Update changelog entry.
[official-gcc.git] / gcc / tree-vrp.c
blobeb4d5b0249dda4b6fbd98fe14481ee15f01253ab
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-dfa.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-ssa-loop.h"
49 #include "tree-into-ssa.h"
50 #include "tree-ssa.h"
51 #include "intl.h"
52 #include "cfgloop.h"
53 #include "tree-scalar-evolution.h"
54 #include "tree-ssa-propagate.h"
55 #include "tree-chrec.h"
56 #include "tree-ssa-threadupdate.h"
57 #include "tree-ssa-scopedtables.h"
58 #include "tree-ssa-threadedge.h"
59 #include "omp-general.h"
60 #include "target.h"
61 #include "case-cfn-macros.h"
62 #include "params.h"
63 #include "alloc-pool.h"
64 #include "domwalk.h"
65 #include "tree-cfgcleanup.h"
66 #include "stringpool.h"
67 #include "attribs.h"
68 #include "vr-values.h"
69 #include "builtins.h"
70 #include "wide-int-range.h"
72 /* Set of SSA names found live during the RPO traversal of the function
73 for still active basic-blocks. */
74 static sbitmap *live;
76 void
77 value_range_base::set (enum value_range_kind kind, tree min, tree max)
79 m_kind = kind;
80 m_min = min;
81 m_max = max;
82 if (flag_checking)
83 check ();
86 void
87 value_range::set_equiv (bitmap equiv)
89 /* Since updating the equivalence set involves deep copying the
90 bitmaps, only do it if absolutely necessary.
92 All equivalence bitmaps are allocated from the same obstack. So
93 we can use the obstack associated with EQUIV to allocate vr->equiv. */
94 if (m_equiv == NULL
95 && equiv != NULL)
96 m_equiv = BITMAP_ALLOC (equiv->obstack);
98 if (equiv != m_equiv)
100 if (equiv && !bitmap_empty_p (equiv))
101 bitmap_copy (m_equiv, equiv);
102 else
103 bitmap_clear (m_equiv);
107 /* Initialize value_range. */
109 void
110 value_range::set (enum value_range_kind kind, tree min, tree max,
111 bitmap equiv)
113 value_range_base::set (kind, min, max);
114 set_equiv (equiv);
115 if (flag_checking)
116 check ();
119 value_range_base::value_range_base (value_range_kind kind, tree min, tree max)
121 set (kind, min, max);
124 value_range::value_range (value_range_kind kind, tree min, tree max,
125 bitmap equiv)
127 m_equiv = NULL;
128 set (kind, min, max, equiv);
131 value_range::value_range (const value_range_base &other)
133 m_equiv = NULL;
134 set (other.kind (), other.min(), other.max (), NULL);
137 /* Like set, but keep the equivalences in place. */
139 void
140 value_range::update (value_range_kind kind, tree min, tree max)
142 set (kind, min, max,
143 (kind != VR_UNDEFINED && kind != VR_VARYING) ? m_equiv : NULL);
146 /* Copy value_range in FROM into THIS while avoiding bitmap sharing.
148 Note: The code that avoids the bitmap sharing looks at the existing
149 this->m_equiv, so this function cannot be used to initalize an
150 object. Use the constructors for initialization. */
152 void
153 value_range::deep_copy (const value_range *from)
155 set (from->m_kind, from->min (), from->max (), from->m_equiv);
158 void
159 value_range::move (value_range *from)
161 set (from->m_kind, from->min (), from->max ());
162 m_equiv = from->m_equiv;
163 from->m_equiv = NULL;
166 /* Check the validity of the range. */
168 void
169 value_range_base::check ()
171 switch (m_kind)
173 case VR_RANGE:
174 case VR_ANTI_RANGE:
176 int cmp;
178 gcc_assert (m_min && m_max);
180 gcc_assert (!TREE_OVERFLOW_P (m_min) && !TREE_OVERFLOW_P (m_max));
182 /* Creating ~[-MIN, +MAX] is stupid because that would be
183 the empty set. */
184 if (INTEGRAL_TYPE_P (TREE_TYPE (m_min)) && m_kind == VR_ANTI_RANGE)
185 gcc_assert (!vrp_val_is_min (m_min) || !vrp_val_is_max (m_max));
187 cmp = compare_values (m_min, m_max);
188 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
189 break;
191 case VR_UNDEFINED:
192 case VR_VARYING:
193 gcc_assert (!min () && !max ());
194 break;
195 default:
196 gcc_unreachable ();
200 void
201 value_range::check ()
203 value_range_base::check ();
204 switch (m_kind)
206 case VR_UNDEFINED:
207 case VR_VARYING:
208 gcc_assert (!m_equiv || bitmap_empty_p (m_equiv));
209 default:;
213 /* Equality operator. We purposely do not overload ==, to avoid
214 confusion with the equality bitmap in the derived value_range
215 class. */
217 bool
218 value_range_base::equal_p (const value_range_base &other) const
220 return (m_kind == other.m_kind
221 && vrp_operand_equal_p (m_min, other.m_min)
222 && vrp_operand_equal_p (m_max, other.m_max));
225 /* Returns TRUE if THIS == OTHER. Ignores the equivalence bitmap if
226 IGNORE_EQUIVS is TRUE. */
228 bool
229 value_range::equal_p (const value_range &other, bool ignore_equivs) const
231 return (value_range_base::equal_p (other)
232 && (ignore_equivs
233 || vrp_bitmap_equal_p (m_equiv, other.m_equiv)));
236 /* Return TRUE if this is a symbolic range. */
238 bool
239 value_range_base::symbolic_p () const
241 return (!varying_p ()
242 && !undefined_p ()
243 && (!is_gimple_min_invariant (m_min)
244 || !is_gimple_min_invariant (m_max)));
247 /* NOTE: This is not the inverse of symbolic_p because the range
248 could also be varying or undefined. Ideally they should be inverse
249 of each other, with varying only applying to symbolics. Varying of
250 constants would be represented as [-MIN, +MAX]. */
252 bool
253 value_range_base::constant_p () const
255 return (!varying_p ()
256 && !undefined_p ()
257 && TREE_CODE (m_min) == INTEGER_CST
258 && TREE_CODE (m_max) == INTEGER_CST);
261 void
262 value_range_base::set_undefined ()
264 set (VR_UNDEFINED, NULL, NULL);
267 void
268 value_range::set_undefined ()
270 set (VR_UNDEFINED, NULL, NULL, NULL);
273 void
274 value_range_base::set_varying ()
276 set (VR_VARYING, NULL, NULL);
279 void
280 value_range::set_varying ()
282 set (VR_VARYING, NULL, NULL, NULL);
285 /* Return TRUE if it is possible that range contains VAL. */
287 bool
288 value_range_base::may_contain_p (tree val) const
290 if (varying_p ())
291 return true;
293 if (undefined_p ())
294 return true;
296 if (m_kind == VR_ANTI_RANGE)
298 int res = value_inside_range (val, min (), max ());
299 return res == 0 || res == -2;
301 return value_inside_range (val, min (), max ()) != 0;
304 void
305 value_range::equiv_clear ()
307 if (m_equiv)
308 bitmap_clear (m_equiv);
311 /* Add VAR and VAR's equivalence set (VAR_VR) to the equivalence
312 bitmap. If no equivalence table has been created, OBSTACK is the
313 obstack to use (NULL for the default obstack).
315 This is the central point where equivalence processing can be
316 turned on/off. */
318 void
319 value_range::equiv_add (const_tree var,
320 const value_range *var_vr,
321 bitmap_obstack *obstack)
323 if (!m_equiv)
324 m_equiv = BITMAP_ALLOC (obstack);
325 unsigned ver = SSA_NAME_VERSION (var);
326 bitmap_set_bit (m_equiv, ver);
327 if (var_vr && var_vr->m_equiv)
328 bitmap_ior_into (m_equiv, var_vr->m_equiv);
331 /* If range is a singleton, place it in RESULT and return TRUE.
332 Note: A singleton can be any gimple invariant, not just constants.
333 So, [&x, &x] counts as a singleton. */
335 bool
336 value_range_base::singleton_p (tree *result) const
338 if (m_kind == VR_RANGE
339 && vrp_operand_equal_p (min (), max ())
340 && is_gimple_min_invariant (min ()))
342 if (result)
343 *result = min ();
344 return true;
346 return false;
349 tree
350 value_range_base::type () const
352 /* Types are only valid for VR_RANGE and VR_ANTI_RANGE, which are
353 known to have non-zero min/max. */
354 gcc_assert (min ());
355 return TREE_TYPE (min ());
358 void
359 value_range_base::dump (FILE *file) const
361 if (undefined_p ())
362 fprintf (file, "UNDEFINED");
363 else if (m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE)
365 tree ttype = type ();
367 print_generic_expr (file, ttype);
368 fprintf (file, " ");
370 fprintf (file, "%s[", (m_kind == VR_ANTI_RANGE) ? "~" : "");
372 if (INTEGRAL_TYPE_P (ttype)
373 && !TYPE_UNSIGNED (ttype)
374 && vrp_val_is_min (min ())
375 && TYPE_PRECISION (ttype) != 1)
376 fprintf (file, "-INF");
377 else
378 print_generic_expr (file, min ());
380 fprintf (file, ", ");
382 if (INTEGRAL_TYPE_P (ttype)
383 && vrp_val_is_max (max ())
384 && TYPE_PRECISION (ttype) != 1)
385 fprintf (file, "+INF");
386 else
387 print_generic_expr (file, max ());
389 fprintf (file, "]");
391 else if (varying_p ())
392 fprintf (file, "VARYING");
393 else
394 gcc_unreachable ();
397 void
398 value_range::dump (FILE *file) const
400 value_range_base::dump (file);
401 if ((m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE)
402 && m_equiv)
404 bitmap_iterator bi;
405 unsigned i, c = 0;
407 fprintf (file, " EQUIVALENCES: { ");
409 EXECUTE_IF_SET_IN_BITMAP (m_equiv, 0, i, bi)
411 print_generic_expr (file, ssa_name (i));
412 fprintf (file, " ");
413 c++;
416 fprintf (file, "} (%u elements)", c);
420 void
421 dump_value_range (FILE *file, const value_range *vr)
423 if (!vr)
424 fprintf (file, "[]");
425 else
426 vr->dump (file);
429 void
430 dump_value_range (FILE *file, const value_range_base *vr)
432 if (!vr)
433 fprintf (file, "[]");
434 else
435 vr->dump (file);
438 DEBUG_FUNCTION void
439 debug (const value_range_base *vr)
441 dump_value_range (stderr, vr);
444 DEBUG_FUNCTION void
445 debug (const value_range_base &vr)
447 dump_value_range (stderr, &vr);
450 DEBUG_FUNCTION void
451 debug (const value_range *vr)
453 dump_value_range (stderr, vr);
456 DEBUG_FUNCTION void
457 debug (const value_range &vr)
459 dump_value_range (stderr, &vr);
462 /* Return true if the SSA name NAME is live on the edge E. */
464 static bool
465 live_on_edge (edge e, tree name)
467 return (live[e->dest->index]
468 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
471 /* Location information for ASSERT_EXPRs. Each instance of this
472 structure describes an ASSERT_EXPR for an SSA name. Since a single
473 SSA name may have more than one assertion associated with it, these
474 locations are kept in a linked list attached to the corresponding
475 SSA name. */
476 struct assert_locus
478 /* Basic block where the assertion would be inserted. */
479 basic_block bb;
481 /* Some assertions need to be inserted on an edge (e.g., assertions
482 generated by COND_EXPRs). In those cases, BB will be NULL. */
483 edge e;
485 /* Pointer to the statement that generated this assertion. */
486 gimple_stmt_iterator si;
488 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
489 enum tree_code comp_code;
491 /* Value being compared against. */
492 tree val;
494 /* Expression to compare. */
495 tree expr;
497 /* Next node in the linked list. */
498 assert_locus *next;
501 /* If bit I is present, it means that SSA name N_i has a list of
502 assertions that should be inserted in the IL. */
503 static bitmap need_assert_for;
505 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
506 holds a list of ASSERT_LOCUS_T nodes that describe where
507 ASSERT_EXPRs for SSA name N_I should be inserted. */
508 static assert_locus **asserts_for;
510 /* Return the maximum value for TYPE. */
512 tree
513 vrp_val_max (const_tree type)
515 if (!INTEGRAL_TYPE_P (type))
516 return NULL_TREE;
518 return TYPE_MAX_VALUE (type);
521 /* Return the minimum value for TYPE. */
523 tree
524 vrp_val_min (const_tree type)
526 if (!INTEGRAL_TYPE_P (type))
527 return NULL_TREE;
529 return TYPE_MIN_VALUE (type);
532 /* Return whether VAL is equal to the maximum value of its type.
533 We can't do a simple equality comparison with TYPE_MAX_VALUE because
534 C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
535 is not == to the integer constant with the same value in the type. */
537 bool
538 vrp_val_is_max (const_tree val)
540 tree type_max = vrp_val_max (TREE_TYPE (val));
541 return (val == type_max
542 || (type_max != NULL_TREE
543 && operand_equal_p (val, type_max, 0)));
546 /* Return whether VAL is equal to the minimum value of its type. */
548 bool
549 vrp_val_is_min (const_tree val)
551 tree type_min = vrp_val_min (TREE_TYPE (val));
552 return (val == type_min
553 || (type_min != NULL_TREE
554 && operand_equal_p (val, type_min, 0)));
557 /* VR_TYPE describes a range with mininum value *MIN and maximum
558 value *MAX. Restrict the range to the set of values that have
559 no bits set outside NONZERO_BITS. Update *MIN and *MAX and
560 return the new range type.
562 SGN gives the sign of the values described by the range. */
564 enum value_range_kind
565 intersect_range_with_nonzero_bits (enum value_range_kind vr_type,
566 wide_int *min, wide_int *max,
567 const wide_int &nonzero_bits,
568 signop sgn)
570 if (vr_type == VR_ANTI_RANGE)
572 /* The VR_ANTI_RANGE is equivalent to the union of the ranges
573 A: [-INF, *MIN) and B: (*MAX, +INF]. First use NONZERO_BITS
574 to create an inclusive upper bound for A and an inclusive lower
575 bound for B. */
576 wide_int a_max = wi::round_down_for_mask (*min - 1, nonzero_bits);
577 wide_int b_min = wi::round_up_for_mask (*max + 1, nonzero_bits);
579 /* If the calculation of A_MAX wrapped, A is effectively empty
580 and A_MAX is the highest value that satisfies NONZERO_BITS.
581 Likewise if the calculation of B_MIN wrapped, B is effectively
582 empty and B_MIN is the lowest value that satisfies NONZERO_BITS. */
583 bool a_empty = wi::ge_p (a_max, *min, sgn);
584 bool b_empty = wi::le_p (b_min, *max, sgn);
586 /* If both A and B are empty, there are no valid values. */
587 if (a_empty && b_empty)
588 return VR_UNDEFINED;
590 /* If exactly one of A or B is empty, return a VR_RANGE for the
591 other one. */
592 if (a_empty || b_empty)
594 *min = b_min;
595 *max = a_max;
596 gcc_checking_assert (wi::le_p (*min, *max, sgn));
597 return VR_RANGE;
600 /* Update the VR_ANTI_RANGE bounds. */
601 *min = a_max + 1;
602 *max = b_min - 1;
603 gcc_checking_assert (wi::le_p (*min, *max, sgn));
605 /* Now check whether the excluded range includes any values that
606 satisfy NONZERO_BITS. If not, switch to a full VR_RANGE. */
607 if (wi::round_up_for_mask (*min, nonzero_bits) == b_min)
609 unsigned int precision = min->get_precision ();
610 *min = wi::min_value (precision, sgn);
611 *max = wi::max_value (precision, sgn);
612 vr_type = VR_RANGE;
615 if (vr_type == VR_RANGE)
617 *max = wi::round_down_for_mask (*max, nonzero_bits);
619 /* Check that the range contains at least one valid value. */
620 if (wi::gt_p (*min, *max, sgn))
621 return VR_UNDEFINED;
623 *min = wi::round_up_for_mask (*min, nonzero_bits);
624 gcc_checking_assert (wi::le_p (*min, *max, sgn));
626 return vr_type;
630 /* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
631 This means adjusting VRTYPE, MIN and MAX representing the case of a
632 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
633 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
634 In corner cases where MAX+1 or MIN-1 wraps this will fall back
635 to varying.
636 This routine exists to ease canonicalization in the case where we
637 extract ranges from var + CST op limit. */
639 void
640 value_range_base::set_and_canonicalize (enum value_range_kind kind,
641 tree min, tree max)
643 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
644 if (kind == VR_UNDEFINED)
646 set_undefined ();
647 return;
649 else if (kind == VR_VARYING)
651 set_varying ();
652 return;
655 /* Nothing to canonicalize for symbolic ranges. */
656 if (TREE_CODE (min) != INTEGER_CST
657 || TREE_CODE (max) != INTEGER_CST)
659 set (kind, min, max);
660 return;
663 /* Wrong order for min and max, to swap them and the VR type we need
664 to adjust them. */
665 if (tree_int_cst_lt (max, min))
667 tree one, tmp;
669 /* For one bit precision if max < min, then the swapped
670 range covers all values, so for VR_RANGE it is varying and
671 for VR_ANTI_RANGE empty range, so drop to varying as well. */
672 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
674 set_varying ();
675 return;
678 one = build_int_cst (TREE_TYPE (min), 1);
679 tmp = int_const_binop (PLUS_EXPR, max, one);
680 max = int_const_binop (MINUS_EXPR, min, one);
681 min = tmp;
683 /* There's one corner case, if we had [C+1, C] before we now have
684 that again. But this represents an empty value range, so drop
685 to varying in this case. */
686 if (tree_int_cst_lt (max, min))
688 set_varying ();
689 return;
692 kind = kind == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
695 /* Anti-ranges that can be represented as ranges should be so. */
696 if (kind == VR_ANTI_RANGE)
698 /* For -fstrict-enums we may receive out-of-range ranges so consider
699 values < -INF and values > INF as -INF/INF as well. */
700 tree type = TREE_TYPE (min);
701 bool is_min = (INTEGRAL_TYPE_P (type)
702 && tree_int_cst_compare (min, TYPE_MIN_VALUE (type)) <= 0);
703 bool is_max = (INTEGRAL_TYPE_P (type)
704 && tree_int_cst_compare (max, TYPE_MAX_VALUE (type)) >= 0);
706 if (is_min && is_max)
708 /* We cannot deal with empty ranges, drop to varying.
709 ??? This could be VR_UNDEFINED instead. */
710 set_varying ();
711 return;
713 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
714 && (is_min || is_max))
716 /* Non-empty boolean ranges can always be represented
717 as a singleton range. */
718 if (is_min)
719 min = max = vrp_val_max (TREE_TYPE (min));
720 else
721 min = max = vrp_val_min (TREE_TYPE (min));
722 kind = VR_RANGE;
724 else if (is_min
725 /* As a special exception preserve non-null ranges. */
726 && !(TYPE_UNSIGNED (TREE_TYPE (min))
727 && integer_zerop (max)))
729 tree one = build_int_cst (TREE_TYPE (max), 1);
730 min = int_const_binop (PLUS_EXPR, max, one);
731 max = vrp_val_max (TREE_TYPE (max));
732 kind = VR_RANGE;
734 else if (is_max)
736 tree one = build_int_cst (TREE_TYPE (min), 1);
737 max = int_const_binop (MINUS_EXPR, min, one);
738 min = vrp_val_min (TREE_TYPE (min));
739 kind = VR_RANGE;
743 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
744 to make sure VRP iteration terminates, otherwise we can get into
745 oscillations. */
747 set (kind, min, max);
750 void
751 value_range::set_and_canonicalize (enum value_range_kind kind,
752 tree min, tree max, bitmap equiv)
754 value_range_base::set_and_canonicalize (kind, min, max);
755 if (this->kind () == VR_RANGE || this->kind () == VR_ANTI_RANGE)
756 set_equiv (equiv);
757 else
758 equiv_clear ();
761 void
762 value_range_base::set (tree val)
764 gcc_assert (TREE_CODE (val) == SSA_NAME || is_gimple_min_invariant (val));
765 if (TREE_OVERFLOW_P (val))
766 val = drop_tree_overflow (val);
767 set (VR_RANGE, val, val);
770 void
771 value_range::set (tree val)
773 gcc_assert (TREE_CODE (val) == SSA_NAME || is_gimple_min_invariant (val));
774 if (TREE_OVERFLOW_P (val))
775 val = drop_tree_overflow (val);
776 set (VR_RANGE, val, val, NULL);
779 /* Set value range VR to a non-NULL range of type TYPE. */
781 void
782 value_range_base::set_nonnull (tree type)
784 tree zero = build_int_cst (type, 0);
785 set (VR_ANTI_RANGE, zero, zero);
788 void
789 value_range::set_nonnull (tree type)
791 tree zero = build_int_cst (type, 0);
792 set (VR_ANTI_RANGE, zero, zero, NULL);
795 /* Set value range VR to a NULL range of type TYPE. */
797 void
798 value_range_base::set_null (tree type)
800 set (build_int_cst (type, 0));
803 void
804 value_range::set_null (tree type)
806 set (build_int_cst (type, 0));
809 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
811 bool
812 vrp_operand_equal_p (const_tree val1, const_tree val2)
814 if (val1 == val2)
815 return true;
816 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
817 return false;
818 return true;
821 /* Return true, if the bitmaps B1 and B2 are equal. */
823 bool
824 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
826 return (b1 == b2
827 || ((!b1 || bitmap_empty_p (b1))
828 && (!b2 || bitmap_empty_p (b2)))
829 || (b1 && b2
830 && bitmap_equal_p (b1, b2)));
833 /* Return true if VR is [0, 0]. */
835 static inline bool
836 range_is_null (const value_range_base *vr)
838 return vr->zero_p ();
841 static inline bool
842 range_is_nonnull (const value_range_base *vr)
844 return (vr->kind () == VR_ANTI_RANGE
845 && vr->min () == vr->max ()
846 && integer_zerop (vr->min ()));
849 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
850 a singleton. */
852 bool
853 range_int_cst_p (const value_range_base *vr)
855 return (vr->kind () == VR_RANGE
856 && TREE_CODE (vr->min ()) == INTEGER_CST
857 && TREE_CODE (vr->max ()) == INTEGER_CST);
860 /* Return true if VR is a INTEGER_CST singleton. */
862 bool
863 range_int_cst_singleton_p (const value_range_base *vr)
865 return (range_int_cst_p (vr)
866 && tree_int_cst_equal (vr->min (), vr->max ()));
869 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
870 otherwise. We only handle additive operations and set NEG to true if the
871 symbol is negated and INV to the invariant part, if any. */
873 tree
874 get_single_symbol (tree t, bool *neg, tree *inv)
876 bool neg_;
877 tree inv_;
879 *inv = NULL_TREE;
880 *neg = false;
882 if (TREE_CODE (t) == PLUS_EXPR
883 || TREE_CODE (t) == POINTER_PLUS_EXPR
884 || TREE_CODE (t) == MINUS_EXPR)
886 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
888 neg_ = (TREE_CODE (t) == MINUS_EXPR);
889 inv_ = TREE_OPERAND (t, 0);
890 t = TREE_OPERAND (t, 1);
892 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
894 neg_ = false;
895 inv_ = TREE_OPERAND (t, 1);
896 t = TREE_OPERAND (t, 0);
898 else
899 return NULL_TREE;
901 else
903 neg_ = false;
904 inv_ = NULL_TREE;
907 if (TREE_CODE (t) == NEGATE_EXPR)
909 t = TREE_OPERAND (t, 0);
910 neg_ = !neg_;
913 if (TREE_CODE (t) != SSA_NAME)
914 return NULL_TREE;
916 if (inv_ && TREE_OVERFLOW_P (inv_))
917 inv_ = drop_tree_overflow (inv_);
919 *neg = neg_;
920 *inv = inv_;
921 return t;
924 /* The reverse operation: build a symbolic expression with TYPE
925 from symbol SYM, negated according to NEG, and invariant INV. */
927 static tree
928 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
930 const bool pointer_p = POINTER_TYPE_P (type);
931 tree t = sym;
933 if (neg)
934 t = build1 (NEGATE_EXPR, type, t);
936 if (integer_zerop (inv))
937 return t;
939 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
942 /* Return
943 1 if VAL < VAL2
944 0 if !(VAL < VAL2)
945 -2 if those are incomparable. */
947 operand_less_p (tree val, tree val2)
949 /* LT is folded faster than GE and others. Inline the common case. */
950 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
951 return tree_int_cst_lt (val, val2);
952 else
954 tree tcmp;
956 fold_defer_overflow_warnings ();
958 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
960 fold_undefer_and_ignore_overflow_warnings ();
962 if (!tcmp
963 || TREE_CODE (tcmp) != INTEGER_CST)
964 return -2;
966 if (!integer_zerop (tcmp))
967 return 1;
970 return 0;
973 /* Compare two values VAL1 and VAL2. Return
975 -2 if VAL1 and VAL2 cannot be compared at compile-time,
976 -1 if VAL1 < VAL2,
977 0 if VAL1 == VAL2,
978 +1 if VAL1 > VAL2, and
979 +2 if VAL1 != VAL2
981 This is similar to tree_int_cst_compare but supports pointer values
982 and values that cannot be compared at compile time.
