_last_value (const_rtx x)
11775 unsigned int regno;
11776 rtx value;
11777 reg_stat_type *rsp;
11779 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11780 then convert it to the desired mode. If this is a paradoxical SUBREG,
11781 we cannot predict what values the "extra" bits might have. */
11782 if (GET_CODE (x) == SUBREG
11783 && subreg_lowpart_p (x)
11784 && (GET_MODE_SIZE (GET_MODE (x))
11785 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11786 && (value = get_last_value (SUBREG_REG (x))) != 0)
11787 return gen_lowpart (GET_MODE (x), value);
11789 if (!REG_P (x))
11790 return 0;
11792 regno = REGNO (x);
11793 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11794 value = rsp->last_set_value;
11796 /* If we don't have a value, or if it isn't for this basic block and
11797 it's either a hard register, set more than once, or it's a live
11798 at the beginning of the function, return 0.
11800 Because if it's not live at the beginning of the function then the reg
11801 is always set before being used (is never used without being set).
11802 And, if it's set only once, and it's always set before use, then all
11803 uses must have the same last value, even if it's not from this basic
11804 block. */
11806 if (value == 0
11807 || (rsp->last_set_label < label_tick_ebb_start
11808 && (regno < FIRST_PSEUDO_REGISTER
11809 || REG_N_SETS (regno) != 1
11810 || REGNO_REG_SET_P
11811 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11812 return 0;
11814 /* If the value was set in a later insn than the ones we are processing,
11815 we can't use it even if the register was only set once. */
11816 if (rsp->last_set_label == label_tick
11817 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11818 return 0;
11820 /* If the value has all its registers valid, return it. */
11821 if (get_last_value_validate (&value, rsp->last_set,
11822 rsp->last_set_label, 0))
11823 return value;
11825 /* Otherwise, make a copy and replace any invalid register with
11826 (clobber (const_int 0)). If that fails for some reason, return 0. */
11828 value = copy_rtx (value);
11829 if (get_last_value_validate (&value, rsp->last_set,
11830 rsp->last_set_label, 1))
11831 return value;
11833 return 0;
11836 /* Return nonzero if expression X refers to a REG or to memory
11837 that is set in an instruction more recent than FROM_LUID. */
11839 static int
11840 use_crosses_set_p (const_rtx x, int from_luid)
11842 const char *fmt;
11843 int i;
11844 enum rtx_code code = GET_CODE (x);
11846 if (code == REG)
11848 unsigned int regno = REGNO (x);
11849 unsigned endreg = END_REGNO (x);
11851 #ifdef PUSH_ROUNDING
11852 /* Don't allow uses of the stack pointer to be moved,
11853 because we don't know whether the move crosses a push insn. */
11854 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11855 return 1;
11856 #endif
11857 for (; regno < endreg; regno++)
11859 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11860 if (rsp->last_set
11861 && rsp->last_set_label == label_tick
11862 && DF_INSN_LUID (rsp->last_set) > from_luid)
11863 return 1;
11865 return 0;
11868 if (code == MEM && mem_last_set > from_luid)
11869 return 1;
11871 fmt = GET_RTX_FORMAT (code);
11873 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11875 if (fmt[i] == 'E')
11877 int j;
11878 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11879 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11880 return 1;
11882 else if (fmt[i] == 'e'
11883 && use_crosses_set_p (XEXP (x, i), from_luid))
11884 return 1;
11886 return 0;
11889 /* Define three variables used for communication between the following
11890 routines. */
11892 static unsigned int reg_dead_regno, reg_dead_endregno;
11893 static int reg_dead_flag;
11895 /* Function called via note_stores from reg_dead_at_p.
11897 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11898 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11900 static void
11901 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
11903 unsigned int regno, endregno;
11905 if (!REG_P (dest))
11906 return;
11908 regno = REGNO (dest);
11909 endregno = END_REGNO (dest);
11910 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11911 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11914 /* Return nonzero if REG is known to be dead at INSN.
