2010-06-27 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / alias.c
blob7d3d343e1478434b93e571272231513e1e602b81
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
46 #include "tree-pass.h"
47 #include "ipa-type-escape.h"
48 #include "df.h"
49 #include "tree-ssa-alias.h"
50 #include "pointer-set.h"
51 #include "tree-flow.h"
53 /* The aliasing API provided here solves related but different problems:
55 Say there exists (in c)
57 struct X {
58 struct Y y1;
59 struct Z z2;
60 } x1, *px1, *px2;
62 struct Y y2, *py;
63 struct Z z2, *pz;
66 py = &px1.y1;
67 px2 = &x1;
69 Consider the four questions:
71 Can a store to x1 interfere with px2->y1?
72 Can a store to x1 interfere with px2->z2?
73 (*px2).z2
74 Can a store to x1 change the value pointed to by with py?
75 Can a store to x1 change the value pointed to by with pz?
77 The answer to these questions can be yes, yes, yes, and maybe.
79 The first two questions can be answered with a simple examination
80 of the type system. If structure X contains a field of type Y then
81 a store thru a pointer to an X can overwrite any field that is
82 contained (recursively) in an X (unless we know that px1 != px2).
84 The last two of the questions can be solved in the same way as the
85 first two questions but this is too conservative. The observation
86 is that in some cases analysis we can know if which (if any) fields
87 are addressed and if those addresses are used in bad ways. This
88 analysis may be language specific. In C, arbitrary operations may
89 be applied to pointers. However, there is some indication that
90 this may be too conservative for some C++ types.
92 The pass ipa-type-escape does this analysis for the types whose
93 instances do not escape across the compilation boundary.
95 Historically in GCC, these two problems were combined and a single
96 data structure was used to represent the solution to these
97 problems. We now have two similar but different data structures,
98 The data structure to solve the last two question is similar to the
99 first, but does not contain have the fields in it whose address are
100 never taken. For types that do escape the compilation unit, the
101 data structures will have identical information.
104 /* The alias sets assigned to MEMs assist the back-end in determining
105 which MEMs can alias which other MEMs. In general, two MEMs in
106 different alias sets cannot alias each other, with one important
107 exception. Consider something like:
109 struct S { int i; double d; };
111 a store to an `S' can alias something of either type `int' or type
112 `double'. (However, a store to an `int' cannot alias a `double'
113 and vice versa.) We indicate this via a tree structure that looks
114 like:
115 struct S
118 |/_ _\|
119 int double
121 (The arrows are directed and point downwards.)
122 In this situation we say the alias set for `struct S' is the
123 `superset' and that those for `int' and `double' are `subsets'.
125 To see whether two alias sets can point to the same memory, we must
126 see if either alias set is a subset of the other. We need not trace
127 past immediate descendants, however, since we propagate all
128 grandchildren up one level.
130 Alias set zero is implicitly a superset of all other alias sets.
131 However, this is no actual entry for alias set zero. It is an
132 error to attempt to explicitly construct a subset of zero. */
134 struct GTY(()) alias_set_entry_d {
135 /* The alias set number, as stored in MEM_ALIAS_SET. */
136 alias_set_type alias_set;
138 /* Nonzero if would have a child of zero: this effectively makes this
139 alias set the same as alias set zero. */
140 int has_zero_child;
142 /* The children of the alias set. These are not just the immediate
143 children, but, in fact, all descendants. So, if we have:
145 struct T { struct S s; float f; }
147 continuing our example above, the children here will be all of
148 `int', `double', `float', and `struct S'. */
149 splay_tree GTY((param1_is (int), param2_is (int))) children;
151 typedef struct alias_set_entry_d *alias_set_entry;
153 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
154 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
155 static void record_set (rtx, const_rtx, void *);
156 static int base_alias_check (rtx, rtx, enum machine_mode,
157 enum machine_mode);
158 static rtx find_base_value (rtx);
159 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
160 static int insert_subset_children (splay_tree_node, void*);
161 static alias_set_entry get_alias_set_entry (alias_set_type);
162 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
163 bool (*) (const_rtx, bool));
164 static int aliases_everything_p (const_rtx);
165 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
166 static tree decl_for_component_ref (tree);
167 static rtx adjust_offset_for_component_ref (tree, rtx);
168 static int write_dependence_p (const_rtx, const_rtx, int);
170 static void memory_modified_1 (rtx, const_rtx, void *);
172 /* Set up all info needed to perform alias analysis on memory references. */
174 /* Returns the size in bytes of the mode of X. */
175 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
177 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
178 different alias sets. We ignore alias sets in functions making use
179 of variable arguments because the va_arg macros on some systems are
180 not legal ANSI C. */
181 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
182 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains. 10 is a completely arbitrary choice. */
186 #define MAX_ALIAS_LOOP_PASSES 10
188 /* reg_base_value[N] gives an address to which register N is related.
189 If all sets after the first add or subtract to the current value
190 or otherwise modify it so it does not point to a different top level
191 object, reg_base_value[N] is equal to the address part of the source
192 of the first set.
194 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
195 expressions represent certain special values: function arguments and
196 the stack, frame, and argument pointers.
198 The contents of an ADDRESS is not normally used, the mode of the
199 ADDRESS determines whether the ADDRESS is a function argument or some
200 other special value. Pointer equality, not rtx_equal_p, determines whether
201 two ADDRESS expressions refer to the same base address.
203 The only use of the contents of an ADDRESS is for determining if the
204 current function performs nonlocal memory memory references for the
205 purposes of marking the function as a constant function. */
207 static GTY(()) VEC(rtx,gc) *reg_base_value;
208 static rtx *new_reg_base_value;
210 /* We preserve the copy of old array around to avoid amount of garbage
211 produced. About 8% of garbage produced were attributed to this
212 array. */
213 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
215 /* Static hunks of RTL used by the aliasing code; these are initialized
216 once per function to avoid unnecessary RTL allocations. */
217 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
219 #define REG_BASE_VALUE(X) \
220 (REGNO (X) < VEC_length (rtx, reg_base_value) \
221 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
223 /* Vector indexed by N giving the initial (unchanging) value known for
224 pseudo-register N. This array is initialized in init_alias_analysis,
225 and does not change until end_alias_analysis is called. */
226 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
228 /* Indicates number of valid entries in reg_known_value. */
229 static GTY(()) unsigned int reg_known_value_size;
231 /* Vector recording for each reg_known_value whether it is due to a
232 REG_EQUIV note. Future passes (viz., reload) may replace the
233 pseudo with the equivalent expression and so we account for the
234 dependences that would be introduced if that happens.
236 The REG_EQUIV notes created in assign_parms may mention the arg
237 pointer, and there are explicit insns in the RTL that modify the
238 arg pointer. Thus we must ensure that such insns don't get
239 scheduled across each other because that would invalidate the
240 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
241 wrong, but solving the problem in the scheduler will likely give
242 better code, so we do it here. */
243 static bool *reg_known_equiv_p;
245 /* True when scanning insns from the start of the rtl to the
246 NOTE_INSN_FUNCTION_BEG note. */
247 static bool copying_arguments;
249 DEF_VEC_P(alias_set_entry);
250 DEF_VEC_ALLOC_P(alias_set_entry,gc);
252 /* The splay-tree used to store the various alias set entries. */
253 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
255 /* Build a decomposed reference object for querying the alias-oracle
256 from the MEM rtx and store it in *REF.
257 Returns false if MEM is not suitable for the alias-oracle. */
259 static bool
260 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
262 tree expr = MEM_EXPR (mem);
263 tree base;
265 if (!expr)
266 return false;
268 /* If MEM_OFFSET or MEM_SIZE are NULL punt. */
269 if (!MEM_OFFSET (mem)
270 || !MEM_SIZE (mem))
271 return false;
273 ao_ref_init (ref, expr);
275 /* Get the base of the reference and see if we have to reject or
276 adjust it. */
277 base = ao_ref_base (ref);
278 if (base == NULL_TREE)
279 return false;
281 /* If this is a pointer dereference of a non-SSA_NAME punt.
