Update changelog entry.
[official-gcc.git] / gcc / tree-ssa-loop-niter.c
blob67a3d6894630c8bde35d3d4b75b267d882e12b18
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "stor-layout.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "intl.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop.h"
41 #include "cfgloop.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "params.h"
45 #include "tree-dfa.h"
48 /* The maximum number of dominator BBs we search for conditions
49 of loop header copies we use for simplifying a conditional
50 expression. */
51 #define MAX_DOMINATORS_TO_WALK 8
55 Analysis of number of iterations of an affine exit test.
59 /* Bounds on some value, BELOW <= X <= UP. */
61 struct bounds
63 mpz_t below, up;
66 static bool number_of_iterations_popcount (loop_p loop, edge exit,
67 enum tree_code code,
68 struct tree_niter_desc *niter);
71 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
73 static void
74 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
76 tree type = TREE_TYPE (expr);
77 tree op0, op1;
78 bool negate = false;
80 *var = expr;
81 mpz_set_ui (offset, 0);
83 switch (TREE_CODE (expr))
85 case MINUS_EXPR:
86 negate = true;
87 /* Fallthru. */
89 case PLUS_EXPR:
90 case POINTER_PLUS_EXPR:
91 op0 = TREE_OPERAND (expr, 0);
92 op1 = TREE_OPERAND (expr, 1);
94 if (TREE_CODE (op1) != INTEGER_CST)
95 break;
97 *var = op0;
98 /* Always sign extend the offset. */
99 wi::to_mpz (wi::to_wide (op1), offset, SIGNED);
100 if (negate)
101 mpz_neg (offset, offset);
102 break;
104 case INTEGER_CST:
105 *var = build_int_cst_type (type, 0);
106 wi::to_mpz (wi::to_wide (expr), offset, TYPE_SIGN (type));
107 break;
109 default:
110 break;
114 /* From condition C0 CMP C1 derives information regarding the value range
115 of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
117 static void
118 refine_value_range_using_guard (tree type, tree var,
119 tree c0, enum tree_code cmp, tree c1,
120 mpz_t below, mpz_t up)
122 tree varc0, varc1, ctype;
123 mpz_t offc0, offc1;
124 mpz_t mint, maxt, minc1, maxc1;
125 wide_int minv, maxv;
126 bool no_wrap = nowrap_type_p (type);
127 bool c0_ok, c1_ok;
128 signop sgn = TYPE_SIGN (type);
130 switch (cmp)
132 case LT_EXPR:
133 case LE_EXPR:
134 case GT_EXPR:
135 case GE_EXPR:
136 STRIP_SIGN_NOPS (c0);
137 STRIP_SIGN_NOPS (c1);
138 ctype = TREE_TYPE (c0);
139 if (!useless_type_conversion_p (ctype, type))
140 return;
142 break;
144 case EQ_EXPR:
145 /* We could derive quite precise information from EQ_EXPR, however,
146 such a guard is unlikely to appear, so we do not bother with
147 handling it. */
148 return;
150 case NE_EXPR:
151 /* NE_EXPR comparisons do not contain much of useful information,
152 except for cases of comparing with bounds. */
153 if (TREE_CODE (c1) != INTEGER_CST
154 || !INTEGRAL_TYPE_P (type))
155 return;
157 /* Ensure that the condition speaks about an expression in the same
158 type as X and Y. */
159 ctype = TREE_TYPE (c0);
160 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
161 return;
162 c0 = fold_convert (type, c0);
163 c1 = fold_convert (type, c1);
165 if (operand_equal_p (var, c0, 0))
167 mpz_t valc1;
169 /* Case of comparing VAR with its below/up bounds. */
170 mpz_init (valc1);
171 wi::to_mpz (wi::to_wide (c1), valc1, TYPE_SIGN (type));
172 if (mpz_cmp (valc1, below) == 0)
173 cmp = GT_EXPR;
174 if (mpz_cmp (valc1, up) == 0)
175 cmp = LT_EXPR;
177 mpz_clear (valc1);
179 else
181 /* Case of comparing with the bounds of the type. */
182 wide_int min = wi::min_value (type);
183 wide_int max = wi::max_value (type);
185 if (wi::to_wide (c1) == min)
186 cmp = GT_EXPR;
187 if (wi::to_wide (c1) == max)
188 cmp = LT_EXPR;
191 /* Quick return if no useful information. */
192 if (cmp == NE_EXPR)
193 return;
195 break;
197 default:
198 return;
201 mpz_init (offc0);
202 mpz_init (offc1);
203 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
204 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
206 /* We are only interested in comparisons of expressions based on VAR. */
207 if (operand_equal_p (var, varc1, 0))
209 std::swap (varc0, varc1);
210 mpz_swap (offc0, offc1);
211 cmp = swap_tree_comparison (cmp);
213 else if (!operand_equal_p (var, varc0, 0))
215 mpz_clear (offc0);
216 mpz_clear (offc1);
217 return;
220 mpz_init (mint);
221 mpz_init (maxt);
222 get_type_static_bounds (type, mint, maxt);
223 mpz_init (minc1);
224 mpz_init (maxc1);
225 /* Setup range information for varc1. */
226 if (integer_zerop (varc1))
228 wi::to_mpz (0, minc1, TYPE_SIGN (type));
229 wi::to_mpz (0, maxc1, TYPE_SIGN (type));
231 else if (TREE_CODE (varc1) == SSA_NAME
232 && INTEGRAL_TYPE_P (type)
233 && get_range_info (varc1, &minv, &maxv) == VR_RANGE)
235 gcc_assert (wi::le_p (minv, maxv, sgn));
236 wi::to_mpz (minv, minc1, sgn);
237 wi::to_mpz (maxv, maxc1, sgn);
239 else
241 mpz_set (minc1, mint);
242 mpz_set (maxc1, maxt);
245 /* Compute valid range information for varc1 + offc1. Note nothing
246 useful can be derived if it overflows or underflows. Overflow or
247 underflow could happen when:
249 offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
250 offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
251 mpz_add (minc1, minc1, offc1);
252 mpz_add (maxc1, maxc1, offc1);
253 c1_ok = (no_wrap
254 || mpz_sgn (offc1) == 0
255 || (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0)
256 || (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0));
257 if (!c1_ok)
258 goto end;
260 if (mpz_cmp (minc1, mint) < 0)
261 mpz_set (minc1, mint);
262 if (mpz_cmp (maxc1, maxt) > 0)
263 mpz_set (maxc1, maxt);
265 if (cmp == LT_EXPR)
267 cmp = LE_EXPR;
268 mpz_sub_ui (maxc1, maxc1, 1);
270 if (cmp == GT_EXPR)
272 cmp = GE_EXPR;
273 mpz_add_ui (minc1, minc1, 1);
276 /* Compute range information for varc0. If there is no overflow,
277 the condition implied that
279 (varc0) cmp (varc1 + offc1 - offc0)
281 We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
282 or the below bound if cmp is GE_EXPR.
284 To prove there is no overflow/underflow, we need to check below
285 four cases:
286 1) cmp == LE_EXPR && offc0 > 0
288 (varc0 + offc0) doesn't overflow
289 && (varc1 + offc1 - offc0) doesn't underflow
291 2) cmp == LE_EXPR && offc0 < 0
293 (varc0 + offc0) doesn't underflow
294 && (varc1 + offc1 - offc0) doesn't overfloe
296 In this case, (varc0 + offc0) will never underflow if we can
297 prove (varc1 + offc1 - offc0) doesn't overflow.
299 3) cmp == GE_EXPR && offc0 < 0
301 (varc0 + offc0) doesn't underflow
302 && (varc1 + offc1 - offc0) doesn't overflow
304 4) cmp == GE_EXPR && offc0 > 0
306 (varc0 + offc0) doesn't overflow
307 && (varc1 + offc1 - offc0) doesn't underflow
309 In this case, (varc0 + offc0) will never overflow if we can
310 prove (varc1 + offc1 - offc0) doesn't underflow.
312 Note we only handle case 2 and 4 in below code. */
314 mpz_sub (minc1, minc1, offc0);
315 mpz_sub (maxc1, maxc1, offc0);
316 c0_ok = (no_wrap
317 || mpz_sgn (offc0) == 0
318 || (cmp == LE_EXPR
319 && mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0)
320 || (cmp == GE_EXPR
321 && mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0));
322 if (!c0_ok)
323 goto end;
325 if (cmp == LE_EXPR)
327 if (mpz_cmp (up, maxc1) > 0)
328 mpz_set (up, maxc1);
330 else
332 if (mpz_cmp (below, minc1) < 0)
333 mpz_set (below, minc1);
336 end:
337 mpz_clear (mint);
338 mpz_clear (maxt);
339 mpz_clear (minc1);
340 mpz_clear (maxc1);
341 mpz_clear (offc0);
342 mpz_clear (offc1);
345 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
346 in TYPE to MIN and MAX. */
348 static void
349 determine_value_range (struct loop *loop, tree type, tree var, mpz_t off,
350 mpz_t min, mpz_t max)
352 int cnt = 0;
353 mpz_t minm, maxm;
354 basic_block bb;
355 wide_int minv, maxv;
356 enum value_range_kind rtype = VR_VARYING;
358 /* If the expression is a constant, we know its value exactly. */
359 if (integer_zerop (var))
361 mpz_set (min, off);
362 mpz_set (max, off);
363 return;
366 get_type_static_bounds (type, min, max);
368 /* See if we have some range info from VRP. */
369 if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
371 edge e = loop_preheader_edge (loop);
372 signop sgn = TYPE_SIGN (type);
373 gphi_iterator gsi;
375 /* Either for VAR itself... */
376 rtype = get_range_info (var, &minv, &maxv);
377 /* Or for PHI results in loop->header where VAR is used as
378 PHI argument from the loop preheader edge. */
379 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
381 gphi *phi = gsi.phi ();
382 wide_int minc, maxc;
383 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
384 && (get_range_info (gimple_phi_result (phi), &minc, &maxc)
385 == VR_RANGE))
387 if (rtype != VR_RANGE)
389 rtype = VR_RANGE;
390 minv = minc;
391 maxv = maxc;
393 else
395 minv = wi::max (minv, minc, sgn);
396 maxv = wi::min (maxv, maxc, sgn);
397 /* If the PHI result range are inconsistent with
398 the VAR range, give up on looking at the PHI
399 results. This can happen if VR_UNDEFINED is
400 involved. */
401 if (wi::gt_p (minv, maxv, sgn))
403 rtype = get_range_info (var, &minv, &maxv);
404 break;
409 mpz_init (minm);
410 mpz_init (maxm);
411 if (rtype != VR_RANGE)
413 mpz_set (minm, min);
414 mpz_set (maxm, max);
416 else
418 gcc_assert (wi::le_p (minv, maxv, sgn));
419 wi::to_mpz (minv, minm, sgn);
420 wi::to_mpz (maxv, maxm, sgn);
422 /* Now walk the dominators of the loop header and use the entry
423 guards to refine the estimates. */
424 for (bb = loop->header;
425 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
426 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
428 edge e;
429 tree c0, c1;
430 gimple *cond;
431 enum tree_code cmp;
433 if (!single_pred_p (bb))
434 continue;
435 e = single_pred_edge (bb);
437 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
438 continue;
440 cond = last_stmt (e->src);
441 c0 = gimple_cond_lhs (cond);
442 cmp = gimple_cond_code (cond);
443 c1 = gimple_cond_rhs (cond);
445 if (e->flags & EDGE_FALSE_VALUE)
446 cmp = invert_tree_comparison (cmp, false);
448 refine_value_range_using_guard (type, var, c0, cmp, c1, minm, maxm);
449 ++cnt;
452 mpz_add (minm, minm, off);
453 mpz_add (maxm, maxm, off);
454 /* If the computation may not wrap or off is zero, then this
455 is always fine. If off is negative and minv + off isn't
456 smaller than type's minimum, or off is positive and
457 maxv + off isn't bigger than type's maximum, use the more
458 precise range too. */
459 if (nowrap_type_p (type)
460 || mpz_sgn (off) == 0
461 || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
462 || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
464 mpz_set (min, minm);
465 mpz_set (max, maxm);
466 mpz_clear (minm);
467 mpz_clear (maxm);
468 return;
470 mpz_clear (minm);
471 mpz_clear (maxm);
474 /* If the computation may wrap, we know nothing about the value, except for
475 the range of the type. */
476 if (!nowrap_type_p (type))
477 return;
479 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
480 add it to MIN, otherwise to MAX. */
481 if (mpz_sgn (off) < 0)
482 mpz_add (max, max, off);
483 else
484 mpz_add (min, min, off);
487 /* Stores the bounds on the difference of the values of the expressions
488 (var + X) and (var + Y), computed in TYPE, to BNDS. */
490 static void
491 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
492 bounds *bnds)
494 int rel = mpz_cmp (x, y);
495 bool may_wrap = !nowrap_type_p (type);
496 mpz_t m;
498 /* If X == Y, then the expressions are always equal.
499 If X > Y, there are the following possibilities:
500 a) neither of var + X and var + Y overflow or underflow, or both of
501 them do. Then their difference is X - Y.
502 b) var + X overflows, and var + Y does not. Then the values of the
503 expressions are var + X - M and var + Y, where M is the range of
504 the type, and their difference is X - Y - M.
505 c) var + Y underflows and var + X does not. Their difference again
506 is M - X + Y.
507 Therefore, if the arithmetics in type does not overflow, then the
508 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
509 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
510 (X - Y, X - Y + M). */
512 if (rel == 0)
514 mpz_set_ui (bnds->below, 0);
515 mpz_set_ui (bnds->up, 0);
516 return;
519 mpz_init (m);
520 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
521 mpz_add_ui (m, m, 1);
522 mpz_sub (bnds->up, x, y);
523 mpz_set (bnds->below, bnds->up);
525 if (may_wrap)
527 if (rel > 0)
528 mpz_sub (bnds->below, bnds->below, m);
529 else
530 mpz_add (bnds->up, bnds->up, m);
533 mpz_clear (m);
536 /* From condition C0 CMP C1 derives information regarding the
537 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
538 and stores it to BNDS. */
540 static void
541 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
542 tree vary, mpz_t offy,
543 tree c0, enum tree_code cmp, tree c1,
544 bounds *bnds)
546 tree varc0, varc1, ctype;
547 mpz_t offc0, offc1, loffx, loffy, bnd;
548 bool lbound = false;
549 bool no_wrap = nowrap_type_p (type);
550 bool x_ok, y_ok;
552 switch (cmp)
554 case LT_EXPR:
555 case LE_EXPR:
556 case GT_EXPR:
557 case GE_EXPR:
558 STRIP_SIGN_NOPS (c0);
559 STRIP_SIGN_NOPS (c1);
560 ctype = TREE_TYPE (c0);
561 if (!useless_type_conversion_p (ctype, type))
562 return;
564 break;
566 case EQ_EXPR:
567 /* We could derive quite precise information from EQ_EXPR, however, such
568 a guard is unlikely to appear, so we do not bother with handling
569 it. */
570 return;
572 case NE_EXPR:
573 /* NE_EXPR comparisons do not contain much of useful information, except for
574 special case of comparing with the bounds of the type. */
575 if (TREE_CODE (c1) != INTEGER_CST
576 || !INTEGRAL_TYPE_P (type))
577 return;
579 /* Ensure that the condition speaks about an expression in the same type
580 as X and Y. */
581 ctype = TREE_TYPE (c0);
582 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
583 return;
584 c0 = fold_convert (type, c0);
585 c1 = fold_convert (type, c1);
587 if (TYPE_MIN_VALUE (type)
588 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
590 cmp = GT_EXPR;
591 break;
593 if (TYPE_MAX_VALUE (type)
594 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
596 cmp = LT_EXPR;
597 break;
600 return;
601 default:
602 return;
605 mpz_init (offc0);
606 mpz_init (offc1);
607 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
608 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
610 /* We are only interested in comparisons of expressions based on VARX and
611 VARY. TODO -- we might also be able to derive some bounds from
612 expressions containing just one of the variables. */
614 if (operand_equal_p (varx, varc1, 0))
616 std::swap (varc0, varc1);
617 mpz_swap (offc0, offc1);
618 cmp = swap_tree_comparison (cmp);
621 if (!operand_equal_p (varx, varc0, 0)
622 || !operand_equal_p (vary, varc1, 0))
623 goto end;
625 mpz_init_set (loffx, offx);
626 mpz_init_set (loffy, offy);
628 if (cmp == GT_EXPR || cmp == GE_EXPR)
630 std::swap (varx, vary);
631 mpz_swap (offc0, offc1);
632 mpz_swap (loffx, loffy);
633 cmp = swap_tree_comparison (cmp);
634 lbound = true;
637 /* If there is no overflow, the condition implies that
639 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
641 The overflows and underflows may complicate things a bit; each
642 overflow decreases the appropriate offset by M, and underflow
643 increases it by M. The above inequality would not necessarily be
644 true if
646 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
647 VARX + OFFC0 overflows, but VARX + OFFX does not.
648 This may only happen if OFFX < OFFC0.
649 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
650 VARY + OFFC1 underflows and VARY + OFFY does not.
651 This may only happen if OFFY > OFFC1. */
653 if (no_wrap)
655 x_ok = true;
656 y_ok = true;
658 else
660 x_ok = (integer_zerop (varx)
661 || mpz_cmp (loffx, offc0) >= 0);
662 y_ok = (integer_zerop (vary)
663 || mpz_cmp (loffy, offc1) <= 0);
666 if (x_ok && y_ok)
668 mpz_init (bnd);
669 mpz_sub (bnd, loffx, loffy);
670 mpz_add (bnd, bnd, offc1);
671 mpz_sub (bnd, bnd, offc0);
673 if (cmp == LT_EXPR)
674 mpz_sub_ui (bnd, bnd, 1);
676 if (lbound)
678 mpz_neg (bnd, bnd);
679 if (mpz_cmp (bnds->below, bnd) < 0)
680 mpz_set (bnds->below, bnd);
682 else
684 if (mpz_cmp (bnd, bnds->up) < 0)
685 mpz_set (bnds->up, bnd);
687 mpz_clear (bnd);
690 mpz_clear (loffx);
691 mpz_clear (loffy);
692 end:
693 mpz_clear (offc0);
694 mpz_clear (offc1);
697 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
698 The subtraction is considered to be performed in arbitrary precision,
699 without overflows.