11916 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11917 referencing REG, it is dead. If we hit a SET referencing REG, it is
11918 live. Otherwise, see if it is live or dead at the start of the basic
11919 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11920 must be assumed to be always live. */
11922 static int
11923 reg_dead_at_p (rtx reg, rtx insn)
11925 basic_block block;
11926 unsigned int i;
11928 /* Set variables for reg_dead_at_p_1. */
11929 reg_dead_regno = REGNO (reg);
11930 reg_dead_endregno = END_REGNO (reg);
11932 reg_dead_flag = 0;
11934 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11935 we allow the machine description to decide whether use-and-clobber
11936 patterns are OK. */
11937 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11939 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11940 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11941 return 0;
11944 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11945 beginning of function. */
11946 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11947 insn = prev_nonnote_insn (insn))
11949 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11950 if (reg_dead_flag)
11951 return reg_dead_flag == 1 ? 1 : 0;
11953 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11954 return 1;
11957 /* Get the basic block that we were in. */
11958 if (insn == 0)
11959 block = ENTRY_BLOCK_PTR->next_bb;
11960 else
11962 FOR_EACH_BB (block)
11963 if (insn == BB_HEAD (block))
11964 break;
11966 if (block == EXIT_BLOCK_PTR)
11967 return 0;
11970 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11971 if (REGNO_REG_SET_P (df_get_live_in (block), i))
11972 return 0;
11974 return 1;
11977 /* Note hard registers in X that are used. */
11979 static void
11980 mark_used_regs_combine (rtx x)
11982 RTX_CODE code = GET_CODE (x);
11983 unsigned int regno;
11984 int i;
11986 switch (code)
11988 case LABEL_REF:
11989 case SYMBOL_REF:
11990 case CONST_INT:
11991 case CONST:
11992 case CONST_DOUBLE:
11993 case CONST_VECTOR:
11994 case PC:
11995 case ADDR_VEC:
11996 case ADDR_DIFF_VEC:
11997 case ASM_INPUT:
11998 #ifdef HAVE_cc0
11999 /* CC0 must die in the insn after it is set, so we don't need to take
12000 special note of it here. */
12001 case CC0:
12002 #endif
12003 return;
12005 case CLOBBER:
12006 /* If we are clobbering a MEM, mark any hard registers inside the
12007 address as used. */
12008 if (MEM_P (XEXP (x, 0)))
12009 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12010 return;
12012 case REG:
12013 regno = REGNO (x);
12014 /* A hard reg in a wide mode may really be multiple registers.
12015 If so, mark all of them just like the first. */
12016 if (regno < FIRST_PSEUDO_REGISTER)
12018 /* None of this applies to the stack, frame or arg pointers. */
12019 if (regno == STACK_POINTER_REGNUM
12020 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12021 || regno == HARD_FRAME_POINTER_REGNUM
12022 #endif
12023 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12024 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12025 #endif
12026 || regno == FRAME_POINTER_REGNUM)
12027 return;
12029 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12031 return;
12033 case SET:
12035 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12036 the address. */
12037 rtx testreg = SET_DEST (x);
12039 while (GET_CODE (testreg) == SUBREG
12040 || GET_CODE (testreg) == ZERO_EXTRACT
12041 || GET_CODE (testreg) == STRICT_LOW_PART)
12042 testreg = XEXP (testreg, 0);
12044 if (MEM_P (testreg))
12045 mark_used_regs_combine (XEXP (testreg, 0));
12047 mark_used_regs_combine (SET_SRC (x));
12049 return;
12051 default:
12052 break;
12055 /* Recursively scan the operands of this expression. */
12058 const char *fmt = GET_RTX_FORMAT (code);
12060 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12062 if (fmt[i] == 'e')
12063 mark_used_regs_combine (XEXP (x, i));
12064 else if (fmt[i] == 'E')
12066 int j;
12068 for (j = 0; j < XVECLEN (x, i); j++)
12069 mark_used_regs_combine (XVECEXP (x, i, j));
12075 /* Remove register number REGNO from the dead registers list of INSN.
12077 Return the note used to record the death, if there was one. */
12080 remove_death (unsigned int regno, rtx insn)
12082 rtx note = find_regno_note (insn, REG_DEAD, regno);
12084 if (note)
12085 remove_note (insn, note);
12087 return note;
12090 /* For each register (hardware or pseudo) used within expression X, if its
12091 death is in an instruction with luid between FROM_LUID (inclusive) and
12092 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12093 list headed by PNOTES.
12095 That said, don't move registers killed by maybe_kill_insn.
12097 This is done when X is being merged by combination into TO_INSN. These
12098 notes will then be distributed as needed. */
12100 static void
12101 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12102 rtx *pnotes)
12104 const char *fmt;
12105 int len, i;
12106 enum rtx_code code = GET_CODE (x);
12108 if (code == REG)
12110 unsigned int regno = REGNO (x);
12111 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12113 /* Don't move the register if it gets killed in between from and to. */
12114 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12115 && ! reg_referenced_p (x, maybe_kill_insn))
12116 return;
12118 if (where_dead
12119 && DF_INSN_LUID (where_dead) >= from_luid
12120 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12122 rtx note = remove_death (regno, where_dead);
12124 /* It is possible for the call above to return 0. This can occur
12125 when last_death points to I2 or I1 that we combined with.