282 ??? We could replace it with a pointer to anything. */
283 if (INDIRECT_REF_P (base)
284 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
285 return false;
287 /* The tree oracle doesn't like to have these. */
288 if (TREE_CODE (base) == FUNCTION_DECL
289 || TREE_CODE (base) == LABEL_DECL)
290 return false;
292 /* If this is a reference based on a partitioned decl replace the
293 base with an INDIRECT_REF of the pointer representative we
294 created during stack slot partitioning. */
295 if (TREE_CODE (base) == VAR_DECL
296 && ! TREE_STATIC (base)
297 && cfun->gimple_df->decls_to_pointers != NULL)
299 void *namep;
300 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
301 if (namep)
303 ref->base_alias_set = get_alias_set (base);
304 ref->base = build1 (INDIRECT_REF, TREE_TYPE (base), *(tree *)namep);
308 ref->ref_alias_set = MEM_ALIAS_SET (mem);
310 /* If the base decl is a parameter we can have negative MEM_OFFSET in
311 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
312 here. */
313 if (INTVAL (MEM_OFFSET (mem)) < 0
314 && ((INTVAL (MEM_SIZE (mem)) + INTVAL (MEM_OFFSET (mem)))
315 * BITS_PER_UNIT) == ref->size)
316 return true;
318 ref->offset += INTVAL (MEM_OFFSET (mem)) * BITS_PER_UNIT;
319 ref->size = INTVAL (MEM_SIZE (mem)) * BITS_PER_UNIT;
321 /* The MEM may extend into adjacent fields, so adjust max_size if
322 necessary. */
323 if (ref->max_size != -1
324 && ref->size > ref->max_size)
325 ref->max_size = ref->size;
327 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
328 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
329 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
330 && (ref->offset < 0
331 || (DECL_P (ref->base)
332 && (!host_integerp (DECL_SIZE (ref->base), 1)
333 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
334 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
335 return false;
337 return true;
340 /* Query the alias-oracle on whether the two memory rtx X and MEM may
341 alias. If TBAA_P is set also apply TBAA. Returns true if the
342 two rtxen may alias, false otherwise. */
344 static bool
345 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
347 ao_ref ref1, ref2;
349 if (!ao_ref_from_mem (&ref1, x)
350 || !ao_ref_from_mem (&ref2, mem))
351 return true;
353 return refs_may_alias_p_1 (&ref1, &ref2, tbaa_p);
356 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
357 such an entry, or NULL otherwise. */
359 static inline alias_set_entry
360 get_alias_set_entry (alias_set_type alias_set)
362 return VEC_index (alias_set_entry, alias_sets, alias_set);
365 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
366 the two MEMs cannot alias each other. */
368 static inline int
369 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
371 /* Perform a basic sanity check. Namely, that there are no alias sets
372 if we're not using strict aliasing. This helps to catch bugs
373 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
374 where a MEM is allocated in some way other than by the use of
375 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
376 use alias sets to indicate that spilled registers cannot alias each
377 other, we might need to remove this check. */
378 gcc_assert (flag_strict_aliasing
379 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
381 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
384 /* Insert the NODE into the splay tree given by DATA. Used by
385 record_alias_subset via splay_tree_foreach. */
387 static int
388 insert_subset_children (splay_tree_node node, void *data)
390 splay_tree_insert ((splay_tree) data, node->key, node->value);
392 return 0;
395 /* Return true if the first alias set is a subset of the second. */
397 bool
398 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
400 alias_set_entry ase;
402 /* Everything is a subset of the "aliases everything" set. */
403 if (set2 == 0)
404 return true;
406 /* Otherwise, check if set1 is a subset of set2. */
407 ase = get_alias_set_entry (set2);
408 if (ase != 0
409 && (ase->has_zero_child
410 || splay_tree_lookup (ase->children,
411 (splay_tree_key) set1)))
412 return true;
413 return false;
416 /* Return 1 if the two specified alias sets may conflict. */
419 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
421 alias_set_entry ase;
423 /* The easy case. */
424 if (alias_sets_must_conflict_p (set1, set2))
425 return 1;
427 /* See if the first alias set is a subset of the second. */
428 ase = get_alias_set_entry (set1);
429 if (ase != 0
430 && (ase->has_zero_child
431 || splay_tree_lookup (ase->children,
432 (splay_tree_key) set2)))
433 return 1;
435 /* Now do the same, but with the alias sets reversed. */
436 ase = get_alias_set_entry (set2);
437 if (ase != 0
438 && (ase->has_zero_child
439 || splay_tree_lookup (ase->children,
440 (splay_tree_key) set1)))
441 return 1;
443 /* The two alias sets are distinct and neither one is the
444 child of the other. Therefore, they cannot conflict. */
445 return 0;
448 static int
449 walk_mems_2 (rtx *x, rtx mem)
451 if (MEM_P (*x))
453 if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem)))
454 return 1;
456 return -1;
458 return 0;
461 static int
462 walk_mems_1 (rtx *x, rtx *pat)
464 if (MEM_P (*x))
466 /* Visit all MEMs in *PAT and check indepedence. */
467 if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
468 /* Indicate that dependence was determined and stop traversal. */
469 return 1;
471 return -1;
473 return 0;
476 /* Return 1 if two specified instructions have mem expr with conflict alias sets*/
477 bool
478 insn_alias_sets_conflict_p (rtx insn1, rtx insn2)
480 /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
481 return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
482 &PATTERN (insn2));
485 /* Return 1 if the two specified alias sets will always conflict. */
488 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
490 if (set1 == 0 || set2 == 0 || set1 == set2)
491 return 1;
493 return 0;
496 /* Return 1 if any MEM object of type T1 will always conflict (using the
497 dependency routines in this file) with any MEM object of type T2.
498 This is used when allocating temporary storage. If T1 and/or T2 are
499 NULL_TREE, it means we know nothing about the storage. */
502 objects_must_conflict_p (tree t1, tree t2)
504 alias_set_type set1, set2;
506 /* If neither has a type specified, we don't know if they'll conflict
507 because we may be using them to store objects of various types, for
508 example the argument and local variables areas of inlined functions. */
509 if (t1 == 0 && t2 == 0)
510 return 0;
512 /* If they are the same type, they must conflict. */
513 if (t1 == t2
514 /* Likewise if both are volatile. */
515 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
516 return 1;
518 set1 = t1 ? get_alias_set (t1) : 0;
519 set2 = t2 ? get_alias_set (t2) : 0;
521 /* We can't use alias_sets_conflict_p because we must make sure
522 that every subtype of t1 will conflict with every subtype of
523 t2 for which a pair of subobjects of these respective subtypes
524 overlaps on the stack. */
525 return alias_sets_must_conflict_p (set1, set2);
528 /* Return true if all nested component references handled by
529 get_inner_reference in T are such that we should use the alias set
530 provided by the object at the heart of T.
532 This is true for non-addressable components (which don't have their
533 own alias set), as well as components of objects in alias set zero.
534 This later point is a special case wherein we wish to override the
535 alias set used by the component, but we don't have per-FIELD_DECL
536 assignable alias sets. */
538 bool
539 component_uses_parent_alias_set (const_tree t)
541 while (1)
543 /* If we're at the end, it vacuously uses its own alias set. */
544 if (!handled_component_p (t))
545 return false;
547 switch (TREE_CODE (t))
549 case COMPONENT_REF:
550 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
551 return true;
552 break;
554 case ARRAY_REF:
555 case ARRAY_RANGE_REF:
556 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
557 return true;
558 break;
560 case REALPART_EXPR:
561 case IMAGPART_EXPR:
562 break;
564 default:
565 /* Bitfields and casts are never addressable. */
566 return true;
569 t = TREE_OPERAND (t, 0);
570 if (get_alias_set (TREE_TYPE (t)) == 0)
571 return true;
575 /* Return the alias set for the memory pointed to by T, which may be
576 either a type or an expression. Return -1 if there is nothing
577 special about dereferencing T. */
579 static alias_set_type
580 get_deref_alias_set_1 (tree t)
582 /* If we're not doing any alias analysis, just assume everything
583 aliases everything else. */
584 if (!flag_strict_aliasing)
585 return 0;
587 /* All we care about is the type. */
588 if (! TYPE_P (t))
589 t = TREE_TYPE (t);
591 /* If we have an INDIRECT_REF via a void pointer, we don't
592 know anything about what that might alias. Likewise if the
593 pointer is marked that way. */
594 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
595 || TYPE_REF_CAN_ALIAS_ALL (t))
596 return 0;
598 return -1;
601 /* Return the alias set for the memory pointed to by T, which may be
602 either a type or an expression. */
604 alias_set_type
605 get_deref_alias_set (tree t)
607 alias_set_type set = get_deref_alias_set_1 (t);
609 /* Fall back to the alias-set of the pointed-to type. */
610 if (set == -1)
612 if (! TYPE_P (t))
613 t = TREE_TYPE (t);
614 set = get_alias_set (TREE_TYPE (t));
617 return set;
620 /* Return the alias set for T, which may be either a type or an
621 expression. Call language-specific routine for help, if needed. */
623 alias_set_type
624 get_alias_set (tree t)
626 alias_set_type set;
628 /* If we're not doing any alias analysis, just assume everything
629 aliases everything else. Also return 0 if this or its type is
630 an error. */
631 if (! flag_strict_aliasing || t == error_mark_node
632 || (! TYPE_P (t)
633 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
634 return 0;
636 /* We can be passed either an expression or a type. This and the
637 language-specific routine may make mutually-recursive calls to each other
638 to figure out what to do. At each juncture, we see if this is a tree
639 that the language may need to handle specially. First handle things that
640 aren't types. */
641 if (! TYPE_P (t))
643 tree inner;
645 /* Remove any nops, then give the language a chance to do
646 something with this tree before we look at it. */
647 STRIP_NOPS (t);
648 set = lang_hooks.get_alias_set (t);
649 if (set != -1)
650 return set;
652 /* Retrieve the original memory reference if needed. */
653 if (TREE_CODE (t) == TARGET_MEM_REF)
654 t = TMR_ORIGINAL (t);
656 /* First see if the actual object referenced is an INDIRECT_REF from a
657 restrict-qualified pointer or a "void *". */
658 inner = t;
659 while (handled_component_p (inner))
661 inner = TREE_OPERAND (inner, 0);
662 STRIP_NOPS (inner);
665 if (INDIRECT_REF_P (inner))
667 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
668 if (set != -1)
669 return set;
672 /* Otherwise, pick up the outermost object that we could have a pointer
673 to, processing conversions as above. */
674 while (component_uses_parent_alias_set (t))
676 t = TREE_OPERAND (t, 0);
677 STRIP_NOPS (t);
680 /* If we've already determined the alias set for a decl, just return
681 it. This is necessary for C++ anonymous unions, whose component
682 variables don't look like union members (boo!). */
683 if (TREE_CODE (t) == VAR_DECL
684 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
685 return MEM_ALIAS_SET (DECL_RTL (t));
687 /* Now all we care about is the type. */
688 t = TREE_TYPE (t);
691 /* Variant qualifiers don't affect the alias set, so get the main
692 variant. */
693 t = TYPE_MAIN_VARIANT (t);
695 /* Always use the canonical type as well. If this is a type that
696 requires structural comparisons to identify compatible types
697 use alias set zero. */
698 if (TYPE_STRUCTURAL_EQUALITY_P (t))
700 /* Allow the language to specify another alias set for this
701 type. */
702 set = lang_hooks.get_alias_set (t);
703 if (set != -1)
704 return set;
705 return 0;
707 t = TYPE_CANONICAL (t);
708 /* Canonical types shouldn't form a tree nor should the canonical
709 type require structural equality checks. */
710 gcc_assert (!TYPE_STRUCTURAL_EQUALITY_P (t) && TYPE_CANONICAL (t) == t);
712 /* If this is a type with a known alias set, return it. */
713 if (TYPE_ALIAS_SET_KNOWN_P (t))
714 return TYPE_ALIAS_SET (t);
716 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
717 if (!COMPLETE_TYPE_P (t))
719 /* For arrays with unknown size the conservative answer is the
720 alias set of the element type. */
721 if (TREE_CODE (t) == ARRAY_TYPE)
722 return get_alias_set (TREE_TYPE (t));
724 /* But return zero as a conservative answer for incomplete types. */
725 return 0;
728 /* See if the language has special handling for this type. */
729 set = lang_hooks.get_alias_set (t);
730 if (set != -1)
731 return set;
733 /* There are no objects of FUNCTION_TYPE, so there's no point in
734 using up an alias set for them. (There are, of course, pointers
735 and references to functions, but that's different.) */
736 else if (TREE_CODE (t) == FUNCTION_TYPE
737 || TREE_CODE (t) == METHOD_TYPE)
738 set = 0;
740 /* Unless the language specifies otherwise, let vector types alias
741 their components. This avoids some nasty type punning issues in
742 normal usage. And indeed lets vectors be treated more like an
743 array slice. */
744 else if (TREE_CODE (t) == VECTOR_TYPE)
745 set = get_alias_set (TREE_TYPE (t));
747 /* Unless the language specifies otherwise, treat array types the
748 same as their components. This avoids the asymmetry we get
749 through recording the components. Consider accessing a
750 character(kind=1) through a reference to a character(kind=1)[1:1].