701 We do not attempt to be too clever regarding the value ranges of X and
702 Y; most of the time, they are just integers or ssa names offsetted by
703 integer. However, we try to use the information contained in the
704 comparisons before the loop (usually created by loop header copying). */
706 static void
707 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
709 tree type = TREE_TYPE (x);
710 tree varx, vary;
711 mpz_t offx, offy;
712 mpz_t minx, maxx, miny, maxy;
713 int cnt = 0;
714 edge e;
715 basic_block bb;
716 tree c0, c1;
717 gimple *cond;
718 enum tree_code cmp;
720 /* Get rid of unnecessary casts, but preserve the value of
721 the expressions. */
722 STRIP_SIGN_NOPS (x);
723 STRIP_SIGN_NOPS (y);
725 mpz_init (bnds->below);
726 mpz_init (bnds->up);
727 mpz_init (offx);
728 mpz_init (offy);
729 split_to_var_and_offset (x, &varx, offx);
730 split_to_var_and_offset (y, &vary, offy);
732 if (!integer_zerop (varx)
733 && operand_equal_p (varx, vary, 0))
735 /* Special case VARX == VARY -- we just need to compare the
736 offsets. The matters are a bit more complicated in the
737 case addition of offsets may wrap. */
738 bound_difference_of_offsetted_base (type, offx, offy, bnds);
740 else
742 /* Otherwise, use the value ranges to determine the initial
743 estimates on below and up. */
744 mpz_init (minx);
745 mpz_init (maxx);
746 mpz_init (miny);
747 mpz_init (maxy);
748 determine_value_range (loop, type, varx, offx, minx, maxx);
749 determine_value_range (loop, type, vary, offy, miny, maxy);
751 mpz_sub (bnds->below, minx, maxy);
752 mpz_sub (bnds->up, maxx, miny);
753 mpz_clear (minx);
754 mpz_clear (maxx);
755 mpz_clear (miny);
756 mpz_clear (maxy);
759 /* If both X and Y are constants, we cannot get any more precise. */
760 if (integer_zerop (varx) && integer_zerop (vary))
761 goto end;
763 /* Now walk the dominators of the loop header and use the entry
764 guards to refine the estimates. */
765 for (bb = loop->header;
766 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
767 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
769 if (!single_pred_p (bb))
770 continue;
771 e = single_pred_edge (bb);
773 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
774 continue;
776 cond = last_stmt (e->src);
777 c0 = gimple_cond_lhs (cond);
778 cmp = gimple_cond_code (cond);
779 c1 = gimple_cond_rhs (cond);
781 if (e->flags & EDGE_FALSE_VALUE)
782 cmp = invert_tree_comparison (cmp, false);
784 refine_bounds_using_guard (type, varx, offx, vary, offy,
785 c0, cmp, c1, bnds);
786 ++cnt;
789 end:
790 mpz_clear (offx);
791 mpz_clear (offy);
794 /* Update the bounds in BNDS that restrict the value of X to the bounds
795 that restrict the value of X + DELTA. X can be obtained as a
796 difference of two values in TYPE. */
798 static void
799 bounds_add (bounds *bnds, const widest_int &delta, tree type)
801 mpz_t mdelta, max;
803 mpz_init (mdelta);
804 wi::to_mpz (delta, mdelta, SIGNED);
806 mpz_init (max);
807 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
809 mpz_add (bnds->up, bnds->up, mdelta);
810 mpz_add (bnds->below, bnds->below, mdelta);
812 if (mpz_cmp (bnds->up, max) > 0)
813 mpz_set (bnds->up, max);
815 mpz_neg (max, max);
816 if (mpz_cmp (bnds->below, max) < 0)
817 mpz_set (bnds->below, max);
819 mpz_clear (mdelta);
820 mpz_clear (max);
823 /* Update the bounds in BNDS that restrict the value of X to the bounds
824 that restrict the value of -X. */
826 static void
827 bounds_negate (bounds *bnds)
829 mpz_t tmp;
831 mpz_init_set (tmp, bnds->up);
832 mpz_neg (bnds->up, bnds->below);
833 mpz_neg (bnds->below, tmp);
834 mpz_clear (tmp);
837 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
839 static tree
840 inverse (tree x, tree mask)
842 tree type = TREE_TYPE (x);
843 tree rslt;
844 unsigned ctr = tree_floor_log2 (mask);
846 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
848 unsigned HOST_WIDE_INT ix;
849 unsigned HOST_WIDE_INT imask;
850 unsigned HOST_WIDE_INT irslt = 1;
852 gcc_assert (cst_and_fits_in_hwi (x));
853 gcc_assert (cst_and_fits_in_hwi (mask));
855 ix = int_cst_value (x);
856 imask = int_cst_value (mask);
858 for (; ctr; ctr--)
860 irslt *= ix;
861 ix *= ix;
863 irslt &= imask;
865 rslt = build_int_cst_type (type, irslt);
867 else
869 rslt = build_int_cst (type, 1);
870 for (; ctr; ctr--)
872 rslt = int_const_binop (MULT_EXPR, rslt, x);
873 x = int_const_binop (MULT_EXPR, x, x);
875 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
878 return rslt;
881 /* Derives the upper bound BND on the number of executions of loop with exit
882 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
883 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
884 that the loop ends through this exit, i.e., the induction variable ever
885 reaches the value of C.
887 The value C is equal to final - base, where final and base are the final and
888 initial value of the actual induction variable in the analysed loop. BNDS
889 bounds the value of this difference when computed in signed type with
890 unbounded range, while the computation of C is performed in an unsigned
891 type with the range matching the range of the type of the induction variable.
892 In particular, BNDS.up contains an upper bound on C in the following cases:
893 -- if the iv must reach its final value without overflow, i.e., if
894 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
895 -- if final >= base, which we know to hold when BNDS.below >= 0. */
897 static void
898 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
899 bounds *bnds, bool exit_must_be_taken)
901 widest_int max;
902 mpz_t d;
903 tree type = TREE_TYPE (c);
904 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
905 || mpz_sgn (bnds->below) >= 0);
907 if (integer_onep (s)
908 || (TREE_CODE (c) == INTEGER_CST
909 && TREE_CODE (s) == INTEGER_CST
910 && wi::mod_trunc (wi::to_wide (c), wi::to_wide (s),
911 TYPE_SIGN (type)) == 0)
912 || (TYPE_OVERFLOW_UNDEFINED (type)
913 && multiple_of_p (type, c, s)))
915 /* If C is an exact multiple of S, then its value will be reached before
916 the induction variable overflows (unless the loop is exited in some
917 other way before). Note that the actual induction variable in the
918 loop (which ranges from base to final instead of from 0 to C) may
919 overflow, in which case BNDS.up will not be giving a correct upper
920 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
921 no_overflow = true;
922 exit_must_be_taken = true;
925 /* If the induction variable can overflow, the number of iterations is at
926 most the period of the control variable (or infinite, but in that case
927 the whole # of iterations analysis will fail). */
928 if (!no_overflow)
930 max = wi::mask <widest_int> (TYPE_PRECISION (type)
931 - wi::ctz (wi::to_wide (s)), false);
932 wi::to_mpz (max, bnd, UNSIGNED);
933 return;
936 /* Now we know that the induction variable does not overflow, so the loop
937 iterates at most (range of type / S) times. */
938 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
940 /* If the induction variable is guaranteed to reach the value of C before
941 overflow, ... */
942 if (exit_must_be_taken)
944 /* ... then we can strengthen this to C / S, and possibly we can use
945 the upper bound on C given by BNDS. */
946 if (TREE_CODE (c) == INTEGER_CST)
947 wi::to_mpz (wi::to_wide (c), bnd, UNSIGNED);
948 else if (bnds_u_valid)
949 mpz_set (bnd, bnds->up);
952 mpz_init (d);
953 wi::to_mpz (wi::to_wide (s), d, UNSIGNED);
954 mpz_fdiv_q (bnd, bnd, d);
955 mpz_clear (d);
958 /* Determines number of iterations of loop whose ending condition
959 is IV <> FINAL. TYPE is the type of the iv. The number of
960 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
961 we know that the exit must be taken eventually, i.e., that the IV
962 ever reaches the value FINAL (we derived this earlier, and possibly set
963 NITER->assumptions to make sure this is the case). BNDS contains the
964 bounds on the difference FINAL - IV->base. */
966 static bool
967 number_of_iterations_ne (struct loop *loop, tree type, affine_iv *iv,
968 tree final, struct tree_niter_desc *niter,
969 bool exit_must_be_taken, bounds *bnds)
971 tree niter_type = unsigned_type_for (type);
972 tree s, c, d, bits, assumption, tmp, bound;
973 mpz_t max;
975 niter->control = *iv;
976 niter->bound = final;
977 niter->cmp = NE_EXPR;
979 /* Rearrange the terms so that we get inequality S * i <> C, with S
980 positive. Also cast everything to the unsigned type. If IV does
981 not overflow, BNDS bounds the value of C. Also, this is the
982 case if the computation |FINAL - IV->base| does not overflow, i.e.,
983 if BNDS->below in the result is nonnegative. */
984 if (tree_int_cst_sign_bit (iv->step))
986 s = fold_convert (niter_type,
987 fold_build1 (NEGATE_EXPR, type, iv->step));
988 c = fold_build2 (MINUS_EXPR, niter_type,
989 fold_convert (niter_type, iv->base),
990 fold_convert (niter_type, final));
991 bounds_negate (bnds);
993 else
995 s = fold_convert (niter_type, iv->step);
996 c = fold_build2 (MINUS_EXPR, niter_type,
997 fold_convert (niter_type, final),
998 fold_convert (niter_type, iv->base));
1001 mpz_init (max);
1002 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
1003 exit_must_be_taken);
1004 niter->max = widest_int::from (wi::from_mpz (niter_type, max, false),
1005 TYPE_SIGN (niter_type));
1006 mpz_clear (max);
1008 /* Compute no-overflow information for the control iv. This can be
1009 proven when below two conditions are satisfied:
1011 1) IV evaluates toward FINAL at beginning, i.e:
1012 base <= FINAL ; step > 0
1013 base >= FINAL ; step < 0
1015 2) |FINAL - base| is an exact multiple of step.
1017 Unfortunately, it's hard to prove above conditions after pass loop-ch
1018 because loop with exit condition (IV != FINAL) usually will be guarded
1019 by initial-condition (IV.base - IV.step != FINAL). In this case, we
1020 can alternatively try to prove below conditions:
1022 1') IV evaluates toward FINAL at beginning, i.e:
1023 new_base = base - step < FINAL ; step > 0
1024 && base - step doesn't underflow
1025 new_base = base - step > FINAL ; step < 0
1026 && base - step doesn't overflow
1028 2') |FINAL - new_base| is an exact multiple of step.
1030 Please refer to PR34114 as an example of loop-ch's impact, also refer
1031 to PR72817 as an example why condition 2') is necessary.
1033 Note, for NE_EXPR, base equals to FINAL is a special case, in
1034 which the loop exits immediately, and the iv does not overflow. */
1035 if (!niter->control.no_overflow
1036 && (integer_onep (s) || multiple_of_p (type, c, s)))
1038 tree t, cond, new_c, relaxed_cond = boolean_false_node;
1040 if (tree_int_cst_sign_bit (iv->step))
1042 cond = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
1043 if (TREE_CODE (type) == INTEGER_TYPE)
1045 /* Only when base - step doesn't overflow. */
1046 t = TYPE_MAX_VALUE (type);
1047 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1048 t = fold_build2 (GE_EXPR, boolean_type_node, t, iv->base);
1049 if (integer_nonzerop (t))
1051 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1052 new_c = fold_build2 (MINUS_EXPR, niter_type,
1053 fold_convert (niter_type, t),
1054 fold_convert (niter_type, final));
1055 if (multiple_of_p (type, new_c, s))
1056 relaxed_cond = fold_build2 (GT_EXPR, boolean_type_node,
1057 t, final);
1061 else
1063 cond = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
1064 if (TREE_CODE (type) == INTEGER_TYPE)
1066 /* Only when base - step doesn't underflow. */
1067 t = TYPE_MIN_VALUE (type);
1068 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1069 t = fold_build2 (LE_EXPR, boolean_type_node, t, iv->base);
1070 if (integer_nonzerop (t))
1072 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1073 new_c = fold_build2 (MINUS_EXPR, niter_type,
1074 fold_convert (niter_type, final),
1075 fold_convert (niter_type, t));
1076 if (multiple_of_p (type, new_c, s))
1077 relaxed_cond = fold_build2 (LT_EXPR, boolean_type_node,
1078 t, final);
1083 t = simplify_using_initial_conditions (loop, cond);
1084 if (!t || !integer_onep (t))
1085 t = simplify_using_initial_conditions (loop, relaxed_cond);
1087 if (t && integer_onep (t))
1088 niter->control.no_overflow = true;
1091 /* First the trivial cases -- when the step is 1. */
1092 if (integer_onep (s))
1094 niter->niter = c;
1095 return true;
1097 if (niter->control.no_overflow && multiple_of_p (type, c, s))
1099 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, c, s);
1100 return true;
1103 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
1104 is infinite. Otherwise, the number of iterations is
1105 (inverse(s/d) * (c/d)) mod (size of mode/d). */
1106 bits = num_ending_zeros (s);
1107 bound = build_low_bits_mask (niter_type,
1108 (TYPE_PRECISION (niter_type)
1109 - tree_to_uhwi (bits)));
1111 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
1112 build_int_cst (niter_type, 1), bits);
1113 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
1115 if (!exit_must_be_taken)
1117 /* If we cannot assume that the exit is taken eventually, record the
1118 assumptions for divisibility of c. */
1119 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
1120 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
1121 assumption, build_int_cst (niter_type, 0));
1122 if (!integer_nonzerop (assumption))
1123 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1124 niter->assumptions, assumption);
1127 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
1128 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
1129 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
1130 return true;
1133 /* Checks whether we can determine the final value of the control variable
1134 of the loop with ending condition IV0 < IV1 (computed in TYPE).
1135 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
1136 of the step. The assumptions necessary to ensure that the computation
1137 of the final value does not overflow are recorded in NITER. If we
1138 find the final value, we adjust DELTA and return TRUE. Otherwise
1139 we return false. BNDS bounds the value of IV1->base - IV0->base,
1140 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
1141 true if we know that the exit must be taken eventually. */
1143 static bool
1144 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
1145 struct tree_niter_desc *niter,
1146 tree *delta, tree step,
1147 bool exit_must_be_taken, bounds *bnds)
1149 tree niter_type = TREE_TYPE (step);
1150 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
1151 tree tmod;
1152 mpz_t mmod;
1153 tree assumption = boolean_true_node, bound, noloop;
1154 bool ret = false, fv_comp_no_overflow;
1155 tree type1 = type;
1156 if (POINTER_TYPE_P (type))
1157 type1 = sizetype;
1159 if (TREE_CODE (mod) != INTEGER_CST)
1160 return false;
1161 if (integer_nonzerop (mod))
1162 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
1163 tmod = fold_convert (type1, mod);
1165 mpz_init (mmod);
1166 wi::to_mpz (wi::to_wide (mod), mmod, UNSIGNED);
1167 mpz_neg (mmod, mmod);
1169 /* If the induction variable does not overflow and the exit is taken,
1170 then the computation of the final value does not overflow. This is
1171 also obviously the case if the new final value is equal to the
1172 current one. Finally, we postulate this for pointer type variables,
1173 as the code cannot rely on the object to that the pointer points being
1174 placed at the end of the address space (and more pragmatically,
1175 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
1176 if (integer_zerop (mod) || POINTER_TYPE_P (type))
1177 fv_comp_no_overflow = true;
1178 else if (!exit_must_be_taken)
1179 fv_comp_no_overflow = false;
1180 else
1181 fv_comp_no_overflow =
1182 (iv0->no_overflow && integer_nonzerop (iv0->step))
1183 || (iv1->no_overflow && integer_nonzerop (iv1->step));
1185 if (integer_nonzerop (iv0->step))
1187 /* The final value of the iv is iv1->base + MOD, assuming that this
1188 computation does not overflow, and that
1189 iv0->base <= iv1->base + MOD. */
1190 if (!fv_comp_no_overflow)
1192 bound = fold_build2 (MINUS_EXPR, type1,
1193 TYPE_MAX_VALUE (type1), tmod);
1194 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1195 iv1->base, bound);
1196 if (integer_zerop (assumption))
1197 goto end;
1199 if (mpz_cmp (mmod, bnds->below) < 0)
1200 noloop = boolean_false_node;
1201 else if (POINTER_TYPE_P (type))
1202 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1203 iv0->base,
1204 fold_build_pointer_plus (iv1->base, tmod));
1205 else
1206 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1207 iv0->base,
1208 fold_build2 (PLUS_EXPR, type1,
1209 iv1->base, tmod));
1211 else
1213 /* The final value of the iv is iv0->base - MOD, assuming that this
1214 computation does not overflow, and that
1215 iv0->base - MOD <= iv1->base. */
1216 if (!fv_comp_no_overflow)
1218 bound = fold_build2 (PLUS_EXPR, type1,
1219 TYPE_MIN_VALUE (type1), tmod);
1220 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1221 iv0->base, bound);
1222 if (integer_zerop (assumption))
1223 goto end;
1225 if (mpz_cmp (mmod, bnds->below) < 0)
1226 noloop = boolean_false_node;
1227 else if (POINTER_TYPE_P (type))
1228 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1229 fold_build_pointer_plus (iv0->base,
1230 fold_build1 (NEGATE_EXPR,
1231 type1, tmod)),
1232 iv1->base);
1233 else
1234 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1235 fold_build2 (MINUS_EXPR, type1,
1236 iv0->base, tmod),
1237 iv1->base);
1240 if (!integer_nonzerop (assumption))
1241 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1242 niter->assumptions,
1243 assumption);
1244 if (!integer_zerop (noloop))
1245 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1246 niter->may_be_zero,
1247 noloop);
1248 bounds_add (bnds, wi::to_widest (mod), type);
1249 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
1251 ret = true;
1252 end:
1253 mpz_clear (mmod);
1254 return ret;
1257 /* Add assertions to NITER that ensure that the control variable of the loop
1258 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
1259 are TYPE. Returns false if we can prove that there is an overflow, true
1260 otherwise. STEP is the absolute value of the step. */
1262 static bool
1263 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1264 struct tree_niter_desc *niter, tree step)
1266 tree bound, d, assumption, diff;
1267 tree niter_type = TREE_TYPE (step);
1269 if (integer_nonzerop (iv0->step))
1271 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
1272 if (iv0->no_overflow)
1273 return true;
1275 /* If iv0->base is a constant, we can determine the last value before
1276 overflow precisely; otherwise we conservatively assume
1277 MAX - STEP + 1. */
1279 if (TREE_CODE (iv0->base) == INTEGER_CST)
1281 d = fold_build2 (MINUS_EXPR, niter_type,
1282 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
1283 fold_convert (niter_type, iv0->base));
1284 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1286 else
1287 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1288 build_int_cst (niter_type, 1));
1289 bound = fold_build2 (MINUS_EXPR, type,
1290 TYPE_MAX_VALUE (type), fold_convert (type, diff));
1291 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1292 iv1->base, bound);
1294 else
1296 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
1297 if (iv1->no_overflow)
1298 return true;
1300 if (TREE_CODE (iv1->base) == INTEGER_CST)
1302 d = fold_build2 (MINUS_EXPR, niter_type,
1303 fold_convert (niter_type, iv1->base),
1304 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
1305 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1307 else
1308 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1309 build_int_cst (niter_type, 1));
1310 bound = fold_build2 (PLUS_EXPR, type,
1311 TYPE_MIN_VALUE (type), fold_convert (type, diff));
1312 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1313 iv0->base, bound);
1316 if (integer_zerop (assumption))
1317 return false;
1318 if (!integer_nonzerop (assumption))
1319 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1320 niter->assumptions, assumption);
1322 iv0->no_overflow = true;
1323 iv1->no_overflow = true;
1324 return true;
1327 /* Add an assumption to NITER that a loop whose ending condition
1328 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
1329 bounds the value of IV1->base - IV0->base. */
1331 static void
1332 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1333 struct tree_niter_desc *niter, bounds *bnds)
1335 tree assumption = boolean_true_node, bound, diff;
1336 tree mbz, mbzl, mbzr, type1;
1337 bool rolls_p, no_overflow_p;
1338 widest_int dstep;
1339 mpz_t mstep, max;
1341 /* We are going to compute the number of iterations as
1342 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
1343 variant of TYPE. This formula only works if
1345 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1347 (where MAX is the maximum value of the unsigned variant of TYPE, and
1348 the computations in this formula are performed in full precision,
1349 i.e., without overflows).