984 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
985 true if the return value is only valid if we assume that signed
986 overflow is undefined. */
989 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
991 if (val1 == val2)
992 return 0;
994 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
995 both integers. */
996 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
997 == POINTER_TYPE_P (TREE_TYPE (val2)));
999 /* Convert the two values into the same type. This is needed because
1000 sizetype causes sign extension even for unsigned types. */
1001 val2 = fold_convert (TREE_TYPE (val1), val2);
1002 STRIP_USELESS_TYPE_CONVERSION (val2);
1004 const bool overflow_undefined
1005 = INTEGRAL_TYPE_P (TREE_TYPE (val1))
1006 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
1007 tree inv1, inv2;
1008 bool neg1, neg2;
1009 tree sym1 = get_single_symbol (val1, &neg1, &inv1);
1010 tree sym2 = get_single_symbol (val2, &neg2, &inv2);
1012 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
1013 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
1014 if (sym1 && sym2)
1016 /* Both values must use the same name with the same sign. */
1017 if (sym1 != sym2 || neg1 != neg2)
1018 return -2;
1020 /* [-]NAME + CST == [-]NAME + CST. */
1021 if (inv1 == inv2)
1022 return 0;
1024 /* If overflow is defined we cannot simplify more. */
1025 if (!overflow_undefined)
1026 return -2;
1028 if (strict_overflow_p != NULL
1029 /* Symbolic range building sets TREE_NO_WARNING to declare
1030 that overflow doesn't happen. */
1031 && (!inv1 || !TREE_NO_WARNING (val1))
1032 && (!inv2 || !TREE_NO_WARNING (val2)))
1033 *strict_overflow_p = true;
1035 if (!inv1)
1036 inv1 = build_int_cst (TREE_TYPE (val1), 0);
1037 if (!inv2)
1038 inv2 = build_int_cst (TREE_TYPE (val2), 0);
1040 return wi::cmp (wi::to_wide (inv1), wi::to_wide (inv2),
1041 TYPE_SIGN (TREE_TYPE (val1)));
1044 const bool cst1 = is_gimple_min_invariant (val1);
1045 const bool cst2 = is_gimple_min_invariant (val2);
1047 /* If one is of the form '[-]NAME + CST' and the other is constant, then
1048 it might be possible to say something depending on the constants. */
1049 if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
1051 if (!overflow_undefined)
1052 return -2;
1054 if (strict_overflow_p != NULL
1055 /* Symbolic range building sets TREE_NO_WARNING to declare
1056 that overflow doesn't happen. */
1057 && (!sym1 || !TREE_NO_WARNING (val1))
1058 && (!sym2 || !TREE_NO_WARNING (val2)))
1059 *strict_overflow_p = true;
1061 const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
1062 tree cst = cst1 ? val1 : val2;
1063 tree inv = cst1 ? inv2 : inv1;
1065 /* Compute the difference between the constants. If it overflows or
1066 underflows, this means that we can trivially compare the NAME with
1067 it and, consequently, the two values with each other. */
1068 wide_int diff = wi::to_wide (cst) - wi::to_wide (inv);
1069 if (wi::cmp (0, wi::to_wide (inv), sgn)
1070 != wi::cmp (diff, wi::to_wide (cst), sgn))
1072 const int res = wi::cmp (wi::to_wide (cst), wi::to_wide (inv), sgn);
1073 return cst1 ? res : -res;
1076 return -2;
1079 /* We cannot say anything more for non-constants. */
1080 if (!cst1 || !cst2)
1081 return -2;
1083 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1085 /* We cannot compare overflowed values. */
1086 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1087 return -2;
1089 if (TREE_CODE (val1) == INTEGER_CST
1090 && TREE_CODE (val2) == INTEGER_CST)
1091 return tree_int_cst_compare (val1, val2);
1093 if (poly_int_tree_p (val1) && poly_int_tree_p (val2))
1095 if (known_eq (wi::to_poly_widest (val1),
1096 wi::to_poly_widest (val2)))
1097 return 0;
1098 if (known_lt (wi::to_poly_widest (val1),
1099 wi::to_poly_widest (val2)))
1100 return -1;
1101 if (known_gt (wi::to_poly_widest (val1),
1102 wi::to_poly_widest (val2)))
1103 return 1;
1106 return -2;
1108 else
1110 tree t;
1112 /* First see if VAL1 and VAL2 are not the same. */
1113 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1114 return 0;
1116 /* If VAL1 is a lower address than VAL2, return -1. */
1117 if (operand_less_p (val1, val2) == 1)
1118 return -1;
1120 /* If VAL1 is a higher address than VAL2, return +1. */
1121 if (operand_less_p (val2, val1) == 1)
1122 return 1;
1124 /* If VAL1 is different than VAL2, return +2.
1125 For integer constants we either have already returned -1 or 1
1126 or they are equivalent. We still might succeed in proving
1127 something about non-trivial operands. */
1128 if (TREE_CODE (val1) != INTEGER_CST
1129 || TREE_CODE (val2) != INTEGER_CST)
1131 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1132 if (t && integer_onep (t))
1133 return 2;
1136 return -2;
1140 /* Compare values like compare_values_warnv. */
1143 compare_values (tree val1, tree val2)
1145 bool sop;
1146 return compare_values_warnv (val1, val2, &sop);
1150 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1151 0 if VAL is not inside [MIN, MAX],
1152 -2 if we cannot tell either way.
1154 Benchmark compile/20001226-1.c compilation time after changing this
1155 function. */
1158 value_inside_range (tree val, tree min, tree max)
1160 int cmp1, cmp2;
1162 cmp1 = operand_less_p (val, min);
1163 if (cmp1 == -2)
1164 return -2;
1165 if (cmp1 == 1)
1166 return 0;
1168 cmp2 = operand_less_p (max, val);
1169 if (cmp2 == -2)
1170 return -2;
1172 return !cmp2;
1176 /* Return TRUE if *VR includes the value zero. */
1178 bool
1179 range_includes_zero_p (const value_range_base *vr)
1181 if (vr->varying_p () || vr->undefined_p ())
1182 return true;
1183 tree zero = build_int_cst (vr->type (), 0);
1184 return vr->may_contain_p (zero);
1187 /* If *VR has a value range that is a single constant value return that,
1188 otherwise return NULL_TREE.
1190 ?? This actually returns TRUE for [&x, &x], so perhaps "constant"
1191 is not the best name. */
1193 tree
1194 value_range_constant_singleton (const value_range_base *vr)
1196 tree result = NULL;
1197 if (vr->singleton_p (&result))
1198 return result;
1199 return NULL;
1202 /* Value range wrapper for wide_int_range_set_zero_nonzero_bits.
1204 Compute MAY_BE_NONZERO and MUST_BE_NONZERO bit masks for range in VR.
1206 Return TRUE if VR was a constant range and we were able to compute
1207 the bit masks. */
1209 bool
1210 vrp_set_zero_nonzero_bits (const tree expr_type,
1211 const value_range_base *vr,
1212 wide_int *may_be_nonzero,
1213 wide_int *must_be_nonzero)
1215 if (!range_int_cst_p (vr))
1217 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1218 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1219 return false;
1221 wide_int_range_set_zero_nonzero_bits (TYPE_SIGN (expr_type),
1222 wi::to_wide (vr->min ()),
1223 wi::to_wide (vr->max ()),
1224 *may_be_nonzero, *must_be_nonzero);
1225 return true;
1228 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
1229 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
1230 false otherwise. If *AR can be represented with a single range
1231 *VR1 will be VR_UNDEFINED. */
1233 static bool
1234 ranges_from_anti_range (const value_range_base *ar,
1235 value_range_base *vr0, value_range_base *vr1)
1237 tree type = ar->type ();
1239 vr0->set_undefined ();
1240 vr1->set_undefined ();
1242 /* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U
1243 [A+1, +INF]. Not sure if this helps in practice, though. */
1245 if (ar->kind () != VR_ANTI_RANGE
1246 || TREE_CODE (ar->min ()) != INTEGER_CST
1247 || TREE_CODE (ar->max ()) != INTEGER_CST
1248 || !vrp_val_min (type)
1249 || !vrp_val_max (type))
1250 return false;
1252 if (!vrp_val_is_min (ar->min ()))
1253 *vr0 = value_range (VR_RANGE,
1254 vrp_val_min (type),
1255 wide_int_to_tree (type, wi::to_wide (ar->min ()) - 1));
1256 if (!vrp_val_is_max (ar->max ()))
1257 *vr1 = value_range (VR_RANGE,
1258 wide_int_to_tree (type, wi::to_wide (ar->max ()) + 1),
1259 vrp_val_max (type));
1260 if (vr0->undefined_p ())
1262 *vr0 = *vr1;
1263 vr1->set_undefined ();
1266 return !vr0->undefined_p ();
1269 /* Extract the components of a value range into a pair of wide ints in
1270 [WMIN, WMAX].
1272 If the value range is anything but a VR_*RANGE of constants, the
1273 resulting wide ints are set to [-MIN, +MAX] for the type. */
1275 static void inline
1276 extract_range_into_wide_ints (const value_range_base *vr,
1277 signop sign, unsigned prec,
1278 wide_int &wmin, wide_int &wmax)
1280 gcc_assert (vr->kind () != VR_ANTI_RANGE || vr->symbolic_p ());
1281 if (range_int_cst_p (vr))
1283 wmin = wi::to_wide (vr->min ());
1284 wmax = wi::to_wide (vr->max ());
1286 else
1288 wmin = wi::min_value (prec, sign);
1289 wmax = wi::max_value (prec, sign);
1293 /* Value range wrapper for wide_int_range_multiplicative_op:
1295 *VR = *VR0 .CODE. *VR1. */
1297 static void
1298 extract_range_from_multiplicative_op (value_range_base *vr,
1299 enum tree_code code,
1300 const value_range_base *vr0,
1301 const value_range_base *vr1)
1303 gcc_assert (code == MULT_EXPR
1304 || code == TRUNC_DIV_EXPR
1305 || code == FLOOR_DIV_EXPR
1306 || code == CEIL_DIV_EXPR
1307 || code == EXACT_DIV_EXPR
1308 || code == ROUND_DIV_EXPR
1309 || code == RSHIFT_EXPR
1310 || code == LSHIFT_EXPR);
1311 gcc_assert (vr0->kind () == VR_RANGE
1312 && vr0->kind () == vr1->kind ());
1314 tree type = vr0->type ();
1315 wide_int res_lb, res_ub;
1316 wide_int vr0_lb = wi::to_wide (vr0->min ());
1317 wide_int vr0_ub = wi::to_wide (vr0->max ());
1318 wide_int vr1_lb = wi::to_wide (vr1->min ());
1319 wide_int vr1_ub = wi::to_wide (vr1->max ());
1320 bool overflow_undefined = TYPE_OVERFLOW_UNDEFINED (type);
1321 unsigned prec = TYPE_PRECISION (type);
1323 if (wide_int_range_multiplicative_op (res_lb, res_ub,
1324 code, TYPE_SIGN (type), prec,
1325 vr0_lb, vr0_ub, vr1_lb, vr1_ub,
1326 overflow_undefined))
1327 vr->set_and_canonicalize (VR_RANGE,
1328 wide_int_to_tree (type, res_lb),
1329 wide_int_to_tree (type, res_ub));
1330 else
1331 vr->set_varying ();
1334 /* If BOUND will include a symbolic bound, adjust it accordingly,
1335 otherwise leave it as is.
1337 CODE is the original operation that combined the bounds (PLUS_EXPR
1338 or MINUS_EXPR).
1340 TYPE is the type of the original operation.
1342 SYM_OPn is the symbolic for OPn if it has a symbolic.
1344 NEG_OPn is TRUE if the OPn was negated. */
1346 static void
1347 adjust_symbolic_bound (tree &bound, enum tree_code code, tree type,
1348 tree sym_op0, tree sym_op1,
1349 bool neg_op0, bool neg_op1)
1351 bool minus_p = (code == MINUS_EXPR);
1352 /* If the result bound is constant, we're done; otherwise, build the
1353 symbolic lower bound. */
1354 if (sym_op0 == sym_op1)
1356 else if (sym_op0)
1357 bound = build_symbolic_expr (type, sym_op0,
1358 neg_op0, bound);
1359 else if (sym_op1)
1361 /* We may not negate if that might introduce
1362 undefined overflow. */
1363 if (!minus_p
1364 || neg_op1
1365 || TYPE_OVERFLOW_WRAPS (type))
1366 bound = build_symbolic_expr (type, sym_op1,
1367 neg_op1 ^ minus_p, bound);
1368 else
1369 bound = NULL_TREE;
1373 /* Combine OP1 and OP1, which are two parts of a bound, into one wide
1374 int bound according to CODE. CODE is the operation combining the
1375 bound (either a PLUS_EXPR or a MINUS_EXPR).
1377 TYPE is the type of the combine operation.
1379 WI is the wide int to store the result.
1381 OVF is -1 if an underflow occurred, +1 if an overflow occurred or 0
1382 if over/underflow occurred. */
1384 static void
1385 combine_bound (enum tree_code code, wide_int &wi, wi::overflow_type &ovf,
1386 tree type, tree op0, tree op1)
1388 bool minus_p = (code == MINUS_EXPR);
1389 const signop sgn = TYPE_SIGN (type);
1390 const unsigned int prec = TYPE_PRECISION (type);
1392 /* Combine the bounds, if any. */
1393 if (op0 && op1)
1395 if (minus_p)
1396 wi = wi::sub (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
1397 else
1398 wi = wi::add (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
1400 else if (op0)
1401 wi = wi::to_wide (op0);
1402 else if (op1)
1404 if (minus_p)
1405 wi = wi::neg (wi::to_wide (op1), &ovf);
1406 else
1407 wi = wi::to_wide (op1);
1409 else
1410 wi = wi::shwi (0, prec);
1413 /* Given a range in [WMIN, WMAX], adjust it for possible overflow and
1414 put the result in VR.
1416 TYPE is the type of the range.
1418 MIN_OVF and MAX_OVF indicate what type of overflow, if any,
1419 occurred while originally calculating WMIN or WMAX. -1 indicates
1420 underflow. +1 indicates overflow. 0 indicates neither. */
1422 static void
1423 set_value_range_with_overflow (value_range_kind &kind, tree &min, tree &max,
1424 tree type,
1425 const wide_int &wmin, const wide_int &wmax,
1426 wi::overflow_type min_ovf,
1427 wi::overflow_type max_ovf)
1429 const signop sgn = TYPE_SIGN (type);
1430 const unsigned int prec = TYPE_PRECISION (type);
1432 /* For one bit precision if max < min, then the swapped
1433 range covers all values. */
1434 if (prec == 1 && wi::lt_p (wmax, wmin, sgn))
1436 kind = VR_VARYING;
1437 return;
1440 if (TYPE_OVERFLOW_WRAPS (type))
1442 /* If overflow wraps, truncate the values and adjust the
1443 range kind and bounds appropriately. */
1444 wide_int tmin = wide_int::from (wmin, prec, sgn);
1445 wide_int tmax = wide_int::from (wmax, prec, sgn);
1446 if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
1448 /* If the limits are swapped, we wrapped around and cover
1449 the entire range. We have a similar check at the end of
1450 extract_range_from_binary_expr. */
1451 if (wi::gt_p (tmin, tmax, sgn))
1452 kind = VR_VARYING;
1453 else
1455 kind = VR_RANGE;
1456 /* No overflow or both overflow or underflow. The
1457 range kind stays VR_RANGE. */
1458 min = wide_int_to_tree (type, tmin);
1459 max = wide_int_to_tree (type, tmax);
1461 return;
1463 else if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
1464 || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
1466 /* Min underflow or max overflow. The range kind
1467 changes to VR_ANTI_RANGE. */
1468 bool covers = false;
1469 wide_int tem = tmin;
1470 tmin = tmax + 1;
1471 if (wi::cmp (tmin, tmax, sgn) < 0)
1472 covers = true;
1473 tmax = tem - 1;
1474 if (wi::cmp (tmax, tem, sgn) > 0)
1475 covers = true;
1476 /* If the anti-range would cover nothing, drop to varying.
1477 Likewise if the anti-range bounds are outside of the
1478 types values. */
1479 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
1481 kind = VR_VARYING;
1482 return;
1484 kind = VR_ANTI_RANGE;
1485 min = wide_int_to_tree (type, tmin);
1486 max = wide_int_to_tree (type, tmax);
1487 return;
1489 else
1491 /* Other underflow and/or overflow, drop to VR_VARYING. */
1492 kind = VR_VARYING;
1493 return;
1496 else
1498 /* If overflow does not wrap, saturate to the types min/max
1499 value. */
1500 wide_int type_min = wi::min_value (prec, sgn);
1501 wide_int type_max = wi::max_value (prec, sgn);
1502 kind = VR_RANGE;
1503 if (min_ovf == wi::OVF_UNDERFLOW)
1504 min = wide_int_to_tree (type, type_min);
1505 else if (min_ovf == wi::OVF_OVERFLOW)
1506 min = wide_int_to_tree (type, type_max);
1507 else
1508 min = wide_int_to_tree (type, wmin);
1510 if (max_ovf == wi::OVF_UNDERFLOW)
1511 max = wide_int_to_tree (type, type_min);
1512 else if (max_ovf == wi::OVF_OVERFLOW)
1513 max = wide_int_to_tree (type, type_max);
1514 else
1515 max = wide_int_to_tree (type, wmax);
1519 /* Extract range information from a binary operation CODE based on
1520 the ranges of each of its operands *VR0 and *VR1 with resulting
1521 type EXPR_TYPE. The resulting range is stored in *VR. */
1523 void
1524 extract_range_from_binary_expr (value_range_base *vr,
1525 enum tree_code code, tree expr_type,
1526 const value_range_base *vr0_,
1527 const value_range_base *vr1_)
1529 signop sign = TYPE_SIGN (expr_type);
1530 unsigned int prec = TYPE_PRECISION (expr_type);
1531 value_range_base vr0 = *vr0_, vr1 = *vr1_;
1532 value_range_base vrtem0, vrtem1;
1533 enum value_range_kind type;
1534 tree min = NULL_TREE, max = NULL_TREE;
1535 int cmp;
1537 if (!INTEGRAL_TYPE_P (expr_type)
1538 && !POINTER_TYPE_P (expr_type))
1540 vr->set_varying ();
1541 return;
1544 /* Not all binary expressions can be applied to ranges in a
1545 meaningful way. Handle only arithmetic operations. */
1546 if (code != PLUS_EXPR
1547 && code != MINUS_EXPR
1548 && code != POINTER_PLUS_EXPR
1549 && code != MULT_EXPR
1550 && code != TRUNC_DIV_EXPR
1551 && code != FLOOR_DIV_EXPR
1552 && code != CEIL_DIV_EXPR
1553 && code != EXACT_DIV_EXPR
1554 && code != ROUND_DIV_EXPR
1555 && code != TRUNC_MOD_EXPR
1556 && code != RSHIFT_EXPR
1557 && code != LSHIFT_EXPR
1558 && code != MIN_EXPR
1559 && code != MAX_EXPR
1560 && code != BIT_AND_EXPR
1561 && code != BIT_IOR_EXPR
1562 && code != BIT_XOR_EXPR)
1564 vr->set_varying ();
1565 return;
1568 /* If both ranges are UNDEFINED, so is the result. */
1569 if (vr0.undefined_p () && vr1.undefined_p ())
1571 vr->set_undefined ();
1572 return;
1574 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
1575 code. At some point we may want to special-case operations that
1576 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
1577 operand. */
1578 else if (vr0.undefined_p ())
1579 vr0.set_varying ();
1580 else if (vr1.undefined_p ())
1581 vr1.set_varying ();
1583 /* We get imprecise results from ranges_from_anti_range when
1584 code is EXACT_DIV_EXPR. We could mask out bits in the resulting
1585 range, but then we also need to hack up vrp_union. It's just
1586 easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */
1587 if (code == EXACT_DIV_EXPR && range_is_nonnull (&vr0))
1589 vr->set_nonnull (expr_type);
1590 return;
1593 /* Now canonicalize anti-ranges to ranges when they are not symbolic
1594 and express ~[] op X as ([]' op X) U ([]'' op X). */
1595 if (vr0.kind () == VR_ANTI_RANGE
1596 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
1598 extract_range_from_binary_expr (vr, code, expr_type, &vrtem0, vr1_);
1599 if (!vrtem1.undefined_p ())
1601 value_range_base vrres;
1602 extract_range_from_binary_expr (&vrres, code, expr_type,
1603 &vrtem1, vr1_);
1604 vr->union_ (&vrres);
1606 return;
1608 /* Likewise for X op ~[]. */
1609 if (vr1.kind () == VR_ANTI_RANGE
1610 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
1612 extract_range_from_binary_expr (vr, code, expr_type, vr0_, &vrtem0);
1613 if (!vrtem1.undefined_p ())
1615 value_range_base vrres;
1616 extract_range_from_binary_expr (&vrres, code, expr_type,
1617 vr0_, &vrtem1);
1618 vr->union_ (&vrres);
1620 return;
1623 /* The type of the resulting value range defaults to VR0.TYPE. */
1624 type = vr0.kind ();
1626 /* Refuse to operate on VARYING ranges, ranges of different kinds
1627 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
1628 because we may be able to derive a useful range even if one of
1629 the operands is VR_VARYING or symbolic range. Similarly for
1630 divisions, MIN/MAX and PLUS/MINUS.
1632 TODO, we may be able to derive anti-ranges in some cases. */
1633 if (code != BIT_AND_EXPR
1634 && code != BIT_IOR_EXPR
1635 && code != TRUNC_DIV_EXPR
1636 && code != FLOOR_DIV_EXPR
1637 && code != CEIL_DIV_EXPR
1638 && code != EXACT_DIV_EXPR
1639 && code != ROUND_DIV_EXPR
1640 && code != TRUNC_MOD_EXPR
1641 && code != MIN_EXPR
1642 && code != MAX_EXPR
1643 && code != PLUS_EXPR
1644 && code != MINUS_EXPR
1645 && code != RSHIFT_EXPR
1646 && code != POINTER_PLUS_EXPR
1647 && (vr0.varying_p ()
1648 || vr1.varying_p ()
1649 || vr0.kind () != vr1.kind ()
1650 || vr0.symbolic_p ()
1651 || vr1.symbolic_p ()))
1653 vr->set_varying ();
1654 return;
1657 /* Now evaluate the expression to determine the new range. */
1658 if (POINTER_TYPE_P (expr_type))
1660 if (code == MIN_EXPR || code == MAX_EXPR)
1662 /* For MIN/MAX expressions with pointers, we only care about
1663 nullness, if both are non null, then the result is nonnull.
1664 If both are null, then the result is null. Otherwise they
1665 are varying. */
1666 if (!range_includes_zero_p (&vr0) && !range_includes_zero_p (&vr1))
1667 vr->set_nonnull (expr_type);
1668 else if (range_is_null (&vr0) && range_is_null (&vr1))
1669 vr->set_null (expr_type);
1670 else
1671 vr->set_varying ();
1673 else if (code == POINTER_PLUS_EXPR)
1675 /* For pointer types, we are really only interested in asserting
1676 whether the expression evaluates to non-NULL. */
1677 if (!range_includes_zero_p (&vr0)
1678 || !range_includes_zero_p (&vr1))
1679 vr->set_nonnull (expr_type);
1680 else if (range_is_null (&vr0) && range_is_null (&vr1))
1681 vr->set_null (expr_type);
1682 else
1683 vr->set_varying ();
1685 else if (code == BIT_AND_EXPR)
1687 /* For pointer types, we are really only interested in asserting
1688 whether the expression evaluates to non-NULL. */
1689 if (!range_includes_zero_p (&vr0) && !range_includes_zero_p (&vr1))
1690 vr->set_nonnull (expr_type);
1691 else if (range_is_null (&vr0) || range_is_null (&vr1))
1692 vr->set_null (expr_type);
1693 else
1694 vr->set_varying ();
1696 else
1697 vr->set_varying ();
1699 return;
1702 /* For integer ranges, apply the operation to each end of the
1703 range and see what we end up with. */
1704 if (code == PLUS_EXPR || code == MINUS_EXPR)
1706 /* This will normalize things such that calculating
1707 [0,0] - VR_VARYING is not dropped to varying, but is
1708 calculated as [MIN+1, MAX]. */
1709 if (vr0.varying_p ())
1710 vr0.set (VR_RANGE, vrp_val_min (expr_type), vrp_val_max (expr_type));
1711 if (vr1.varying_p ())
1712 vr1.set (VR_RANGE, vrp_val_min (expr_type), vrp_val_max (expr_type));
1714 const bool minus_p = (code == MINUS_EXPR);
1715 tree min_op0 = vr0.min ();
1716 tree min_op1 = minus_p ? vr1.max () : vr1.min ();
1717 tree max_op0 = vr0.max ();
1718 tree max_op1 = minus_p ? vr1.min () : vr1.max ();
1719 tree sym_min_op0 = NULL_TREE;
1720 tree sym_min_op1 = NULL_TREE;
1721 tree sym_max_op0 = NULL_TREE;
1722 tree sym_max_op1 = NULL_TREE;
1723 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
1725 neg_min_op0 = neg_min_op1 = neg_max_op0 = neg_max_op1 = false;
1727 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
1728 single-symbolic ranges, try to compute the precise resulting range,
1729 but only if we know that this resulting range will also be constant
1730 or single-symbolic. */
1731 if (vr0.kind () == VR_RANGE && vr1.kind () == VR_RANGE
1732 && (TREE_CODE (min_op0) == INTEGER_CST
1733 || (sym_min_op0
1734 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
1735 && (TREE_CODE (min_op1) == INTEGER_CST
1736 || (sym_min_op1
1737 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
1738 && (!(sym_min_op0 && sym_min_op1)
1739 || (sym_min_op0 == sym_min_op1
1740 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
1741 && (TREE_CODE (max_op0) == INTEGER_CST
1742 || (sym_max_op0
1743 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
1744 && (TREE_CODE (max_op1) == INTEGER_CST
1745 || (sym_max_op1
1746 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
1747 && (!(sym_max_op0 && sym_max_op1)
1748 || (sym_max_op0 == sym_max_op1
1749 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
1751 wide_int wmin, wmax;
1752 wi::overflow_type min_ovf = wi::OVF_NONE;
1753 wi::overflow_type max_ovf = wi::OVF_NONE;
1755 /* Build the bounds. */
1756 combine_bound (code, wmin, min_ovf, expr_type, min_op0, min_op1);
1757 combine_bound (code, wmax, max_ovf, expr_type, max_op0, max_op1);
1759 /* If we have overflow for the constant part and the resulting
1760 range will be symbolic, drop to VR_VARYING. */
1761 if (((bool)min_ovf && sym_min_op0 != sym_min_op1)
1762 || ((bool)max_ovf && sym_max_op0 != sym_max_op1))
1764 vr->set_varying ();
1765 return;
1768 /* Adjust the range for possible overflow. */
1769 min = NULL_TREE;
1770 max = NULL_TREE;
1771 set_value_range_with_overflow (type, min, max, expr_type,
1772 wmin, wmax, min_ovf, max_ovf);
1773 if (type == VR_VARYING)
1775 vr->set_varying ();
1776 return;
1779 /* Build the symbolic bounds if needed. */
1780 adjust_symbolic_bound (min, code, expr_type,
1781 sym_min_op0, sym_min_op1,
1782 neg_min_op0, neg_min_op1);
1783 adjust_symbolic_bound (max, code, expr_type,
1784 sym_max_op0, sym_max_op1,
1785 neg_max_op0, neg_max_op1);
1787 else
1789 /* For other cases, for example if we have a PLUS_EXPR with two
1790 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
1791 to compute a precise range for such a case.