751 Or consider if we want to assign integer(kind=4)[0:D.1387] and
752 integer(kind=4)[4] the same alias set or not.
753 Just be pragmatic here and make sure the array and its element
754 type get the same alias set assigned. */
755 else if (TREE_CODE (t) == ARRAY_TYPE
756 && !TYPE_NONALIASED_COMPONENT (t))
757 set = get_alias_set (TREE_TYPE (t));
759 else
760 /* Otherwise make a new alias set for this type. */
761 set = new_alias_set ();
763 TYPE_ALIAS_SET (t) = set;
765 /* If this is an aggregate type, we must record any component aliasing
766 information. */
767 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
768 record_component_aliases (t);
770 return set;
773 /* Return a brand-new alias set. */
775 alias_set_type
776 new_alias_set (void)
778 if (flag_strict_aliasing)
780 if (alias_sets == 0)
781 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
782 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
783 return VEC_length (alias_set_entry, alias_sets) - 1;
785 else
786 return 0;
789 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
790 not everything that aliases SUPERSET also aliases SUBSET. For example,
791 in C, a store to an `int' can alias a load of a structure containing an
792 `int', and vice versa. But it can't alias a load of a 'double' member
793 of the same structure. Here, the structure would be the SUPERSET and
794 `int' the SUBSET. This relationship is also described in the comment at
795 the beginning of this file.
797 This function should be called only once per SUPERSET/SUBSET pair.
799 It is illegal for SUPERSET to be zero; everything is implicitly a
800 subset of alias set zero. */
802 void
803 record_alias_subset (alias_set_type superset, alias_set_type subset)
805 alias_set_entry superset_entry;
806 alias_set_entry subset_entry;
808 /* It is possible in complex type situations for both sets to be the same,
809 in which case we can ignore this operation. */
810 if (superset == subset)
811 return;
813 gcc_assert (superset);
815 superset_entry = get_alias_set_entry (superset);
816 if (superset_entry == 0)
818 /* Create an entry for the SUPERSET, so that we have a place to
819 attach the SUBSET. */
820 superset_entry = GGC_NEW (struct alias_set_entry_d);
821 superset_entry->alias_set = superset;
822 superset_entry->children
823 = splay_tree_new_ggc (splay_tree_compare_ints);
824 superset_entry->has_zero_child = 0;
825 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
828 if (subset == 0)
829 superset_entry->has_zero_child = 1;
830 else
832 subset_entry = get_alias_set_entry (subset);
833 /* If there is an entry for the subset, enter all of its children
834 (if they are not already present) as children of the SUPERSET. */
835 if (subset_entry)
837 if (subset_entry->has_zero_child)
838 superset_entry->has_zero_child = 1;
840 splay_tree_foreach (subset_entry->children, insert_subset_children,
841 superset_entry->children);
844 /* Enter the SUBSET itself as a child of the SUPERSET. */
845 splay_tree_insert (superset_entry->children,
846 (splay_tree_key) subset, 0);
850 /* Record that component types of TYPE, if any, are part of that type for
851 aliasing purposes. For record types, we only record component types
852 for fields that are not marked non-addressable. For array types, we
853 only record the component type if it is not marked non-aliased. */
855 void
856 record_component_aliases (tree type)
858 alias_set_type superset = get_alias_set (type);
859 tree field;
861 if (superset == 0)
862 return;
864 switch (TREE_CODE (type))
866 case RECORD_TYPE:
867 case UNION_TYPE:
868 case QUAL_UNION_TYPE:
869 /* Recursively record aliases for the base classes, if there are any. */
870 if (TYPE_BINFO (type))
872 int i;
873 tree binfo, base_binfo;
875 for (binfo = TYPE_BINFO (type), i = 0;
876 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
877 record_alias_subset (superset,
878 get_alias_set (BINFO_TYPE (base_binfo)));
880 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
881 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
882 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
883 break;
885 case COMPLEX_TYPE:
886 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
887 break;
889 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
890 element type. */
892 default:
893 break;
897 /* Allocate an alias set for use in storing and reading from the varargs
898 spill area. */
900 static GTY(()) alias_set_type varargs_set = -1;
902 alias_set_type
903 get_varargs_alias_set (void)
905 #if 1
906 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
907 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
908 consistently use the varargs alias set for loads from the varargs
909 area. So don't use it anywhere. */
910 return 0;
911 #else
912 if (varargs_set == -1)
913 varargs_set = new_alias_set ();
915 return varargs_set;
916 #endif
919 /* Likewise, but used for the fixed portions of the frame, e.g., register
920 save areas. */
922 static GTY(()) alias_set_type frame_set = -1;
924 alias_set_type
925 get_frame_alias_set (void)
927 if (frame_set == -1)
928 frame_set = new_alias_set ();
930 return frame_set;
933 /* Inside SRC, the source of a SET, find a base address. */
935 static rtx
936 find_base_value (rtx src)
938 unsigned int regno;
940 #if defined (FIND_BASE_TERM)
941 /* Try machine-dependent ways to find the base term. */
942 src = FIND_BASE_TERM (src);
943 #endif
945 switch (GET_CODE (src))
947 case SYMBOL_REF:
948 case LABEL_REF:
949 return src;
951 case REG:
952 regno = REGNO (src);
953 /* At the start of a function, argument registers have known base
954 values which may be lost later. Returning an ADDRESS
955 expression here allows optimization based on argument values
956 even when the argument registers are used for other purposes. */
957 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
958 return new_reg_base_value[regno];
960 /* If a pseudo has a known base value, return it. Do not do this
961 for non-fixed hard regs since it can result in a circular
962 dependency chain for registers which have values at function entry.