1351 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1352 we have a condition of the form iv0->base - step < iv1->base before the loop,
1353 and for loops iv0->base < iv1->base - step * i the condition
1354 iv0->base < iv1->base + step, due to loop header copying, which enable us
1355 to prove the lower bound.
1357 The upper bound is more complicated. Unless the expressions for initial
1358 and final value themselves contain enough information, we usually cannot
1359 derive it from the context. */
1361 /* First check whether the answer does not follow from the bounds we gathered
1362 before. */
1363 if (integer_nonzerop (iv0->step))
1364 dstep = wi::to_widest (iv0->step);
1365 else
1367 dstep = wi::sext (wi::to_widest (iv1->step), TYPE_PRECISION (type));
1368 dstep = -dstep;
1371 mpz_init (mstep);
1372 wi::to_mpz (dstep, mstep, UNSIGNED);
1373 mpz_neg (mstep, mstep);
1374 mpz_add_ui (mstep, mstep, 1);
1376 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
1378 mpz_init (max);
1379 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
1380 mpz_add (max, max, mstep);
1381 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
1382 /* For pointers, only values lying inside a single object
1383 can be compared or manipulated by pointer arithmetics.
1384 Gcc in general does not allow or handle objects larger
1385 than half of the address space, hence the upper bound
1386 is satisfied for pointers. */
1387 || POINTER_TYPE_P (type));
1388 mpz_clear (mstep);
1389 mpz_clear (max);
1391 if (rolls_p && no_overflow_p)
1392 return;
1394 type1 = type;
1395 if (POINTER_TYPE_P (type))
1396 type1 = sizetype;
1398 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1399 we must be careful not to introduce overflow. */
1401 if (integer_nonzerop (iv0->step))
1403 diff = fold_build2 (MINUS_EXPR, type1,
1404 iv0->step, build_int_cst (type1, 1));
1406 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1407 0 address never belongs to any object, we can assume this for
1408 pointers. */
1409 if (!POINTER_TYPE_P (type))
1411 bound = fold_build2 (PLUS_EXPR, type1,
1412 TYPE_MIN_VALUE (type), diff);
1413 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1414 iv0->base, bound);
1417 /* And then we can compute iv0->base - diff, and compare it with
1418 iv1->base. */
1419 mbzl = fold_build2 (MINUS_EXPR, type1,
1420 fold_convert (type1, iv0->base), diff);
1421 mbzr = fold_convert (type1, iv1->base);
1423 else
1425 diff = fold_build2 (PLUS_EXPR, type1,
1426 iv1->step, build_int_cst (type1, 1));
1428 if (!POINTER_TYPE_P (type))
1430 bound = fold_build2 (PLUS_EXPR, type1,
1431 TYPE_MAX_VALUE (type), diff);
1432 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1433 iv1->base, bound);
1436 mbzl = fold_convert (type1, iv0->base);
1437 mbzr = fold_build2 (MINUS_EXPR, type1,
1438 fold_convert (type1, iv1->base), diff);
1441 if (!integer_nonzerop (assumption))
1442 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1443 niter->assumptions, assumption);
1444 if (!rolls_p)
1446 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1447 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1448 niter->may_be_zero, mbz);
1452 /* Determines number of iterations of loop whose ending condition
1453 is IV0 < IV1. TYPE is the type of the iv. The number of
1454 iterations is stored to NITER. BNDS bounds the difference
1455 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1456 that the exit must be taken eventually. */
1458 static bool
1459 number_of_iterations_lt (struct loop *loop, tree type, affine_iv *iv0,
1460 affine_iv *iv1, struct tree_niter_desc *niter,
1461 bool exit_must_be_taken, bounds *bnds)
1463 tree niter_type = unsigned_type_for (type);
1464 tree delta, step, s;
1465 mpz_t mstep, tmp;
1467 if (integer_nonzerop (iv0->step))
1469 niter->control = *iv0;
1470 niter->cmp = LT_EXPR;
1471 niter->bound = iv1->base;
1473 else
1475 niter->control = *iv1;
1476 niter->cmp = GT_EXPR;
1477 niter->bound = iv0->base;
1480 delta = fold_build2 (MINUS_EXPR, niter_type,
1481 fold_convert (niter_type, iv1->base),
1482 fold_convert (niter_type, iv0->base));
1484 /* First handle the special case that the step is +-1. */
1485 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1486 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1488 /* for (i = iv0->base; i < iv1->base; i++)
1492 for (i = iv1->base; i > iv0->base; i--).
1494 In both cases # of iterations is iv1->base - iv0->base, assuming that
1495 iv1->base >= iv0->base.
1497 First try to derive a lower bound on the value of
1498 iv1->base - iv0->base, computed in full precision. If the difference
1499 is nonnegative, we are done, otherwise we must record the
1500 condition. */
1502 if (mpz_sgn (bnds->below) < 0)
1503 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1504 iv1->base, iv0->base);
1505 niter->niter = delta;
1506 niter->max = widest_int::from (wi::from_mpz (niter_type, bnds->up, false),
1507 TYPE_SIGN (niter_type));
1508 niter->control.no_overflow = true;
1509 return true;
1512 if (integer_nonzerop (iv0->step))
1513 step = fold_convert (niter_type, iv0->step);
1514 else
1515 step = fold_convert (niter_type,
1516 fold_build1 (NEGATE_EXPR, type, iv1->step));
1518 /* If we can determine the final value of the control iv exactly, we can
1519 transform the condition to != comparison. In particular, this will be
1520 the case if DELTA is constant. */
1521 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1522 exit_must_be_taken, bnds))
1524 affine_iv zps;
1526 zps.base = build_int_cst (niter_type, 0);
1527 zps.step = step;
1528 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1529 zps does not overflow. */
1530 zps.no_overflow = true;
1532 return number_of_iterations_ne (loop, type, &zps,
1533 delta, niter, true, bnds);
1536 /* Make sure that the control iv does not overflow. */
1537 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1538 return false;
1540 /* We determine the number of iterations as (delta + step - 1) / step. For
1541 this to work, we must know that iv1->base >= iv0->base - step + 1,
1542 otherwise the loop does not roll. */
1543 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1545 s = fold_build2 (MINUS_EXPR, niter_type,
1546 step, build_int_cst (niter_type, 1));
1547 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1548 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1550 mpz_init (mstep);
1551 mpz_init (tmp);
1552 wi::to_mpz (wi::to_wide (step), mstep, UNSIGNED);
1553 mpz_add (tmp, bnds->up, mstep);
1554 mpz_sub_ui (tmp, tmp, 1);
1555 mpz_fdiv_q (tmp, tmp, mstep);
1556 niter->max = widest_int::from (wi::from_mpz (niter_type, tmp, false),
1557 TYPE_SIGN (niter_type));
1558 mpz_clear (mstep);
1559 mpz_clear (tmp);
1561 return true;
1564 /* Determines number of iterations of loop whose ending condition
1565 is IV0 <= IV1. TYPE is the type of the iv. The number of
1566 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1567 we know that this condition must eventually become false (we derived this
1568 earlier, and possibly set NITER->assumptions to make sure this
1569 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1571 static bool
1572 number_of_iterations_le (struct loop *loop, tree type, affine_iv *iv0,
1573 affine_iv *iv1, struct tree_niter_desc *niter,
1574 bool exit_must_be_taken, bounds *bnds)
1576 tree assumption;
1577 tree type1 = type;
1578 if (POINTER_TYPE_P (type))
1579 type1 = sizetype;
1581 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1582 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1583 value of the type. This we must know anyway, since if it is
1584 equal to this value, the loop rolls forever. We do not check
1585 this condition for pointer type ivs, as the code cannot rely on
1586 the object to that the pointer points being placed at the end of
1587 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1588 not defined for pointers). */
1590 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1592 if (integer_nonzerop (iv0->step))
1593 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1594 iv1->base, TYPE_MAX_VALUE (type));
1595 else
1596 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1597 iv0->base, TYPE_MIN_VALUE (type));
1599 if (integer_zerop (assumption))
1600 return false;
1601 if (!integer_nonzerop (assumption))
1602 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1603 niter->assumptions, assumption);
1606 if (integer_nonzerop (iv0->step))
1608 if (POINTER_TYPE_P (type))
1609 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1610 else
1611 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1612 build_int_cst (type1, 1));
1614 else if (POINTER_TYPE_P (type))
1615 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1616 else
1617 iv0->base = fold_build2 (MINUS_EXPR, type1,
1618 iv0->base, build_int_cst (type1, 1));
1620 bounds_add (bnds, 1, type1);
1622 return number_of_iterations_lt (loop, type, iv0, iv1, niter, exit_must_be_taken,
1623 bnds);
1626 /* Dumps description of affine induction variable IV to FILE. */
1628 static void
1629 dump_affine_iv (FILE *file, affine_iv *iv)
1631 if (!integer_zerop (iv->step))
1632 fprintf (file, "[");
1634 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1636 if (!integer_zerop (iv->step))
1638 fprintf (file, ", + , ");
1639 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1640 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1644 /* Given exit condition IV0 CODE IV1 in TYPE, this function adjusts
1645 the condition for loop-until-wrap cases. For example:
1646 (unsigned){8, -1}_loop < 10 => {0, 1} != 9
1647 10 < (unsigned){0, max - 7}_loop => {0, 1} != 8
1648 Return true if condition is successfully adjusted. */
1650 static bool
1651 adjust_cond_for_loop_until_wrap (tree type, affine_iv *iv0, tree_code *code,
1652 affine_iv *iv1)
1654 /* Only support simple cases for the moment. */
1655 if (TREE_CODE (iv0->base) != INTEGER_CST
1656 || TREE_CODE (iv1->base) != INTEGER_CST)
1657 return false;
1659 tree niter_type = unsigned_type_for (type), high, low;
1660 /* Case: i-- < 10. */
1661 if (integer_zerop (iv1->step))
1663 /* TODO: Should handle case in which abs(step) != 1. */
1664 if (!integer_minus_onep (iv0->step))
1665 return false;
1666 /* Give up on infinite loop. */
1667 if (*code == LE_EXPR
1668 && tree_int_cst_equal (iv1->base, TYPE_MAX_VALUE (type)))
1669 return false;
1670 high = fold_build2 (PLUS_EXPR, niter_type,
1671 fold_convert (niter_type, iv0->base),
1672 build_int_cst (niter_type, 1));
1673 low = fold_convert (niter_type, TYPE_MIN_VALUE (type));
1675 else if (integer_zerop (iv0->step))
1677 /* TODO: Should handle case in which abs(step) != 1. */
1678 if (!integer_onep (iv1->step))
1679 return false;
1680 /* Give up on infinite loop. */
1681 if (*code == LE_EXPR
1682 && tree_int_cst_equal (iv0->base, TYPE_MIN_VALUE (type)))
1683 return false;
1684 high = fold_convert (niter_type, TYPE_MAX_VALUE (type));
1685 low = fold_build2 (MINUS_EXPR, niter_type,
1686 fold_convert (niter_type, iv1->base),
1687 build_int_cst (niter_type, 1));
1689 else
1690 gcc_unreachable ();
1692 iv0->base = low;
1693 iv0->step = fold_convert (niter_type, integer_one_node);
1694 iv1->base = high;
1695 iv1->step = build_int_cst (niter_type, 0);
1696 *code = NE_EXPR;
1697 return true;
1700 /* Determine the number of iterations according to condition (for staying
1701 inside loop) which compares two induction variables using comparison
1702 operator CODE. The induction variable on left side of the comparison
1703 is IV0, the right-hand side is IV1. Both induction variables must have
1704 type TYPE, which must be an integer or pointer type. The steps of the
1705 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1707 LOOP is the loop whose number of iterations we are determining.
1709 ONLY_EXIT is true if we are sure this is the only way the loop could be
1710 exited (including possibly non-returning function calls, exceptions, etc.)
1711 -- in this case we can use the information whether the control induction
1712 variables can overflow or not in a more efficient way.
1714 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1716 The results (number of iterations and assumptions as described in
1717 comments at struct tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1718 Returns false if it fails to determine number of iterations, true if it
1719 was determined (possibly with some assumptions). */
1721 static bool
1722 number_of_iterations_cond (struct loop *loop,
1723 tree type, affine_iv *iv0, enum tree_code code,
1724 affine_iv *iv1, struct tree_niter_desc *niter,
1725 bool only_exit, bool every_iteration)
1727 bool exit_must_be_taken = false, ret;
1728 bounds bnds;
1730 /* If the test is not executed every iteration, wrapping may make the test
1731 to pass again.
1732 TODO: the overflow case can be still used as unreliable estimate of upper
1733 bound. But we have no API to pass it down to number of iterations code
1734 and, at present, it will not use it anyway. */
1735 if (!every_iteration
1736 && (!iv0->no_overflow || !iv1->no_overflow
1737 || code == NE_EXPR || code == EQ_EXPR))
1738 return false;
1740 /* The meaning of these assumptions is this:
1741 if !assumptions
1742 then the rest of information does not have to be valid
1743 if may_be_zero then the loop does not roll, even if
1744 niter != 0. */
1745 niter->assumptions = boolean_true_node;
1746 niter->may_be_zero = boolean_false_node;
1747 niter->niter = NULL_TREE;
1748 niter->max = 0;
1749 niter->bound = NULL_TREE;
1750 niter->cmp = ERROR_MARK;
1752 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1753 the control variable is on lhs. */
1754 if (code == GE_EXPR || code == GT_EXPR
1755 || (code == NE_EXPR && integer_zerop (iv0->step)))
1757 std::swap (iv0, iv1);
1758 code = swap_tree_comparison (code);
1761 if (POINTER_TYPE_P (type))
1763 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1764 to the same object. If they do, the control variable cannot wrap
1765 (as wrap around the bounds of memory will never return a pointer
1766 that would be guaranteed to point to the same object, even if we
1767 avoid undefined behavior by casting to size_t and back). */
1768 iv0->no_overflow = true;
1769 iv1->no_overflow = true;
1772 /* If the control induction variable does not overflow and the only exit
1773 from the loop is the one that we analyze, we know it must be taken
1774 eventually. */
1775 if (only_exit)
1777 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1778 exit_must_be_taken = true;
1779 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1780 exit_must_be_taken = true;
1783 /* We can handle cases which neither of the sides of the comparison is
1784 invariant:
1786 {iv0.base, iv0.step} cmp_code {iv1.base, iv1.step}
1787 as if:
1788 {iv0.base, iv0.step - iv1.step} cmp_code {iv1.base, 0}
1790 provided that either below condition is satisfied:
1792 a) the test is NE_EXPR;
1793 b) iv0.step - iv1.step is integer and iv0/iv1 don't overflow.