12126 In that case make a new note.
12128 We must also check for the case where X is a hard register
12129 and NOTE is a death note for a range of hard registers
12130 including X. In that case, we must put REG_DEAD notes for
12131 the remaining registers in place of NOTE. */
12133 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12134 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12135 > GET_MODE_SIZE (GET_MODE (x))))
12137 unsigned int deadregno = REGNO (XEXP (note, 0));
12138 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12139 unsigned int ourend = END_HARD_REGNO (x);
12140 unsigned int i;
12142 for (i = deadregno; i < deadend; i++)
12143 if (i < regno || i >= ourend)
12144 REG_NOTES (where_dead)
12145 = gen_rtx_EXPR_LIST (REG_DEAD,
12146 regno_reg_rtx[i],
12147 REG_NOTES (where_dead));
12150 /* If we didn't find any note, or if we found a REG_DEAD note that
12151 covers only part of the given reg, and we have a multi-reg hard
12152 register, then to be safe we must check for REG_DEAD notes
12153 for each register other than the first. They could have
12154 their own REG_DEAD notes lying around. */
12155 else if ((note == 0
12156 || (note != 0
12157 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12158 < GET_MODE_SIZE (GET_MODE (x)))))
12159 && regno < FIRST_PSEUDO_REGISTER
12160 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12162 unsigned int ourend = END_HARD_REGNO (x);
12163 unsigned int i, offset;
12164 rtx oldnotes = 0;
12166 if (note)
12167 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12168 else
12169 offset = 1;
12171 for (i = regno + offset; i < ourend; i++)
12172 move_deaths (regno_reg_rtx[i],
12173 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12176 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12178 XEXP (note, 1) = *pnotes;
12179 *pnotes = note;
12181 else
12182 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12185 return;
12188 else if (GET_CODE (x) == SET)
12190 rtx dest = SET_DEST (x);
12192 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12194 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12195 that accesses one word of a multi-word item, some
12196 piece of everything register in the expression is used by
12197 this insn, so remove any old death. */
12198 /* ??? So why do we test for equality of the sizes? */
12200 if (GET_CODE (dest) == ZERO_EXTRACT
12201 || GET_CODE (dest) == STRICT_LOW_PART
12202 || (GET_CODE (dest) == SUBREG
12203 && (((GET_MODE_SIZE (GET_MODE (dest))
12204 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12205 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12206 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12208 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12209 return;
12212 /* If this is some other SUBREG, we know it replaces the entire
12213 value, so use that as the destination. */
12214 if (GET_CODE (dest) == SUBREG)
12215 dest = SUBREG_REG (dest);
12217 /* If this is a MEM, adjust deaths of anything used in the address.
12218 For a REG (the only other possibility), the entire value is
12219 being replaced so the old value is not used in this insn. */
12221 if (MEM_P (dest))
12222 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12223 to_insn, pnotes);
12224 return;
12227 else if (GET_CODE (x) == CLOBBER)
12228 return;
12230 len = GET_RTX_LENGTH (code);
12231 fmt = GET_RTX_FORMAT (code);
12233 for (i = 0; i < len; i++)
12235 if (fmt[i] == 'E')
12237 int j;
12238 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12239 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12240 to_insn, pnotes);
12242 else if (fmt[i] == 'e')
12243 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12247 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12248 pattern of an insn. X must be a REG. */
12250 static int
12251 reg_bitfield_target_p (rtx x, rtx body)
12253 int i;
12255 if (GET_CODE (body) == SET)
12257 rtx dest = SET_DEST (body);
12258 rtx target;
12259 unsigned int regno, tregno, endregno, endtregno;
12261 if (GET_CODE (dest) == ZERO_EXTRACT)
12262 target = XEXP (dest, 0);
12263 else if (GET_CODE (dest) == STRICT_LOW_PART)
12264 target = SUBREG_REG (XEXP (dest, 0));
12265 else
12266 return 0;
12268 if (GET_CODE (target) == SUBREG)
12269 target = SUBREG_REG (target);
12271 if (!REG_P (target))
12272 return 0;
12274 tregno = REGNO (target), regno = REGNO (x);
12275 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12276 return target == x;
12278 endtregno = end_hard_regno (GET_MODE (target), tregno);
12279 endregno = end_hard_regno (GET_MODE (x), regno);
12281 return endregno > tregno && regno < endtregno;
12284 else if (GET_CODE (body) == PARALLEL)
12285 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12286 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12287 return 1;
12289 return 0;
12292 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12293 as appropriate. I3 and I2 are the insns resulting from the combination
12294 insns including FROM (I2 may be zero).