964 The test above is not sufficient because the scheduler may move
965 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
966 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
967 && regno < VEC_length (rtx, reg_base_value))
969 /* If we're inside init_alias_analysis, use new_reg_base_value
970 to reduce the number of relaxation iterations. */
971 if (new_reg_base_value && new_reg_base_value[regno]
972 && DF_REG_DEF_COUNT (regno) == 1)
973 return new_reg_base_value[regno];
975 if (VEC_index (rtx, reg_base_value, regno))
976 return VEC_index (rtx, reg_base_value, regno);
979 return 0;
981 case MEM:
982 /* Check for an argument passed in memory. Only record in the
983 copying-arguments block; it is too hard to track changes
984 otherwise. */
985 if (copying_arguments
986 && (XEXP (src, 0) == arg_pointer_rtx
987 || (GET_CODE (XEXP (src, 0)) == PLUS
988 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
989 return gen_rtx_ADDRESS (VOIDmode, src);
990 return 0;
992 case CONST:
993 src = XEXP (src, 0);
994 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
995 break;
997 /* ... fall through ... */
999 case PLUS:
1000 case MINUS:
1002 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1004 /* If either operand is a REG that is a known pointer, then it
1005 is the base. */
1006 if (REG_P (src_0) && REG_POINTER (src_0))
1007 return find_base_value (src_0);
1008 if (REG_P (src_1) && REG_POINTER (src_1))
1009 return find_base_value (src_1);
1011 /* If either operand is a REG, then see if we already have
1012 a known value for it. */
1013 if (REG_P (src_0))
1015 temp = find_base_value (src_0);
1016 if (temp != 0)
1017 src_0 = temp;
1020 if (REG_P (src_1))
1022 temp = find_base_value (src_1);
1023 if (temp!= 0)
1024 src_1 = temp;
1027 /* If either base is named object or a special address
1028 (like an argument or stack reference), then use it for the
1029 base term. */
1030 if (src_0 != 0
1031 && (GET_CODE (src_0) == SYMBOL_REF
1032 || GET_CODE (src_0) == LABEL_REF
1033 || (GET_CODE (src_0) == ADDRESS
1034 && GET_MODE (src_0) != VOIDmode)))
1035 return src_0;
1037 if (src_1 != 0
1038 && (GET_CODE (src_1) == SYMBOL_REF
1039 || GET_CODE (src_1) == LABEL_REF
1040 || (GET_CODE (src_1) == ADDRESS
1041 && GET_MODE (src_1) != VOIDmode)))
1042 return src_1;
1044 /* Guess which operand is the base address:
1045 If either operand is a symbol, then it is the base. If
1046 either operand is a CONST_INT, then the other is the base. */
1047 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1048 return find_base_value (src_0);
1049 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1050 return find_base_value (src_1);
1052 return 0;
1055 case LO_SUM:
1056 /* The standard form is (lo_sum reg sym) so look only at the
1057 second operand. */
1058 return find_base_value (XEXP (src, 1));
1060 case AND:
1061 /* If the second operand is constant set the base
1062 address to the first operand. */
1063 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1064 return find_base_value (XEXP (src, 0));
1065 return 0;
1067 case TRUNCATE:
1068 /* As we do not know which address space the pointer is refering to, we can
1069 handle this only if the target does not support different pointer or
1070 address modes depending on the address space. */
1071 if (!target_default_pointer_address_modes_p ())
1072 break;
1073 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1074 break;
1075 /* Fall through. */
1076 case HIGH:
1077 case PRE_INC:
1078 case PRE_DEC:
1079 case POST_INC:
1080 case POST_DEC:
1081 case PRE_MODIFY:
1082 case POST_MODIFY:
1083 return find_base_value (XEXP (src, 0));
1085 case ZERO_EXTEND:
1086 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1087 /* As we do not know which address space the pointer is refering to, we can
1088 handle this only if the target does not support different pointer or
1089 address modes depending on the address space. */
1090 if (!target_default_pointer_address_modes_p ())
1091 break;
1094 rtx temp = find_base_value (XEXP (src, 0));
1096 if (temp != 0 && CONSTANT_P (temp))
1097 temp = convert_memory_address (Pmode, temp);
1099 return temp;
1102 default:
1103 break;
1106 return 0;
1109 /* Called from init_alias_analysis indirectly through note_stores. */
1111 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1112 register N has been set in this function. */
1113 static char *reg_seen;
1115 /* Addresses which are known not to alias anything else are identified
1116 by a unique integer. */
1117 static int unique_id;
1119 static void
1120 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1122 unsigned regno;
1123 rtx src;
1124 int n;
1126 if (!REG_P (dest))
1127 return;
1129 regno = REGNO (dest);
1131 gcc_assert (regno < VEC_length (rtx, reg_base_value));
1133 /* If this spans multiple hard registers, then we must indicate that every
1134 register has an unusable value. */
1135 if (regno < FIRST_PSEUDO_REGISTER)
1136 n = hard_regno_nregs[regno][GET_MODE (dest)];
1137 else
1138 n = 1;
1139 if (n != 1)
1141 while (--n >= 0)
1143 reg_seen[regno + n] = 1;
1144 new_reg_base_value[regno + n] = 0;
1146 return;
1149 if (set)
1151 /* A CLOBBER wipes out any old value but does not prevent a previously
1152 unset register from acquiring a base address (i.e. reg_seen is not
1153 set). */
1154 if (GET_CODE (set) == CLOBBER)
1156 new_reg_base_value[regno] = 0;
1157 return;
1159 src = SET_SRC (set);
1161 else
1163 if (reg_seen[regno])
1165 new_reg_base_value[regno] = 0;
1166 return;
1168 reg_seen[regno] = 1;
1169 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1170 GEN_INT (unique_id++));
1171 return;
1174 /* If this is not the first set of REGNO, see whether the new value
1175 is related to the old one. There are two cases of interest:
1177 (1) The register might be assigned an entirely new value
1178 that has the same base term as the original set.
1180 (2) The set might be a simple self-modification that
1181 cannot change REGNO's base value.
1183 If neither case holds, reject the original base value as invalid.
1184 Note that the following situation is not detected:
1186 extern int x, y; int *p = &x; p += (&y-&x);
1188 ANSI C does not allow computing the difference of addresses
1189 of distinct top level objects. */
1190 if (new_reg_base_value[regno] != 0
1191 && find_base_value (src) != new_reg_base_value[regno])
1192 switch (GET_CODE (src))
1194 case LO_SUM:
1195 case MINUS:
1196 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1197 new_reg_base_value[regno] = 0;
1198 break;
1199 case PLUS:
1200 /* If the value we add in the PLUS is also a valid base value,
1201 this might be the actual base value, and the original value
1202 an index. */
1204 rtx other = NULL_RTX;
1206 if (XEXP (src, 0) == dest)
1207 other = XEXP (src, 1);
1208 else if (XEXP (src, 1) == dest)
1209 other = XEXP (src, 0);
1211 if (! other || find_base_value (other))
1212 new_reg_base_value[regno] = 0;
1213 break;
1215 case AND:
1216 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1217 new_reg_base_value[regno] = 0;
1218 break;
1219 default:
1220 new_reg_base_value[regno] = 0;
1221 break;
1223 /* If this is the first set of a register, record the value. */
1224 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1225 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1226 new_reg_base_value[regno] = find_base_value (src);
1228 reg_seen[regno] = 1;
1231 /* If a value is known for REGNO, return it. */
1234 get_reg_known_value (unsigned int regno)
1236 if (regno >= FIRST_PSEUDO_REGISTER)
1238 regno -= FIRST_PSEUDO_REGISTER;
1239 if (regno < reg_known_value_size)
1240 return reg_known_value[regno];
1242 return NULL;
1245 /* Set it. */
1247 static void
1248 set_reg_known_value (unsigned int regno, rtx val)
1250 if (regno >= FIRST_PSEUDO_REGISTER)
1252 regno -= FIRST_PSEUDO_REGISTER;
1253 if (regno < reg_known_value_size)
1254 reg_known_value[regno] = val;
1258 /* Similarly for reg_known_equiv_p. */
1260 bool
1261 get_reg_known_equiv_p (unsigned int regno)
1263 if (regno >= FIRST_PSEUDO_REGISTER)
1265 regno -= FIRST_PSEUDO_REGISTER;
1266 if (regno < reg_known_value_size)
1267 return reg_known_equiv_p[regno];
1269 return false;
1272 static void
1273 set_reg_known_equiv_p (unsigned int regno, bool val)
1275 if (regno >= FIRST_PSEUDO_REGISTER)
1277 regno -= FIRST_PSEUDO_REGISTER;
1278 if (regno < reg_known_value_size)
1279 reg_known_equiv_p[regno] = val;
1284 /* Returns a canonical version of X, from the point of view alias
1285 analysis. (For example, if X is a MEM whose address is a register,
1286 and the register has a known value (say a SYMBOL_REF), then a MEM
1287 whose address is the SYMBOL_REF is returned.) */
1290 canon_rtx (rtx x)
1292 /* Recursively look for equivalences. */
1293 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1295 rtx t = get_reg_known_value (REGNO (x));
1296 if (t == x)
1297 return x;
1298 if (t)
1299 return canon_rtx (t);
1302 if (GET_CODE (x) == PLUS)
1304 rtx x0 = canon_rtx (XEXP (x, 0));
1305 rtx x1 = canon_rtx (XEXP (x, 1));
1307 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1309 if (CONST_INT_P (x0))
1310 return plus_constant (x1, INTVAL (x0));
1311 else if (CONST_INT_P (x1))
1312 return plus_constant (x0, INTVAL (x1));
1313 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1317 /* This gives us much better alias analysis when called from
1318 the loop optimizer. Note we want to leave the original
1319 MEM alone, but need to return the canonicalized MEM with
1320 all the flags with their original values. */
1321 else if (MEM_P (x))
1322 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1324 return x;
1327 /* Return 1 if X and Y are identical-looking rtx's.
