Update changelog entry.
[official-gcc.git] / gcc / haifa-sched.c
blob2c84ce3814357b30e1aaed57f1de3034d99afd57
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2018 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "memmodel.h"
134 #include "tm_p.h"
135 #include "insn-config.h"
136 #include "regs.h"
137 #include "ira.h"
138 #include "recog.h"
139 #include "insn-attr.h"
140 #include "cfgrtl.h"
141 #include "cfgbuild.h"
142 #include "sched-int.h"
143 #include "common/common-target.h"
144 #include "params.h"
145 #include "dbgcnt.h"
146 #include "cfgloop.h"
147 #include "dumpfile.h"
148 #include "print-rtl.h"
150 #ifdef INSN_SCHEDULING
152 /* True if we do register pressure relief through live-range
153 shrinkage. */
154 static bool live_range_shrinkage_p;
156 /* Switch on live range shrinkage. */
157 void
158 initialize_live_range_shrinkage (void)
160 live_range_shrinkage_p = true;
163 /* Switch off live range shrinkage. */
164 void
165 finish_live_range_shrinkage (void)
167 live_range_shrinkage_p = false;
170 /* issue_rate is the number of insns that can be scheduled in the same
171 machine cycle. It can be defined in the config/mach/mach.h file,
172 otherwise we set it to 1. */
174 int issue_rate;
176 /* This can be set to true by a backend if the scheduler should not
177 enable a DCE pass. */
178 bool sched_no_dce;
180 /* The current initiation interval used when modulo scheduling. */
181 static int modulo_ii;
183 /* The maximum number of stages we are prepared to handle. */
184 static int modulo_max_stages;
186 /* The number of insns that exist in each iteration of the loop. We use this
187 to detect when we've scheduled all insns from the first iteration. */
188 static int modulo_n_insns;
190 /* The current count of insns in the first iteration of the loop that have
191 already been scheduled. */
192 static int modulo_insns_scheduled;
194 /* The maximum uid of insns from the first iteration of the loop. */
195 static int modulo_iter0_max_uid;
197 /* The number of times we should attempt to backtrack when modulo scheduling.
198 Decreased each time we have to backtrack. */
199 static int modulo_backtracks_left;
201 /* The stage in which the last insn from the original loop was
202 scheduled. */
203 static int modulo_last_stage;
205 /* sched-verbose controls the amount of debugging output the
206 scheduler prints. It is controlled by -fsched-verbose=N:
207 N=0: no debugging output.
208 N=1: default value.
209 N=2: bb's probabilities, detailed ready list info, unit/insn info.
210 N=3: rtl at abort point, control-flow, regions info.
211 N=5: dependences info. */
212 int sched_verbose = 0;
214 /* Debugging file. All printouts are sent to dump. */
215 FILE *sched_dump = 0;
217 /* This is a placeholder for the scheduler parameters common
218 to all schedulers. */
219 struct common_sched_info_def *common_sched_info;
221 #define INSN_TICK(INSN) (HID (INSN)->tick)
222 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
224 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
225 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
227 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
228 /* Cached cost of the instruction. Use insn_sched_cost to get cost of the
229 insn. -1 here means that the field is not initialized. */
230 #define INSN_COST(INSN) (HID (INSN)->cost)
232 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
233 then it should be recalculated from scratch. */
234 #define INVALID_TICK (-(max_insn_queue_index + 1))
235 /* The minimal value of the INSN_TICK of an instruction. */
236 #define MIN_TICK (-max_insn_queue_index)
238 /* Original order of insns in the ready list.
239 Used to keep order of normal insns while separating DEBUG_INSNs. */
240 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
242 /* The deciding reason for INSN's place in the ready list. */
243 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
245 /* List of important notes we must keep around. This is a pointer to the
246 last element in the list. */
247 rtx_insn *note_list;
249 static struct spec_info_def spec_info_var;
250 /* Description of the speculative part of the scheduling.
251 If NULL - no speculation. */
252 spec_info_t spec_info = NULL;
254 /* True, if recovery block was added during scheduling of current block.
255 Used to determine, if we need to fix INSN_TICKs. */
256 static bool haifa_recovery_bb_recently_added_p;
258 /* True, if recovery block was added during this scheduling pass.
259 Used to determine if we should have empty memory pools of dependencies
260 after finishing current region. */
261 bool haifa_recovery_bb_ever_added_p;
263 /* Counters of different types of speculative instructions. */
264 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
266 /* Array used in {unlink, restore}_bb_notes. */
267 static rtx_insn **bb_header = 0;
269 /* Basic block after which recovery blocks will be created. */
270 static basic_block before_recovery;
272 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
273 created it. */
274 basic_block after_recovery;
276 /* FALSE if we add bb to another region, so we don't need to initialize it. */
277 bool adding_bb_to_current_region_p = true;
279 /* Queues, etc. */
281 /* An instruction is ready to be scheduled when all insns preceding it
282 have already been scheduled. It is important to ensure that all
283 insns which use its result will not be executed until its result
284 has been computed. An insn is maintained in one of four structures:
286 (P) the "Pending" set of insns which cannot be scheduled until
287 their dependencies have been satisfied.
288 (Q) the "Queued" set of insns that can be scheduled when sufficient
289 time has passed.
290 (R) the "Ready" list of unscheduled, uncommitted insns.
291 (S) the "Scheduled" list of insns.
293 Initially, all insns are either "Pending" or "Ready" depending on
294 whether their dependencies are satisfied.
296 Insns move from the "Ready" list to the "Scheduled" list as they
297 are committed to the schedule. As this occurs, the insns in the
298 "Pending" list have their dependencies satisfied and move to either
299 the "Ready" list or the "Queued" set depending on whether
300 sufficient time has passed to make them ready. As time passes,
301 insns move from the "Queued" set to the "Ready" list.
303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304 unscheduled insns, i.e., those that are ready, queued, and pending.
305 The "Queued" set (Q) is implemented by the variable `insn_queue'.
306 The "Ready" list (R) is implemented by the variables `ready' and
307 `n_ready'.
308 The "Scheduled" list (S) is the new insn chain built by this pass.
310 The transition (R->S) is implemented in the scheduling loop in
311 `schedule_block' when the best insn to schedule is chosen.
312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313 insns move from the ready list to the scheduled list.
314 The transition (Q->R) is implemented in 'queue_to_insn' as time
315 passes or stalls are introduced. */
317 /* Implement a circular buffer to delay instructions until sufficient
318 time has passed. For the new pipeline description interface,
319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
320 than maximal time of instruction execution computed by genattr.c on
321 the base maximal time of functional unit reservations and getting a
322 result. This is the longest time an insn may be queued. */
324 static rtx_insn_list **insn_queue;
325 static int q_ptr = 0;
326 static int q_size = 0;
327 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
330 #define QUEUE_SCHEDULED (-3)
331 #define QUEUE_NOWHERE (-2)
332 #define QUEUE_READY (-1)
333 /* QUEUE_SCHEDULED - INSN is scheduled.
334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
335 queue or ready list.
336 QUEUE_READY - INSN is in ready list.
337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
339 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
341 /* The following variable value refers for all current and future
342 reservations of the processor units. */
343 state_t curr_state;
345 /* The following variable value is size of memory representing all
346 current and future reservations of the processor units. */
347 size_t dfa_state_size;
349 /* The following array is used to find the best insn from ready when
350 the automaton pipeline interface is used. */
351 signed char *ready_try = NULL;
353 /* The ready list. */
354 struct ready_list ready = {NULL, 0, 0, 0, 0};
356 /* The pointer to the ready list (to be removed). */
357 static struct ready_list *readyp = &ready;
359 /* Scheduling clock. */
360 static int clock_var;
362 /* Clock at which the previous instruction was issued. */
363 static int last_clock_var;
365 /* Set to true if, when queuing a shadow insn, we discover that it would be
366 scheduled too late. */
367 static bool must_backtrack;
369 /* The following variable value is number of essential insns issued on
370 the current cycle. An insn is essential one if it changes the
371 processors state. */
372 int cycle_issued_insns;
374 /* This records the actual schedule. It is built up during the main phase
375 of schedule_block, and afterwards used to reorder the insns in the RTL. */
376 static vec<rtx_insn *> scheduled_insns;
378 static int may_trap_exp (const_rtx, int);
380 /* Nonzero iff the address is comprised from at most 1 register. */
381 #define CONST_BASED_ADDRESS_P(x) \
382 (REG_P (x) \
383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
384 || (GET_CODE (x) == LO_SUM)) \
385 && (CONSTANT_P (XEXP (x, 0)) \
386 || CONSTANT_P (XEXP (x, 1)))))
388 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
389 as found by analyzing insn's expression. */
392 static int haifa_luid_for_non_insn (rtx x);
394 /* Haifa version of sched_info hooks common to all headers. */
395 const struct common_sched_info_def haifa_common_sched_info =
397 NULL, /* fix_recovery_cfg */
398 NULL, /* add_block */
399 NULL, /* estimate_number_of_insns */
400 haifa_luid_for_non_insn, /* luid_for_non_insn */
401 SCHED_PASS_UNKNOWN /* sched_pass_id */
404 /* Mapping from instruction UID to its Logical UID. */
405 vec<int> sched_luids;
407 /* Next LUID to assign to an instruction. */
408 int sched_max_luid = 1;
410 /* Haifa Instruction Data. */
411 vec<haifa_insn_data_def> h_i_d;
413 void (* sched_init_only_bb) (basic_block, basic_block);
415 /* Split block function. Different schedulers might use different functions
416 to handle their internal data consistent. */
417 basic_block (* sched_split_block) (basic_block, rtx);
419 /* Create empty basic block after the specified block. */
420 basic_block (* sched_create_empty_bb) (basic_block);
422 /* Return the number of cycles until INSN is expected to be ready.
423 Return zero if it already is. */
424 static int
425 insn_delay (rtx_insn *insn)
427 return MAX (INSN_TICK (insn) - clock_var, 0);
430 static int
431 may_trap_exp (const_rtx x, int is_store)
433 enum rtx_code code;
435 if (x == 0)
436 return TRAP_FREE;
437 code = GET_CODE (x);
438 if (is_store)
440 if (code == MEM && may_trap_p (x))
441 return TRAP_RISKY;
442 else
443 return TRAP_FREE;
445 if (code == MEM)
447 /* The insn uses memory: a volatile load. */
448 if (MEM_VOLATILE_P (x))
449 return IRISKY;
450 /* An exception-free load. */
451 if (!may_trap_p (x))
452 return IFREE;
453 /* A load with 1 base register, to be further checked. */
454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 return PFREE_CANDIDATE;
456 /* No info on the load, to be further checked. */
457 return PRISKY_CANDIDATE;
459 else
461 const char *fmt;
462 int i, insn_class = TRAP_FREE;
464 /* Neither store nor load, check if it may cause a trap. */
465 if (may_trap_p (x))
466 return TRAP_RISKY;
467 /* Recursive step: walk the insn... */
468 fmt = GET_RTX_FORMAT (code);
469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
471 if (fmt[i] == 'e')
473 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 insn_class = WORST_CLASS (insn_class, tmp_class);
476 else if (fmt[i] == 'E')
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 insn_class = WORST_CLASS (insn_class, tmp_class);
483 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 break;
487 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 break;
490 return insn_class;
494 /* Classifies rtx X of an insn for the purpose of verifying that X can be
495 executed speculatively (and consequently the insn can be moved
496 speculatively), by examining X, returning:
497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498 TRAP_FREE: non-load insn.
499 IFREE: load from a globally safe location.
500 IRISKY: volatile load.
501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502 being either PFREE or PRISKY. */
504 static int
505 haifa_classify_rtx (const_rtx x)
507 int tmp_class = TRAP_FREE;
508 int insn_class = TRAP_FREE;
509 enum rtx_code code;
511 if (GET_CODE (x) == PARALLEL)
513 int i, len = XVECLEN (x, 0);
515 for (i = len - 1; i >= 0; i--)
517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
518 insn_class = WORST_CLASS (insn_class, tmp_class);
519 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 break;
523 else
525 code = GET_CODE (x);
526 switch (code)
528 case CLOBBER:
529 /* Test if it is a 'store'. */
530 tmp_class = may_trap_exp (XEXP (x, 0), 1);
531 break;
532 case CLOBBER_HIGH:
533 gcc_assert (REG_P (XEXP (x, 0)));
534 break;
535 case SET:
536 /* Test if it is a store. */
537 tmp_class = may_trap_exp (SET_DEST (x), 1);
538 if (tmp_class == TRAP_RISKY)
539 break;
540 /* Test if it is a load. */
541 tmp_class =
542 WORST_CLASS (tmp_class,
543 may_trap_exp (SET_SRC (x), 0));
544 break;
545 case COND_EXEC:
546 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
547 if (tmp_class == TRAP_RISKY)
548 break;
549 tmp_class = WORST_CLASS (tmp_class,
550 may_trap_exp (COND_EXEC_TEST (x), 0));
551 break;
552 case TRAP_IF:
553 tmp_class = TRAP_RISKY;
554 break;
555 default:;
557 insn_class = tmp_class;
560 return insn_class;
564 haifa_classify_insn (const_rtx insn)
566 return haifa_classify_rtx (PATTERN (insn));
569 /* After the scheduler initialization function has been called, this function
570 can be called to enable modulo scheduling. II is the initiation interval
571 we should use, it affects the delays for delay_pairs that were recorded as
572 separated by a given number of stages.
574 MAX_STAGES provides us with a limit
575 after which we give up scheduling; the caller must have unrolled at least
576 as many copies of the loop body and recorded delay_pairs for them.
578 INSNS is the number of real (non-debug) insns in one iteration of
579 the loop. MAX_UID can be used to test whether an insn belongs to
580 the first iteration of the loop; all of them have a uid lower than
581 MAX_UID. */
582 void
583 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
585 modulo_ii = ii;
586 modulo_max_stages = max_stages;
587 modulo_n_insns = insns;
588 modulo_iter0_max_uid = max_uid;
589 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
592 /* A structure to record a pair of insns where the first one is a real
593 insn that has delay slots, and the second is its delayed shadow.
594 I1 is scheduled normally and will emit an assembly instruction,
595 while I2 describes the side effect that takes place at the
596 transition between cycles CYCLES and (CYCLES + 1) after I1. */
597 struct delay_pair
599 struct delay_pair *next_same_i1;
600 rtx_insn *i1, *i2;
601 int cycles;
602 /* When doing modulo scheduling, we a delay_pair can also be used to
603 show that I1 and I2 are the same insn in a different stage. If that
604 is the case, STAGES will be nonzero. */
605 int stages;
608 /* Helpers for delay hashing. */
610 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
612 typedef void *compare_type;
613 static inline hashval_t hash (const delay_pair *);
614 static inline bool equal (const delay_pair *, const void *);
617 /* Returns a hash value for X, based on hashing just I1. */
619 inline hashval_t
620 delay_i1_hasher::hash (const delay_pair *x)
622 return htab_hash_pointer (x->i1);
625 /* Return true if I1 of pair X is the same as that of pair Y. */
627 inline bool
628 delay_i1_hasher::equal (const delay_pair *x, const void *y)
630 return x->i1 == y;
633 struct delay_i2_hasher : free_ptr_hash <delay_pair>
635 typedef void *compare_type;
636 static inline hashval_t hash (const delay_pair *);
637 static inline bool equal (const delay_pair *, const void *);
640 /* Returns a hash value for X, based on hashing just I2. */
642 inline hashval_t
643 delay_i2_hasher::hash (const delay_pair *x)
645 return htab_hash_pointer (x->i2);
648 /* Return true if I2 of pair X is the same as that of pair Y. */
650 inline bool
651 delay_i2_hasher::equal (const delay_pair *x, const void *y)
653 return x->i2 == y;
656 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
657 indexed by I2. */
658 static hash_table<delay_i1_hasher> *delay_htab;
659 static hash_table<delay_i2_hasher> *delay_htab_i2;
661 /* Called through htab_traverse. Walk the hashtable using I2 as
662 index, and delete all elements involving an UID higher than
663 that pointed to by *DATA. */
665 haifa_htab_i2_traverse (delay_pair **slot, int *data)
667 int maxuid = *data;
668 struct delay_pair *p = *slot;
669 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
671 delay_htab_i2->clear_slot (slot);
673 return 1;
676 /* Called through htab_traverse. Walk the hashtable using I2 as
677 index, and delete all elements involving an UID higher than
678 that pointed to by *DATA. */
680 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
682 int maxuid = *data;
683 struct delay_pair *p, *first, **pprev;
685 if (INSN_UID ((*pslot)->i1) >= maxuid)
687 delay_htab->clear_slot (pslot);
688 return 1;
690 pprev = &first;
691 for (p = *pslot; p; p = p->next_same_i1)
693 if (INSN_UID (p->i2) < maxuid)
695 *pprev = p;
696 pprev = &p->next_same_i1;
699 *pprev = NULL;
700 if (first == NULL)
701 delay_htab->clear_slot (pslot);
702 else
703 *pslot = first;
704 return 1;
707 /* Discard all delay pairs which involve an insn with an UID higher
708 than MAX_UID. */
709 void
710 discard_delay_pairs_above (int max_uid)
712 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
713 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
716 /* This function can be called by a port just before it starts the final
717 scheduling pass. It records the fact that an instruction with delay
718 slots has been split into two insns, I1 and I2. The first one will be
719 scheduled normally and initiates the operation. The second one is a
720 shadow which must follow a specific number of cycles after I1; its only
721 purpose is to show the side effect that occurs at that cycle in the RTL.
722 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
723 while I2 retains the original insn type.
725 There are two ways in which the number of cycles can be specified,
726 involving the CYCLES and STAGES arguments to this function. If STAGES
727 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
728 which is multiplied by MODULO_II to give the number of cycles. This is
729 only useful if the caller also calls set_modulo_params to enable modulo
730 scheduling. */
732 void
733 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
735 struct delay_pair *p = XNEW (struct delay_pair);
736 struct delay_pair **slot;
738 p->i1 = i1;
739 p->i2 = i2;
740 p->cycles = cycles;
741 p->stages = stages;
743 if (!delay_htab)
745 delay_htab = new hash_table<delay_i1_hasher> (10);
746 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
748 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
749 p->next_same_i1 = *slot;
750 *slot = p;
751 slot = delay_htab_i2->find_slot (p, INSERT);
752 *slot = p;
755 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
756 and return the other insn if so. Return NULL otherwise. */
757 rtx_insn *
758 real_insn_for_shadow (rtx_insn *insn)
760 struct delay_pair *pair;
762 if (!delay_htab)
763 return NULL;
765 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
766 if (!pair || pair->stages > 0)
767 return NULL;
768 return pair->i1;
771 /* For a pair P of insns, return the fixed distance in cycles from the first
772 insn after which the second must be scheduled. */
773 static int
774 pair_delay (struct delay_pair *p)
776 if (p->stages == 0)
777 return p->cycles;
778 else
779 return p->stages * modulo_ii;
782 /* Given an insn INSN, add a dependence on its delayed shadow if it
783 has one. Also try to find situations where shadows depend on each other
784 and add dependencies to the real insns to limit the amount of backtracking
785 needed. */
786 void
787 add_delay_dependencies (rtx_insn *insn)
789 struct delay_pair *pair;
790 sd_iterator_def sd_it;
791 dep_t dep;
793 if (!delay_htab)
794 return;
796 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
797 if (!pair)
798 return;
799 add_dependence (insn, pair->i1, REG_DEP_ANTI);
800 if (pair->stages)
801 return;
803 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
805 rtx_insn *pro = DEP_PRO (dep);
806 struct delay_pair *other_pair
807 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
808 if (!other_pair || other_pair->stages)
809 continue;
810 if (pair_delay (other_pair) >= pair_delay (pair))
812 if (sched_verbose >= 4)
814 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
815 INSN_UID (other_pair->i1),
816 INSN_UID (pair->i1));
817 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
818 INSN_UID (pair->i1),
819 INSN_UID (pair->i2),
820 pair_delay (pair));
821 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
822 INSN_UID (other_pair->i1),
823 INSN_UID (other_pair->i2),
824 pair_delay (other_pair));
826 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
831 /* Forward declarations. */
833 static int priority (rtx_insn *, bool force_recompute = false);
834 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
835 static int rank_for_schedule (const void *, const void *);
836 static void swap_sort (rtx_insn **, int);
837 static void queue_insn (rtx_insn *, int, const char *);
838 static int schedule_insn (rtx_insn *);
839 static void adjust_priority (rtx_insn *);
840 static void advance_one_cycle (void);
841 static void extend_h_i_d (void);
844 /* Notes handling mechanism:
845 =========================
846 Generally, NOTES are saved before scheduling and restored after scheduling.
847 The scheduler distinguishes between two types of notes:
849 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
850 Before scheduling a region, a pointer to the note is added to the insn
851 that follows or precedes it. (This happens as part of the data dependence
852 computation). After scheduling an insn, the pointer contained in it is
853 used for regenerating the corresponding note (in reemit_notes).
855 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
856 these notes are put in a list (in rm_other_notes() and
857 unlink_other_notes ()). After scheduling the block, these notes are
858 inserted at the beginning of the block (in schedule_block()). */
860 static void ready_add (struct ready_list *, rtx_insn *, bool);
861 static rtx_insn *ready_remove_first (struct ready_list *);
862 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
864 static void queue_to_ready (struct ready_list *);
865 static int early_queue_to_ready (state_t, struct ready_list *);
867 /* The following functions are used to implement multi-pass scheduling
868 on the first cycle. */
869 static rtx_insn *ready_remove (struct ready_list *, int);
870 static void ready_remove_insn (rtx_insn *);
872 static void fix_inter_tick (rtx_insn *, rtx_insn *);
873 static int fix_tick_ready (rtx_insn *);
874 static void change_queue_index (rtx_insn *, int);
876 /* The following functions are used to implement scheduling of data/control
877 speculative instructions. */
879 static void extend_h_i_d (void);
880 static void init_h_i_d (rtx_insn *);
881 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
882 static void generate_recovery_code (rtx_insn *);
883 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
884 static void begin_speculative_block (rtx_insn *);
885 static void add_to_speculative_block (rtx_insn *);
886 static void init_before_recovery (basic_block *);
887 static void create_check_block_twin (rtx_insn *, bool);
888 static void fix_recovery_deps (basic_block);
889 static bool haifa_change_pattern (rtx_insn *, rtx);
890 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
891 static void restore_bb_notes (basic_block);
892 static void fix_jump_move (rtx_insn *);
893 static void move_block_after_check (rtx_insn *);
894 static void move_succs (vec<edge, va_gc> **, basic_block);
895 static void sched_remove_insn (rtx_insn *);
896 static void clear_priorities (rtx_insn *, rtx_vec_t *);
897 static void calc_priorities (rtx_vec_t);
898 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
900 #endif /* INSN_SCHEDULING */
902 /* Point to state used for the current scheduling pass. */
903 struct haifa_sched_info *current_sched_info;
905 #ifndef INSN_SCHEDULING
906 void
907 schedule_insns (void)
910 #else
912 /* Do register pressure sensitive insn scheduling if the flag is set
913 up. */
914 enum sched_pressure_algorithm sched_pressure;
916 /* Map regno -> its pressure class. The map defined only when
917 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
918 enum reg_class *sched_regno_pressure_class;
920 /* The current register pressure. Only elements corresponding pressure
921 classes are defined. */
922 static int curr_reg_pressure[N_REG_CLASSES];
924 /* Saved value of the previous array. */
925 static int saved_reg_pressure[N_REG_CLASSES];
927 /* Register living at given scheduling point. */
928 static bitmap curr_reg_live;
930 /* Saved value of the previous array. */
931 static bitmap saved_reg_live;
933 /* Registers mentioned in the current region. */
934 static bitmap region_ref_regs;
936 /* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
937 static bitmap tmp_bitmap;
939 /* Effective number of available registers of a given class (see comment
940 in sched_pressure_start_bb). */
941 static int sched_class_regs_num[N_REG_CLASSES];
942 /* Number of call_saved_regs and fixed_regs. Helpers for calculating of
943 sched_class_regs_num. */
944 static int call_saved_regs_num[N_REG_CLASSES];
945 static int fixed_regs_num[N_REG_CLASSES];
947 /* Initiate register pressure relative info for scheduling the current
948 region. Currently it is only clearing register mentioned in the
949 current region. */
950 void
951 sched_init_region_reg_pressure_info (void)
953 bitmap_clear (region_ref_regs);
956 /* PRESSURE[CL] describes the pressure on register class CL. Update it
957 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
958 LIVE tracks the set of live registers; if it is null, assume that
959 every birth or death is genuine. */
960 static inline void
961 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
963 enum reg_class pressure_class;
965 pressure_class = sched_regno_pressure_class[regno];
966 if (regno >= FIRST_PSEUDO_REGISTER)
968 if (pressure_class != NO_REGS)
970 if (birth_p)
972 if (!live || bitmap_set_bit (live, regno))
973 pressure[pressure_class]
974 += (ira_reg_class_max_nregs
975 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
977 else
979 if (!live || bitmap_clear_bit (live, regno))
980 pressure[pressure_class]
981 -= (ira_reg_class_max_nregs
982 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
986 else if (pressure_class != NO_REGS
987 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
989 if (birth_p)
991 if (!live || bitmap_set_bit (live, regno))
992 pressure[pressure_class]++;
994 else
996 if (!live || bitmap_clear_bit (live, regno))
997 pressure[pressure_class]--;
1002 /* Initiate current register pressure related info from living
1003 registers given by LIVE. */
1004 static void
1005 initiate_reg_pressure_info (bitmap live)
1007 int i;
1008 unsigned int j;
1009 bitmap_iterator bi;
1011 for (i = 0; i < ira_pressure_classes_num; i++)
1012 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1013 bitmap_clear (curr_reg_live);
1014 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1015 if (sched_pressure == SCHED_PRESSURE_MODEL
1016 || current_nr_blocks == 1
1017 || bitmap_bit_p (region_ref_regs, j))
1018 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1021 /* Mark registers in X as mentioned in the current region. */
1022 static void
1023 setup_ref_regs (rtx x)
1025 int i, j;
1026 const RTX_CODE code = GET_CODE (x);
1027 const char *fmt;
1029 if (REG_P (x))
1031 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1032 return;
1034 fmt = GET_RTX_FORMAT (code);
1035 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1036 if (fmt[i] == 'e')
1037 setup_ref_regs (XEXP (x, i));
1038 else if (fmt[i] == 'E')
1040 for (j = 0; j < XVECLEN (x, i); j++)
1041 setup_ref_regs (XVECEXP (x, i, j));
1045 /* Initiate current register pressure related info at the start of
1046 basic block BB. */
1047 static void
1048 initiate_bb_reg_pressure_info (basic_block bb)
1050 unsigned int i ATTRIBUTE_UNUSED;
1051 rtx_insn *insn;
1053 if (current_nr_blocks > 1)
1054 FOR_BB_INSNS (bb, insn)
1055 if (NONDEBUG_INSN_P (insn))
1056 setup_ref_regs (PATTERN (insn));
1057 initiate_reg_pressure_info (df_get_live_in (bb));
1058 if (bb_has_eh_pred (bb))
1059 for (i = 0; ; ++i)
1061 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1063 if (regno == INVALID_REGNUM)
1064 break;
1065 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1066 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1067 regno, true);
1071 /* Save current register pressure related info. */
1072 static void
1073 save_reg_pressure (void)
1075 int i;
1077 for (i = 0; i < ira_pressure_classes_num; i++)
1078 saved_reg_pressure[ira_pressure_classes[i]]
1079 = curr_reg_pressure[ira_pressure_classes[i]];
1080 bitmap_copy (saved_reg_live, curr_reg_live);
1083 /* Restore saved register pressure related info. */
1084 static void
1085 restore_reg_pressure (void)
1087 int i;
1089 for (i = 0; i < ira_pressure_classes_num; i++)
1090 curr_reg_pressure[ira_pressure_classes[i]]
1091 = saved_reg_pressure[ira_pressure_classes[i]];
1092 bitmap_copy (curr_reg_live, saved_reg_live);
1095 /* Return TRUE if the register is dying after its USE. */
1096 static bool
1097 dying_use_p (struct reg_use_data *use)
1099 struct reg_use_data *next;
1101 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1102 if (NONDEBUG_INSN_P (next->insn)
1103 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1104 return false;
1105 return true;
1108 /* Print info about the current register pressure and its excess for
1109 each pressure class. */
1110 static void
1111 print_curr_reg_pressure (void)
1113 int i;
1114 enum reg_class cl;
1116 fprintf (sched_dump, ";;\t");
1117 for (i = 0; i < ira_pressure_classes_num; i++)
1119 cl = ira_pressure_classes[i];
1120 gcc_assert (curr_reg_pressure[cl] >= 0);
1121 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1122 curr_reg_pressure[cl],
1123 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1125 fprintf (sched_dump, "\n");
1128 /* Determine if INSN has a condition that is clobbered if a register
1129 in SET_REGS is modified. */
1130 static bool
1131 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1133 rtx pat = PATTERN (insn);
1134 gcc_assert (GET_CODE (pat) == COND_EXEC);
1135 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1137 sd_iterator_def sd_it;
1138 dep_t dep;
1139 haifa_change_pattern (insn, ORIG_PAT (insn));
1140 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1141 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1142 TODO_SPEC (insn) = HARD_DEP;
1143 if (sched_verbose >= 2)
1144 fprintf (sched_dump,
1145 ";;\t\tdequeue insn %s because of clobbered condition\n",
1146 (*current_sched_info->print_insn) (insn, 0));
1147 return true;
1150 return false;
1153 /* This function should be called after modifying the pattern of INSN,
1154 to update scheduler data structures as needed. */
1155 static void
1156 update_insn_after_change (rtx_insn *insn)
1158 sd_iterator_def sd_it;
1159 dep_t dep;
1161 dfa_clear_single_insn_cache (insn);
1163 sd_it = sd_iterator_start (insn,
1164 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1165 while (sd_iterator_cond (&sd_it, &dep))
1167 DEP_COST (dep) = UNKNOWN_DEP_COST;
1168 sd_iterator_next (&sd_it);
1171 /* Invalidate INSN_COST, so it'll be recalculated. */
1172 INSN_COST (insn) = -1;
1173 /* Invalidate INSN_TICK, so it'll be recalculated. */
1174 INSN_TICK (insn) = INVALID_TICK;
1176 /* Invalidate autoprefetch data entry. */
1177 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1178 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1179 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1180 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1184 /* Two VECs, one to hold dependencies for which pattern replacements
1185 need to be applied or restored at the start of the next cycle, and
1186 another to hold an integer that is either one, to apply the
1187 corresponding replacement, or zero to restore it. */
1188 static vec<dep_t> next_cycle_replace_deps;
1189 static vec<int> next_cycle_apply;
1191 static void apply_replacement (dep_t, bool);
1192 static void restore_pattern (dep_t, bool);
1194 /* Look at the remaining dependencies for insn NEXT, and compute and return
1195 the TODO_SPEC value we should use for it. This is called after one of
1196 NEXT's dependencies has been resolved.
1197 We also perform pattern replacements for predication, and for broken
1198 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1199 false. */
1201 static ds_t
1202 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1204 ds_t new_ds;
1205 sd_iterator_def sd_it;
1206 dep_t dep, modify_dep = NULL;
1207 int n_spec = 0;
1208 int n_control = 0;
1209 int n_replace = 0;
1210 bool first_p = true;
1212 if (sd_lists_empty_p (next, SD_LIST_BACK))
1213 /* NEXT has all its dependencies resolved. */
1214 return 0;
1216 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1217 return HARD_DEP;
1219 /* If NEXT is intended to sit adjacent to this instruction, we don't
1220 want to try to break any dependencies. Treat it as a HARD_DEP. */
1221 if (SCHED_GROUP_P (next))
1222 return HARD_DEP;
1224 /* Now we've got NEXT with speculative deps only.