12296 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12297 not need REG_DEAD notes because they are being substituted for. This
12298 saves searching in the most common cases.
12300 Each note in the list is either ignored or placed on some insns, depending
12301 on the type of note. */
12303 static void
12304 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12305 rtx elim_i1)
12307 rtx note, next_note;
12308 rtx tem;
12310 for (note = notes; note; note = next_note)
12312 rtx place = 0, place2 = 0;
12314 next_note = XEXP (note, 1);
12315 switch (REG_NOTE_KIND (note))
12317 case REG_BR_PROB:
12318 case REG_BR_PRED:
12319 /* Doesn't matter much where we put this, as long as it's somewhere.
12320 It is preferable to keep these notes on branches, which is most
12321 likely to be i3. */
12322 place = i3;
12323 break;
12325 case REG_VALUE_PROFILE:
12326 /* Just get rid of this note, as it is unused later anyway. */
12327 break;
12329 case REG_NON_LOCAL_GOTO:
12330 if (JUMP_P (i3))
12331 place = i3;
12332 else
12334 gcc_assert (i2 && JUMP_P (i2));
12335 place = i2;
12337 break;
12339 case REG_EH_REGION:
12340 /* These notes must remain with the call or trapping instruction. */
12341 if (CALL_P (i3))
12342 place = i3;
12343 else if (i2 && CALL_P (i2))
12344 place = i2;
12345 else
12347 gcc_assert (flag_non_call_exceptions);
12348 if (may_trap_p (i3))
12349 place = i3;
12350 else if (i2 && may_trap_p (i2))
12351 place = i2;
12352 /* ??? Otherwise assume we've combined things such that we
12353 can now prove that the instructions can't trap. Drop the
12354 note in this case. */
12356 break;
12358 case REG_NORETURN:
12359 case REG_SETJMP:
12360 /* These notes must remain with the call. It should not be
12361 possible for both I2 and I3 to be a call. */
12362 if (CALL_P (i3))
12363 place = i3;
12364 else
12366 gcc_assert (i2 && CALL_P (i2));
12367 place = i2;
12369 break;
12371 case REG_UNUSED:
12372 /* Any clobbers for i3 may still exist, and so we must process
12373 REG_UNUSED notes from that insn.
12375 Any clobbers from i2 or i1 can only exist if they were added by
12376 recog_for_combine. In that case, recog_for_combine created the
12377 necessary REG_UNUSED notes. Trying to keep any original
12378 REG_UNUSED notes from these insns can cause incorrect output
12379 if it is for the same register as the original i3 dest.
12380 In that case, we will notice that the register is set in i3,
12381 and then add a REG_UNUSED note for the destination of i3, which
12382 is wrong. However, it is possible to have REG_UNUSED notes from
12383 i2 or i1 for register which were both used and clobbered, so
12384 we keep notes from i2 or i1 if they will turn into REG_DEAD
12385 notes. */
12387 /* If this register is set or clobbered in I3, put the note there
12388 unless there is one already. */
12389 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12391 if (from_insn != i3)
12392 break;
12394 if (! (REG_P (XEXP (note, 0))
12395 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12396 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12397 place = i3;
12399 /* Otherwise, if this register is used by I3, then this register
12400 now dies here, so we must put a REG_DEAD note here unless there
12401 is one already. */
12402 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12403 && ! (REG_P (XEXP (note, 0))
12404 ? find_regno_note (i3, REG_DEAD,
12405 REGNO (XEXP (note, 0)))
12406 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12408 PUT_REG_NOTE_KIND (note, REG_DEAD);
12409 place = i3;
12411 break;
12413 case REG_EQUAL:
12414 case REG_EQUIV:
12415 case REG_NOALIAS:
12416 /* These notes say something about results of an insn. We can
12417 only support them if they used to be on I3 in which case they
12418 remain on I3. Otherwise they are ignored.