1328 Expect that X and Y has been already canonicalized.
1330 We use the data in reg_known_value above to see if two registers with
1331 different numbers are, in fact, equivalent. */
1333 static int
1334 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1336 int i;
1337 int j;
1338 enum rtx_code code;
1339 const char *fmt;
1341 if (x == 0 && y == 0)
1342 return 1;
1343 if (x == 0 || y == 0)
1344 return 0;
1346 if (x == y)
1347 return 1;
1349 code = GET_CODE (x);
1350 /* Rtx's of different codes cannot be equal. */
1351 if (code != GET_CODE (y))
1352 return 0;
1354 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1355 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1357 if (GET_MODE (x) != GET_MODE (y))
1358 return 0;
1360 /* Some RTL can be compared without a recursive examination. */
1361 switch (code)
1363 case REG:
1364 return REGNO (x) == REGNO (y);
1366 case LABEL_REF:
1367 return XEXP (x, 0) == XEXP (y, 0);
1369 case SYMBOL_REF:
1370 return XSTR (x, 0) == XSTR (y, 0);
1372 case VALUE:
1373 case CONST_INT:
1374 case CONST_DOUBLE:
1375 case CONST_FIXED:
1376 /* There's no need to compare the contents of CONST_DOUBLEs or
1377 CONST_INTs because pointer equality is a good enough
1378 comparison for these nodes. */
1379 return 0;
1381 default:
1382 break;
1385 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1386 if (code == PLUS)
1387 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1388 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1389 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1390 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1391 /* For commutative operations, the RTX match if the operand match in any
1392 order. Also handle the simple binary and unary cases without a loop. */
1393 if (COMMUTATIVE_P (x))
1395 rtx xop0 = canon_rtx (XEXP (x, 0));
1396 rtx yop0 = canon_rtx (XEXP (y, 0));
1397 rtx yop1 = canon_rtx (XEXP (y, 1));
1399 return ((rtx_equal_for_memref_p (xop0, yop0)
1400 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1401 || (rtx_equal_for_memref_p (xop0, yop1)
1402 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1404 else if (NON_COMMUTATIVE_P (x))
1406 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1407 canon_rtx (XEXP (y, 0)))
1408 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1409 canon_rtx (XEXP (y, 1))));
1411 else if (UNARY_P (x))
1412 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1413 canon_rtx (XEXP (y, 0)));
1415 /* Compare the elements. If any pair of corresponding elements
1416 fail to match, return 0 for the whole things.
1418 Limit cases to types which actually appear in addresses. */
1420 fmt = GET_RTX_FORMAT (code);
1421 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1423 switch (fmt[i])
1425 case 'i':
1426 if (XINT (x, i) != XINT (y, i))
1427 return 0;
1428 break;
1430 case 'E':
1431 /* Two vectors must have the same length. */
1432 if (XVECLEN (x, i) != XVECLEN (y, i))
1433 return 0;
1435 /* And the corresponding elements must match. */
1436 for (j = 0; j < XVECLEN (x, i); j++)
1437 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1438 canon_rtx (XVECEXP (y, i, j))) == 0)
1439 return 0;
1440 break;
1442 case 'e':
1443 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1444 canon_rtx (XEXP (y, i))) == 0)
1445 return 0;
1446 break;
1448 /* This can happen for asm operands. */
1449 case 's':
1450 if (strcmp (XSTR (x, i), XSTR (y, i)))
1451 return 0;
1452 break;
1454 /* This can happen for an asm which clobbers memory. */
1455 case '0':
1456 break;
1458 /* It is believed that rtx's at this level will never
1459 contain anything but integers and other rtx's,
1460 except for within LABEL_REFs and SYMBOL_REFs. */
1461 default:
1462 gcc_unreachable ();
1465 return 1;
1469 find_base_term (rtx x)
1471 cselib_val *val;
1472 struct elt_loc_list *l;
1474 #if defined (FIND_BASE_TERM)
1475 /* Try machine-dependent ways to find the base term. */
1476 x = FIND_BASE_TERM (x);
1477 #endif
1479 switch (GET_CODE (x))
1481 case REG:
1482 return REG_BASE_VALUE (x);
1484 case TRUNCATE:
1485 /* As we do not know which address space the pointer is refering to, we can
1486 handle this only if the target does not support different pointer or
1487 address modes depending on the address space. */
1488 if (!target_default_pointer_address_modes_p ())
1489 return 0;
1490 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1491 return 0;
1492 /* Fall through. */
1493 case HIGH:
1494 case PRE_INC:
1495 case PRE_DEC:
1496 case POST_INC:
1497 case POST_DEC:
1498 case PRE_MODIFY:
1499 case POST_MODIFY:
1500 return find_base_term (XEXP (x, 0));
1502 case ZERO_EXTEND:
1503 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1504 /* As we do not know which address space the pointer is refering to, we can
1505 handle this only if the target does not support different pointer or
1506 address modes depending on the address space. */
1507 if (!target_default_pointer_address_modes_p ())
1508 return 0;
1511 rtx temp = find_base_term (XEXP (x, 0));
1513 if (temp != 0 && CONSTANT_P (temp))
1514 temp = convert_memory_address (Pmode, temp);
1516 return temp;
1519 case VALUE:
1520 val = CSELIB_VAL_PTR (x);
1521 if (!val)
1522 return 0;
1523 for (l = val->locs; l; l = l->next)
1524 if ((x = find_base_term (l->loc)) != 0)
1525 return x;
1526 return 0;
1528 case LO_SUM:
1529 /* The standard form is (lo_sum reg sym) so look only at the
1530 second operand. */
1531 return find_base_term (XEXP (x, 1));
1533 case CONST:
1534 x = XEXP (x, 0);
1535 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1536 return 0;
1537 /* Fall through. */
1538 case PLUS:
1539 case MINUS:
1541 rtx tmp1 = XEXP (x, 0);
1542 rtx tmp2 = XEXP (x, 1);
1544 /* This is a little bit tricky since we have to determine which of
1545 the two operands represents the real base address. Otherwise this
1546 routine may return the index register instead of the base register.
1548 That may cause us to believe no aliasing was possible, when in
1549 fact aliasing is possible.
1551 We use a few simple tests to guess the base register. Additional
1552 tests can certainly be added. For example, if one of the operands
1553 is a shift or multiply, then it must be the index register and the
1554 other operand is the base register. */
1556 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1557 return find_base_term (tmp2);
1559 /* If either operand is known to be a pointer, then use it
1560 to determine the base term. */
1561 if (REG_P (tmp1) && REG_POINTER (tmp1))
1563 rtx base = find_base_term (tmp1);
1564 if (base)
1565 return base;
1568 if (REG_P (tmp2) && REG_POINTER (tmp2))
1570 rtx base = find_base_term (tmp2);
1571 if (base)
1572 return base;
1575 /* Neither operand was known to be a pointer. Go ahead and find the
1576 base term for both operands. */
1577 tmp1 = find_base_term (tmp1);
1578 tmp2 = find_base_term (tmp2);
1580 /* If either base term is named object or a special address
1581 (like an argument or stack reference), then use it for the
1582 base term. */
1583 if (tmp1 != 0
1584 && (GET_CODE (tmp1) == SYMBOL_REF
1585 || GET_CODE (tmp1) == LABEL_REF
1586 || (GET_CODE (tmp1) == ADDRESS
1587 && GET_MODE (tmp1) != VOIDmode)))
1588 return tmp1;
1590 if (tmp2 != 0
1591 && (GET_CODE (tmp2) == SYMBOL_REF
1592 || GET_CODE (tmp2) == LABEL_REF
1593 || (GET_CODE (tmp2) == ADDRESS
1594 && GET_MODE (tmp2) != VOIDmode)))
1595 return tmp2;
1597 /* We could not determine which of the two operands was the
1598 base register and which was the index. So we can determine
1599 nothing from the base alias check. */
1600 return 0;
1603 case AND:
1604 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1605 return find_base_term (XEXP (x, 0));
1606 return 0;
1608 case SYMBOL_REF:
1609 case LABEL_REF:
1610 return x;
1612 default:
1613 return 0;
1617 /* Return 0 if the addresses X and Y are known to point to different
1618 objects, 1 if they might be pointers to the same object. */
1620 static int
1621 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1622 enum machine_mode y_mode)
1624 rtx x_base = find_base_term (x);
1625 rtx y_base = find_base_term (y);
1627 /* If the address itself has no known base see if a known equivalent
1628 value has one. If either address still has no known base, nothing
1629 is known about aliasing. */
1630 if (x_base == 0)
1632 rtx x_c;
1634 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1635 return 1;
1637 x_base = find_base_term (x_c);
1638 if (x_base == 0)
1639 return 1;
1642 if (y_base == 0)
1644 rtx y_c;
1645 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1646 return 1;
1648 y_base = find_base_term (y_c);
1649 if (y_base == 0)
1650 return 1;
1653 /* If the base addresses are equal nothing is known about aliasing. */
1654 if (rtx_equal_p (x_base, y_base))
1655 return 1;
1657 /* The base addresses are different expressions. If they are not accessed
1658 via AND, there is no conflict. We can bring knowledge of object
1659 alignment into play here. For example, on alpha, "char a, b;" can
1660 alias one another, though "char a; long b;" cannot. AND addesses may
1661 implicitly alias surrounding objects; i.e. unaligned access in DImode
1662 via AND address can alias all surrounding object types except those
1663 with aligment 8 or higher. */
1664 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1665 return 1;
1666 if (GET_CODE (x) == AND
1667 && (!CONST_INT_P (XEXP (x, 1))
1668 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1669 return 1;
1670 if (GET_CODE (y) == AND
1671 && (!CONST_INT_P (XEXP (y, 1))
1672 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1673 return 1;
1675 /* Differing symbols not accessed via AND never alias. */
1676 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1677 return 0;
1679 /* If one address is a stack reference there can be no alias:
1680 stack references using different base registers do not alias,
1681 a stack reference can not alias a parameter, and a stack reference
1682 can not alias a global. */
1683 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1684 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1685 return 0;
1687 if (! flag_argument_noalias)
1688 return 1;
1690 if (flag_argument_noalias > 1)
1691 return 0;
1693 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1694 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1697 /* Convert the address X into something we can use. This is done by returning
1698 it unchanged unless it is a value; in the latter case we call cselib to get
1699 a more useful rtx. */
1702 get_addr (rtx x)
1704 cselib_val *v;
1705 struct elt_loc_list *l;
1707 if (GET_CODE (x) != VALUE)
1708 return x;
1709 v = CSELIB_VAL_PTR (x);
1710 if (v)
1712 for (l = v->locs; l; l = l->next)
1713 if (CONSTANT_P (l->loc))
1714 return l->loc;
1715 for (l = v->locs; l; l = l->next)
1716 if (!REG_P (l->loc) && !MEM_P (l->loc))
1717 return l->loc;
1718 if (v->locs)
1719 return v->locs->loc;
1721 return x;
1724 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1725 where SIZE is the size in bytes of the memory reference. If ADDR
1726 is not modified by the memory reference then ADDR is returned. */
1728 static rtx
1729 addr_side_effect_eval (rtx addr, int size, int n_refs)
1731 int offset = 0;
1733 switch (GET_CODE (addr))
1735 case PRE_INC:
1736 offset = (n_refs + 1) * size;
1737 break;
1738 case PRE_DEC:
1739 offset = -(n_refs + 1) * size;
1740 break;
1741 case POST_INC:
1742 offset = n_refs * size;
1743 break;
1744 case POST_DEC:
1745 offset = -n_refs * size;
1746 break;
1748 default:
1749 return addr;
1752 if (offset)
1753 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1754 GEN_INT (offset));
1755 else
1756 addr = XEXP (addr, 0);
1757 addr = canon_rtx (addr);
1759 return addr;
1762 /* Return one if X and Y (memory addresses) reference the
1763 same location in memory or if the references overlap.