1792 ??? General even mixed range kind operations can be expressed
1793 by for example transforming ~[3, 5] + [1, 2] to range-only
1794 operations and a union primitive:
1795 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
1796 [-INF+1, 4] U [6, +INF(OVF)]
1797 though usually the union is not exactly representable with
1798 a single range or anti-range as the above is
1799 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
1800 but one could use a scheme similar to equivalences for this. */
1801 vr->set_varying ();
1802 return;
1805 else if (code == MIN_EXPR
1806 || code == MAX_EXPR)
1808 wide_int wmin, wmax;
1809 wide_int vr0_min, vr0_max;
1810 wide_int vr1_min, vr1_max;
1811 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1812 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1813 if (wide_int_range_min_max (wmin, wmax, code, sign, prec,
1814 vr0_min, vr0_max, vr1_min, vr1_max))
1815 vr->set (VR_RANGE, wide_int_to_tree (expr_type, wmin),
1816 wide_int_to_tree (expr_type, wmax));
1817 else
1818 vr->set_varying ();
1819 return;
1821 else if (code == MULT_EXPR)
1823 if (!range_int_cst_p (&vr0)
1824 || !range_int_cst_p (&vr1))
1826 vr->set_varying ();
1827 return;
1829 extract_range_from_multiplicative_op (vr, code, &vr0, &vr1);
1830 return;
1832 else if (code == RSHIFT_EXPR
1833 || code == LSHIFT_EXPR)
1835 if (range_int_cst_p (&vr1)
1836 && !wide_int_range_shift_undefined_p
1837 (TYPE_SIGN (TREE_TYPE (vr1.min ())),
1838 prec,
1839 wi::to_wide (vr1.min ()),
1840 wi::to_wide (vr1.max ())))
1842 if (code == RSHIFT_EXPR)
1844 /* Even if vr0 is VARYING or otherwise not usable, we can derive
1845 useful ranges just from the shift count. E.g.
1846 x >> 63 for signed 64-bit x is always [-1, 0]. */
1847 if (vr0.kind () != VR_RANGE || vr0.symbolic_p ())
1848 vr0.set (VR_RANGE, vrp_val_min (expr_type),
1849 vrp_val_max (expr_type));
1850 extract_range_from_multiplicative_op (vr, code, &vr0, &vr1);
1851 return;
1853 else if (code == LSHIFT_EXPR
1854 && range_int_cst_p (&vr0))
1856 wide_int res_lb, res_ub;
1857 if (wide_int_range_lshift (res_lb, res_ub, sign, prec,
1858 wi::to_wide (vr0.min ()),
1859 wi::to_wide (vr0.max ()),
1860 wi::to_wide (vr1.min ()),
1861 wi::to_wide (vr1.max ()),
1862 TYPE_OVERFLOW_UNDEFINED (expr_type)))
1864 min = wide_int_to_tree (expr_type, res_lb);
1865 max = wide_int_to_tree (expr_type, res_ub);
1866 vr->set_and_canonicalize (VR_RANGE, min, max);
1867 return;
1871 vr->set_varying ();
1872 return;
1874 else if (code == TRUNC_DIV_EXPR
1875 || code == FLOOR_DIV_EXPR
1876 || code == CEIL_DIV_EXPR
1877 || code == EXACT_DIV_EXPR
1878 || code == ROUND_DIV_EXPR)
1880 wide_int dividend_min, dividend_max, divisor_min, divisor_max;
1881 wide_int wmin, wmax, extra_min, extra_max;
1882 bool extra_range_p;
1884 /* Special case explicit division by zero as undefined. */
1885 if (range_is_null (&vr1))
1887 vr->set_undefined ();
1888 return;
1891 /* First, normalize ranges into constants we can handle. Note
1892 that VR_ANTI_RANGE's of constants were already normalized
1893 before arriving here.
1895 NOTE: As a future improvement, we may be able to do better
1896 with mixed symbolic (anti-)ranges like [0, A]. See note in
1897 ranges_from_anti_range. */
1898 extract_range_into_wide_ints (&vr0, sign, prec,
1899 dividend_min, dividend_max);
1900 extract_range_into_wide_ints (&vr1, sign, prec,
1901 divisor_min, divisor_max);
1902 if (!wide_int_range_div (wmin, wmax, code, sign, prec,
1903 dividend_min, dividend_max,
1904 divisor_min, divisor_max,
1905 TYPE_OVERFLOW_UNDEFINED (expr_type),
1906 extra_range_p, extra_min, extra_max))
1908 vr->set_varying ();
1909 return;
1911 vr->set (VR_RANGE, wide_int_to_tree (expr_type, wmin),
1912 wide_int_to_tree (expr_type, wmax));
1913 if (extra_range_p)
1915 value_range_base
1916 extra_range (VR_RANGE, wide_int_to_tree (expr_type, extra_min),
1917 wide_int_to_tree (expr_type, extra_max));
1918 vr->union_ (&extra_range);
1920 return;
1922 else if (code == TRUNC_MOD_EXPR)
1924 if (range_is_null (&vr1))
1926 vr->set_undefined ();
1927 return;
1929 wide_int wmin, wmax, tmp;
1930 wide_int vr0_min, vr0_max, vr1_min, vr1_max;
1931 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1932 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1933 wide_int_range_trunc_mod (wmin, wmax, sign, prec,
1934 vr0_min, vr0_max, vr1_min, vr1_max);
1935 min = wide_int_to_tree (expr_type, wmin);
1936 max = wide_int_to_tree (expr_type, wmax);
1937 vr->set (VR_RANGE, min, max);
1938 return;
1940 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
1942 wide_int may_be_nonzero0, may_be_nonzero1;
1943 wide_int must_be_nonzero0, must_be_nonzero1;
1944 wide_int wmin, wmax;
1945 wide_int vr0_min, vr0_max, vr1_min, vr1_max;
1946 vrp_set_zero_nonzero_bits (expr_type, &vr0,
1947 &may_be_nonzero0, &must_be_nonzero0);
1948 vrp_set_zero_nonzero_bits (expr_type, &vr1,
1949 &may_be_nonzero1, &must_be_nonzero1);
1950 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1951 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1952 if (code == BIT_AND_EXPR)
1954 if (wide_int_range_bit_and (wmin, wmax, sign, prec,
1955 vr0_min, vr0_max,
1956 vr1_min, vr1_max,
1957 must_be_nonzero0,
1958 may_be_nonzero0,
1959 must_be_nonzero1,
1960 may_be_nonzero1))
1962 min = wide_int_to_tree (expr_type, wmin);
1963 max = wide_int_to_tree (expr_type, wmax);
1964 vr->set (VR_RANGE, min, max);
1966 else
1967 vr->set_varying ();
1968 return;
1970 else if (code == BIT_IOR_EXPR)
1972 if (wide_int_range_bit_ior (wmin, wmax, sign,
1973 vr0_min, vr0_max,
1974 vr1_min, vr1_max,
1975 must_be_nonzero0,
1976 may_be_nonzero0,
1977 must_be_nonzero1,
1978 may_be_nonzero1))
1980 min = wide_int_to_tree (expr_type, wmin);
1981 max = wide_int_to_tree (expr_type, wmax);
1982 vr->set (VR_RANGE, min, max);
1984 else
1985 vr->set_varying ();
1986 return;
1988 else if (code == BIT_XOR_EXPR)
1990 if (wide_int_range_bit_xor (wmin, wmax, sign, prec,
1991 must_be_nonzero0,
1992 may_be_nonzero0,
1993 must_be_nonzero1,
1994 may_be_nonzero1))
1996 min = wide_int_to_tree (expr_type, wmin);
1997 max = wide_int_to_tree (expr_type, wmax);
1998 vr->set (VR_RANGE, min, max);
2000 else
2001 vr->set_varying ();
2002 return;
2005 else
2006 gcc_unreachable ();
2008 /* If either MIN or MAX overflowed, then set the resulting range to
2009 VARYING. */
2010 if (min == NULL_TREE
2011 || TREE_OVERFLOW_P (min)
2012 || max == NULL_TREE
2013 || TREE_OVERFLOW_P (max))
2015 vr->set_varying ();
2016 return;
2019 /* We punt for [-INF, +INF].
2020 We learn nothing when we have INF on both sides.
2021 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
2022 if (vrp_val_is_min (min) && vrp_val_is_max (max))
2024 vr->set_varying ();
2025 return;
2028 cmp = compare_values (min, max);
2029 if (cmp == -2 || cmp == 1)
2031 /* If the new range has its limits swapped around (MIN > MAX),
2032 then the operation caused one of them to wrap around, mark
2033 the new range VARYING. */
2034 vr->set_varying ();
2036 else
2037 vr->set (type, min, max);
2040 /* Extract range information from a unary operation CODE based on
2041 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2042 The resulting range is stored in *VR. */
2044 void
2045 extract_range_from_unary_expr (value_range_base *vr,
2046 enum tree_code code, tree type,
2047 const value_range_base *vr0_, tree op0_type)
2049 signop sign = TYPE_SIGN (type);
2050 unsigned int prec = TYPE_PRECISION (type);
2051 value_range_base vr0 = *vr0_;
2052 value_range_base vrtem0, vrtem1;
2054 /* VRP only operates on integral and pointer types. */
2055 if (!(INTEGRAL_TYPE_P (op0_type)
2056 || POINTER_TYPE_P (op0_type))
2057 || !(INTEGRAL_TYPE_P (type)
2058 || POINTER_TYPE_P (type)))
2060 vr->set_varying ();
2061 return;
2064 /* If VR0 is UNDEFINED, so is the result. */
2065 if (vr0.undefined_p ())
2067 vr->set_undefined ();
2068 return;
2071 /* Handle operations that we express in terms of others. */
2072 if (code == PAREN_EXPR)
2074 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
2075 *vr = vr0;
2076 return;
2078 else if (code == NEGATE_EXPR)
2080 /* -X is simply 0 - X, so re-use existing code that also handles
2081 anti-ranges fine. */
2082 value_range_base zero;
2083 zero.set (build_int_cst (type, 0));
2084 extract_range_from_binary_expr (vr, MINUS_EXPR, type, &zero, &vr0);
2085 return;
2087 else if (code == BIT_NOT_EXPR)
2089 /* ~X is simply -1 - X, so re-use existing code that also handles
2090 anti-ranges fine. */
2091 value_range_base minusone;
2092 minusone.set (build_int_cst (type, -1));
2093 extract_range_from_binary_expr (vr, MINUS_EXPR, type, &minusone, &vr0);
2094 return;
2097 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2098 and express op ~[] as (op []') U (op []''). */
2099 if (vr0.kind () == VR_ANTI_RANGE
2100 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2102 extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
2103 if (!vrtem1.undefined_p ())
2105 value_range_base vrres;
2106 extract_range_from_unary_expr (&vrres, code, type,
2107 &vrtem1, op0_type);
2108 vr->union_ (&vrres);
2110 return;
2113 if (CONVERT_EXPR_CODE_P (code))
2115 tree inner_type = op0_type;
2116 tree outer_type = type;
2118 /* If the expression involves a pointer, we are only interested in
2119 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).
2121 This may lose precision when converting (char *)~[0,2] to
2122 int, because we'll forget that the pointer can also not be 1
2123 or 2. In practice we don't care, as this is some idiot
2124 storing a magic constant to a pointer. */
2125 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (op0_type))
2127 if (!range_includes_zero_p (&vr0))
2128 vr->set_nonnull (type);
2129 else if (range_is_null (&vr0))
2130 vr->set_null (type);
2131 else
2132 vr->set_varying ();
2133 return;
2136 /* The POINTER_TYPE_P code above will have dealt with all
2137 pointer anti-ranges. Any remaining anti-ranges at this point
2138 will be integer conversions from SSA names that will be
2139 normalized into VARYING. For instance: ~[x_55, x_55]. */
2140 gcc_assert (vr0.kind () != VR_ANTI_RANGE
2141 || TREE_CODE (vr0.min ()) != INTEGER_CST);
2143 /* NOTES: Previously we were returning VARYING for all symbolics, but
2144 we can do better by treating them as [-MIN, +MAX]. For
2145 example, converting [SYM, SYM] from INT to LONG UNSIGNED,
2146 we can return: ~[0x8000000, 0xffffffff7fffffff].
2148 We were also failing to convert ~[0,0] from char* to unsigned,
2149 instead choosing to return VR_VARYING. Now we return ~[0,0]. */
2150 wide_int vr0_min, vr0_max, wmin, wmax;
2151 signop inner_sign = TYPE_SIGN (inner_type);
2152 signop outer_sign = TYPE_SIGN (outer_type);
2153 unsigned inner_prec = TYPE_PRECISION (inner_type);
2154 unsigned outer_prec = TYPE_PRECISION (outer_type);
2155 extract_range_into_wide_ints (&vr0, inner_sign, inner_prec,
2156 vr0_min, vr0_max);
2157 if (wide_int_range_convert (wmin, wmax,
2158 inner_sign, inner_prec,
2159 outer_sign, outer_prec,
2160 vr0_min, vr0_max))
2162 tree min = wide_int_to_tree (outer_type, wmin);
2163 tree max = wide_int_to_tree (outer_type, wmax);
2164 vr->set_and_canonicalize (VR_RANGE, min, max);
2166 else
2167 vr->set_varying ();
2168 return;
2170 else if (code == ABS_EXPR)
2172 wide_int wmin, wmax;
2173 wide_int vr0_min, vr0_max;
2174 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
2175 if (wide_int_range_abs (wmin, wmax, sign, prec, vr0_min, vr0_max,
2176 TYPE_OVERFLOW_UNDEFINED (type)))
2177 vr->set (VR_RANGE, wide_int_to_tree (type, wmin),
2178 wide_int_to_tree (type, wmax));
2179 else
2180 vr->set_varying ();
2181 return;
2184 /* For unhandled operations fall back to varying. */
2185 vr->set_varying ();
2186 return;
2189 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2190 create a new SSA name N and return the assertion assignment
2191 'N = ASSERT_EXPR <V, V OP W>'. */
2193 static gimple *
2194 build_assert_expr_for (tree cond, tree v)
2196 tree a;
2197 gassign *assertion;
2199 gcc_assert (TREE_CODE (v) == SSA_NAME
2200 && COMPARISON_CLASS_P (cond));
2202 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2203 assertion = gimple_build_assign (NULL_TREE, a);
2205 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2206 operand of the ASSERT_EXPR. Create it so the new name and the old one
2207 are registered in the replacement table so that we can fix the SSA web
2208 after adding all the ASSERT_EXPRs. */
2209 tree new_def = create_new_def_for (v, assertion, NULL);
2210 /* Make sure we preserve abnormalness throughout an ASSERT_EXPR chain
2211 given we have to be able to fully propagate those out to re-create
2212 valid SSA when removing the asserts. */
2213 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (v))
2214 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_def) = 1;
2216 return assertion;
2220 /* Return false if EXPR is a predicate expression involving floating
2221 point values. */
2223 static inline bool
2224 fp_predicate (gimple *stmt)
2226 GIMPLE_CHECK (stmt, GIMPLE_COND);
2228 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
2231 /* If the range of values taken by OP can be inferred after STMT executes,
2232 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2233 describes the inferred range. Return true if a range could be
2234 inferred. */
2236 bool
2237 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
2239 *val_p = NULL_TREE;
2240 *comp_code_p = ERROR_MARK;
2242 /* Do not attempt to infer anything in names that flow through
2243 abnormal edges. */
2244 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2245 return false;
2247 /* If STMT is the last statement of a basic block with no normal
2248 successors, there is no point inferring anything about any of its
2249 operands. We would not be able to find a proper insertion point
2250 for the assertion, anyway. */
2251 if (stmt_ends_bb_p (stmt))
2253 edge_iterator ei;
2254 edge e;
2256 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
2257 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
2258 break;
2259 if (e == NULL)
2260 return false;
2263 if (infer_nonnull_range (stmt, op))
2265 *val_p = build_int_cst (TREE_TYPE (op), 0);
2266 *comp_code_p = NE_EXPR;
2267 return true;
2270 return false;
2274 void dump_asserts_for (FILE *, tree);
2275 void debug_asserts_for (tree);
2276 void dump_all_asserts (FILE *);
2277 void debug_all_asserts (void);
2279 /* Dump all the registered assertions for NAME to FILE. */
2281 void
2282 dump_asserts_for (FILE *file, tree name)
2284 assert_locus *loc;
2286 fprintf (file, "Assertions to be inserted for ");
2287 print_generic_expr (file, name);
2288 fprintf (file, "\n");
2290 loc = asserts_for[SSA_NAME_VERSION (name)];
2291 while (loc)
2293 fprintf (file, "\t");
2294 print_gimple_stmt (file, gsi_stmt (loc->si), 0);
2295 fprintf (file, "\n\tBB #%d", loc->bb->index);
2296 if (loc->e)
2298 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2299 loc->e->dest->index);
2300 dump_edge_info (file, loc->e, dump_flags, 0);
2302 fprintf (file, "\n\tPREDICATE: ");
2303 print_generic_expr (file, loc->expr);
2304 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
2305 print_generic_expr (file, loc->val);
2306 fprintf (file, "\n\n");
2307 loc = loc->next;
2310 fprintf (file, "\n");
2314 /* Dump all the registered assertions for NAME to stderr. */
2316 DEBUG_FUNCTION void
2317 debug_asserts_for (tree name)
2319 dump_asserts_for (stderr, name);
2323 /* Dump all the registered assertions for all the names to FILE. */
2325 void
2326 dump_all_asserts (FILE *file)
2328 unsigned i;
2329 bitmap_iterator bi;
2331 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2332 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2333 dump_asserts_for (file, ssa_name (i));
2334 fprintf (file, "\n");
2338 /* Dump all the registered assertions for all the names to stderr. */
2340 DEBUG_FUNCTION void
2341 debug_all_asserts (void)
2343 dump_all_asserts (stderr);
2346 /* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS. */
2348 static void
2349 add_assert_info (vec<assert_info> &asserts,
2350 tree name, tree expr, enum tree_code comp_code, tree val)
2352 assert_info info;
2353 info.comp_code = comp_code;
2354 info.name = name;
2355 if (TREE_OVERFLOW_P (val))
2356 val = drop_tree_overflow (val);
2357 info.val = val;
2358 info.expr = expr;
2359 asserts.safe_push (info);
2360 if (dump_enabled_p ())
2361 dump_printf (MSG_NOTE | MSG_PRIORITY_INTERNALS,
2362 "Adding assert for %T from %T %s %T\n",
2363 name, expr, op_symbol_code (comp_code), val);
2366 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2367 'EXPR COMP_CODE VAL' at a location that dominates block BB or
2368 E->DEST, then register this location as a possible insertion point
2369 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
2371 BB, E and SI provide the exact insertion point for the new
2372 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2373 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2374 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2375 must not be NULL. */
2377 static void
2378 register_new_assert_for (tree name, tree expr,
2379 enum tree_code comp_code,
2380 tree val,
2381 basic_block bb,
2382 edge e,
2383 gimple_stmt_iterator si)
2385 assert_locus *n, *loc, *last_loc;
2386 basic_block dest_bb;
2388 gcc_checking_assert (bb == NULL || e == NULL);
2390 if (e == NULL)
2391 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
2392 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
2394 /* Never build an assert comparing against an integer constant with
2395 TREE_OVERFLOW set. This confuses our undefined overflow warning
2396 machinery. */
2397 if (TREE_OVERFLOW_P (val))
2398 val = drop_tree_overflow (val);
2400 /* The new assertion A will be inserted at BB or E. We need to
2401 determine if the new location is dominated by a previously
2402 registered location for A. If we are doing an edge insertion,
2403 assume that A will be inserted at E->DEST. Note that this is not
2404 necessarily true.
2406 If E is a critical edge, it will be split. But even if E is
2407 split, the new block will dominate the same set of blocks that
2408 E->DEST dominates.
2410 The reverse, however, is not true, blocks dominated by E->DEST
2411 will not be dominated by the new block created to split E. So,
2412 if the insertion location is on a critical edge, we will not use
2413 the new location to move another assertion previously registered
2414 at a block dominated by E->DEST. */
2415 dest_bb = (bb) ? bb : e->dest;
2417 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2418 VAL at a block dominating DEST_BB, then we don't need to insert a new
2419 one. Similarly, if the same assertion already exists at a block
2420 dominated by DEST_BB and the new location is not on a critical
2421 edge, then update the existing location for the assertion (i.e.,
2422 move the assertion up in the dominance tree).
2424 Note, this is implemented as a simple linked list because there
2425 should not be more than a handful of assertions registered per
2426 name. If this becomes a performance problem, a table hashed by
2427 COMP_CODE and VAL could be implemented. */
2428 loc = asserts_for[SSA_NAME_VERSION (name)];
2429 last_loc = loc;
2430 while (loc)
2432 if (loc->comp_code == comp_code
2433 && (loc->val == val
2434 || operand_equal_p (loc->val, val, 0))
2435 && (loc->expr == expr
2436 || operand_equal_p (loc->expr, expr, 0)))
2438 /* If E is not a critical edge and DEST_BB
2439 dominates the existing location for the assertion, move
2440 the assertion up in the dominance tree by updating its
2441 location information. */
2442 if ((e == NULL || !EDGE_CRITICAL_P (e))
2443 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2445 loc->bb = dest_bb;
2446 loc->e = e;
2447 loc->si = si;
2448 return;
2452 /* Update the last node of the list and move to the next one. */
2453 last_loc = loc;
2454 loc = loc->next;
2457 /* If we didn't find an assertion already registered for
2458 NAME COMP_CODE VAL, add a new one at the end of the list of
2459 assertions associated with NAME. */
2460 n = XNEW (struct assert_locus);
2461 n->bb = dest_bb;
2462 n->e = e;
2463 n->si = si;
2464 n->comp_code = comp_code;
2465 n->val = val;
2466 n->expr = expr;
2467 n->next = NULL;
2469 if (last_loc)
2470 last_loc->next = n;
2471 else
2472 asserts_for[SSA_NAME_VERSION (name)] = n;
2474 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2477 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
2478 Extract a suitable test code and value and store them into *CODE_P and
2479 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
2481 If no extraction was possible, return FALSE, otherwise return TRUE.
2483 If INVERT is true, then we invert the result stored into *CODE_P. */
2485 static bool
2486 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
2487 tree cond_op0, tree cond_op1,
2488 bool invert, enum tree_code *code_p,
2489 tree *val_p)
2491 enum tree_code comp_code;
2492 tree val;
2494 /* Otherwise, we have a comparison of the form NAME COMP VAL
2495 or VAL COMP NAME. */
2496 if (name == cond_op1)
2498 /* If the predicate is of the form VAL COMP NAME, flip
2499 COMP around because we need to register NAME as the
2500 first operand in the predicate. */
2501 comp_code = swap_tree_comparison (cond_code);
2502 val = cond_op0;
2504 else if (name == cond_op0)
2506 /* The comparison is of the form NAME COMP VAL, so the
2507 comparison code remains unchanged. */
2508 comp_code = cond_code;
2509 val = cond_op1;
2511 else
2512 gcc_unreachable ();
2514 /* Invert the comparison code as necessary. */
2515 if (invert)
2516 comp_code = invert_tree_comparison (comp_code, 0);
2518 /* VRP only handles integral and pointer types. */
2519 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
2520 && ! POINTER_TYPE_P (TREE_TYPE (val)))
2521 return false;
2523 /* Do not register always-false predicates.
2524 FIXME: this works around a limitation in fold() when dealing with
2525 enumerations. Given 'enum { N1, N2 } x;', fold will not
2526 fold 'if (x > N2)' to 'if (0)'. */
2527 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2528 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2530 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2531 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2533 if (comp_code == GT_EXPR
2534 && (!max
2535 || compare_values (val, max) == 0))
2536 return false;
2538 if (comp_code == LT_EXPR
2539 && (!min
2540 || compare_values (val, min) == 0))
2541 return false;
2543 *code_p = comp_code;
2544 *val_p = val;
2545 return true;
2548 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
2549 (otherwise return VAL). VAL and MASK must be zero-extended for
2550 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
2551 (to transform signed values into unsigned) and at the end xor
2552 SGNBIT back. */
2554 static wide_int
2555 masked_increment (const wide_int &val_in, const wide_int &mask,
2556 const wide_int &sgnbit, unsigned int prec)
2558 wide_int bit = wi::one (prec), res;
2559 unsigned int i;
2561 wide_int val = val_in ^ sgnbit;
2562 for (i = 0; i < prec; i++, bit += bit)
2564 res = mask;
2565 if ((res & bit) == 0)
2566 continue;
2567 res = bit - 1;
2568 res = wi::bit_and_not (val + bit, res);
2569 res &= mask;
2570 if (wi::gtu_p (res, val))
2571 return res ^ sgnbit;
2573 return val ^ sgnbit;
2576 /* Helper for overflow_comparison_p
2578 OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2579 OP1's defining statement to see if it ultimately has the form
2580 OP0 CODE (OP0 PLUS INTEGER_CST)
2582 If so, return TRUE indicating this is an overflow test and store into
2583 *NEW_CST an updated constant that can be used in a narrowed range test.
2585 REVERSED indicates if the comparison was originally:
2587 OP1 CODE' OP0.
2589 This affects how we build the updated constant. */
2591 static bool
2592 overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
2593 bool follow_assert_exprs, bool reversed, tree *new_cst)
2595 /* See if this is a relational operation between two SSA_NAMES with
2596 unsigned, overflow wrapping values. If so, check it more deeply. */
2597 if ((code == LT_EXPR || code == LE_EXPR
2598 || code == GE_EXPR || code == GT_EXPR)
2599 && TREE_CODE (op0) == SSA_NAME
2600 && TREE_CODE (op1) == SSA_NAME
2601 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
2602 && TYPE_UNSIGNED (TREE_TYPE (op0))
2603 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
2605 gimple *op1_def = SSA_NAME_DEF_STMT (op1);
2607 /* If requested, follow any ASSERT_EXPRs backwards for OP1. */
2608 if (follow_assert_exprs)
2610 while (gimple_assign_single_p (op1_def)
2611 && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR)
2613 op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0);
2614 if (TREE_CODE (op1) != SSA_NAME)
2615 break;
2616 op1_def = SSA_NAME_DEF_STMT (op1);
2620 /* Now look at the defining statement of OP1 to see if it adds
2621 or subtracts a nonzero constant from another operand. */
2622 if (op1_def
2623 && is_gimple_assign (op1_def)
2624 && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
2625 && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
2626 && !integer_zerop (gimple_assign_rhs2 (op1_def)))
2628 tree target = gimple_assign_rhs1 (op1_def);
2630 /* If requested, follow ASSERT_EXPRs backwards for op0 looking
2631 for one where TARGET appears on the RHS. */
2632 if (follow_assert_exprs)
2634 /* Now see if that "other operand" is op0, following the chain
2635 of ASSERT_EXPRs if necessary. */
2636 gimple *op0_def = SSA_NAME_DEF_STMT (op0);
2637 while (op0 != target
2638 && gimple_assign_single_p (op0_def)
2639 && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR)
2641 op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0);
2642 if (TREE_CODE (op0) != SSA_NAME)
2643 break;
2644 op0_def = SSA_NAME_DEF_STMT (op0);
2648 /* If we did not find our target SSA_NAME, then this is not
2649 an overflow test. */
2650 if (op0 != target)
2651 return false;
2653 tree type = TREE_TYPE (op0);
2654 wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
2655 tree inc = gimple_assign_rhs2 (op1_def);
2656 if (reversed)
2657 *new_cst = wide_int_to_tree (type, max + wi::to_wide (inc));
2658 else
2659 *new_cst = wide_int_to_tree (type, max - wi::to_wide (inc));
2660 return true;
2663 return false;
2666 /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2667 OP1's defining statement to see if it ultimately has the form
2668 OP0 CODE (OP0 PLUS INTEGER_CST)
2670 If so, return TRUE indicating this is an overflow test and store into
2671 *NEW_CST an updated constant that can be used in a narrowed range test.