1795 This rarely occurs in practice, but it is simple enough to manage. */
1796 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1798 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1799 tree step = fold_binary_to_constant (MINUS_EXPR, step_type,
1800 iv0->step, iv1->step);
1802 /* No need to check sign of the new step since below code takes care
1803 of this well. */
1804 if (code != NE_EXPR
1805 && (TREE_CODE (step) != INTEGER_CST
1806 || !iv0->no_overflow || !iv1->no_overflow))
1807 return false;
1809 iv0->step = step;
1810 if (!POINTER_TYPE_P (type))
1811 iv0->no_overflow = false;
1813 iv1->step = build_int_cst (step_type, 0);
1814 iv1->no_overflow = true;
1817 /* If the result of the comparison is a constant, the loop is weird. More
1818 precise handling would be possible, but the situation is not common enough
1819 to waste time on it. */
1820 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1821 return false;
1823 /* If the loop exits immediately, there is nothing to do. */
1824 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1825 if (tem && integer_zerop (tem))
1827 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1828 niter->max = 0;
1829 return true;
1832 /* Handle special case loops: while (i-- < 10) and while (10 < i++) by
1833 adjusting iv0, iv1 and code. */
1834 if (code != NE_EXPR
1835 && (tree_int_cst_sign_bit (iv0->step)
1836 || (!integer_zerop (iv1->step)
1837 && !tree_int_cst_sign_bit (iv1->step)))
1838 && !adjust_cond_for_loop_until_wrap (type, iv0, &code, iv1))
1839 return false;
1841 /* OK, now we know we have a senseful loop. Handle several cases, depending
1842 on what comparison operator is used. */
1843 bound_difference (loop, iv1->base, iv0->base, &bnds);
1845 if (dump_file && (dump_flags & TDF_DETAILS))
1847 fprintf (dump_file,
1848 "Analyzing # of iterations of loop %d\n", loop->num);
1850 fprintf (dump_file, " exit condition ");
1851 dump_affine_iv (dump_file, iv0);
1852 fprintf (dump_file, " %s ",
1853 code == NE_EXPR ? "!="
1854 : code == LT_EXPR ? "<"
1855 : "<=");
1856 dump_affine_iv (dump_file, iv1);
1857 fprintf (dump_file, "\n");
1859 fprintf (dump_file, " bounds on difference of bases: ");
1860 mpz_out_str (dump_file, 10, bnds.below);
1861 fprintf (dump_file, " ... ");
1862 mpz_out_str (dump_file, 10, bnds.up);
1863 fprintf (dump_file, "\n");
1866 switch (code)
1868 case NE_EXPR:
1869 gcc_assert (integer_zerop (iv1->step));
1870 ret = number_of_iterations_ne (loop, type, iv0, iv1->base, niter,
1871 exit_must_be_taken, &bnds);
1872 break;
1874 case LT_EXPR:
1875 ret = number_of_iterations_lt (loop, type, iv0, iv1, niter,
1876 exit_must_be_taken, &bnds);
1877 break;
1879 case LE_EXPR:
1880 ret = number_of_iterations_le (loop, type, iv0, iv1, niter,
1881 exit_must_be_taken, &bnds);
1882 break;
1884 default:
1885 gcc_unreachable ();
1888 mpz_clear (bnds.up);
1889 mpz_clear (bnds.below);
1891 if (dump_file && (dump_flags & TDF_DETAILS))
1893 if (ret)
1895 fprintf (dump_file, " result:\n");
1896 if (!integer_nonzerop (niter->assumptions))
1898 fprintf (dump_file, " under assumptions ");
1899 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1900 fprintf (dump_file, "\n");
1903 if (!integer_zerop (niter->may_be_zero))
1905 fprintf (dump_file, " zero if ");
1906 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1907 fprintf (dump_file, "\n");
1910 fprintf (dump_file, " # of iterations ");
1911 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1912 fprintf (dump_file, ", bounded by ");
1913 print_decu (niter->max, dump_file);
1914 fprintf (dump_file, "\n");
1916 else
1917 fprintf (dump_file, " failed\n\n");
1919 return ret;
1922 /* Substitute NEW for OLD in EXPR and fold the result. */
1924 static tree
1925 simplify_replace_tree (tree expr, tree old, tree new_tree)
1927 unsigned i, n;
1928 tree ret = NULL_TREE, e, se;
1930 if (!expr)
1931 return NULL_TREE;
1933 /* Do not bother to replace constants. */
1934 if (CONSTANT_CLASS_P (old))
1935 return expr;
1937 if (expr == old
1938 || operand_equal_p (expr, old, 0))
1939 return unshare_expr (new_tree);
1941 if (!EXPR_P (expr))
1942 return expr;
1944 n = TREE_OPERAND_LENGTH (expr);
1945 for (i = 0; i < n; i++)
1947 e = TREE_OPERAND (expr, i);
1948 se = simplify_replace_tree (e, old, new_tree);
1949 if (e == se)
1950 continue;
1952 if (!ret)
1953 ret = copy_node (expr);
1955 TREE_OPERAND (ret, i) = se;
1958 return (ret ? fold (ret) : expr);
1961 /* Expand definitions of ssa names in EXPR as long as they are simple
1962 enough, and return the new expression. If STOP is specified, stop
1963 expanding if EXPR equals to it. */
1965 tree
1966 expand_simple_operations (tree expr, tree stop)
1968 unsigned i, n;
1969 tree ret = NULL_TREE, e, ee, e1;
1970 enum tree_code code;
1971 gimple *stmt;
1973 if (expr == NULL_TREE)
1974 return expr;
1976 if (is_gimple_min_invariant (expr))
1977 return expr;
1979 code = TREE_CODE (expr);
1980 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1982 n = TREE_OPERAND_LENGTH (expr);
1983 for (i = 0; i < n; i++)
1985 e = TREE_OPERAND (expr, i);
1986 ee = expand_simple_operations (e, stop);
1987 if (e == ee)
1988 continue;
1990 if (!ret)
1991 ret = copy_node (expr);
1993 TREE_OPERAND (ret, i) = ee;
1996 if (!ret)
1997 return expr;
1999 fold_defer_overflow_warnings ();
2000 ret = fold (ret);
2001 fold_undefer_and_ignore_overflow_warnings ();
2002 return ret;
2005 /* Stop if it's not ssa name or the one we don't want to expand. */
2006 if (TREE_CODE (expr) != SSA_NAME || expr == stop)
2007 return expr;
2009 stmt = SSA_NAME_DEF_STMT (expr);
2010 if (gimple_code (stmt) == GIMPLE_PHI)
2012 basic_block src, dest;
2014 if (gimple_phi_num_args (stmt) != 1)
2015 return expr;
2016 e = PHI_ARG_DEF (stmt, 0);
2018 /* Avoid propagating through loop exit phi nodes, which
2019 could break loop-closed SSA form restrictions. */
2020 dest = gimple_bb (stmt);
2021 src = single_pred (dest);
2022 if (TREE_CODE (e) == SSA_NAME
2023 && src->loop_father != dest->loop_father)
2024 return expr;
2026 return expand_simple_operations (e, stop);
2028 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2029 return expr;
2031 /* Avoid expanding to expressions that contain SSA names that need
2032 to take part in abnormal coalescing. */
2033 ssa_op_iter iter;
2034 FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
2035 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
2036 return expr;
2038 e = gimple_assign_rhs1 (stmt);
2039 code = gimple_assign_rhs_code (stmt);
2040 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2042 if (is_gimple_min_invariant (e))
2043 return e;
2045 if (code == SSA_NAME)
2046 return expand_simple_operations (e, stop);
2047 else if (code == ADDR_EXPR)
2049 poly_int64 offset;
2050 tree base = get_addr_base_and_unit_offset (TREE_OPERAND (e, 0),
2051 &offset);
2052 if (base
2053 && TREE_CODE (base) == MEM_REF)
2055 ee = expand_simple_operations (TREE_OPERAND (base, 0), stop);
2056 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (expr), ee,
2057 wide_int_to_tree (sizetype,
2058 mem_ref_offset (base)
2059 + offset));
2063 return expr;
2066 switch (code)
2068 CASE_CONVERT:
2069 /* Casts are simple. */
2070 ee = expand_simple_operations (e, stop);
2071 return fold_build1 (code, TREE_TYPE (expr), ee);
2073 case PLUS_EXPR:
2074 case MINUS_EXPR:
2075 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
2076 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
2077 return expr;
2078 /* Fallthru. */
2079 case POINTER_PLUS_EXPR:
2080 /* And increments and decrements by a constant are simple. */
2081 e1 = gimple_assign_rhs2 (stmt);
2082 if (!is_gimple_min_invariant (e1))
2083 return expr;
2085 ee = expand_simple_operations (e, stop);
2086 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
2088 default:
2089 return expr;
2093 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2094 expression (or EXPR unchanged, if no simplification was possible). */
2096 static tree
2097 tree_simplify_using_condition_1 (tree cond, tree expr)
2099 bool changed;
2100 tree e, e0, e1, e2, notcond;
2101 enum tree_code code = TREE_CODE (expr);
2103 if (code == INTEGER_CST)
2104 return expr;
2106 if (code == TRUTH_OR_EXPR
2107 || code == TRUTH_AND_EXPR
2108 || code == COND_EXPR)
2110 changed = false;
2112 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
2113 if (TREE_OPERAND (expr, 0) != e0)
2114 changed = true;
2116 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
2117 if (TREE_OPERAND (expr, 1) != e1)
2118 changed = true;
2120 if (code == COND_EXPR)
2122 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
2123 if (TREE_OPERAND (expr, 2) != e2)
2124 changed = true;
2126 else
2127 e2 = NULL_TREE;
2129 if (changed)
2131 if (code == COND_EXPR)
2132 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2133 else
2134 expr = fold_build2 (code, boolean_type_node, e0, e1);
2137 return expr;
2140 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
2141 propagation, and vice versa. Fold does not handle this, since it is
2142 considered too expensive. */
2143 if (TREE_CODE (cond) == EQ_EXPR)
2145 e0 = TREE_OPERAND (cond, 0);
2146 e1 = TREE_OPERAND (cond, 1);
2148 /* We know that e0 == e1. Check whether we cannot simplify expr
2149 using this fact. */
2150 e = simplify_replace_tree (expr, e0, e1);
2151 if (integer_zerop (e) || integer_nonzerop (e))
2152 return e;
2154 e = simplify_replace_tree (expr, e1, e0);
2155 if (integer_zerop (e) || integer_nonzerop (e))
2156 return e;
2158 if (TREE_CODE (expr) == EQ_EXPR)
2160 e0 = TREE_OPERAND (expr, 0);
2161 e1 = TREE_OPERAND (expr, 1);
2163 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
2164 e = simplify_replace_tree (cond, e0, e1);
2165 if (integer_zerop (e))
2166 return e;
2167 e = simplify_replace_tree (cond, e1, e0);
2168 if (integer_zerop (e))
2169 return e;
2171 if (TREE_CODE (expr) == NE_EXPR)
2173 e0 = TREE_OPERAND (expr, 0);
2174 e1 = TREE_OPERAND (expr, 1);
2176 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
2177 e = simplify_replace_tree (cond, e0, e1);
2178 if (integer_zerop (e))
2179 return boolean_true_node;
2180 e = simplify_replace_tree (cond, e1, e0);
2181 if (integer_zerop (e))
2182 return boolean_true_node;
2185 /* Check whether COND ==> EXPR. */
2186 notcond = invert_truthvalue (cond);
2187 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, expr);
2188 if (e && integer_nonzerop (e))
2189 return e;
2191 /* Check whether COND ==> not EXPR. */
2192 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, expr);
2193 if (e && integer_zerop (e))
2194 return e;
2196 return expr;
2199 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2200 expression (or EXPR unchanged, if no simplification was possible).
2201 Wrapper around tree_simplify_using_condition_1 that ensures that chains
2202 of simple operations in definitions of ssa names in COND are expanded,
2203 so that things like casts or incrementing the value of the bound before
2204 the loop do not cause us to fail. */
2206 static tree
2207 tree_simplify_using_condition (tree cond, tree expr)
2209 cond = expand_simple_operations (cond);
2211 return tree_simplify_using_condition_1 (cond, expr);
2214 /* Tries to simplify EXPR using the conditions on entry to LOOP.
2215 Returns the simplified expression (or EXPR unchanged, if no
2216 simplification was possible). */
2218 tree
2219 simplify_using_initial_conditions (struct loop *loop, tree expr)
2221 edge e;
2222 basic_block bb;
2223 gimple *stmt;
2224 tree cond, expanded, backup;
2225 int cnt = 0;
2227 if (TREE_CODE (expr) == INTEGER_CST)
2228 return expr;
2230 backup = expanded = expand_simple_operations (expr);
2232 /* Limit walking the dominators to avoid quadraticness in
2233 the number of BBs times the number of loops in degenerate
2234 cases. */
2235 for (bb = loop->header;
2236 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
2237 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
2239 if (!single_pred_p (bb))
2240 continue;
2241 e = single_pred_edge (bb);
2243 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2244 continue;
2246 stmt = last_stmt (e->src);
2247 cond = fold_build2 (gimple_cond_code (stmt),
2248 boolean_type_node,
2249 gimple_cond_lhs (stmt),
2250 gimple_cond_rhs (stmt));
2251 if (e->flags & EDGE_FALSE_VALUE)
2252 cond = invert_truthvalue (cond);
2253 expanded = tree_simplify_using_condition (cond, expanded);
2254 /* Break if EXPR is simplified to const values. */
2255 if (expanded
2256 && (integer_zerop (expanded) || integer_nonzerop (expanded)))
2257 return expanded;
2259 ++cnt;
2262 /* Return the original expression if no simplification is done. */
2263 return operand_equal_p (backup, expanded, 0) ? expr : expanded;
2266 /* Tries to simplify EXPR using the evolutions of the loop invariants
2267 in the superloops of LOOP. Returns the simplified expression
2268 (or EXPR unchanged, if no simplification was possible). */
2270 static tree
2271 simplify_using_outer_evolutions (struct loop *loop, tree expr)
2273 enum tree_code code = TREE_CODE (expr);
2274 bool changed;
2275 tree e, e0, e1, e2;
2277 if (is_gimple_min_invariant (expr))
2278 return expr;
2280 if (code == TRUTH_OR_EXPR
2281 || code == TRUTH_AND_EXPR
2282 || code == COND_EXPR)
2284 changed = false;
2286 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
2287 if (TREE_OPERAND (expr, 0) != e0)
2288 changed = true;
2290 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
2291 if (TREE_OPERAND (expr, 1) != e1)
2292 changed = true;
2294 if (code == COND_EXPR)
2296 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
2297 if (TREE_OPERAND (expr, 2) != e2)
2298 changed = true;
2300 else
2301 e2 = NULL_TREE;
2303 if (changed)
2305 if (code == COND_EXPR)
2306 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2307 else
2308 expr = fold_build2 (code, boolean_type_node, e0, e1);
2311 return expr;
2314 e = instantiate_parameters (loop, expr);
2315 if (is_gimple_min_invariant (e))
2316 return e;
2318 return expr;
2321 /* Returns true if EXIT is the only possible exit from LOOP. */
2323 bool
2324 loop_only_exit_p (const struct loop *loop, const_edge exit)
2326 basic_block *body;
2327 gimple_stmt_iterator bsi;
2328 unsigned i;
2330 if (exit != single_exit (loop))
2331 return false;
2333 body = get_loop_body (loop);
2334 for (i = 0; i < loop->num_nodes; i++)
2336 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
2337 if (stmt_can_terminate_bb_p (gsi_stmt (bsi)))
2339 free (body);
2340 return true;
2344 free (body);
2345 return true;
2348 /* Stores description of number of iterations of LOOP derived from
2349 EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful
2350 information could be derived (and fields of NITER have meaning described
2351 in comments at struct tree_niter_desc declaration), false otherwise.
2352 When EVERY_ITERATION is true, only tests that are known to be executed
2353 every iteration are considered (i.e. only test that alone bounds the loop).
2354 If AT_STMT is not NULL, this function stores LOOP's condition statement in
2355 it when returning true. */
2357 bool
2358 number_of_iterations_exit_assumptions (struct loop *loop, edge exit,
2359 struct tree_niter_desc *niter,
2360 gcond **at_stmt, bool every_iteration)
2362 gimple *last;
2363 gcond *stmt;
2364 tree type;
2365 tree op0, op1;
2366 enum tree_code code;
2367 affine_iv iv0, iv1;
2368 bool safe;
2370 /* Nothing to analyze if the loop is known to be infinite. */
2371 if (loop_constraint_set_p (loop, LOOP_C_INFINITE))
2372 return false;
2374 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
2376 if (every_iteration && !safe)
2377 return false;
2379 niter->assumptions = boolean_false_node;
2380 niter->control.base = NULL_TREE;
2381 niter->control.step = NULL_TREE;
2382 niter->control.no_overflow = false;
2383 last = last_stmt (exit->src);
2384 if (!last)
2385 return false;
2386 stmt = dyn_cast <gcond *> (last);
2387 if (!stmt)
2388 return false;
2390 /* We want the condition for staying inside loop. */
2391 code = gimple_cond_code (stmt);
2392 if (exit->flags & EDGE_TRUE_VALUE)
2393 code = invert_tree_comparison (code, false);
2395 switch (code)
2397 case GT_EXPR:
2398 case GE_EXPR:
2399 case LT_EXPR:
2400 case LE_EXPR:
2401 case NE_EXPR:
2402 break;
2404 default:
2405 return false;
2408 op0 = gimple_cond_lhs (stmt);
2409 op1 = gimple_cond_rhs (stmt);
2410 type = TREE_TYPE (op0);
2412 if (TREE_CODE (type) != INTEGER_TYPE
2413 && !POINTER_TYPE_P (type))
2414 return false;
2416 tree iv0_niters = NULL_TREE;
2417 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
2418 op0, &iv0, safe ? &iv0_niters : NULL, false))
2419 return number_of_iterations_popcount (loop, exit, code, niter);
2420 tree iv1_niters = NULL_TREE;
2421 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
2422 op1, &iv1, safe ? &iv1_niters : NULL, false))
2423 return false;
2424 /* Give up on complicated case. */
2425 if (iv0_niters && iv1_niters)
2426 return false;
2428 /* We don't want to see undefined signed overflow warnings while
2429 computing the number of iterations. */
2430 fold_defer_overflow_warnings ();
2432 iv0.base = expand_simple_operations (iv0.base);
2433 iv1.base = expand_simple_operations (iv1.base);
2434 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
2435 loop_only_exit_p (loop, exit), safe))
2437 fold_undefer_and_ignore_overflow_warnings ();
2438 return false;
2441 /* Incorporate additional assumption implied by control iv. */
2442 tree iv_niters = iv0_niters ? iv0_niters : iv1_niters;
2443 if (iv_niters)
2445 tree assumption = fold_build2 (LE_EXPR, boolean_type_node, niter->niter,
2446 fold_convert (TREE_TYPE (niter->niter),
2447 iv_niters));
2449 if (!integer_nonzerop (assumption))
2450 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2451 niter->assumptions, assumption);
2453 /* Refine upper bound if possible. */
2454 if (TREE_CODE (iv_niters) == INTEGER_CST
2455 && niter->max > wi::to_widest (iv_niters))
2456 niter->max = wi::to_widest (iv_niters);
2459 /* There is no assumptions if the loop is known to be finite. */
2460 if (!integer_zerop (niter->assumptions)
2461 && loop_constraint_set_p (loop, LOOP_C_FINITE))
2462 niter->assumptions = boolean_true_node;
2464 if (optimize >= 3)
2466 niter->assumptions = simplify_using_outer_evolutions (loop,
2467 niter->assumptions);
2468 niter->may_be_zero = simplify_using_outer_evolutions (loop,
2469 niter->may_be_zero);
2470 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
2473 niter->assumptions
2474 = simplify_using_initial_conditions (loop,
2475 niter->assumptions);
2476 niter->may_be_zero
2477 = simplify_using_initial_conditions (loop,
2478 niter->may_be_zero);
2480 fold_undefer_and_ignore_overflow_warnings ();
2482 /* If NITER has simplified into a constant, update MAX. */
2483 if (TREE_CODE (niter->niter) == INTEGER_CST)
2484 niter->max = wi::to_widest (niter->niter);
2486 if (at_stmt)
2487 *at_stmt = stmt;
2489 return (!integer_zerop (niter->assumptions));
2493 /* Utility function to check if OP is defined by a stmt
2494 that is a val - 1. */
2496 static bool
2497 ssa_defined_by_minus_one_stmt_p (tree op, tree val)
2499 gimple *stmt;
2500 return (TREE_CODE (op) == SSA_NAME
2501 && (stmt = SSA_NAME_DEF_STMT (op))
2502 && is_gimple_assign (stmt)
2503 && (gimple_assign_rhs_code (stmt) == PLUS_EXPR)
2504 && val == gimple_assign_rhs1 (stmt)
2505 && integer_minus_onep (gimple_assign_rhs2 (stmt)));
2509 /* See if LOOP is a popcout implementation, determine NITER for the loop
2511 We match:
2512 <bb 2>
2513 goto <bb 4>
2515 <bb 3>
2516 _1 = b_11 + -1
2517 b_6 = _1 & b_11
2519 <bb 4>
2520 b_11 = PHI <b_5(D)(2), b_6(3)>
2522 exit block
2523 if (b_11 != 0)
2524 goto <bb 3>
2525 else
2526 goto <bb 5>
2528 OR we match copy-header version:
2529 if (b_5 != 0)
2530 goto <bb 3>
2531 else
2532 goto <bb 4>
2534 <bb 3>
2535 b_11 = PHI <b_5(2), b_6(3)>
2536 _1 = b_11 + -1
2537 b_6 = _1 & b_11
2539 exit block
2540 if (b_6 != 0)
2541 goto <bb 3>
2542 else
2543 goto <bb 4>
2545 If popcount pattern, update NITER accordingly.
2546 i.e., set NITER to __builtin_popcount (b)
2547 return true if we did, false otherwise.