1225 1. Look at the deps to see what we have to do.
1226 2. Check if we can do 'todo'. */
1227 new_ds = 0;
1229 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1231 rtx_insn *pro = DEP_PRO (dep);
1232 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1234 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1235 continue;
1237 if (ds)
1239 n_spec++;
1240 if (first_p)
1242 first_p = false;
1244 new_ds = ds;
1246 else
1247 new_ds = ds_merge (new_ds, ds);
1249 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1251 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1253 n_control++;
1254 modify_dep = dep;
1256 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1258 else if (DEP_REPLACE (dep) != NULL)
1260 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1262 n_replace++;
1263 modify_dep = dep;
1265 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1269 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1271 if (!dbg_cnt (sched_breakdep))
1272 return HARD_DEP;
1273 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1275 struct dep_replacement *desc = DEP_REPLACE (dep);
1276 if (desc != NULL)
1278 if (desc->insn == next && !for_backtrack)
1280 gcc_assert (n_replace == 1);
1281 apply_replacement (dep, true);
1283 DEP_STATUS (dep) |= DEP_CANCELLED;
1286 return 0;
1289 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1291 rtx_insn *pro, *other;
1292 rtx new_pat;
1293 rtx cond = NULL_RTX;
1294 bool success;
1295 rtx_insn *prev = NULL;
1296 int i;
1297 unsigned regno;
1299 if ((current_sched_info->flags & DO_PREDICATION) == 0
1300 || (ORIG_PAT (next) != NULL_RTX
1301 && PREDICATED_PAT (next) == NULL_RTX))
1302 return HARD_DEP;
1304 pro = DEP_PRO (modify_dep);
1305 other = real_insn_for_shadow (pro);
1306 if (other != NULL_RTX)
1307 pro = other;
1309 cond = sched_get_reverse_condition_uncached (pro);
1310 regno = REGNO (XEXP (cond, 0));
1312 /* Find the last scheduled insn that modifies the condition register.
1313 We can stop looking once we find the insn we depend on through the
1314 REG_DEP_CONTROL; if the condition register isn't modified after it,
1315 we know that it still has the right value. */
1316 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1317 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1319 HARD_REG_SET t;
1321 find_all_hard_reg_sets (prev, &t, true);
1322 if (TEST_HARD_REG_BIT (t, regno))
1323 return HARD_DEP;
1324 if (prev == pro)
1325 break;
1327 if (ORIG_PAT (next) == NULL_RTX)
1329 ORIG_PAT (next) = PATTERN (next);
1331 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1332 success = haifa_change_pattern (next, new_pat);
1333 if (!success)
1334 return HARD_DEP;
1335 PREDICATED_PAT (next) = new_pat;
1337 else if (PATTERN (next) != PREDICATED_PAT (next))
1339 bool success = haifa_change_pattern (next,
1340 PREDICATED_PAT (next));
1341 gcc_assert (success);
1343 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1344 return DEP_CONTROL;
1347 if (PREDICATED_PAT (next) != NULL_RTX)
1349 int tick = INSN_TICK (next);
1350 bool success = haifa_change_pattern (next,
1351 ORIG_PAT (next));
1352 INSN_TICK (next) = tick;
1353 gcc_assert (success);
1356 /* We can't handle the case where there are both speculative and control
1357 dependencies, so we return HARD_DEP in such a case. Also fail if
1358 we have speculative dependencies with not enough points, or more than
1359 one control dependency. */
1360 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1361 || (n_spec > 0
1362 /* Too few points? */
1363 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1364 || n_control > 0
1365 || n_replace > 0)
1366 return HARD_DEP;
1368 return new_ds;
1371 /* Pointer to the last instruction scheduled. */
1372 static rtx_insn *last_scheduled_insn;
1374 /* Pointer to the last nondebug instruction scheduled within the
1375 block, or the prev_head of the scheduling block. Used by
1376 rank_for_schedule, so that insns independent of the last scheduled
1377 insn will be preferred over dependent instructions. */
1378 static rtx_insn *last_nondebug_scheduled_insn;
1380 /* Pointer that iterates through the list of unscheduled insns if we
1381 have a dbg_cnt enabled. It always points at an insn prior to the
1382 first unscheduled one. */
1383 static rtx_insn *nonscheduled_insns_begin;
1385 /* Compute cost of executing INSN.
1386 This is the number of cycles between instruction issue and
1387 instruction results. */
1389 insn_sched_cost (rtx_insn *insn)
1391 int cost;
1393 if (sched_fusion)
1394 return 0;
1396 if (sel_sched_p ())
1398 if (recog_memoized (insn) < 0)
1399 return 0;
1401 cost = insn_default_latency (insn);
1402 if (cost < 0)
1403 cost = 0;
1405 return cost;
1408 cost = INSN_COST (insn);
1410 if (cost < 0)
1412 /* A USE insn, or something else we don't need to
1413 understand. We can't pass these directly to
1414 result_ready_cost or insn_default_latency because it will
1415 trigger a fatal error for unrecognizable insns. */
1416 if (recog_memoized (insn) < 0)
1418 INSN_COST (insn) = 0;
1419 return 0;
1421 else
1423 cost = insn_default_latency (insn);
1424 if (cost < 0)
1425 cost = 0;
1427 INSN_COST (insn) = cost;
1431 return cost;
1434 /* Compute cost of dependence LINK.
1435 This is the number of cycles between instruction issue and
1436 instruction results.
1437 ??? We also use this function to call recog_memoized on all insns. */
1439 dep_cost_1 (dep_t link, dw_t dw)
1441 rtx_insn *insn = DEP_PRO (link);
1442 rtx_insn *used = DEP_CON (link);
1443 int cost;
1445 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1446 return DEP_COST (link);
1448 if (delay_htab)
1450 struct delay_pair *delay_entry;
1451 delay_entry
1452 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1453 if (delay_entry)
1455 if (delay_entry->i1 == insn)
1457 DEP_COST (link) = pair_delay (delay_entry);
1458 return DEP_COST (link);
1463 /* A USE insn should never require the value used to be computed.
1464 This allows the computation of a function's result and parameter
1465 values to overlap the return and call. We don't care about the
1466 dependence cost when only decreasing register pressure. */
1467 if (recog_memoized (used) < 0)
1469 cost = 0;
1470 recog_memoized (insn);
1472 else
1474 enum reg_note dep_type = DEP_TYPE (link);
1476 cost = insn_sched_cost (insn);
1478 if (INSN_CODE (insn) >= 0)
1480 if (dep_type == REG_DEP_ANTI)
1481 cost = 0;
1482 else if (dep_type == REG_DEP_OUTPUT)
1484 cost = (insn_default_latency (insn)
1485 - insn_default_latency (used));
1486 if (cost <= 0)
1487 cost = 1;
1489 else if (bypass_p (insn))
1490 cost = insn_latency (insn, used);
1494 if (targetm.sched.adjust_cost)
1495 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1496 dw);
1498 if (cost < 0)
1499 cost = 0;
1502 DEP_COST (link) = cost;
1503 return cost;
1506 /* Compute cost of dependence LINK.
1507 This is the number of cycles between instruction issue and
1508 instruction results. */
1510 dep_cost (dep_t link)
1512 return dep_cost_1 (link, 0);
1515 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1516 INSN_PRIORITY explicitly. */
1517 void
1518 increase_insn_priority (rtx_insn *insn, int amount)
1520 if (!sel_sched_p ())
1522 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1523 if (INSN_PRIORITY_KNOWN (insn))
1524 INSN_PRIORITY (insn) += amount;
1526 else
1528 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1529 Use EXPR_PRIORITY instead. */
1530 sel_add_to_insn_priority (insn, amount);
1534 /* Return 'true' if DEP should be included in priority calculations. */
1535 static bool
1536 contributes_to_priority_p (dep_t dep)
1538 if (DEBUG_INSN_P (DEP_CON (dep))
1539 || DEBUG_INSN_P (DEP_PRO (dep)))
1540 return false;
1542 /* Critical path is meaningful in block boundaries only. */
1543 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1544 DEP_PRO (dep)))
1545 return false;
1547 if (DEP_REPLACE (dep) != NULL)
1548 return false;
1550 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1551 then speculative instructions will less likely be
1552 scheduled. That is because the priority of
1553 their producers will increase, and, thus, the
1554 producers will more likely be scheduled, thus,
1555 resolving the dependence. */
1556 if (sched_deps_info->generate_spec_deps
1557 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1558 && (DEP_STATUS (dep) & SPECULATIVE))
1559 return false;
1561 return true;
1564 /* Compute the number of nondebug deps in list LIST for INSN. */
1566 static int
1567 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1569 sd_iterator_def sd_it;
1570 dep_t dep;
1571 int dbgcount = 0, nodbgcount = 0;
1573 if (!MAY_HAVE_DEBUG_INSNS)
1574 return sd_lists_size (insn, list);
1576 FOR_EACH_DEP (insn, list, sd_it, dep)
1578 if (DEBUG_INSN_P (DEP_CON (dep)))
1579 dbgcount++;
1580 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1581 nodbgcount++;
1584 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1586 return nodbgcount;
1589 bool sched_fusion;
1591 /* Compute the priority number for INSN. */
1592 static int
1593 priority (rtx_insn *insn, bool force_recompute)
1595 if (! INSN_P (insn))
1596 return 0;
1598 /* We should not be interested in priority of an already scheduled insn. */
1599 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1601 if (force_recompute || !INSN_PRIORITY_KNOWN (insn))
1603 int this_priority = -1;
1605 if (sched_fusion)
1607 int this_fusion_priority;
1609 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1610 &this_fusion_priority, &this_priority);
1611 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1613 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1614 /* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
1615 has some forward deps but all of them are ignored by
1616 contributes_to_priority hook. At the moment we set priority of
1617 such insn to 0. */
1618 this_priority = insn_sched_cost (insn);
1619 else
1621 rtx_insn *prev_first, *twin;
1622 basic_block rec;
1624 /* For recovery check instructions we calculate priority slightly
1625 different than that of normal instructions. Instead of walking
1626 through INSN_FORW_DEPS (check) list, we walk through
1627 INSN_FORW_DEPS list of each instruction in the corresponding
1628 recovery block. */
1630 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1631 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1632 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1634 prev_first = PREV_INSN (insn);
1635 twin = insn;
1637 else
1639 prev_first = NEXT_INSN (BB_HEAD (rec));
1640 twin = PREV_INSN (BB_END (rec));
1645 sd_iterator_def sd_it;
1646 dep_t dep;
1648 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1650 rtx_insn *next;
1651 int next_priority;
1653 next = DEP_CON (dep);
1655 if (BLOCK_FOR_INSN (next) != rec)
1657 int cost;
1659 if (!contributes_to_priority_p (dep))
1660 continue;
1662 if (twin == insn)
1663 cost = dep_cost (dep);
1664 else
1666 struct _dep _dep1, *dep1 = &_dep1;
1668 init_dep (dep1, insn, next, REG_DEP_ANTI);
1670 cost = dep_cost (dep1);
1673 next_priority = cost + priority (next);
1675 if (next_priority > this_priority)
1676 this_priority = next_priority;
1680 twin = PREV_INSN (twin);
1682 while (twin != prev_first);
1685 if (this_priority < 0)
1687 gcc_assert (this_priority == -1);
1689 this_priority = insn_sched_cost (insn);
1692 INSN_PRIORITY (insn) = this_priority;
1693 INSN_PRIORITY_STATUS (insn) = 1;
1696 return INSN_PRIORITY (insn);
1699 /* Macros and functions for keeping the priority queue sorted, and
1700 dealing with queuing and dequeuing of instructions. */
1702 /* For each pressure class CL, set DEATH[CL] to the number of registers
1703 in that class that die in INSN. */
1705 static void
1706 calculate_reg_deaths (rtx_insn *insn, int *death)
1708 int i;
1709 struct reg_use_data *use;
1711 for (i = 0; i < ira_pressure_classes_num; i++)
1712 death[ira_pressure_classes[i]] = 0;
1713 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1714 if (dying_use_p (use))
1715 mark_regno_birth_or_death (0, death, use->regno, true);
1718 /* Setup info about the current register pressure impact of scheduling
1719 INSN at the current scheduling point. */
1720 static void
1721 setup_insn_reg_pressure_info (rtx_insn *insn)
1723 int i, change, before, after, hard_regno;
1724 int excess_cost_change;
1725 machine_mode mode;
1726 enum reg_class cl;
1727 struct reg_pressure_data *pressure_info;
1728 int *max_reg_pressure;
1729 static int death[N_REG_CLASSES];
1731 gcc_checking_assert (!DEBUG_INSN_P (insn));
1733 excess_cost_change = 0;
1734 calculate_reg_deaths (insn, death);
1735 pressure_info = INSN_REG_PRESSURE (insn);
1736 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1737 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1738 for (i = 0; i < ira_pressure_classes_num; i++)
1740 cl = ira_pressure_classes[i];
1741 gcc_assert (curr_reg_pressure[cl] >= 0);
1742 change = (int) pressure_info[i].set_increase - death[cl];
1743 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1744 after = MAX (0, max_reg_pressure[i] + change
1745 - sched_class_regs_num[cl]);
1746 hard_regno = ira_class_hard_regs[cl][0];
1747 gcc_assert (hard_regno >= 0);
1748 mode = reg_raw_mode[hard_regno];
1749 excess_cost_change += ((after - before)
1750 * (ira_memory_move_cost[mode][cl][0]
1751 + ira_memory_move_cost[mode][cl][1]));
1753 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1756 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1757 It tries to make the scheduler take register pressure into account
1758 without introducing too many unnecessary stalls. It hooks into the
1759 main scheduling algorithm at several points:
1761 - Before scheduling starts, model_start_schedule constructs a
1762 "model schedule" for the current block. This model schedule is
1763 chosen solely to keep register pressure down. It does not take the
1764 target's pipeline or the original instruction order into account,
1765 except as a tie-breaker. It also doesn't work to a particular
1766 pressure limit.
1768 This model schedule gives us an idea of what pressure can be
1769 achieved for the block and gives us an example of a schedule that
1770 keeps to that pressure. It also makes the final schedule less
1771 dependent on the original instruction order. This is important
1772 because the original order can either be "wide" (many values live
1773 at once, such as in user-scheduled code) or "narrow" (few values
1774 live at once, such as after loop unrolling, where several
1775 iterations are executed sequentially).
1777 We do not apply this model schedule to the rtx stream. We simply
1778 record it in model_schedule. We also compute the maximum pressure,
1779 MP, that was seen during this schedule.
1781 - Instructions are added to the ready queue even if they require
1782 a stall. The length of the stall is instead computed as:
1784 MAX (INSN_TICK (INSN) - clock_var, 0)
1786 (= insn_delay). This allows rank_for_schedule to choose between
1787 introducing a deliberate stall or increasing pressure.
1789 - Before sorting the ready queue, model_set_excess_costs assigns
1790 a pressure-based cost to each ready instruction in the queue.
1791 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1792 (ECC for short) and is effectively measured in cycles.
1794 - rank_for_schedule ranks instructions based on:
1796 ECC (insn) + insn_delay (insn)
1798 then as:
1800 insn_delay (insn)
1802 So, for example, an instruction X1 with an ECC of 1 that can issue
1803 now will win over an instruction X0 with an ECC of zero that would
1804 introduce a stall of one cycle. However, an instruction X2 with an
1805 ECC of 2 that can issue now will lose to both X0 and X1.
1807 - When an instruction is scheduled, model_recompute updates the model
1808 schedule with the new pressures (some of which might now exceed the
1809 original maximum pressure MP). model_update_limit_points then searches
1810 for the new point of maximum pressure, if not already known. */
1812 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1813 from surrounding debug information. */
1814 #define MODEL_BAR \
1815 ";;\t\t+------------------------------------------------------\n"
1817 /* Information about the pressure on a particular register class at a
1818 particular point of the model schedule. */
1819 struct model_pressure_data {
1820 /* The pressure at this point of the model schedule, or -1 if the
1821 point is associated with an instruction that has already been
1822 scheduled. */
1823 int ref_pressure;
1825 /* The maximum pressure during or after this point of the model schedule. */
1826 int max_pressure;
1829 /* Per-instruction information that is used while building the model
1830 schedule. Here, "schedule" refers to the model schedule rather
1831 than the main schedule. */
1832 struct model_insn_info {
1833 /* The instruction itself. */
1834 rtx_insn *insn;
1836 /* If this instruction is in model_worklist, these fields link to the
1837 previous (higher-priority) and next (lower-priority) instructions
1838 in the list. */
1839 struct model_insn_info *prev;
1840 struct model_insn_info *next;
1842 /* While constructing the schedule, QUEUE_INDEX describes whether an
1843 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1844 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1845 old_queue records the value that QUEUE_INDEX had before scheduling
1846 started, so that we can restore it once the schedule is complete. */
1847 int old_queue;
1849 /* The relative importance of an unscheduled instruction. Higher
1850 values indicate greater importance. */
1851 unsigned int model_priority;
1853 /* The length of the longest path of satisfied true dependencies
1854 that leads to this instruction. */
1855 unsigned int depth;
1857 /* The length of the longest path of dependencies of any kind
1858 that leads from this instruction. */
1859 unsigned int alap;
1861 /* The number of predecessor nodes that must still be scheduled. */
1862 int unscheduled_preds;
1865 /* Information about the pressure limit for a particular register class.
1866 This structure is used when applying a model schedule to the main
1867 schedule. */
1868 struct model_pressure_limit {
1869 /* The maximum register pressure seen in the original model schedule. */
1870 int orig_pressure;
1872 /* The maximum register pressure seen in the current model schedule
1873 (which excludes instructions that have already been scheduled). */
1874 int pressure;
1876 /* The point of the current model schedule at which PRESSURE is first
1877 reached. It is set to -1 if the value needs to be recomputed. */
1878 int point;
1881 /* Describes a particular way of measuring register pressure. */
1882 struct model_pressure_group {
1883 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1884 struct model_pressure_limit limits[N_REG_CLASSES];
1886 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1887 on register class ira_pressure_classes[PCI] at point POINT of the
1888 current model schedule. A POINT of model_num_insns describes the
1889 pressure at the end of the schedule. */
1890 struct model_pressure_data *model;
1893 /* Index POINT gives the instruction at point POINT of the model schedule.
1894 This array doesn't change during main scheduling. */
1895 static vec<rtx_insn *> model_schedule;
1897 /* The list of instructions in the model worklist, sorted in order of
1898 decreasing priority. */
1899 static struct model_insn_info *model_worklist;
1901 /* Index I describes the instruction with INSN_LUID I. */
1902 static struct model_insn_info *model_insns;
1904 /* The number of instructions in the model schedule. */
1905 static int model_num_insns;
1907 /* The index of the first instruction in model_schedule that hasn't yet been
1908 added to the main schedule, or model_num_insns if all of them have. */
1909 static int model_curr_point;
1911 /* Describes the pressure before each instruction in the model schedule. */
1912 static struct model_pressure_group model_before_pressure;
1914 /* The first unused model_priority value (as used in model_insn_info). */
1915 static unsigned int model_next_priority;
1918 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1919 at point POINT of the model schedule. */
1920 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1921 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1923 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1924 after point POINT of the model schedule. */
1925 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1926 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1928 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1929 of the model schedule. */
1930 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1931 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1933 /* Information about INSN that is used when creating the model schedule. */
1934 #define MODEL_INSN_INFO(INSN) \
1935 (&model_insns[INSN_LUID (INSN)])
1937 /* The instruction at point POINT of the model schedule. */
1938 #define MODEL_INSN(POINT) \
1939 (model_schedule[POINT])
1942 /* Return INSN's index in the model schedule, or model_num_insns if it
1943 doesn't belong to that schedule. */
1945 static int
1946 model_index (rtx_insn *insn)
1948 if (INSN_MODEL_INDEX (insn) == 0)
1949 return model_num_insns;
1950 return INSN_MODEL_INDEX (insn) - 1;
1953 /* Make sure that GROUP->limits is up-to-date for the current point
1954 of the model schedule. */
1956 static void
1957 model_update_limit_points_in_group (struct model_pressure_group *group)
1959 int pci, max_pressure, point;
1961 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1963 /* We may have passed the final point at which the pressure in
1964 group->limits[pci].pressure was reached. Update the limit if so. */
1965 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1966 group->limits[pci].pressure = max_pressure;
1968 /* Find the point at which MAX_PRESSURE is first reached. We need
1969 to search in three cases:
1971 - We've already moved past the previous pressure point.
1972 In this case we search forward from model_curr_point.
1974 - We scheduled the previous point of maximum pressure ahead of
1975 its position in the model schedule, but doing so didn't bring
1976 the pressure point earlier. In this case we search forward
1977 from that previous pressure point.
1979 - Scheduling an instruction early caused the maximum pressure
1980 to decrease. In this case we will have set the pressure
1981 point to -1, and we search forward from model_curr_point. */
1982 point = MAX (group->limits[pci].point, model_curr_point);
1983 while (point < model_num_insns
1984 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1985 point++;
1986 group->limits[pci].point = point;
1988 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1989 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1993 /* Make sure that all register-pressure limits are up-to-date for the
1994 current position in the model schedule. */
1996 static void
1997 model_update_limit_points (void)
1999 model_update_limit_points_in_group (&model_before_pressure);
2002 /* Return the model_index of the last unscheduled use in chain USE
2003 outside of USE's instruction. Return -1 if there are no other uses,
2004 or model_num_insns if the register is live at the end of the block. */
2006 static int
2007 model_last_use_except (struct reg_use_data *use)
2009 struct reg_use_data *next;
2010 int last, index;
2012 last = -1;
2013 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2014 if (NONDEBUG_INSN_P (next->insn)
2015 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2017 index = model_index (next->insn);
2018 if (index == model_num_insns)
2019 return model_num_insns;
2020 if (last < index)
2021 last = index;
2023 return last;
2026 /* An instruction with model_index POINT has just been scheduled, and it
2027 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2028 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2029 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2031 static void
2032 model_start_update_pressure (struct model_pressure_group *group,
2033 int point, int pci, int delta)
2035 int next_max_pressure;
2037 if (point == model_num_insns)
2039 /* The instruction wasn't part of the model schedule; it was moved
2040 from a different block. Update the pressure for the end of
2041 the model schedule. */
2042 MODEL_REF_PRESSURE (group, point, pci) += delta;
2043 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2045 else
2047 /* Record that this instruction has been scheduled. Nothing now
2048 changes between POINT and POINT + 1, so get the maximum pressure
2049 from the latter. If the maximum pressure decreases, the new
2050 pressure point may be before POINT. */
2051 MODEL_REF_PRESSURE (group, point, pci) = -1;
2052 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2053 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2055 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2056 if (group->limits[pci].point == point)
2057 group->limits[pci].point = -1;
2062 /* Record that scheduling a later instruction has changed the pressure
2063 at point POINT of the model schedule by DELTA (which might be 0).
2064 Update GROUP accordingly. Return nonzero if these changes might
2065 trigger changes to previous points as well. */
2067 static int
2068 model_update_pressure (struct model_pressure_group *group,
2069 int point, int pci, int delta)
2071 int ref_pressure, max_pressure, next_max_pressure;
2073 /* If POINT hasn't yet been scheduled, update its pressure. */
2074 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2075 if (ref_pressure >= 0 && delta != 0)
2077 ref_pressure += delta;
2078 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2080 /* Check whether the maximum pressure in the overall schedule
2081 has increased. (This means that the MODEL_MAX_PRESSURE of
2082 every point <= POINT will need to increase too; see below.) */
2083 if (group->limits[pci].pressure < ref_pressure)
2084 group->limits[pci].pressure = ref_pressure;
2086 /* If we are at maximum pressure, and the maximum pressure
2087 point was previously unknown or later than POINT,
2088 bring it forward. */
2089 if (group->limits[pci].pressure == ref_pressure
2090 && !IN_RANGE (group->limits[pci].point, 0, point))
2091 group->limits[pci].point = point;
2093 /* If POINT used to be the point of maximum pressure, but isn't
2094 any longer, we need to recalculate it using a forward walk. */
2095 if (group->limits[pci].pressure > ref_pressure
2096 && group->limits[pci].point == point)
2097 group->limits[pci].point = -1;
2100 /* Update the maximum pressure at POINT. Changes here might also
2101 affect the maximum pressure at POINT - 1. */
2102 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2103 max_pressure = MAX (ref_pressure, next_max_pressure);
2104 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2106 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2107 return 1;
2109 return 0;
2112 /* INSN has just been scheduled. Update the model schedule accordingly. */
2114 static void
2115 model_recompute (rtx_insn *insn)
2117 struct {
2118 int last_use;
2119 int regno;
2120 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2121 struct reg_use_data *use;
2122 struct reg_pressure_data *reg_pressure;
2123 int delta[N_REG_CLASSES];
2124 int pci, point, mix, new_last, cl, ref_pressure, queue;
2125 unsigned int i, num_uses, num_pending_births;
2126 bool print_p;
2128 /* The destinations of INSN were previously live from POINT onwards, but are
2129 now live from model_curr_point onwards. Set up DELTA accordingly. */
2130 point = model_index (insn);
2131 reg_pressure = INSN_REG_PRESSURE (insn);
2132 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2134 cl = ira_pressure_classes[pci];
2135 delta[cl] = reg_pressure[pci].set_increase;
2138 /* Record which registers previously died at POINT, but which now die
2139 before POINT. Adjust DELTA so that it represents the effect of
2140 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2141 registers that will be born in the range [model_curr_point, POINT). */
2142 num_uses = 0;
2143 num_pending_births = 0;
2144 bitmap_clear (tmp_bitmap);
2145 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2147 new_last = model_last_use_except (use);
2148 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
2150 gcc_assert (num_uses < ARRAY_SIZE (uses));
2151 uses[num_uses].last_use = new_last;
2152 uses[num_uses].regno = use->regno;
2153 /* This register is no longer live after POINT - 1. */
2154 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2155 num_uses++;
2156 if (new_last >= 0)
2157 num_pending_births++;
2161 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2162 Also set each group pressure limit for POINT. */
2163 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2165 cl = ira_pressure_classes[pci];
2166 model_start_update_pressure (&model_before_pressure,
2167 point, pci, delta[cl]);
2170 /* Walk the model schedule backwards, starting immediately before POINT. */
2171 print_p = false;
2172 if (point != model_curr_point)
2175 point--;
2176 insn = MODEL_INSN (point);
2177 queue = QUEUE_INDEX (insn);
2179 if (queue != QUEUE_SCHEDULED)
2181 /* DELTA describes the effect of the move on the register pressure
2182 after POINT. Make it describe the effect on the pressure
2183 before POINT. */
2184 i = 0;
2185 while (i < num_uses)
2187 if (uses[i].last_use == point)
2189 /* This register is now live again. */
2190 mark_regno_birth_or_death (NULL, delta,
2191 uses[i].regno, true);
2193 /* Remove this use from the array. */
2194 uses[i] = uses[num_uses - 1];
2195 num_uses--;
2196 num_pending_births--;
2198 else
2199 i++;
2202 if (sched_verbose >= 5)
2204 if (!print_p)
2206 fprintf (sched_dump, MODEL_BAR);
2207 fprintf (sched_dump, ";;\t\t| New pressure for model"
2208 " schedule\n");
2209 fprintf (sched_dump, MODEL_BAR);
2210 print_p = true;
2213 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2214 point, INSN_UID (insn),
2215 str_pattern_slim (PATTERN (insn)));
2216 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2218 cl = ira_pressure_classes[pci];
2219 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2220 point, pci);
2221 fprintf (sched_dump, " %s:[%d->%d]",
2222 reg_class_names[ira_pressure_classes[pci]],
2223 ref_pressure, ref_pressure + delta[cl]);
2225 fprintf (sched_dump, "\n");
2229 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2230 might have changed as well. */
2231 mix = num_pending_births;
2232 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2234 cl = ira_pressure_classes[pci];
2235 mix |= delta[cl];
2236 mix |= model_update_pressure (&model_before_pressure,
2237 point, pci, delta[cl]);
2240 while (mix && point > model_curr_point);
2242 if (print_p)
2243 fprintf (sched_dump, MODEL_BAR);
2246 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2247 check whether the insn's pattern needs restoring. */
2248 static bool
2249 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2251 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2252 return false;
2254 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2256 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2257 gcc_assert (next == DEP_CON (dep));
2259 else
2261 struct dep_replacement *desc = DEP_REPLACE (dep);
2262 if (desc->insn != next)
2264 gcc_assert (*desc->loc == desc->orig);
2265 return false;
2268 return true;
2271 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2272 pressure on CL from P to P'. We use this to calculate a "base ECC",
2273 baseECC (CL, X), for each pressure class CL and each instruction X.
2274 Supposing X changes the pressure on CL from P to P', and that the
2275 maximum pressure on CL in the current model schedule is MP', then:
2277 * if X occurs before or at the next point of maximum pressure in
2278 the model schedule and P' > MP', then:
2280 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2282 The idea is that the pressure after scheduling a fixed set of
2283 instructions -- in this case, the set up to and including the
2284 next maximum pressure point -- is going to be the same regardless
2285 of the order; we simply want to keep the intermediate pressure
2286 under control. Thus X has a cost of zero unless scheduling it
2287 now would exceed MP'.
2289 If all increases in the set are by the same amount, no zero-cost
2290 instruction will ever cause the pressure to exceed MP'. However,
2291 if X is instead moved past an instruction X' with pressure in the
2292 range (MP' - (P' - P), MP'), the pressure at X' will increase
2293 beyond MP'. Since baseECC is very much a heuristic anyway,
2294 it doesn't seem worth the overhead of tracking cases like these.
2296 The cost of exceeding MP' is always based on the original maximum
2297 pressure MP. This is so that going 2 registers over the original
2298 limit has the same cost regardless of whether it comes from two
2299 separate +1 deltas or from a single +2 delta.