2673 These statements are left as-is in the IL to facilitate discovery of
2674 {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
2675 the alternate range representation is often useful within VRP. */
2677 bool
2678 overflow_comparison_p (tree_code code, tree name, tree val,
2679 bool use_equiv_p, tree *new_cst)
2681 if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst))
2682 return true;
2683 return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
2684 use_equiv_p, true, new_cst);
2688 /* Try to register an edge assertion for SSA name NAME on edge E for
2689 the condition COND contributing to the conditional jump pointed to by BSI.
2690 Invert the condition COND if INVERT is true. */
2692 static void
2693 register_edge_assert_for_2 (tree name, edge e,
2694 enum tree_code cond_code,
2695 tree cond_op0, tree cond_op1, bool invert,
2696 vec<assert_info> &asserts)
2698 tree val;
2699 enum tree_code comp_code;
2701 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
2702 cond_op0,
2703 cond_op1,
2704 invert, &comp_code, &val))
2705 return;
2707 /* Queue the assert. */
2708 tree x;
2709 if (overflow_comparison_p (comp_code, name, val, false, &x))
2711 enum tree_code new_code = ((comp_code == GT_EXPR || comp_code == GE_EXPR)
2712 ? GT_EXPR : LE_EXPR);
2713 add_assert_info (asserts, name, name, new_code, x);
2715 add_assert_info (asserts, name, name, comp_code, val);
2717 /* In the case of NAME <= CST and NAME being defined as
2718 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
2719 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
2720 This catches range and anti-range tests. */
2721 if ((comp_code == LE_EXPR
2722 || comp_code == GT_EXPR)
2723 && TREE_CODE (val) == INTEGER_CST
2724 && TYPE_UNSIGNED (TREE_TYPE (val)))
2726 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
2727 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
2729 /* Extract CST2 from the (optional) addition. */
2730 if (is_gimple_assign (def_stmt)
2731 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
2733 name2 = gimple_assign_rhs1 (def_stmt);
2734 cst2 = gimple_assign_rhs2 (def_stmt);
2735 if (TREE_CODE (name2) == SSA_NAME
2736 && TREE_CODE (cst2) == INTEGER_CST)
2737 def_stmt = SSA_NAME_DEF_STMT (name2);
2740 /* Extract NAME2 from the (optional) sign-changing cast. */
2741 if (gimple_assign_cast_p (def_stmt))
2743 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
2744 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
2745 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
2746 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
2747 name3 = gimple_assign_rhs1 (def_stmt);
2750 /* If name3 is used later, create an ASSERT_EXPR for it. */
2751 if (name3 != NULL_TREE
2752 && TREE_CODE (name3) == SSA_NAME
2753 && (cst2 == NULL_TREE
2754 || TREE_CODE (cst2) == INTEGER_CST)
2755 && INTEGRAL_TYPE_P (TREE_TYPE (name3)))
2757 tree tmp;
2759 /* Build an expression for the range test. */
2760 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
2761 if (cst2 != NULL_TREE)
2762 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
2763 add_assert_info (asserts, name3, tmp, comp_code, val);
2766 /* If name2 is used later, create an ASSERT_EXPR for it. */
2767 if (name2 != NULL_TREE
2768 && TREE_CODE (name2) == SSA_NAME
2769 && TREE_CODE (cst2) == INTEGER_CST
2770 && INTEGRAL_TYPE_P (TREE_TYPE (name2)))
2772 tree tmp;
2774 /* Build an expression for the range test. */
2775 tmp = name2;
2776 if (TREE_TYPE (name) != TREE_TYPE (name2))
2777 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
2778 if (cst2 != NULL_TREE)
2779 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
2780 add_assert_info (asserts, name2, tmp, comp_code, val);
2784 /* In the case of post-in/decrement tests like if (i++) ... and uses
2785 of the in/decremented value on the edge the extra name we want to
2786 assert for is not on the def chain of the name compared. Instead
2787 it is in the set of use stmts.
2788 Similar cases happen for conversions that were simplified through
2789 fold_{sign_changed,widened}_comparison. */
2790 if ((comp_code == NE_EXPR
2791 || comp_code == EQ_EXPR)
2792 && TREE_CODE (val) == INTEGER_CST)
2794 imm_use_iterator ui;
2795 gimple *use_stmt;
2796 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
2798 if (!is_gimple_assign (use_stmt))
2799 continue;
2801 /* Cut off to use-stmts that are dominating the predecessor. */
2802 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
2803 continue;
2805 tree name2 = gimple_assign_lhs (use_stmt);
2806 if (TREE_CODE (name2) != SSA_NAME)
2807 continue;
2809 enum tree_code code = gimple_assign_rhs_code (use_stmt);
2810 tree cst;
2811 if (code == PLUS_EXPR
2812 || code == MINUS_EXPR)
2814 cst = gimple_assign_rhs2 (use_stmt);
2815 if (TREE_CODE (cst) != INTEGER_CST)
2816 continue;
2817 cst = int_const_binop (code, val, cst);
2819 else if (CONVERT_EXPR_CODE_P (code))
2821 /* For truncating conversions we cannot record
2822 an inequality. */
2823 if (comp_code == NE_EXPR
2824 && (TYPE_PRECISION (TREE_TYPE (name2))
2825 < TYPE_PRECISION (TREE_TYPE (name))))
2826 continue;
2827 cst = fold_convert (TREE_TYPE (name2), val);
2829 else
2830 continue;
2832 if (TREE_OVERFLOW_P (cst))
2833 cst = drop_tree_overflow (cst);
2834 add_assert_info (asserts, name2, name2, comp_code, cst);
2838 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
2839 && TREE_CODE (val) == INTEGER_CST)
2841 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
2842 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
2843 tree val2 = NULL_TREE;
2844 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
2845 wide_int mask = wi::zero (prec);
2846 unsigned int nprec = prec;
2847 enum tree_code rhs_code = ERROR_MARK;
2849 if (is_gimple_assign (def_stmt))
2850 rhs_code = gimple_assign_rhs_code (def_stmt);
2852 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
2853 assert that A != CST1 -+ CST2. */
2854 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
2855 && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
2857 tree op0 = gimple_assign_rhs1 (def_stmt);
2858 tree op1 = gimple_assign_rhs2 (def_stmt);
2859 if (TREE_CODE (op0) == SSA_NAME
2860 && TREE_CODE (op1) == INTEGER_CST)
2862 enum tree_code reverse_op = (rhs_code == PLUS_EXPR
2863 ? MINUS_EXPR : PLUS_EXPR);
2864 op1 = int_const_binop (reverse_op, val, op1);
2865 if (TREE_OVERFLOW (op1))
2866 op1 = drop_tree_overflow (op1);
2867 add_assert_info (asserts, op0, op0, comp_code, op1);
2871 /* Add asserts for NAME cmp CST and NAME being defined
2872 as NAME = (int) NAME2. */
2873 if (!TYPE_UNSIGNED (TREE_TYPE (val))
2874 && (comp_code == LE_EXPR || comp_code == LT_EXPR
2875 || comp_code == GT_EXPR || comp_code == GE_EXPR)
2876 && gimple_assign_cast_p (def_stmt))
2878 name2 = gimple_assign_rhs1 (def_stmt);
2879 if (CONVERT_EXPR_CODE_P (rhs_code)
2880 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2881 && TYPE_UNSIGNED (TREE_TYPE (name2))
2882 && prec == TYPE_PRECISION (TREE_TYPE (name2))
2883 && (comp_code == LE_EXPR || comp_code == GT_EXPR
2884 || !tree_int_cst_equal (val,
2885 TYPE_MIN_VALUE (TREE_TYPE (val)))))
2887 tree tmp, cst;
2888 enum tree_code new_comp_code = comp_code;
2890 cst = fold_convert (TREE_TYPE (name2),
2891 TYPE_MIN_VALUE (TREE_TYPE (val)));
2892 /* Build an expression for the range test. */
2893 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
2894 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
2895 fold_convert (TREE_TYPE (name2), val));
2896 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
2898 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
2899 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
2900 build_int_cst (TREE_TYPE (name2), 1));
2902 add_assert_info (asserts, name2, tmp, new_comp_code, cst);
2906 /* Add asserts for NAME cmp CST and NAME being defined as
2907 NAME = NAME2 >> CST2.
2909 Extract CST2 from the right shift. */
2910 if (rhs_code == RSHIFT_EXPR)
2912 name2 = gimple_assign_rhs1 (def_stmt);
2913 cst2 = gimple_assign_rhs2 (def_stmt);
2914 if (TREE_CODE (name2) == SSA_NAME
2915 && tree_fits_uhwi_p (cst2)
2916 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2917 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
2918 && type_has_mode_precision_p (TREE_TYPE (val)))
2920 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
2921 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
2924 if (val2 != NULL_TREE
2925 && TREE_CODE (val2) == INTEGER_CST
2926 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
2927 TREE_TYPE (val),
2928 val2, cst2), val))
2930 enum tree_code new_comp_code = comp_code;
2931 tree tmp, new_val;
2933 tmp = name2;
2934 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
2936 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
2938 tree type = build_nonstandard_integer_type (prec, 1);
2939 tmp = build1 (NOP_EXPR, type, name2);
2940 val2 = fold_convert (type, val2);
2942 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
2943 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
2944 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
2946 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
2948 wide_int minval
2949 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
2950 new_val = val2;
2951 if (minval == wi::to_wide (new_val))
2952 new_val = NULL_TREE;
2954 else
2956 wide_int maxval
2957 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
2958 mask |= wi::to_wide (val2);
2959 if (wi::eq_p (mask, maxval))
2960 new_val = NULL_TREE;
2961 else
2962 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
2965 if (new_val)
2966 add_assert_info (asserts, name2, tmp, new_comp_code, new_val);
2969 /* Add asserts for NAME cmp CST and NAME being defined as
2970 NAME = NAME2 & CST2.
2972 Extract CST2 from the and.
2974 Also handle
2975 NAME = (unsigned) NAME2;
2976 casts where NAME's type is unsigned and has smaller precision
2977 than NAME2's type as if it was NAME = NAME2 & MASK. */
2978 names[0] = NULL_TREE;
2979 names[1] = NULL_TREE;
2980 cst2 = NULL_TREE;
2981 if (rhs_code == BIT_AND_EXPR
2982 || (CONVERT_EXPR_CODE_P (rhs_code)
2983 && INTEGRAL_TYPE_P (TREE_TYPE (val))
2984 && TYPE_UNSIGNED (TREE_TYPE (val))
2985 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
2986 > prec))
2988 name2 = gimple_assign_rhs1 (def_stmt);
2989 if (rhs_code == BIT_AND_EXPR)
2990 cst2 = gimple_assign_rhs2 (def_stmt);
2991 else
2993 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
2994 nprec = TYPE_PRECISION (TREE_TYPE (name2));
2996 if (TREE_CODE (name2) == SSA_NAME
2997 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2998 && TREE_CODE (cst2) == INTEGER_CST
2999 && !integer_zerop (cst2)
3000 && (nprec > 1
3001 || TYPE_UNSIGNED (TREE_TYPE (val))))
3003 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
3004 if (gimple_assign_cast_p (def_stmt2))
3006 names[1] = gimple_assign_rhs1 (def_stmt2);
3007 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
3008 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
3009 || (TYPE_PRECISION (TREE_TYPE (name2))
3010 != TYPE_PRECISION (TREE_TYPE (names[1]))))
3011 names[1] = NULL_TREE;
3013 names[0] = name2;
3016 if (names[0] || names[1])
3018 wide_int minv, maxv, valv, cst2v;
3019 wide_int tem, sgnbit;
3020 bool valid_p = false, valn, cst2n;
3021 enum tree_code ccode = comp_code;
3023 valv = wide_int::from (wi::to_wide (val), nprec, UNSIGNED);
3024 cst2v = wide_int::from (wi::to_wide (cst2), nprec, UNSIGNED);
3025 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
3026 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
3027 /* If CST2 doesn't have most significant bit set,
3028 but VAL is negative, we have comparison like
3029 if ((x & 0x123) > -4) (always true). Just give up. */
3030 if (!cst2n && valn)
3031 ccode = ERROR_MARK;
3032 if (cst2n)
3033 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
3034 else
3035 sgnbit = wi::zero (nprec);
3036 minv = valv & cst2v;
3037 switch (ccode)
3039 case EQ_EXPR:
3040 /* Minimum unsigned value for equality is VAL & CST2
3041 (should be equal to VAL, otherwise we probably should
3042 have folded the comparison into false) and
3043 maximum unsigned value is VAL | ~CST2. */
3044 maxv = valv | ~cst2v;
3045 valid_p = true;
3046 break;
3048 case NE_EXPR:
3049 tem = valv | ~cst2v;
3050 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
3051 if (valv == 0)
3053 cst2n = false;
3054 sgnbit = wi::zero (nprec);
3055 goto gt_expr;
3057 /* If (VAL | ~CST2) is all ones, handle it as
3058 (X & CST2) < VAL. */
3059 if (tem == -1)
3061 cst2n = false;
3062 valn = false;
3063 sgnbit = wi::zero (nprec);
3064 goto lt_expr;
3066 if (!cst2n && wi::neg_p (cst2v))
3067 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
3068 if (sgnbit != 0)
3070 if (valv == sgnbit)
3072 cst2n = true;
3073 valn = true;
3074 goto gt_expr;
3076 if (tem == wi::mask (nprec - 1, false, nprec))
3078 cst2n = true;
3079 goto lt_expr;
3081 if (!cst2n)
3082 sgnbit = wi::zero (nprec);
3084 break;
3086 case GE_EXPR:
3087 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
3088 is VAL and maximum unsigned value is ~0. For signed
3089 comparison, if CST2 doesn't have most significant bit
3090 set, handle it similarly. If CST2 has MSB set,
3091 the minimum is the same, and maximum is ~0U/2. */
3092 if (minv != valv)
3094 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
3095 VAL. */
3096 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3097 if (minv == valv)
3098 break;
3100 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3101 valid_p = true;
3102 break;
3104 case GT_EXPR:
3105 gt_expr:
3106 /* Find out smallest MINV where MINV > VAL
3107 && (MINV & CST2) == MINV, if any. If VAL is signed and
3108 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
3109 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3110 if (minv == valv)
3111 break;
3112 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3113 valid_p = true;
3114 break;
3116 case LE_EXPR:
3117 /* Minimum unsigned value for <= is 0 and maximum
3118 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
3119 Otherwise, find smallest VAL2 where VAL2 > VAL
3120 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3121 as maximum.
3122 For signed comparison, if CST2 doesn't have most
3123 significant bit set, handle it similarly. If CST2 has
3124 MSB set, the maximum is the same and minimum is INT_MIN. */
3125 if (minv == valv)
3126 maxv = valv;
3127 else
3129 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3130 if (maxv == valv)
3131 break;
3132 maxv -= 1;
3134 maxv |= ~cst2v;
3135 minv = sgnbit;
3136 valid_p = true;
3137 break;
3139 case LT_EXPR:
3140 lt_expr:
3141 /* Minimum unsigned value for < is 0 and maximum
3142 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
3143 Otherwise, find smallest VAL2 where VAL2 > VAL
3144 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3145 as maximum.
3146 For signed comparison, if CST2 doesn't have most
3147 significant bit set, handle it similarly. If CST2 has
3148 MSB set, the maximum is the same and minimum is INT_MIN. */
3149 if (minv == valv)
3151 if (valv == sgnbit)
3152 break;
3153 maxv = valv;
3155 else
3157 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3158 if (maxv == valv)
3159 break;
3161 maxv -= 1;
3162 maxv |= ~cst2v;
3163 minv = sgnbit;
3164 valid_p = true;
3165 break;
3167 default:
3168 break;
3170 if (valid_p
3171 && (maxv - minv) != -1)
3173 tree tmp, new_val, type;
3174 int i;
3176 for (i = 0; i < 2; i++)
3177 if (names[i])
3179 wide_int maxv2 = maxv;
3180 tmp = names[i];
3181 type = TREE_TYPE (names[i]);
3182 if (!TYPE_UNSIGNED (type))
3184 type = build_nonstandard_integer_type (nprec, 1);
3185 tmp = build1 (NOP_EXPR, type, names[i]);
3187 if (minv != 0)
3189 tmp = build2 (PLUS_EXPR, type, tmp,
3190 wide_int_to_tree (type, -minv));
3191 maxv2 = maxv - minv;
3193 new_val = wide_int_to_tree (type, maxv2);
3194 add_assert_info (asserts, names[i], tmp, LE_EXPR, new_val);
3201 /* OP is an operand of a truth value expression which is known to have
3202 a particular value. Register any asserts for OP and for any
3203 operands in OP's defining statement.
3205 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3206 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3208 static void
3209 register_edge_assert_for_1 (tree op, enum tree_code code,
3210 edge e, vec<assert_info> &asserts)
3212 gimple *op_def;
3213 tree val;
3214 enum tree_code rhs_code;
3216 /* We only care about SSA_NAMEs. */
3217 if (TREE_CODE (op) != SSA_NAME)
3218 return;
3220 /* We know that OP will have a zero or nonzero value. */
3221 val = build_int_cst (TREE_TYPE (op), 0);
3222 add_assert_info (asserts, op, op, code, val);
3224 /* Now look at how OP is set. If it's set from a comparison,
3225 a truth operation or some bit operations, then we may be able
3226 to register information about the operands of that assignment. */
3227 op_def = SSA_NAME_DEF_STMT (op);
3228 if (gimple_code (op_def) != GIMPLE_ASSIGN)
3229 return;
3231 rhs_code = gimple_assign_rhs_code (op_def);
3233 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
3235 bool invert = (code == EQ_EXPR ? true : false);
3236 tree op0 = gimple_assign_rhs1 (op_def);
3237 tree op1 = gimple_assign_rhs2 (op_def);
3239 if (TREE_CODE (op0) == SSA_NAME)
3240 register_edge_assert_for_2 (op0, e, rhs_code, op0, op1, invert, asserts);
3241 if (TREE_CODE (op1) == SSA_NAME)
3242 register_edge_assert_for_2 (op1, e, rhs_code, op0, op1, invert, asserts);
3244 else if ((code == NE_EXPR
3245 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
3246 || (code == EQ_EXPR
3247 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
3249 /* Recurse on each operand. */
3250 tree op0 = gimple_assign_rhs1 (op_def);
3251 tree op1 = gimple_assign_rhs2 (op_def);
3252 if (TREE_CODE (op0) == SSA_NAME
3253 && has_single_use (op0))
3254 register_edge_assert_for_1 (op0, code, e, asserts);
3255 if (TREE_CODE (op1) == SSA_NAME
3256 && has_single_use (op1))
3257 register_edge_assert_for_1 (op1, code, e, asserts);
3259 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
3260 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
3262 /* Recurse, flipping CODE. */
3263 code = invert_tree_comparison (code, false);
3264 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
3266 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
3268 /* Recurse through the copy. */
3269 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
3271 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
3273 /* Recurse through the type conversion, unless it is a narrowing
3274 conversion or conversion from non-integral type. */
3275 tree rhs = gimple_assign_rhs1 (op_def);
3276 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
3277 && (TYPE_PRECISION (TREE_TYPE (rhs))
3278 <= TYPE_PRECISION (TREE_TYPE (op))))
3279 register_edge_assert_for_1 (rhs, code, e, asserts);
3283 /* Check if comparison
3284 NAME COND_OP INTEGER_CST
3285 has a form of
3286 (X & 11...100..0) COND_OP XX...X00...0
3287 Such comparison can yield assertions like
3288 X >= XX...X00...0
3289 X <= XX...X11...1
3290 in case of COND_OP being EQ_EXPR or
3291 X < XX...X00...0
3292 X > XX...X11...1
3293 in case of NE_EXPR. */
3295 static bool
3296 is_masked_range_test (tree name, tree valt, enum tree_code cond_code,
3297 tree *new_name, tree *low, enum tree_code *low_code,
3298 tree *high, enum tree_code *high_code)
3300 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3302 if (!is_gimple_assign (def_stmt)
3303 || gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
3304 return false;
3306 tree t = gimple_assign_rhs1 (def_stmt);
3307 tree maskt = gimple_assign_rhs2 (def_stmt);
3308 if (TREE_CODE (t) != SSA_NAME || TREE_CODE (maskt) != INTEGER_CST)
3309 return false;
3311 wi::tree_to_wide_ref mask = wi::to_wide (maskt);
3312 wide_int inv_mask = ~mask;
3313 /* Must have been removed by now so don't bother optimizing. */
3314 if (mask == 0 || inv_mask == 0)
3315 return false;
3317 /* Assume VALT is INTEGER_CST. */
3318 wi::tree_to_wide_ref val = wi::to_wide (valt);
3320 if ((inv_mask & (inv_mask + 1)) != 0
3321 || (val & mask) != val)
3322 return false;
3324 bool is_range = cond_code == EQ_EXPR;
3326 tree type = TREE_TYPE (t);
3327 wide_int min = wi::min_value (type),
3328 max = wi::max_value (type);
3330 if (is_range)
3332 *low_code = val == min ? ERROR_MARK : GE_EXPR;
3333 *high_code = val == max ? ERROR_MARK : LE_EXPR;
3335 else
3337 /* We can still generate assertion if one of alternatives
3338 is known to always be false. */
3339 if (val == min)
3341 *low_code = (enum tree_code) 0;
3342 *high_code = GT_EXPR;
3344 else if ((val | inv_mask) == max)
3346 *low_code = LT_EXPR;
3347 *high_code = (enum tree_code) 0;
3349 else
3350 return false;
3353 *new_name = t;
3354 *low = wide_int_to_tree (type, val);
3355 *high = wide_int_to_tree (type, val | inv_mask);
3357 return true;
3360 /* Try to register an edge assertion for SSA name NAME on edge E for
3361 the condition COND contributing to the conditional jump pointed to by
3362 SI. */
3364 void
3365 register_edge_assert_for (tree name, edge e,
3366 enum tree_code cond_code, tree cond_op0,
3367 tree cond_op1, vec<assert_info> &asserts)
3369 tree val;
3370 enum tree_code comp_code;
3371 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3373 /* Do not attempt to infer anything in names that flow through
3374 abnormal edges. */
3375 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3376 return;
3378 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
3379 cond_op0, cond_op1,
3380 is_else_edge,
3381 &comp_code, &val))
3382 return;
3384 /* Register ASSERT_EXPRs for name. */
3385 register_edge_assert_for_2 (name, e, cond_code, cond_op0,
3386 cond_op1, is_else_edge, asserts);
3389 /* If COND is effectively an equality test of an SSA_NAME against
3390 the value zero or one, then we may be able to assert values
3391 for SSA_NAMEs which flow into COND. */
3393 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
3394 statement of NAME we can assert both operands of the BIT_AND_EXPR
3395 have nonzero value. */
3396 if (((comp_code == EQ_EXPR && integer_onep (val))
3397 || (comp_code == NE_EXPR && integer_zerop (val))))
3399 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3401 if (is_gimple_assign (def_stmt)
3402 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
3404 tree op0 = gimple_assign_rhs1 (def_stmt);
3405 tree op1 = gimple_assign_rhs2 (def_stmt);
3406 register_edge_assert_for_1 (op0, NE_EXPR, e, asserts);
3407 register_edge_assert_for_1 (op1, NE_EXPR, e, asserts);
3411 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
3412 statement of NAME we can assert both operands of the BIT_IOR_EXPR
3413 have zero value. */
3414 if (((comp_code == EQ_EXPR && integer_zerop (val))
3415 || (comp_code == NE_EXPR && integer_onep (val))))
3417 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3419 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
3420 necessarily zero value, or if type-precision is one. */
3421 if (is_gimple_assign (def_stmt)
3422 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
3423 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
3424 || comp_code == EQ_EXPR)))
3426 tree op0 = gimple_assign_rhs1 (def_stmt);
3427 tree op1 = gimple_assign_rhs2 (def_stmt);
3428 register_edge_assert_for_1 (op0, EQ_EXPR, e, asserts);
3429 register_edge_assert_for_1 (op1, EQ_EXPR, e, asserts);
3433 /* Sometimes we can infer ranges from (NAME & MASK) == VALUE. */
3434 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
3435 && TREE_CODE (val) == INTEGER_CST)
3437 enum tree_code low_code, high_code;
3438 tree low, high;
3439 if (is_masked_range_test (name, val, comp_code, &name, &low,
3440 &low_code, &high, &high_code))
3442 if (low_code != ERROR_MARK)
3443 register_edge_assert_for_2 (name, e, low_code, name,
3444 low, /*invert*/false, asserts);
3445 if (high_code != ERROR_MARK)
3446 register_edge_assert_for_2 (name, e, high_code, name,
3447 high, /*invert*/false, asserts);
3452 /* Finish found ASSERTS for E and register them at GSI. */
3454 static void
3455 finish_register_edge_assert_for (edge e, gimple_stmt_iterator gsi,
3456 vec<assert_info> &asserts)
3458 for (unsigned i = 0; i < asserts.length (); ++i)
3459 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3460 reachable from E. */
3461 if (live_on_edge (e, asserts[i].name))