2551 static bool
2552 number_of_iterations_popcount (loop_p loop, edge exit,
2553 enum tree_code code,
2554 struct tree_niter_desc *niter)
2556 bool adjust = true;
2557 tree iter;
2558 HOST_WIDE_INT max;
2559 adjust = true;
2560 tree fn = NULL_TREE;
2562 /* Check loop terminating branch is like
2563 if (b != 0). */
2564 gimple *stmt = last_stmt (exit->src);
2565 if (!stmt
2566 || gimple_code (stmt) != GIMPLE_COND
2567 || code != NE_EXPR
2568 || !integer_zerop (gimple_cond_rhs (stmt))
2569 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME)
2570 return false;
2572 gimple *and_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2574 /* Depending on copy-header is performed, feeding PHI stmts might be in
2575 the loop header or loop latch, handle this. */
2576 if (gimple_code (and_stmt) == GIMPLE_PHI
2577 && gimple_bb (and_stmt) == loop->header
2578 && gimple_phi_num_args (and_stmt) == 2
2579 && (TREE_CODE (gimple_phi_arg_def (and_stmt,
2580 loop_latch_edge (loop)->dest_idx))
2581 == SSA_NAME))
2583 /* SSA used in exit condition is defined by PHI stmt
2584 b_11 = PHI <b_5(D)(2), b_6(3)>
2585 from the PHI stmt, get the and_stmt
2586 b_6 = _1 & b_11. */
2587 tree t = gimple_phi_arg_def (and_stmt, loop_latch_edge (loop)->dest_idx);
2588 and_stmt = SSA_NAME_DEF_STMT (t);
2589 adjust = false;
2592 /* Make sure it is indeed an and stmt (b_6 = _1 & b_11). */
2593 if (!is_gimple_assign (and_stmt)
2594 || gimple_assign_rhs_code (and_stmt) != BIT_AND_EXPR)
2595 return false;
2597 tree b_11 = gimple_assign_rhs1 (and_stmt);
2598 tree _1 = gimple_assign_rhs2 (and_stmt);
2600 /* Check that _1 is defined by _b11 + -1 (_1 = b_11 + -1).
2601 Also make sure that b_11 is the same in and_stmt and _1 defining stmt.
2602 Also canonicalize if _1 and _b11 are revrsed. */
2603 if (ssa_defined_by_minus_one_stmt_p (b_11, _1))
2604 std::swap (b_11, _1);
2605 else if (ssa_defined_by_minus_one_stmt_p (_1, b_11))
2607 else
2608 return false;
2609 /* Check the recurrence:
2610 ... = PHI <b_5(2), b_6(3)>. */
2611 gimple *phi = SSA_NAME_DEF_STMT (b_11);
2612 if (gimple_code (phi) != GIMPLE_PHI
2613 || (gimple_bb (phi) != loop_latch_edge (loop)->dest)
2614 || (gimple_assign_lhs (and_stmt)
2615 != gimple_phi_arg_def (phi, loop_latch_edge (loop)->dest_idx)))
2616 return false;
2618 /* We found a match. Get the corresponding popcount builtin. */
2619 tree src = gimple_phi_arg_def (phi, loop_preheader_edge (loop)->dest_idx);
2620 if (TYPE_PRECISION (TREE_TYPE (src)) == TYPE_PRECISION (integer_type_node))
2621 fn = builtin_decl_implicit (BUILT_IN_POPCOUNT);
2622 else if (TYPE_PRECISION (TREE_TYPE (src)) == TYPE_PRECISION
2623 (long_integer_type_node))
2624 fn = builtin_decl_implicit (BUILT_IN_POPCOUNTL);
2625 else if (TYPE_PRECISION (TREE_TYPE (src)) == TYPE_PRECISION
2626 (long_long_integer_type_node))
2627 fn = builtin_decl_implicit (BUILT_IN_POPCOUNTLL);
2629 /* ??? Support promoting char/short to int. */
2630 if (!fn)
2631 return false;
2633 /* Update NITER params accordingly */
2634 tree utype = unsigned_type_for (TREE_TYPE (src));
2635 src = fold_convert (utype, src);
2636 tree call = fold_convert (utype, build_call_expr (fn, 1, src));
2637 if (adjust)
2638 iter = fold_build2 (MINUS_EXPR, utype,
2639 call,
2640 build_int_cst (utype, 1));
2641 else
2642 iter = call;
2644 if (TREE_CODE (call) == INTEGER_CST)
2645 max = tree_to_uhwi (call);
2646 else
2647 max = TYPE_PRECISION (TREE_TYPE (src));
2648 if (adjust)
2649 max = max - 1;
2651 niter->niter = iter;
2652 niter->assumptions = boolean_true_node;
2654 if (adjust)
2656 tree may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
2657 build_zero_cst
2658 (TREE_TYPE (src)));
2659 niter->may_be_zero =
2660 simplify_using_initial_conditions (loop, may_be_zero);
2662 else
2663 niter->may_be_zero = boolean_false_node;
2665 niter->max = max;
2666 niter->bound = NULL_TREE;
2667 niter->cmp = ERROR_MARK;
2668 return true;
2672 /* Like number_of_iterations_exit_assumptions, but return TRUE only if
2673 the niter information holds unconditionally. */
2675 bool
2676 number_of_iterations_exit (struct loop *loop, edge exit,
2677 struct tree_niter_desc *niter,
2678 bool warn, bool every_iteration)
2680 gcond *stmt;
2681 if (!number_of_iterations_exit_assumptions (loop, exit, niter,
2682 &stmt, every_iteration))
2683 return false;
2685 if (integer_nonzerop (niter->assumptions))
2686 return true;
2688 if (warn && dump_enabled_p ())
2689 dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmt,
2690 "missed loop optimization: niters analysis ends up "
2691 "with assumptions.\n");
2693 return false;
2696 /* Try to determine the number of iterations of LOOP. If we succeed,
2697 expression giving number of iterations is returned and *EXIT is
2698 set to the edge from that the information is obtained. Otherwise
2699 chrec_dont_know is returned. */
2701 tree
2702 find_loop_niter (struct loop *loop, edge *exit)
2704 unsigned i;
2705 vec<edge> exits = get_loop_exit_edges (loop);
2706 edge ex;
2707 tree niter = NULL_TREE, aniter;
2708 struct tree_niter_desc desc;
2710 *exit = NULL;
2711 FOR_EACH_VEC_ELT (exits, i, ex)
2713 if (!number_of_iterations_exit (loop, ex, &desc, false))
2714 continue;
2716 if (integer_nonzerop (desc.may_be_zero))
2718 /* We exit in the first iteration through this exit.
2719 We won't find anything better. */
2720 niter = build_int_cst (unsigned_type_node, 0);
2721 *exit = ex;
2722 break;
2725 if (!integer_zerop (desc.may_be_zero))
2726 continue;
2728 aniter = desc.niter;
2730 if (!niter)
2732 /* Nothing recorded yet. */
2733 niter = aniter;
2734 *exit = ex;
2735 continue;
2738 /* Prefer constants, the lower the better. */
2739 if (TREE_CODE (aniter) != INTEGER_CST)
2740 continue;
2742 if (TREE_CODE (niter) != INTEGER_CST)
2744 niter = aniter;
2745 *exit = ex;
2746 continue;
2749 if (tree_int_cst_lt (aniter, niter))
2751 niter = aniter;
2752 *exit = ex;
2753 continue;
2756 exits.release ();
2758 return niter ? niter : chrec_dont_know;
2761 /* Return true if loop is known to have bounded number of iterations. */
2763 bool
2764 finite_loop_p (struct loop *loop)
2766 widest_int nit;
2767 int flags;
2769 flags = flags_from_decl_or_type (current_function_decl);
2770 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2772 if (dump_file && (dump_flags & TDF_DETAILS))
2773 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2774 loop->num);
2775 return true;
2778 if (loop->any_upper_bound
2779 || max_loop_iterations (loop, &nit))
2781 if (dump_file && (dump_flags & TDF_DETAILS))
2782 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
2783 loop->num);
2784 return true;
2786 return false;
2791 Analysis of a number of iterations of a loop by a brute-force evaluation.
2795 /* Bound on the number of iterations we try to evaluate. */
2797 #define MAX_ITERATIONS_TO_TRACK \
2798 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2800 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2801 result by a chain of operations such that all but exactly one of their
2802 operands are constants. */
2804 static gphi *
2805 chain_of_csts_start (struct loop *loop, tree x)
2807 gimple *stmt = SSA_NAME_DEF_STMT (x);
2808 tree use;
2809 basic_block bb = gimple_bb (stmt);
2810 enum tree_code code;
2812 if (!bb
2813 || !flow_bb_inside_loop_p (loop, bb))
2814 return NULL;
2816 if (gimple_code (stmt) == GIMPLE_PHI)
2818 if (bb == loop->header)
2819 return as_a <gphi *> (stmt);
2821 return NULL;
2824 if (gimple_code (stmt) != GIMPLE_ASSIGN
2825 || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
2826 return NULL;
2828 code = gimple_assign_rhs_code (stmt);
2829 if (gimple_references_memory_p (stmt)
2830 || TREE_CODE_CLASS (code) == tcc_reference
2831 || (code == ADDR_EXPR
2832 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2833 return NULL;
2835 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2836 if (use == NULL_TREE)
2837 return NULL;
2839 return chain_of_csts_start (loop, use);
2842 /* Determines whether the expression X is derived from a result of a phi node
2843 in header of LOOP such that
2845 * the derivation of X consists only from operations with constants
2846 * the initial value of the phi node is constant
2847 * the value of the phi node in the next iteration can be derived from the
2848 value in the current iteration by a chain of operations with constants,
2849 or is also a constant
2851 If such phi node exists, it is returned, otherwise NULL is returned. */
2853 static gphi *
2854 get_base_for (struct loop *loop, tree x)
2856 gphi *phi;
2857 tree init, next;
2859 if (is_gimple_min_invariant (x))
2860 return NULL;
2862 phi = chain_of_csts_start (loop, x);
2863 if (!phi)
2864 return NULL;
2866 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2867 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2869 if (!is_gimple_min_invariant (init))
2870 return NULL;
2872 if (TREE_CODE (next) == SSA_NAME
2873 && chain_of_csts_start (loop, next) != phi)
2874 return NULL;
2876 return phi;
2879 /* Given an expression X, then
2881 * if X is NULL_TREE, we return the constant BASE.
2882 * if X is a constant, we return the constant X.
2883 * otherwise X is a SSA name, whose value in the considered loop is derived
2884 by a chain of operations with constant from a result of a phi node in
2885 the header of the loop. Then we return value of X when the value of the
2886 result of this phi node is given by the constant BASE. */
2888 static tree
2889 get_val_for (tree x, tree base)
2891 gimple *stmt;
2893 gcc_checking_assert (is_gimple_min_invariant (base));
2895 if (!x)
2896 return base;
2897 else if (is_gimple_min_invariant (x))
2898 return x;
2900 stmt = SSA_NAME_DEF_STMT (x);
2901 if (gimple_code (stmt) == GIMPLE_PHI)
2902 return base;
2904 gcc_checking_assert (is_gimple_assign (stmt));
2906 /* STMT must be either an assignment of a single SSA name or an
2907 expression involving an SSA name and a constant. Try to fold that
2908 expression using the value for the SSA name. */
2909 if (gimple_assign_ssa_name_copy_p (stmt))
2910 return get_val_for (gimple_assign_rhs1 (stmt), base);
2911 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2912 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2913 return fold_build1 (gimple_assign_rhs_code (stmt),
2914 gimple_expr_type (stmt),
2915 get_val_for (gimple_assign_rhs1 (stmt), base));
2916 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2918 tree rhs1 = gimple_assign_rhs1 (stmt);
2919 tree rhs2 = gimple_assign_rhs2 (stmt);
2920 if (TREE_CODE (rhs1) == SSA_NAME)
2921 rhs1 = get_val_for (rhs1, base);
2922 else if (TREE_CODE (rhs2) == SSA_NAME)
2923 rhs2 = get_val_for (rhs2, base);
2924 else
2925 gcc_unreachable ();
2926 return fold_build2 (gimple_assign_rhs_code (stmt),
2927 gimple_expr_type (stmt), rhs1, rhs2);
2929 else
2930 gcc_unreachable ();
2934 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2935 by brute force -- i.e. by determining the value of the operands of the
2936 condition at EXIT in first few iterations of the loop (assuming that
2937 these values are constant) and determining the first one in that the
2938 condition is not satisfied. Returns the constant giving the number
2939 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2941 tree
2942 loop_niter_by_eval (struct loop *loop, edge exit)
2944 tree acnd;
2945 tree op[2], val[2], next[2], aval[2];
2946 gphi *phi;
2947 gimple *cond;
2948 unsigned i, j;
2949 enum tree_code cmp;
2951 cond = last_stmt (exit->src);
2952 if (!cond || gimple_code (cond) != GIMPLE_COND)
2953 return chrec_dont_know;
2955 cmp = gimple_cond_code (cond);
2956 if (exit->flags & EDGE_TRUE_VALUE)
2957 cmp = invert_tree_comparison (cmp, false);
2959 switch (cmp)
2961 case EQ_EXPR:
2962 case NE_EXPR:
2963 case GT_EXPR:
2964 case GE_EXPR:
2965 case LT_EXPR:
2966 case LE_EXPR:
2967 op[0] = gimple_cond_lhs (cond);
2968 op[1] = gimple_cond_rhs (cond);
2969 break;
2971 default:
2972 return chrec_dont_know;
2975 for (j = 0; j < 2; j++)
2977 if (is_gimple_min_invariant (op[j]))
2979 val[j] = op[j];
2980 next[j] = NULL_TREE;
2981 op[j] = NULL_TREE;
2983 else
2985 phi = get_base_for (loop, op[j]);
2986 if (!phi)
2987 return chrec_dont_know;
2988 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2989 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2993 /* Don't issue signed overflow warnings. */
2994 fold_defer_overflow_warnings ();
2996 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2998 for (j = 0; j < 2; j++)
2999 aval[j] = get_val_for (op[j], val[j]);
3001 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
3002 if (acnd && integer_zerop (acnd))
3004 fold_undefer_and_ignore_overflow_warnings ();
3005 if (dump_file && (dump_flags & TDF_DETAILS))
3006 fprintf (dump_file,
3007 "Proved that loop %d iterates %d times using brute force.\n",
3008 loop->num, i);
3009 return build_int_cst (unsigned_type_node, i);
3012 for (j = 0; j < 2; j++)
3014 aval[j] = val[j];
3015 val[j] = get_val_for (next[j], val[j]);
3016 if (!is_gimple_min_invariant (val[j]))
3018 fold_undefer_and_ignore_overflow_warnings ();
3019 return chrec_dont_know;
3023 /* If the next iteration would use the same base values
3024 as the current one, there is no point looping further,
3025 all following iterations will be the same as this one. */
3026 if (val[0] == aval[0] && val[1] == aval[1])
3027 break;
3030 fold_undefer_and_ignore_overflow_warnings ();
3032 return chrec_dont_know;
3035 /* Finds the exit of the LOOP by that the loop exits after a constant
3036 number of iterations and stores the exit edge to *EXIT. The constant
3037 giving the number of iterations of LOOP is returned. The number of
3038 iterations is determined using loop_niter_by_eval (i.e. by brute force
3039 evaluation). If we are unable to find the exit for that loop_niter_by_eval
3040 determines the number of iterations, chrec_dont_know is returned. */
3042 tree
3043 find_loop_niter_by_eval (struct loop *loop, edge *exit)
3045 unsigned i;
3046 vec<edge> exits = get_loop_exit_edges (loop);
3047 edge ex;
3048 tree niter = NULL_TREE, aniter;
3050 *exit = NULL;
3052 /* Loops with multiple exits are expensive to handle and less important. */
3053 if (!flag_expensive_optimizations
3054 && exits.length () > 1)
3056 exits.release ();
3057 return chrec_dont_know;
3060 FOR_EACH_VEC_ELT (exits, i, ex)
3062 if (!just_once_each_iteration_p (loop, ex->src))
3063 continue;
3065 aniter = loop_niter_by_eval (loop, ex);
3066 if (chrec_contains_undetermined (aniter))
3067 continue;
3069 if (niter
3070 && !tree_int_cst_lt (aniter, niter))
3071 continue;
3073 niter = aniter;
3074 *exit = ex;
3076 exits.release ();
3078 return niter ? niter : chrec_dont_know;