1764 Return zero if they do not overlap, else return
1765 minus one in which case they still might reference the same location.
1767 C is an offset accumulator. When
1768 C is nonzero, we are testing aliases between X and Y + C.
1769 XSIZE is the size in bytes of the X reference,
1770 similarly YSIZE is the size in bytes for Y.
1771 Expect that canon_rtx has been already called for X and Y.
1773 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1774 referenced (the reference was BLKmode), so make the most pessimistic
1775 assumptions.
1777 If XSIZE or YSIZE is negative, we may access memory outside the object
1778 being referenced as a side effect. This can happen when using AND to
1779 align memory references, as is done on the Alpha.
1781 Nice to notice that varying addresses cannot conflict with fp if no
1782 local variables had their addresses taken, but that's too hard now.
1784 ??? Contrary to the tree alias oracle this does not return
1785 one for X + non-constant and Y + non-constant when X and Y are equal.
1786 If that is fixed the TBAA hack for union type-punning can be removed. */
1788 static int
1789 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1791 if (GET_CODE (x) == VALUE)
1792 x = get_addr (x);
1793 if (GET_CODE (y) == VALUE)
1794 y = get_addr (y);
1795 if (GET_CODE (x) == HIGH)
1796 x = XEXP (x, 0);
1797 else if (GET_CODE (x) == LO_SUM)
1798 x = XEXP (x, 1);
1799 else
1800 x = addr_side_effect_eval (x, xsize, 0);
1801 if (GET_CODE (y) == HIGH)
1802 y = XEXP (y, 0);
1803 else if (GET_CODE (y) == LO_SUM)
1804 y = XEXP (y, 1);
1805 else
1806 y = addr_side_effect_eval (y, ysize, 0);
1808 if (rtx_equal_for_memref_p (x, y))
1810 if (xsize <= 0 || ysize <= 0)
1811 return 1;
1812 if (c >= 0 && xsize > c)
1813 return 1;
1814 if (c < 0 && ysize+c > 0)
1815 return 1;
1816 return 0;
1819 /* This code used to check for conflicts involving stack references and
1820 globals but the base address alias code now handles these cases. */
1822 if (GET_CODE (x) == PLUS)
1824 /* The fact that X is canonicalized means that this
1825 PLUS rtx is canonicalized. */
1826 rtx x0 = XEXP (x, 0);
1827 rtx x1 = XEXP (x, 1);
1829 if (GET_CODE (y) == PLUS)
1831 /* The fact that Y is canonicalized means that this
1832 PLUS rtx is canonicalized. */
1833 rtx y0 = XEXP (y, 0);
1834 rtx y1 = XEXP (y, 1);
1836 if (rtx_equal_for_memref_p (x1, y1))
1837 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1838 if (rtx_equal_for_memref_p (x0, y0))
1839 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1840 if (CONST_INT_P (x1))
1842 if (CONST_INT_P (y1))
1843 return memrefs_conflict_p (xsize, x0, ysize, y0,
1844 c - INTVAL (x1) + INTVAL (y1));
1845 else
1846 return memrefs_conflict_p (xsize, x0, ysize, y,
1847 c - INTVAL (x1));
1849 else if (CONST_INT_P (y1))
1850 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1852 return -1;
1854 else if (CONST_INT_P (x1))
1855 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1857 else if (GET_CODE (y) == PLUS)
1859 /* The fact that Y is canonicalized means that this
1860 PLUS rtx is canonicalized. */
1861 rtx y0 = XEXP (y, 0);
1862 rtx y1 = XEXP (y, 1);
1864 if (CONST_INT_P (y1))
1865 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1866 else
1867 return -1;
1870 if (GET_CODE (x) == GET_CODE (y))
1871 switch (GET_CODE (x))
1873 case MULT:
1875 /* Handle cases where we expect the second operands to be the
1876 same, and check only whether the first operand would conflict
1877 or not. */
1878 rtx x0, y0;
1879 rtx x1 = canon_rtx (XEXP (x, 1));
1880 rtx y1 = canon_rtx (XEXP (y, 1));
1881 if (! rtx_equal_for_memref_p (x1, y1))
1882 return -1;
1883 x0 = canon_rtx (XEXP (x, 0));
1884 y0 = canon_rtx (XEXP (y, 0));
1885 if (rtx_equal_for_memref_p (x0, y0))
1886 return (xsize == 0 || ysize == 0
1887 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1889 /* Can't properly adjust our sizes. */
1890 if (!CONST_INT_P (x1))
1891 return -1;
1892 xsize /= INTVAL (x1);
1893 ysize /= INTVAL (x1);
1894 c /= INTVAL (x1);
1895 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1898 default:
1899 break;
1902 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1903 as an access with indeterminate size. Assume that references
1904 besides AND are aligned, so if the size of the other reference is
1905 at least as large as the alignment, assume no other overlap. */
1906 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
1908 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1909 xsize = -1;
1910 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1912 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
1914 /* ??? If we are indexing far enough into the array/structure, we
1915 may yet be able to determine that we can not overlap. But we
1916 also need to that we are far enough from the end not to overlap
1917 a following reference, so we do nothing with that for now. */
1918 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1919 ysize = -1;
1920 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1923 if (CONSTANT_P (x))
1925 if (CONST_INT_P (x) && CONST_INT_P (y))
1927 c += (INTVAL (y) - INTVAL (x));
1928 return (xsize <= 0 || ysize <= 0
1929 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1932 if (GET_CODE (x) == CONST)
1934 if (GET_CODE (y) == CONST)
1935 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1936 ysize, canon_rtx (XEXP (y, 0)), c);
1937 else
1938 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1939 ysize, y, c);
1941 if (GET_CODE (y) == CONST)
1942 return memrefs_conflict_p (xsize, x, ysize,
1943 canon_rtx (XEXP (y, 0)), c);
1945 if (CONSTANT_P (y))
1946 return (xsize <= 0 || ysize <= 0
1947 || (rtx_equal_for_memref_p (x, y)
1948 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1950 return -1;
1953 return -1;
1956 /* Functions to compute memory dependencies.
1958 Since we process the insns in execution order, we can build tables
1959 to keep track of what registers are fixed (and not aliased), what registers
1960 are varying in known ways, and what registers are varying in unknown
1961 ways.
1963 If both memory references are volatile, then there must always be a
1964 dependence between the two references, since their order can not be
1965 changed. A volatile and non-volatile reference can be interchanged
1966 though.
1968 A MEM_IN_STRUCT reference at a non-AND varying address can never
1969 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1970 also must allow AND addresses, because they may generate accesses
1971 outside the object being referenced. This is used to generate
1972 aligned addresses from unaligned addresses, for instance, the alpha
1973 storeqi_unaligned pattern. */
1975 /* Read dependence: X is read after read in MEM takes place. There can
1976 only be a dependence here if both reads are volatile. */
1979 read_dependence (const_rtx mem, const_rtx x)
1981 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1984 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1985 MEM2 is a reference to a structure at a varying address, or returns
1986 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1987 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1988 to decide whether or not an address may vary; it should return
1989 nonzero whenever variation is possible.