3462 register_new_assert_for (asserts[i].name, asserts[i].expr,
3463 asserts[i].comp_code, asserts[i].val,
3464 NULL, e, gsi);
3469 /* Determine whether the outgoing edges of BB should receive an
3470 ASSERT_EXPR for each of the operands of BB's LAST statement.
3471 The last statement of BB must be a COND_EXPR.
3473 If any of the sub-graphs rooted at BB have an interesting use of
3474 the predicate operands, an assert location node is added to the
3475 list of assertions for the corresponding operands. */
3477 static void
3478 find_conditional_asserts (basic_block bb, gcond *last)
3480 gimple_stmt_iterator bsi;
3481 tree op;
3482 edge_iterator ei;
3483 edge e;
3484 ssa_op_iter iter;
3486 bsi = gsi_for_stmt (last);
3488 /* Look for uses of the operands in each of the sub-graphs
3489 rooted at BB. We need to check each of the outgoing edges
3490 separately, so that we know what kind of ASSERT_EXPR to
3491 insert. */
3492 FOR_EACH_EDGE (e, ei, bb->succs)
3494 if (e->dest == bb)
3495 continue;
3497 /* Register the necessary assertions for each operand in the
3498 conditional predicate. */
3499 auto_vec<assert_info, 8> asserts;
3500 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3501 register_edge_assert_for (op, e,
3502 gimple_cond_code (last),
3503 gimple_cond_lhs (last),
3504 gimple_cond_rhs (last), asserts);
3505 finish_register_edge_assert_for (e, bsi, asserts);
3509 struct case_info
3511 tree expr;
3512 basic_block bb;
3515 /* Compare two case labels sorting first by the destination bb index
3516 and then by the case value. */
3518 static int
3519 compare_case_labels (const void *p1, const void *p2)
3521 const struct case_info *ci1 = (const struct case_info *) p1;
3522 const struct case_info *ci2 = (const struct case_info *) p2;
3523 int idx1 = ci1->bb->index;
3524 int idx2 = ci2->bb->index;
3526 if (idx1 < idx2)
3527 return -1;
3528 else if (idx1 == idx2)
3530 /* Make sure the default label is first in a group. */
3531 if (!CASE_LOW (ci1->expr))
3532 return -1;
3533 else if (!CASE_LOW (ci2->expr))
3534 return 1;
3535 else
3536 return tree_int_cst_compare (CASE_LOW (ci1->expr),
3537 CASE_LOW (ci2->expr));
3539 else
3540 return 1;
3543 /* Determine whether the outgoing edges of BB should receive an
3544 ASSERT_EXPR for each of the operands of BB's LAST statement.
3545 The last statement of BB must be a SWITCH_EXPR.
3547 If any of the sub-graphs rooted at BB have an interesting use of
3548 the predicate operands, an assert location node is added to the
3549 list of assertions for the corresponding operands. */
3551 static void
3552 find_switch_asserts (basic_block bb, gswitch *last)
3554 gimple_stmt_iterator bsi;
3555 tree op;
3556 edge e;
3557 struct case_info *ci;
3558 size_t n = gimple_switch_num_labels (last);
3559 #if GCC_VERSION >= 4000
3560 unsigned int idx;
3561 #else
3562 /* Work around GCC 3.4 bug (PR 37086). */
3563 volatile unsigned int idx;
3564 #endif
3566 bsi = gsi_for_stmt (last);
3567 op = gimple_switch_index (last);
3568 if (TREE_CODE (op) != SSA_NAME)
3569 return;
3571 /* Build a vector of case labels sorted by destination label. */
3572 ci = XNEWVEC (struct case_info, n);
3573 for (idx = 0; idx < n; ++idx)
3575 ci[idx].expr = gimple_switch_label (last, idx);
3576 ci[idx].bb = label_to_block (cfun, CASE_LABEL (ci[idx].expr));
3578 edge default_edge = find_edge (bb, ci[0].bb);
3579 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
3581 for (idx = 0; idx < n; ++idx)
3583 tree min, max;
3584 tree cl = ci[idx].expr;
3585 basic_block cbb = ci[idx].bb;
3587 min = CASE_LOW (cl);
3588 max = CASE_HIGH (cl);
3590 /* If there are multiple case labels with the same destination
3591 we need to combine them to a single value range for the edge. */
3592 if (idx + 1 < n && cbb == ci[idx + 1].bb)
3594 /* Skip labels until the last of the group. */
3595 do {
3596 ++idx;
3597 } while (idx < n && cbb == ci[idx].bb);
3598 --idx;
3600 /* Pick up the maximum of the case label range. */
3601 if (CASE_HIGH (ci[idx].expr))
3602 max = CASE_HIGH (ci[idx].expr);
3603 else
3604 max = CASE_LOW (ci[idx].expr);
3607 /* Can't extract a useful assertion out of a range that includes the
3608 default label. */
3609 if (min == NULL_TREE)
3610 continue;
3612 /* Find the edge to register the assert expr on. */
3613 e = find_edge (bb, cbb);
3615 /* Register the necessary assertions for the operand in the
3616 SWITCH_EXPR. */
3617 auto_vec<assert_info, 8> asserts;
3618 register_edge_assert_for (op, e,
3619 max ? GE_EXPR : EQ_EXPR,
3620 op, fold_convert (TREE_TYPE (op), min),
3621 asserts);
3622 if (max)
3623 register_edge_assert_for (op, e, LE_EXPR, op,
3624 fold_convert (TREE_TYPE (op), max),
3625 asserts);
3626 finish_register_edge_assert_for (e, bsi, asserts);
3629 XDELETEVEC (ci);
3631 if (!live_on_edge (default_edge, op))
3632 return;
3634 /* Now register along the default label assertions that correspond to the
3635 anti-range of each label. */
3636 int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
3637 if (insertion_limit == 0)
3638 return;
3640 /* We can't do this if the default case shares a label with another case. */
3641 tree default_cl = gimple_switch_default_label (last);
3642 for (idx = 1; idx < n; idx++)
3644 tree min, max;
3645 tree cl = gimple_switch_label (last, idx);
3646 if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
3647 continue;
3649 min = CASE_LOW (cl);
3650 max = CASE_HIGH (cl);
3652 /* Combine contiguous case ranges to reduce the number of assertions
3653 to insert. */
3654 for (idx = idx + 1; idx < n; idx++)
3656 tree next_min, next_max;
3657 tree next_cl = gimple_switch_label (last, idx);
3658 if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
3659 break;
3661 next_min = CASE_LOW (next_cl);
3662 next_max = CASE_HIGH (next_cl);
3664 wide_int difference = (wi::to_wide (next_min)
3665 - wi::to_wide (max ? max : min));
3666 if (wi::eq_p (difference, 1))
3667 max = next_max ? next_max : next_min;
3668 else
3669 break;
3671 idx--;
3673 if (max == NULL_TREE)
3675 /* Register the assertion OP != MIN. */
3676 auto_vec<assert_info, 8> asserts;
3677 min = fold_convert (TREE_TYPE (op), min);
3678 register_edge_assert_for (op, default_edge, NE_EXPR, op, min,
3679 asserts);
3680 finish_register_edge_assert_for (default_edge, bsi, asserts);
3682 else
3684 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
3685 which will give OP the anti-range ~[MIN,MAX]. */
3686 tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
3687 min = fold_convert (TREE_TYPE (uop), min);
3688 max = fold_convert (TREE_TYPE (uop), max);
3690 tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
3691 tree rhs = int_const_binop (MINUS_EXPR, max, min);
3692 register_new_assert_for (op, lhs, GT_EXPR, rhs,
3693 NULL, default_edge, bsi);
3696 if (--insertion_limit == 0)
3697 break;
3702 /* Traverse all the statements in block BB looking for statements that
3703 may generate useful assertions for the SSA names in their operand.
3704 If a statement produces a useful assertion A for name N_i, then the
3705 list of assertions already generated for N_i is scanned to
3706 determine if A is actually needed.
3708 If N_i already had the assertion A at a location dominating the
3709 current location, then nothing needs to be done. Otherwise, the
3710 new location for A is recorded instead.
3712 1- For every statement S in BB, all the variables used by S are
3713 added to bitmap FOUND_IN_SUBGRAPH.
3715 2- If statement S uses an operand N in a way that exposes a known
3716 value range for N, then if N was not already generated by an
3717 ASSERT_EXPR, create a new assert location for N. For instance,
3718 if N is a pointer and the statement dereferences it, we can
3719 assume that N is not NULL.
3721 3- COND_EXPRs are a special case of #2. We can derive range
3722 information from the predicate but need to insert different
3723 ASSERT_EXPRs for each of the sub-graphs rooted at the
3724 conditional block. If the last statement of BB is a conditional
3725 expression of the form 'X op Y', then
3727 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3729 b) If the conditional is the only entry point to the sub-graph
3730 corresponding to the THEN_CLAUSE, recurse into it. On
3731 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3732 an ASSERT_EXPR is added for the corresponding variable.
3734 c) Repeat step (b) on the ELSE_CLAUSE.
3736 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3738 For instance,
3740 if (a == 9)
3741 b = a;
3742 else
3743 b = c + 1;
3745 In this case, an assertion on the THEN clause is useful to
3746 determine that 'a' is always 9 on that edge. However, an assertion
3747 on the ELSE clause would be unnecessary.
3749 4- If BB does not end in a conditional expression, then we recurse
3750 into BB's dominator children.
3752 At the end of the recursive traversal, every SSA name will have a
3753 list of locations where ASSERT_EXPRs should be added. When a new
3754 location for name N is found, it is registered by calling
3755 register_new_assert_for. That function keeps track of all the
3756 registered assertions to prevent adding unnecessary assertions.
3757 For instance, if a pointer P_4 is dereferenced more than once in a
3758 dominator tree, only the location dominating all the dereference of
3759 P_4 will receive an ASSERT_EXPR. */
3761 static void
3762 find_assert_locations_1 (basic_block bb, sbitmap live)
3764 gimple *last;
3766 last = last_stmt (bb);
3768 /* If BB's last statement is a conditional statement involving integer
3769 operands, determine if we need to add ASSERT_EXPRs. */
3770 if (last
3771 && gimple_code (last) == GIMPLE_COND
3772 && !fp_predicate (last)
3773 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3774 find_conditional_asserts (bb, as_a <gcond *> (last));
3776 /* If BB's last statement is a switch statement involving integer
3777 operands, determine if we need to add ASSERT_EXPRs. */
3778 if (last
3779 && gimple_code (last) == GIMPLE_SWITCH
3780 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3781 find_switch_asserts (bb, as_a <gswitch *> (last));
3783 /* Traverse all the statements in BB marking used names and looking
3784 for statements that may infer assertions for their used operands. */
3785 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
3786 gsi_prev (&si))
3788 gimple *stmt;
3789 tree op;
3790 ssa_op_iter i;
3792 stmt = gsi_stmt (si);
3794 if (is_gimple_debug (stmt))
3795 continue;
3797 /* See if we can derive an assertion for any of STMT's operands. */
3798 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3800 tree value;
3801 enum tree_code comp_code;
3803 /* If op is not live beyond this stmt, do not bother to insert
3804 asserts for it. */
3805 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
3806 continue;
3808 /* If OP is used in such a way that we can infer a value
3809 range for it, and we don't find a previous assertion for
3810 it, create a new assertion location node for OP. */
3811 if (infer_value_range (stmt, op, &comp_code, &value))
3813 /* If we are able to infer a nonzero value range for OP,
3814 then walk backwards through the use-def chain to see if OP
3815 was set via a typecast.
3817 If so, then we can also infer a nonzero value range
3818 for the operand of the NOP_EXPR. */
3819 if (comp_code == NE_EXPR && integer_zerop (value))
3821 tree t = op;
3822 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
3824 while (is_gimple_assign (def_stmt)
3825 && CONVERT_EXPR_CODE_P
3826 (gimple_assign_rhs_code (def_stmt))
3827 && TREE_CODE
3828 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
3829 && POINTER_TYPE_P
3830 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
3832 t = gimple_assign_rhs1 (def_stmt);
3833 def_stmt = SSA_NAME_DEF_STMT (t);
3835 /* Note we want to register the assert for the
3836 operand of the NOP_EXPR after SI, not after the
3837 conversion. */
3838 if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
3839 register_new_assert_for (t, t, comp_code, value,
3840 bb, NULL, si);
3844 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
3848 /* Update live. */
3849 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3850 bitmap_set_bit (live, SSA_NAME_VERSION (op));
3851 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
3852 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
3855 /* Traverse all PHI nodes in BB, updating live. */
3856 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
3857 gsi_next (&si))
3859 use_operand_p arg_p;
3860 ssa_op_iter i;
3861 gphi *phi = si.phi ();
3862 tree res = gimple_phi_result (phi);
3864 if (virtual_operand_p (res))
3865 continue;
3867 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3869 tree arg = USE_FROM_PTR (arg_p);
3870 if (TREE_CODE (arg) == SSA_NAME)
3871 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
3874 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
3878 /* Do an RPO walk over the function computing SSA name liveness
3879 on-the-fly and deciding on assert expressions to insert. */
3881 static void
3882 find_assert_locations (void)
3884 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3885 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3886 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3887 int rpo_cnt, i;
3889 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
3890 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3891 for (i = 0; i < rpo_cnt; ++i)
3892 bb_rpo[rpo[i]] = i;
3894 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
3895 the order we compute liveness and insert asserts we otherwise
3896 fail to insert asserts into the loop latch. */
3897 loop_p loop;
3898 FOR_EACH_LOOP (loop, 0)
3900 i = loop->latch->index;
3901 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
3902 for (gphi_iterator gsi = gsi_start_phis (loop->header);
3903 !gsi_end_p (gsi); gsi_next (&gsi))
3905 gphi *phi = gsi.phi ();
3906 if (virtual_operand_p (gimple_phi_result (phi)))
3907 continue;
3908 tree arg = gimple_phi_arg_def (phi, j);
3909 if (TREE_CODE (arg) == SSA_NAME)
3911 if (live[i] == NULL)
3913 live[i] = sbitmap_alloc (num_ssa_names);
3914 bitmap_clear (live[i]);
3916 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
3921 for (i = rpo_cnt - 1; i >= 0; --i)
3923 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3924 edge e;
3925 edge_iterator ei;
3927 if (!live[rpo[i]])
3929 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
3930 bitmap_clear (live[rpo[i]]);
3933 /* Process BB and update the live information with uses in
3934 this block. */
3935 find_assert_locations_1 (bb, live[rpo[i]]);
3937 /* Merge liveness into the predecessor blocks and free it. */
3938 if (!bitmap_empty_p (live[rpo[i]]))
3940 int pred_rpo = i;
3941 FOR_EACH_EDGE (e, ei, bb->preds)
3943 int pred = e->src->index;
3944 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
3945 continue;
3947 if (!live[pred])
3949 live[pred] = sbitmap_alloc (num_ssa_names);
3950 bitmap_clear (live[pred]);
3952 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
3954 if (bb_rpo[pred] < pred_rpo)
3955 pred_rpo = bb_rpo[pred];
3958 /* Record the RPO number of the last visited block that needs
3959 live information from this block. */
3960 last_rpo[rpo[i]] = pred_rpo;
3962 else
3964 sbitmap_free (live[rpo[i]]);
3965 live[rpo[i]] = NULL;
3968 /* We can free all successors live bitmaps if all their
3969 predecessors have been visited already. */
3970 FOR_EACH_EDGE (e, ei, bb->succs)
3971 if (last_rpo[e->dest->index] == i
3972 && live[e->dest->index])
3974 sbitmap_free (live[e->dest->index]);
3975 live[e->dest->index] = NULL;
3979 XDELETEVEC (rpo);
3980 XDELETEVEC (bb_rpo);
3981 XDELETEVEC (last_rpo);
3982 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
3983 if (live[i])
3984 sbitmap_free (live[i]);
3985 XDELETEVEC (live);
3988 /* Create an ASSERT_EXPR for NAME and insert it in the location
3989 indicated by LOC. Return true if we made any edge insertions. */
3991 static bool
3992 process_assert_insertions_for (tree name, assert_locus *loc)
3994 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3995 gimple *stmt;
3996 tree cond;
3997 gimple *assert_stmt;
3998 edge_iterator ei;
3999 edge e;
4001 /* If we have X <=> X do not insert an assert expr for that. */
4002 if (loc->expr == loc->val)
4003 return false;
4005 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4006 assert_stmt = build_assert_expr_for (cond, name);
4007 if (loc->e)
4009 /* We have been asked to insert the assertion on an edge. This
4010 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4011 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4012 || (gimple_code (gsi_stmt (loc->si))
4013 == GIMPLE_SWITCH));
4015 gsi_insert_on_edge (loc->e, assert_stmt);
4016 return true;
4019 /* If the stmt iterator points at the end then this is an insertion
4020 at the beginning of a block. */
4021 if (gsi_end_p (loc->si))
4023 gimple_stmt_iterator si = gsi_after_labels (loc->bb);
4024 gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
4025 return false;
4028 /* Otherwise, we can insert right after LOC->SI iff the
4029 statement must not be the last statement in the block. */
4030 stmt = gsi_stmt (loc->si);
4031 if (!stmt_ends_bb_p (stmt))
4033 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
4034 return false;
4037 /* If STMT must be the last statement in BB, we can only insert new
4038 assertions on the non-abnormal edge out of BB. Note that since
4039 STMT is not control flow, there may only be one non-abnormal/eh edge
4040 out of BB. */
4041 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4042 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
4044 gsi_insert_on_edge (e, assert_stmt);
4045 return true;
4048 gcc_unreachable ();
4051 /* Qsort helper for sorting assert locations. If stable is true, don't
4052 use iterative_hash_expr because it can be unstable for -fcompare-debug,
4053 on the other side some pointers might be NULL. */
4055 template <bool stable>
4056 static int
4057 compare_assert_loc (const void *pa, const void *pb)
4059 assert_locus * const a = *(assert_locus * const *)pa;
4060 assert_locus * const b = *(assert_locus * const *)pb;
4062 /* If stable, some asserts might be optimized away already, sort
4063 them last. */
4064 if (stable)
4066 if (a == NULL)
4067 return b != NULL;
4068 else if (b == NULL)
4069 return -1;
4072 if (a->e == NULL && b->e != NULL)
4073 return 1;
4074 else if (a->e != NULL && b->e == NULL)
4075 return -1;
4077 /* After the above checks, we know that (a->e == NULL) == (b->e == NULL),
4078 no need to test both a->e and b->e. */
4080 /* Sort after destination index. */
4081 if (a->e == NULL)
4083 else if (a->e->dest->index > b->e->dest->index)
4084 return 1;
4085 else if (a->e->dest->index < b->e->dest->index)
4086 return -1;
4088 /* Sort after comp_code. */
4089 if (a->comp_code > b->comp_code)
4090 return 1;
4091 else if (a->comp_code < b->comp_code)
4092 return -1;
4094 hashval_t ha, hb;
4096 /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr
4097 uses DECL_UID of the VAR_DECL, so sorting might differ between
4098 -g and -g0. When doing the removal of redundant assert exprs
4099 and commonization to successors, this does not matter, but for
4100 the final sort needs to be stable. */
4101 if (stable)
4103 ha = 0;
4104 hb = 0;
4106 else
4108 ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0));
4109 hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0));
4112 /* Break the tie using hashing and source/bb index. */
4113 if (ha == hb)
4114 return (a->e != NULL
4115 ? a->e->src->index - b->e->src->index
4116 : a->bb->index - b->bb->index);
4117 return ha > hb ? 1 : -1;
4120 /* Process all the insertions registered for every name N_i registered
4121 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4122 found in ASSERTS_FOR[i]. */
4124 static void
4125 process_assert_insertions (void)
4127 unsigned i;
4128 bitmap_iterator bi;
4129 bool update_edges_p = false;
4130 int num_asserts = 0;
4132 if (dump_file && (dump_flags & TDF_DETAILS))
4133 dump_all_asserts (dump_file);
4135 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4137 assert_locus *loc = asserts_for[i];
4138 gcc_assert (loc);
4140 auto_vec<assert_locus *, 16> asserts;
4141 for (; loc; loc = loc->next)
4142 asserts.safe_push (loc);
4143 asserts.qsort (compare_assert_loc<false>);
4145 /* Push down common asserts to successors and remove redundant ones. */
4146 unsigned ecnt = 0;
4147 assert_locus *common = NULL;
4148 unsigned commonj = 0;
4149 for (unsigned j = 0; j < asserts.length (); ++j)
4151 loc = asserts[j];
4152 if (! loc->e)
4153 common = NULL;
4154 else if (! common
4155 || loc->e->dest != common->e->dest
4156 || loc->comp_code != common->comp_code
4157 || ! operand_equal_p (loc->val, common->val, 0)
4158 || ! operand_equal_p (loc->expr, common->expr, 0))
4160 commonj = j;
4161 common = loc;
4162 ecnt = 1;
4164 else if (loc->e == asserts[j-1]->e)
4166 /* Remove duplicate asserts. */
4167 if (commonj == j - 1)
4169 commonj = j;
4170 common = loc;
4172 free (asserts[j-1]);
4173 asserts[j-1] = NULL;
4175 else
4177 ecnt++;
4178 if (EDGE_COUNT (common->e->dest->preds) == ecnt)
4180 /* We have the same assertion on all incoming edges of a BB.
4181 Insert it at the beginning of that block. */
4182 loc->bb = loc->e->dest;
4183 loc->e = NULL;
4184 loc->si = gsi_none ();
4185 common = NULL;
4186 /* Clear asserts commoned. */
4187 for (; commonj != j; ++commonj)
4188 if (asserts[commonj])
4190 free (asserts[commonj]);
4191 asserts[commonj] = NULL;
4197 /* The asserts vector sorting above might be unstable for
4198 -fcompare-debug, sort again to ensure a stable sort. */
4199 asserts.qsort (compare_assert_loc<true>);
4200 for (unsigned j = 0; j < asserts.length (); ++j)
4202 loc = asserts[j];
4203 if (! loc)
4204 break;
4205 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4206 num_asserts++;
4207 free (loc);
4211 if (update_edges_p)
4212 gsi_commit_edge_inserts ();
4214 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4215 num_asserts);
4219 /* Traverse the flowgraph looking for conditional jumps to insert range
4220 expressions. These range expressions are meant to provide information
4221 to optimizations that need to reason in terms of value ranges. They
4222 will not be expanded into RTL. For instance, given:
4224 x = ...
4225 y = ...
4226 if (x < y)
4227 y = x - 2;
4228 else
4229 x = y + 3;
4231 this pass will transform the code into:
4233 x = ...
4234 y = ...
4235 if (x < y)
4237 x = ASSERT_EXPR <x, x < y>
4238 y = x - 2
4240 else
4242 y = ASSERT_EXPR <y, x >= y>
4243 x = y + 3
4246 The idea is that once copy and constant propagation have run, other
4247 optimizations will be able to determine what ranges of values can 'x'
4248 take in different paths of the code, simply by checking the reaching
4249 definition of 'x'. */
4251 static void
4252 insert_range_assertions (void)
4254 need_assert_for = BITMAP_ALLOC (NULL);
4255 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
4257 calculate_dominance_info (CDI_DOMINATORS);
4259 find_assert_locations ();
4260 if (!bitmap_empty_p (need_assert_for))
4262 process_assert_insertions ();
4263 update_ssa (TODO_update_ssa_no_phi);
4266 if (dump_file && (dump_flags & TDF_DETAILS))
4268 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4269 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4272 free (asserts_for);
4273 BITMAP_FREE (need_assert_for);
4276 class vrp_prop : public ssa_propagation_engine
4278 public:
4279 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
4280 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
4282 void vrp_initialize (void);
4283 void vrp_finalize (bool);
4284 void check_all_array_refs (void);
4285 void check_array_ref (location_t, tree, bool);
4286 void check_mem_ref (location_t, tree, bool);
4287 void search_for_addr_array (tree, location_t);
4289 class vr_values vr_values;
4290 /* Temporary delegator to minimize code churn. */
4291 value_range *get_value_range (const_tree op)
4292 { return vr_values.get_value_range (op); }
4293 void set_defs_to_varying (gimple *stmt)
4294 { return vr_values.set_defs_to_varying (stmt); }
4295 void extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
4296 tree *output_p, value_range *vr)
4297 { vr_values.extract_range_from_stmt (stmt, taken_edge_p, output_p, vr); }
4298 bool update_value_range (const_tree op, value_range *vr)
4299 { return vr_values.update_value_range (op, vr); }
4300 void extract_range_basic (value_range *vr, gimple *stmt)
4301 { vr_values.extract_range_basic (vr, stmt); }
4302 void extract_range_from_phi_node (gphi *phi, value_range *vr)
4303 { vr_values.extract_range_from_phi_node (phi, vr); }
4305 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4306 and "struct" hacks. If VRP can determine that the
4307 array subscript is a constant, check if it is outside valid
4308 range. If the array subscript is a RANGE, warn if it is
4309 non-overlapping with valid range.
4310 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4312 void
4313 vrp_prop::check_array_ref (location_t location, tree ref,
4314 bool ignore_off_by_one)
4316 const value_range *vr = NULL;
4317 tree low_sub, up_sub;
4318 tree low_bound, up_bound, up_bound_p1;
4320 if (TREE_NO_WARNING (ref))
4321 return;
4323 low_sub = up_sub = TREE_OPERAND (ref, 1);
4324 up_bound = array_ref_up_bound (ref);
4326 if (!up_bound
4327 || TREE_CODE (up_bound) != INTEGER_CST
4328 || (warn_array_bounds < 2
4329 && array_at_struct_end_p (ref)))
4331 /* Accesses to trailing arrays via pointers may access storage
4332 beyond the types array bounds. For such arrays, or for flexible
4333 array members, as well as for other arrays of an unknown size,
4334 replace the upper bound with a more permissive one that assumes
4335 the size of the largest object is PTRDIFF_MAX. */
4336 tree eltsize = array_ref_element_size (ref);
4338 if (TREE_CODE (eltsize) != INTEGER_CST
4339 || integer_zerop (eltsize))
4341 up_bound = NULL_TREE;
4342 up_bound_p1 = NULL_TREE;
4344 else
4346 tree maxbound = TYPE_MAX_VALUE (ptrdiff_type_node);
4347 tree arg = TREE_OPERAND (ref, 0);
4348 poly_int64 off;
4350 if (get_addr_base_and_unit_offset (arg, &off) && known_gt (off, 0))
4351 maxbound = wide_int_to_tree (sizetype,
4352 wi::sub (wi::to_wide (maxbound),
4353 off));
4354 else
4355 maxbound = fold_convert (sizetype, maxbound);
4357 up_bound_p1 = int_const_binop (TRUNC_DIV_EXPR, maxbound, eltsize);
4359 up_bound = int_const_binop (MINUS_EXPR, up_bound_p1,
4360 build_int_cst (ptrdiff_type_node, 1));
4363 else
4364 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
4365 build_int_cst (TREE_TYPE (up_bound), 1));
4367 low_bound = array_ref_low_bound (ref);
4369 tree artype = TREE_TYPE (TREE_OPERAND (ref, 0));
4371 bool warned = false;
4373 /* Empty array. */
4374 if (up_bound && tree_int_cst_equal (low_bound, up_bound_p1))
4375 warned = warning_at (location, OPT_Warray_bounds,
4376 "array subscript %E is above array bounds of %qT",
4377 low_bound, artype);
4379 if (TREE_CODE (low_sub) == SSA_NAME)
4381 vr = get_value_range (low_sub);
4382 if (!vr->undefined_p () && !vr->varying_p ())
4384 low_sub = vr->kind () == VR_RANGE ? vr->max () : vr->min ();
4385 up_sub = vr->kind () == VR_RANGE ? vr->min () : vr->max ();
4389 if (vr && vr->kind () == VR_ANTI_RANGE)
4391 if (up_bound
4392 && TREE_CODE (up_sub) == INTEGER_CST
4393 && (ignore_off_by_one
4394 ? tree_int_cst_lt (up_bound, up_sub)
4395 : tree_int_cst_le (up_bound, up_sub))
4396 && TREE_CODE (low_sub) == INTEGER_CST
4397 && tree_int_cst_le (low_sub, low_bound))
4398 warned = warning_at (location, OPT_Warray_bounds,
4399 "array subscript [%E, %E] is outside "
4400 "array bounds of %qT",
4401 low_sub, up_sub, artype);
4403 else if (up_bound
4404 && TREE_CODE (up_sub) == INTEGER_CST
4405 && (ignore_off_by_one
4406 ? !tree_int_cst_le (up_sub, up_bound_p1)
4407 : !tree_int_cst_le (up_sub, up_bound)))
4409 if (dump_file && (dump_flags & TDF_DETAILS))
4411 fprintf (dump_file, "Array bound warning for ");
4412 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4413 fprintf (dump_file, "\n");
4415 warned = warning_at (location, OPT_Warray_bounds,
4416 "array subscript %E is above array bounds of %qT",
4417 up_sub, artype);
4419 else if (TREE_CODE (low_sub) == INTEGER_CST
4420 && tree_int_cst_lt (low_sub, low_bound))
4422 if (dump_file && (dump_flags & TDF_DETAILS))
4424 fprintf (dump_file, "Array bound warning for ");
4425 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4426 fprintf (dump_file, "\n");
4428 warned = warning_at (location, OPT_Warray_bounds,
4429 "array subscript %E is below array bounds of %qT",
4430 low_sub, artype);
4433 if (warned)
4435 ref = TREE_OPERAND (ref, 0);
4437 if (DECL_P (ref))
4438 inform (DECL_SOURCE_LOCATION (ref), "while referencing %qD", ref);
4440 TREE_NO_WARNING (ref) = 1;
4444 /* Checks one MEM_REF in REF, located at LOCATION, for out-of-bounds
4445 references to string constants. If VRP can determine that the array
4446 subscript is a constant, check if it is outside valid range.