12420 If the note refers to an expression that is not a constant, we
12421 must also ignore the note since we cannot tell whether the
12422 equivalence is still true. It might be possible to do
12423 slightly better than this (we only have a problem if I2DEST
12424 or I1DEST is present in the expression), but it doesn't
12425 seem worth the trouble. */
12427 if (from_insn == i3
12428 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12429 place = i3;
12430 break;
12432 case REG_INC:
12433 case REG_NO_CONFLICT:
12434 /* These notes say something about how a register is used. They must
12435 be present on any use of the register in I2 or I3. */
12436 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12437 place = i3;
12439 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12441 if (place)
12442 place2 = i2;
12443 else
12444 place = i2;
12446 break;
12448 case REG_LABEL_TARGET:
12449 case REG_LABEL_OPERAND:
12450 /* This can show up in several ways -- either directly in the
12451 pattern, or hidden off in the constant pool with (or without?)
12452 a REG_EQUAL note. */
12453 /* ??? Ignore the without-reg_equal-note problem for now. */
12454 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12455 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12456 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12457 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12458 place = i3;
12460 if (i2
12461 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12462 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12463 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12464 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12466 if (place)
12467 place2 = i2;
12468 else
12469 place = i2;
12472 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12473 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12474 there. */
12475 if (place && JUMP_P (place)
12476 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12477 && (JUMP_LABEL (place) == NULL
12478 || JUMP_LABEL (place) == XEXP (note, 0)))
12480 rtx label = JUMP_LABEL (place);
12482 if (!label)
12483 JUMP_LABEL (place) = XEXP (note, 0);
12484 else if (LABEL_P (label))
12485 LABEL_NUSES (label)--;
12488 if (place2 && JUMP_P (place2)
12489 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12490 && (JUMP_LABEL (place2) == NULL
12491 || JUMP_LABEL (place2) == XEXP (note, 0)))
12493 rtx label = JUMP_LABEL (place2);
12495 if (!label)
12496 JUMP_LABEL (place2) = XEXP (note, 0);
12497 else if (LABEL_P (label))
12498 LABEL_NUSES (label)--;
12499 place2 = 0;
12501 break;
12503 case REG_NONNEG:
12504 /* This note says something about the value of a register prior
12505 to the execution of an insn. It is too much trouble to see
12506 if the note is still correct in all situations. It is better
12507 to simply delete it. */
12508 break;
12510 case REG_LIBCALL_ID:
12511 /* If the insn previously containing this note still exists,
12512 put it back where it was. Otherwise move it to the previous
12513 insn. */
12514 if (!NOTE_P (from_insn))
12515 place = from_insn;
12516 else
12517 place = prev_real_insn (from_insn);
12518 break;
12519 case REG_RETVAL:
12520 /* If the insn previously containing this note still exists,
12521 put it back where it was. Otherwise move it to the previous
12522 insn. Adjust the corresponding REG_LIBCALL note. */
12523 if (!NOTE_P (from_insn))
12524 place = from_insn;
12525 else
12527 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12528 place = prev_real_insn (from_insn);
12529 if (tem && place)
12530 XEXP (tem, 0) = place;
12531 /* If we're deleting the last remaining instruction of a
12532 libcall sequence, don't add the notes. */
12533 else if (XEXP (note, 0) == from_insn)
12534 tem = place = 0;
12535 /* Don't add the dangling REG_RETVAL note. */
12536 else if (! tem)
12537 place = 0;
12539 break;
12541 case REG_LIBCALL:
12542 /* This is handled similarly to REG_RETVAL. */
12543 if (!NOTE_P (from_insn))
12544 place = from_insn;
12545 else
12547 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12548 place = next_real_insn (from_insn);
12549 if (tem && place)
12550 XEXP (tem, 0) = place;
12551 /* If we're deleting the last remaining instruction of a
12552 libcall sequence, don't add the notes. */
12553 else if (XEXP (note, 0) == from_insn)
12554 tem = place = 0;
12555 /* Don't add the dangling REG_LIBCALL note. */
12556 else if (! tem)
12557 place = 0;
12559 break;
12561 case REG_DEAD:
12562 /* If we replaced the right hand side of FROM_INSN with a
12563 REG_EQUAL note, the original use of the dying register
12564 will not have been combined into I3 and I2. In such cases,
12565 FROM_INSN is guaranteed to be the first of the combined
12566 instructions, so we simply need to search back before
12567 FROM_INSN for the previous use or set of this register,
12568 then alter the notes there appropriately.