3083 Analysis of upper bounds on number of iterations of a loop.
3087 static widest_int derive_constant_upper_bound_ops (tree, tree,
3088 enum tree_code, tree);
3090 /* Returns a constant upper bound on the value of the right-hand side of
3091 an assignment statement STMT. */
3093 static widest_int
3094 derive_constant_upper_bound_assign (gimple *stmt)
3096 enum tree_code code = gimple_assign_rhs_code (stmt);
3097 tree op0 = gimple_assign_rhs1 (stmt);
3098 tree op1 = gimple_assign_rhs2 (stmt);
3100 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
3101 op0, code, op1);
3104 /* Returns a constant upper bound on the value of expression VAL. VAL
3105 is considered to be unsigned. If its type is signed, its value must
3106 be nonnegative. */
3108 static widest_int
3109 derive_constant_upper_bound (tree val)
3111 enum tree_code code;
3112 tree op0, op1, op2;
3114 extract_ops_from_tree (val, &code, &op0, &op1, &op2);
3115 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
3118 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
3119 whose type is TYPE. The expression is considered to be unsigned. If
3120 its type is signed, its value must be nonnegative. */
3122 static widest_int
3123 derive_constant_upper_bound_ops (tree type, tree op0,
3124 enum tree_code code, tree op1)
3126 tree subtype, maxt;
3127 widest_int bnd, max, cst;
3128 gimple *stmt;
3130 if (INTEGRAL_TYPE_P (type))
3131 maxt = TYPE_MAX_VALUE (type);
3132 else
3133 maxt = upper_bound_in_type (type, type);
3135 max = wi::to_widest (maxt);
3137 switch (code)
3139 case INTEGER_CST:
3140 return wi::to_widest (op0);
3142 CASE_CONVERT:
3143 subtype = TREE_TYPE (op0);
3144 if (!TYPE_UNSIGNED (subtype)
3145 /* If TYPE is also signed, the fact that VAL is nonnegative implies
3146 that OP0 is nonnegative. */
3147 && TYPE_UNSIGNED (type)
3148 && !tree_expr_nonnegative_p (op0))
3150 /* If we cannot prove that the casted expression is nonnegative,
3151 we cannot establish more useful upper bound than the precision
3152 of the type gives us. */
3153 return max;
3156 /* We now know that op0 is an nonnegative value. Try deriving an upper
3157 bound for it. */
3158 bnd = derive_constant_upper_bound (op0);
3160 /* If the bound does not fit in TYPE, max. value of TYPE could be
3161 attained. */
3162 if (wi::ltu_p (max, bnd))
3163 return max;
3165 return bnd;
3167 case PLUS_EXPR:
3168 case POINTER_PLUS_EXPR:
3169 case MINUS_EXPR:
3170 if (TREE_CODE (op1) != INTEGER_CST
3171 || !tree_expr_nonnegative_p (op0))
3172 return max;
3174 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
3175 choose the most logical way how to treat this constant regardless
3176 of the signedness of the type. */
3177 cst = wi::sext (wi::to_widest (op1), TYPE_PRECISION (type));
3178 if (code != MINUS_EXPR)
3179 cst = -cst;
3181 bnd = derive_constant_upper_bound (op0);
3183 if (wi::neg_p (cst))
3185 cst = -cst;
3186 /* Avoid CST == 0x80000... */
3187 if (wi::neg_p (cst))
3188 return max;
3190 /* OP0 + CST. We need to check that
3191 BND <= MAX (type) - CST. */
3193 widest_int mmax = max - cst;
3194 if (wi::leu_p (bnd, mmax))
3195 return max;
3197 return bnd + cst;
3199 else
3201 /* OP0 - CST, where CST >= 0.
3203 If TYPE is signed, we have already verified that OP0 >= 0, and we
3204 know that the result is nonnegative. This implies that
3205 VAL <= BND - CST.
3207 If TYPE is unsigned, we must additionally know that OP0 >= CST,
3208 otherwise the operation underflows.
3211 /* This should only happen if the type is unsigned; however, for
3212 buggy programs that use overflowing signed arithmetics even with
3213 -fno-wrapv, this condition may also be true for signed values. */
3214 if (wi::ltu_p (bnd, cst))
3215 return max;
3217 if (TYPE_UNSIGNED (type))
3219 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
3220 wide_int_to_tree (type, cst));
3221 if (!tem || integer_nonzerop (tem))
3222 return max;
3225 bnd -= cst;
3228 return bnd;
3230 case FLOOR_DIV_EXPR:
3231 case EXACT_DIV_EXPR:
3232 if (TREE_CODE (op1) != INTEGER_CST
3233 || tree_int_cst_sign_bit (op1))
3234 return max;
3236 bnd = derive_constant_upper_bound (op0);
3237 return wi::udiv_floor (bnd, wi::to_widest (op1));
3239 case BIT_AND_EXPR:
3240 if (TREE_CODE (op1) != INTEGER_CST
3241 || tree_int_cst_sign_bit (op1))
3242 return max;
3243 return wi::to_widest (op1);
3245 case SSA_NAME:
3246 stmt = SSA_NAME_DEF_STMT (op0);
3247 if (gimple_code (stmt) != GIMPLE_ASSIGN
3248 || gimple_assign_lhs (stmt) != op0)
3249 return max;
3250 return derive_constant_upper_bound_assign (stmt);
3252 default:
3253 return max;
3257 /* Emit a -Waggressive-loop-optimizations warning if needed. */
3259 static void
3260 do_warn_aggressive_loop_optimizations (struct loop *loop,
3261 widest_int i_bound, gimple *stmt)
3263 /* Don't warn if the loop doesn't have known constant bound. */
3264 if (!loop->nb_iterations
3265 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
3266 || !warn_aggressive_loop_optimizations
3267 /* To avoid warning multiple times for the same loop,
3268 only start warning when we preserve loops. */
3269 || (cfun->curr_properties & PROP_loops) == 0
3270 /* Only warn once per loop. */
3271 || loop->warned_aggressive_loop_optimizations
3272 /* Only warn if undefined behavior gives us lower estimate than the
3273 known constant bound. */
3274 || wi::cmpu (i_bound, wi::to_widest (loop->nb_iterations)) >= 0
3275 /* And undefined behavior happens unconditionally. */
3276 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
3277 return;
3279 edge e = single_exit (loop);
3280 if (e == NULL)
3281 return;
3283 gimple *estmt = last_stmt (e->src);
3284 char buf[WIDE_INT_PRINT_BUFFER_SIZE];
3285 print_dec (i_bound, buf, TYPE_UNSIGNED (TREE_TYPE (loop->nb_iterations))
3286 ? UNSIGNED : SIGNED);
3287 auto_diagnostic_group d;
3288 if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
3289 "iteration %s invokes undefined behavior", buf))
3290 inform (gimple_location (estmt), "within this loop");
3291 loop->warned_aggressive_loop_optimizations = true;
3294 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
3295 is true if the loop is exited immediately after STMT, and this exit
3296 is taken at last when the STMT is executed BOUND + 1 times.
3297 REALISTIC is true if BOUND is expected to be close to the real number
3298 of iterations. UPPER is true if we are sure the loop iterates at most
3299 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
3301 static void
3302 record_estimate (struct loop *loop, tree bound, const widest_int &i_bound,
3303 gimple *at_stmt, bool is_exit, bool realistic, bool upper)
3305 widest_int delta;
3307 if (dump_file && (dump_flags & TDF_DETAILS))
3309 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
3310 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
3311 fprintf (dump_file, " is %sexecuted at most ",
3312 upper ? "" : "probably ");
3313 print_generic_expr (dump_file, bound, TDF_SLIM);
3314 fprintf (dump_file, " (bounded by ");
3315 print_decu (i_bound, dump_file);
3316 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
3319 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
3320 real number of iterations. */
3321 if (TREE_CODE (bound) != INTEGER_CST)
3322 realistic = false;
3323 else
3324 gcc_checking_assert (i_bound == wi::to_widest (bound));
3326 /* If we have a guaranteed upper bound, record it in the appropriate
3327 list, unless this is an !is_exit bound (i.e. undefined behavior in
3328 at_stmt) in a loop with known constant number of iterations. */
3329 if (upper
3330 && (is_exit
3331 || loop->nb_iterations == NULL_TREE
3332 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
3334 struct nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();
3336 elt->bound = i_bound;
3337 elt->stmt = at_stmt;
3338 elt->is_exit = is_exit;
3339 elt->next = loop->bounds;
3340 loop->bounds = elt;
3343 /* If statement is executed on every path to the loop latch, we can directly
3344 infer the upper bound on the # of iterations of the loop. */
3345 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
3346 upper = false;
3348 /* Update the number of iteration estimates according to the bound.
3349 If at_stmt is an exit then the loop latch is executed at most BOUND times,
3350 otherwise it can be executed BOUND + 1 times. We will lower the estimate
3351 later if such statement must be executed on last iteration */
3352 if (is_exit)
3353 delta = 0;
3354 else
3355 delta = 1;
3356 widest_int new_i_bound = i_bound + delta;
3358 /* If an overflow occurred, ignore the result. */
3359 if (wi::ltu_p (new_i_bound, delta))
3360 return;
3362 if (upper && !is_exit)
3363 do_warn_aggressive_loop_optimizations (loop, new_i_bound, at_stmt);
3364 record_niter_bound (loop, new_i_bound, realistic, upper);
3367 /* Records the control iv analyzed in NITER for LOOP if the iv is valid
3368 and doesn't overflow. */
3370 static void
3371 record_control_iv (struct loop *loop, struct tree_niter_desc *niter)
3373 struct control_iv *iv;
3375 if (!niter->control.base || !niter->control.step)
3376 return;
3378 if (!integer_onep (niter->assumptions) || !niter->control.no_overflow)
3379 return;
3381 iv = ggc_alloc<control_iv> ();
3382 iv->base = niter->control.base;
3383 iv->step = niter->control.step;
3384 iv->next = loop->control_ivs;
3385 loop->control_ivs = iv;
3387 return;
3390 /* This function returns TRUE if below conditions are satisfied:
3391 1) VAR is SSA variable.
3392 2) VAR is an IV:{base, step} in its defining loop.
3393 3) IV doesn't overflow.
3394 4) Both base and step are integer constants.
3395 5) Base is the MIN/MAX value depends on IS_MIN.
3396 Store value of base to INIT correspondingly. */
3398 static bool
3399 get_cst_init_from_scev (tree var, wide_int *init, bool is_min)
3401 if (TREE_CODE (var) != SSA_NAME)
3402 return false;
3404 gimple *def_stmt = SSA_NAME_DEF_STMT (var);
3405 struct loop *loop = loop_containing_stmt (def_stmt);
3407 if (loop == NULL)
3408 return false;
3410 affine_iv iv;
3411 if (!simple_iv (loop, loop, var, &iv, false))
3412 return false;
3414 if (!iv.no_overflow)
3415 return false;
3417 if (TREE_CODE (iv.base) != INTEGER_CST || TREE_CODE (iv.step) != INTEGER_CST)
3418 return false;
3420 if (is_min == tree_int_cst_sign_bit (iv.step))
3421 return false;
3423 *init = wi::to_wide (iv.base);
3424 return true;
3427 /* Record the estimate on number of iterations of LOOP based on the fact that
3428 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
3429 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
3430 estimated number of iterations is expected to be close to the real one.
3431 UPPER is true if we are sure the induction variable does not wrap. */
3433 static void
3434 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple *stmt,
3435 tree low, tree high, bool realistic, bool upper)
3437 tree niter_bound, extreme, delta;
3438 tree type = TREE_TYPE (base), unsigned_type;
3439 tree orig_base = base;
3441 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
3442 return;
3444 if (dump_file && (dump_flags & TDF_DETAILS))
3446 fprintf (dump_file, "Induction variable (");
3447 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
3448 fprintf (dump_file, ") ");
3449 print_generic_expr (dump_file, base, TDF_SLIM);
3450 fprintf (dump_file, " + ");
3451 print_generic_expr (dump_file, step, TDF_SLIM);
3452 fprintf (dump_file, " * iteration does not wrap in statement ");
3453 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
3454 fprintf (dump_file, " in loop %d.\n", loop->num);
3457 unsigned_type = unsigned_type_for (type);
3458 base = fold_convert (unsigned_type, base);
3459 step = fold_convert (unsigned_type, step);
3461 if (tree_int_cst_sign_bit (step))
3463 wide_int min, max;
3464 extreme = fold_convert (unsigned_type, low);
3465 if (TREE_CODE (orig_base) == SSA_NAME
3466 && TREE_CODE (high) == INTEGER_CST
3467 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
3468 && (get_range_info (orig_base, &min, &max) == VR_RANGE
3469 || get_cst_init_from_scev (orig_base, &max, false))
3470 && wi::gts_p (wi::to_wide (high), max))
3471 base = wide_int_to_tree (unsigned_type, max);
3472 else if (TREE_CODE (base) != INTEGER_CST
3473 && dominated_by_p (CDI_DOMINATORS,
3474 loop->latch, gimple_bb (stmt)))
3475 base = fold_convert (unsigned_type, high);
3476 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3477 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
3479 else
3481 wide_int min, max;
3482 extreme = fold_convert (unsigned_type, high);
3483 if (TREE_CODE (orig_base) == SSA_NAME
3484 && TREE_CODE (low) == INTEGER_CST
3485 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
3486 && (get_range_info (orig_base, &min, &max) == VR_RANGE
3487 || get_cst_init_from_scev (orig_base, &min, true))
3488 && wi::gts_p (min, wi::to_wide (low)))
3489 base = wide_int_to_tree (unsigned_type, min);
3490 else if (TREE_CODE (base) != INTEGER_CST
3491 && dominated_by_p (CDI_DOMINATORS,
3492 loop->latch, gimple_bb (stmt)))
3493 base = fold_convert (unsigned_type, low);
3494 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3497 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
3498 would get out of the range. */
3499 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
3500 widest_int max = derive_constant_upper_bound (niter_bound);
3501 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
3504 /* Determine information about number of iterations a LOOP from the index
3505 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
3506 guaranteed to be executed in every iteration of LOOP. Callback for
3507 for_each_index. */
3509 struct ilb_data
3511 struct loop *loop;
3512 gimple *stmt;
3515 static bool
3516 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
3518 struct ilb_data *data = (struct ilb_data *) dta;
3519 tree ev, init, step;
3520 tree low, high, type, next;
3521 bool sign, upper = true, at_end = false;
3522 struct loop *loop = data->loop;
3524 if (TREE_CODE (base) != ARRAY_REF)
3525 return true;
3527 /* For arrays at the end of the structure, we are not guaranteed that they
3528 do not really extend over their declared size. However, for arrays of
3529 size greater than one, this is unlikely to be intended. */
3530 if (array_at_struct_end_p (base))
3532 at_end = true;
3533 upper = false;
3536 struct loop *dloop = loop_containing_stmt (data->stmt);
3537 if (!dloop)
3538 return true;
3540 ev = analyze_scalar_evolution (dloop, *idx);
3541 ev = instantiate_parameters (loop, ev);
3542 init = initial_condition (ev);
3543 step = evolution_part_in_loop_num (ev, loop->num);
3545 if (!init
3546 || !step
3547 || TREE_CODE (step) != INTEGER_CST
3548 || integer_zerop (step)
3549 || tree_contains_chrecs (init, NULL)
3550 || chrec_contains_symbols_defined_in_loop (init, loop->num))
3551 return true;
3553 low = array_ref_low_bound (base);
3554 high = array_ref_up_bound (base);
3556 /* The case of nonconstant bounds could be handled, but it would be
3557 complicated. */
3558 if (TREE_CODE (low) != INTEGER_CST
3559 || !high
3560 || TREE_CODE (high) != INTEGER_CST)
3561 return true;
3562 sign = tree_int_cst_sign_bit (step);
3563 type = TREE_TYPE (step);
3565 /* The array of length 1 at the end of a structure most likely extends
3566 beyond its bounds. */
3567 if (at_end
3568 && operand_equal_p (low, high, 0))
3569 return true;
3571 /* In case the relevant bound of the array does not fit in type, or
3572 it does, but bound + step (in type) still belongs into the range of the
3573 array, the index may wrap and still stay within the range of the array
3574 (consider e.g. if the array is indexed by the full range of
3575 unsigned char).
3577 To make things simpler, we require both bounds to fit into type, although
3578 there are cases where this would not be strictly necessary. */
3579 if (!int_fits_type_p (high, type)
3580 || !int_fits_type_p (low, type))
3581 return true;
3582 low = fold_convert (type, low);
3583 high = fold_convert (type, high);
3585 if (sign)
3586 next = fold_binary (PLUS_EXPR, type, low, step);
3587 else
3588 next = fold_binary (PLUS_EXPR, type, high, step);
3590 if (tree_int_cst_compare (low, next) <= 0
3591 && tree_int_cst_compare (next, high) <= 0)
3592 return true;
3594 /* If access is not executed on every iteration, we must ensure that overlow
3595 may not make the access valid later. */
3596 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
3597 && scev_probably_wraps_p (NULL_TREE,
3598 initial_condition_in_loop_num (ev, loop->num),
3599 step, data->stmt, loop, true))
3600 upper = false;
3602 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, false, upper);
3603 return true;
3606 /* Determine information about number of iterations a LOOP from the bounds
3607 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
3608 STMT is guaranteed to be executed in every iteration of LOOP.*/
3610 static void
3611 infer_loop_bounds_from_ref (struct loop *loop, gimple *stmt, tree ref)
3613 struct ilb_data data;
3615 data.loop = loop;
3616 data.stmt = stmt;
3617 for_each_index (&ref, idx_infer_loop_bounds, &data);
3620 /* Determine information about number of iterations of a LOOP from the way
3621 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
3622 executed in every iteration of LOOP. */
3624 static void
3625 infer_loop_bounds_from_array (struct loop *loop, gimple *stmt)
3627 if (is_gimple_assign (stmt))
3629 tree op0 = gimple_assign_lhs (stmt);
3630 tree op1 = gimple_assign_rhs1 (stmt);
3632 /* For each memory access, analyze its access function
3633 and record a bound on the loop iteration domain. */
3634 if (REFERENCE_CLASS_P (op0))
3635 infer_loop_bounds_from_ref (loop, stmt, op0);
3637 if (REFERENCE_CLASS_P (op1))
3638 infer_loop_bounds_from_ref (loop, stmt, op1);
3640 else if (is_gimple_call (stmt))
3642 tree arg, lhs;
3643 unsigned i, n = gimple_call_num_args (stmt);
3645 lhs = gimple_call_lhs (stmt);
3646 if (lhs && REFERENCE_CLASS_P (lhs))
3647 infer_loop_bounds_from_ref (loop, stmt, lhs);
3649 for (i = 0; i < n; i++)
3651 arg = gimple_call_arg (stmt, i);
3652 if (REFERENCE_CLASS_P (arg))
3653 infer_loop_bounds_from_ref (loop, stmt, arg);
3658 /* Determine information about number of iterations of a LOOP from the fact
3659 that pointer arithmetics in STMT does not overflow. */
3661 static void
3662 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple *stmt)
3664 tree def, base, step, scev, type, low, high;
3665 tree var, ptr;
3667 if (!is_gimple_assign (stmt)
3668 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
3669 return;
3671 def = gimple_assign_lhs (stmt);
3672 if (TREE_CODE (def) != SSA_NAME)
3673 return;
3675 type = TREE_TYPE (def);
3676 if (!nowrap_type_p (type))
3677 return;
3679 ptr = gimple_assign_rhs1 (stmt);
3680 if (!expr_invariant_in_loop_p (loop, ptr))
3681 return;
3683 var = gimple_assign_rhs2 (stmt);
3684 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
3685 return;
3687 struct loop *uloop = loop_containing_stmt (stmt);
3688 scev = instantiate_parameters (loop, analyze_scalar_evolution (uloop, def));
3689 if (chrec_contains_undetermined (scev))
3690 return;
3692 base = initial_condition_in_loop_num (scev, loop->num);
3693 step = evolution_part_in_loop_num (scev, loop->num);
3695 if (!base || !step
3696 || TREE_CODE (step) != INTEGER_CST
3697 || tree_contains_chrecs (base, NULL)
3698 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3699 return;
3701 low = lower_bound_in_type (type, type);
3702 high = upper_bound_in_type (type, type);
3704 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
3705 produce a NULL pointer. The contrary would mean NULL points to an object,
3706 while NULL is supposed to compare unequal with the address of all objects.