2301 * if X occurs after the next point of maximum pressure in the model
2302 schedule and P' > P, then:
2304 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2306 That is, if we move X forward across a point of maximum pressure,
2307 and if X increases the pressure by P' - P, then we conservatively
2308 assume that scheduling X next would increase the maximum pressure
2309 by P' - P. Again, the cost of doing this is based on the original
2310 maximum pressure MP, for the same reason as above.
2312 * if P' < P, P > MP, and X occurs at or after the next point of
2313 maximum pressure, then:
2315 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2317 That is, if we have already exceeded the original maximum pressure MP,
2318 and if X might reduce the maximum pressure again -- or at least push
2319 it further back, and thus allow more scheduling freedom -- it is given
2320 a negative cost to reflect the improvement.
2322 * otherwise,
2324 baseECC (CL, X) = 0
2326 In this case, X is not expected to affect the maximum pressure MP',
2327 so it has zero cost.
2329 We then create a combined value baseECC (X) that is the sum of
2330 baseECC (CL, X) for each pressure class CL.
2332 baseECC (X) could itself be used as the ECC value described above.
2333 However, this is often too conservative, in the sense that it
2334 tends to make high-priority instructions that increase pressure
2335 wait too long in cases where introducing a spill would be better.
2336 For this reason the final ECC is a priority-adjusted form of
2337 baseECC (X). Specifically, we calculate:
2339 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2340 baseP = MAX { P (X) | baseECC (X) <= 0 }
2342 Then:
2344 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2346 Thus an instruction's effect on pressure is ignored if it has a high
2347 enough priority relative to the ones that don't increase pressure.
2348 Negative values of baseECC (X) do not increase the priority of X
2349 itself, but they do make it harder for other instructions to
2350 increase the pressure further.
2352 This pressure cost is deliberately timid. The intention has been
2353 to choose a heuristic that rarely interferes with the normal list
2354 scheduler in cases where that scheduler would produce good code.
2355 We simply want to curb some of its worst excesses. */
2357 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2359 Here we use the very simplistic cost model that every register above
2360 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2361 measures instead, such as one based on MEMORY_MOVE_COST. However:
2363 (1) In order for an instruction to be scheduled, the higher cost
2364 would need to be justified in a single saving of that many stalls.
2365 This is overly pessimistic, because the benefit of spilling is
2366 often to avoid a sequence of several short stalls rather than
2367 a single long one.
2369 (2) The cost is still arbitrary. Because we are not allocating
2370 registers during scheduling, we have no way of knowing for
2371 sure how many memory accesses will be required by each spill,
2372 where the spills will be placed within the block, or even
2373 which block(s) will contain the spills.
2375 So a higher cost than 1 is often too conservative in practice,
2376 forcing blocks to contain unnecessary stalls instead of spill code.
2377 The simple cost below seems to be the best compromise. It reduces
2378 the interference with the normal list scheduler, which helps make
2379 it more suitable for a default-on option. */
2381 static int
2382 model_spill_cost (int cl, int from, int to)
2384 from = MAX (from, sched_class_regs_num[cl]);
2385 return MAX (to, from) - from;
2388 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2389 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2390 P' = P + DELTA. */
2392 static int
2393 model_excess_group_cost (struct model_pressure_group *group,
2394 int point, int pci, int delta)
2396 int pressure, cl;
2398 cl = ira_pressure_classes[pci];
2399 if (delta < 0 && point >= group->limits[pci].point)
2401 pressure = MAX (group->limits[pci].orig_pressure,
2402 curr_reg_pressure[cl] + delta);
2403 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2406 if (delta > 0)
2408 if (point > group->limits[pci].point)
2409 pressure = group->limits[pci].pressure + delta;
2410 else
2411 pressure = curr_reg_pressure[cl] + delta;
2413 if (pressure > group->limits[pci].pressure)
2414 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2415 pressure);
2418 return 0;
2421 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2422 if PRINT_P. */
2424 static int
2425 model_excess_cost (rtx_insn *insn, bool print_p)
2427 int point, pci, cl, cost, this_cost, delta;
2428 struct reg_pressure_data *insn_reg_pressure;
2429 int insn_death[N_REG_CLASSES];
2431 calculate_reg_deaths (insn, insn_death);
2432 point = model_index (insn);
2433 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2434 cost = 0;
2436 if (print_p)
2437 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2438 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2440 /* Sum up the individual costs for each register class. */
2441 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2443 cl = ira_pressure_classes[pci];
2444 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2445 this_cost = model_excess_group_cost (&model_before_pressure,
2446 point, pci, delta);
2447 cost += this_cost;
2448 if (print_p)
2449 fprintf (sched_dump, " %s:[%d base cost %d]",
2450 reg_class_names[cl], delta, this_cost);
2453 if (print_p)
2454 fprintf (sched_dump, "\n");
2456 return cost;
2459 /* Dump the next points of maximum pressure for GROUP. */
2461 static void
2462 model_dump_pressure_points (struct model_pressure_group *group)
2464 int pci, cl;
2466 fprintf (sched_dump, ";;\t\t| pressure points");
2467 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2469 cl = ira_pressure_classes[pci];
2470 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2471 curr_reg_pressure[cl], group->limits[pci].pressure);
2472 if (group->limits[pci].point < model_num_insns)
2473 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2474 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2475 else
2476 fprintf (sched_dump, "end]");
2478 fprintf (sched_dump, "\n");
2481 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2483 static void
2484 model_set_excess_costs (rtx_insn **insns, int count)
2486 int i, cost, priority_base, priority;
2487 bool print_p;
2489 /* Record the baseECC value for each instruction in the model schedule,
2490 except that negative costs are converted to zero ones now rather than
2491 later. Do not assign a cost to debug instructions, since they must
2492 not change code-generation decisions. Experiments suggest we also
2493 get better results by not assigning a cost to instructions from
2494 a different block.
2496 Set PRIORITY_BASE to baseP in the block comment above. This is the
2497 maximum priority of the "cheap" instructions, which should always
2498 include the next model instruction. */
2499 priority_base = 0;
2500 print_p = false;
2501 for (i = 0; i < count; i++)
2502 if (INSN_MODEL_INDEX (insns[i]))
2504 if (sched_verbose >= 6 && !print_p)
2506 fprintf (sched_dump, MODEL_BAR);
2507 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2508 model_dump_pressure_points (&model_before_pressure);
2509 fprintf (sched_dump, MODEL_BAR);
2510 print_p = true;
2512 cost = model_excess_cost (insns[i], print_p);
2513 if (cost <= 0)
2515 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2516 priority_base = MAX (priority_base, priority);
2517 cost = 0;
2519 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2521 if (print_p)
2522 fprintf (sched_dump, MODEL_BAR);
2524 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2525 instruction. */
2526 for (i = 0; i < count; i++)
2528 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2529 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2530 if (cost > 0 && priority > priority_base)
2532 cost += priority_base - priority;
2533 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2539 /* Enum of rank_for_schedule heuristic decisions. */
2540 enum rfs_decision {
2541 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2542 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2543 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2544 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2545 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_COST, RFS_N };
2547 /* Corresponding strings for print outs. */
2548 static const char *rfs_str[RFS_N] = {
2549 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2550 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2551 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2552 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2553 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION", "RFS_COST" };
2555 /* Statistical breakdown of rank_for_schedule decisions. */
2556 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2557 static rank_for_schedule_stats_t rank_for_schedule_stats;
2559 /* Return the result of comparing insns TMP and TMP2 and update
2560 Rank_For_Schedule statistics. */
2561 static int
2562 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2564 ++rank_for_schedule_stats.stats[decision];
2565 if (result < 0)
2566 INSN_LAST_RFS_WIN (tmp) = decision;
2567 else if (result > 0)
2568 INSN_LAST_RFS_WIN (tmp2) = decision;
2569 else
2570 gcc_unreachable ();
2571 return result;
2574 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2575 keeping normal insns in original order. */
2577 static int
2578 rank_for_schedule_debug (const void *x, const void *y)
2580 rtx_insn *tmp = *(rtx_insn * const *) y;
2581 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2583 /* Schedule debug insns as early as possible. */
2584 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2585 return -1;
2586 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2587 return 1;
2588 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2589 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2590 else
2591 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2594 /* Returns a positive value if x is preferred; returns a negative value if
2595 y is preferred. Should never return 0, since that will make the sort
2596 unstable. */
2598 static int
2599 rank_for_schedule (const void *x, const void *y)
2601 rtx_insn *tmp = *(rtx_insn * const *) y;
2602 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2603 int tmp_class, tmp2_class;
2604 int val, priority_val, info_val, diff;
2606 if (live_range_shrinkage_p)
2608 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2609 code. */
2610 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2611 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2612 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2613 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2614 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2615 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2616 /* Sort by INSN_LUID (original insn order), so that we make the
2617 sort stable. This minimizes instruction movement, thus
2618 minimizing sched's effect on debugging and cross-jumping. */
2619 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2620 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2623 /* The insn in a schedule group should be issued the first. */
2624 if (flag_sched_group_heuristic &&
2625 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2626 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2627 tmp, tmp2);
2629 /* Make sure that priority of TMP and TMP2 are initialized. */
2630 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2632 if (sched_fusion)
2634 /* The instruction that has the same fusion priority as the last
2635 instruction is the instruction we picked next. If that is not
2636 the case, we sort ready list firstly by fusion priority, then
2637 by priority, and at last by INSN_LUID. */
2638 int a = INSN_FUSION_PRIORITY (tmp);
2639 int b = INSN_FUSION_PRIORITY (tmp2);
2640 int last = -1;
2642 if (last_nondebug_scheduled_insn
2643 && !NOTE_P (last_nondebug_scheduled_insn)
2644 && BLOCK_FOR_INSN (tmp)
2645 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2646 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2648 if (a != last && b != last)
2650 if (a == b)
2652 a = INSN_PRIORITY (tmp);
2653 b = INSN_PRIORITY (tmp2);
2655 if (a != b)
2656 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2657 else
2658 return rfs_result (RFS_FUSION,
2659 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2661 else if (a == b)
2663 gcc_assert (last_nondebug_scheduled_insn
2664 && !NOTE_P (last_nondebug_scheduled_insn));
2665 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2667 a = abs (INSN_PRIORITY (tmp) - last);
2668 b = abs (INSN_PRIORITY (tmp2) - last);
2669 if (a != b)
2670 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2671 else
2672 return rfs_result (RFS_FUSION,
2673 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2675 else if (a == last)
2676 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2677 else
2678 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2681 if (sched_pressure != SCHED_PRESSURE_NONE)
2683 /* Prefer insn whose scheduling results in the smallest register
2684 pressure excess. */
2685 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2686 + insn_delay (tmp)
2687 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2688 - insn_delay (tmp2))))
2689 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2692 if (sched_pressure != SCHED_PRESSURE_NONE
2693 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2694 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2696 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2697 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2700 /* If we are doing backtracking in this schedule, prefer insns that
2701 have forward dependencies with negative cost against an insn that
2702 was already scheduled. */
2703 if (current_sched_info->flags & DO_BACKTRACKING)
2705 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2706 if (priority_val)
2707 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2710 /* Prefer insn with higher priority. */
2711 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2713 if (flag_sched_critical_path_heuristic && priority_val)
2714 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2716 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2718 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2719 if (autopref != 0)
2720 return autopref;
2723 /* Prefer speculative insn with greater dependencies weakness. */
2724 if (flag_sched_spec_insn_heuristic && spec_info)
2726 ds_t ds1, ds2;
2727 dw_t dw1, dw2;
2728 int dw;
2730 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2731 if (ds1)
2732 dw1 = ds_weak (ds1);
2733 else
2734 dw1 = NO_DEP_WEAK;
2736 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2737 if (ds2)
2738 dw2 = ds_weak (ds2);
2739 else
2740 dw2 = NO_DEP_WEAK;
2742 dw = dw2 - dw1;
2743 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2744 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2747 info_val = (*current_sched_info->rank) (tmp, tmp2);
2748 if (flag_sched_rank_heuristic && info_val)
2749 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2751 /* Compare insns based on their relation to the last scheduled
2752 non-debug insn. */
2753 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2755 dep_t dep1;
2756 dep_t dep2;
2757 rtx_insn *last = last_nondebug_scheduled_insn;
2759 /* Classify the instructions into three classes:
2760 1) Data dependent on last schedule insn.
2761 2) Anti/Output dependent on last scheduled insn.
2762 3) Independent of last scheduled insn, or has latency of one.
2763 Choose the insn from the highest numbered class if different. */
2764 dep1 = sd_find_dep_between (last, tmp, true);
2766 if (dep1 == NULL || dep_cost (dep1) == 1)
2767 tmp_class = 3;
2768 else if (/* Data dependence. */
2769 DEP_TYPE (dep1) == REG_DEP_TRUE)
2770 tmp_class = 1;
2771 else
2772 tmp_class = 2;
2774 dep2 = sd_find_dep_between (last, tmp2, true);
2776 if (dep2 == NULL || dep_cost (dep2) == 1)
2777 tmp2_class = 3;
2778 else if (/* Data dependence. */
2779 DEP_TYPE (dep2) == REG_DEP_TRUE)
2780 tmp2_class = 1;
2781 else
2782 tmp2_class = 2;
2784 if ((val = tmp2_class - tmp_class))
2785 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2788 /* Prefer instructions that occur earlier in the model schedule. */
2789 if (sched_pressure == SCHED_PRESSURE_MODEL)
2791 diff = model_index (tmp) - model_index (tmp2);
2792 if (diff != 0)
2793 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2796 /* Prefer the insn which has more later insns that depend on it.
2797 This gives the scheduler more freedom when scheduling later
2798 instructions at the expense of added register pressure. */
2800 val = (dep_list_size (tmp2, SD_LIST_FORW)
2801 - dep_list_size (tmp, SD_LIST_FORW));
2803 if (flag_sched_dep_count_heuristic && val != 0)
2804 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2806 /* Sort by INSN_COST rather than INSN_LUID. This means that instructions
2807 which take longer to execute are prioritised and it leads to more
2808 dual-issue opportunities on in-order cores which have this feature. */
2810 if (INSN_COST (tmp) != INSN_COST (tmp2))
2811 return rfs_result (RFS_COST, INSN_COST (tmp2) - INSN_COST (tmp),
2812 tmp, tmp2);
2814 /* If insns are equally good, sort by INSN_LUID (original insn order),
2815 so that we make the sort stable. This minimizes instruction movement,
2816 thus minimizing sched's effect on debugging and cross-jumping. */
2817 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2820 /* Resort the array A in which only element at index N may be out of order. */
2822 HAIFA_INLINE static void
2823 swap_sort (rtx_insn **a, int n)
2825 rtx_insn *insn = a[n - 1];
2826 int i = n - 2;
2828 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2830 a[i + 1] = a[i];
2831 i -= 1;
2833 a[i + 1] = insn;
2836 /* Add INSN to the insn queue so that it can be executed at least
2837 N_CYCLES after the currently executing insn. Preserve insns
2838 chain for debugging purposes. REASON will be printed in debugging
2839 output. */
2841 HAIFA_INLINE static void
2842 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2844 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2845 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2846 int new_tick;
2848 gcc_assert (n_cycles <= max_insn_queue_index);
2849 gcc_assert (!DEBUG_INSN_P (insn));
2851 insn_queue[next_q] = link;
2852 q_size += 1;
2854 if (sched_verbose >= 2)
2856 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2857 (*current_sched_info->print_insn) (insn, 0));
2859 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2862 QUEUE_INDEX (insn) = next_q;
2864 if (current_sched_info->flags & DO_BACKTRACKING)
2866 new_tick = clock_var + n_cycles;
2867 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2868 INSN_TICK (insn) = new_tick;
2870 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2871 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2873 must_backtrack = true;
2874 if (sched_verbose >= 2)
2875 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2880 /* Remove INSN from queue. */
2881 static void
2882 queue_remove (rtx_insn *insn)
2884 gcc_assert (QUEUE_INDEX (insn) >= 0);
2885 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2886 q_size--;
2887 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2890 /* Return a pointer to the bottom of the ready list, i.e. the insn
2891 with the lowest priority. */
2893 rtx_insn **
2894 ready_lastpos (struct ready_list *ready)
2896 gcc_assert (ready->n_ready >= 1);
2897 return ready->vec + ready->first - ready->n_ready + 1;
2900 /* Add an element INSN to the ready list so that it ends up with the
2901 lowest/highest priority depending on FIRST_P. */
2903 HAIFA_INLINE static void
2904 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2906 if (!first_p)
2908 if (ready->first == ready->n_ready)
2910 memmove (ready->vec + ready->veclen - ready->n_ready,
2911 ready_lastpos (ready),
2912 ready->n_ready * sizeof (rtx));
2913 ready->first = ready->veclen - 1;
2915 ready->vec[ready->first - ready->n_ready] = insn;
2917 else
2919 if (ready->first == ready->veclen - 1)
2921 if (ready->n_ready)
2922 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2923 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2924 ready_lastpos (ready),
2925 ready->n_ready * sizeof (rtx));
2926 ready->first = ready->veclen - 2;
2928 ready->vec[++(ready->first)] = insn;
2931 ready->n_ready++;
2932 if (DEBUG_INSN_P (insn))
2933 ready->n_debug++;
2935 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2936 QUEUE_INDEX (insn) = QUEUE_READY;
2938 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2939 && INSN_EXACT_TICK (insn) < clock_var)
2941 must_backtrack = true;
2945 /* Remove the element with the highest priority from the ready list and
2946 return it. */
2948 HAIFA_INLINE static rtx_insn *
2949 ready_remove_first (struct ready_list *ready)
2951 rtx_insn *t;
2953 gcc_assert (ready->n_ready);
2954 t = ready->vec[ready->first--];
2955 ready->n_ready--;
2956 if (DEBUG_INSN_P (t))
2957 ready->n_debug--;
2958 /* If the queue becomes empty, reset it. */
2959 if (ready->n_ready == 0)
2960 ready->first = ready->veclen - 1;
2962 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2963 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2965 return t;
2968 /* The following code implements multi-pass scheduling for the first
2969 cycle. In other words, we will try to choose ready insn which
2970 permits to start maximum number of insns on the same cycle. */
2972 /* Return a pointer to the element INDEX from the ready. INDEX for
2973 insn with the highest priority is 0, and the lowest priority has
2974 N_READY - 1. */
2976 rtx_insn *
2977 ready_element (struct ready_list *ready, int index)
2979 gcc_assert (ready->n_ready && index < ready->n_ready);
2981 return ready->vec[ready->first - index];
2984 /* Remove the element INDEX from the ready list and return it. INDEX
2985 for insn with the highest priority is 0, and the lowest priority
2986 has N_READY - 1. */
2988 HAIFA_INLINE static rtx_insn *
2989 ready_remove (struct ready_list *ready, int index)
2991 rtx_insn *t;
2992 int i;
2994 if (index == 0)
2995 return ready_remove_first (ready);
2996 gcc_assert (ready->n_ready && index < ready->n_ready);
2997 t = ready->vec[ready->first - index];
2998 ready->n_ready--;
2999 if (DEBUG_INSN_P (t))
3000 ready->n_debug--;
3001 for (i = index; i < ready->n_ready; i++)
3002 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3003 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3004 return t;
3007 /* Remove INSN from the ready list. */
3008 static void
3009 ready_remove_insn (rtx_insn *insn)
3011 int i;
3013 for (i = 0; i < readyp->n_ready; i++)
3014 if (ready_element (readyp, i) == insn)
3016 ready_remove (readyp, i);
3017 return;
3019 gcc_unreachable ();
3022 /* Calculate difference of two statistics set WAS and NOW.
3023 Result returned in WAS. */
3024 static void
3025 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3026 const rank_for_schedule_stats_t *now)
3028 for (int i = 0; i < RFS_N; ++i)
3029 was->stats[i] = now->stats[i] - was->stats[i];
3032 /* Print rank_for_schedule statistics. */
3033 static void
3034 print_rank_for_schedule_stats (const char *prefix,
3035 const rank_for_schedule_stats_t *stats,
3036 struct ready_list *ready)
3038 for (int i = 0; i < RFS_N; ++i)
3039 if (stats->stats[i])
3041 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3043 if (ready != NULL)
3044 /* Print out insns that won due to RFS_<I>. */
3046 rtx_insn **p = ready_lastpos (ready);
3048 fprintf (sched_dump, ":");
3049 /* Start with 1 since least-priority insn didn't have any wins. */
3050 for (int j = 1; j < ready->n_ready; ++j)
3051 if (INSN_LAST_RFS_WIN (p[j]) == i)
3052 fprintf (sched_dump, " %s",
3053 (*current_sched_info->print_insn) (p[j], 0));
3055 fprintf (sched_dump, "\n");
3059 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3060 of array. */
3061 static void
3062 ready_sort_debug (struct ready_list *ready)
3064 int i;
3065 rtx_insn **first = ready_lastpos (ready);
3067 for (i = 0; i < ready->n_ready; ++i)
3068 if (!DEBUG_INSN_P (first[i]))
3069 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3071 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3074 /* Sort non-debug insns in the ready list READY by ascending priority.
3075 Assumes that all debug insns are separated from the real insns. */
3076 static void
3077 ready_sort_real (struct ready_list *ready)
3079 int i;
3080 rtx_insn **first = ready_lastpos (ready);
3081 int n_ready_real = ready->n_ready - ready->n_debug;
3083 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3084 for (i = 0; i < n_ready_real; ++i)
3085 setup_insn_reg_pressure_info (first[i]);
3086 else if (sched_pressure == SCHED_PRESSURE_MODEL
3087 && model_curr_point < model_num_insns)
3088 model_set_excess_costs (first, n_ready_real);
3090 rank_for_schedule_stats_t stats1;
3091 if (sched_verbose >= 4)
3092 stats1 = rank_for_schedule_stats;
3094 if (n_ready_real == 2)
3095 swap_sort (first, n_ready_real);
3096 else if (n_ready_real > 2)
3097 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3099 if (sched_verbose >= 4)
3101 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3102 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3106 /* Sort the ready list READY by ascending priority. */
3107 static void
3108 ready_sort (struct ready_list *ready)
3110 if (ready->n_debug > 0)
3111 ready_sort_debug (ready);
3112 else
3113 ready_sort_real (ready);
3116 /* PREV is an insn that is ready to execute. Adjust its priority if that
3117 will help shorten or lengthen register lifetimes as appropriate. Also
3118 provide a hook for the target to tweak itself. */
3120 HAIFA_INLINE static void
3121 adjust_priority (rtx_insn *prev)
3123 /* ??? There used to be code here to try and estimate how an insn
3124 affected register lifetimes, but it did it by looking at REG_DEAD
3125 notes, which we removed in schedule_region. Nor did it try to
3126 take into account register pressure or anything useful like that.
3128 Revisit when we have a machine model to work with and not before. */
3130 if (targetm.sched.adjust_priority)
3131 INSN_PRIORITY (prev) =
3132 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3135 /* Advance DFA state STATE on one cycle. */
3136 void
3137 advance_state (state_t state)
3139 if (targetm.sched.dfa_pre_advance_cycle)
3140 targetm.sched.dfa_pre_advance_cycle ();
3142 if (targetm.sched.dfa_pre_cycle_insn)
3143 state_transition (state,
3144 targetm.sched.dfa_pre_cycle_insn ());
3146 state_transition (state, NULL);
3148 if (targetm.sched.dfa_post_cycle_insn)
3149 state_transition (state,
3150 targetm.sched.dfa_post_cycle_insn ());
3152 if (targetm.sched.dfa_post_advance_cycle)
3153 targetm.sched.dfa_post_advance_cycle ();
3156 /* Advance time on one cycle. */
3157 HAIFA_INLINE static void
3158 advance_one_cycle (void)
3160 advance_state (curr_state);
3161 if (sched_verbose >= 4)
3162 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3165 /* Update register pressure after scheduling INSN. */
3166 static void
3167 update_register_pressure (rtx_insn *insn)
3169 struct reg_use_data *use;
3170 struct reg_set_data *set;
3172 gcc_checking_assert (!DEBUG_INSN_P (insn));
3174 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3175 if (dying_use_p (use))
3176 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3177 use->regno, false);
3178 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3179 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3180 set->regno, true);
3183 /* Set up or update (if UPDATE_P) max register pressure (see its
3184 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3185 after insn AFTER. */
3186 static void
3187 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3189 int i, p;
3190 bool eq_p;
3191 rtx_insn *insn;
3192 static int max_reg_pressure[N_REG_CLASSES];
3194 save_reg_pressure ();
3195 for (i = 0; i < ira_pressure_classes_num; i++)
3196 max_reg_pressure[ira_pressure_classes[i]]
3197 = curr_reg_pressure[ira_pressure_classes[i]];
3198 for (insn = NEXT_INSN (after);
3199 insn != NULL_RTX && ! BARRIER_P (insn)
3200 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3201 insn = NEXT_INSN (insn))
3202 if (NONDEBUG_INSN_P (insn))
3204 eq_p = true;
3205 for (i = 0; i < ira_pressure_classes_num; i++)
3207 p = max_reg_pressure[ira_pressure_classes[i]];
3208 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3210 eq_p = false;
3211 INSN_MAX_REG_PRESSURE (insn)[i]
3212 = max_reg_pressure[ira_pressure_classes[i]];
3215 if (update_p && eq_p)
3216 break;
3217 update_register_pressure (insn);
3218 for (i = 0; i < ira_pressure_classes_num; i++)
3219 if (max_reg_pressure[ira_pressure_classes[i]]
3220 < curr_reg_pressure[ira_pressure_classes[i]])
3221 max_reg_pressure[ira_pressure_classes[i]]
3222 = curr_reg_pressure[ira_pressure_classes[i]];
3224 restore_reg_pressure ();
3227 /* Update the current register pressure after scheduling INSN. Update
3228 also max register pressure for unscheduled insns of the current
3229 BB. */
3230 static void
3231 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3233 int i;
3234 int before[N_REG_CLASSES];
3236 for (i = 0; i < ira_pressure_classes_num; i++)
3237 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3238 update_register_pressure (insn);
3239 for (i = 0; i < ira_pressure_classes_num; i++)
3240 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3241 break;
3242 if (i < ira_pressure_classes_num)
3243 setup_insn_max_reg_pressure (insn, true);
3246 /* Set up register pressure at the beginning of basic block BB whose
3247 insns starting after insn AFTER. Set up also max register pressure
3248 for all insns of the basic block. */
3249 void
3250 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3252 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3253 initiate_bb_reg_pressure_info (bb);
3254 setup_insn_max_reg_pressure (after, false);
3257 /* If doing predication while scheduling, verify whether INSN, which
3258 has just been scheduled, clobbers the conditions of any
3259 instructions that must be predicated in order to break their
3260 dependencies. If so, remove them from the queues so that they will
3261 only be scheduled once their control dependency is resolved. */
3263 static void
3264 check_clobbered_conditions (rtx_insn *insn)
3266 HARD_REG_SET t;
3267 int i;
3269 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3270 return;
3272 find_all_hard_reg_sets (insn, &t, true);
3274 restart:
3275 for (i = 0; i < ready.n_ready; i++)
3277 rtx_insn *x = ready_element (&ready, i);
3278 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3280 ready_remove_insn (x);
3281 goto restart;
3284 for (i = 0; i <= max_insn_queue_index; i++)
3286 rtx_insn_list *link;
3287 int q = NEXT_Q_AFTER (q_ptr, i);
3289 restart_queue:
3290 for (link = insn_queue[q]; link; link = link->next ())
3292 rtx_insn *x = link->insn ();
3293 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3295 queue_remove (x);
3296 goto restart_queue;
3302 /* Return (in order):
3304 - positive if INSN adversely affects the pressure on one
3305 register class
3307 - negative if INSN reduces the pressure on one register class
3309 - 0 if INSN doesn't affect the pressure on any register class. */
3311 static int
3312 model_classify_pressure (struct model_insn_info *insn)
3314 struct reg_pressure_data *reg_pressure;
3315 int death[N_REG_CLASSES];
3316 int pci, cl, sum;
3318 calculate_reg_deaths (insn->insn, death);
3319 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3320 sum = 0;
3321 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3323 cl = ira_pressure_classes[pci];
3324 if (death[cl] < reg_pressure[pci].set_increase)
3325 return 1;
3326 sum += reg_pressure[pci].set_increase - death[cl];
3328 return sum;
3331 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3333 static int
3334 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3336 unsigned int height1, height2;
3337 unsigned int priority1, priority2;
3339 /* Prefer instructions with a higher model priority. */
3340 if (insn1->model_priority != insn2->model_priority)
3341 return insn1->model_priority > insn2->model_priority;
3343 /* Combine the length of the longest path of satisfied true dependencies
3344 that leads to each instruction (depth) with the length of the longest
3345 path of any dependencies that leads from the instruction (alap).
3346 Prefer instructions with the greatest combined length. If the combined
3347 lengths are equal, prefer instructions with the greatest depth.
3349 The idea is that, if we have a set S of "equal" instructions that each
3350 have ALAP value X, and we pick one such instruction I, any true-dependent
3351 successors of I that have ALAP value X - 1 should be preferred over S.