12570 If the register is used as an input in I3, it dies there.
12571 Similarly for I2, if it is nonzero and adjacent to I3.
12573 If the register is not used as an input in either I3 or I2
12574 and it is not one of the registers we were supposed to eliminate,
12575 there are two possibilities. We might have a non-adjacent I2
12576 or we might have somehow eliminated an additional register
12577 from a computation. For example, we might have had A & B where
12578 we discover that B will always be zero. In this case we will
12579 eliminate the reference to A.
12581 In both cases, we must search to see if we can find a previous
12582 use of A and put the death note there. */
12584 if (from_insn
12585 && from_insn == i2mod
12586 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12587 tem = from_insn;
12588 else
12590 if (from_insn
12591 && CALL_P (from_insn)
12592 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12593 place = from_insn;
12594 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12595 place = i3;
12596 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12597 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12598 place = i2;
12599 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12600 && !(i2mod
12601 && reg_overlap_mentioned_p (XEXP (note, 0),
12602 i2mod_old_rhs)))
12603 || rtx_equal_p (XEXP (note, 0), elim_i1))
12604 break;
12605 tem = i3;
12608 if (place == 0)
12610 basic_block bb = this_basic_block;
12612 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12614 if (! INSN_P (tem))
12616 if (tem == BB_HEAD (bb))
12617 break;
12618 continue;
12621 /* If the register is being set at TEM, see if that is all
12622 TEM is doing. If so, delete TEM. Otherwise, make this
12623 into a REG_UNUSED note instead. Don't delete sets to
12624 global register vars. */
12625 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12626 || !global_regs[REGNO (XEXP (note, 0))])
12627 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12629 rtx set = single_set (tem);
12630 rtx inner_dest = 0;
12631 #ifdef HAVE_cc0
12632 rtx cc0_setter = NULL_RTX;
12633 #endif
12635 if (set != 0)
12636 for (inner_dest = SET_DEST (set);
12637 (GET_CODE (inner_dest) == STRICT_LOW_PART
12638 || GET_CODE (inner_dest) == SUBREG
12639 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12640 inner_dest = XEXP (inner_dest, 0))
12643 /* Verify that it was the set, and not a clobber that
12644 modified the register.
12646 CC0 targets must be careful to maintain setter/user
12647 pairs. If we cannot delete the setter due to side
12648 effects, mark the user with an UNUSED note instead
12649 of deleting it. */
12651 if (set != 0 && ! side_effects_p (SET_SRC (set))
12652 && rtx_equal_p (XEXP (note, 0), inner_dest)
12653 #ifdef HAVE_cc0
12654 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12655 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12656 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12657 #endif
12660 /* Move the notes and links of TEM elsewhere.
12661 This might delete other dead insns recursively.
12662 First set the pattern to something that won't use
12663 any register. */
12664 rtx old_notes = REG_NOTES (tem);
12666 PATTERN (tem) = pc_rtx;
12667 REG_NOTES (tem) = NULL;
12669 distribute_notes (old_notes, tem, tem, NULL_RTX,
12670 NULL_RTX, NULL_RTX);
12671 distribute_links (LOG_LINKS (tem));
12673 SET_INSN_DELETED (tem);
12675 #ifdef HAVE_cc0
12676 /* Delete the setter too. */
12677 if (cc0_setter)
12679 PATTERN (cc0_setter) = pc_rtx;
12680 old_notes = REG_NOTES (cc0_setter);
12681 REG_NOTES (cc0_setter) = NULL;
12683 distribute_notes (old_notes, cc0_setter,
12684 cc0_setter, NULL_RTX,
12685 NULL_RTX, NULL_RTX);
12686 distribute_links (LOG_LINKS (cc0_setter));
12688 SET_INSN_DELETED (cc0_setter);
12690 #endif
12692 else
12694 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12696 /* If there isn't already a REG_UNUSED note, put one
12697 here. Do not place a REG_DEAD note, even if
12698 the register is also used here; that would not
12699 match the algorithm used in lifetime analysis
12700 and can cause the consistency check in the
12701 scheduler to fail. */
12702 if (! find_regno_note (tem, REG_UNUSED,
12703 REGNO (XEXP (note, 0))))
12704 place = tem;
12705 break;
12708 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12709 || (CALL_P (tem)
12710 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12712 place = tem;
12714 /* If we are doing a 3->2 combination, and we have a
12715 register which formerly died in i3 and was not used
12716 by i2, which now no longer dies in i3 and is used in
12717 i2 but does not die in i2, and place is between i2
12718 and i3, then we may need to move a link from place to
12719 i2. */
12720 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12721 && from_insn
12722 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12723 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12725 rtx links = LOG_LINKS (place);
12726 LOG_LINKS (place) = 0;
12727 distribute_links (links);
12729 break;
12732 if (tem == BB_HEAD (bb))
12733 break;
12738 /* If the register is set or already dead at PLACE, we needn't do
12739 anything with this note if it is still a REG_DEAD note.