4447 If the array subscript is a RANGE, warn if it is non-overlapping
4448 with valid range.
4449 IGNORE_OFF_BY_ONE is true if the MEM_REF is inside an ADDR_EXPR
4450 (used to allow one-past-the-end indices for code that takes
4451 the address of the just-past-the-end element of an array). */
4453 void
4454 vrp_prop::check_mem_ref (location_t location, tree ref,
4455 bool ignore_off_by_one)
4457 if (TREE_NO_WARNING (ref))
4458 return;
4460 tree arg = TREE_OPERAND (ref, 0);
4461 /* The constant and variable offset of the reference. */
4462 tree cstoff = TREE_OPERAND (ref, 1);
4463 tree varoff = NULL_TREE;
4465 const offset_int maxobjsize = tree_to_shwi (max_object_size ());
4467 /* The array or string constant bounds in bytes. Initially set
4468 to [-MAXOBJSIZE - 1, MAXOBJSIZE] until a tighter bound is
4469 determined. */
4470 offset_int arrbounds[2] = { -maxobjsize - 1, maxobjsize };
4472 /* The minimum and maximum intermediate offset. For a reference
4473 to be valid, not only does the final offset/subscript must be
4474 in bounds but all intermediate offsets should be as well.
4475 GCC may be able to deal gracefully with such out-of-bounds
4476 offsets so the checking is only enbaled at -Warray-bounds=2
4477 where it may help detect bugs in uses of the intermediate
4478 offsets that could otherwise not be detectable. */
4479 offset_int ioff = wi::to_offset (fold_convert (ptrdiff_type_node, cstoff));
4480 offset_int extrema[2] = { 0, wi::abs (ioff) };
4482 /* The range of the byte offset into the reference. */
4483 offset_int offrange[2] = { 0, 0 };
4485 const value_range *vr = NULL;
4487 /* Determine the offsets and increment OFFRANGE for the bounds of each.
4488 The loop computes the the range of the final offset for expressions
4489 such as (A + i0 + ... + iN)[CSTOFF] where i0 through iN are SSA_NAMEs
4490 in some range. */
4491 while (TREE_CODE (arg) == SSA_NAME)
4493 gimple *def = SSA_NAME_DEF_STMT (arg);
4494 if (!is_gimple_assign (def))
4495 break;
4497 tree_code code = gimple_assign_rhs_code (def);
4498 if (code == POINTER_PLUS_EXPR)
4500 arg = gimple_assign_rhs1 (def);
4501 varoff = gimple_assign_rhs2 (def);
4503 else if (code == ASSERT_EXPR)
4505 arg = TREE_OPERAND (gimple_assign_rhs1 (def), 0);
4506 continue;
4508 else
4509 return;
4511 /* VAROFF should always be a SSA_NAME here (and not even
4512 INTEGER_CST) but there's no point in taking chances. */
4513 if (TREE_CODE (varoff) != SSA_NAME)
4514 break;
4516 vr = get_value_range (varoff);
4517 if (!vr || vr->undefined_p () || vr->varying_p ())
4518 break;
4520 if (!vr->constant_p ())
4521 break;
4523 if (vr->kind () == VR_RANGE)
4525 if (tree_int_cst_lt (vr->min (), vr->max ()))
4527 offset_int min
4528 = wi::to_offset (fold_convert (ptrdiff_type_node, vr->min ()));
4529 offset_int max
4530 = wi::to_offset (fold_convert (ptrdiff_type_node, vr->max ()));
4531 if (min < max)
4533 offrange[0] += min;
4534 offrange[1] += max;
4536 else
4538 offrange[0] += max;
4539 offrange[1] += min;
4542 else
4544 /* Conservatively add [-MAXOBJSIZE -1, MAXOBJSIZE]
4545 to OFFRANGE. */
4546 offrange[0] += arrbounds[0];
4547 offrange[1] += arrbounds[1];
4550 else
4552 /* For an anti-range, analogously to the above, conservatively
4553 add [-MAXOBJSIZE -1, MAXOBJSIZE] to OFFRANGE. */
4554 offrange[0] += arrbounds[0];
4555 offrange[1] += arrbounds[1];
4558 /* Keep track of the minimum and maximum offset. */
4559 if (offrange[1] < 0 && offrange[1] < extrema[0])
4560 extrema[0] = offrange[1];
4561 if (offrange[0] > 0 && offrange[0] > extrema[1])
4562 extrema[1] = offrange[0];
4564 if (offrange[0] < arrbounds[0])
4565 offrange[0] = arrbounds[0];
4567 if (offrange[1] > arrbounds[1])
4568 offrange[1] = arrbounds[1];
4571 if (TREE_CODE (arg) == ADDR_EXPR)
4573 arg = TREE_OPERAND (arg, 0);
4574 if (TREE_CODE (arg) != STRING_CST
4575 && TREE_CODE (arg) != VAR_DECL)
4576 return;
4578 else
4579 return;
4581 /* The type of the object being referred to. It can be an array,
4582 string literal, or a non-array type when the MEM_REF represents
4583 a reference/subscript via a pointer to an object that is not
4584 an element of an array. References to members of structs and
4585 unions are excluded because MEM_REF doesn't make it possible
4586 to identify the member where the reference originated.
4587 Incomplete types are excluded as well because their size is
4588 not known. */
4589 tree reftype = TREE_TYPE (arg);
4590 if (POINTER_TYPE_P (reftype)
4591 || !COMPLETE_TYPE_P (reftype)
4592 || TREE_CODE (TYPE_SIZE_UNIT (reftype)) != INTEGER_CST
4593 || RECORD_OR_UNION_TYPE_P (reftype))
4594 return;
4596 offset_int eltsize;
4597 if (TREE_CODE (reftype) == ARRAY_TYPE)
4599 eltsize = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (reftype)));
4601 if (tree dom = TYPE_DOMAIN (reftype))
4603 tree bnds[] = { TYPE_MIN_VALUE (dom), TYPE_MAX_VALUE (dom) };
4604 if (array_at_struct_end_p (arg)
4605 || !bnds[0] || !bnds[1])
4607 arrbounds[0] = 0;
4608 arrbounds[1] = wi::lrshift (maxobjsize, wi::floor_log2 (eltsize));
4610 else
4612 arrbounds[0] = wi::to_offset (bnds[0]) * eltsize;
4613 arrbounds[1] = (wi::to_offset (bnds[1]) + 1) * eltsize;
4616 else
4618 arrbounds[0] = 0;
4619 arrbounds[1] = wi::lrshift (maxobjsize, wi::floor_log2 (eltsize));
4622 if (TREE_CODE (ref) == MEM_REF)
4624 /* For MEM_REF determine a tighter bound of the non-array
4625 element type. */
4626 tree eltype = TREE_TYPE (reftype);
4627 while (TREE_CODE (eltype) == ARRAY_TYPE)
4628 eltype = TREE_TYPE (eltype);
4629 eltsize = wi::to_offset (TYPE_SIZE_UNIT (eltype));
4632 else
4634 eltsize = 1;
4635 arrbounds[0] = 0;
4636 arrbounds[1] = wi::to_offset (TYPE_SIZE_UNIT (reftype));
4639 offrange[0] += ioff;
4640 offrange[1] += ioff;
4642 /* Compute the more permissive upper bound when IGNORE_OFF_BY_ONE
4643 is set (when taking the address of the one-past-last element
4644 of an array) but always use the stricter bound in diagnostics. */
4645 offset_int ubound = arrbounds[1];
4646 if (ignore_off_by_one)
4647 ubound += 1;
4649 if (offrange[0] >= ubound || offrange[1] < arrbounds[0])
4651 /* Treat a reference to a non-array object as one to an array
4652 of a single element. */
4653 if (TREE_CODE (reftype) != ARRAY_TYPE)
4654 reftype = build_array_type_nelts (reftype, 1);
4656 if (TREE_CODE (ref) == MEM_REF)
4658 /* Extract the element type out of MEM_REF and use its size
4659 to compute the index to print in the diagnostic; arrays
4660 in MEM_REF don't mean anything. */
4661 tree type = TREE_TYPE (ref);
4662 while (TREE_CODE (type) == ARRAY_TYPE)
4663 type = TREE_TYPE (type);
4664 tree size = TYPE_SIZE_UNIT (type);
4665 offrange[0] = offrange[0] / wi::to_offset (size);
4666 offrange[1] = offrange[1] / wi::to_offset (size);
4668 else
4670 /* For anything other than MEM_REF, compute the index to
4671 print in the diagnostic as the offset over element size. */
4672 offrange[0] = offrange[0] / eltsize;
4673 offrange[1] = offrange[1] / eltsize;
4676 bool warned;
4677 if (offrange[0] == offrange[1])
4678 warned = warning_at (location, OPT_Warray_bounds,
4679 "array subscript %wi is outside array bounds "
4680 "of %qT",
4681 offrange[0].to_shwi (), reftype);
4682 else
4683 warned = warning_at (location, OPT_Warray_bounds,
4684 "array subscript [%wi, %wi] is outside "
4685 "array bounds of %qT",
4686 offrange[0].to_shwi (),
4687 offrange[1].to_shwi (), reftype);
4688 if (warned && DECL_P (arg))
4689 inform (DECL_SOURCE_LOCATION (arg), "while referencing %qD", arg);
4691 TREE_NO_WARNING (ref) = 1;
4692 return;
4695 if (warn_array_bounds < 2)
4696 return;
4698 /* At level 2 check also intermediate offsets. */
4699 int i = 0;
4700 if (extrema[i] < -arrbounds[1] || extrema[i = 1] > ubound)
4702 HOST_WIDE_INT tmpidx = extrema[i].to_shwi () / eltsize.to_shwi ();
4704 warning_at (location, OPT_Warray_bounds,
4705 "intermediate array offset %wi is outside array bounds "
4706 "of %qT",
4707 tmpidx, reftype);
4708 TREE_NO_WARNING (ref) = 1;
4712 /* Searches if the expr T, located at LOCATION computes
4713 address of an ARRAY_REF, and call check_array_ref on it. */
4715 void
4716 vrp_prop::search_for_addr_array (tree t, location_t location)
4718 /* Check each ARRAY_REF and MEM_REF in the reference chain. */
4721 if (TREE_CODE (t) == ARRAY_REF)
4722 check_array_ref (location, t, true /*ignore_off_by_one*/);
4723 else if (TREE_CODE (t) == MEM_REF)
4724 check_mem_ref (location, t, true /*ignore_off_by_one*/);
4726 t = TREE_OPERAND (t, 0);
4728 while (handled_component_p (t) || TREE_CODE (t) == MEM_REF);
4730 if (TREE_CODE (t) != MEM_REF
4731 || TREE_CODE (TREE_OPERAND (t, 0)) != ADDR_EXPR
4732 || TREE_NO_WARNING (t))
4733 return;
4735 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
4736 tree low_bound, up_bound, el_sz;
4737 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
4738 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
4739 || !TYPE_DOMAIN (TREE_TYPE (tem)))
4740 return;
4742 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
4743 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
4744 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
4745 if (!low_bound
4746 || TREE_CODE (low_bound) != INTEGER_CST
4747 || !up_bound
4748 || TREE_CODE (up_bound) != INTEGER_CST
4749 || !el_sz
4750 || TREE_CODE (el_sz) != INTEGER_CST)
4751 return;
4753 offset_int idx;
4754 if (!mem_ref_offset (t).is_constant (&idx))
4755 return;
4757 bool warned = false;
4758 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
4759 if (idx < 0)
4761 if (dump_file && (dump_flags & TDF_DETAILS))
4763 fprintf (dump_file, "Array bound warning for ");
4764 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4765 fprintf (dump_file, "\n");
4767 warned = warning_at (location, OPT_Warray_bounds,
4768 "array subscript %wi is below "
4769 "array bounds of %qT",
4770 idx.to_shwi (), TREE_TYPE (tem));
4772 else if (idx > (wi::to_offset (up_bound)
4773 - wi::to_offset (low_bound) + 1))
4775 if (dump_file && (dump_flags & TDF_DETAILS))
4777 fprintf (dump_file, "Array bound warning for ");
4778 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4779 fprintf (dump_file, "\n");
4781 warned = warning_at (location, OPT_Warray_bounds,
4782 "array subscript %wu is above "
4783 "array bounds of %qT",
4784 idx.to_uhwi (), TREE_TYPE (tem));
4787 if (warned)
4789 if (DECL_P (t))
4790 inform (DECL_SOURCE_LOCATION (t), "while referencing %qD", t);
4792 TREE_NO_WARNING (t) = 1;
4796 /* walk_tree() callback that checks if *TP is
4797 an ARRAY_REF inside an ADDR_EXPR (in which an array
4798 subscript one outside the valid range is allowed). Call
4799 check_array_ref for each ARRAY_REF found. The location is
4800 passed in DATA. */
4802 static tree
4803 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4805 tree t = *tp;
4806 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4807 location_t location;
4809 if (EXPR_HAS_LOCATION (t))
4810 location = EXPR_LOCATION (t);
4811 else
4812 location = gimple_location (wi->stmt);
4814 *walk_subtree = TRUE;
4816 vrp_prop *vrp_prop = (class vrp_prop *)wi->info;
4817 if (TREE_CODE (t) == ARRAY_REF)
4818 vrp_prop->check_array_ref (location, t, false /*ignore_off_by_one*/);
4819 else if (TREE_CODE (t) == MEM_REF)
4820 vrp_prop->check_mem_ref (location, t, false /*ignore_off_by_one*/);
4821 else if (TREE_CODE (t) == ADDR_EXPR)
4823 vrp_prop->search_for_addr_array (t, location);
4824 *walk_subtree = FALSE;
4827 return NULL_TREE;
4830 /* A dom_walker subclass for use by vrp_prop::check_all_array_refs,
4831 to walk over all statements of all reachable BBs and call
4832 check_array_bounds on them. */
4834 class check_array_bounds_dom_walker : public dom_walker
4836 public:
4837 check_array_bounds_dom_walker (vrp_prop *prop)
4838 : dom_walker (CDI_DOMINATORS,
4839 /* Discover non-executable edges, preserving EDGE_EXECUTABLE
4840 flags, so that we can merge in information on
4841 non-executable edges from vrp_folder . */
4842 REACHABLE_BLOCKS_PRESERVING_FLAGS),
4843 m_prop (prop) {}
4844 ~check_array_bounds_dom_walker () {}
4846 edge before_dom_children (basic_block) FINAL OVERRIDE;
4848 private:
4849 vrp_prop *m_prop;
4852 /* Implementation of dom_walker::before_dom_children.
4854 Walk over all statements of BB and call check_array_bounds on them,
4855 and determine if there's a unique successor edge. */
4857 edge
4858 check_array_bounds_dom_walker::before_dom_children (basic_block bb)
4860 gimple_stmt_iterator si;
4861 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4863 gimple *stmt = gsi_stmt (si);
4864 struct walk_stmt_info wi;
4865 if (!gimple_has_location (stmt)
4866 || is_gimple_debug (stmt))
4867 continue;
4869 memset (&wi, 0, sizeof (wi));
4871 wi.info = m_prop;
4873 walk_gimple_op (stmt, check_array_bounds, &wi);
4876 /* Determine if there's a unique successor edge, and if so, return
4877 that back to dom_walker, ensuring that we don't visit blocks that
4878 became unreachable during the VRP propagation
4879 (PR tree-optimization/83312). */
4880 return find_taken_edge (bb, NULL_TREE);
4883 /* Walk over all statements of all reachable BBs and call check_array_bounds
4884 on them. */
4886 void
4887 vrp_prop::check_all_array_refs ()
4889 check_array_bounds_dom_walker w (this);
4890 w.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4893 /* Return true if all imm uses of VAR are either in STMT, or
4894 feed (optionally through a chain of single imm uses) GIMPLE_COND
4895 in basic block COND_BB. */
4897 static bool
4898 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
4900 use_operand_p use_p, use2_p;
4901 imm_use_iterator iter;
4903 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
4904 if (USE_STMT (use_p) != stmt)
4906 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
4907 if (is_gimple_debug (use_stmt))
4908 continue;
4909 while (is_gimple_assign (use_stmt)
4910 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
4911 && single_imm_use (gimple_assign_lhs (use_stmt),
4912 &use2_p, &use_stmt2))
4913 use_stmt = use_stmt2;
4914 if (gimple_code (use_stmt) != GIMPLE_COND
4915 || gimple_bb (use_stmt) != cond_bb)
4916 return false;
4918 return true;
4921 /* Handle
4922 _4 = x_3 & 31;
4923 if (_4 != 0)
4924 goto <bb 6>;
4925 else
4926 goto <bb 7>;
4927 <bb 6>:
4928 __builtin_unreachable ();
4929 <bb 7>:
4930 x_5 = ASSERT_EXPR <x_3, ...>;
4931 If x_3 has no other immediate uses (checked by caller),
4932 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
4933 from the non-zero bitmask. */
4935 void
4936 maybe_set_nonzero_bits (edge e, tree var)
4938 basic_block cond_bb = e->src;
4939 gimple *stmt = last_stmt (cond_bb);
4940 tree cst;
4942 if (stmt == NULL
4943 || gimple_code (stmt) != GIMPLE_COND
4944 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
4945 ? EQ_EXPR : NE_EXPR)
4946 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
4947 || !integer_zerop (gimple_cond_rhs (stmt)))
4948 return;
4950 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
4951 if (!is_gimple_assign (stmt)
4952 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
4953 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
4954 return;
4955 if (gimple_assign_rhs1 (stmt) != var)
4957 gimple *stmt2;
4959 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
4960 return;
4961 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
4962 if (!gimple_assign_cast_p (stmt2)
4963 || gimple_assign_rhs1 (stmt2) != var
4964 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
4965 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
4966 != TYPE_PRECISION (TREE_TYPE (var))))
4967 return;
4969 cst = gimple_assign_rhs2 (stmt);
4970 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var),
4971 wi::to_wide (cst)));
4974 /* Convert range assertion expressions into the implied copies and
4975 copy propagate away the copies. Doing the trivial copy propagation
4976 here avoids the need to run the full copy propagation pass after
4977 VRP.
4979 FIXME, this will eventually lead to copy propagation removing the
4980 names that had useful range information attached to them. For
4981 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4982 then N_i will have the range [3, +INF].
4984 However, by converting the assertion into the implied copy
4985 operation N_i = N_j, we will then copy-propagate N_j into the uses
4986 of N_i and lose the range information. We may want to hold on to
4987 ASSERT_EXPRs a little while longer as the ranges could be used in
4988 things like jump threading.
4990 The problem with keeping ASSERT_EXPRs around is that passes after
4991 VRP need to handle them appropriately.
4993 Another approach would be to make the range information a first
4994 class property of the SSA_NAME so that it can be queried from
4995 any pass. This is made somewhat more complex by the need for
4996 multiple ranges to be associated with one SSA_NAME. */
4998 static void
4999 remove_range_assertions (void)
5001 basic_block bb;
5002 gimple_stmt_iterator si;
5003 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
5004 a basic block preceeded by GIMPLE_COND branching to it and
5005 __builtin_trap, -1 if not yet checked, 0 otherwise. */
5006 int is_unreachable;
5008 /* Note that the BSI iterator bump happens at the bottom of the
5009 loop and no bump is necessary if we're removing the statement
5010 referenced by the current BSI. */
5011 FOR_EACH_BB_FN (bb, cfun)
5012 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
5014 gimple *stmt = gsi_stmt (si);
5016 if (is_gimple_assign (stmt)
5017 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5019 tree lhs = gimple_assign_lhs (stmt);
5020 tree rhs = gimple_assign_rhs1 (stmt);
5021 tree var;
5023 var = ASSERT_EXPR_VAR (rhs);
5025 if (TREE_CODE (var) == SSA_NAME
5026 && !POINTER_TYPE_P (TREE_TYPE (lhs))
5027 && SSA_NAME_RANGE_INFO (lhs))
5029 if (is_unreachable == -1)
5031 is_unreachable = 0;
5032 if (single_pred_p (bb)
5033 && assert_unreachable_fallthru_edge_p
5034 (single_pred_edge (bb)))
5035 is_unreachable = 1;
5037 /* Handle
5038 if (x_7 >= 10 && x_7 < 20)
5039 __builtin_unreachable ();
5040 x_8 = ASSERT_EXPR <x_7, ...>;
5041 if the only uses of x_7 are in the ASSERT_EXPR and
5042 in the condition. In that case, we can copy the
5043 range info from x_8 computed in this pass also
5044 for x_7. */
5045 if (is_unreachable
5046 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
5047 single_pred (bb)))
5049 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
5050 SSA_NAME_RANGE_INFO (lhs)->get_min (),
5051 SSA_NAME_RANGE_INFO (lhs)->get_max ());
5052 maybe_set_nonzero_bits (single_pred_edge (bb), var);
5056 /* Propagate the RHS into every use of the LHS. For SSA names
5057 also propagate abnormals as it merely restores the original
5058 IL in this case (an replace_uses_by would assert). */
5059 if (TREE_CODE (var) == SSA_NAME)
5061 imm_use_iterator iter;
5062 use_operand_p use_p;
5063 gimple *use_stmt;
5064 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
5065 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5066 SET_USE (use_p, var);
5068 else
5069 replace_uses_by (lhs, var);
5071 /* And finally, remove the copy, it is not needed. */
5072 gsi_remove (&si, true);
5073 release_defs (stmt);
5075 else
5077 if (!is_gimple_debug (gsi_stmt (si)))
5078 is_unreachable = 0;
5079 gsi_next (&si);
5084 /* Return true if STMT is interesting for VRP. */
5086 bool
5087 stmt_interesting_for_vrp (gimple *stmt)
5089 if (gimple_code (stmt) == GIMPLE_PHI)
5091 tree res = gimple_phi_result (stmt);
5092 return (!virtual_operand_p (res)
5093 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
5094 || POINTER_TYPE_P (TREE_TYPE (res))));
5096 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5098 tree lhs = gimple_get_lhs (stmt);
5100 /* In general, assignments with virtual operands are not useful
5101 for deriving ranges, with the obvious exception of calls to
5102 builtin functions. */
5103 if (lhs && TREE_CODE (lhs) == SSA_NAME
5104 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5105 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5106 && (is_gimple_call (stmt)
5107 || !gimple_vuse (stmt)))
5108 return true;
5109 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
5110 switch (gimple_call_internal_fn (stmt))
5112 case IFN_ADD_OVERFLOW:
5113 case IFN_SUB_OVERFLOW:
5114 case IFN_MUL_OVERFLOW:
5115 case IFN_ATOMIC_COMPARE_EXCHANGE:
5116 /* These internal calls return _Complex integer type,
5117 but are interesting to VRP nevertheless. */
5118 if (lhs && TREE_CODE (lhs) == SSA_NAME)
5119 return true;
5120 break;
5121 default:
5122 break;
5125 else if (gimple_code (stmt) == GIMPLE_COND
5126 || gimple_code (stmt) == GIMPLE_SWITCH)
5127 return true;
5129 return false;
5132 /* Initialization required by ssa_propagate engine. */
5134 void
5135 vrp_prop::vrp_initialize ()
5137 basic_block bb;
5139 FOR_EACH_BB_FN (bb, cfun)
5141 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
5142 gsi_next (&si))
5144 gphi *phi = si.phi ();
5145 if (!stmt_interesting_for_vrp (phi))
5147 tree lhs = PHI_RESULT (phi);
5148 get_value_range (lhs)->set_varying ();
5149 prop_set_simulate_again (phi, false);
5151 else
5152 prop_set_simulate_again (phi, true);
5155 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
5156 gsi_next (&si))
5158 gimple *stmt = gsi_stmt (si);
5160 /* If the statement is a control insn, then we do not
5161 want to avoid simulating the statement once. Failure
5162 to do so means that those edges will never get added. */
5163 if (stmt_ends_bb_p (stmt))
5164 prop_set_simulate_again (stmt, true);
5165 else if (!stmt_interesting_for_vrp (stmt))
5167 set_defs_to_varying (stmt);
5168 prop_set_simulate_again (stmt, false);
5170 else
5171 prop_set_simulate_again (stmt, true);
5176 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5177 that includes the value VAL. The search is restricted to the range
5178 [START_IDX, n - 1] where n is the size of VEC.
5180 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5181 returned.
5183 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
5184 it is placed in IDX and false is returned.
5186 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5187 returned. */
5189 bool
5190 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
5192 size_t n = gimple_switch_num_labels (stmt);
5193 size_t low, high;
5195 /* Find case label for minimum of the value range or the next one.