3352 This encourages the schedule to be "narrow" rather than "wide".
3353 However, if I is a low-priority instruction that we decided to
3354 schedule because of its model_classify_pressure, and if there
3355 is a set of higher-priority instructions T, the aforementioned
3356 successors of I should not have the edge over T. */
3357 height1 = insn1->depth + insn1->alap;
3358 height2 = insn2->depth + insn2->alap;
3359 if (height1 != height2)
3360 return height1 > height2;
3361 if (insn1->depth != insn2->depth)
3362 return insn1->depth > insn2->depth;
3364 /* We have no real preference between INSN1 an INSN2 as far as attempts
3365 to reduce pressure go. Prefer instructions with higher priorities. */
3366 priority1 = INSN_PRIORITY (insn1->insn);
3367 priority2 = INSN_PRIORITY (insn2->insn);
3368 if (priority1 != priority2)
3369 return priority1 > priority2;
3371 /* Use the original rtl sequence as a tie-breaker. */
3372 return insn1 < insn2;
3375 /* Add INSN to the model worklist immediately after PREV. Add it to the
3376 beginning of the list if PREV is null. */
3378 static void
3379 model_add_to_worklist_at (struct model_insn_info *insn,
3380 struct model_insn_info *prev)
3382 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3383 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3385 insn->prev = prev;
3386 if (prev)
3388 insn->next = prev->next;
3389 prev->next = insn;
3391 else
3393 insn->next = model_worklist;
3394 model_worklist = insn;
3396 if (insn->next)
3397 insn->next->prev = insn;
3400 /* Remove INSN from the model worklist. */
3402 static void
3403 model_remove_from_worklist (struct model_insn_info *insn)
3405 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3406 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3408 if (insn->prev)
3409 insn->prev->next = insn->next;
3410 else
3411 model_worklist = insn->next;
3412 if (insn->next)
3413 insn->next->prev = insn->prev;
3416 /* Add INSN to the model worklist. Start looking for a suitable position
3417 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3418 insns either side. A null PREV indicates the beginning of the list and
3419 a null NEXT indicates the end. */
3421 static void
3422 model_add_to_worklist (struct model_insn_info *insn,
3423 struct model_insn_info *prev,
3424 struct model_insn_info *next)
3426 int count;
3428 count = MAX_SCHED_READY_INSNS;
3429 if (count > 0 && prev && model_order_p (insn, prev))
3432 count--;
3433 prev = prev->prev;
3435 while (count > 0 && prev && model_order_p (insn, prev));
3436 else
3437 while (count > 0 && next && model_order_p (next, insn))
3439 count--;
3440 prev = next;
3441 next = next->next;
3443 model_add_to_worklist_at (insn, prev);
3446 /* INSN may now have a higher priority (in the model_order_p sense)
3447 than before. Move it up the worklist if necessary. */
3449 static void
3450 model_promote_insn (struct model_insn_info *insn)
3452 struct model_insn_info *prev;
3453 int count;
3455 prev = insn->prev;
3456 count = MAX_SCHED_READY_INSNS;
3457 while (count > 0 && prev && model_order_p (insn, prev))
3459 count--;
3460 prev = prev->prev;
3462 if (prev != insn->prev)
3464 model_remove_from_worklist (insn);
3465 model_add_to_worklist_at (insn, prev);
3469 /* Add INSN to the end of the model schedule. */
3471 static void
3472 model_add_to_schedule (rtx_insn *insn)
3474 unsigned int point;
3476 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3477 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3479 point = model_schedule.length ();
3480 model_schedule.quick_push (insn);
3481 INSN_MODEL_INDEX (insn) = point + 1;
3484 /* Analyze the instructions that are to be scheduled, setting up
3485 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3486 instructions to model_worklist. */
3488 static void
3489 model_analyze_insns (void)
3491 rtx_insn *start, *end, *iter;
3492 sd_iterator_def sd_it;
3493 dep_t dep;
3494 struct model_insn_info *insn, *con;
3496 model_num_insns = 0;
3497 start = PREV_INSN (current_sched_info->next_tail);
3498 end = current_sched_info->prev_head;
3499 for (iter = start; iter != end; iter = PREV_INSN (iter))
3500 if (NONDEBUG_INSN_P (iter))
3502 insn = MODEL_INSN_INFO (iter);
3503 insn->insn = iter;
3504 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3506 con = MODEL_INSN_INFO (DEP_CON (dep));
3507 if (con->insn && insn->alap < con->alap + 1)
3508 insn->alap = con->alap + 1;
3511 insn->old_queue = QUEUE_INDEX (iter);
3512 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3514 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3515 if (insn->unscheduled_preds == 0)
3516 model_add_to_worklist (insn, NULL, model_worklist);
3518 model_num_insns++;
3522 /* The global state describes the register pressure at the start of the
3523 model schedule. Initialize GROUP accordingly. */
3525 static void
3526 model_init_pressure_group (struct model_pressure_group *group)
3528 int pci, cl;
3530 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3532 cl = ira_pressure_classes[pci];
3533 group->limits[pci].pressure = curr_reg_pressure[cl];
3534 group->limits[pci].point = 0;
3536 /* Use index model_num_insns to record the state after the last
3537 instruction in the model schedule. */
3538 group->model = XNEWVEC (struct model_pressure_data,
3539 (model_num_insns + 1) * ira_pressure_classes_num);
3542 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3543 Update the maximum pressure for the whole schedule. */
3545 static void
3546 model_record_pressure (struct model_pressure_group *group,
3547 int point, int pci, int pressure)
3549 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3550 if (group->limits[pci].pressure < pressure)
3552 group->limits[pci].pressure = pressure;
3553 group->limits[pci].point = point;
3557 /* INSN has just been added to the end of the model schedule. Record its
3558 register-pressure information. */
3560 static void
3561 model_record_pressures (struct model_insn_info *insn)
3563 struct reg_pressure_data *reg_pressure;
3564 int point, pci, cl, delta;
3565 int death[N_REG_CLASSES];
3567 point = model_index (insn->insn);
3568 if (sched_verbose >= 2)
3570 if (point == 0)
3572 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3573 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3575 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3576 point, INSN_UID (insn->insn), insn->model_priority,
3577 insn->depth + insn->alap, insn->depth,
3578 INSN_PRIORITY (insn->insn),
3579 str_pattern_slim (PATTERN (insn->insn)));
3581 calculate_reg_deaths (insn->insn, death);
3582 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3583 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3585 cl = ira_pressure_classes[pci];
3586 delta = reg_pressure[pci].set_increase - death[cl];
3587 if (sched_verbose >= 2)
3588 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3589 curr_reg_pressure[cl], delta);
3590 model_record_pressure (&model_before_pressure, point, pci,
3591 curr_reg_pressure[cl]);
3593 if (sched_verbose >= 2)
3594 fprintf (sched_dump, "\n");
3597 /* All instructions have been added to the model schedule. Record the
3598 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3600 static void
3601 model_record_final_pressures (struct model_pressure_group *group)
3603 int point, pci, max_pressure, ref_pressure, cl;
3605 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3607 /* Record the final pressure for this class. */
3608 cl = ira_pressure_classes[pci];
3609 point = model_num_insns;
3610 ref_pressure = curr_reg_pressure[cl];
3611 model_record_pressure (group, point, pci, ref_pressure);
3613 /* Record the original maximum pressure. */
3614 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3616 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3617 max_pressure = ref_pressure;
3618 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3619 while (point > 0)
3621 point--;
3622 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3623 max_pressure = MAX (max_pressure, ref_pressure);
3624 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3629 /* Update all successors of INSN, given that INSN has just been scheduled. */
3631 static void
3632 model_add_successors_to_worklist (struct model_insn_info *insn)
3634 sd_iterator_def sd_it;
3635 struct model_insn_info *con;
3636 dep_t dep;
3638 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3640 con = MODEL_INSN_INFO (DEP_CON (dep));
3641 /* Ignore debug instructions, and instructions from other blocks. */
3642 if (con->insn)
3644 con->unscheduled_preds--;
3646 /* Update the depth field of each true-dependent successor.
3647 Increasing the depth gives them a higher priority than
3648 before. */
3649 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3651 con->depth = insn->depth + 1;
3652 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3653 model_promote_insn (con);
3656 /* If this is a true dependency, or if there are no remaining
3657 dependencies for CON (meaning that CON only had non-true
3658 dependencies), make sure that CON is on the worklist.
3659 We don't bother otherwise because it would tend to fill the
3660 worklist with a lot of low-priority instructions that are not
3661 yet ready to issue. */
3662 if ((con->depth > 0 || con->unscheduled_preds == 0)
3663 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3664 model_add_to_worklist (con, insn, insn->next);
3669 /* Give INSN a higher priority than any current instruction, then give
3670 unscheduled predecessors of INSN a higher priority still. If any of
3671 those predecessors are not on the model worklist, do the same for its
3672 predecessors, and so on. */
3674 static void
3675 model_promote_predecessors (struct model_insn_info *insn)
3677 struct model_insn_info *pro, *first;
3678 sd_iterator_def sd_it;
3679 dep_t dep;
3681 if (sched_verbose >= 7)
3682 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3683 INSN_UID (insn->insn), model_next_priority);
3684 insn->model_priority = model_next_priority++;
3685 model_remove_from_worklist (insn);
3686 model_add_to_worklist_at (insn, NULL);
3688 first = NULL;
3689 for (;;)
3691 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3693 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3694 /* The first test is to ignore debug instructions, and instructions
3695 from other blocks. */
3696 if (pro->insn
3697 && pro->model_priority != model_next_priority
3698 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3700 pro->model_priority = model_next_priority;
3701 if (sched_verbose >= 7)
3702 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3703 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3705 /* PRO is already in the worklist, but it now has
3706 a higher priority than before. Move it at the
3707 appropriate place. */
3708 model_remove_from_worklist (pro);
3709 model_add_to_worklist (pro, NULL, model_worklist);
3711 else
3713 /* PRO isn't in the worklist. Recursively process
3714 its predecessors until we find one that is. */
3715 pro->next = first;
3716 first = pro;
3720 if (!first)
3721 break;
3722 insn = first;
3723 first = insn->next;
3725 if (sched_verbose >= 7)
3726 fprintf (sched_dump, " = %d\n", model_next_priority);
3727 model_next_priority++;
3730 /* Pick one instruction from model_worklist and process it. */
3732 static void
3733 model_choose_insn (void)
3735 struct model_insn_info *insn, *fallback;
3736 int count;
3738 if (sched_verbose >= 7)
3740 fprintf (sched_dump, ";;\t+--- worklist:\n");
3741 insn = model_worklist;
3742 count = MAX_SCHED_READY_INSNS;
3743 while (count > 0 && insn)
3745 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3746 INSN_UID (insn->insn), insn->model_priority,
3747 insn->depth + insn->alap, insn->depth,
3748 INSN_PRIORITY (insn->insn));
3749 count--;
3750 insn = insn->next;
3754 /* Look for a ready instruction whose model_classify_priority is zero
3755 or negative, picking the highest-priority one. Adding such an
3756 instruction to the schedule now should do no harm, and may actually
3757 do some good.
3759 Failing that, see whether there is an instruction with the highest
3760 extant model_priority that is not yet ready, but which would reduce
3761 pressure if it became ready. This is designed to catch cases like:
3763 (set (mem (reg R1)) (reg R2))
3765 where the instruction is the last remaining use of R1 and where the
3766 value of R2 is not yet available (or vice versa). The death of R1
3767 means that this instruction already reduces pressure. It is of
3768 course possible that the computation of R2 involves other registers
3769 that are hard to kill, but such cases are rare enough for this
3770 heuristic to be a win in general.
3772 Failing that, just pick the highest-priority instruction in the
3773 worklist. */
3774 count = MAX_SCHED_READY_INSNS;
3775 insn = model_worklist;
3776 fallback = 0;
3777 for (;;)
3779 if (count == 0 || !insn)
3781 insn = fallback ? fallback : model_worklist;
3782 break;
3784 if (insn->unscheduled_preds)
3786 if (model_worklist->model_priority == insn->model_priority
3787 && !fallback
3788 && model_classify_pressure (insn) < 0)
3789 fallback = insn;
3791 else
3793 if (model_classify_pressure (insn) <= 0)
3794 break;
3796 count--;
3797 insn = insn->next;
3800 if (sched_verbose >= 7 && insn != model_worklist)
3802 if (insn->unscheduled_preds)
3803 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3804 INSN_UID (insn->insn));
3805 else
3806 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3807 INSN_UID (insn->insn));
3809 if (insn->unscheduled_preds)
3810 /* INSN isn't yet ready to issue. Give all its predecessors the
3811 highest priority. */
3812 model_promote_predecessors (insn);
3813 else
3815 /* INSN is ready. Add it to the end of model_schedule and
3816 process its successors. */
3817 model_add_successors_to_worklist (insn);
3818 model_remove_from_worklist (insn);
3819 model_add_to_schedule (insn->insn);
3820 model_record_pressures (insn);
3821 update_register_pressure (insn->insn);
3825 /* Restore all QUEUE_INDEXs to the values that they had before
3826 model_start_schedule was called. */
3828 static void
3829 model_reset_queue_indices (void)
3831 unsigned int i;
3832 rtx_insn *insn;
3834 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3835 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3838 /* We have calculated the model schedule and spill costs. Print a summary
3839 to sched_dump. */
3841 static void
3842 model_dump_pressure_summary (void)
3844 int pci, cl;
3846 fprintf (sched_dump, ";; Pressure summary:");
3847 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3849 cl = ira_pressure_classes[pci];
3850 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3851 model_before_pressure.limits[pci].pressure);
3853 fprintf (sched_dump, "\n\n");
3856 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3857 scheduling region. */
3859 static void
3860 model_start_schedule (basic_block bb)
3862 model_next_priority = 1;
3863 model_schedule.create (sched_max_luid);
3864 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3866 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3867 initiate_reg_pressure_info (df_get_live_in (bb));
3869 model_analyze_insns ();
3870 model_init_pressure_group (&model_before_pressure);
3871 while (model_worklist)
3872 model_choose_insn ();
3873 gcc_assert (model_num_insns == (int) model_schedule.length ());
3874 if (sched_verbose >= 2)
3875 fprintf (sched_dump, "\n");
3877 model_record_final_pressures (&model_before_pressure);
3878 model_reset_queue_indices ();
3880 XDELETEVEC (model_insns);
3882 model_curr_point = 0;
3883 initiate_reg_pressure_info (df_get_live_in (bb));
3884 if (sched_verbose >= 1)
3885 model_dump_pressure_summary ();
3888 /* Free the information associated with GROUP. */
3890 static void
3891 model_finalize_pressure_group (struct model_pressure_group *group)
3893 XDELETEVEC (group->model);
3896 /* Free the information created by model_start_schedule. */
3898 static void
3899 model_end_schedule (void)
3901 model_finalize_pressure_group (&model_before_pressure);
3902 model_schedule.release ();
3905 /* Prepare reg pressure scheduling for basic block BB. */
3906 static void
3907 sched_pressure_start_bb (basic_block bb)
3909 /* Set the number of available registers for each class taking into account
3910 relative probability of current basic block versus function prologue and
3911 epilogue.
3912 * If the basic block executes much more often than the prologue/epilogue
3913 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3914 nil, so the effective number of available registers is
3915 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
3916 * If the basic block executes as often as the prologue/epilogue,
3917 then spill in the block is as costly as in the prologue, so the effective
3918 number of available registers is
3919 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3920 - call_saved_regs_num[cl]).
3921 Note that all-else-equal, we prefer to spill in the prologue, since that
3922 allows "extra" registers for other basic blocks of the function.
3923 * If the basic block is on the cold path of the function and executes
3924 rarely, then we should always prefer to spill in the block, rather than
3925 in the prologue/epilogue. The effective number of available register is
3926 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3927 - call_saved_regs_num[cl]). */
3929 int i;
3930 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.to_frequency (cfun);
3931 int bb_freq = bb->count.to_frequency (cfun);
3933 if (bb_freq == 0)
3935 if (entry_freq == 0)
3936 entry_freq = bb_freq = 1;
3938 if (bb_freq < entry_freq)
3939 bb_freq = entry_freq;
3941 for (i = 0; i < ira_pressure_classes_num; ++i)
3943 enum reg_class cl = ira_pressure_classes[i];
3944 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3945 - fixed_regs_num[cl];
3946 sched_class_regs_num[cl]
3947 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
3951 if (sched_pressure == SCHED_PRESSURE_MODEL)
3952 model_start_schedule (bb);
3955 /* A structure that holds local state for the loop in schedule_block. */
3956 struct sched_block_state
3958 /* True if no real insns have been scheduled in the current cycle. */
3959 bool first_cycle_insn_p;
3960 /* True if a shadow insn has been scheduled in the current cycle, which
3961 means that no more normal insns can be issued. */
3962 bool shadows_only_p;
3963 /* True if we're winding down a modulo schedule, which means that we only
3964 issue insns with INSN_EXACT_TICK set. */
3965 bool modulo_epilogue;
3966 /* Initialized with the machine's issue rate every cycle, and updated
3967 by calls to the variable_issue hook. */
3968 int can_issue_more;
3971 /* INSN is the "currently executing insn". Launch each insn which was
3972 waiting on INSN. READY is the ready list which contains the insns
3973 that are ready to fire. CLOCK is the current cycle. The function
3974 returns necessary cycle advance after issuing the insn (it is not
3975 zero for insns in a schedule group). */
3977 static int
3978 schedule_insn (rtx_insn *insn)
3980 sd_iterator_def sd_it;
3981 dep_t dep;
3982 int i;
3983 int advance = 0;
3985 if (sched_verbose >= 1)
3987 struct reg_pressure_data *pressure_info;
3988 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3989 clock_var, (*current_sched_info->print_insn) (insn, 1),
3990 str_pattern_slim (PATTERN (insn)));
3992 if (recog_memoized (insn) < 0)
3993 fprintf (sched_dump, "nothing");
3994 else
3995 print_reservation (sched_dump, insn);
3996 pressure_info = INSN_REG_PRESSURE (insn);
3997 if (pressure_info != NULL)
3999 fputc (':', sched_dump);
4000 for (i = 0; i < ira_pressure_classes_num; i++)
4001 fprintf (sched_dump, "%s%s%+d(%d)",
4002 scheduled_insns.length () > 1
4003 && INSN_LUID (insn)
4004 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4005 reg_class_names[ira_pressure_classes[i]],
4006 pressure_info[i].set_increase, pressure_info[i].change);
4008 if (sched_pressure == SCHED_PRESSURE_MODEL
4009 && model_curr_point < model_num_insns
4010 && model_index (insn) == model_curr_point)
4011 fprintf (sched_dump, ":model %d", model_curr_point);
4012 fputc ('\n', sched_dump);
4015 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4016 update_reg_and_insn_max_reg_pressure (insn);
4018 /* Scheduling instruction should have all its dependencies resolved and
4019 should have been removed from the ready list. */
4020 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4022 /* Reset debug insns invalidated by moving this insn. */
4023 if (MAY_HAVE_DEBUG_BIND_INSNS && !DEBUG_INSN_P (insn))
4024 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4025 sd_iterator_cond (&sd_it, &dep);)
4027 rtx_insn *dbg = DEP_PRO (dep);
4028 struct reg_use_data *use, *next;
4030 if (DEP_STATUS (dep) & DEP_CANCELLED)
4032 sd_iterator_next (&sd_it);
4033 continue;
4036 gcc_assert (DEBUG_BIND_INSN_P (dbg));
4038 if (sched_verbose >= 6)
4039 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4040 INSN_UID (dbg));
4042 /* ??? Rather than resetting the debug insn, we might be able
4043 to emit a debug temp before the just-scheduled insn, but
4044 this would involve checking that the expression at the
4045 point of the debug insn is equivalent to the expression
4046 before the just-scheduled insn. They might not be: the
4047 expression in the debug insn may depend on other insns not
4048 yet scheduled that set MEMs, REGs or even other debug
4049 insns. It's not clear that attempting to preserve debug
4050 information in these cases is worth the effort, given how
4051 uncommon these resets are and the likelihood that the debug
4052 temps introduced won't survive the schedule change. */
4053 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4054 df_insn_rescan (dbg);
4056 /* Unknown location doesn't use any registers. */
4057 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4059 struct reg_use_data *prev = use;
4061 /* Remove use from the cyclic next_regno_use chain first. */
4062 while (prev->next_regno_use != use)
4063 prev = prev->next_regno_use;
4064 prev->next_regno_use = use->next_regno_use;
4065 next = use->next_insn_use;
4066 free (use);
4068 INSN_REG_USE_LIST (dbg) = NULL;
4070 /* We delete rather than resolve these deps, otherwise we
4071 crash in sched_free_deps(), because forward deps are
4072 expected to be released before backward deps. */
4073 sd_delete_dep (sd_it);
4076 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4077 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4079 if (sched_pressure == SCHED_PRESSURE_MODEL
4080 && model_curr_point < model_num_insns
4081 && NONDEBUG_INSN_P (insn))
4083 if (model_index (insn) == model_curr_point)
4085 model_curr_point++;
4086 while (model_curr_point < model_num_insns
4087 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4088 == QUEUE_SCHEDULED));
4089 else
4090 model_recompute (insn);
4091 model_update_limit_points ();
4092 update_register_pressure (insn);
4093 if (sched_verbose >= 2)
4094 print_curr_reg_pressure ();
4097 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4098 if (INSN_TICK (insn) > clock_var)
4099 /* INSN has been prematurely moved from the queue to the ready list.
4100 This is possible only if following flags are set. */
4101 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4103 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4104 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4105 INSN_TICK (insn) = clock_var;
4107 check_clobbered_conditions (insn);
4109 /* Update dependent instructions. First, see if by scheduling this insn
4110 now we broke a dependence in a way that requires us to change another
4111 insn. */
4112 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4113 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4115 struct dep_replacement *desc = DEP_REPLACE (dep);
4116 rtx_insn *pro = DEP_PRO (dep);
4117 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4118 && desc != NULL && desc->insn == pro)
4119 apply_replacement (dep, false);
4122 /* Go through and resolve forward dependencies. */
4123 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4124 sd_iterator_cond (&sd_it, &dep);)
4126 rtx_insn *next = DEP_CON (dep);
4127 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4129 /* Resolve the dependence between INSN and NEXT.
4130 sd_resolve_dep () moves current dep to another list thus
4131 advancing the iterator. */
4132 sd_resolve_dep (sd_it);
4134 if (cancelled)
4136 if (must_restore_pattern_p (next, dep))
4137 restore_pattern (dep, false);
4138 continue;
4141 /* Don't bother trying to mark next as ready if insn is a debug
4142 insn. If insn is the last hard dependency, it will have
4143 already been discounted. */
4144 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4145 continue;
4147 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4149 int effective_cost;
4151 effective_cost = try_ready (next);
4153 if (effective_cost >= 0
4154 && SCHED_GROUP_P (next)
4155 && advance < effective_cost)
4156 advance = effective_cost;
4158 else
4159 /* Check always has only one forward dependence (to the first insn in
4160 the recovery block), therefore, this will be executed only once. */
4162 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4163 fix_recovery_deps (RECOVERY_BLOCK (insn));
4167 /* Annotate the instruction with issue information -- TImode
4168 indicates that the instruction is expected not to be able
4169 to issue on the same cycle as the previous insn. A machine
4170 may use this information to decide how the instruction should
4171 be aligned. */
4172 if (issue_rate > 1
4173 && GET_CODE (PATTERN (insn)) != USE
4174 && GET_CODE (PATTERN (insn)) != CLOBBER
4175 && !DEBUG_INSN_P (insn))
4177 if (reload_completed)
4178 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4179 last_clock_var = clock_var;
4182 if (nonscheduled_insns_begin != NULL_RTX)
4183 /* Indicate to debug counters that INSN is scheduled. */
4184 nonscheduled_insns_begin = insn;
4186 return advance;
4189 /* Functions for handling of notes. */
4191 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4192 void
4193 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4195 rtx_insn *from_start;
4197 /* It's easy when have nothing to concat. */
4198 if (from_end == NULL)
4199 return;
4201 /* It's also easy when destination is empty. */
4202 if (*to_endp == NULL)
4204 *to_endp = from_end;
4205 return;
4208 from_start = from_end;
4209 while (PREV_INSN (from_start) != NULL)
4210 from_start = PREV_INSN (from_start);
4212 SET_PREV_INSN (from_start) = *to_endp;
4213 SET_NEXT_INSN (*to_endp) = from_start;
4214 *to_endp = from_end;
4217 /* Delete notes between HEAD and TAIL and put them in the chain
4218 of notes ended by NOTE_LIST. */
4219 void
4220 remove_notes (rtx_insn *head, rtx_insn *tail)
4222 rtx_insn *next_tail, *insn, *next;
4224 note_list = 0;
4225 if (head == tail && !INSN_P (head))
4226 return;
4228 next_tail = NEXT_INSN (tail);
4229 for (insn = head; insn != next_tail; insn = next)
4231 next = NEXT_INSN (insn);
4232 if (!NOTE_P (insn))
4233 continue;
4235 switch (NOTE_KIND (insn))
4237 case NOTE_INSN_BASIC_BLOCK:
4238 continue;
4240 case NOTE_INSN_EPILOGUE_BEG:
4241 if (insn != tail)
4243 remove_insn (insn);
4244 add_reg_note (next, REG_SAVE_NOTE,
4245 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4246 break;
4248 /* FALLTHRU */
4250 default:
4251 remove_insn (insn);
4253 /* Add the note to list that ends at NOTE_LIST. */
4254 SET_PREV_INSN (insn) = note_list;
4255 SET_NEXT_INSN (insn) = NULL_RTX;
4256 if (note_list)
4257 SET_NEXT_INSN (note_list) = insn;
4258 note_list = insn;
4259 break;
4262 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4266 /* A structure to record enough data to allow us to backtrack the scheduler to
4267 a previous state. */
4268 struct haifa_saved_data
4270 /* Next entry on the list. */
4271 struct haifa_saved_data *next;
4273 /* Backtracking is associated with scheduling insns that have delay slots.
4274 DELAY_PAIR points to the structure that contains the insns involved, and
4275 the number of cycles between them. */
4276 struct delay_pair *delay_pair;
4278 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4279 void *fe_saved_data;
4280 /* Data used by the backend. */
4281 void *be_saved_data;
4283 /* Copies of global state. */
4284 int clock_var, last_clock_var;
4285 struct ready_list ready;
4286 state_t curr_state;
4288 rtx_insn *last_scheduled_insn;
4289 rtx_insn *last_nondebug_scheduled_insn;
4290 rtx_insn *nonscheduled_insns_begin;
4291 int cycle_issued_insns;
4293 /* Copies of state used in the inner loop of schedule_block. */
4294 struct sched_block_state sched_block;
4296 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4297 to 0 when restoring. */
4298 int q_size;
4299 rtx_insn_list **insn_queue;
4301 /* Describe pattern replacements that occurred since this backtrack point
4302 was queued. */
4303 vec<dep_t> replacement_deps;
4304 vec<int> replace_apply;
4306 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4307 point. */
4308 vec<dep_t> next_cycle_deps;
4309 vec<int> next_cycle_apply;
4312 /* A record, in reverse order, of all scheduled insns which have delay slots
4313 and may require backtracking. */
4314 static struct haifa_saved_data *backtrack_queue;
4316 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4317 to SET_P. */
4318 static void
4319 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4321 sd_iterator_def sd_it;
4322 dep_t dep;
4323 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4325 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4329 /* Save the current scheduler state so that we can backtrack to it
4330 later if necessary. PAIR gives the insns that make it necessary to
4331 save this point. SCHED_BLOCK is the local state of schedule_block
4332 that need to be saved. */
4333 static void
4334 save_backtrack_point (struct delay_pair *pair,
4335 struct sched_block_state sched_block)
4337 int i;
4338 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4340 save->curr_state = xmalloc (dfa_state_size);
4341 memcpy (save->curr_state, curr_state, dfa_state_size);
4343 save->ready.first = ready.first;
4344 save->ready.n_ready = ready.n_ready;
4345 save->ready.n_debug = ready.n_debug;
4346 save->ready.veclen = ready.veclen;
4347 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4348 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4350 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4351 save->q_size = q_size;
4352 for (i = 0; i <= max_insn_queue_index; i++)
4354 int q = NEXT_Q_AFTER (q_ptr, i);
4355 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4358 save->clock_var = clock_var;
4359 save->last_clock_var = last_clock_var;
4360 save->cycle_issued_insns = cycle_issued_insns;
4361 save->last_scheduled_insn = last_scheduled_insn;
4362 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4363 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4365 save->sched_block = sched_block;
4367 save->replacement_deps.create (0);
4368 save->replace_apply.create (0);
4369 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4370 save->next_cycle_apply = next_cycle_apply.copy ();
4372 if (current_sched_info->save_state)
4373 save->fe_saved_data = (*current_sched_info->save_state) ();
4375 if (targetm.sched.alloc_sched_context)
4377 save->be_saved_data = targetm.sched.alloc_sched_context ();
4378 targetm.sched.init_sched_context (save->be_saved_data, false);
4380 else
4381 save->be_saved_data = NULL;
4383 save->delay_pair = pair;
4385 save->next = backtrack_queue;
4386 backtrack_queue = save;
4388 while (pair)
4390 mark_backtrack_feeds (pair->i2, 1);
4391 INSN_TICK (pair->i2) = INVALID_TICK;
4392 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4393 SHADOW_P (pair->i2) = pair->stages == 0;
4394 pair = pair->next_same_i1;
4398 /* Walk the ready list and all queues. If any insns have unresolved backwards
4399 dependencies, these must be cancelled deps, broken by predication. Set or
4400 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4402 static void
4403 toggle_cancelled_flags (bool set)
4405 int i;
4406 sd_iterator_def sd_it;
4407 dep_t dep;
4409 if (ready.n_ready > 0)
4411 rtx_insn **first = ready_lastpos (&ready);
4412 for (i = 0; i < ready.n_ready; i++)
4413 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4414 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4416 if (set)
4417 DEP_STATUS (dep) |= DEP_CANCELLED;
4418 else
4419 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4422 for (i = 0; i <= max_insn_queue_index; i++)
4424 int q = NEXT_Q_AFTER (q_ptr, i);
4425 rtx_insn_list *link;
4426 for (link = insn_queue[q]; link; link = link->next ())
4428 rtx_insn *insn = link->insn ();
4429 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4430 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4432 if (set)
4433 DEP_STATUS (dep) |= DEP_CANCELLED;
4434 else
4435 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4441 /* Undo the replacements that have occurred after backtrack point SAVE
4442 was placed. */
4443 static void
4444 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4446 while (!save->replacement_deps.is_empty ())
4448 dep_t dep = save->replacement_deps.pop ();
4449 int apply_p = save->replace_apply.pop ();
4451 if (apply_p)
4452 restore_pattern (dep, true);
4453 else
4454 apply_replacement (dep, true);
4456 save->replacement_deps.release ();
4457 save->replace_apply.release ();
4460 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4461 Restore their dependencies to an unresolved state, and mark them as
4462 queued nowhere. */
4464 static void
4465 unschedule_insns_until (rtx_insn *insn)
4467 auto_vec<rtx_insn *> recompute_vec;
4469 /* Make two passes over the insns to be unscheduled. First, we clear out
4470 dependencies and other trivial bookkeeping. */
4471 for (;;)
4473 rtx_insn *last;
4474 sd_iterator_def sd_it;
4475 dep_t dep;
4477 last = scheduled_insns.pop ();
4479 /* This will be changed by restore_backtrack_point if the insn is in
4480 any queue. */
4481 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4482 if (last != insn)
4483 INSN_TICK (last) = INVALID_TICK;
4485 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4486 modulo_insns_scheduled--;
4488 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4489 sd_iterator_cond (&sd_it, &dep);)
4491 rtx_insn *con = DEP_CON (dep);
4492 sd_unresolve_dep (sd_it);
4493 if (!MUST_RECOMPUTE_SPEC_P (con))
4495 MUST_RECOMPUTE_SPEC_P (con) = 1;
4496 recompute_vec.safe_push (con);
4500 if (last == insn)
4501 break;
4504 /* A second pass, to update ready and speculation status for insns
4505 depending on the unscheduled ones. The first pass must have
4506 popped the scheduled_insns vector up to the point where we
4507 restart scheduling, as recompute_todo_spec requires it to be
4508 up-to-date. */
4509 while (!recompute_vec.is_empty ())
4511 rtx_insn *con;
4513 con = recompute_vec.pop ();
4514 MUST_RECOMPUTE_SPEC_P (con) = 0;
4515 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4517 TODO_SPEC (con) = HARD_DEP;
4518 INSN_TICK (con) = INVALID_TICK;
4519 if (PREDICATED_PAT (con) != NULL_RTX)
4520 haifa_change_pattern (con, ORIG_PAT (con));
4522 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4523 TODO_SPEC (con) = recompute_todo_spec (con, true);
4527 /* Restore scheduler state from the topmost entry on the backtracking queue.