12740 We check here if it is set at all, not if is it totally replaced,
12741 which is what `dead_or_set_p' checks, so also check for it being
12742 set partially. */
12744 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12746 unsigned int regno = REGNO (XEXP (note, 0));
12747 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12749 if (dead_or_set_p (place, XEXP (note, 0))
12750 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12752 /* Unless the register previously died in PLACE, clear
12753 last_death. [I no longer understand why this is
12754 being done.] */
12755 if (rsp->last_death != place)
12756 rsp->last_death = 0;
12757 place = 0;
12759 else
12760 rsp->last_death = place;
12762 /* If this is a death note for a hard reg that is occupying
12763 multiple registers, ensure that we are still using all
12764 parts of the object. If we find a piece of the object
12765 that is unused, we must arrange for an appropriate REG_DEAD
12766 note to be added for it. However, we can't just emit a USE
12767 and tag the note to it, since the register might actually
12768 be dead; so we recourse, and the recursive call then finds
12769 the previous insn that used this register. */
12771 if (place && regno < FIRST_PSEUDO_REGISTER
12772 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12774 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12775 int all_used = 1;
12776 unsigned int i;
12778 for (i = regno; i < endregno; i++)
12779 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12780 && ! find_regno_fusage (place, USE, i))
12781 || dead_or_set_regno_p (place, i))
12782 all_used = 0;
12784 if (! all_used)
12786 /* Put only REG_DEAD notes for pieces that are
12787 not already dead or set. */
12789 for (i = regno; i < endregno;
12790 i += hard_regno_nregs[i][reg_raw_mode[i]])
12792 rtx piece = regno_reg_rtx[i];
12793 basic_block bb = this_basic_block;
12795 if (! dead_or_set_p (place, piece)
12796 && ! reg_bitfield_target_p (piece,
12797 PATTERN (place)))
12799 rtx new_note
12800 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12802 distribute_notes (new_note, place, place,
12803 NULL_RTX, NULL_RTX, NULL_RTX);
12805 else if (! refers_to_regno_p (i, i + 1,
12806 PATTERN (place), 0)
12807 && ! find_regno_fusage (place, USE, i))
12808 for (tem = PREV_INSN (place); ;
12809 tem = PREV_INSN (tem))
12811 if (! INSN_P (tem))
12813 if (tem == BB_HEAD (bb))
12814 break;
12815 continue;
12817 if (dead_or_set_p (tem, piece)
12818 || reg_bitfield_target_p (piece,
12819 PATTERN (tem)))
12821 REG_NOTES (tem)
12822 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12823 REG_NOTES (tem));
12824 break;
12830 place = 0;
12834 break;
12836 default:
12837 /* Any other notes should not be present at this point in the
12838 compilation. */
12839 gcc_unreachable ();
12842 if (place)
12844 XEXP (note, 1) = REG_NOTES (place);
12845 REG_NOTES (place) = note;
12848 if (place2)
12849 REG_NOTES (place2)
12850 = gen_rtx_fmt_ee (GET_CODE (note), REG_NOTE_KIND (note),
12851 XEXP (note, 0), REG_NOTES (place2));
12855 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12856 I3, I2, and I1 to new locations. This is also called to add a link
12857 pointing at I3 when I3's destination is changed. */
12859 static void
12860 distribute_links (rtx links)
12862 rtx link, next_link;
12864 for (link = links; link; link = next_link)
12866 rtx place = 0;
12867 rtx insn;
12868 rtx set, reg;
12870 next_link = XEXP (link, 1);
12872 /* If the insn that this link points to is a NOTE or isn't a single
12873 set, ignore it. In the latter case, it isn't clear what we
12874 can do other than ignore the link, since we can't tell which
12875 register it was for. Such links wouldn't be used by combine
12876 anyway.