5196 At each iteration we are searching in [low, high - 1]. */
5198 for (low = start_idx, high = n; high != low; )
5200 tree t;
5201 int cmp;
5202 /* Note that i != high, so we never ask for n. */
5203 size_t i = (high + low) / 2;
5204 t = gimple_switch_label (stmt, i);
5206 /* Cache the result of comparing CASE_LOW and val. */
5207 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5209 if (cmp == 0)
5211 /* Ranges cannot be empty. */
5212 *idx = i;
5213 return true;
5215 else if (cmp > 0)
5216 high = i;
5217 else
5219 low = i + 1;
5220 if (CASE_HIGH (t) != NULL
5221 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5223 *idx = i;
5224 return true;
5229 *idx = high;
5230 return false;
5233 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5234 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5235 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5236 then MAX_IDX < MIN_IDX.
5237 Returns true if the default label is not needed. */
5239 bool
5240 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
5241 size_t *max_idx)
5243 size_t i, j;
5244 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5245 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
5247 if (i == j
5248 && min_take_default
5249 && max_take_default)
5251 /* Only the default case label reached.
5252 Return an empty range. */
5253 *min_idx = 1;
5254 *max_idx = 0;
5255 return false;
5257 else
5259 bool take_default = min_take_default || max_take_default;
5260 tree low, high;
5261 size_t k;
5263 if (max_take_default)
5264 j--;
5266 /* If the case label range is continuous, we do not need
5267 the default case label. Verify that. */
5268 high = CASE_LOW (gimple_switch_label (stmt, i));
5269 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5270 high = CASE_HIGH (gimple_switch_label (stmt, i));
5271 for (k = i + 1; k <= j; ++k)
5273 low = CASE_LOW (gimple_switch_label (stmt, k));
5274 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
5276 take_default = true;
5277 break;
5279 high = low;
5280 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5281 high = CASE_HIGH (gimple_switch_label (stmt, k));
5284 *min_idx = i;
5285 *max_idx = j;
5286 return !take_default;
5290 /* Evaluate statement STMT. If the statement produces a useful range,
5291 return SSA_PROP_INTERESTING and record the SSA name with the
5292 interesting range into *OUTPUT_P.
5294 If STMT is a conditional branch and we can determine its truth
5295 value, the taken edge is recorded in *TAKEN_EDGE_P.
5297 If STMT produces a varying value, return SSA_PROP_VARYING. */
5299 enum ssa_prop_result
5300 vrp_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
5302 tree lhs = gimple_get_lhs (stmt);
5303 value_range vr;
5304 extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
5306 if (*output_p)
5308 if (update_value_range (*output_p, &vr))
5310 if (dump_file && (dump_flags & TDF_DETAILS))
5312 fprintf (dump_file, "Found new range for ");
5313 print_generic_expr (dump_file, *output_p);
5314 fprintf (dump_file, ": ");
5315 dump_value_range (dump_file, &vr);
5316 fprintf (dump_file, "\n");
5319 if (vr.varying_p ())
5320 return SSA_PROP_VARYING;
5322 return SSA_PROP_INTERESTING;
5324 return SSA_PROP_NOT_INTERESTING;
5327 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
5328 switch (gimple_call_internal_fn (stmt))
5330 case IFN_ADD_OVERFLOW:
5331 case IFN_SUB_OVERFLOW:
5332 case IFN_MUL_OVERFLOW:
5333 case IFN_ATOMIC_COMPARE_EXCHANGE:
5334 /* These internal calls return _Complex integer type,
5335 which VRP does not track, but the immediate uses
5336 thereof might be interesting. */
5337 if (lhs && TREE_CODE (lhs) == SSA_NAME)
5339 imm_use_iterator iter;
5340 use_operand_p use_p;
5341 enum ssa_prop_result res = SSA_PROP_VARYING;
5343 get_value_range (lhs)->set_varying ();
5345 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
5347 gimple *use_stmt = USE_STMT (use_p);
5348 if (!is_gimple_assign (use_stmt))
5349 continue;
5350 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
5351 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
5352 continue;
5353 tree rhs1 = gimple_assign_rhs1 (use_stmt);
5354 tree use_lhs = gimple_assign_lhs (use_stmt);
5355 if (TREE_CODE (rhs1) != rhs_code
5356 || TREE_OPERAND (rhs1, 0) != lhs
5357 || TREE_CODE (use_lhs) != SSA_NAME
5358 || !stmt_interesting_for_vrp (use_stmt)
5359 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
5360 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
5361 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
5362 continue;
5364 /* If there is a change in the value range for any of the
5365 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
5366 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
5367 or IMAGPART_EXPR immediate uses, but none of them have
5368 a change in their value ranges, return
5369 SSA_PROP_NOT_INTERESTING. If there are no
5370 {REAL,IMAG}PART_EXPR uses at all,
5371 return SSA_PROP_VARYING. */
5372 value_range new_vr;
5373 extract_range_basic (&new_vr, use_stmt);
5374 const value_range *old_vr = get_value_range (use_lhs);
5375 if (!old_vr->equal_p (new_vr, /*ignore_equivs=*/false))
5376 res = SSA_PROP_INTERESTING;
5377 else
5378 res = SSA_PROP_NOT_INTERESTING;
5379 new_vr.equiv_clear ();
5380 if (res == SSA_PROP_INTERESTING)
5382 *output_p = lhs;
5383 return res;
5387 return res;
5389 break;
5390 default:
5391 break;
5394 /* All other statements produce nothing of interest for VRP, so mark
5395 their outputs varying and prevent further simulation. */
5396 set_defs_to_varying (stmt);
5398 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5401 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5402 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5403 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5404 possible such range. The resulting range is not canonicalized. */
5406 static void
5407 union_ranges (enum value_range_kind *vr0type,
5408 tree *vr0min, tree *vr0max,
5409 enum value_range_kind vr1type,
5410 tree vr1min, tree vr1max)
5412 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
5413 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
5415 /* [] is vr0, () is vr1 in the following classification comments. */
5416 if (mineq && maxeq)
5418 /* [( )] */
5419 if (*vr0type == vr1type)
5420 /* Nothing to do for equal ranges. */
5422 else if ((*vr0type == VR_RANGE
5423 && vr1type == VR_ANTI_RANGE)
5424 || (*vr0type == VR_ANTI_RANGE
5425 && vr1type == VR_RANGE))
5427 /* For anti-range with range union the result is varying. */
5428 goto give_up;
5430 else
5431 gcc_unreachable ();
5433 else if (operand_less_p (*vr0max, vr1min) == 1
5434 || operand_less_p (vr1max, *vr0min) == 1)
5436 /* [ ] ( ) or ( ) [ ]
5437 If the ranges have an empty intersection, result of the union
5438 operation is the anti-range or if both are anti-ranges
5439 it covers all. */
5440 if (*vr0type == VR_ANTI_RANGE
5441 && vr1type == VR_ANTI_RANGE)
5442 goto give_up;
5443 else if (*vr0type == VR_ANTI_RANGE
5444 && vr1type == VR_RANGE)
5446 else if (*vr0type == VR_RANGE
5447 && vr1type == VR_ANTI_RANGE)
5449 *vr0type = vr1type;
5450 *vr0min = vr1min;
5451 *vr0max = vr1max;
5453 else if (*vr0type == VR_RANGE
5454 && vr1type == VR_RANGE)
5456 /* The result is the convex hull of both ranges. */
5457 if (operand_less_p (*vr0max, vr1min) == 1)
5459 /* If the result can be an anti-range, create one. */
5460 if (TREE_CODE (*vr0max) == INTEGER_CST
5461 && TREE_CODE (vr1min) == INTEGER_CST
5462 && vrp_val_is_min (*vr0min)
5463 && vrp_val_is_max (vr1max))
5465 tree min = int_const_binop (PLUS_EXPR,
5466 *vr0max,
5467 build_int_cst (TREE_TYPE (*vr0max), 1));
5468 tree max = int_const_binop (MINUS_EXPR,
5469 vr1min,
5470 build_int_cst (TREE_TYPE (vr1min), 1));
5471 if (!operand_less_p (max, min))
5473 *vr0type = VR_ANTI_RANGE;
5474 *vr0min = min;
5475 *vr0max = max;
5477 else
5478 *vr0max = vr1max;
5480 else
5481 *vr0max = vr1max;
5483 else
5485 /* If the result can be an anti-range, create one. */
5486 if (TREE_CODE (vr1max) == INTEGER_CST
5487 && TREE_CODE (*vr0min) == INTEGER_CST
5488 && vrp_val_is_min (vr1min)
5489 && vrp_val_is_max (*vr0max))
5491 tree min = int_const_binop (PLUS_EXPR,
5492 vr1max,
5493 build_int_cst (TREE_TYPE (vr1max), 1));
5494 tree max = int_const_binop (MINUS_EXPR,
5495 *vr0min,
5496 build_int_cst (TREE_TYPE (*vr0min), 1));
5497 if (!operand_less_p (max, min))
5499 *vr0type = VR_ANTI_RANGE;
5500 *vr0min = min;
5501 *vr0max = max;
5503 else
5504 *vr0min = vr1min;
5506 else
5507 *vr0min = vr1min;
5510 else
5511 gcc_unreachable ();
5513 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
5514 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
5516 /* [ ( ) ] or [( ) ] or [ ( )] */
5517 if (*vr0type == VR_RANGE
5518 && vr1type == VR_RANGE)
5520 else if (*vr0type == VR_ANTI_RANGE
5521 && vr1type == VR_ANTI_RANGE)
5523 *vr0type = vr1type;
5524 *vr0min = vr1min;
5525 *vr0max = vr1max;
5527 else if (*vr0type == VR_ANTI_RANGE
5528 && vr1type == VR_RANGE)
5530 /* Arbitrarily choose the right or left gap. */
5531 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
5532 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5533 build_int_cst (TREE_TYPE (vr1min), 1));
5534 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
5535 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5536 build_int_cst (TREE_TYPE (vr1max), 1));
5537 else
5538 goto give_up;
5540 else if (*vr0type == VR_RANGE
5541 && vr1type == VR_ANTI_RANGE)
5542 /* The result covers everything. */
5543 goto give_up;
5544 else
5545 gcc_unreachable ();
5547 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
5548 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
5550 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5551 if (*vr0type == VR_RANGE
5552 && vr1type == VR_RANGE)
5554 *vr0type = vr1type;
5555 *vr0min = vr1min;
5556 *vr0max = vr1max;
5558 else if (*vr0type == VR_ANTI_RANGE
5559 && vr1type == VR_ANTI_RANGE)
5561 else if (*vr0type == VR_RANGE
5562 && vr1type == VR_ANTI_RANGE)
5564 *vr0type = VR_ANTI_RANGE;
5565 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
5567 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5568 build_int_cst (TREE_TYPE (*vr0min), 1));
5569 *vr0min = vr1min;
5571 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
5573 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5574 build_int_cst (TREE_TYPE (*vr0max), 1));
5575 *vr0max = vr1max;
5577 else
5578 goto give_up;
5580 else if (*vr0type == VR_ANTI_RANGE
5581 && vr1type == VR_RANGE)
5582 /* The result covers everything. */
5583 goto give_up;
5584 else
5585 gcc_unreachable ();
5587 else if ((operand_less_p (vr1min, *vr0max) == 1
5588 || operand_equal_p (vr1min, *vr0max, 0))
5589 && operand_less_p (*vr0min, vr1min) == 1
5590 && operand_less_p (*vr0max, vr1max) == 1)
5592 /* [ ( ] ) or [ ]( ) */
5593 if (*vr0type == VR_RANGE
5594 && vr1type == VR_RANGE)
5595 *vr0max = vr1max;
5596 else if (*vr0type == VR_ANTI_RANGE
5597 && vr1type == VR_ANTI_RANGE)
5598 *vr0min = vr1min;
5599 else if (*vr0type == VR_ANTI_RANGE
5600 && vr1type == VR_RANGE)
5602 if (TREE_CODE (vr1min) == INTEGER_CST)
5603 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5604 build_int_cst (TREE_TYPE (vr1min), 1));
5605 else
5606 goto give_up;
5608 else if (*vr0type == VR_RANGE
5609 && vr1type == VR_ANTI_RANGE)
5611 if (TREE_CODE (*vr0max) == INTEGER_CST)
5613 *vr0type = vr1type;
5614 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5615 build_int_cst (TREE_TYPE (*vr0max), 1));
5616 *vr0max = vr1max;
5618 else
5619 goto give_up;
5621 else
5622 gcc_unreachable ();
5624 else if ((operand_less_p (*vr0min, vr1max) == 1
5625 || operand_equal_p (*vr0min, vr1max, 0))
5626 && operand_less_p (vr1min, *vr0min) == 1
5627 && operand_less_p (vr1max, *vr0max) == 1)
5629 /* ( [ ) ] or ( )[ ] */
5630 if (*vr0type == VR_RANGE
5631 && vr1type == VR_RANGE)
5632 *vr0min = vr1min;
5633 else if (*vr0type == VR_ANTI_RANGE
5634 && vr1type == VR_ANTI_RANGE)
5635 *vr0max = vr1max;
5636 else if (*vr0type == VR_ANTI_RANGE
5637 && vr1type == VR_RANGE)
5639 if (TREE_CODE (vr1max) == INTEGER_CST)
5640 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5641 build_int_cst (TREE_TYPE (vr1max), 1));
5642 else
5643 goto give_up;
5645 else if (*vr0type == VR_RANGE
5646 && vr1type == VR_ANTI_RANGE)
5648 if (TREE_CODE (*vr0min) == INTEGER_CST)
5650 *vr0type = vr1type;
5651 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5652 build_int_cst (TREE_TYPE (*vr0min), 1));
5653 *vr0min = vr1min;
5655 else
5656 goto give_up;
5658 else
5659 gcc_unreachable ();
5661 else
5662 goto give_up;
5664 return;
5666 give_up:
5667 *vr0type = VR_VARYING;
5668 *vr0min = NULL_TREE;
5669 *vr0max = NULL_TREE;
5672 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5673 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5674 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5675 possible such range. The resulting range is not canonicalized. */
5677 static void
5678 intersect_ranges (enum value_range_kind *vr0type,
5679 tree *vr0min, tree *vr0max,
5680 enum value_range_kind vr1type,
5681 tree vr1min, tree vr1max)
5683 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
5684 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
5686 /* [] is vr0, () is vr1 in the following classification comments. */
5687 if (mineq && maxeq)
5689 /* [( )] */
5690 if (*vr0type == vr1type)
5691 /* Nothing to do for equal ranges. */
5693 else if ((*vr0type == VR_RANGE
5694 && vr1type == VR_ANTI_RANGE)
5695 || (*vr0type == VR_ANTI_RANGE
5696 && vr1type == VR_RANGE))
5698 /* For anti-range with range intersection the result is empty. */
5699 *vr0type = VR_UNDEFINED;
5700 *vr0min = NULL_TREE;
5701 *vr0max = NULL_TREE;
5703 else
5704 gcc_unreachable ();
5706 else if (operand_less_p (*vr0max, vr1min) == 1
5707 || operand_less_p (vr1max, *vr0min) == 1)
5709 /* [ ] ( ) or ( ) [ ]
5710 If the ranges have an empty intersection, the result of the
5711 intersect operation is the range for intersecting an
5712 anti-range with a range or empty when intersecting two ranges. */
5713 if (*vr0type == VR_RANGE
5714 && vr1type == VR_ANTI_RANGE)
5716 else if (*vr0type == VR_ANTI_RANGE
5717 && vr1type == VR_RANGE)
5719 *vr0type = vr1type;
5720 *vr0min = vr1min;
5721 *vr0max = vr1max;
5723 else if (*vr0type == VR_RANGE
5724 && vr1type == VR_RANGE)
5726 *vr0type = VR_UNDEFINED;
5727 *vr0min = NULL_TREE;
5728 *vr0max = NULL_TREE;
5730 else if (*vr0type == VR_ANTI_RANGE
5731 && vr1type == VR_ANTI_RANGE)
5733 /* If the anti-ranges are adjacent to each other merge them. */
5734 if (TREE_CODE (*vr0max) == INTEGER_CST
5735 && TREE_CODE (vr1min) == INTEGER_CST
5736 && operand_less_p (*vr0max, vr1min) == 1
5737 && integer_onep (int_const_binop (MINUS_EXPR,
5738 vr1min, *vr0max)))
5739 *vr0max = vr1max;
5740 else if (TREE_CODE (vr1max) == INTEGER_CST
5741 && TREE_CODE (*vr0min) == INTEGER_CST
5742 && operand_less_p (vr1max, *vr0min) == 1
5743 && integer_onep (int_const_binop (MINUS_EXPR,
5744 *vr0min, vr1max)))
5745 *vr0min = vr1min;
5746 /* Else arbitrarily take VR0. */
5749 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
5750 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
5752 /* [ ( ) ] or [( ) ] or [ ( )] */
5753 if (*vr0type == VR_RANGE
5754 && vr1type == VR_RANGE)
5756 /* If both are ranges the result is the inner one. */
5757 *vr0type = vr1type;
5758 *vr0min = vr1min;
5759 *vr0max = vr1max;
5761 else if (*vr0type == VR_RANGE
5762 && vr1type == VR_ANTI_RANGE)
5764 /* Choose the right gap if the left one is empty. */
5765 if (mineq)
5767 if (TREE_CODE (vr1max) != INTEGER_CST)
5768 *vr0min = vr1max;
5769 else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
5770 && !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
5771 *vr0min
5772 = int_const_binop (MINUS_EXPR, vr1max,
5773 build_int_cst (TREE_TYPE (vr1max), -1));
5774 else
5775 *vr0min
5776 = int_const_binop (PLUS_EXPR, vr1max,
5777 build_int_cst (TREE_TYPE (vr1max), 1));
5779 /* Choose the left gap if the right one is empty. */
5780 else if (maxeq)
5782 if (TREE_CODE (vr1min) != INTEGER_CST)
5783 *vr0max = vr1min;
5784 else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
5785 && !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
5786 *vr0max
5787 = int_const_binop (PLUS_EXPR, vr1min,
5788 build_int_cst (TREE_TYPE (vr1min), -1));
5789 else
5790 *vr0max
5791 = int_const_binop (MINUS_EXPR, vr1min,
5792 build_int_cst (TREE_TYPE (vr1min), 1));
5794 /* Choose the anti-range if the range is effectively varying. */
5795 else if (vrp_val_is_min (*vr0min)
5796 && vrp_val_is_max (*vr0max))
5798 *vr0type = vr1type;
5799 *vr0min = vr1min;
5800 *vr0max = vr1max;
5802 /* Else choose the range. */
5804 else if (*vr0type == VR_ANTI_RANGE
5805 && vr1type == VR_ANTI_RANGE)
5806 /* If both are anti-ranges the result is the outer one. */
5808 else if (*vr0type == VR_ANTI_RANGE
5809 && vr1type == VR_RANGE)
5811 /* The intersection is empty. */
5812 *vr0type = VR_UNDEFINED;
5813 *vr0min = NULL_TREE;
5814 *vr0max = NULL_TREE;
5816 else
5817 gcc_unreachable ();
5819 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
5820 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
5822 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5823 if (*vr0type == VR_RANGE
5824 && vr1type == VR_RANGE)
5825 /* Choose the inner range. */
5827 else if (*vr0type == VR_ANTI_RANGE
5828 && vr1type == VR_RANGE)
5830 /* Choose the right gap if the left is empty. */
5831 if (mineq)
5833 *vr0type = VR_RANGE;
5834 if (TREE_CODE (*vr0max) != INTEGER_CST)
5835 *vr0min = *vr0max;
5836 else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
5837 && !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
5838 *vr0min
5839 = int_const_binop (MINUS_EXPR, *vr0max,
5840 build_int_cst (TREE_TYPE (*vr0max), -1));
5841 else
5842 *vr0min
5843 = int_const_binop (PLUS_EXPR, *vr0max,
5844 build_int_cst (TREE_TYPE (*vr0max), 1));
5845 *vr0max = vr1max;
5847 /* Choose the left gap if the right is empty. */
5848 else if (maxeq)
5850 *vr0type = VR_RANGE;
5851 if (TREE_CODE (*vr0min) != INTEGER_CST)
5852 *vr0max = *vr0min;
5853 else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
5854 && !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
5855 *vr0max
5856 = int_const_binop (PLUS_EXPR, *vr0min,
5857 build_int_cst (TREE_TYPE (*vr0min), -1));
5858 else
5859 *vr0max
5860 = int_const_binop (MINUS_EXPR, *vr0min,
5861 build_int_cst (TREE_TYPE (*vr0min), 1));
5862 *vr0min = vr1min;
5864 /* Choose the anti-range if the range is effectively varying. */
5865 else if (vrp_val_is_min (vr1min)
5866 && vrp_val_is_max (vr1max))
5868 /* Choose the anti-range if it is ~[0,0], that range is special
5869 enough to special case when vr1's range is relatively wide.
5870 At least for types bigger than int - this covers pointers
5871 and arguments to functions like ctz. */
5872 else if (*vr0min == *vr0max
5873 && integer_zerop (*vr0min)
5874 && ((TYPE_PRECISION (TREE_TYPE (*vr0min))
5875 >= TYPE_PRECISION (integer_type_node))
5876 || POINTER_TYPE_P (TREE_TYPE (*vr0min)))
5877 && TREE_CODE (vr1max) == INTEGER_CST
5878 && TREE_CODE (vr1min) == INTEGER_CST
5879 && (wi::clz (wi::to_wide (vr1max) - wi::to_wide (vr1min))
5880 < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
5882 /* Else choose the range. */
5883 else
5885 *vr0type = vr1type;
5886 *vr0min = vr1min;
5887 *vr0max = vr1max;
5890 else if (*vr0type == VR_ANTI_RANGE
5891 && vr1type == VR_ANTI_RANGE)
5893 /* If both are anti-ranges the result is the outer one. */
5894 *vr0type = vr1type;
5895 *vr0min = vr1min;
5896 *vr0max = vr1max;
5898 else if (vr1type == VR_ANTI_RANGE
5899 && *vr0type == VR_RANGE)
5901 /* The intersection is empty. */
5902 *vr0type = VR_UNDEFINED;
5903 *vr0min = NULL_TREE;
5904 *vr0max = NULL_TREE;
5906 else
5907 gcc_unreachable ();
5909 else if ((operand_less_p (vr1min, *vr0max) == 1
5910 || operand_equal_p (vr1min, *vr0max, 0))
5911 && operand_less_p (*vr0min, vr1min) == 1)
5913 /* [ ( ] ) or [ ]( ) */
5914 if (*vr0type == VR_ANTI_RANGE
5915 && vr1type == VR_ANTI_RANGE)
5916 *vr0max = vr1max;
5917 else if (*vr0type == VR_RANGE
5918 && vr1type == VR_RANGE)
5919 *vr0min = vr1min;
5920 else if (*vr0type == VR_RANGE
5921 && vr1type == VR_ANTI_RANGE)
5923 if (TREE_CODE (vr1min) == INTEGER_CST)
5924 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5925 build_int_cst (TREE_TYPE (vr1min), 1));
5926 else
5927 *vr0max = vr1min;
5929 else if (*vr0type == VR_ANTI_RANGE
5930 && vr1type == VR_RANGE)
5932 *vr0type = VR_RANGE;
5933 if (TREE_CODE (*vr0max) == INTEGER_CST)
5934 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5935 build_int_cst (TREE_TYPE (*vr0max), 1));
5936 else
5937 *vr0min = *vr0max;
5938 *vr0max = vr1max;
5940 else
5941 gcc_unreachable ();
5943 else if ((operand_less_p (*vr0min, vr1max) == 1
5944 || operand_equal_p (*vr0min, vr1max, 0))
5945 && operand_less_p (vr1min, *vr0min) == 1)
5947 /* ( [ ) ] or ( )[ ] */
5948 if (*vr0type == VR_ANTI_RANGE
5949 && vr1type == VR_ANTI_RANGE)
5950 *vr0min = vr1min;
5951 else if (*vr0type == VR_RANGE
5952 && vr1type == VR_RANGE)
5953 *vr0max = vr1max;
5954 else if (*vr0type == VR_RANGE
5955 && vr1type == VR_ANTI_RANGE)
5957 if (TREE_CODE (vr1max) == INTEGER_CST)
5958 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5959 build_int_cst (TREE_TYPE (vr1max), 1));
5960 else
5961 *vr0min = vr1max;
5963 else if (*vr0type == VR_ANTI_RANGE
5964 && vr1type == VR_RANGE)
5966 *vr0type = VR_RANGE;
5967 if (TREE_CODE (*vr0min) == INTEGER_CST)
5968 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5969 build_int_cst (TREE_TYPE (*vr0min), 1));
5970 else
5971 *vr0max = *vr0min;
5972 *vr0min = vr1min;
5974 else
5975 gcc_unreachable ();
5978 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
5979 result for the intersection. That's always a conservative
5980 correct estimate unless VR1 is a constant singleton range
5981 in which case we choose that. */
5982 if (vr1type == VR_RANGE
5983 && is_gimple_min_invariant (vr1min)
5984 && vrp_operand_equal_p (vr1min, vr1max))
5986 *vr0type = vr1type;
5987 *vr0min = vr1min;
5988 *vr0max = vr1max;
5993 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
5994 in *VR0. This may not be the smallest possible such range. */
5996 void
5997 value_range::intersect_helper (value_range *vr0, const value_range *vr1)
5999 /* If either range is VR_VARYING the other one wins. */
6000 if (vr1->varying_p ())
6001 return;
6002 if (vr0->varying_p ())
6004 vr0->deep_copy (vr1);
6005 return;
6008 /* When either range is VR_UNDEFINED the resulting range is
6009 VR_UNDEFINED, too. */
6010 if (vr0->undefined_p ())
6011 return;
6012 if (vr1->undefined_p ())
6014 vr0->set_undefined ();
6015 return;
6018 value_range_kind vr0type = vr0->kind ();
6019 tree vr0min = vr0->min ();
6020 tree vr0max = vr0->max ();
6021 intersect_ranges (&vr0type, &vr0min, &vr0max,
6022 vr1->kind (), vr1->min (), vr1->max ());
6023 /* Make sure to canonicalize the result though as the inversion of a
6024 VR_RANGE can still be a VR_RANGE. Work on a temporary so we can
6025 fall back to vr0 when this turns things to varying. */
6026 value_range tem;
6027 tem.set_and_canonicalize (vr0type, vr0min, vr0max);
6028 /* If that failed, use the saved original VR0. */
6029 if (tem.varying_p ())
6030 return;
6031 vr0->update (tem.kind (), tem.min (), tem.max ());
6033 /* If the result is VR_UNDEFINED there is no need to mess with
6034 the equivalencies. */
6035 if (vr0->undefined_p ())
6036 return;
6038 /* The resulting set of equivalences for range intersection is the union of
6039 the two sets. */
6040 if (vr0->m_equiv && vr1->m_equiv && vr0->m_equiv != vr1->m_equiv)
6041 bitmap_ior_into (vr0->m_equiv, vr1->m_equiv);
6042 else if (vr1->m_equiv && !vr0->m_equiv)
6044 /* All equivalence bitmaps are allocated from the same obstack. So
6045 we can use the obstack associated with VR to allocate vr0->equiv. */
6046 vr0->m_equiv = BITMAP_ALLOC (vr1->m_equiv->obstack);
6047 bitmap_copy (m_equiv, vr1->m_equiv);
6051 void
6052 value_range::intersect (const value_range *other)
6054 if (dump_file && (dump_flags & TDF_DETAILS))
6056 fprintf (dump_file, "Intersecting\n ");
6057 dump_value_range (dump_file, this);
6058 fprintf (dump_file, "\nand\n ");
6059 dump_value_range (dump_file, other);
6060 fprintf (dump_file, "\n");
6062 intersect_helper (this, other);
6063 if (dump_file && (dump_flags & TDF_DETAILS))
6065 fprintf (dump_file, "to\n ");
6066 dump_value_range (dump_file, this);
6067 fprintf (dump_file, "\n");
6071 /* Helper for meet operation for value ranges. Given two value ranges VR0 and
6072 VR1, return a range that contains both VR0 and VR1. This may not be the
6073 smallest possible such range. */
6075 value_range_base
6076 value_range_base::union_helper (const value_range_base *vr0,
6077 const value_range_base *vr1)
6079 /* VR0 has the resulting range if VR1 is undefined or VR0 is varying. */
6080 if (vr1->undefined_p ()
6081 || vr0->varying_p ())
6082 return *vr0;
6084 /* VR1 has the resulting range if VR0 is undefined or VR1 is varying. */
6085 if (vr0->undefined_p ()
6086 || vr1->varying_p ())
6087 return *vr1;
6089 value_range_kind vr0type = vr0->kind ();
6090 tree vr0min = vr0->min ();
6091 tree vr0max = vr0->max ();
6092 union_ranges (&vr0type, &vr0min, &vr0max,
6093 vr1->kind (), vr1->min (), vr1->max ());
6095 /* Work on a temporary so we can still use vr0 when union returns varying. */
6096 value_range tem;
6097 tem.set_and_canonicalize (vr0type, vr0min, vr0max);
6099 /* Failed to find an efficient meet. Before giving up and setting
6100 the result to VARYING, see if we can at least derive a useful
6101 anti-range. */
6102 if (tem.varying_p ()
6103 && range_includes_zero_p (vr0) == 0
6104 && range_includes_zero_p (vr1) == 0)
6106 tem.set_nonnull (vr0->type ());
6107 return tem;
6110 return tem;
6114 /* Meet operation for value ranges. Given two value ranges VR0 and
6115 VR1, store in VR0 a range that contains both VR0 and VR1. This
6116 may not be the smallest possible such range. */
6118 void
6119 value_range_base::union_ (const value_range_base *other)
6121 if (dump_file && (dump_flags & TDF_DETAILS))
6123 fprintf (dump_file, "Meeting\n ");
6124 dump_value_range (dump_file, this);
6125 fprintf (dump_file, "\nand\n ");
6126 dump_value_range (dump_file, other);
6127 fprintf (dump_file, "\n");
6130 *this = union_helper (this, other);
6132 if (dump_file && (dump_flags & TDF_DETAILS))
6134 fprintf (dump_file, "to\n ");
6135 dump_value_range (dump_file, this);
6136 fprintf (dump_file, "\n");
6140 void
6141 value_range::union_ (const value_range *other)
6143 if (dump_file && (dump_flags & TDF_DETAILS))
6145 fprintf (dump_file, "Meeting\n ");
6146 dump_value_range (dump_file, this);
6147 fprintf (dump_file, "\nand\n ");
6148 dump_value_range (dump_file, other);
6149 fprintf (dump_file, "\n");
6152 /* If THIS is undefined we want to pick up equivalences from OTHER.