4528 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4529 overwrite with the saved data.
4530 The caller must already have called unschedule_insns_until. */
4532 static void
4533 restore_last_backtrack_point (struct sched_block_state *psched_block)
4535 int i;
4536 struct haifa_saved_data *save = backtrack_queue;
4538 backtrack_queue = save->next;
4540 if (current_sched_info->restore_state)
4541 (*current_sched_info->restore_state) (save->fe_saved_data);
4543 if (targetm.sched.alloc_sched_context)
4545 targetm.sched.set_sched_context (save->be_saved_data);
4546 targetm.sched.free_sched_context (save->be_saved_data);
4549 /* Do this first since it clobbers INSN_TICK of the involved
4550 instructions. */
4551 undo_replacements_for_backtrack (save);
4553 /* Clear the QUEUE_INDEX of everything in the ready list or one
4554 of the queues. */
4555 if (ready.n_ready > 0)
4557 rtx_insn **first = ready_lastpos (&ready);
4558 for (i = 0; i < ready.n_ready; i++)
4560 rtx_insn *insn = first[i];
4561 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4562 INSN_TICK (insn) = INVALID_TICK;
4565 for (i = 0; i <= max_insn_queue_index; i++)
4567 int q = NEXT_Q_AFTER (q_ptr, i);
4569 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4571 rtx_insn *x = link->insn ();
4572 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4573 INSN_TICK (x) = INVALID_TICK;
4575 free_INSN_LIST_list (&insn_queue[q]);
4578 free (ready.vec);
4579 ready = save->ready;
4581 if (ready.n_ready > 0)
4583 rtx_insn **first = ready_lastpos (&ready);
4584 for (i = 0; i < ready.n_ready; i++)
4586 rtx_insn *insn = first[i];
4587 QUEUE_INDEX (insn) = QUEUE_READY;
4588 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4589 INSN_TICK (insn) = save->clock_var;
4593 q_ptr = 0;
4594 q_size = save->q_size;
4595 for (i = 0; i <= max_insn_queue_index; i++)
4597 int q = NEXT_Q_AFTER (q_ptr, i);
4599 insn_queue[q] = save->insn_queue[q];
4601 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4603 rtx_insn *x = link->insn ();
4604 QUEUE_INDEX (x) = i;
4605 TODO_SPEC (x) = recompute_todo_spec (x, true);
4606 INSN_TICK (x) = save->clock_var + i;
4609 free (save->insn_queue);
4611 toggle_cancelled_flags (true);
4613 clock_var = save->clock_var;
4614 last_clock_var = save->last_clock_var;
4615 cycle_issued_insns = save->cycle_issued_insns;
4616 last_scheduled_insn = save->last_scheduled_insn;
4617 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4618 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4620 *psched_block = save->sched_block;
4622 memcpy (curr_state, save->curr_state, dfa_state_size);
4623 free (save->curr_state);
4625 mark_backtrack_feeds (save->delay_pair->i2, 0);
4627 gcc_assert (next_cycle_replace_deps.is_empty ());
4628 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4629 next_cycle_apply = save->next_cycle_apply.copy ();
4631 free (save);
4633 for (save = backtrack_queue; save; save = save->next)
4635 mark_backtrack_feeds (save->delay_pair->i2, 1);
4639 /* Discard all data associated with the topmost entry in the backtrack
4640 queue. If RESET_TICK is false, we just want to free the data. If true,
4641 we are doing this because we discovered a reason to backtrack. In the
4642 latter case, also reset the INSN_TICK for the shadow insn. */
4643 static void
4644 free_topmost_backtrack_point (bool reset_tick)
4646 struct haifa_saved_data *save = backtrack_queue;
4647 int i;
4649 backtrack_queue = save->next;
4651 if (reset_tick)
4653 struct delay_pair *pair = save->delay_pair;
4654 while (pair)
4656 INSN_TICK (pair->i2) = INVALID_TICK;
4657 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4658 pair = pair->next_same_i1;
4660 undo_replacements_for_backtrack (save);
4662 else
4664 save->replacement_deps.release ();
4665 save->replace_apply.release ();
4668 if (targetm.sched.free_sched_context)
4669 targetm.sched.free_sched_context (save->be_saved_data);
4670 if (current_sched_info->restore_state)
4671 free (save->fe_saved_data);
4672 for (i = 0; i <= max_insn_queue_index; i++)
4673 free_INSN_LIST_list (&save->insn_queue[i]);
4674 free (save->insn_queue);
4675 free (save->curr_state);
4676 free (save->ready.vec);
4677 free (save);
4680 /* Free the entire backtrack queue. */
4681 static void
4682 free_backtrack_queue (void)
4684 while (backtrack_queue)
4685 free_topmost_backtrack_point (false);
4688 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4689 may have to postpone the replacement until the start of the next cycle,
4690 at which point we will be called again with IMMEDIATELY true. This is
4691 only done for machines which have instruction packets with explicit
4692 parallelism however. */
4693 static void
4694 apply_replacement (dep_t dep, bool immediately)
4696 struct dep_replacement *desc = DEP_REPLACE (dep);
4697 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4699 next_cycle_replace_deps.safe_push (dep);
4700 next_cycle_apply.safe_push (1);
4702 else
4704 bool success;
4706 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4707 return;
4709 if (sched_verbose >= 5)
4710 fprintf (sched_dump, "applying replacement for insn %d\n",
4711 INSN_UID (desc->insn));
4713 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4714 gcc_assert (success);
4716 rtx_insn *insn = DEP_PRO (dep);
4718 /* Recompute priority since dependent priorities may have changed. */
4719 priority (insn, true);
4720 update_insn_after_change (desc->insn);
4722 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4723 fix_tick_ready (desc->insn);
4725 if (backtrack_queue != NULL)
4727 backtrack_queue->replacement_deps.safe_push (dep);
4728 backtrack_queue->replace_apply.safe_push (1);
4733 /* We have determined that a pattern involved in DEP must be restored.
4734 If IMMEDIATELY is false, we may have to postpone the replacement
4735 until the start of the next cycle, at which point we will be called
4736 again with IMMEDIATELY true. */
4737 static void
4738 restore_pattern (dep_t dep, bool immediately)
4740 rtx_insn *next = DEP_CON (dep);
4741 int tick = INSN_TICK (next);
4743 /* If we already scheduled the insn, the modified version is
4744 correct. */
4745 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4746 return;
4748 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4750 next_cycle_replace_deps.safe_push (dep);
4751 next_cycle_apply.safe_push (0);
4752 return;
4756 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4758 if (sched_verbose >= 5)
4759 fprintf (sched_dump, "restoring pattern for insn %d\n",
4760 INSN_UID (next));
4761 haifa_change_pattern (next, ORIG_PAT (next));
4763 else
4765 struct dep_replacement *desc = DEP_REPLACE (dep);
4766 bool success;
4768 if (sched_verbose >= 5)
4769 fprintf (sched_dump, "restoring pattern for insn %d\n",
4770 INSN_UID (desc->insn));
4771 tick = INSN_TICK (desc->insn);
4773 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4774 gcc_assert (success);
4776 rtx_insn *insn = DEP_PRO (dep);
4778 if (QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
4780 /* Recompute priority since dependent priorities may have changed. */
4781 priority (insn, true);
4784 update_insn_after_change (desc->insn);
4786 if (backtrack_queue != NULL)
4788 backtrack_queue->replacement_deps.safe_push (dep);
4789 backtrack_queue->replace_apply.safe_push (0);
4792 INSN_TICK (next) = tick;
4793 if (TODO_SPEC (next) == DEP_POSTPONED)
4794 return;
4796 if (sd_lists_empty_p (next, SD_LIST_BACK))
4797 TODO_SPEC (next) = 0;
4798 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4799 TODO_SPEC (next) = HARD_DEP;
4802 /* Perform pattern replacements that were queued up until the next
4803 cycle. */
4804 static void
4805 perform_replacements_new_cycle (void)
4807 int i;
4808 dep_t dep;
4809 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4811 int apply_p = next_cycle_apply[i];
4812 if (apply_p)
4813 apply_replacement (dep, true);
4814 else
4815 restore_pattern (dep, true);
4817 next_cycle_replace_deps.truncate (0);
4818 next_cycle_apply.truncate (0);
4821 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4822 instructions we've previously encountered, a set bit prevents
4823 recursion. BUDGET is a limit on how far ahead we look, it is
4824 reduced on recursive calls. Return true if we produced a good
4825 estimate, or false if we exceeded the budget. */
4826 static bool
4827 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4829 sd_iterator_def sd_it;
4830 dep_t dep;
4831 int earliest = INSN_TICK (insn);
4833 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4835 rtx_insn *pro = DEP_PRO (dep);
4836 int t;
4838 if (DEP_STATUS (dep) & DEP_CANCELLED)
4839 continue;
4841 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4842 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4843 else
4845 int cost = dep_cost (dep);
4846 if (cost >= budget)
4847 return false;
4848 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4850 if (!estimate_insn_tick (processed, pro, budget - cost))
4851 return false;
4853 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4854 t = INSN_TICK_ESTIMATE (pro) + cost;
4855 if (earliest == INVALID_TICK || t > earliest)
4856 earliest = t;
4859 bitmap_set_bit (processed, INSN_LUID (insn));
4860 INSN_TICK_ESTIMATE (insn) = earliest;
4861 return true;
4864 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4865 infinite resources) the cycle in which the delayed shadow can be issued.
4866 Return the number of cycles that must pass before the real insn can be
4867 issued in order to meet this constraint. */
4868 static int
4869 estimate_shadow_tick (struct delay_pair *p)
4871 auto_bitmap processed;
4872 int t;
4873 bool cutoff;
4875 cutoff = !estimate_insn_tick (processed, p->i2,
4876 max_insn_queue_index + pair_delay (p));
4877 if (cutoff)
4878 return max_insn_queue_index;
4879 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4880 if (t > 0)
4881 return t;
4882 return 0;
4885 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4886 recursively resolve all its forward dependencies. */
4887 static void
4888 resolve_dependencies (rtx_insn *insn)
4890 sd_iterator_def sd_it;
4891 dep_t dep;
4893 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4894 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4895 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4896 return;
4898 if (sched_verbose >= 4)
4899 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4901 if (QUEUE_INDEX (insn) >= 0)
4902 queue_remove (insn);
4904 scheduled_insns.safe_push (insn);
4906 /* Update dependent instructions. */
4907 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4908 sd_iterator_cond (&sd_it, &dep);)
4910 rtx_insn *next = DEP_CON (dep);
4912 if (sched_verbose >= 4)
4913 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4914 INSN_UID (next));
4916 /* Resolve the dependence between INSN and NEXT.
4917 sd_resolve_dep () moves current dep to another list thus
4918 advancing the iterator. */
4919 sd_resolve_dep (sd_it);
4921 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4923 resolve_dependencies (next);
4925 else
4926 /* Check always has only one forward dependence (to the first insn in
4927 the recovery block), therefore, this will be executed only once. */
4929 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4935 /* Return the head and tail pointers of ebb starting at BEG and ending
4936 at END. */
4937 void
4938 get_ebb_head_tail (basic_block beg, basic_block end,
4939 rtx_insn **headp, rtx_insn **tailp)
4941 rtx_insn *beg_head = BB_HEAD (beg);
4942 rtx_insn * beg_tail = BB_END (beg);
4943 rtx_insn * end_head = BB_HEAD (end);
4944 rtx_insn * end_tail = BB_END (end);
4946 /* Don't include any notes or labels at the beginning of the BEG
4947 basic block, or notes at the end of the END basic blocks. */
4949 if (LABEL_P (beg_head))
4950 beg_head = NEXT_INSN (beg_head);
4952 while (beg_head != beg_tail)
4953 if (NOTE_P (beg_head))
4954 beg_head = NEXT_INSN (beg_head);
4955 else if (DEBUG_INSN_P (beg_head))
4957 rtx_insn * note, *next;
4959 for (note = NEXT_INSN (beg_head);
4960 note != beg_tail;
4961 note = next)
4963 next = NEXT_INSN (note);
4964 if (NOTE_P (note))
4966 if (sched_verbose >= 9)
4967 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4969 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4971 if (BLOCK_FOR_INSN (note) != beg)
4972 df_insn_change_bb (note, beg);
4974 else if (!DEBUG_INSN_P (note))
4975 break;
4978 break;
4980 else
4981 break;
4983 *headp = beg_head;
4985 if (beg == end)
4986 end_head = beg_head;
4987 else if (LABEL_P (end_head))
4988 end_head = NEXT_INSN (end_head);
4990 while (end_head != end_tail)
4991 if (NOTE_P (end_tail))
4992 end_tail = PREV_INSN (end_tail);
4993 else if (DEBUG_INSN_P (end_tail))
4995 rtx_insn * note, *prev;
4997 for (note = PREV_INSN (end_tail);
4998 note != end_head;
4999 note = prev)
5001 prev = PREV_INSN (note);
5002 if (NOTE_P (note))
5004 if (sched_verbose >= 9)
5005 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
5007 reorder_insns_nobb (note, note, end_tail);
5009 if (end_tail == BB_END (end))
5010 BB_END (end) = note;
5012 if (BLOCK_FOR_INSN (note) != end)
5013 df_insn_change_bb (note, end);
5015 else if (!DEBUG_INSN_P (note))
5016 break;
5019 break;
5021 else
5022 break;
5024 *tailp = end_tail;
5027 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5030 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5032 while (head != NEXT_INSN (tail))
5034 if (!NOTE_P (head) && !LABEL_P (head))
5035 return 0;
5036 head = NEXT_INSN (head);
5038 return 1;
5041 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5042 previously found among the insns. Insert them just before HEAD. */
5043 rtx_insn *
5044 restore_other_notes (rtx_insn *head, basic_block head_bb)
5046 if (note_list != 0)
5048 rtx_insn *note_head = note_list;
5050 if (head)
5051 head_bb = BLOCK_FOR_INSN (head);
5052 else
5053 head = NEXT_INSN (bb_note (head_bb));
5055 while (PREV_INSN (note_head))
5057 set_block_for_insn (note_head, head_bb);
5058 note_head = PREV_INSN (note_head);
5060 /* In the above cycle we've missed this note. */
5061 set_block_for_insn (note_head, head_bb);
5063 SET_PREV_INSN (note_head) = PREV_INSN (head);
5064 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5065 SET_PREV_INSN (head) = note_list;
5066 SET_NEXT_INSN (note_list) = head;
5068 if (BLOCK_FOR_INSN (head) != head_bb)
5069 BB_END (head_bb) = note_list;
5071 head = note_head;
5074 return head;
5077 /* When we know we are going to discard the schedule due to a failed attempt
5078 at modulo scheduling, undo all replacements. */
5079 static void
5080 undo_all_replacements (void)
5082 rtx_insn *insn;
5083 int i;
5085 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5087 sd_iterator_def sd_it;
5088 dep_t dep;
5090 /* See if we must undo a replacement. */
5091 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5092 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5094 struct dep_replacement *desc = DEP_REPLACE (dep);
5095 if (desc != NULL)
5096 validate_change (desc->insn, desc->loc, desc->orig, 0);
5101 /* Return first non-scheduled insn in the current scheduling block.
5102 This is mostly used for debug-counter purposes. */
5103 static rtx_insn *
5104 first_nonscheduled_insn (void)
5106 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5107 ? nonscheduled_insns_begin
5108 : current_sched_info->prev_head);
5112 insn = next_nonnote_nondebug_insn (insn);
5114 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5116 return insn;
5119 /* Move insns that became ready to fire from queue to ready list. */
5121 static void
5122 queue_to_ready (struct ready_list *ready)
5124 rtx_insn *insn;
5125 rtx_insn_list *link;
5126 rtx_insn *skip_insn;
5128 q_ptr = NEXT_Q (q_ptr);
5130 if (dbg_cnt (sched_insn) == false)
5131 /* If debug counter is activated do not requeue the first
5132 nonscheduled insn. */
5133 skip_insn = first_nonscheduled_insn ();
5134 else
5135 skip_insn = NULL;
5137 /* Add all pending insns that can be scheduled without stalls to the
5138 ready list. */
5139 for (link = insn_queue[q_ptr]; link; link = link->next ())
5141 insn = link->insn ();
5142 q_size -= 1;
5144 if (sched_verbose >= 2)
5145 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5146 (*current_sched_info->print_insn) (insn, 0));
5148 /* If the ready list is full, delay the insn for 1 cycle.
5149 See the comment in schedule_block for the rationale. */
5150 if (!reload_completed
5151 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5152 || (sched_pressure == SCHED_PRESSURE_MODEL
5153 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5154 instructions too. */
5155 && model_index (insn) > (model_curr_point
5156 + MAX_SCHED_READY_INSNS)))
5157 && !(sched_pressure == SCHED_PRESSURE_MODEL
5158 && model_curr_point < model_num_insns
5159 /* Always allow the next model instruction to issue. */
5160 && model_index (insn) == model_curr_point)
5161 && !SCHED_GROUP_P (insn)
5162 && insn != skip_insn)
5164 if (sched_verbose >= 2)
5165 fprintf (sched_dump, "keeping in queue, ready full\n");
5166 queue_insn (insn, 1, "ready full");
5168 else
5170 ready_add (ready, insn, false);
5171 if (sched_verbose >= 2)
5172 fprintf (sched_dump, "moving to ready without stalls\n");
5175 free_INSN_LIST_list (&insn_queue[q_ptr]);
5177 /* If there are no ready insns, stall until one is ready and add all
5178 of the pending insns at that point to the ready list. */
5179 if (ready->n_ready == 0)
5181 int stalls;
5183 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5185 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5187 for (; link; link = link->next ())
5189 insn = link->insn ();
5190 q_size -= 1;
5192 if (sched_verbose >= 2)
5193 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5194 (*current_sched_info->print_insn) (insn, 0));
5196 ready_add (ready, insn, false);
5197 if (sched_verbose >= 2)
5198 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5200 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5202 advance_one_cycle ();
5204 break;
5207 advance_one_cycle ();
5210 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5211 clock_var += stalls;
5212 if (sched_verbose >= 2)
5213 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5214 stalls, clock_var);
5218 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5219 prematurely move INSN from the queue to the ready list. Currently,
5220 if a target defines the hook 'is_costly_dependence', this function
5221 uses the hook to check whether there exist any dependences which are
5222 considered costly by the target, between INSN and other insns that
5223 have already been scheduled. Dependences are checked up to Y cycles
5224 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5225 controlling this value.
5226 (Other considerations could be taken into account instead (or in
5227 addition) depending on user flags and target hooks. */
5229 static bool
5230 ok_for_early_queue_removal (rtx_insn *insn)
5232 if (targetm.sched.is_costly_dependence)
5234 int n_cycles;
5235 int i = scheduled_insns.length ();
5236 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5238 while (i-- > 0)
5240 int cost;
5242 rtx_insn *prev_insn = scheduled_insns[i];
5244 if (!NOTE_P (prev_insn))
5246 dep_t dep;
5248 dep = sd_find_dep_between (prev_insn, insn, true);
5250 if (dep != NULL)
5252 cost = dep_cost (dep);
5254 if (targetm.sched.is_costly_dependence (dep, cost,
5255 flag_sched_stalled_insns_dep - n_cycles))
5256 return false;
5260 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5261 break;
5264 if (i == 0)
5265 break;
5269 return true;
5273 /* Remove insns from the queue, before they become "ready" with respect
5274 to FU latency considerations. */
5276 static int
5277 early_queue_to_ready (state_t state, struct ready_list *ready)
5279 rtx_insn *insn;
5280 rtx_insn_list *link;
5281 rtx_insn_list *next_link;
5282 rtx_insn_list *prev_link;
5283 bool move_to_ready;
5284 int cost;
5285 state_t temp_state = alloca (dfa_state_size);
5286 int stalls;
5287 int insns_removed = 0;
5290 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5291 function:
5293 X == 0: There is no limit on how many queued insns can be removed
5294 prematurely. (flag_sched_stalled_insns = -1).
5296 X >= 1: Only X queued insns can be removed prematurely in each
5297 invocation. (flag_sched_stalled_insns = X).
5299 Otherwise: Early queue removal is disabled.
5300 (flag_sched_stalled_insns = 0)
5303 if (! flag_sched_stalled_insns)
5304 return 0;
5306 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5308 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5310 if (sched_verbose > 6)
5311 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5313 prev_link = 0;
5314 while (link)
5316 next_link = link->next ();
5317 insn = link->insn ();
5318 if (insn && sched_verbose > 6)
5319 print_rtl_single (sched_dump, insn);
5321 memcpy (temp_state, state, dfa_state_size);
5322 if (recog_memoized (insn) < 0)
5323 /* non-negative to indicate that it's not ready
5324 to avoid infinite Q->R->Q->R... */
5325 cost = 0;
5326 else
5327 cost = state_transition (temp_state, insn);
5329 if (sched_verbose >= 6)
5330 fprintf (sched_dump, "transition cost = %d\n", cost);
5332 move_to_ready = false;
5333 if (cost < 0)
5335 move_to_ready = ok_for_early_queue_removal (insn);
5336 if (move_to_ready == true)
5338 /* move from Q to R */
5339 q_size -= 1;
5340 ready_add (ready, insn, false);
5342 if (prev_link)
5343 XEXP (prev_link, 1) = next_link;
5344 else
5345 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5347 free_INSN_LIST_node (link);
5349 if (sched_verbose >= 2)
5350 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5351 (*current_sched_info->print_insn) (insn, 0));
5353 insns_removed++;
5354 if (insns_removed == flag_sched_stalled_insns)
5355 /* Remove no more than flag_sched_stalled_insns insns
5356 from Q at a time. */
5357 return insns_removed;
5361 if (move_to_ready == false)
5362 prev_link = link;
5364 link = next_link;
5365 } /* while link */
5366 } /* if link */
5368 } /* for stalls.. */
5370 return insns_removed;
5374 /* Print the ready list for debugging purposes.
5375 If READY_TRY is non-zero then only print insns that max_issue
5376 will consider. */
5377 static void
5378 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5380 rtx_insn **p;
5381 int i;
5383 if (ready->n_ready == 0)
5385 fprintf (sched_dump, "\n");
5386 return;
5389 p = ready_lastpos (ready);
5390 for (i = 0; i < ready->n_ready; i++)
5392 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5393 continue;
5395 fprintf (sched_dump, " %s:%d",
5396 (*current_sched_info->print_insn) (p[i], 0),
5397 INSN_LUID (p[i]));
5398 if (sched_pressure != SCHED_PRESSURE_NONE)
5399 fprintf (sched_dump, "(cost=%d",
5400 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5401 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5402 if (INSN_TICK (p[i]) > clock_var)
5403 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5404 if (sched_pressure == SCHED_PRESSURE_MODEL)
5405 fprintf (sched_dump, ":idx=%d",
5406 model_index (p[i]));
5407 if (sched_pressure != SCHED_PRESSURE_NONE)
5408 fprintf (sched_dump, ")");
5410 fprintf (sched_dump, "\n");
5413 /* Print the ready list. Callable from debugger. */
5414 static void
5415 debug_ready_list (struct ready_list *ready)
5417 debug_ready_list_1 (ready, NULL);
5420 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5421 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5422 replaces the epilogue note in the correct basic block. */
5423 void
5424 reemit_notes (rtx_insn *insn)
5426 rtx note;
5427 rtx_insn *last = insn;
5429 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5431 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5433 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5435 last = emit_note_before (note_type, last);
5436 remove_note (insn, note);
5441 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5442 static void
5443 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5445 if (PREV_INSN (insn) != last)
5447 basic_block bb;
5448 rtx_insn *note;
5449 int jump_p = 0;
5451 bb = BLOCK_FOR_INSN (insn);
5453 /* BB_HEAD is either LABEL or NOTE. */
5454 gcc_assert (BB_HEAD (bb) != insn);
5456 if (BB_END (bb) == insn)
5457 /* If this is last instruction in BB, move end marker one
5458 instruction up. */
5460 /* Jumps are always placed at the end of basic block. */
5461 jump_p = control_flow_insn_p (insn);
5463 gcc_assert (!jump_p
5464 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5465 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5466 || (common_sched_info->sched_pass_id
5467 == SCHED_EBB_PASS));
5469 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5471 BB_END (bb) = PREV_INSN (insn);
5474 gcc_assert (BB_END (bb) != last);
5476 if (jump_p)
5477 /* We move the block note along with jump. */
5479 gcc_assert (nt);
5481 note = NEXT_INSN (insn);
5482 while (NOTE_NOT_BB_P (note) && note != nt)
5483 note = NEXT_INSN (note);
5485 if (note != nt
5486 && (LABEL_P (note)
5487 || BARRIER_P (note)))
5488 note = NEXT_INSN (note);
5490 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5492 else
5493 note = insn;
5495 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5496 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5498 SET_NEXT_INSN (note) = NEXT_INSN (last);
5499 SET_PREV_INSN (NEXT_INSN (last)) = note;
5501 SET_NEXT_INSN (last) = insn;
5502 SET_PREV_INSN (insn) = last;
5504 bb = BLOCK_FOR_INSN (last);
5506 if (jump_p)
5508 fix_jump_move (insn);
5510 if (BLOCK_FOR_INSN (insn) != bb)
5511 move_block_after_check (insn);
5513 gcc_assert (BB_END (bb) == last);
5516 df_insn_change_bb (insn, bb);
5518 /* Update BB_END, if needed. */
5519 if (BB_END (bb) == last)
5520 BB_END (bb) = insn;
5523 SCHED_GROUP_P (insn) = 0;
5526 /* Return true if scheduling INSN will finish current clock cycle. */
5527 static bool
5528 insn_finishes_cycle_p (rtx_insn *insn)
5530 if (SCHED_GROUP_P (insn))
5531 /* After issuing INSN, rest of the sched_group will be forced to issue
5532 in order. Don't make any plans for the rest of cycle. */
5533 return true;
5535 /* Finishing the block will, apparently, finish the cycle. */
5536 if (current_sched_info->insn_finishes_block_p
5537 && current_sched_info->insn_finishes_block_p (insn))
5538 return true;
5540 return false;
5543 /* Helper for autopref_multipass_init. Given a SET in PAT and whether
5544 we're expecting a memory WRITE or not, check that the insn is relevant to
5545 the autoprefetcher modelling code. Return true iff that is the case.
5546 If it is relevant, record the base register of the memory op in BASE and
5547 the offset in OFFSET. */
5549 static bool
5550 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5552 if (GET_CODE (pat) != SET)
5553 return false;
5555 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5556 if (!MEM_P (mem))
5557 return false;
5559 struct address_info info;
5560 decompose_mem_address (&info, mem);
5562 /* TODO: Currently only (base+const) addressing is supported. */
5563 if (info.base == NULL || !REG_P (*info.base)
5564 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5565 return false;
5567 *base = *info.base;
5568 *offset = info.disp ? INTVAL (*info.disp) : 0;
5569 return true;
5572 /* Functions to model cache auto-prefetcher.
5574 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5575 memory prefetches if it sees instructions with consequitive memory accesses
5576 in the instruction stream. Details of such hardware units are not published,
5577 so we can only guess what exactly is going on there.
5578 In the scheduler, we model abstract auto-prefetcher. If there are memory
5579 insns in the ready list (or the queue) that have same memory base, but
5580 different offsets, then we delay the insns with larger offsets until insns
5581 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5582 is "1", then we look at the ready list; if it is N>1, then we also look
5583 through N-1 queue entries.
5584 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5585 among its heuristics.
5586 Param value of "-1" disables modelling of the auto-prefetcher. */
5588 /* Initialize autoprefetcher model data for INSN. */
5589 static void
5590 autopref_multipass_init (const rtx_insn *insn, int write)
5592 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5594 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5595 data->base = NULL_RTX;
5596 data->offset = 0;
5597 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5598 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5600 rtx pat = PATTERN (insn);
5602 /* We have a multi-set insn like a load-multiple or store-multiple.
5603 We care about these as long as all the memory ops inside the PARALLEL
5604 have the same base register. We care about the minimum and maximum
5605 offsets from that base but don't check for the order of those offsets
5606 within the PARALLEL insn itself. */
5607 if (GET_CODE (pat) == PARALLEL)
5609 int n_elems = XVECLEN (pat, 0);
5611 int i, offset;
5612 rtx base, prev_base = NULL_RTX;
5613 int min_offset = INT_MAX;
5615 for (i = 0; i < n_elems; i++)
5617 rtx set = XVECEXP (pat, 0, i);
5618 if (GET_CODE (set) != SET)
5619 return;
5621 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5622 return;
5624 /* Ensure that all memory operations in the PARALLEL use the same
5625 base register. */
5626 if (i > 0 && REGNO (base) != REGNO (prev_base))
5627 return;
5628 prev_base = base;
5629 min_offset = MIN (min_offset, offset);
5632 /* If we reached here then we have a valid PARALLEL of multiple memory ops
5633 with prev_base as the base and min_offset containing the offset. */
5634 gcc_assert (prev_base);
5635 data->base = prev_base;
5636 data->offset = min_offset;
5637 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5638 return;
5641 /* Otherwise this is a single set memory operation. */
5642 rtx set = single_set (insn);
5643 if (set == NULL_RTX)
5644 return;
5646 if (!analyze_set_insn_for_autopref (set, write, &data->base,
5647 &data->offset))
5648 return;
5650 /* This insn is relevant for the auto-prefetcher.
5651 The base and offset fields will have been filled in the
5652 analyze_set_insn_for_autopref call above. */
5653 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5656 /* Helper function for rank_for_schedule sorting. */
5657 static int
5658 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5660 int r = 0;
5661 for (int write = 0; write < 2 && !r; ++write)
5663 autopref_multipass_data_t data1
5664 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5665 autopref_multipass_data_t data2
5666 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5668 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5669 autopref_multipass_init (insn1, write);
5671 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5672 autopref_multipass_init (insn2, write);
5674 int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5675 int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5677 if (!irrel1 && !irrel2)
5678 r = data1->offset - data2->offset;
5679 else
5680 r = irrel2 - irrel1;
5683 return r;
5686 /* True if header of debug dump was printed. */
5687 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5689 /* Helper for autopref_multipass_dfa_lookahead_guard.