1990 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1992 static const_rtx
1993 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
1994 rtx mem2_addr,
1995 bool (*varies_p) (const_rtx, bool))
1997 if (! flag_strict_aliasing)
1998 return NULL_RTX;
2000 if (MEM_ALIAS_SET (mem2)
2001 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
2002 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
2003 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
2004 varying address. */
2005 return mem1;
2007 if (MEM_ALIAS_SET (mem1)
2008 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
2009 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
2010 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
2011 varying address. */
2012 return mem2;
2014 return NULL_RTX;
2017 /* Returns nonzero if something about the mode or address format MEM1
2018 indicates that it might well alias *anything*. */
2020 static int
2021 aliases_everything_p (const_rtx mem)
2023 if (GET_CODE (XEXP (mem, 0)) == AND)
2024 /* If the address is an AND, it's very hard to know at what it is
2025 actually pointing. */
2026 return 1;
2028 return 0;
2031 /* Return true if we can determine that the fields referenced cannot
2032 overlap for any pair of objects. */
2034 static bool
2035 nonoverlapping_component_refs_p (const_tree x, const_tree y)
2037 const_tree fieldx, fieldy, typex, typey, orig_y;
2039 if (!flag_strict_aliasing)
2040 return false;
2044 /* The comparison has to be done at a common type, since we don't
2045 know how the inheritance hierarchy works. */
2046 orig_y = y;
2049 fieldx = TREE_OPERAND (x, 1);
2050 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2052 y = orig_y;
2055 fieldy = TREE_OPERAND (y, 1);
2056 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2058 if (typex == typey)
2059 goto found;
2061 y = TREE_OPERAND (y, 0);
2063 while (y && TREE_CODE (y) == COMPONENT_REF);
2065 x = TREE_OPERAND (x, 0);
2067 while (x && TREE_CODE (x) == COMPONENT_REF);
2068 /* Never found a common type. */
2069 return false;
2071 found:
2072 /* If we're left with accessing different fields of a structure,
2073 then no overlap. */
2074 if (TREE_CODE (typex) == RECORD_TYPE
2075 && fieldx != fieldy)
2076 return true;
2078 /* The comparison on the current field failed. If we're accessing
2079 a very nested structure, look at the next outer level. */
2080 x = TREE_OPERAND (x, 0);
2081 y = TREE_OPERAND (y, 0);
2083 while (x && y
2084 && TREE_CODE (x) == COMPONENT_REF
2085 && TREE_CODE (y) == COMPONENT_REF);
2087 return false;
2090 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2092 static tree
2093 decl_for_component_ref (tree x)
2097 x = TREE_OPERAND (x, 0);
2099 while (x && TREE_CODE (x) == COMPONENT_REF);
2101 return x && DECL_P (x) ? x : NULL_TREE;
2104 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2105 offset of the field reference. */
2107 static rtx
2108 adjust_offset_for_component_ref (tree x, rtx offset)
2110 HOST_WIDE_INT ioffset;
2112 if (! offset)
2113 return NULL_RTX;
2115 ioffset = INTVAL (offset);
2118 tree offset = component_ref_field_offset (x);
2119 tree field = TREE_OPERAND (x, 1);
2121 if (! host_integerp (offset, 1))
2122 return NULL_RTX;
2123 ioffset += (tree_low_cst (offset, 1)
2124 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2125 / BITS_PER_UNIT));
2127 x = TREE_OPERAND (x, 0);
2129 while (x && TREE_CODE (x) == COMPONENT_REF);
2131 return GEN_INT (ioffset);
2134 /* Return nonzero if we can determine the exprs corresponding to memrefs
2135 X and Y and they do not overlap. */
2138 nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
2140 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2141 rtx rtlx, rtly;
2142 rtx basex, basey;
2143 rtx moffsetx, moffsety;
2144 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2146 /* Unless both have exprs, we can't tell anything. */
2147 if (exprx == 0 || expry == 0)
2148 return 0;
2150 /* For spill-slot accesses make sure we have valid offsets. */
2151 if ((exprx == get_spill_slot_decl (false)
2152 && ! MEM_OFFSET (x))
2153 || (expry == get_spill_slot_decl (false)
2154 && ! MEM_OFFSET (y)))
2155 return 0;
2157 /* If both are field references, we may be able to determine something. */
2158 if (TREE_CODE (exprx) == COMPONENT_REF
2159 && TREE_CODE (expry) == COMPONENT_REF
2160 && nonoverlapping_component_refs_p (exprx, expry))
2161 return 1;
2164 /* If the field reference test failed, look at the DECLs involved. */
2165 moffsetx = MEM_OFFSET (x);
2166 if (TREE_CODE (exprx) == COMPONENT_REF)
2168 if (TREE_CODE (expry) == VAR_DECL
2169 && POINTER_TYPE_P (TREE_TYPE (expry)))
2171 tree field = TREE_OPERAND (exprx, 1);
2172 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2173 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2174 TREE_TYPE (field)))
2175 return 1;
2178 tree t = decl_for_component_ref (exprx);
2179 if (! t)
2180 return 0;
2181 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2182 exprx = t;
2185 else if (INDIRECT_REF_P (exprx))
2187 exprx = TREE_OPERAND (exprx, 0);
2188 if (flag_argument_noalias < 2
2189 || TREE_CODE (exprx) != PARM_DECL)
2190 return 0;
2193 moffsety = MEM_OFFSET (y);
2194 if (TREE_CODE (expry) == COMPONENT_REF)
2196 if (TREE_CODE (exprx) == VAR_DECL
2197 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2199 tree field = TREE_OPERAND (expry, 1);
2200 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2201 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2202 TREE_TYPE (field)))
2203 return 1;
2206 tree t = decl_for_component_ref (expry);
2207 if (! t)
2208 return 0;
2209 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2210 expry = t;
2213 else if (INDIRECT_REF_P (expry))
2215 expry = TREE_OPERAND (expry, 0);
2216 if (flag_argument_noalias < 2
2217 || TREE_CODE (expry) != PARM_DECL)
2218 return 0;
2221 if (! DECL_P (exprx) || ! DECL_P (expry))
2222 return 0;
2224 /* With invalid code we can end up storing into the constant pool.
2225 Bail out to avoid ICEing when creating RTL for this.
2226 See gfortran.dg/lto/20091028-2_0.f90. */
2227 if (TREE_CODE (exprx) == CONST_DECL
2228 || TREE_CODE (expry) == CONST_DECL)
2229 return 1;
2231 rtlx = DECL_RTL (exprx);
2232 rtly = DECL_RTL (expry);
2234 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2235 can't overlap unless they are the same because we never reuse that part
2236 of the stack frame used for locals for spilled pseudos. */
2237 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2238 && ! rtx_equal_p (rtlx, rtly))
2239 return 1;
2241 /* If we have MEMs refering to different address spaces (which can
2242 potentially overlap), we cannot easily tell from the addresses
2243 whether the references overlap. */
2244 if (MEM_P (rtlx) && MEM_P (rtly)
2245 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2246 return 0;
2248 /* Get the base and offsets of both decls. If either is a register, we
2249 know both are and are the same, so use that as the base. The only
2250 we can avoid overlap is if we can deduce that they are nonoverlapping
2251 pieces of that decl, which is very rare. */
2252 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2253 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2254 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2256 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2257 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2258 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2260 /* If the bases are different, we know they do not overlap if both
2261 are constants or if one is a constant and the other a pointer into the
2262 stack frame. Otherwise a different base means we can't tell if they
2263 overlap or not. */
2264 if (! rtx_equal_p (basex, basey))
2265 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2266 || (CONSTANT_P (basex) && REG_P (basey)
2267 && REGNO_PTR_FRAME_P (REGNO (basey)))
2268 || (CONSTANT_P (basey) && REG_P (basex)
2269 && REGNO_PTR_FRAME_P (REGNO (basex))));
2271 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2272 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2273 : -1);
2274 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2275 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2276 -1);
2278 /* If we have an offset for either memref, it can update the values computed
2279 above. */
2280 if (moffsetx)
2281 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2282 if (moffsety)
2283 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2285 /* If a memref has both a size and an offset, we can use the smaller size.