12878 It is not possible for the destination of the target of the link to
12879 have been changed by combine. The only potential of this is if we
12880 replace I3, I2, and I1 by I3 and I2. But in that case the
12881 destination of I2 also remains unchanged. */
12883 if (NOTE_P (XEXP (link, 0))
12884 || (set = single_set (XEXP (link, 0))) == 0)
12885 continue;
12887 reg = SET_DEST (set);
12888 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12889 || GET_CODE (reg) == STRICT_LOW_PART)
12890 reg = XEXP (reg, 0);
12892 /* A LOG_LINK is defined as being placed on the first insn that uses
12893 a register and points to the insn that sets the register. Start
12894 searching at the next insn after the target of the link and stop
12895 when we reach a set of the register or the end of the basic block.
12897 Note that this correctly handles the link that used to point from
12898 I3 to I2. Also note that not much searching is typically done here
12899 since most links don't point very far away. */
12901 for (insn = NEXT_INSN (XEXP (link, 0));
12902 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12903 || BB_HEAD (this_basic_block->next_bb) != insn));
12904 insn = NEXT_INSN (insn))
12905 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12907 if (reg_referenced_p (reg, PATTERN (insn)))
12908 place = insn;
12909 break;
12911 else if (CALL_P (insn)
12912 && find_reg_fusage (insn, USE, reg))
12914 place = insn;
12915 break;
12917 else if (INSN_P (insn) && reg_set_p (reg, insn))
12918 break;
12920 /* If we found a place to put the link, place it there unless there
12921 is already a link to the same insn as LINK at that point. */
12923 if (place)
12925 rtx link2;
12927 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12928 if (XEXP (link2, 0) == XEXP (link, 0))
12929 break;
12931 if (link2 == 0)
12933 XEXP (link, 1) = LOG_LINKS (place);
12934 LOG_LINKS (place) = link;
12936 /* Set added_links_insn to the earliest insn we added a
12937 link to. */
12938 if (added_links_insn == 0
12939 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12940 added_links_insn = place;
12946 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12947 Check whether the expression pointer to by LOC is a register or
12948 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12949 Otherwise return zero. */
12951 static int
12952 unmentioned_reg_p_1 (rtx *loc, void *expr)
12954 rtx x = *loc;
12956 if (x != NULL_RTX
12957 && (REG_P (x) || MEM_P (x))
12958 && ! reg_mentioned_p (x, (rtx) expr))
12959 return 1;
12960 return 0;
12963 /* Check for any register or memory mentioned in EQUIV that is not
12964 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12965 of EXPR where some registers may have been replaced by constants. */
12967 static bool
12968 unmentioned_reg_p (rtx equiv, rtx expr)
12970 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12973 void
12974 dump_combine_stats (FILE *file)
12976 fprintf
12977 (file,
12978 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12979 combine_attempts, combine_merges, combine_extras, combine_successes);
12982 void
12983 dump_combine_total_stats (FILE *file)
12985 fprintf
12986 (file,
12987 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12988 total_attempts, total_merges, total_extras, total_successes);
12991 static bool
12992 gate_handle_combine (void)
12994 return (optimize > 0);
12997 /* Try combining insns through substitution. */
12998 static unsigned int
12999 rest_of_handle_combine (void)
13001 int rebuild_jump_labels_after_combine;
13003 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13004 df_note_add_problem ();
13005 df_analyze ();
13007 regstat_init_n_sets_and_refs ();
13009 rebuild_jump_labels_after_combine
13010 = combine_instructions (get_insns (), max_reg_num ());
13012 /* Combining insns may have turned an indirect jump into a
13013 direct jump. Rebuild the JUMP_LABEL fields of jumping
13014 instructions. */
13015 if (rebuild_jump_labels_after_combine)
13017 timevar_push (TV_JUMP);
13018 rebuild_jump_labels (get_insns ());
13019 cleanup_cfg (0);
13020 timevar_pop (TV_JUMP);
13023 regstat_free_n_sets_and_refs ();
13024 return 0;
13027 struct tree_opt_pass pass_combine =
13029 "combine", /* name */
13030 gate_handle_combine, /* gate */
13031 rest_of_handle_combine, /* execute */
13032 NULL, /* sub */
13033 NULL, /* next */
13034 0, /* static_pass_number */
13035 TV_COMBINE, /* tv_id */
13036 0, /* properties_required */
13037 0, /* properties_provided */
13038 0, /* properties_destroyed */
13039 0, /* todo_flags_start */
13040 TODO_dump_func |
13041 TODO_df_finish | TODO_verify_rtl_sharing |
13042 TODO_ggc_collect, /* todo_flags_finish */
13043 'c' /* letter */