5690 Return "1" if INSN1 should be delayed in favor of INSN2. */
5691 static int
5692 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5693 const rtx_insn *insn2, int write)
5695 autopref_multipass_data_t data1
5696 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5697 autopref_multipass_data_t data2
5698 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5700 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5701 autopref_multipass_init (insn2, write);
5702 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5703 return 0;
5705 if (rtx_equal_p (data1->base, data2->base)
5706 && data1->offset > data2->offset)
5708 if (sched_verbose >= 2)
5710 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5712 fprintf (sched_dump,
5713 ";;\t\tnot trying in max_issue due to autoprefetch "
5714 "model: ");
5715 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5718 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5721 return 1;
5724 return 0;
5727 /* General note:
5729 We could have also hooked autoprefetcher model into
5730 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5731 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5732 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5733 unblocked). We don't bother about this yet because target of interest
5734 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5736 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5737 Return "1" if INSN1 should not be considered in max_issue due to
5738 auto-prefetcher considerations. */
5740 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5742 int r = 0;
5744 /* Exit early if the param forbids this or if we're not entering here through
5745 normal haifa scheduling. This can happen if selective scheduling is
5746 explicitly enabled. */
5747 if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5748 return 0;
5750 if (sched_verbose >= 2 && ready_index == 0)
5751 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5753 for (int write = 0; write < 2; ++write)
5755 autopref_multipass_data_t data1
5756 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5758 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5759 autopref_multipass_init (insn1, write);
5760 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5761 continue;
5763 if (ready_index == 0
5764 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5765 /* We allow only a single delay on priviledged instructions.
5766 Doing otherwise would cause infinite loop. */
5768 if (sched_verbose >= 2)
5770 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5772 fprintf (sched_dump,
5773 ";;\t\tnot trying in max_issue due to autoprefetch "
5774 "model: ");
5775 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5778 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5780 continue;
5783 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5785 rtx_insn *insn2 = get_ready_element (i2);
5786 if (insn1 == insn2)
5787 continue;
5788 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5789 if (r)
5791 if (ready_index == 0)
5793 r = -1;
5794 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5796 goto finish;
5800 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5801 continue;
5803 /* Everything from the current queue slot should have been moved to
5804 the ready list. */
5805 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5807 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5808 if (n_stalls > max_insn_queue_index)
5809 n_stalls = max_insn_queue_index;
5811 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5813 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5814 link != NULL_RTX;
5815 link = link->next ())
5817 rtx_insn *insn2 = link->insn ();
5818 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5819 write);
5820 if (r)
5822 /* Queue INSN1 until INSN2 can issue. */
5823 r = -stalls;
5824 if (ready_index == 0)
5825 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5826 goto finish;
5832 finish:
5833 if (sched_verbose >= 2
5834 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5835 && (ready_index == ready.n_ready - 1 || r < 0))
5836 /* This does not /always/ trigger. We don't output EOL if the last
5837 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5838 called. We can live with this. */
5839 fprintf (sched_dump, "\n");
5841 return r;
5844 /* Define type for target data used in multipass scheduling. */
5845 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5846 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5847 #endif
5848 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5850 /* The following structure describe an entry of the stack of choices. */
5851 struct choice_entry
5853 /* Ordinal number of the issued insn in the ready queue. */
5854 int index;
5855 /* The number of the rest insns whose issues we should try. */
5856 int rest;
5857 /* The number of issued essential insns. */
5858 int n;
5859 /* State after issuing the insn. */
5860 state_t state;
5861 /* Target-specific data. */
5862 first_cycle_multipass_data_t target_data;
5865 /* The following array is used to implement a stack of choices used in
5866 function max_issue. */
5867 static struct choice_entry *choice_stack;
5869 /* This holds the value of the target dfa_lookahead hook. */
5870 int dfa_lookahead;
5872 /* The following variable value is maximal number of tries of issuing
5873 insns for the first cycle multipass insn scheduling. We define
5874 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5875 need this constraint if all real insns (with non-negative codes)
5876 had reservations because in this case the algorithm complexity is
5877 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5878 might be incomplete and such insn might occur. For such
5879 descriptions, the complexity of algorithm (without the constraint)
5880 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5881 static int max_lookahead_tries;
5883 /* The following function returns maximal (or close to maximal) number
5884 of insns which can be issued on the same cycle and one of which
5885 insns is insns with the best rank (the first insn in READY). To
5886 make this function tries different samples of ready insns. READY
5887 is current queue `ready'. Global array READY_TRY reflects what
5888 insns are already issued in this try. The function stops immediately,
5889 if it reached the such a solution, that all instruction can be issued.
5890 INDEX will contain index of the best insn in READY. The following
5891 function is used only for first cycle multipass scheduling.
5893 PRIVILEGED_N >= 0
5895 This function expects recognized insns only. All USEs,
5896 CLOBBERs, etc must be filtered elsewhere. */
5898 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5899 bool first_cycle_insn_p, int *index)
5901 int n, i, all, n_ready, best, delay, tries_num;
5902 int more_issue;
5903 struct choice_entry *top;
5904 rtx_insn *insn;
5906 if (sched_fusion)
5907 return 0;
5909 n_ready = ready->n_ready;
5910 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5911 && privileged_n <= n_ready);
5913 /* Init MAX_LOOKAHEAD_TRIES. */
5914 if (max_lookahead_tries == 0)
5916 max_lookahead_tries = 100;
5917 for (i = 0; i < issue_rate; i++)
5918 max_lookahead_tries *= dfa_lookahead;
5921 /* Init max_points. */
5922 more_issue = issue_rate - cycle_issued_insns;
5923 gcc_assert (more_issue >= 0);
5925 /* The number of the issued insns in the best solution. */
5926 best = 0;
5928 top = choice_stack;
5930 /* Set initial state of the search. */
5931 memcpy (top->state, state, dfa_state_size);
5932 top->rest = dfa_lookahead;
5933 top->n = 0;
5934 if (targetm.sched.first_cycle_multipass_begin)
5935 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5936 ready_try, n_ready,
5937 first_cycle_insn_p);
5939 /* Count the number of the insns to search among. */
5940 for (all = i = 0; i < n_ready; i++)
5941 if (!ready_try [i])
5942 all++;
5944 if (sched_verbose >= 2)
5946 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5947 debug_ready_list_1 (ready, ready_try);
5950 /* I is the index of the insn to try next. */
5951 i = 0;
5952 tries_num = 0;
5953 for (;;)
5955 if (/* If we've reached a dead end or searched enough of what we have
5956 been asked... */
5957 top->rest == 0
5958 /* or have nothing else to try... */
5959 || i >= n_ready
5960 /* or should not issue more. */
5961 || top->n >= more_issue)
5963 /* ??? (... || i == n_ready). */
5964 gcc_assert (i <= n_ready);
5966 /* We should not issue more than issue_rate instructions. */
5967 gcc_assert (top->n <= more_issue);
5969 if (top == choice_stack)
5970 break;
5972 if (best < top - choice_stack)
5974 if (privileged_n)
5976 n = privileged_n;
5977 /* Try to find issued privileged insn. */
5978 while (n && !ready_try[--n])
5982 if (/* If all insns are equally good... */
5983 privileged_n == 0
5984 /* Or a privileged insn will be issued. */
5985 || ready_try[n])
5986 /* Then we have a solution. */
5988 best = top - choice_stack;
5989 /* This is the index of the insn issued first in this
5990 solution. */
5991 *index = choice_stack [1].index;
5992 if (top->n == more_issue || best == all)
5993 break;
5997 /* Set ready-list index to point to the last insn
5998 ('i++' below will advance it to the next insn). */
5999 i = top->index;
6001 /* Backtrack. */
6002 ready_try [i] = 0;
6004 if (targetm.sched.first_cycle_multipass_backtrack)
6005 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
6006 ready_try, n_ready);
6008 top--;
6009 memcpy (state, top->state, dfa_state_size);
6011 else if (!ready_try [i])
6013 tries_num++;
6014 if (tries_num > max_lookahead_tries)
6015 break;
6016 insn = ready_element (ready, i);
6017 delay = state_transition (state, insn);
6018 if (delay < 0)
6020 if (state_dead_lock_p (state)
6021 || insn_finishes_cycle_p (insn))
6022 /* We won't issue any more instructions in the next
6023 choice_state. */
6024 top->rest = 0;
6025 else
6026 top->rest--;
6028 n = top->n;
6029 if (memcmp (top->state, state, dfa_state_size) != 0)
6030 n++;
6032 /* Advance to the next choice_entry. */
6033 top++;
6034 /* Initialize it. */
6035 top->rest = dfa_lookahead;
6036 top->index = i;
6037 top->n = n;
6038 memcpy (top->state, state, dfa_state_size);
6039 ready_try [i] = 1;
6041 if (targetm.sched.first_cycle_multipass_issue)
6042 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6043 ready_try, n_ready,
6044 insn,
6045 &((top - 1)
6046 ->target_data));
6048 i = -1;
6052 /* Increase ready-list index. */
6053 i++;
6056 if (targetm.sched.first_cycle_multipass_end)
6057 targetm.sched.first_cycle_multipass_end (best != 0
6058 ? &choice_stack[1].target_data
6059 : NULL);
6061 /* Restore the original state of the DFA. */
6062 memcpy (state, choice_stack->state, dfa_state_size);
6064 return best;
6067 /* The following function chooses insn from READY and modifies
6068 READY. The following function is used only for first
6069 cycle multipass scheduling.
6070 Return:
6071 -1 if cycle should be advanced,
6072 0 if INSN_PTR is set to point to the desirable insn,
6073 1 if choose_ready () should be restarted without advancing the cycle. */
6074 static int
6075 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6076 rtx_insn **insn_ptr)
6078 if (dbg_cnt (sched_insn) == false)
6080 if (nonscheduled_insns_begin == NULL_RTX)
6081 nonscheduled_insns_begin = current_sched_info->prev_head;
6083 rtx_insn *insn = first_nonscheduled_insn ();
6085 if (QUEUE_INDEX (insn) == QUEUE_READY)
6086 /* INSN is in the ready_list. */
6088 ready_remove_insn (insn);
6089 *insn_ptr = insn;
6090 return 0;
6093 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6094 gcc_assert (QUEUE_INDEX (insn) >= 0);
6095 return -1;
6098 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6099 || DEBUG_INSN_P (ready_element (ready, 0)))
6101 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6102 *insn_ptr = ready_remove_first_dispatch (ready);
6103 else
6104 *insn_ptr = ready_remove_first (ready);
6106 return 0;
6108 else
6110 /* Try to choose the best insn. */
6111 int index = 0, i;
6112 rtx_insn *insn;
6114 insn = ready_element (ready, 0);
6115 if (INSN_CODE (insn) < 0)
6117 *insn_ptr = ready_remove_first (ready);
6118 return 0;
6121 /* Filter the search space. */
6122 for (i = 0; i < ready->n_ready; i++)
6124 ready_try[i] = 0;
6126 insn = ready_element (ready, i);
6128 /* If this insn is recognizable we should have already
6129 recognized it earlier.
6130 ??? Not very clear where this is supposed to be done.
6131 See dep_cost_1. */
6132 gcc_checking_assert (INSN_CODE (insn) >= 0
6133 || recog_memoized (insn) < 0);
6134 if (INSN_CODE (insn) < 0)
6136 /* Non-recognized insns at position 0 are handled above. */
6137 gcc_assert (i > 0);
6138 ready_try[i] = 1;
6139 continue;
6142 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6144 ready_try[i]
6145 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6146 (insn, i));
6148 if (ready_try[i] < 0)
6149 /* Queue instruction for several cycles.
6150 We need to restart choose_ready as we have changed
6151 the ready list. */
6153 change_queue_index (insn, -ready_try[i]);
6154 return 1;
6157 /* Make sure that we didn't end up with 0'th insn filtered out.
6158 Don't be tempted to make life easier for backends and just
6159 requeue 0'th insn if (ready_try[0] == 0) and restart
6160 choose_ready. Backends should be very considerate about
6161 requeueing instructions -- especially the highest priority
6162 one at position 0. */
6163 gcc_assert (ready_try[i] == 0 || i > 0);
6164 if (ready_try[i])
6165 continue;
6168 gcc_assert (ready_try[i] == 0);
6169 /* INSN made it through the scrutiny of filters! */
6172 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6174 *insn_ptr = ready_remove_first (ready);
6175 if (sched_verbose >= 4)
6176 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6177 (*current_sched_info->print_insn) (*insn_ptr, 0));
6178 return 0;
6180 else
6182 if (sched_verbose >= 4)
6183 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6184 (*current_sched_info->print_insn)
6185 (ready_element (ready, index), 0));
6187 *insn_ptr = ready_remove (ready, index);
6188 return 0;
6193 /* This function is called when we have successfully scheduled a
6194 block. It uses the schedule stored in the scheduled_insns vector
6195 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6196 append the scheduled insns; TAIL is the insn after the scheduled
6197 block. TARGET_BB is the argument passed to schedule_block. */
6199 static void
6200 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6202 unsigned int i;
6203 rtx_insn *insn;
6205 last_scheduled_insn = prev_head;
6206 for (i = 0;
6207 scheduled_insns.iterate (i, &insn);
6208 i++)
6210 if (control_flow_insn_p (last_scheduled_insn)
6211 || current_sched_info->advance_target_bb (*target_bb, insn))
6213 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6215 if (sched_verbose)
6217 rtx_insn *x;
6219 x = next_real_insn (last_scheduled_insn);
6220 gcc_assert (x);
6221 dump_new_block_header (1, *target_bb, x, tail);
6224 last_scheduled_insn = bb_note (*target_bb);
6227 if (current_sched_info->begin_move_insn)
6228 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6229 move_insn (insn, last_scheduled_insn,
6230 current_sched_info->next_tail);
6231 if (!DEBUG_INSN_P (insn))
6232 reemit_notes (insn);
6233 last_scheduled_insn = insn;
6236 scheduled_insns.truncate (0);
6239 /* Examine all insns on the ready list and queue those which can't be
6240 issued in this cycle. TEMP_STATE is temporary scheduler state we
6241 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6242 have been issued for the current cycle, which means it is valid to
6243 issue an asm statement.
6245 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6246 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6247 we only leave insns which have an INSN_EXACT_TICK. */
6249 static void
6250 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6251 bool shadows_only_p, bool modulo_epilogue_p)
6253 int i, pass;
6254 bool sched_group_found = false;
6255 int min_cost_group = 0;
6257 if (sched_fusion)
6258 return;
6260 for (i = 0; i < ready.n_ready; i++)
6262 rtx_insn *insn = ready_element (&ready, i);
6263 if (SCHED_GROUP_P (insn))
6265 sched_group_found = true;
6266 break;
6270 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6271 such an insn first and note its cost. If at least one SCHED_GROUP_P insn
6272 gets queued, then all other insns get queued for one cycle later. */
6273 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6275 int n = ready.n_ready;
6276 for (i = 0; i < n; i++)
6278 rtx_insn *insn = ready_element (&ready, i);
6279 int cost = 0;
6280 const char *reason = "resource conflict";
6282 if (DEBUG_INSN_P (insn))
6283 continue;
6285 if (sched_group_found && !SCHED_GROUP_P (insn)
6286 && ((pass == 0) || (min_cost_group >= 1)))
6288 if (pass == 0)
6289 continue;
6290 cost = min_cost_group;
6291 reason = "not in sched group";
6293 else if (modulo_epilogue_p
6294 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6296 cost = max_insn_queue_index;
6297 reason = "not an epilogue insn";
6299 else if (shadows_only_p && !SHADOW_P (insn))
6301 cost = 1;
6302 reason = "not a shadow";
6304 else if (recog_memoized (insn) < 0)
6306 if (!first_cycle_insn_p
6307 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6308 || asm_noperands (PATTERN (insn)) >= 0))
6309 cost = 1;
6310 reason = "asm";
6312 else if (sched_pressure != SCHED_PRESSURE_NONE)
6314 if (sched_pressure == SCHED_PRESSURE_MODEL
6315 && INSN_TICK (insn) <= clock_var)
6317 memcpy (temp_state, curr_state, dfa_state_size);
6318 if (state_transition (temp_state, insn) >= 0)
6319 INSN_TICK (insn) = clock_var + 1;
6321 cost = 0;
6323 else
6325 int delay_cost = 0;
6327 if (delay_htab)
6329 struct delay_pair *delay_entry;
6330 delay_entry
6331 = delay_htab->find_with_hash (insn,
6332 htab_hash_pointer (insn));
6333 while (delay_entry && delay_cost == 0)
6335 delay_cost = estimate_shadow_tick (delay_entry);
6336 if (delay_cost > max_insn_queue_index)
6337 delay_cost = max_insn_queue_index;
6338 delay_entry = delay_entry->next_same_i1;
6342 memcpy (temp_state, curr_state, dfa_state_size);
6343 cost = state_transition (temp_state, insn);
6344 if (cost < 0)
6345 cost = 0;
6346 else if (cost == 0)
6347 cost = 1;
6348 if (cost < delay_cost)
6350 cost = delay_cost;
6351 reason = "shadow tick";
6354 if (cost >= 1)
6356 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6357 min_cost_group = cost;
6358 ready_remove (&ready, i);
6359 /* Normally we'd want to queue INSN for COST cycles. However,
6360 if SCHED_GROUP_P is set, then we must ensure that nothing
6361 else comes between INSN and its predecessor. If there is
6362 some other insn ready to fire on the next cycle, then that
6363 invariant would be broken.
6365 So when SCHED_GROUP_P is set, just queue this insn for a
6366 single cycle. */
6367 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6368 if (i + 1 < n)
6369 break;
6372 if (i == n)
6373 pass++;
6377 /* Called when we detect that the schedule is impossible. We examine the
6378 backtrack queue to find the earliest insn that caused this condition. */
6380 static struct haifa_saved_data *
6381 verify_shadows (void)
6383 struct haifa_saved_data *save, *earliest_fail = NULL;
6384 for (save = backtrack_queue; save; save = save->next)
6386 int t;
6387 struct delay_pair *pair = save->delay_pair;
6388 rtx_insn *i1 = pair->i1;
6390 for (; pair; pair = pair->next_same_i1)
6392 rtx_insn *i2 = pair->i2;
6394 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6395 continue;
6397 t = INSN_TICK (i1) + pair_delay (pair);
6398 if (t < clock_var)
6400 if (sched_verbose >= 2)
6401 fprintf (sched_dump,
6402 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6403 ", not ready\n",
6404 INSN_UID (pair->i1), INSN_UID (pair->i2),
6405 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6406 earliest_fail = save;
6407 break;
6409 if (QUEUE_INDEX (i2) >= 0)
6411 int queued_for = INSN_TICK (i2);
6413 if (t < queued_for)
6415 if (sched_verbose >= 2)
6416 fprintf (sched_dump,
6417 ";;\t\tfailed delay requirements for %d/%d"
6418 " (%d->%d), queued too late\n",
6419 INSN_UID (pair->i1), INSN_UID (pair->i2),
6420 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6421 earliest_fail = save;
6422 break;
6428 return earliest_fail;
6431 /* Print instructions together with useful scheduling information between
6432 HEAD and TAIL (inclusive). */
6433 static void
6434 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6436 fprintf (sched_dump, ";;\t| insn | prio |\n");
6438 rtx_insn *next_tail = NEXT_INSN (tail);
6439 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6441 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6442 const char *pattern = (NOTE_P (insn)
6443 ? "note"
6444 : str_pattern_slim (PATTERN (insn)));
6446 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6447 INSN_UID (insn), priority, pattern);
6449 if (sched_verbose >= 4)
6451 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
6452 fprintf (sched_dump, "nothing");
6453 else
6454 print_reservation (sched_dump, insn);
6456 fprintf (sched_dump, "\n");
6460 /* Use forward list scheduling to rearrange insns of block pointed to by
6461 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6462 region. */
6464 bool
6465 schedule_block (basic_block *target_bb, state_t init_state)
6467 int i;
6468 bool success = modulo_ii == 0;
6469 struct sched_block_state ls;
6470 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6471 int sort_p, advance, start_clock_var;
6473 /* Head/tail info for this block. */
6474 rtx_insn *prev_head = current_sched_info->prev_head;
6475 rtx_insn *next_tail = current_sched_info->next_tail;
6476 rtx_insn *head = NEXT_INSN (prev_head);
6477 rtx_insn *tail = PREV_INSN (next_tail);
6479 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6480 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6481 find_modifiable_mems (head, tail);
6483 /* We used to have code to avoid getting parameters moved from hard
6484 argument registers into pseudos.
6486 However, it was removed when it proved to be of marginal benefit
6487 and caused problems because schedule_block and compute_forward_dependences
6488 had different notions of what the "head" insn was. */
6490 gcc_assert (head != tail || INSN_P (head));
6492 haifa_recovery_bb_recently_added_p = false;
6494 backtrack_queue = NULL;
6496 /* Debug info. */
6497 if (sched_verbose)
6499 dump_new_block_header (0, *target_bb, head, tail);
6501 if (sched_verbose >= 2)
6503 dump_insn_stream (head, tail);
6504 memset (&rank_for_schedule_stats, 0,
6505 sizeof (rank_for_schedule_stats));
6509 if (init_state == NULL)
6510 state_reset (curr_state);
6511 else
6512 memcpy (curr_state, init_state, dfa_state_size);
6514 /* Clear the ready list. */
6515 ready.first = ready.veclen - 1;
6516 ready.n_ready = 0;
6517 ready.n_debug = 0;
6519 /* It is used for first cycle multipass scheduling. */
6520 temp_state = alloca (dfa_state_size);
6522 if (targetm.sched.init)
6523 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6525 /* We start inserting insns after PREV_HEAD. */
6526 last_scheduled_insn = prev_head;
6527 last_nondebug_scheduled_insn = NULL;
6528 nonscheduled_insns_begin = NULL;
6530 gcc_assert ((NOTE_P (last_scheduled_insn)
6531 || DEBUG_INSN_P (last_scheduled_insn))
6532 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6534 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6535 queue. */
6536 q_ptr = 0;
6537 q_size = 0;
6539 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6540 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6542 /* Start just before the beginning of time. */
6543 clock_var = -1;
6545 /* We need queue and ready lists and clock_var be initialized
6546 in try_ready () (which is called through init_ready_list ()). */
6547 (*current_sched_info->init_ready_list) ();
6549 if (sched_pressure)
6550 sched_pressure_start_bb (*target_bb);
6552 /* The algorithm is O(n^2) in the number of ready insns at any given
6553 time in the worst case. Before reload we are more likely to have
6554 big lists so truncate them to a reasonable size. */
6555 if (!reload_completed
6556 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6558 ready_sort_debug (&ready);
6559 ready_sort_real (&ready);
6561 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6562 If there are debug insns, we know they're first. */
6563 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6564 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6565 break;
6567 if (sched_verbose >= 2)
6569 fprintf (sched_dump,
6570 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6571 debug_ready_list (&ready);
6572 fprintf (sched_dump,
6573 ";;\t\t before reload => truncated to %d insns\n", i);
6576 /* Delay all insns past it for 1 cycle. If debug counter is
6577 activated make an exception for the insn right after
6578 nonscheduled_insns_begin. */
6580 rtx_insn *skip_insn;
6582 if (dbg_cnt (sched_insn) == false)
6583 skip_insn = first_nonscheduled_insn ();
6584 else
6585 skip_insn = NULL;
6587 while (i < ready.n_ready)
6589 rtx_insn *insn;
6591 insn = ready_remove (&ready, i);
6593 if (insn != skip_insn)
6594 queue_insn (insn, 1, "list truncated");
6596 if (skip_insn)
6597 ready_add (&ready, skip_insn, true);
6601 /* Now we can restore basic block notes and maintain precise cfg. */
6602 restore_bb_notes (*target_bb);
6604 last_clock_var = -1;
6606 advance = 0;
6608 gcc_assert (scheduled_insns.length () == 0);
6609 sort_p = TRUE;
6610 must_backtrack = false;
6611 modulo_insns_scheduled = 0;
6613 ls.modulo_epilogue = false;
6614 ls.first_cycle_insn_p = true;
6616 /* Loop until all the insns in BB are scheduled. */
6617 while ((*current_sched_info->schedule_more_p) ())
6619 perform_replacements_new_cycle ();
6622 start_clock_var = clock_var;
6624 clock_var++;
6626 advance_one_cycle ();
6628 /* Add to the ready list all pending insns that can be issued now.
6629 If there are no ready insns, increment clock until one
6630 is ready and add all pending insns at that point to the ready
6631 list. */
6632 queue_to_ready (&ready);
6634 gcc_assert (ready.n_ready);
6636 if (sched_verbose >= 2)
6638 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6639 debug_ready_list (&ready);
6641 advance -= clock_var - start_clock_var;
6643 while (advance > 0);
6645 if (ls.modulo_epilogue)
6647 int stage = clock_var / modulo_ii;
6648 if (stage > modulo_last_stage * 2 + 2)
6650 if (sched_verbose >= 2)
6651 fprintf (sched_dump,
6652 ";;\t\tmodulo scheduled succeeded at II %d\n",
6653 modulo_ii);
6654 success = true;
6655 goto end_schedule;
6658 else if (modulo_ii > 0)
6660 int stage = clock_var / modulo_ii;
6661 if (stage > modulo_max_stages)
6663 if (sched_verbose >= 2)
6664 fprintf (sched_dump,
6665 ";;\t\tfailing schedule due to excessive stages\n");
6666 goto end_schedule;
6668 if (modulo_n_insns == modulo_insns_scheduled
6669 && stage > modulo_last_stage)
6671 if (sched_verbose >= 2)
6672 fprintf (sched_dump,
6673 ";;\t\tfound kernel after %d stages, II %d\n",
6674 stage, modulo_ii);
6675 ls.modulo_epilogue = true;
6679 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6680 if (ready.n_ready == 0)
6681 continue;
6682 if (must_backtrack)
6683 goto do_backtrack;
6685 ls.shadows_only_p = false;
6686 cycle_issued_insns = 0;
6687 ls.can_issue_more = issue_rate;
6688 for (;;)
6690 rtx_insn *insn;
6691 int cost;
6692 bool asm_p;
6694 if (sort_p && ready.n_ready > 0)
6696 /* Sort the ready list based on priority. This must be
6697 done every iteration through the loop, as schedule_insn
6698 may have readied additional insns that will not be
6699 sorted correctly. */
6700 ready_sort (&ready);
6702 if (sched_verbose >= 2)
6704 fprintf (sched_dump,
6705 ";;\t\tReady list after ready_sort: ");
6706 debug_ready_list (&ready);
6710 /* We don't want md sched reorder to even see debug isns, so put
6711 them out right away. */
6712 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6713 && (*current_sched_info->schedule_more_p) ())
6715 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6717 rtx_insn *insn = ready_remove_first (&ready);
6718 gcc_assert (DEBUG_INSN_P (insn));
6719 (*current_sched_info->begin_schedule_ready) (insn);
6720 scheduled_insns.safe_push (insn);
6721 last_scheduled_insn = insn;
6722 advance = schedule_insn (insn);
6723 gcc_assert (advance == 0);
6724 if (ready.n_ready > 0)
6725 ready_sort (&ready);
6729 if (ls.first_cycle_insn_p && !ready.n_ready)
6730 break;
6732 resume_after_backtrack:
6733 /* Allow the target to reorder the list, typically for
6734 better instruction bundling. */
6735 if (sort_p
6736 && (ready.n_ready == 0
6737 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6739 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6740 ls.can_issue_more
6741 = targetm.sched.reorder (sched_dump, sched_verbose,
6742 ready_lastpos (&ready),
6743 &ready.n_ready, clock_var);
6744 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6745 ls.can_issue_more
6746 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6747 ready.n_ready
6748 ? ready_lastpos (&ready) : NULL,
6749 &ready.n_ready, clock_var);
6752 restart_choose_ready:
6753 if (sched_verbose >= 2)
6755 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6756 clock_var);
6757 debug_ready_list (&ready);
6758 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6759 print_curr_reg_pressure ();
6762 if (ready.n_ready == 0
6763 && ls.can_issue_more
6764 && reload_completed)
6766 /* Allow scheduling insns directly from the queue in case
6767 there's nothing better to do (ready list is empty) but
6768 there are still vacant dispatch slots in the current cycle. */
6769 if (sched_verbose >= 6)
6770 fprintf (sched_dump,";;\t\tSecond chance\n");
6771 memcpy (temp_state, curr_state, dfa_state_size);
6772 if (early_queue_to_ready (temp_state, &ready))
6773 ready_sort (&ready);
6776 if (ready.n_ready == 0
6777 || !ls.can_issue_more
6778 || state_dead_lock_p (curr_state)
6779 || !(*current_sched_info->schedule_more_p) ())
6780 break;
6782 /* Select and remove the insn from the ready list. */
6783 if (sort_p)
6785 int res;
6787 insn = NULL;
6788 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6790 if (res < 0)
6791 /* Finish cycle. */
6792 break;
6793 if (res > 0)
6794 goto restart_choose_ready;
6796 gcc_assert (insn != NULL_RTX);
6798 else
6799 insn = ready_remove_first (&ready);
6801 if (sched_pressure != SCHED_PRESSURE_NONE
6802 && INSN_TICK (insn) > clock_var)
6804 ready_add (&ready, insn, true);
6805 advance = 1;
6806 break;
6809 if (targetm.sched.dfa_new_cycle
6810 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6811 insn, last_clock_var,
6812 clock_var, &sort_p))
6813 /* SORT_P is used by the target to override sorting
6814 of the ready list. This is needed when the target
6815 has modified its internal structures expecting that
6816 the insn will be issued next. As we need the insn
6817 to have the highest priority (so it will be returned by
6818 the ready_remove_first call above), we invoke
6819 ready_add (&ready, insn, true).