6153 Just special-case this here rather than trying to fixup after the fact. */
6154 if (this->undefined_p ())
6155 this->deep_copy (other);
6156 else
6158 value_range_base tem = union_helper (this, other);
6159 this->update (tem.kind (), tem.min (), tem.max ());
6161 /* The resulting set of equivalences is always the intersection of
6162 the two sets. */
6163 if (this->m_equiv && other->m_equiv && this->m_equiv != other->m_equiv)
6164 bitmap_and_into (this->m_equiv, other->m_equiv);
6165 else if (this->m_equiv && !other->m_equiv)
6166 bitmap_clear (this->m_equiv);
6169 if (dump_file && (dump_flags & TDF_DETAILS))
6171 fprintf (dump_file, "to\n ");
6172 dump_value_range (dump_file, this);
6173 fprintf (dump_file, "\n");
6177 /* Visit all arguments for PHI node PHI that flow through executable
6178 edges. If a valid value range can be derived from all the incoming
6179 value ranges, set a new range for the LHS of PHI. */
6181 enum ssa_prop_result
6182 vrp_prop::visit_phi (gphi *phi)
6184 tree lhs = PHI_RESULT (phi);
6185 value_range vr_result;
6186 extract_range_from_phi_node (phi, &vr_result);
6187 if (update_value_range (lhs, &vr_result))
6189 if (dump_file && (dump_flags & TDF_DETAILS))
6191 fprintf (dump_file, "Found new range for ");
6192 print_generic_expr (dump_file, lhs);
6193 fprintf (dump_file, ": ");
6194 dump_value_range (dump_file, &vr_result);
6195 fprintf (dump_file, "\n");
6198 if (vr_result.varying_p ())
6199 return SSA_PROP_VARYING;
6201 return SSA_PROP_INTERESTING;
6204 /* Nothing changed, don't add outgoing edges. */
6205 return SSA_PROP_NOT_INTERESTING;
6208 class vrp_folder : public substitute_and_fold_engine
6210 public:
6211 tree get_value (tree) FINAL OVERRIDE;
6212 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
6213 bool fold_predicate_in (gimple_stmt_iterator *);
6215 class vr_values *vr_values;
6217 /* Delegators. */
6218 tree vrp_evaluate_conditional (tree_code code, tree op0,
6219 tree op1, gimple *stmt)
6220 { return vr_values->vrp_evaluate_conditional (code, op0, op1, stmt); }
6221 bool simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
6222 { return vr_values->simplify_stmt_using_ranges (gsi); }
6223 tree op_with_constant_singleton_value_range (tree op)
6224 { return vr_values->op_with_constant_singleton_value_range (op); }
6227 /* If the statement pointed by SI has a predicate whose value can be
6228 computed using the value range information computed by VRP, compute
6229 its value and return true. Otherwise, return false. */
6231 bool
6232 vrp_folder::fold_predicate_in (gimple_stmt_iterator *si)
6234 bool assignment_p = false;
6235 tree val;
6236 gimple *stmt = gsi_stmt (*si);
6238 if (is_gimple_assign (stmt)
6239 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
6241 assignment_p = true;
6242 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
6243 gimple_assign_rhs1 (stmt),
6244 gimple_assign_rhs2 (stmt),
6245 stmt);
6247 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
6248 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
6249 gimple_cond_lhs (cond_stmt),
6250 gimple_cond_rhs (cond_stmt),
6251 stmt);
6252 else
6253 return false;
6255 if (val)
6257 if (assignment_p)
6258 val = fold_convert (gimple_expr_type (stmt), val);
6260 if (dump_file)
6262 fprintf (dump_file, "Folding predicate ");
6263 print_gimple_expr (dump_file, stmt, 0);
6264 fprintf (dump_file, " to ");
6265 print_generic_expr (dump_file, val);
6266 fprintf (dump_file, "\n");
6269 if (is_gimple_assign (stmt))
6270 gimple_assign_set_rhs_from_tree (si, val);
6271 else
6273 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
6274 gcond *cond_stmt = as_a <gcond *> (stmt);
6275 if (integer_zerop (val))
6276 gimple_cond_make_false (cond_stmt);
6277 else if (integer_onep (val))
6278 gimple_cond_make_true (cond_stmt);
6279 else
6280 gcc_unreachable ();
6283 return true;
6286 return false;
6289 /* Callback for substitute_and_fold folding the stmt at *SI. */
6291 bool
6292 vrp_folder::fold_stmt (gimple_stmt_iterator *si)
6294 if (fold_predicate_in (si))
6295 return true;
6297 return simplify_stmt_using_ranges (si);
6300 /* If OP has a value range with a single constant value return that,
6301 otherwise return NULL_TREE. This returns OP itself if OP is a
6302 constant.
6304 Implemented as a pure wrapper right now, but this will change. */
6306 tree
6307 vrp_folder::get_value (tree op)
6309 return op_with_constant_singleton_value_range (op);
6312 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
6313 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
6314 BB. If no such ASSERT_EXPR is found, return OP. */
6316 static tree
6317 lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
6319 imm_use_iterator imm_iter;
6320 gimple *use_stmt;
6321 use_operand_p use_p;
6323 if (TREE_CODE (op) == SSA_NAME)
6325 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
6327 use_stmt = USE_STMT (use_p);
6328 if (use_stmt != stmt
6329 && gimple_assign_single_p (use_stmt)
6330 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
6331 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
6332 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
6333 return gimple_assign_lhs (use_stmt);
6336 return op;
6339 /* A hack. */
6340 static class vr_values *x_vr_values;
6342 /* A trivial wrapper so that we can present the generic jump threading
6343 code with a simple API for simplifying statements. STMT is the
6344 statement we want to simplify, WITHIN_STMT provides the location
6345 for any overflow warnings. */
6347 static tree
6348 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
6349 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED,
6350 basic_block bb)
6352 /* First see if the conditional is in the hash table. */
6353 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
6354 if (cached_lhs && is_gimple_min_invariant (cached_lhs))
6355 return cached_lhs;
6357 vr_values *vr_values = x_vr_values;
6358 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
6360 tree op0 = gimple_cond_lhs (cond_stmt);
6361 op0 = lhs_of_dominating_assert (op0, bb, stmt);
6363 tree op1 = gimple_cond_rhs (cond_stmt);
6364 op1 = lhs_of_dominating_assert (op1, bb, stmt);
6366 return vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
6367 op0, op1, within_stmt);
6370 /* We simplify a switch statement by trying to determine which case label
6371 will be taken. If we are successful then we return the corresponding
6372 CASE_LABEL_EXPR. */
6373 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
6375 tree op = gimple_switch_index (switch_stmt);
6376 if (TREE_CODE (op) != SSA_NAME)
6377 return NULL_TREE;
6379 op = lhs_of_dominating_assert (op, bb, stmt);
6381 const value_range *vr = vr_values->get_value_range (op);
6382 if (vr->undefined_p ()
6383 || vr->varying_p ()
6384 || vr->symbolic_p ())
6385 return NULL_TREE;
6387 if (vr->kind () == VR_RANGE)
6389 size_t i, j;
6390 /* Get the range of labels that contain a part of the operand's
6391 value range. */
6392 find_case_label_range (switch_stmt, vr->min (), vr->max (), &i, &j);
6394 /* Is there only one such label? */
6395 if (i == j)
6397 tree label = gimple_switch_label (switch_stmt, i);
6399 /* The i'th label will be taken only if the value range of the
6400 operand is entirely within the bounds of this label. */
6401 if (CASE_HIGH (label) != NULL_TREE
6402 ? (tree_int_cst_compare (CASE_LOW (label), vr->min ()) <= 0
6403 && tree_int_cst_compare (CASE_HIGH (label),
6404 vr->max ()) >= 0)
6405 : (tree_int_cst_equal (CASE_LOW (label), vr->min ())
6406 && tree_int_cst_equal (vr->min (), vr->max ())))
6407 return label;
6410 /* If there are no such labels then the default label will be
6411 taken. */
6412 if (i > j)
6413 return gimple_switch_label (switch_stmt, 0);
6416 if (vr->kind () == VR_ANTI_RANGE)
6418 unsigned n = gimple_switch_num_labels (switch_stmt);
6419 tree min_label = gimple_switch_label (switch_stmt, 1);
6420 tree max_label = gimple_switch_label (switch_stmt, n - 1);
6422 /* The default label will be taken only if the anti-range of the
6423 operand is entirely outside the bounds of all the (non-default)
6424 case labels. */
6425 if (tree_int_cst_compare (vr->min (), CASE_LOW (min_label)) <= 0
6426 && (CASE_HIGH (max_label) != NULL_TREE
6427 ? tree_int_cst_compare (vr->max (),
6428 CASE_HIGH (max_label)) >= 0
6429 : tree_int_cst_compare (vr->max (),
6430 CASE_LOW (max_label)) >= 0))
6431 return gimple_switch_label (switch_stmt, 0);
6434 return NULL_TREE;
6437 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
6439 tree lhs = gimple_assign_lhs (assign_stmt);
6440 if (TREE_CODE (lhs) == SSA_NAME
6441 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6442 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6443 && stmt_interesting_for_vrp (stmt))
6445 edge dummy_e;
6446 tree dummy_tree;
6447 value_range new_vr;
6448 vr_values->extract_range_from_stmt (stmt, &dummy_e,
6449 &dummy_tree, &new_vr);
6450 tree singleton;
6451 if (new_vr.singleton_p (&singleton))
6452 return singleton;
6456 return NULL_TREE;
6459 class vrp_dom_walker : public dom_walker
6461 public:
6462 vrp_dom_walker (cdi_direction direction,
6463 class const_and_copies *const_and_copies,
6464 class avail_exprs_stack *avail_exprs_stack)
6465 : dom_walker (direction, REACHABLE_BLOCKS),
6466 m_const_and_copies (const_and_copies),
6467 m_avail_exprs_stack (avail_exprs_stack),
6468 m_dummy_cond (NULL) {}
6470 virtual edge before_dom_children (basic_block);
6471 virtual void after_dom_children (basic_block);
6473 class vr_values *vr_values;
6475 private:
6476 class const_and_copies *m_const_and_copies;
6477 class avail_exprs_stack *m_avail_exprs_stack;
6479 gcond *m_dummy_cond;
6483 /* Called before processing dominator children of BB. We want to look
6484 at ASSERT_EXPRs and record information from them in the appropriate
6485 tables.
6487 We could look at other statements here. It's not seen as likely
6488 to significantly increase the jump threads we discover. */
6490 edge
6491 vrp_dom_walker::before_dom_children (basic_block bb)
6493 gimple_stmt_iterator gsi;
6495 m_avail_exprs_stack->push_marker ();
6496 m_const_and_copies->push_marker ();
6497 for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6499 gimple *stmt = gsi_stmt (gsi);
6500 if (gimple_assign_single_p (stmt)
6501 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
6503 tree rhs1 = gimple_assign_rhs1 (stmt);
6504 tree cond = TREE_OPERAND (rhs1, 1);
6505 tree inverted = invert_truthvalue (cond);
6506 vec<cond_equivalence> p;
6507 p.create (3);
6508 record_conditions (&p, cond, inverted);
6509 for (unsigned int i = 0; i < p.length (); i++)
6510 m_avail_exprs_stack->record_cond (&p[i]);
6512 tree lhs = gimple_assign_lhs (stmt);
6513 m_const_and_copies->record_const_or_copy (lhs,
6514 TREE_OPERAND (rhs1, 0));
6515 p.release ();
6516 continue;
6518 break;
6520 return NULL;
6523 /* Called after processing dominator children of BB. This is where we
6524 actually call into the threader. */
6525 void
6526 vrp_dom_walker::after_dom_children (basic_block bb)
6528 if (!m_dummy_cond)
6529 m_dummy_cond = gimple_build_cond (NE_EXPR,
6530 integer_zero_node, integer_zero_node,
6531 NULL, NULL);
6533 x_vr_values = vr_values;
6534 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
6535 m_avail_exprs_stack, NULL,
6536 simplify_stmt_for_jump_threading);
6537 x_vr_values = NULL;
6539 m_avail_exprs_stack->pop_to_marker ();
6540 m_const_and_copies->pop_to_marker ();
6543 /* Blocks which have more than one predecessor and more than
6544 one successor present jump threading opportunities, i.e.,
6545 when the block is reached from a specific predecessor, we
6546 may be able to determine which of the outgoing edges will
6547 be traversed. When this optimization applies, we are able
6548 to avoid conditionals at runtime and we may expose secondary
6549 optimization opportunities.
6551 This routine is effectively a driver for the generic jump
6552 threading code. It basically just presents the generic code
6553 with edges that may be suitable for jump threading.
6555 Unlike DOM, we do not iterate VRP if jump threading was successful.
6556 While iterating may expose new opportunities for VRP, it is expected
6557 those opportunities would be very limited and the compile time cost
6558 to expose those opportunities would be significant.
6560 As jump threading opportunities are discovered, they are registered
6561 for later realization. */
6563 static void
6564 identify_jump_threads (class vr_values *vr_values)
6566 /* Ugh. When substituting values earlier in this pass we can
6567 wipe the dominance information. So rebuild the dominator
6568 information as we need it within the jump threading code. */
6569 calculate_dominance_info (CDI_DOMINATORS);
6571 /* We do not allow VRP information to be used for jump threading
6572 across a back edge in the CFG. Otherwise it becomes too
6573 difficult to avoid eliminating loop exit tests. Of course
6574 EDGE_DFS_BACK is not accurate at this time so we have to
6575 recompute it. */
6576 mark_dfs_back_edges ();
6578 /* Allocate our unwinder stack to unwind any temporary equivalences
6579 that might be recorded. */
6580 const_and_copies *equiv_stack = new const_and_copies ();
6582 hash_table<expr_elt_hasher> *avail_exprs
6583 = new hash_table<expr_elt_hasher> (1024);
6584 avail_exprs_stack *avail_exprs_stack
6585 = new class avail_exprs_stack (avail_exprs);
6587 vrp_dom_walker walker (CDI_DOMINATORS, equiv_stack, avail_exprs_stack);
6588 walker.vr_values = vr_values;
6589 walker.walk (cfun->cfg->x_entry_block_ptr);
6591 /* We do not actually update the CFG or SSA graphs at this point as
6592 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6593 handle ASSERT_EXPRs gracefully. */
6594 delete equiv_stack;
6595 delete avail_exprs;
6596 delete avail_exprs_stack;
6599 /* Traverse all the blocks folding conditionals with known ranges. */
6601 void
6602 vrp_prop::vrp_finalize (bool warn_array_bounds_p)
6604 size_t i;
6606 /* We have completed propagating through the lattice. */
6607 vr_values.set_lattice_propagation_complete ();
6609 if (dump_file)
6611 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
6612 vr_values.dump_all_value_ranges (dump_file);
6613 fprintf (dump_file, "\n");
6616 /* Set value range to non pointer SSA_NAMEs. */
6617 for (i = 0; i < num_ssa_names; i++)
6619 tree name = ssa_name (i);
6620 if (!name)
6621 continue;
6623 const value_range *vr = get_value_range (name);
6624 if (!name || !vr->constant_p ())
6625 continue;
6627 if (POINTER_TYPE_P (TREE_TYPE (name))
6628 && range_includes_zero_p (vr) == 0)
6629 set_ptr_nonnull (name);
6630 else if (!POINTER_TYPE_P (TREE_TYPE (name)))
6631 set_range_info (name, *vr);
6634 /* If we're checking array refs, we want to merge information on
6635 the executability of each edge between vrp_folder and the
6636 check_array_bounds_dom_walker: each can clear the
6637 EDGE_EXECUTABLE flag on edges, in different ways.
6639 Hence, if we're going to call check_all_array_refs, set
6640 the flag on every edge now, rather than in
6641 check_array_bounds_dom_walker's ctor; vrp_folder may clear
6642 it from some edges. */
6643 if (warn_array_bounds && warn_array_bounds_p)
6644 set_all_edges_as_executable (cfun);
6646 class vrp_folder vrp_folder;
6647 vrp_folder.vr_values = &vr_values;
6648 vrp_folder.substitute_and_fold ();
6650 if (warn_array_bounds && warn_array_bounds_p)
6651 check_all_array_refs ();
6654 /* Main entry point to VRP (Value Range Propagation). This pass is
6655 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6656 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6657 Programming Language Design and Implementation, pp. 67-78, 1995.
6658 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6660 This is essentially an SSA-CCP pass modified to deal with ranges
6661 instead of constants.
6663 While propagating ranges, we may find that two or more SSA name
6664 have equivalent, though distinct ranges. For instance,
6666 1 x_9 = p_3->a;
6667 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6668 3 if (p_4 == q_2)
6669 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6670 5 endif
6671 6 if (q_2)
6673 In the code above, pointer p_5 has range [q_2, q_2], but from the
6674 code we can also determine that p_5 cannot be NULL and, if q_2 had
6675 a non-varying range, p_5's range should also be compatible with it.
6677 These equivalences are created by two expressions: ASSERT_EXPR and
6678 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6679 result of another assertion, then we can use the fact that p_5 and
6680 p_4 are equivalent when evaluating p_5's range.
6682 Together with value ranges, we also propagate these equivalences
6683 between names so that we can take advantage of information from
6684 multiple ranges when doing final replacement. Note that this
6685 equivalency relation is transitive but not symmetric.
6687 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6688 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6689 in contexts where that assertion does not hold (e.g., in line 6).
6691 TODO, the main difference between this pass and Patterson's is that
6692 we do not propagate edge probabilities. We only compute whether
6693 edges can be taken or not. That is, instead of having a spectrum
6694 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6695 DON'T KNOW. In the future, it may be worthwhile to propagate
6696 probabilities to aid branch prediction. */
6698 static unsigned int
6699 execute_vrp (bool warn_array_bounds_p)
6702 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6703 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6704 scev_initialize ();
6706 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
6707 Inserting assertions may split edges which will invalidate
6708 EDGE_DFS_BACK. */
6709 insert_range_assertions ();
6711 threadedge_initialize_values ();
6713 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
6714 mark_dfs_back_edges ();
6716 class vrp_prop vrp_prop;
6717 vrp_prop.vrp_initialize ();
6718 vrp_prop.ssa_propagate ();
6719 vrp_prop.vrp_finalize (warn_array_bounds_p);
6721 /* We must identify jump threading opportunities before we release
6722 the datastructures built by VRP. */
6723 identify_jump_threads (&vrp_prop.vr_values);
6725 /* A comparison of an SSA_NAME against a constant where the SSA_NAME
6726 was set by a type conversion can often be rewritten to use the
6727 RHS of the type conversion.
6729 However, doing so inhibits jump threading through the comparison.
6730 So that transformation is not performed until after jump threading
6731 is complete. */
6732 basic_block bb;
6733 FOR_EACH_BB_FN (bb, cfun)
6735 gimple *last = last_stmt (bb);
6736 if (last && gimple_code (last) == GIMPLE_COND)
6737 vrp_prop.vr_values.simplify_cond_using_ranges_2 (as_a <gcond *> (last));
6740 free_numbers_of_iterations_estimates (cfun);
6742 /* ASSERT_EXPRs must be removed before finalizing jump threads
6743 as finalizing jump threads calls the CFG cleanup code which
6744 does not properly handle ASSERT_EXPRs. */
6745 remove_range_assertions ();
6747 /* If we exposed any new variables, go ahead and put them into
6748 SSA form now, before we handle jump threading. This simplifies
6749 interactions between rewriting of _DECL nodes into SSA form
6750 and rewriting SSA_NAME nodes into SSA form after block
6751 duplication and CFG manipulation. */
6752 update_ssa (TODO_update_ssa);
6754 /* We identified all the jump threading opportunities earlier, but could
6755 not transform the CFG at that time. This routine transforms the
6756 CFG and arranges for the dominator tree to be rebuilt if necessary.
6758 Note the SSA graph update will occur during the normal TODO
6759 processing by the pass manager. */
6760 thread_through_all_blocks (false);
6762 vrp_prop.vr_values.cleanup_edges_and_switches ();
6763 threadedge_finalize_values ();
6765 scev_finalize ();
6766 loop_optimizer_finalize ();
6767 return 0;
6770 namespace {
6772 const pass_data pass_data_vrp =
6774 GIMPLE_PASS, /* type */
6775 "vrp", /* name */
6776 OPTGROUP_NONE, /* optinfo_flags */
6777 TV_TREE_VRP, /* tv_id */
6778 PROP_ssa, /* properties_required */
6779 0, /* properties_provided */
6780 0, /* properties_destroyed */
6781 0, /* todo_flags_start */
6782 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
6785 class pass_vrp : public gimple_opt_pass
6787 public:
6788 pass_vrp (gcc::context *ctxt)
6789 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
6792 /* opt_pass methods: */
6793 opt_pass * clone () { return new pass_vrp (m_ctxt); }
6794 void set_pass_param (unsigned int n, bool param)
6796 gcc_assert (n == 0);
6797 warn_array_bounds_p = param;
6799 virtual bool gate (function *) { return flag_tree_vrp != 0; }
6800 virtual unsigned int execute (function *)
6801 { return execute_vrp (warn_array_bounds_p); }
6803 private:
6804 bool warn_array_bounds_p;
6805 }; // class pass_vrp
6807 } // anon namespace
6809 gimple_opt_pass *
6810 make_pass_vrp (gcc::context *ctxt)
6812 return new pass_vrp (ctxt);
6816 /* Worker for determine_value_range. */
6818 static void
6819 determine_value_range_1 (value_range_base *vr, tree expr)
6821 if (BINARY_CLASS_P (expr))
6823 value_range_base vr0, vr1;
6824 determine_value_range_1 (&vr0, TREE_OPERAND (expr, 0));
6825 determine_value_range_1 (&vr1, TREE_OPERAND (expr, 1));
6826 extract_range_from_binary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
6827 &vr0, &vr1);
6829 else if (UNARY_CLASS_P (expr))
6831 value_range_base vr0;
6832 determine_value_range_1 (&vr0, TREE_OPERAND (expr, 0));
6833 extract_range_from_unary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
6834 &vr0, TREE_TYPE (TREE_OPERAND (expr, 0)));
6836 else if (TREE_CODE (expr) == INTEGER_CST)
6837 vr->set (expr);
6838 else
6840 value_range_kind kind;
6841 wide_int min, max;
6842 /* For SSA names try to extract range info computed by VRP. Otherwise
6843 fall back to varying. */
6844 if (TREE_CODE (expr) == SSA_NAME
6845 && INTEGRAL_TYPE_P (TREE_TYPE (expr))
6846 && (kind = get_range_info (expr, &min, &max)) != VR_VARYING)
6847 vr->set (kind, wide_int_to_tree (TREE_TYPE (expr), min),
6848 wide_int_to_tree (TREE_TYPE (expr), max));
6849 else
6850 vr->set_varying ();
6854 /* Compute a value-range for EXPR and set it in *MIN and *MAX. Return
6855 the determined range type. */
6857 value_range_kind
6858 determine_value_range (tree expr, wide_int *min, wide_int *max)
6860 value_range_base vr;
6861 determine_value_range_1 (&vr, expr);
6862 if (vr.constant_p ())
6864 *min = wi::to_wide (vr.min ());
6865 *max = wi::to_wide (vr.max ());
6866 return vr.kind ();
6869 return VR_VARYING;