3707 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
3708 NULL pointer since that would mean wrapping, which we assume here not to
3709 happen. So, we can exclude NULL from the valid range of pointer
3710 arithmetic. */
3711 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
3712 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
3714 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3717 /* Determine information about number of iterations of a LOOP from the fact
3718 that signed arithmetics in STMT does not overflow. */
3720 static void
3721 infer_loop_bounds_from_signedness (struct loop *loop, gimple *stmt)
3723 tree def, base, step, scev, type, low, high;
3725 if (gimple_code (stmt) != GIMPLE_ASSIGN)
3726 return;
3728 def = gimple_assign_lhs (stmt);
3730 if (TREE_CODE (def) != SSA_NAME)
3731 return;
3733 type = TREE_TYPE (def);
3734 if (!INTEGRAL_TYPE_P (type)
3735 || !TYPE_OVERFLOW_UNDEFINED (type))
3736 return;
3738 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
3739 if (chrec_contains_undetermined (scev))
3740 return;
3742 base = initial_condition_in_loop_num (scev, loop->num);
3743 step = evolution_part_in_loop_num (scev, loop->num);
3745 if (!base || !step
3746 || TREE_CODE (step) != INTEGER_CST
3747 || tree_contains_chrecs (base, NULL)
3748 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3749 return;
3751 low = lower_bound_in_type (type, type);
3752 high = upper_bound_in_type (type, type);
3753 wide_int minv, maxv;
3754 if (get_range_info (def, &minv, &maxv) == VR_RANGE)
3756 low = wide_int_to_tree (type, minv);
3757 high = wide_int_to_tree (type, maxv);
3760 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3763 /* The following analyzers are extracting informations on the bounds
3764 of LOOP from the following undefined behaviors:
3766 - data references should not access elements over the statically
3767 allocated size,
3769 - signed variables should not overflow when flag_wrapv is not set.
3772 static void
3773 infer_loop_bounds_from_undefined (struct loop *loop)
3775 unsigned i;
3776 basic_block *bbs;
3777 gimple_stmt_iterator bsi;
3778 basic_block bb;
3779 bool reliable;
3781 bbs = get_loop_body (loop);
3783 for (i = 0; i < loop->num_nodes; i++)
3785 bb = bbs[i];
3787 /* If BB is not executed in each iteration of the loop, we cannot
3788 use the operations in it to infer reliable upper bound on the
3789 # of iterations of the loop. However, we can use it as a guess.
3790 Reliable guesses come only from array bounds. */
3791 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
3793 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3795 gimple *stmt = gsi_stmt (bsi);
3797 infer_loop_bounds_from_array (loop, stmt);
3799 if (reliable)
3801 infer_loop_bounds_from_signedness (loop, stmt);
3802 infer_loop_bounds_from_pointer_arith (loop, stmt);
3808 free (bbs);
3811 /* Compare wide ints, callback for qsort. */
3813 static int
3814 wide_int_cmp (const void *p1, const void *p2)
3816 const widest_int *d1 = (const widest_int *) p1;
3817 const widest_int *d2 = (const widest_int *) p2;
3818 return wi::cmpu (*d1, *d2);
3821 /* Return index of BOUND in BOUNDS array sorted in increasing order.
3822 Lookup by binary search. */
3824 static int
3825 bound_index (vec<widest_int> bounds, const widest_int &bound)
3827 unsigned int end = bounds.length ();
3828 unsigned int begin = 0;
3830 /* Find a matching index by means of a binary search. */
3831 while (begin != end)
3833 unsigned int middle = (begin + end) / 2;
3834 widest_int index = bounds[middle];
3836 if (index == bound)
3837 return middle;
3838 else if (wi::ltu_p (index, bound))
3839 begin = middle + 1;
3840 else
3841 end = middle;
3843 gcc_unreachable ();
3846 /* We recorded loop bounds only for statements dominating loop latch (and thus
3847 executed each loop iteration). If there are any bounds on statements not
3848 dominating the loop latch we can improve the estimate by walking the loop
3849 body and seeing if every path from loop header to loop latch contains
3850 some bounded statement. */
3852 static void
3853 discover_iteration_bound_by_body_walk (struct loop *loop)
3855 struct nb_iter_bound *elt;
3856 auto_vec<widest_int> bounds;
3857 vec<vec<basic_block> > queues = vNULL;
3858 vec<basic_block> queue = vNULL;
3859 ptrdiff_t queue_index;
3860 ptrdiff_t latch_index = 0;
3862 /* Discover what bounds may interest us. */
3863 for (elt = loop->bounds; elt; elt = elt->next)
3865 widest_int bound = elt->bound;
3867 /* Exit terminates loop at given iteration, while non-exits produce undefined
3868 effect on the next iteration. */
3869 if (!elt->is_exit)
3871 bound += 1;
3872 /* If an overflow occurred, ignore the result. */
3873 if (bound == 0)
3874 continue;
3877 if (!loop->any_upper_bound
3878 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
3879 bounds.safe_push (bound);
3882 /* Exit early if there is nothing to do. */
3883 if (!bounds.exists ())
3884 return;
3886 if (dump_file && (dump_flags & TDF_DETAILS))
3887 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
3889 /* Sort the bounds in decreasing order. */
3890 bounds.qsort (wide_int_cmp);
3892 /* For every basic block record the lowest bound that is guaranteed to
3893 terminate the loop. */
3895 hash_map<basic_block, ptrdiff_t> bb_bounds;
3896 for (elt = loop->bounds; elt; elt = elt->next)
3898 widest_int bound = elt->bound;
3899 if (!elt->is_exit)
3901 bound += 1;
3902 /* If an overflow occurred, ignore the result. */
3903 if (bound == 0)
3904 continue;
3907 if (!loop->any_upper_bound
3908 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
3910 ptrdiff_t index = bound_index (bounds, bound);
3911 ptrdiff_t *entry = bb_bounds.get (gimple_bb (elt->stmt));
3912 if (!entry)
3913 bb_bounds.put (gimple_bb (elt->stmt), index);
3914 else if ((ptrdiff_t)*entry > index)
3915 *entry = index;
3919 hash_map<basic_block, ptrdiff_t> block_priority;
3921 /* Perform shortest path discovery loop->header ... loop->latch.
3923 The "distance" is given by the smallest loop bound of basic block
3924 present in the path and we look for path with largest smallest bound
3925 on it.
3927 To avoid the need for fibonacci heap on double ints we simply compress
3928 double ints into indexes to BOUNDS array and then represent the queue
3929 as arrays of queues for every index.
3930 Index of BOUNDS.length() means that the execution of given BB has
3931 no bounds determined.
3933 VISITED is a pointer map translating basic block into smallest index
3934 it was inserted into the priority queue with. */
3935 latch_index = -1;
3937 /* Start walk in loop header with index set to infinite bound. */
3938 queue_index = bounds.length ();
3939 queues.safe_grow_cleared (queue_index + 1);
3940 queue.safe_push (loop->header);
3941 queues[queue_index] = queue;
3942 block_priority.put (loop->header, queue_index);
3944 for (; queue_index >= 0; queue_index--)
3946 if (latch_index < queue_index)
3948 while (queues[queue_index].length ())
3950 basic_block bb;
3951 ptrdiff_t bound_index = queue_index;
3952 edge e;
3953 edge_iterator ei;
3955 queue = queues[queue_index];
3956 bb = queue.pop ();
3958 /* OK, we later inserted the BB with lower priority, skip it. */
3959 if (*block_priority.get (bb) > queue_index)
3960 continue;
3962 /* See if we can improve the bound. */
3963 ptrdiff_t *entry = bb_bounds.get (bb);
3964 if (entry && *entry < bound_index)
3965 bound_index = *entry;
3967 /* Insert succesors into the queue, watch for latch edge
3968 and record greatest index we saw. */
3969 FOR_EACH_EDGE (e, ei, bb->succs)
3971 bool insert = false;
3973 if (loop_exit_edge_p (loop, e))
3974 continue;
3976 if (e == loop_latch_edge (loop)
3977 && latch_index < bound_index)
3978 latch_index = bound_index;
3979 else if (!(entry = block_priority.get (e->dest)))
3981 insert = true;
3982 block_priority.put (e->dest, bound_index);
3984 else if (*entry < bound_index)
3986 insert = true;
3987 *entry = bound_index;
3990 if (insert)
3991 queues[bound_index].safe_push (e->dest);
3995 queues[queue_index].release ();
3998 gcc_assert (latch_index >= 0);
3999 if ((unsigned)latch_index < bounds.length ())
4001 if (dump_file && (dump_flags & TDF_DETAILS))
4003 fprintf (dump_file, "Found better loop bound ");
4004 print_decu (bounds[latch_index], dump_file);
4005 fprintf (dump_file, "\n");
4007 record_niter_bound (loop, bounds[latch_index], false, true);
4010 queues.release ();
4013 /* See if every path cross the loop goes through a statement that is known
4014 to not execute at the last iteration. In that case we can decrese iteration
4015 count by 1. */
4017 static void
4018 maybe_lower_iteration_bound (struct loop *loop)
4020 hash_set<gimple *> *not_executed_last_iteration = NULL;
4021 struct nb_iter_bound *elt;
4022 bool found_exit = false;
4023 auto_vec<basic_block> queue;
4024 bitmap visited;
4026 /* Collect all statements with interesting (i.e. lower than
4027 nb_iterations_upper_bound) bound on them.
4029 TODO: Due to the way record_estimate choose estimates to store, the bounds
4030 will be always nb_iterations_upper_bound-1. We can change this to record
4031 also statements not dominating the loop latch and update the walk bellow
4032 to the shortest path algorithm. */
4033 for (elt = loop->bounds; elt; elt = elt->next)
4035 if (!elt->is_exit
4036 && wi::ltu_p (elt->bound, loop->nb_iterations_upper_bound))
4038 if (!not_executed_last_iteration)
4039 not_executed_last_iteration = new hash_set<gimple *>;
4040 not_executed_last_iteration->add (elt->stmt);
4043 if (!not_executed_last_iteration)
4044 return;
4046 /* Start DFS walk in the loop header and see if we can reach the
4047 loop latch or any of the exits (including statements with side
4048 effects that may terminate the loop otherwise) without visiting
4049 any of the statements known to have undefined effect on the last
4050 iteration. */
4051 queue.safe_push (loop->header);
4052 visited = BITMAP_ALLOC (NULL);
4053 bitmap_set_bit (visited, loop->header->index);
4054 found_exit = false;
4058 basic_block bb = queue.pop ();
4059 gimple_stmt_iterator gsi;
4060 bool stmt_found = false;
4062 /* Loop for possible exits and statements bounding the execution. */
4063 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4065 gimple *stmt = gsi_stmt (gsi);
4066 if (not_executed_last_iteration->contains (stmt))
4068 stmt_found = true;
4069 break;
4071 if (gimple_has_side_effects (stmt))
4073 found_exit = true;
4074 break;
4077 if (found_exit)
4078 break;
4080 /* If no bounding statement is found, continue the walk. */
4081 if (!stmt_found)
4083 edge e;
4084 edge_iterator ei;
4086 FOR_EACH_EDGE (e, ei, bb->succs)
4088 if (loop_exit_edge_p (loop, e)
4089 || e == loop_latch_edge (loop))
4091 found_exit = true;
4092 break;
4094 if (bitmap_set_bit (visited, e->dest->index))
4095 queue.safe_push (e->dest);
4099 while (queue.length () && !found_exit);
4101 /* If every path through the loop reach bounding statement before exit,
4102 then we know the last iteration of the loop will have undefined effect
4103 and we can decrease number of iterations. */
4105 if (!found_exit)
4107 if (dump_file && (dump_flags & TDF_DETAILS))
4108 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
4109 "undefined statement must be executed at the last iteration.\n");
4110 record_niter_bound (loop, loop->nb_iterations_upper_bound - 1,
4111 false, true);
4114 BITMAP_FREE (visited);
4115 delete not_executed_last_iteration;
4118 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
4119 is true also use estimates derived from undefined behavior. */
4121 void
4122 estimate_numbers_of_iterations (struct loop *loop)
4124 vec<edge> exits;
4125 tree niter, type;
4126 unsigned i;
4127 struct tree_niter_desc niter_desc;
4128 edge ex;
4129 widest_int bound;
4130 edge likely_exit;
4132 /* Give up if we already have tried to compute an estimation. */
4133 if (loop->estimate_state != EST_NOT_COMPUTED)
4134 return;
4136 loop->estimate_state = EST_AVAILABLE;
4138 /* If we have a measured profile, use it to estimate the number of
4139 iterations. Normally this is recorded by branch_prob right after
4140 reading the profile. In case we however found a new loop, record the
4141 information here.
4143 Explicitly check for profile status so we do not report
4144 wrong prediction hitrates for guessed loop iterations heuristics.