6820 But, still, there is one issue: INSN can be later
6821 discarded by scheduler's front end through
6822 current_sched_info->can_schedule_ready_p, hence, won't
6823 be issued next. */
6825 ready_add (&ready, insn, true);
6826 break;
6829 sort_p = TRUE;
6831 if (current_sched_info->can_schedule_ready_p
6832 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6833 /* We normally get here only if we don't want to move
6834 insn from the split block. */
6836 TODO_SPEC (insn) = DEP_POSTPONED;
6837 goto restart_choose_ready;
6840 if (delay_htab)
6842 /* If this insn is the first part of a delay-slot pair, record a
6843 backtrack point. */
6844 struct delay_pair *delay_entry;
6845 delay_entry
6846 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6847 if (delay_entry)
6849 save_backtrack_point (delay_entry, ls);
6850 if (sched_verbose >= 2)
6851 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6855 /* DECISION is made. */
6857 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6859 modulo_insns_scheduled++;
6860 modulo_last_stage = clock_var / modulo_ii;
6862 if (TODO_SPEC (insn) & SPECULATIVE)
6863 generate_recovery_code (insn);
6865 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6866 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6868 /* Update counters, etc in the scheduler's front end. */
6869 (*current_sched_info->begin_schedule_ready) (insn);
6870 scheduled_insns.safe_push (insn);
6871 gcc_assert (NONDEBUG_INSN_P (insn));
6872 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6874 if (recog_memoized (insn) >= 0)
6876 memcpy (temp_state, curr_state, dfa_state_size);
6877 cost = state_transition (curr_state, insn);
6878 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6879 gcc_assert (cost < 0);
6880 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6881 cycle_issued_insns++;
6882 asm_p = false;
6884 else
6885 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6886 || asm_noperands (PATTERN (insn)) >= 0);
6888 if (targetm.sched.variable_issue)
6889 ls.can_issue_more =
6890 targetm.sched.variable_issue (sched_dump, sched_verbose,
6891 insn, ls.can_issue_more);
6892 /* A naked CLOBBER or USE generates no instruction, so do
6893 not count them against the issue rate. */
6894 else if (GET_CODE (PATTERN (insn)) != USE
6895 && GET_CODE (PATTERN (insn)) != CLOBBER)
6896 ls.can_issue_more--;
6897 advance = schedule_insn (insn);
6899 if (SHADOW_P (insn))
6900 ls.shadows_only_p = true;
6902 /* After issuing an asm insn we should start a new cycle. */
6903 if (advance == 0 && asm_p)
6904 advance = 1;
6906 if (must_backtrack)
6907 break;
6909 if (advance != 0)
6910 break;
6912 ls.first_cycle_insn_p = false;
6913 if (ready.n_ready > 0)
6914 prune_ready_list (temp_state, false, ls.shadows_only_p,
6915 ls.modulo_epilogue);
6918 do_backtrack:
6919 if (!must_backtrack)
6920 for (i = 0; i < ready.n_ready; i++)
6922 rtx_insn *insn = ready_element (&ready, i);
6923 if (INSN_EXACT_TICK (insn) == clock_var)
6925 must_backtrack = true;
6926 clock_var++;
6927 break;
6930 if (must_backtrack && modulo_ii > 0)
6932 if (modulo_backtracks_left == 0)
6933 goto end_schedule;
6934 modulo_backtracks_left--;
6936 while (must_backtrack)
6938 struct haifa_saved_data *failed;
6939 rtx_insn *failed_insn;
6941 must_backtrack = false;
6942 failed = verify_shadows ();
6943 gcc_assert (failed);
6945 failed_insn = failed->delay_pair->i1;
6946 /* Clear these queues. */
6947 perform_replacements_new_cycle ();
6948 toggle_cancelled_flags (false);
6949 unschedule_insns_until (failed_insn);
6950 while (failed != backtrack_queue)
6951 free_topmost_backtrack_point (true);
6952 restore_last_backtrack_point (&ls);
6953 if (sched_verbose >= 2)
6954 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6955 /* Delay by at least a cycle. This could cause additional
6956 backtracking. */
6957 queue_insn (failed_insn, 1, "backtracked");
6958 advance = 0;
6959 if (must_backtrack)
6960 continue;
6961 if (ready.n_ready > 0)
6962 goto resume_after_backtrack;
6963 else
6965 if (clock_var == 0 && ls.first_cycle_insn_p)
6966 goto end_schedule;
6967 advance = 1;
6968 break;
6971 ls.first_cycle_insn_p = true;
6973 if (ls.modulo_epilogue)
6974 success = true;
6975 end_schedule:
6976 if (!ls.first_cycle_insn_p || advance)
6977 advance_one_cycle ();
6978 perform_replacements_new_cycle ();
6979 if (modulo_ii > 0)
6981 /* Once again, debug insn suckiness: they can be on the ready list
6982 even if they have unresolved dependencies. To make our view
6983 of the world consistent, remove such "ready" insns. */
6984 restart_debug_insn_loop:
6985 for (i = ready.n_ready - 1; i >= 0; i--)
6987 rtx_insn *x;
6989 x = ready_element (&ready, i);
6990 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6991 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6993 ready_remove (&ready, i);
6994 goto restart_debug_insn_loop;
6997 for (i = ready.n_ready - 1; i >= 0; i--)
6999 rtx_insn *x;
7001 x = ready_element (&ready, i);
7002 resolve_dependencies (x);
7004 for (i = 0; i <= max_insn_queue_index; i++)
7006 rtx_insn_list *link;
7007 while ((link = insn_queue[i]) != NULL)
7009 rtx_insn *x = link->insn ();
7010 insn_queue[i] = link->next ();
7011 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7012 free_INSN_LIST_node (link);
7013 resolve_dependencies (x);
7018 if (!success)
7019 undo_all_replacements ();
7021 /* Debug info. */
7022 if (sched_verbose)
7024 fprintf (sched_dump, ";;\tReady list (final): ");
7025 debug_ready_list (&ready);
7028 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7029 /* Sanity check -- queue must be empty now. Meaningless if region has
7030 multiple bbs. */
7031 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7032 else if (modulo_ii == 0)
7034 /* We must maintain QUEUE_INDEX between blocks in region. */
7035 for (i = ready.n_ready - 1; i >= 0; i--)
7037 rtx_insn *x;
7039 x = ready_element (&ready, i);
7040 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7041 TODO_SPEC (x) = HARD_DEP;
7044 if (q_size)
7045 for (i = 0; i <= max_insn_queue_index; i++)
7047 rtx_insn_list *link;
7048 for (link = insn_queue[i]; link; link = link->next ())
7050 rtx_insn *x;
7052 x = link->insn ();
7053 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7054 TODO_SPEC (x) = HARD_DEP;
7056 free_INSN_LIST_list (&insn_queue[i]);
7060 if (sched_pressure == SCHED_PRESSURE_MODEL)
7061 model_end_schedule ();
7063 if (success)
7065 commit_schedule (prev_head, tail, target_bb);
7066 if (sched_verbose)
7067 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7069 else
7070 last_scheduled_insn = tail;
7072 scheduled_insns.truncate (0);
7074 if (!current_sched_info->queue_must_finish_empty
7075 || haifa_recovery_bb_recently_added_p)
7077 /* INSN_TICK (minimum clock tick at which the insn becomes
7078 ready) may be not correct for the insn in the subsequent
7079 blocks of the region. We should use a correct value of
7080 `clock_var' or modify INSN_TICK. It is better to keep
7081 clock_var value equal to 0 at the start of a basic block.
7082 Therefore we modify INSN_TICK here. */
7083 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7086 if (targetm.sched.finish)
7088 targetm.sched.finish (sched_dump, sched_verbose);
7089 /* Target might have added some instructions to the scheduled block
7090 in its md_finish () hook. These new insns don't have any data
7091 initialized and to identify them we extend h_i_d so that they'll
7092 get zero luids. */
7093 sched_extend_luids ();
7096 /* Update head/tail boundaries. */
7097 head = NEXT_INSN (prev_head);
7098 tail = last_scheduled_insn;
7100 if (sched_verbose)
7102 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7103 INSN_UID (head), INSN_UID (tail));
7105 if (sched_verbose >= 2)
7107 dump_insn_stream (head, tail);
7108 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7109 NULL);
7112 fprintf (sched_dump, "\n");
7115 head = restore_other_notes (head, NULL);
7117 current_sched_info->head = head;
7118 current_sched_info->tail = tail;
7120 free_backtrack_queue ();
7122 return success;
7125 /* Set_priorities: compute priority of each insn in the block. */
7128 set_priorities (rtx_insn *head, rtx_insn *tail)
7130 rtx_insn *insn;
7131 int n_insn;
7132 int sched_max_insns_priority =
7133 current_sched_info->sched_max_insns_priority;
7134 rtx_insn *prev_head;
7136 if (head == tail && ! INSN_P (head))
7137 gcc_unreachable ();
7139 n_insn = 0;
7141 prev_head = PREV_INSN (head);
7142 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7144 if (!INSN_P (insn))
7145 continue;
7147 n_insn++;
7148 (void) priority (insn);
7150 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7152 sched_max_insns_priority = MAX (sched_max_insns_priority,
7153 INSN_PRIORITY (insn));
7156 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7158 return n_insn;
7161 /* Set sched_dump and sched_verbose for the desired debugging output. */
7162 void
7163 setup_sched_dump (void)
7165 sched_verbose = sched_verbose_param;
7166 sched_dump = dump_file;
7167 if (!dump_file)
7168 sched_verbose = 0;
7171 /* Allocate data for register pressure sensitive scheduling. */
7172 static void
7173 alloc_global_sched_pressure_data (void)
7175 if (sched_pressure != SCHED_PRESSURE_NONE)
7177 int i, max_regno = max_reg_num ();
7179 if (sched_dump != NULL)
7180 /* We need info about pseudos for rtl dumps about pseudo
7181 classes and costs. */
7182 regstat_init_n_sets_and_refs ();
7183 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7184 sched_regno_pressure_class
7185 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7186 for (i = 0; i < max_regno; i++)
7187 sched_regno_pressure_class[i]
7188 = (i < FIRST_PSEUDO_REGISTER
7189 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7190 : ira_pressure_class_translate[reg_allocno_class (i)]);
7191 curr_reg_live = BITMAP_ALLOC (NULL);
7192 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7194 saved_reg_live = BITMAP_ALLOC (NULL);
7195 region_ref_regs = BITMAP_ALLOC (NULL);
7197 if (sched_pressure == SCHED_PRESSURE_MODEL)
7198 tmp_bitmap = BITMAP_ALLOC (NULL);
7200 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7201 that we calculate register pressure for. */
7202 for (int c = 0; c < ira_pressure_classes_num; ++c)
7204 enum reg_class cl = ira_pressure_classes[c];
7206 call_saved_regs_num[cl] = 0;
7207 fixed_regs_num[cl] = 0;
7209 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7210 if (!call_used_regs[ira_class_hard_regs[cl][i]])
7211 ++call_saved_regs_num[cl];
7212 else if (fixed_regs[ira_class_hard_regs[cl][i]])
7213 ++fixed_regs_num[cl];
7218 /* Free data for register pressure sensitive scheduling. Also called
7219 from schedule_region when stopping sched-pressure early. */
7220 void
7221 free_global_sched_pressure_data (void)
7223 if (sched_pressure != SCHED_PRESSURE_NONE)
7225 if (regstat_n_sets_and_refs != NULL)
7226 regstat_free_n_sets_and_refs ();
7227 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7229 BITMAP_FREE (region_ref_regs);
7230 BITMAP_FREE (saved_reg_live);
7232 if (sched_pressure == SCHED_PRESSURE_MODEL)
7233 BITMAP_FREE (tmp_bitmap);
7234 BITMAP_FREE (curr_reg_live);
7235 free (sched_regno_pressure_class);
7239 /* Initialize some global state for the scheduler. This function works
7240 with the common data shared between all the schedulers. It is called
7241 from the scheduler specific initialization routine. */
7243 void
7244 sched_init (void)
7246 /* Disable speculative loads in their presence if cc0 defined. */
7247 if (HAVE_cc0)
7248 flag_schedule_speculative_load = 0;
7250 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7251 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7253 if (live_range_shrinkage_p)
7254 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7255 else if (flag_sched_pressure
7256 && !reload_completed
7257 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7258 sched_pressure = ((enum sched_pressure_algorithm)
7259 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7260 else
7261 sched_pressure = SCHED_PRESSURE_NONE;
7263 if (sched_pressure != SCHED_PRESSURE_NONE)
7264 ira_setup_eliminable_regset ();
7266 /* Initialize SPEC_INFO. */
7267 if (targetm.sched.set_sched_flags)
7269 spec_info = &spec_info_var;
7270 targetm.sched.set_sched_flags (spec_info);
7272 if (spec_info->mask != 0)
7274 spec_info->data_weakness_cutoff =
7275 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7276 spec_info->control_weakness_cutoff =
7277 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7278 * REG_BR_PROB_BASE) / 100;
7280 else
7281 /* So we won't read anything accidentally. */
7282 spec_info = NULL;
7285 else
7286 /* So we won't read anything accidentally. */
7287 spec_info = 0;
7289 /* Initialize issue_rate. */
7290 if (targetm.sched.issue_rate)
7291 issue_rate = targetm.sched.issue_rate ();
7292 else
7293 issue_rate = 1;
7295 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7296 /* Don't use max_issue with reg_pressure scheduling. Multipass
7297 scheduling and reg_pressure scheduling undo each other's decisions. */
7298 && sched_pressure == SCHED_PRESSURE_NONE)
7299 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7300 else
7301 dfa_lookahead = 0;
7303 /* Set to "0" so that we recalculate. */
7304 max_lookahead_tries = 0;
7306 if (targetm.sched.init_dfa_pre_cycle_insn)
7307 targetm.sched.init_dfa_pre_cycle_insn ();
7309 if (targetm.sched.init_dfa_post_cycle_insn)
7310 targetm.sched.init_dfa_post_cycle_insn ();
7312 dfa_start ();
7313 dfa_state_size = state_size ();
7315 init_alias_analysis ();
7317 if (!sched_no_dce)
7318 df_set_flags (DF_LR_RUN_DCE);
7319 df_note_add_problem ();
7321 /* More problems needed for interloop dep calculation in SMS. */
7322 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7324 df_rd_add_problem ();
7325 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7328 df_analyze ();
7330 /* Do not run DCE after reload, as this can kill nops inserted
7331 by bundling. */
7332 if (reload_completed)
7333 df_clear_flags (DF_LR_RUN_DCE);
7335 regstat_compute_calls_crossed ();
7337 if (targetm.sched.init_global)
7338 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7340 alloc_global_sched_pressure_data ();
7342 curr_state = xmalloc (dfa_state_size);
7345 static void haifa_init_only_bb (basic_block, basic_block);
7347 /* Initialize data structures specific to the Haifa scheduler. */
7348 void
7349 haifa_sched_init (void)
7351 setup_sched_dump ();
7352 sched_init ();
7354 scheduled_insns.create (0);
7356 if (spec_info != NULL)
7358 sched_deps_info->use_deps_list = 1;
7359 sched_deps_info->generate_spec_deps = 1;
7362 /* Initialize luids, dependency caches, target and h_i_d for the
7363 whole function. */
7365 sched_init_bbs ();
7367 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7368 basic_block bb;
7369 FOR_EACH_BB_FN (bb, cfun)
7370 bbs.quick_push (bb);
7371 sched_init_luids (bbs);
7372 sched_deps_init (true);
7373 sched_extend_target ();
7374 haifa_init_h_i_d (bbs);
7377 sched_init_only_bb = haifa_init_only_bb;
7378 sched_split_block = sched_split_block_1;
7379 sched_create_empty_bb = sched_create_empty_bb_1;
7380 haifa_recovery_bb_ever_added_p = false;
7382 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7383 before_recovery = 0;
7384 after_recovery = 0;
7386 modulo_ii = 0;
7389 /* Finish work with the data specific to the Haifa scheduler. */
7390 void
7391 haifa_sched_finish (void)
7393 sched_create_empty_bb = NULL;
7394 sched_split_block = NULL;
7395 sched_init_only_bb = NULL;
7397 if (spec_info && spec_info->dump)
7399 char c = reload_completed ? 'a' : 'b';
7401 fprintf (spec_info->dump,
7402 ";; %s:\n", current_function_name ());
7404 fprintf (spec_info->dump,
7405 ";; Procedure %cr-begin-data-spec motions == %d\n",
7406 c, nr_begin_data);
7407 fprintf (spec_info->dump,
7408 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7409 c, nr_be_in_data);
7410 fprintf (spec_info->dump,
7411 ";; Procedure %cr-begin-control-spec motions == %d\n",
7412 c, nr_begin_control);
7413 fprintf (spec_info->dump,
7414 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7415 c, nr_be_in_control);
7418 scheduled_insns.release ();
7420 /* Finalize h_i_d, dependency caches, and luids for the whole
7421 function. Target will be finalized in md_global_finish (). */
7422 sched_deps_finish ();
7423 sched_finish_luids ();
7424 current_sched_info = NULL;
7425 insn_queue = NULL;
7426 sched_finish ();
7429 /* Free global data used during insn scheduling. This function works with
7430 the common data shared between the schedulers. */
7432 void
7433 sched_finish (void)
7435 haifa_finish_h_i_d ();
7436 free_global_sched_pressure_data ();
7437 free (curr_state);
7439 if (targetm.sched.finish_global)
7440 targetm.sched.finish_global (sched_dump, sched_verbose);
7442 end_alias_analysis ();
7444 regstat_free_calls_crossed ();
7446 dfa_finish ();
7449 /* Free all delay_pair structures that were recorded. */
7450 void
7451 free_delay_pairs (void)
7453 if (delay_htab)
7455 delay_htab->empty ();
7456 delay_htab_i2->empty ();
7460 /* Fix INSN_TICKs of the instructions in the current block as well as
7461 INSN_TICKs of their dependents.
7462 HEAD and TAIL are the begin and the end of the current scheduled block. */
7463 static void
7464 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7466 /* Set of instructions with corrected INSN_TICK. */
7467 auto_bitmap processed;
7468 /* ??? It is doubtful if we should assume that cycle advance happens on
7469 basic block boundaries. Basically insns that are unconditionally ready
7470 on the start of the block are more preferable then those which have
7471 a one cycle dependency over insn from the previous block. */
7472 int next_clock = clock_var + 1;
7474 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7475 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7476 across different blocks. */
7477 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7479 if (INSN_P (head))
7481 int tick;
7482 sd_iterator_def sd_it;
7483 dep_t dep;
7485 tick = INSN_TICK (head);
7486 gcc_assert (tick >= MIN_TICK);
7488 /* Fix INSN_TICK of instruction from just scheduled block. */
7489 if (bitmap_set_bit (processed, INSN_LUID (head)))
7491 tick -= next_clock;
7493 if (tick < MIN_TICK)
7494 tick = MIN_TICK;
7496 INSN_TICK (head) = tick;
7499 if (DEBUG_INSN_P (head))
7500 continue;
7502 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7504 rtx_insn *next;
7506 next = DEP_CON (dep);
7507 tick = INSN_TICK (next);
7509 if (tick != INVALID_TICK
7510 /* If NEXT has its INSN_TICK calculated, fix it.
7511 If not - it will be properly calculated from
7512 scratch later in fix_tick_ready. */
7513 && bitmap_set_bit (processed, INSN_LUID (next)))
7515 tick -= next_clock;
7517 if (tick < MIN_TICK)
7518 tick = MIN_TICK;
7520 if (tick > INTER_TICK (next))
7521 INTER_TICK (next) = tick;
7522 else
7523 tick = INTER_TICK (next);
7525 INSN_TICK (next) = tick;
7532 /* Check if NEXT is ready to be added to the ready or queue list.
7533 If "yes", add it to the proper list.
7534 Returns:
7535 -1 - is not ready yet,
7536 0 - added to the ready list,
7537 0 < N - queued for N cycles. */
7539 try_ready (rtx_insn *next)
7541 ds_t old_ts, new_ts;
7543 old_ts = TODO_SPEC (next);
7545 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7546 && (old_ts == HARD_DEP
7547 || old_ts == DEP_POSTPONED
7548 || (old_ts & SPECULATIVE)
7549 || old_ts == DEP_CONTROL));
7551 new_ts = recompute_todo_spec (next, false);
7553 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7554 gcc_assert (new_ts == old_ts
7555 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7556 else if (current_sched_info->new_ready)
7557 new_ts = current_sched_info->new_ready (next, new_ts);
7559 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7560 have its original pattern or changed (speculative) one. This is due
7561 to changing ebb in region scheduling.
7562 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7563 has speculative pattern.
7565 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7566 control-speculative NEXT could have been discarded by sched-rgn.c
7567 (the same case as when discarded by can_schedule_ready_p ()). */
7569 if ((new_ts & SPECULATIVE)
7570 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7571 need to change anything. */
7572 && new_ts != old_ts)
7574 int res;
7575 rtx new_pat;
7577 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7579 res = haifa_speculate_insn (next, new_ts, &new_pat);
7581 switch (res)
7583 case -1:
7584 /* It would be nice to change DEP_STATUS of all dependences,
7585 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7586 so we won't reanalyze anything. */
7587 new_ts = HARD_DEP;
7588 break;
7590 case 0:
7591 /* We follow the rule, that every speculative insn
7592 has non-null ORIG_PAT. */
7593 if (!ORIG_PAT (next))
7594 ORIG_PAT (next) = PATTERN (next);
7595 break;
7597 case 1:
7598 if (!ORIG_PAT (next))
7599 /* If we gonna to overwrite the original pattern of insn,
7600 save it. */
7601 ORIG_PAT (next) = PATTERN (next);
7603 res = haifa_change_pattern (next, new_pat);
7604 gcc_assert (res);
7605 break;
7607 default:
7608 gcc_unreachable ();
7612 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7613 either correct (new_ts & SPECULATIVE),
7614 or we simply don't care (new_ts & HARD_DEP). */
7616 gcc_assert (!ORIG_PAT (next)
7617 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7619 TODO_SPEC (next) = new_ts;
7621 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7623 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7624 control-speculative NEXT could have been discarded by sched-rgn.c
7625 (the same case as when discarded by can_schedule_ready_p ()). */
7626 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7628 change_queue_index (next, QUEUE_NOWHERE);
7630 return -1;
7632 else if (!(new_ts & BEGIN_SPEC)
7633 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7634 && !IS_SPECULATION_CHECK_P (next))
7635 /* We should change pattern of every previously speculative
7636 instruction - and we determine if NEXT was speculative by using
7637 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7638 pat too, so skip them. */
7640 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7641 gcc_assert (success);
7642 ORIG_PAT (next) = 0;
7645 if (sched_verbose >= 2)
7647 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7648 (*current_sched_info->print_insn) (next, 0));
7650 if (spec_info && spec_info->dump)
7652 if (new_ts & BEGIN_DATA)
7653 fprintf (spec_info->dump, "; data-spec;");
7654 if (new_ts & BEGIN_CONTROL)
7655 fprintf (spec_info->dump, "; control-spec;");
7656 if (new_ts & BE_IN_CONTROL)
7657 fprintf (spec_info->dump, "; in-control-spec;");
7659 if (TODO_SPEC (next) & DEP_CONTROL)
7660 fprintf (sched_dump, " predicated");
7661 fprintf (sched_dump, "\n");
7664 adjust_priority (next);
7666 return fix_tick_ready (next);
7669 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7670 static int
7671 fix_tick_ready (rtx_insn *next)
7673 int tick, delay;
7675 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7677 int full_p;
7678 sd_iterator_def sd_it;
7679 dep_t dep;
7681 tick = INSN_TICK (next);
7682 /* if tick is not equal to INVALID_TICK, then update
7683 INSN_TICK of NEXT with the most recent resolved dependence
7684 cost. Otherwise, recalculate from scratch. */
7685 full_p = (tick == INVALID_TICK);
7687 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7689 rtx_insn *pro = DEP_PRO (dep);
7690 int tick1;
7692 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7694 tick1 = INSN_TICK (pro) + dep_cost (dep);
7695 if (tick1 > tick)
7696 tick = tick1;
7698 if (!full_p)
7699 break;
7702 else
7703 tick = -1;
7705 INSN_TICK (next) = tick;
7707 delay = tick - clock_var;
7708 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7709 delay = QUEUE_READY;
7711 change_queue_index (next, delay);
7713 return delay;
7716 /* Move NEXT to the proper queue list with (DELAY >= 1),
7717 or add it to the ready list (DELAY == QUEUE_READY),
7718 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7719 static void
7720 change_queue_index (rtx_insn *next, int delay)
7722 int i = QUEUE_INDEX (next);
7724 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7725 && delay != 0);
7726 gcc_assert (i != QUEUE_SCHEDULED);
7728 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7729 || (delay < 0 && delay == i))
7730 /* We have nothing to do. */
7731 return;
7733 /* Remove NEXT from wherever it is now. */
7734 if (i == QUEUE_READY)
7735 ready_remove_insn (next);
7736 else if (i >= 0)
7737 queue_remove (next);
7739 /* Add it to the proper place. */
7740 if (delay == QUEUE_READY)
7741 ready_add (readyp, next, false);
7742 else if (delay >= 1)
7743 queue_insn (next, delay, "change queue index");
7745 if (sched_verbose >= 2)
7747 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7748 (*current_sched_info->print_insn) (next, 0));
7750 if (delay == QUEUE_READY)
7751 fprintf (sched_dump, " into ready\n");
7752 else if (delay >= 1)
7753 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7754 else
7755 fprintf (sched_dump, " removed from ready or queue lists\n");
7759 static int sched_ready_n_insns = -1;
7761 /* Initialize per region data structures. */
7762 void
7763 sched_extend_ready_list (int new_sched_ready_n_insns)
7765 int i;
7767 if (sched_ready_n_insns == -1)
7768 /* At the first call we need to initialize one more choice_stack
7769 entry. */
7771 i = 0;
7772 sched_ready_n_insns = 0;
7773 scheduled_insns.reserve (new_sched_ready_n_insns);
7775 else
7776 i = sched_ready_n_insns + 1;
7778 ready.veclen = new_sched_ready_n_insns + issue_rate;
7779 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7781 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7783 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7784 sched_ready_n_insns,
7785 sizeof (*ready_try));
7787 /* We allocate +1 element to save initial state in the choice_stack[0]
7788 entry. */
7789 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7790 new_sched_ready_n_insns + 1);
7792 for (; i <= new_sched_ready_n_insns; i++)
7794 choice_stack[i].state = xmalloc (dfa_state_size);
7796 if (targetm.sched.first_cycle_multipass_init)
7797 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7798 .target_data));
7801 sched_ready_n_insns = new_sched_ready_n_insns;
7804 /* Free per region data structures. */
7805 void
7806 sched_finish_ready_list (void)
7808 int i;
7810 free (ready.vec);
7811 ready.vec = NULL;
7812 ready.veclen = 0;
7814 free (ready_try);
7815 ready_try = NULL;
7817 for (i = 0; i <= sched_ready_n_insns; i++)
7819 if (targetm.sched.first_cycle_multipass_fini)
7820 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7821 .target_data));
7823 free (choice_stack [i].state);
7825 free (choice_stack);
7826 choice_stack = NULL;
7828 sched_ready_n_insns = -1;
7831 static int
7832 haifa_luid_for_non_insn (rtx x)
7834 gcc_assert (NOTE_P (x) || LABEL_P (x));
7836 return 0;
7839 /* Generates recovery code for INSN. */
7840 static void
7841 generate_recovery_code (rtx_insn *insn)
7843 if (TODO_SPEC (insn) & BEGIN_SPEC)
7844 begin_speculative_block (insn);
7846 /* Here we have insn with no dependencies to
7847 instructions other then CHECK_SPEC ones. */
7849 if (TODO_SPEC (insn) & BE_IN_SPEC)
7850 add_to_speculative_block (insn);
7853 /* Helper function.
7854 Tries to add speculative dependencies of type FS between instructions
7855 in deps_list L and TWIN. */
7856 static void
7857 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7859 sd_iterator_def sd_it;
7860 dep_t dep;
7862 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7864 ds_t ds;
7865 rtx_insn *consumer;
7867 consumer = DEP_CON (dep);
7869 ds = DEP_STATUS (dep);
7871 if (/* If we want to create speculative dep. */
7873 /* And we can do that because this is a true dep. */
7874 && (ds & DEP_TYPES) == DEP_TRUE)
7876 gcc_assert (!(ds & BE_IN_SPEC));
7878 if (/* If this dep can be overcome with 'begin speculation'. */
7879 ds & BEGIN_SPEC)
7880 /* Then we have a choice: keep the dep 'begin speculative'
7881 or transform it into 'be in speculative'. */
7883 if (/* In try_ready we assert that if insn once became ready
7884 it can be removed from the ready (or queue) list only
7885 due to backend decision. Hence we can't let the
7886 probability of the speculative dep to decrease. */
7887 ds_weak (ds) <= ds_weak (fs))
7889 ds_t new_ds;
7891 new_ds = (ds & ~BEGIN_SPEC) | fs;
7893 if (/* consumer can 'be in speculative'. */
7894 sched_insn_is_legitimate_for_speculation_p (consumer,
7895 new_ds))
7896 /* Transform it to be in speculative. */
7897 ds = new_ds;
7900 else
7901 /* Mark the dep as 'be in speculative'. */
7902 ds |= fs;
7906 dep_def _new_dep, *new_dep = &_new_dep;
7908 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7909 sd_add_dep (new_dep, false);
7914 /* Generates recovery code for BEGIN speculative INSN. */
7915 static void
7916 begin_speculative_block (rtx_insn *insn)
7918 if (TODO_SPEC (insn) & BEGIN_DATA)
7919 nr_begin_data++;
7920 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7921 nr_begin_control++;
7923 create_check_block_twin (insn, false);
7925 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7928 static void haifa_init_insn (rtx_insn *);
7930 /* Generates recovery code for BE_IN speculative INSN. */
7931 static void
7932 add_to_speculative_block (rtx_insn *insn)
7934 ds_t ts;
7935 sd_iterator_def sd_it;
7936 dep_t dep;
7937 auto_vec<rtx_insn *, 10> twins;
7939 ts = TODO_SPEC (insn);
7940 gcc_assert (!(ts & ~BE_IN_SPEC));
7942 if (ts & BE_IN_DATA)
7943 nr_be_in_data++;
7944 if (ts & BE_IN_CONTROL)
7945 nr_be_in_control++;
7947 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7948 gcc_assert (!TODO_SPEC (insn));
7950 DONE_SPEC (insn) |= ts;
7952 /* First we convert all simple checks to branchy. */
7953 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7954 sd_iterator_cond (&sd_it, &dep);)
7956 rtx_insn *check = DEP_PRO (dep);
7958 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7960 create_check_block_twin (check, true);
7962 /* Restart search. */
7963 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7965 else
7966 /* Continue search. */
7967 sd_iterator_next (&sd_it);
7970 auto_vec<rtx_insn *> priorities_roots;
7971 clear_priorities (insn, &priorities_roots);
7973 while (1)
7975 rtx_insn *check, *twin;
7976 basic_block rec;
7978 /* Get the first backward dependency of INSN. */
7979 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7980 if (!sd_iterator_cond (&sd_it, &dep))
7981 /* INSN has no backward dependencies left. */
7982 break;
7984 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7985 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7986 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7988 check = DEP_PRO (dep);
7990 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7991 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7993 rec = BLOCK_FOR_INSN (check);
7995 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7996 haifa_init_insn (twin);
7998 sd_copy_back_deps (twin, insn, true);
8000 if (sched_verbose && spec_info->dump)
8001 /* INSN_BB (insn) isn't determined for twin insns yet.
8002 So we can't use current_sched_info->print_insn. */
8003 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8004 INSN_UID (twin), rec->index);
8006 twins.safe_push (twin);
8008 /* Add dependences between TWIN and all appropriate
8009 instructions from REC. */
8010 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
8012 rtx_insn *pro = DEP_PRO (dep);
8014 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
8016 /* INSN might have dependencies from the instructions from
8017 several recovery blocks. At this iteration we process those
8018 producers that reside in REC. */
8019 if (BLOCK_FOR_INSN (pro) == rec)
8021 dep_def _new_dep, *new_dep = &_new_dep;
8023 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
8024 sd_add_dep (new_dep, false);
8028 process_insn_forw_deps_be_in_spec (insn, twin, ts);
8030 /* Remove all dependencies between INSN and insns in REC. */
8031 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8032 sd_iterator_cond (&sd_it, &dep);)
8034 rtx_insn *pro = DEP_PRO (dep);
8036 if (BLOCK_FOR_INSN (pro) == rec)
8037 sd_delete_dep (sd_it);
8038 else
8039 sd_iterator_next (&sd_it);
8043 /* We couldn't have added the dependencies between INSN and TWINS earlier
8044 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
8045 unsigned int i;
8046 rtx_insn *twin;
8047 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
8049 dep_def _new_dep, *new_dep = &_new_dep;
8051 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8052 sd_add_dep (new_dep, false);
8055 calc_priorities (priorities_roots);
8058 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8059 void *
8060 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8062 gcc_assert (new_nmemb >= old_nmemb);
8063 p = XRESIZEVAR (void, p, new_nmemb * size);
8064 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8065 return p;
8068 /* Helper function.
8069 Find fallthru edge from PRED. */
8070 edge
8071 find_fallthru_edge_from (basic_block pred)
8073 edge e;
8074 basic_block succ;
8076 succ = pred->next_bb;
8077 gcc_assert (succ->prev_bb == pred);
8079 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8081 e = find_fallthru_edge (pred->succs);
8083 if (e)
8085 gcc_assert (e->dest == succ);
8086 return e;
8089 else
8091 e = find_fallthru_edge (succ->preds);
8093 if (e)
8095 gcc_assert (e->src == pred);
8096 return e;
8100 return NULL;
8103 /* Extend per basic block data structures. */
8104 static void
8105 sched_extend_bb (void)
8107 /* The following is done to keep current_sched_info->next_tail non null. */
8108 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8109 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8110 if (NEXT_INSN (end) == 0
8111 || (!NOTE_P (insn)
8112 && !LABEL_P (insn)
8113 /* Don't emit a NOTE if it would end up before a BARRIER. */
8114 && !BARRIER_P (next_nondebug_insn (end))))
8116 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8117 /* Make note appear outside BB. */
8118 set_block_for_insn (note, NULL);
8119 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8123 /* Init per basic block data structures. */
8124 void
8125 sched_init_bbs (void)
8127 sched_extend_bb ();
8130 /* Initialize BEFORE_RECOVERY variable. */
8131 static void
8132 init_before_recovery (basic_block *before_recovery_ptr)
8134 basic_block last;
8135 edge e;
8137 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8138 e = find_fallthru_edge_from (last);
8140 if (e)
8142 /* We create two basic blocks:
8143 1. Single instruction block is inserted right after E->SRC
8144 and has jump to
8145 2. Empty block right before EXIT_BLOCK.
8146 Between these two blocks recovery blocks will be emitted. */
8148 basic_block single, empty;
8150 /* If the fallthrough edge to exit we've found is from the block we've
8151 created before, don't do anything more. */
8152 if (last == after_recovery)
8153 return;
8155 adding_bb_to_current_region_p = false;
8157 single = sched_create_empty_bb (last);
8158 empty = sched_create_empty_bb (single);
8160 /* Add new blocks to the root loop. */
8161 if (current_loops != NULL)
8163 add_bb_to_loop (single, (*current_loops->larray)[0]);
8164 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8167 single->count = last->count;
8168 empty->count = last->count;
8169 BB_COPY_PARTITION (single, last);
8170 BB_COPY_PARTITION (empty, last);
8172 redirect_edge_succ (e, single);
8173 make_single_succ_edge (single, empty, 0);
8174 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8175 EDGE_FALLTHRU);
8177 rtx_code_label *label = block_label (empty);
8178 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8179 BB_END (single));
8180 JUMP_LABEL (x) = label;
8181 LABEL_NUSES (label)++;
8182 haifa_init_insn (x);
8184 emit_barrier_after (x);
8186 sched_init_only_bb (empty, NULL);
8187 sched_init_only_bb (single, NULL);
8188 sched_extend_bb ();
8190 adding_bb_to_current_region_p = true;
8191 before_recovery = single;
8192 after_recovery = empty;
8194 if (before_recovery_ptr)
8195 *before_recovery_ptr = before_recovery;
8197 if (sched_verbose >= 2 && spec_info->dump)
8198 fprintf (spec_info->dump,
8199 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8200 last->index, single->index, empty->index);
8202 else
8203 before_recovery = last;
8206 /* Returns new recovery block. */
8207 basic_block
8208 sched_create_recovery_block (basic_block *before_recovery_ptr)
8210 rtx_insn *barrier;
8211 basic_block rec;
8213 haifa_recovery_bb_recently_added_p = true;
8214 haifa_recovery_bb_ever_added_p = true;
8216 init_before_recovery (before_recovery_ptr);
8218 barrier = get_last_bb_insn (before_recovery);
8219 gcc_assert (BARRIER_P (barrier));
8221 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8223 rec = create_basic_block (label, label, before_recovery);
8225 /* A recovery block always ends with an unconditional jump. */
8226 emit_barrier_after (BB_END (rec));
8228 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8229 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8231 if (sched_verbose && spec_info->dump)
8232 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8233 rec->index);
8235 return rec;
8238 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8239 and emit necessary jumps. */
8240 void
8241 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8242 basic_block second_bb)
8244 int edge_flags;
8246 /* This is fixing of incoming edge. */
8247 /* ??? Which other flags should be specified? */
8248 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8249 /* Partition type is the same, if it is "unpartitioned". */
8250 edge_flags = EDGE_CROSSING;
8251 else
8252 edge_flags = 0;
8254 edge e2 = single_succ_edge (first_bb);
8255 edge e = make_edge (first_bb, rec, edge_flags);
8257 /* TODO: The actual probability can be determined and is computed as
8258 'todo_spec' variable in create_check_block_twin and
8259 in sel-sched.c `check_ds' in create_speculation_check. */
8260 e->probability = profile_probability::very_unlikely ();
8261 rec->count = e->count ();
8262 e2->probability = e->probability.invert ();
8264 rtx_code_label *label = block_label (second_bb);
8265 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8266 BB_END (rec));
8267 JUMP_LABEL (jump) = label;
8268 LABEL_NUSES (label)++;
8270 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8271 /* Partition type is the same, if it is "unpartitioned". */
8273 /* Rewritten from cfgrtl.c. */
8274 if (crtl->has_bb_partition && targetm_common.have_named_sections)
8276 /* We don't need the same note for the check because
8277 any_condjump_p (check) == true. */
8278 CROSSING_JUMP_P (jump) = 1;
8280 edge_flags = EDGE_CROSSING;
8282 else
8283 edge_flags = 0;
8285 make_single_succ_edge (rec, second_bb, edge_flags);
8286 if (dom_info_available_p (CDI_DOMINATORS))
8287 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8290 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8291 INSN is a simple check, that should be converted to branchy one. */
8292 static void
8293 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8295 basic_block rec;
8296 rtx_insn *label, *check, *twin;
8297 rtx check_pat;
8298 ds_t fs;
8299 sd_iterator_def sd_it;
8300 dep_t dep;
8301 dep_def _new_dep, *new_dep = &_new_dep;
8302 ds_t todo_spec;
8304 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8306 if (!mutate_p)
8307 todo_spec = TODO_SPEC (insn);
8308 else
8310 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8311 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8313 todo_spec = CHECK_SPEC (insn);
8316 todo_spec &= SPECULATIVE;
8318 /* Create recovery block. */
8319 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8321 rec = sched_create_recovery_block (NULL);
8322 label = BB_HEAD (rec);
8324 else
8326 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8327 label = NULL;
8330 /* Emit CHECK. */
8331 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8333 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8335 /* To have mem_reg alive at the beginning of second_bb,
8336 we emit check BEFORE insn, so insn after splitting
8337 insn will be at the beginning of second_bb, which will
8338 provide us with the correct life information. */
8339 check = emit_jump_insn_before (check_pat, insn);
8340 JUMP_LABEL (check) = label;
8341 LABEL_NUSES (label)++;
8343 else
8344 check = emit_insn_before (check_pat, insn);
8346 /* Extend data structures. */
8347 haifa_init_insn (check);
8349 /* CHECK is being added to current region. Extend ready list. */
8350 gcc_assert (sched_ready_n_insns != -1);
8351 sched_extend_ready_list (sched_ready_n_insns + 1);
8353 if (current_sched_info->add_remove_insn)
8354 current_sched_info->add_remove_insn (insn, 0);
8356 RECOVERY_BLOCK (check) = rec;
8358 if (sched_verbose && spec_info->dump)
8359 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8360 (*current_sched_info->print_insn) (check, 0));
8362 gcc_assert (ORIG_PAT (insn));
8364 /* Initialize TWIN (twin is a duplicate of original instruction
8365 in the recovery block). */
8366 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8368 sd_iterator_def sd_it;
8369 dep_t dep;
8371 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8372 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8374 struct _dep _dep2, *dep2 = &_dep2;
8376 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8378 sd_add_dep (dep2, true);
8381 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8382 haifa_init_insn (twin);
8384 if (sched_verbose && spec_info->dump)
8385 /* INSN_BB (insn) isn't determined for twin insns yet.
8386 So we can't use current_sched_info->print_insn. */
8387 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8388 INSN_UID (twin), rec->index);
8390 else
8392 ORIG_PAT (check) = ORIG_PAT (insn);
8393 HAS_INTERNAL_DEP (check) = 1;
8394 twin = check;
8395 /* ??? We probably should change all OUTPUT dependencies to
8396 (TRUE | OUTPUT). */
8399 /* Copy all resolved back dependencies of INSN to TWIN. This will
8400 provide correct value for INSN_TICK (TWIN). */
8401 sd_copy_back_deps (twin, insn, true);
8403 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8404 /* In case of branchy check, fix CFG. */
8406 basic_block first_bb, second_bb;
8407 rtx_insn *jump;
8409 first_bb = BLOCK_FOR_INSN (check);
8410 second_bb = sched_split_block (first_bb, check);
8412 sched_create_recovery_edges (first_bb, rec, second_bb);
8414 sched_init_only_bb (second_bb, first_bb);
8415 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8417 jump = BB_END (rec);
8418 haifa_init_insn (jump);
8421 /* Move backward dependences from INSN to CHECK and
8422 move forward dependences from INSN to TWIN. */
8424 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8425 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8427 rtx_insn *pro = DEP_PRO (dep);
8428 ds_t ds;
8430 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8431 check --TRUE--> producer ??? or ANTI ???
8432 twin --TRUE--> producer
8433 twin --ANTI--> check
8435 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8436 check --ANTI--> producer
8437 twin --ANTI--> producer
8438 twin --ANTI--> check
8440 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8441 check ~~TRUE~~> producer
8442 twin ~~TRUE~~> producer
8443 twin --ANTI--> check */
8445 ds = DEP_STATUS (dep);
8447 if (ds & BEGIN_SPEC)
8449 gcc_assert (!mutate_p);
8450 ds &= ~BEGIN_SPEC;
8453 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8454 sd_add_dep (new_dep, false);
8456 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8458 DEP_CON (new_dep) = twin;
8459 sd_add_dep (new_dep, false);
8463 /* Second, remove backward dependencies of INSN. */
8464 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8465 sd_iterator_cond (&sd_it, &dep);)
8467 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8468 || mutate_p)
8469 /* We can delete this dep because we overcome it with
8470 BEGIN_SPECULATION. */
8471 sd_delete_dep (sd_it);
8472 else
8473 sd_iterator_next (&sd_it);
8476 /* Future Speculations. Determine what BE_IN speculations will be like. */
8477 fs = 0;
8479 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8480 here. */
8482 gcc_assert (!DONE_SPEC (insn));
8484 if (!mutate_p)
8486 ds_t ts = TODO_SPEC (insn);
8488 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8489 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8491 /* Luckiness of future speculations solely depends upon initial
8492 BEGIN speculation. */
8493 if (ts & BEGIN_DATA)
8494 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8495 if (ts & BEGIN_CONTROL)
8496 fs = set_dep_weak (fs, BE_IN_CONTROL,
8497 get_dep_weak (ts, BEGIN_CONTROL));
8499 else
8500 CHECK_SPEC (check) = CHECK_SPEC (insn);
8502 /* Future speculations: call the helper. */
8503 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8505 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8507 /* Which types of dependencies should we use here is,
8508 generally, machine-dependent question... But, for now,
8509 it is not. */
8511 if (!mutate_p)
8513 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8514 sd_add_dep (new_dep, false);
8516 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8517 sd_add_dep (new_dep, false);
8519 else
8521 if (spec_info->dump)
8522 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8523 (*current_sched_info->print_insn) (insn, 0));
8525 /* Remove all dependencies of the INSN. */
8527 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8528 | SD_LIST_BACK
8529 | SD_LIST_RES_BACK));
8530 while (sd_iterator_cond (&sd_it, &dep))
8531 sd_delete_dep (sd_it);
8534 /* If former check (INSN) already was moved to the ready (or queue)
8535 list, add new check (CHECK) there too. */
8536 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8537 try_ready (check);
8539 /* Remove old check from instruction stream and free its
8540 data. */
8541 sched_remove_insn (insn);
8544 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8545 sd_add_dep (new_dep, false);
8547 else
8549 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8550 sd_add_dep (new_dep, false);
8553 if (!mutate_p)
8554 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8555 because it'll be done later in add_to_speculative_block. */
8557 auto_vec<rtx_insn *> priorities_roots;
8559 clear_priorities (twin, &priorities_roots);
8560 calc_priorities (priorities_roots);
8564 /* Removes dependency between instructions in the recovery block REC
8565 and usual region instructions. It keeps inner dependences so it
8566 won't be necessary to recompute them. */
8567 static void
8568 fix_recovery_deps (basic_block rec)
8570 rtx_insn *note, *insn, *jump;
8571 auto_vec<rtx_insn *, 10> ready_list;
8572 auto_bitmap in_ready;
8574 /* NOTE - a basic block note. */
8575 note = NEXT_INSN (BB_HEAD (rec));
8576 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8577 insn = BB_END (rec);
8578 gcc_assert (JUMP_P (insn));
8579 insn = PREV_INSN (insn);
8583 sd_iterator_def sd_it;
8584 dep_t dep;
8586 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8587 sd_iterator_cond (&sd_it, &dep);)
8589 rtx_insn *consumer = DEP_CON (dep);
8591 if (BLOCK_FOR_INSN (consumer) != rec)
8593 sd_delete_dep (sd_it);
8595 if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
8596 ready_list.safe_push (consumer);
8598 else
8600 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8602 sd_iterator_next (&sd_it);
8606 insn = PREV_INSN (insn);
8608 while (insn != note);
8610 /* Try to add instructions to the ready or queue list. */
8611 unsigned int i;
8612 rtx_insn *temp;
8613 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8614 try_ready (temp);
8616 /* Fixing jump's dependences. */
8617 insn = BB_HEAD (rec);
8618 jump = BB_END (rec);
8620 gcc_assert (LABEL_P (insn));
8621 insn = NEXT_INSN (insn);
8623 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8624 add_jump_dependencies (insn, jump);
8627 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8628 instruction data. */
8629 static bool
8630 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8632 int t;
8634 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8635 if (!t)
8636 return false;
8638 update_insn_after_change (insn);
8639 return true;
8642 /* -1 - can't speculate,
8643 0 - for speculation with REQUEST mode it is OK to use
8644 current instruction pattern,
8645 1 - need to change pattern for *NEW_PAT to be speculative. */
8647 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8649 gcc_assert (current_sched_info->flags & DO_SPECULATION
8650 && (request & SPECULATIVE)
8651 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8653 if ((request & spec_info->mask) != request)
8654 return -1;
8656 if (request & BE_IN_SPEC
8657 && !(request & BEGIN_SPEC))
8658 return 0;
8660 return targetm.sched.speculate_insn (insn, request, new_pat);
8663 static int
8664 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8666 gcc_assert (sched_deps_info->generate_spec_deps
8667 && !IS_SPECULATION_CHECK_P (insn));
8669 if (HAS_INTERNAL_DEP (insn)
8670 || SCHED_GROUP_P (insn))
8671 return -1;
8673 return sched_speculate_insn (insn, request, new_pat);
8676 /* Print some information about block BB, which starts with HEAD and
8677 ends with TAIL, before scheduling it.
8678 I is zero, if scheduler is about to start with the fresh ebb. */
8679 static void
8680 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8682 if (!i)
8683 fprintf (sched_dump,
8684 ";; ======================================================\n");
8685 else
8686 fprintf (sched_dump,
8687 ";; =====================ADVANCING TO=====================\n");
8688 fprintf (sched_dump,
8689 ";; -- basic block %d from %d to %d -- %s reload\n",
8690 bb->index, INSN_UID (head), INSN_UID (tail),
8691 (reload_completed ? "after" : "before"));
8692 fprintf (sched_dump,
8693 ";; ======================================================\n");
8694 fprintf (sched_dump, "\n");
8697 /* Unlink basic block notes and labels and saves them, so they
8698 can be easily restored. We unlink basic block notes in EBB to
8699 provide back-compatibility with the previous code, as target backends
8700 assume, that there'll be only instructions between
8701 current_sched_info->{head and tail}. We restore these notes as soon
8702 as we can.
8703 FIRST (LAST) is the first (last) basic block in the ebb.
8704 NB: In usual case (FIRST == LAST) nothing is really done. */
8705 void
8706 unlink_bb_notes (basic_block first, basic_block last)
8708 /* We DON'T unlink basic block notes of the first block in the ebb. */
8709 if (first == last)
8710 return;
8712 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8714 /* Make a sentinel. */
8715 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8716 bb_header[last->next_bb->index] = 0;
8718 first = first->next_bb;
8721 rtx_insn *prev, *label, *note, *next;
8723 label = BB_HEAD (last);
8724 if (LABEL_P (label))
8725 note = NEXT_INSN (label);
8726 else
8727 note = label;
8728 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8730 prev = PREV_INSN (label);
8731 next = NEXT_INSN (note);
8732 gcc_assert (prev && next);
8734 SET_NEXT_INSN (prev) = next;
8735 SET_PREV_INSN (next) = prev;
8737 bb_header[last->index] = label;
8739 if (last == first)
8740 break;
8742 last = last->prev_bb;
8744 while (1);
8747 /* Restore basic block notes.
8748 FIRST is the first basic block in the ebb. */
8749 static void
8750 restore_bb_notes (basic_block first)
8752 if (!bb_header)
8753 return;
8755 /* We DON'T unlink basic block notes of the first block in the ebb. */
8756 first = first->next_bb;
8757 /* Remember: FIRST is actually a second basic block in the ebb. */
8759 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8760 && bb_header[first->index])
8762 rtx_insn *prev, *label, *note, *next;
8764 label = bb_header[first->index];
8765 prev = PREV_INSN (label);
8766 next = NEXT_INSN (prev);
8768 if (LABEL_P (label))
8769 note = NEXT_INSN (label);
8770 else
8771 note = label;
8772 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8774 bb_header[first->index] = 0;
8776 SET_NEXT_INSN (prev) = label;
8777 SET_NEXT_INSN (note) = next;
8778 SET_PREV_INSN (next) = note;
8780 first = first->next_bb;
8783 free (bb_header);
8784 bb_header = 0;
8787 /* Helper function.
8788 Fix CFG after both in- and inter-block movement of
8789 control_flow_insn_p JUMP. */
8790 static void
8791 fix_jump_move (rtx_insn *jump)
8793 basic_block bb, jump_bb, jump_bb_next;
8795 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8796 jump_bb = BLOCK_FOR_INSN (jump);
8797 jump_bb_next = jump_bb->next_bb;
8799 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8800 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8802 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8803 /* if jump_bb_next is not empty. */
8804 BB_END (jump_bb) = BB_END (jump_bb_next);
8806 if (BB_END (bb) != PREV_INSN (jump))
8807 /* Then there are instruction after jump that should be placed
8808 to jump_bb_next. */
8809 BB_END (jump_bb_next) = BB_END (bb);
8810 else
8811 /* Otherwise jump_bb_next is empty. */
8812 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8814 /* To make assertion in move_insn happy. */
8815 BB_END (bb) = PREV_INSN (jump);
8817 update_bb_for_insn (jump_bb_next);
8820 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8821 static void
8822 move_block_after_check (rtx_insn *jump)
8824 basic_block bb, jump_bb, jump_bb_next;
8825 vec<edge, va_gc> *t;
8827 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8828 jump_bb = BLOCK_FOR_INSN (jump);
8829 jump_bb_next = jump_bb->next_bb;
8831 update_bb_for_insn (jump_bb);
8833 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8834 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8836 unlink_block (jump_bb_next);
8837 link_block (jump_bb_next, bb);
8839 t = bb->succs;
8840 bb->succs = 0;
8841 move_succs (&(jump_bb->succs), bb);
8842 move_succs (&(jump_bb_next->succs), jump_bb);
8843 move_succs (&t, jump_bb_next);
8845 df_mark_solutions_dirty ();
8847 common_sched_info->fix_recovery_cfg
8848 (bb->index, jump_bb->index, jump_bb_next->index);
8851 /* Helper function for move_block_after_check.
8852 This functions attaches edge vector pointed to by SUCCSP to
8853 block TO. */
8854 static void
8855 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8857 edge e;
8858 edge_iterator ei;
8860 gcc_assert (to->succs == 0);
8862 to->succs = *succsp;
8864 FOR_EACH_EDGE (e, ei, to->succs)
8865 e->src = to;
8867 *succsp = 0;
8870 /* Remove INSN from the instruction stream.
8871 INSN should have any dependencies. */
8872 static void
8873 sched_remove_insn (rtx_insn *insn)
8875 sd_finish_insn (insn);
8877 change_queue_index (insn, QUEUE_NOWHERE);
8878 current_sched_info->add_remove_insn (insn, 1);
8879 delete_insn (insn);
8882 /* Clear priorities of all instructions, that are forward dependent on INSN.
8883 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8884 be invoked to initialize all cleared priorities. */
8885 static void
8886 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8888 sd_iterator_def sd_it;
8889 dep_t dep;
8890 bool insn_is_root_p = true;
8892 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8894 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8896 rtx_insn *pro = DEP_PRO (dep);
8898 if (INSN_PRIORITY_STATUS (pro) >= 0
8899 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8901 /* If DEP doesn't contribute to priority then INSN itself should
8902 be added to priority roots. */
8903 if (contributes_to_priority_p (dep))
8904 insn_is_root_p = false;
8906 INSN_PRIORITY_STATUS (pro) = -1;
8907 clear_priorities (pro, roots_ptr);
8911 if (insn_is_root_p)
8912 roots_ptr->safe_push (insn);
8915 /* Recompute priorities of instructions, whose priorities might have been
8916 changed. ROOTS is a vector of instructions whose priority computation will
8917 trigger initialization of all cleared priorities. */
8918 static void
8919 calc_priorities (rtx_vec_t roots)
8921 int i;
8922 rtx_insn *insn;
8924 FOR_EACH_VEC_ELT (roots, i, insn)
8925 priority (insn);
8929 /* Add dependences between JUMP and other instructions in the recovery
8930 block. INSN is the first insn the recovery block. */
8931 static void
8932 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8936 insn = NEXT_INSN (insn);
8937 if (insn == jump)
8938 break;
8940 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8942 dep_def _new_dep, *new_dep = &_new_dep;
8944 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8945 sd_add_dep (new_dep, false);
8948 while (1);
8950 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8953 /* Extend data structures for logical insn UID. */
8954 void
8955 sched_extend_luids (void)
8957 int new_luids_max_uid = get_max_uid () + 1;
8959 sched_luids.safe_grow_cleared (new_luids_max_uid);
8962 /* Initialize LUID for INSN. */
8963 void
8964 sched_init_insn_luid (rtx_insn *insn)
8966 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8967 int luid;
8969 if (i >= 0)
8971 luid = sched_max_luid;
8972 sched_max_luid += i;
8974 else
8975 luid = -1;
8977 SET_INSN_LUID (insn, luid);
8980 /* Initialize luids for BBS.
8981 The hook common_sched_info->luid_for_non_insn () is used to determine
8982 if notes, labels, etc. need luids. */
8983 void
8984 sched_init_luids (bb_vec_t bbs)
8986 int i;
8987 basic_block bb;
8989 sched_extend_luids ();
8990 FOR_EACH_VEC_ELT (bbs, i, bb)
8992 rtx_insn *insn;
8994 FOR_BB_INSNS (bb, insn)
8995 sched_init_insn_luid (insn);
8999 /* Free LUIDs. */
9000 void
9001 sched_finish_luids (void)
9003 sched_luids.release ();
9004 sched_max_luid = 1;
9007 /* Return logical uid of INSN. Helpful while debugging. */
9009 insn_luid (rtx_insn *insn)
9011 return INSN_LUID (insn);
9014 /* Extend per insn data in the target. */
9015 void
9016 sched_extend_target (void)
9018 if (targetm.sched.h_i_d_extended)
9019 targetm.sched.h_i_d_extended ();
9022 /* Extend global scheduler structures (those, that live across calls to
9023 schedule_block) to include information about just emitted INSN. */
9024 static void
9025 extend_h_i_d (void)
9027 int reserve = (get_max_uid () + 1 - h_i_d.length ());
9028 if (reserve > 0
9029 && ! h_i_d.space (reserve))
9031 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
9032 sched_extend_target ();
9036 /* Initialize h_i_d entry of the INSN with default values.
9037 Values, that are not explicitly initialized here, hold zero. */
9038 static void
9039 init_h_i_d (rtx_insn *insn)
9041 if (INSN_LUID (insn) > 0)
9043 INSN_COST (insn) = -1;
9044 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9045 INSN_TICK (insn) = INVALID_TICK;
9046 INSN_EXACT_TICK (insn) = INVALID_TICK;
9047 INTER_TICK (insn) = INVALID_TICK;
9048 TODO_SPEC (insn) = HARD_DEP;
9049 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9050 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9051 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9052 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9056 /* Initialize haifa_insn_data for BBS. */
9057 void
9058 haifa_init_h_i_d (bb_vec_t bbs)
9060 int i;
9061 basic_block bb;
9063 extend_h_i_d ();
9064 FOR_EACH_VEC_ELT (bbs, i, bb)
9066 rtx_insn *insn;
9068 FOR_BB_INSNS (bb, insn)
9069 init_h_i_d (insn);
9073 /* Finalize haifa_insn_data. */
9074 void
9075 haifa_finish_h_i_d (void)
9077 int i;
9078 haifa_insn_data_t data;
9079 reg_use_data *use, *next_use;
9080 reg_set_data *set, *next_set;
9082 FOR_EACH_VEC_ELT (h_i_d, i, data)
9084 free (data->max_reg_pressure);
9085 free (data->reg_pressure);
9086 for (use = data->reg_use_list; use != NULL; use = next_use)
9088 next_use = use->next_insn_use;
9089 free (use);
9091 for (set = data->reg_set_list; set != NULL; set = next_set)
9093 next_set = set->next_insn_set;
9094 free (set);
9098 h_i_d.release ();
9101 /* Init data for the new insn INSN. */
9102 static void
9103 haifa_init_insn (rtx_insn *insn)
9105 gcc_assert (insn != NULL);
9107 sched_extend_luids ();
9108 sched_init_insn_luid (insn);
9109 sched_extend_target ();
9110 sched_deps_init (false);
9111 extend_h_i_d ();
9112 init_h_i_d (insn);
9114 if (adding_bb_to_current_region_p)
9116 sd_init_insn (insn);
9118 /* Extend dependency caches by one element. */
9119 extend_dependency_caches (1, false);
9121 if (sched_pressure != SCHED_PRESSURE_NONE)
9122 init_insn_reg_pressure_info (insn);
9125 /* Init data for the new basic block BB which comes after AFTER. */
9126 static void
9127 haifa_init_only_bb (basic_block bb, basic_block after)
9129 gcc_assert (bb != NULL);
9131 sched_init_bbs ();
9133 if (common_sched_info->add_block)
9134 /* This changes only data structures of the front-end. */
9135 common_sched_info->add_block (bb, after);
9138 /* A generic version of sched_split_block (). */
9139 basic_block
9140 sched_split_block_1 (basic_block first_bb, rtx after)
9142 edge e;
9144 e = split_block (first_bb, after);
9145 gcc_assert (e->src == first_bb);
9147 /* sched_split_block emits note if *check == BB_END. Probably it
9148 is better to rip that note off. */
9150 return e->dest;
9153 /* A generic version of sched_create_empty_bb (). */
9154 basic_block
9155 sched_create_empty_bb_1 (basic_block after)
9157 return create_empty_bb (after);
9160 /* Insert PAT as an INSN into the schedule and update the necessary data
9161 structures to account for it. */
9162 rtx_insn *
9163 sched_emit_insn (rtx pat)
9165 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9166 haifa_init_insn (insn);
9168 if (current_sched_info->add_remove_insn)
9169 current_sched_info->add_remove_insn (insn, 0);
9171 (*current_sched_info->begin_schedule_ready) (insn);
9172 scheduled_insns.safe_push (insn);
9174 last_scheduled_insn = insn;
9175 return insn;
9178 /* This function returns a candidate satisfying dispatch constraints from
9179 the ready list. */
9181 static rtx_insn *
9182 ready_remove_first_dispatch (struct ready_list *ready)
9184 int i;
9185 rtx_insn *insn = ready_element (ready, 0);
9187 if (ready->n_ready == 1
9188 || !INSN_P (insn)
9189 || INSN_CODE (insn) < 0
9190 || !active_insn_p (insn)
9191 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9192 return ready_remove_first (ready);
9194 for (i = 1; i < ready->n_ready; i++)
9196 insn = ready_element (ready, i);
9198 if (!INSN_P (insn)
9199 || INSN_CODE (insn) < 0
9200 || !active_insn_p (insn))
9201 continue;
9203 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9205 /* Return ith element of ready. */
9206 insn = ready_remove (ready, i);
9207 return insn;
9211 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9212 return ready_remove_first (ready);
9214 for (i = 1; i < ready->n_ready; i++)
9216 insn = ready_element (ready, i);
9218 if (!INSN_P (insn)
9219 || INSN_CODE (insn) < 0
9220 || !active_insn_p (insn))
9221 continue;
9223 /* Return i-th element of ready. */
9224 if (targetm.sched.dispatch (insn, IS_CMP))
9225 return ready_remove (ready, i);
9228 return ready_remove_first (ready);
9231 /* Get number of ready insn in the ready list. */
9234 number_in_ready (void)
9236 return ready.n_ready;
9239 /* Get number of ready's in the ready list. */
9241 rtx_insn *
9242 get_ready_element (int i)
9244 return ready_element (&ready, i);
9247 #endif /* INSN_SCHEDULING */