4145 Do not recompute already recorded bounds - we ought to be better on
4146 updating iteration bounds than updating profile in general and thus
4147 recomputing iteration bounds later in the compilation process will just
4148 introduce random roundoff errors. */
4149 if (!loop->any_estimate
4150 && loop->header->count.reliable_p ())
4152 gcov_type nit = expected_loop_iterations_unbounded (loop);
4153 bound = gcov_type_to_wide_int (nit);
4154 record_niter_bound (loop, bound, true, false);
4157 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
4158 to be constant, we avoid undefined behavior implied bounds and instead
4159 diagnose those loops with -Waggressive-loop-optimizations. */
4160 number_of_latch_executions (loop);
4162 exits = get_loop_exit_edges (loop);
4163 likely_exit = single_likely_exit (loop);
4164 FOR_EACH_VEC_ELT (exits, i, ex)
4166 if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
4167 continue;
4169 niter = niter_desc.niter;
4170 type = TREE_TYPE (niter);
4171 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
4172 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
4173 build_int_cst (type, 0),
4174 niter);
4175 record_estimate (loop, niter, niter_desc.max,
4176 last_stmt (ex->src),
4177 true, ex == likely_exit, true);
4178 record_control_iv (loop, &niter_desc);
4180 exits.release ();
4182 if (flag_aggressive_loop_optimizations)
4183 infer_loop_bounds_from_undefined (loop);
4185 discover_iteration_bound_by_body_walk (loop);
4187 maybe_lower_iteration_bound (loop);
4189 /* If we know the exact number of iterations of this loop, try to
4190 not break code with undefined behavior by not recording smaller
4191 maximum number of iterations. */
4192 if (loop->nb_iterations
4193 && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
4195 loop->any_upper_bound = true;
4196 loop->nb_iterations_upper_bound = wi::to_widest (loop->nb_iterations);
4200 /* Sets NIT to the estimated number of executions of the latch of the
4201 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
4202 large as the number of iterations. If we have no reliable estimate,
4203 the function returns false, otherwise returns true. */
4205 bool
4206 estimated_loop_iterations (struct loop *loop, widest_int *nit)
4208 /* When SCEV information is available, try to update loop iterations
4209 estimate. Otherwise just return whatever we recorded earlier. */
4210 if (scev_initialized_p ())
4211 estimate_numbers_of_iterations (loop);
4213 return (get_estimated_loop_iterations (loop, nit));
4216 /* Similar to estimated_loop_iterations, but returns the estimate only
4217 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4218 on the number of iterations of LOOP could not be derived, returns -1. */
4220 HOST_WIDE_INT
4221 estimated_loop_iterations_int (struct loop *loop)
4223 widest_int nit;
4224 HOST_WIDE_INT hwi_nit;
4226 if (!estimated_loop_iterations (loop, &nit))
4227 return -1;
4229 if (!wi::fits_shwi_p (nit))
4230 return -1;
4231 hwi_nit = nit.to_shwi ();
4233 return hwi_nit < 0 ? -1 : hwi_nit;
4237 /* Sets NIT to an upper bound for the maximum number of executions of the
4238 latch of the LOOP. If we have no reliable estimate, the function returns
4239 false, otherwise returns true. */
4241 bool
4242 max_loop_iterations (struct loop *loop, widest_int *nit)
4244 /* When SCEV information is available, try to update loop iterations
4245 estimate. Otherwise just return whatever we recorded earlier. */
4246 if (scev_initialized_p ())
4247 estimate_numbers_of_iterations (loop);
4249 return get_max_loop_iterations (loop, nit);
4252 /* Similar to max_loop_iterations, but returns the estimate only
4253 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4254 on the number of iterations of LOOP could not be derived, returns -1. */
4256 HOST_WIDE_INT
4257 max_loop_iterations_int (struct loop *loop)
4259 widest_int nit;
4260 HOST_WIDE_INT hwi_nit;
4262 if (!max_loop_iterations (loop, &nit))
4263 return -1;
4265 if (!wi::fits_shwi_p (nit))
4266 return -1;
4267 hwi_nit = nit.to_shwi ();
4269 return hwi_nit < 0 ? -1 : hwi_nit;
4272 /* Sets NIT to an likely upper bound for the maximum number of executions of the
4273 latch of the LOOP. If we have no reliable estimate, the function returns
4274 false, otherwise returns true. */
4276 bool
4277 likely_max_loop_iterations (struct loop *loop, widest_int *nit)
4279 /* When SCEV information is available, try to update loop iterations
4280 estimate. Otherwise just return whatever we recorded earlier. */
4281 if (scev_initialized_p ())
4282 estimate_numbers_of_iterations (loop);
4284 return get_likely_max_loop_iterations (loop, nit);
4287 /* Similar to max_loop_iterations, but returns the estimate only
4288 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4289 on the number of iterations of LOOP could not be derived, returns -1. */
4291 HOST_WIDE_INT
4292 likely_max_loop_iterations_int (struct loop *loop)
4294 widest_int nit;
4295 HOST_WIDE_INT hwi_nit;
4297 if (!likely_max_loop_iterations (loop, &nit))
4298 return -1;
4300 if (!wi::fits_shwi_p (nit))
4301 return -1;
4302 hwi_nit = nit.to_shwi ();
4304 return hwi_nit < 0 ? -1 : hwi_nit;
4307 /* Returns an estimate for the number of executions of statements
4308 in the LOOP. For statements before the loop exit, this exceeds
4309 the number of execution of the latch by one. */
4311 HOST_WIDE_INT
4312 estimated_stmt_executions_int (struct loop *loop)
4314 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
4315 HOST_WIDE_INT snit;
4317 if (nit == -1)
4318 return -1;
4320 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
4322 /* If the computation overflows, return -1. */
4323 return snit < 0 ? -1 : snit;
4326 /* Sets NIT to the maximum number of executions of the latch of the
4327 LOOP, plus one. If we have no reliable estimate, the function returns
4328 false, otherwise returns true. */
4330 bool
4331 max_stmt_executions (struct loop *loop, widest_int *nit)
4333 widest_int nit_minus_one;
4335 if (!max_loop_iterations (loop, nit))
4336 return false;
4338 nit_minus_one = *nit;
4340 *nit += 1;
4342 return wi::gtu_p (*nit, nit_minus_one);
4345 /* Sets NIT to the estimated maximum number of executions of the latch of the
4346 LOOP, plus one. If we have no likely estimate, the function returns
4347 false, otherwise returns true. */
4349 bool
4350 likely_max_stmt_executions (struct loop *loop, widest_int *nit)
4352 widest_int nit_minus_one;
4354 if (!likely_max_loop_iterations (loop, nit))
4355 return false;
4357 nit_minus_one = *nit;
4359 *nit += 1;
4361 return wi::gtu_p (*nit, nit_minus_one);
4364 /* Sets NIT to the estimated number of executions of the latch of the
4365 LOOP, plus one. If we have no reliable estimate, the function returns
4366 false, otherwise returns true. */
4368 bool
4369 estimated_stmt_executions (struct loop *loop, widest_int *nit)
4371 widest_int nit_minus_one;
4373 if (!estimated_loop_iterations (loop, nit))
4374 return false;
4376 nit_minus_one = *nit;
4378 *nit += 1;
4380 return wi::gtu_p (*nit, nit_minus_one);
4383 /* Records estimates on numbers of iterations of loops. */
4385 void
4386 estimate_numbers_of_iterations (function *fn)
4388 struct loop *loop;
4390 /* We don't want to issue signed overflow warnings while getting
4391 loop iteration estimates. */
4392 fold_defer_overflow_warnings ();
4394 FOR_EACH_LOOP_FN (fn, loop, 0)
4395 estimate_numbers_of_iterations (loop);
4397 fold_undefer_and_ignore_overflow_warnings ();
4400 /* Returns true if statement S1 dominates statement S2. */
4402 bool
4403 stmt_dominates_stmt_p (gimple *s1, gimple *s2)
4405 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
4407 if (!bb1
4408 || s1 == s2)
4409 return true;
4411 if (bb1 == bb2)
4413 gimple_stmt_iterator bsi;
4415 if (gimple_code (s2) == GIMPLE_PHI)
4416 return false;
4418 if (gimple_code (s1) == GIMPLE_PHI)
4419 return true;
4421 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
4422 if (gsi_stmt (bsi) == s1)
4423 return true;
4425 return false;
4428 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
4431 /* Returns true when we can prove that the number of executions of
4432 STMT in the loop is at most NITER, according to the bound on
4433 the number of executions of the statement NITER_BOUND->stmt recorded in
4434 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
4436 ??? This code can become quite a CPU hog - we can have many bounds,
4437 and large basic block forcing stmt_dominates_stmt_p to be queried
4438 many times on a large basic blocks, so the whole thing is O(n^2)
4439 for scev_probably_wraps_p invocation (that can be done n times).
4441 It would make more sense (and give better answers) to remember BB
4442 bounds computed by discover_iteration_bound_by_body_walk. */
4444 static bool
4445 n_of_executions_at_most (gimple *stmt,
4446 struct nb_iter_bound *niter_bound,
4447 tree niter)
4449 widest_int bound = niter_bound->bound;
4450 tree nit_type = TREE_TYPE (niter), e;
4451 enum tree_code cmp;
4453 gcc_assert (TYPE_UNSIGNED (nit_type));
4455 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
4456 the number of iterations is small. */
4457 if (!wi::fits_to_tree_p (bound, nit_type))
4458 return false;
4460 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
4461 times. This means that:
4463 -- if NITER_BOUND->is_exit is true, then everything after
4464 it at most NITER_BOUND->bound times.
4466 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
4467 is executed, then NITER_BOUND->stmt is executed as well in the same
4468 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
4470 If we can determine that NITER_BOUND->stmt is always executed
4471 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
4472 We conclude that if both statements belong to the same
4473 basic block and STMT is before NITER_BOUND->stmt and there are no
4474 statements with side effects in between. */
4476 if (niter_bound->is_exit)
4478 if (stmt == niter_bound->stmt
4479 || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
4480 return false;
4481 cmp = GE_EXPR;
4483 else
4485 if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
4487 gimple_stmt_iterator bsi;
4488 if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
4489 || gimple_code (stmt) == GIMPLE_PHI
4490 || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
4491 return false;
4493 /* By stmt_dominates_stmt_p we already know that STMT appears
4494 before NITER_BOUND->STMT. Still need to test that the loop
4495 can not be terinated by a side effect in between. */
4496 for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
4497 gsi_next (&bsi))
4498 if (gimple_has_side_effects (gsi_stmt (bsi)))
4499 return false;
4500 bound += 1;
4501 if (bound == 0
4502 || !wi::fits_to_tree_p (bound, nit_type))
4503 return false;
4505 cmp = GT_EXPR;
4508 e = fold_binary (cmp, boolean_type_node,
4509 niter, wide_int_to_tree (nit_type, bound));
4510 return e && integer_nonzerop (e);
4513 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
4515 bool
4516 nowrap_type_p (tree type)
4518 if (ANY_INTEGRAL_TYPE_P (type)
4519 && TYPE_OVERFLOW_UNDEFINED (type))
4520 return true;
4522 if (POINTER_TYPE_P (type))
4523 return true;
4525 return false;
4528 /* Return true if we can prove LOOP is exited before evolution of induction
4529 variable {BASE, STEP} overflows with respect to its type bound. */
4531 static bool
4532 loop_exits_before_overflow (tree base, tree step,
4533 gimple *at_stmt, struct loop *loop)
4535 widest_int niter;
4536 struct control_iv *civ;
4537 struct nb_iter_bound *bound;
4538 tree e, delta, step_abs, unsigned_base;
4539 tree type = TREE_TYPE (step);
4540 tree unsigned_type, valid_niter;
4542 /* Don't issue signed overflow warnings. */
4543 fold_defer_overflow_warnings ();
4545 /* Compute the number of iterations before we reach the bound of the
4546 type, and verify that the loop is exited before this occurs. */
4547 unsigned_type = unsigned_type_for (type);
4548 unsigned_base = fold_convert (unsigned_type, base);
4550 if (tree_int_cst_sign_bit (step))
4552 tree extreme = fold_convert (unsigned_type,
4553 lower_bound_in_type (type, type));
4554 delta = fold_build2 (MINUS_EXPR, unsigned_type, unsigned_base, extreme);
4555 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
4556 fold_convert (unsigned_type, step));
4558 else
4560 tree extreme = fold_convert (unsigned_type,
4561 upper_bound_in_type (type, type));
4562 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, unsigned_base);
4563 step_abs = fold_convert (unsigned_type, step);
4566 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
4568 estimate_numbers_of_iterations (loop);
4570 if (max_loop_iterations (loop, &niter)
4571 && wi::fits_to_tree_p (niter, TREE_TYPE (valid_niter))
4572 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
4573 wide_int_to_tree (TREE_TYPE (valid_niter),
4574 niter))) != NULL
4575 && integer_nonzerop (e))
4577 fold_undefer_and_ignore_overflow_warnings ();
4578 return true;
4580 if (at_stmt)
4581 for (bound = loop->bounds; bound; bound = bound->next)
4583 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
4585 fold_undefer_and_ignore_overflow_warnings ();
4586 return true;
4589 fold_undefer_and_ignore_overflow_warnings ();
4591 /* Try to prove loop is exited before {base, step} overflows with the
4592 help of analyzed loop control IV. This is done only for IVs with
4593 constant step because otherwise we don't have the information. */
4594 if (TREE_CODE (step) == INTEGER_CST)
4596 for (civ = loop->control_ivs; civ; civ = civ->next)
4598 enum tree_code code;
4599 tree civ_type = TREE_TYPE (civ->step);
4601 /* Have to consider type difference because operand_equal_p ignores
4602 that for constants. */
4603 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (civ_type)
4604 || element_precision (type) != element_precision (civ_type))
4605 continue;
4607 /* Only consider control IV with same step. */
4608 if (!operand_equal_p (step, civ->step, 0))
4609 continue;
4611 /* Done proving if this is a no-overflow control IV. */
4612 if (operand_equal_p (base, civ->base, 0))
4613 return true;
4615 /* Control IV is recorded after expanding simple operations,
4616 Here we expand base and compare it too. */
4617 tree expanded_base = expand_simple_operations (base);
4618 if (operand_equal_p (expanded_base, civ->base, 0))
4619 return true;
4621 /* If this is a before stepping control IV, in other words, we have
4623 {civ_base, step} = {base + step, step}
4625 Because civ {base + step, step} doesn't overflow during loop
4626 iterations, {base, step} will not overflow if we can prove the
4627 operation "base + step" does not overflow. Specifically, we try
4628 to prove below conditions are satisfied:
4630 base <= UPPER_BOUND (type) - step ;;step > 0
4631 base >= LOWER_BOUND (type) - step ;;step < 0
4633 by proving the reverse conditions are false using loop's initial
4634 condition. */
4635 if (POINTER_TYPE_P (TREE_TYPE (base)))
4636 code = POINTER_PLUS_EXPR;
4637 else
4638 code = PLUS_EXPR;
4640 tree stepped = fold_build2 (code, TREE_TYPE (base), base, step);
4641 tree expanded_stepped = fold_build2 (code, TREE_TYPE (base),
4642 expanded_base, step);
4643 if (operand_equal_p (stepped, civ->base, 0)
4644 || operand_equal_p (expanded_stepped, civ->base, 0))
4646 tree extreme;
4648 if (tree_int_cst_sign_bit (step))
4650 code = LT_EXPR;
4651 extreme = lower_bound_in_type (type, type);
4653 else
4655 code = GT_EXPR;
4656 extreme = upper_bound_in_type (type, type);
4658 extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
4659 e = fold_build2 (code, boolean_type_node, base, extreme);
4660 e = simplify_using_initial_conditions (loop, e);
4661 if (integer_zerop (e))
4662 return true;
4667 return false;
4670 /* VAR is scev variable whose evolution part is constant STEP, this function
4671 proves that VAR can't overflow by using value range info. If VAR's value
4672 range is [MIN, MAX], it can be proven by:
4673 MAX + step doesn't overflow ; if step > 0
4675 MIN + step doesn't underflow ; if step < 0.
4677 We can only do this if var is computed in every loop iteration, i.e, var's
4678 definition has to dominate loop latch. Consider below example:
4681 unsigned int i;
4683 <bb 3>:
4685 <bb 4>:
4686 # RANGE [0, 4294967294] NONZERO 65535
4687 # i_21 = PHI <0(3), i_18(9)>
4688 if (i_21 != 0)
4689 goto <bb 6>;
4690 else
4691 goto <bb 8>;
4693 <bb 6>:
4694 # RANGE [0, 65533] NONZERO 65535
4695 _6 = i_21 + 4294967295;
4696 # RANGE [0, 65533] NONZERO 65535
4697 _7 = (long unsigned int) _6;
4698 # RANGE [0, 524264] NONZERO 524280
4699 _8 = _7 * 8;
4700 # PT = nonlocal escaped
4701 _9 = a_14 + _8;
4702 *_9 = 0;
4704 <bb 8>:
4705 # RANGE [1, 65535] NONZERO 65535
4706 i_18 = i_21 + 1;
4707 if (i_18 >= 65535)
4708 goto <bb 10>;
4709 else
4710 goto <bb 9>;
4712 <bb 9>:
4713 goto <bb 4>;
4715 <bb 10>:
4716 return;
4719 VAR _6 doesn't overflow only with pre-condition (i_21 != 0), here we
4720 can't use _6 to prove no-overlfow for _7. In fact, var _7 takes value
4721 sequence (4294967295, 0, 1, ..., 65533) in loop life time, rather than
4722 (4294967295, 4294967296, ...). */
4724 static bool
4725 scev_var_range_cant_overflow (tree var, tree step, struct loop *loop)
4727 tree type;
4728 wide_int minv, maxv, diff, step_wi;
4729 enum value_range_kind rtype;
4731 if (TREE_CODE (step) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (var)))
4732 return false;
4734 /* Check if VAR evaluates in every loop iteration. It's not the case
4735 if VAR is default definition or does not dominate loop's latch. */
4736 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
4737 if (!def_bb || !dominated_by_p (CDI_DOMINATORS, loop->latch, def_bb))
4738 return false;
4740 rtype = get_range_info (var, &minv, &maxv);
4741 if (rtype != VR_RANGE)
4742 return false;
4744 /* VAR is a scev whose evolution part is STEP and value range info
4745 is [MIN, MAX], we can prove its no-overflowness by conditions:
4747 type_MAX - MAX >= step ; if step > 0
4748 MIN - type_MIN >= |step| ; if step < 0.
4750 Or VAR must take value outside of value range, which is not true. */
4751 step_wi = wi::to_wide (step);
4752 type = TREE_TYPE (var);
4753 if (tree_int_cst_sign_bit (step))
4755 diff = minv - wi::to_wide (lower_bound_in_type (type, type));
4756 step_wi = - step_wi;
4758 else
4759 diff = wi::to_wide (upper_bound_in_type (type, type)) - maxv;
4761 return (wi::geu_p (diff, step_wi));
4764 /* Return false only when the induction variable BASE + STEP * I is
4765 known to not overflow: i.e. when the number of iterations is small
4766 enough with respect to the step and initial condition in order to
4767 keep the evolution confined in TYPEs bounds. Return true when the
4768 iv is known to overflow or when the property is not computable.
4770 USE_OVERFLOW_SEMANTICS is true if this function should assume that
4771 the rules for overflow of the given language apply (e.g., that signed
4772 arithmetics in C does not overflow).
4774 If VAR is a ssa variable, this function also returns false if VAR can
4775 be proven not overflow with value range info. */
4777 bool
4778 scev_probably_wraps_p (tree var, tree base, tree step,
4779 gimple *at_stmt, struct loop *loop,
4780 bool use_overflow_semantics)
4782 /* FIXME: We really need something like
4783 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
4785 We used to test for the following situation that frequently appears
4786 during address arithmetics:
4788 D.1621_13 = (long unsigned intD.4) D.1620_12;
4789 D.1622_14 = D.1621_13 * 8;
4790 D.1623_15 = (doubleD.29 *) D.1622_14;
4792 And derived that the sequence corresponding to D_14
4793 can be proved to not wrap because it is used for computing a
4794 memory access; however, this is not really the case -- for example,
4795 if D_12 = (unsigned char) [254,+,1], then D_14 has values
4796 2032, 2040, 0, 8, ..., but the code is still legal. */
4798 if (chrec_contains_undetermined (base)
4799 || chrec_contains_undetermined (step))
4800 return true;
4802 if (integer_zerop (step))
4803 return false;
4805 /* If we can use the fact that signed and pointer arithmetics does not
4806 wrap, we are done. */
4807 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
4808 return false;
4810 /* To be able to use estimates on number of iterations of the loop,
4811 we must have an upper bound on the absolute value of the step. */
4812 if (TREE_CODE (step) != INTEGER_CST)
4813 return true;
4815 /* Check if var can be proven not overflow with value range info. */
4816 if (var && TREE_CODE (var) == SSA_NAME
4817 && scev_var_range_cant_overflow (var, step, loop))
4818 return false;
4820 if (loop_exits_before_overflow (base, step, at_stmt, loop))
4821 return false;
4823 /* At this point we still don't have a proof that the iv does not
4824 overflow: give up. */
4825 return true;
4828 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
4830 void
4831 free_numbers_of_iterations_estimates (struct loop *loop)
4833 struct control_iv *civ;
4834 struct nb_iter_bound *bound;
4836 loop->nb_iterations = NULL;
4837 loop->estimate_state = EST_NOT_COMPUTED;
4838 for (bound = loop->bounds; bound;)
4840 struct nb_iter_bound *next = bound->next;
4841 ggc_free (bound);
4842 bound = next;
4844 loop->bounds = NULL;
4846 for (civ = loop->control_ivs; civ;)
4848 struct control_iv *next = civ->next;
4849 ggc_free (civ);
4850 civ = next;
4852 loop->control_ivs = NULL;
4855 /* Frees the information on upper bounds on numbers of iterations of loops. */
4857 void
4858 free_numbers_of_iterations_estimates (function *fn)
4860 struct loop *loop;
4862 FOR_EACH_LOOP_FN (fn, loop, 0)
4863 free_numbers_of_iterations_estimates (loop);
4866 /* Substitute value VAL for ssa name NAME inside expressions held
4867 at LOOP. */
4869 void
4870 substitute_in_loop_info (struct loop *loop, tree name, tree val)
4872 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);