2286 We can't do this if the offset isn't known because we must view this
2287 memref as being anywhere inside the DECL's MEM. */
2288 if (MEM_SIZE (x) && moffsetx)
2289 sizex = INTVAL (MEM_SIZE (x));
2290 if (MEM_SIZE (y) && moffsety)
2291 sizey = INTVAL (MEM_SIZE (y));
2293 /* Put the values of the memref with the lower offset in X's values. */
2294 if (offsetx > offsety)
2296 tem = offsetx, offsetx = offsety, offsety = tem;
2297 tem = sizex, sizex = sizey, sizey = tem;
2300 /* If we don't know the size of the lower-offset value, we can't tell
2301 if they conflict. Otherwise, we do the test. */
2302 return sizex >= 0 && offsety >= offsetx + sizex;
2305 /* True dependence: X is read after store in MEM takes place. */
2308 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2309 bool (*varies) (const_rtx, bool))
2311 rtx x_addr, mem_addr;
2312 rtx base;
2313 int ret;
2315 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2316 return 1;
2318 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2319 This is used in epilogue deallocation functions, and in cselib. */
2320 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2321 return 1;
2322 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2323 return 1;
2324 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2325 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2326 return 1;
2328 /* Read-only memory is by definition never modified, and therefore can't
2329 conflict with anything. We don't expect to find read-only set on MEM,
2330 but stupid user tricks can produce them, so don't die. */
2331 if (MEM_READONLY_P (x))
2332 return 0;
2334 /* If we have MEMs refering to different address spaces (which can
2335 potentially overlap), we cannot easily tell from the addresses
2336 whether the references overlap. */
2337 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2338 return 1;
2340 if (mem_mode == VOIDmode)
2341 mem_mode = GET_MODE (mem);
2343 x_addr = XEXP (x, 0);
2344 mem_addr = XEXP (mem, 0);
2345 if (!((GET_CODE (x_addr) == VALUE
2346 && GET_CODE (mem_addr) != VALUE
2347 && reg_mentioned_p (x_addr, mem_addr))
2348 || (GET_CODE (x_addr) != VALUE
2349 && GET_CODE (mem_addr) == VALUE
2350 && reg_mentioned_p (mem_addr, x_addr))))
2352 x_addr = get_addr (x_addr);
2353 mem_addr = get_addr (mem_addr);
2356 base = find_base_term (x_addr);
2357 if (base && (GET_CODE (base) == LABEL_REF
2358 || (GET_CODE (base) == SYMBOL_REF
2359 && CONSTANT_POOL_ADDRESS_P (base))))
2360 return 0;
2362 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2363 return 0;
2365 x_addr = canon_rtx (x_addr);
2366 mem_addr = canon_rtx (mem_addr);
2368 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2369 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2370 return ret;
2372 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2373 return 0;
2375 if (nonoverlapping_memrefs_p (mem, x))
2376 return 0;
2378 if (aliases_everything_p (x))
2379 return 1;
2381 /* We cannot use aliases_everything_p to test MEM, since we must look
2382 at MEM_MODE, rather than GET_MODE (MEM). */
2383 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2384 return 1;
2386 /* In true_dependence we also allow BLKmode to alias anything. Why
2387 don't we do this in anti_dependence and output_dependence? */
2388 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2389 return 1;
2391 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2392 return 0;
2394 return rtx_refs_may_alias_p (x, mem, true);
2397 /* Canonical true dependence: X is read after store in MEM takes place.
2398 Variant of true_dependence which assumes MEM has already been
2399 canonicalized (hence we no longer do that here).
2400 The mem_addr argument has been added, since true_dependence computed
2401 this value prior to canonicalizing.
2402 If x_addr is non-NULL, it is used in preference of XEXP (x, 0). */
2405 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2406 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
2408 int ret;
2410 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2411 return 1;
2413 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2414 This is used in epilogue deallocation functions. */
2415 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2416 return 1;
2417 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2418 return 1;
2419 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2420 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2421 return 1;
2423 /* Read-only memory is by definition never modified, and therefore can't
2424 conflict with anything. We don't expect to find read-only set on MEM,
2425 but stupid user tricks can produce them, so don't die. */
2426 if (MEM_READONLY_P (x))
2427 return 0;
2429 /* If we have MEMs refering to different address spaces (which can
2430 potentially overlap), we cannot easily tell from the addresses
2431 whether the references overlap. */
2432 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2433 return 1;
2435 if (! x_addr)
2437 x_addr = XEXP (x, 0);
2438 if (!((GET_CODE (x_addr) == VALUE
2439 && GET_CODE (mem_addr) != VALUE
2440 && reg_mentioned_p (x_addr, mem_addr))
2441 || (GET_CODE (x_addr) != VALUE
2442 && GET_CODE (mem_addr) == VALUE
2443 && reg_mentioned_p (mem_addr, x_addr))))
2444 x_addr = get_addr (x_addr);
2447 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2448 return 0;
2450 x_addr = canon_rtx (x_addr);
2451 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2452 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2453 return ret;
2455 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2456 return 0;
2458 if (nonoverlapping_memrefs_p (x, mem))
2459 return 0;
2461 if (aliases_everything_p (x))
2462 return 1;
2464 /* We cannot use aliases_everything_p to test MEM, since we must look
2465 at MEM_MODE, rather than GET_MODE (MEM). */
2466 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2467 return 1;
2469 /* In true_dependence we also allow BLKmode to alias anything. Why
2470 don't we do this in anti_dependence and output_dependence? */
2471 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2472 return 1;
2474 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2475 return 0;
2477 return rtx_refs_may_alias_p (x, mem, true);
2480 /* Returns nonzero if a write to X might alias a previous read from
2481 (or, if WRITEP is nonzero, a write to) MEM. */
2483 static int
2484 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2486 rtx x_addr, mem_addr;
2487 const_rtx fixed_scalar;
2488 rtx base;
2489 int ret;
2491 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2492 return 1;
2494 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2495 This is used in epilogue deallocation functions. */
2496 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2497 return 1;
2498 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2499 return 1;
2500 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2501 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2502 return 1;
2504 /* A read from read-only memory can't conflict with read-write memory. */
2505 if (!writep && MEM_READONLY_P (mem))
2506 return 0;
2508 /* If we have MEMs refering to different address spaces (which can
2509 potentially overlap), we cannot easily tell from the addresses
2510 whether the references overlap. */
2511 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2512 return 1;
2514 x_addr = XEXP (x, 0);
2515 mem_addr = XEXP (mem, 0);
2516 if (!((GET_CODE (x_addr) == VALUE
2517 && GET_CODE (mem_addr) != VALUE
2518 && reg_mentioned_p (x_addr, mem_addr))
2519 || (GET_CODE (x_addr) != VALUE
2520 && GET_CODE (mem_addr) == VALUE
2521 && reg_mentioned_p (mem_addr, x_addr))))
2523 x_addr = get_addr (x_addr);
2524 mem_addr = get_addr (mem_addr);
2527 if (! writep)
2529 base = find_base_term (mem_addr);
2530 if (base && (GET_CODE (base) == LABEL_REF
2531 || (GET_CODE (base) == SYMBOL_REF
2532 && CONSTANT_POOL_ADDRESS_P (base))))
2533 return 0;
2536 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2537 GET_MODE (mem)))
2538 return 0;
2540 x_addr = canon_rtx (x_addr);
2541 mem_addr = canon_rtx (mem_addr);
2543 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2544 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2545 return ret;
2547 if (nonoverlapping_memrefs_p (x, mem))
2548 return 0;
2550 fixed_scalar
2551 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2552 rtx_addr_varies_p);
2554 if ((fixed_scalar == mem && !aliases_everything_p (x))
2555 || (fixed_scalar == x && !aliases_everything_p (mem)))
2556 return 0;
2558 return rtx_refs_may_alias_p (x, mem, false);
2561 /* Anti dependence: X is written after read in MEM takes place. */
2564 anti_dependence (const_rtx mem, const_rtx x)
2566 return write_dependence_p (mem, x, /*writep=*/0);
2569 /* Output dependence: X is written after store in MEM takes place. */
2572 output_dependence (const_rtx mem, const_rtx x)
2574 return write_dependence_p (mem, x, /*writep=*/1);
2578 void
2579 init_alias_target (void)
2581 int i;
2583 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2585 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2586 /* Check whether this register can hold an incoming pointer
2587 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2588 numbers, so translate if necessary due to register windows. */
2589 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2590 && HARD_REGNO_MODE_OK (i, Pmode))
2591 static_reg_base_value[i]
2592 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2594 static_reg_base_value[STACK_POINTER_REGNUM]
2595 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2596 static_reg_base_value[ARG_POINTER_REGNUM]
2597 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2598 static_reg_base_value[FRAME_POINTER_REGNUM]
2599 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2600 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2601 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2602 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2603 #endif
2606 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2607 to be memory reference. */
2608 static bool memory_modified;
2609 static void
2610 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2612 if (MEM_P (x))
2614 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2615 memory_modified = true;
2620 /* Return true when INSN possibly modify memory contents of MEM
2621 (i.e. address can be modified). */
2622 bool
2623 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2625 if (!INSN_P (insn))
2626 return false;
2627 memory_modified = false;
2628 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2629 return memory_modified;
2632 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2633 array. */
2635 void
2636 init_alias_analysis (void)
2638 unsigned int maxreg = max_reg_num ();
2639 int changed, pass;
2640 int i;
2641 unsigned int ui;
2642 rtx insn;
2644 timevar_push (TV_ALIAS_ANALYSIS);
2646 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2647 reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size);
2648 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2650 /* If we have memory allocated from the previous run, use it. */
2651 if (old_reg_base_value)
2652 reg_base_value = old_reg_base_value;
2654 if (reg_base_value)
2655 VEC_truncate (rtx, reg_base_value, 0);
2657 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2659 new_reg_base_value = XNEWVEC (rtx, maxreg);
2660 reg_seen = XNEWVEC (char, maxreg);
2662 /* The basic idea is that each pass through this loop will use the
2663 "constant" information from the previous pass to propagate alias
2664 information through another level of assignments.
2666 This could get expensive if the assignment chains are long. Maybe
2667 we should throttle the number of iterations, possibly based on
2668 the optimization level or flag_expensive_optimizations.
2670 We could propagate more information in the first pass by making use
2671 of DF_REG_DEF_COUNT to determine immediately that the alias information
2672 for a pseudo is "constant".
2674 A program with an uninitialized variable can cause an infinite loop
2675 here. Instead of doing a full dataflow analysis to detect such problems
2676 we just cap the number of iterations for the loop.
2678 The state of the arrays for the set chain in question does not matter
2679 since the program has undefined behavior. */
2681 pass = 0;
2684 /* Assume nothing will change this iteration of the loop. */
2685 changed = 0;
2687 /* We want to assign the same IDs each iteration of this loop, so
2688 start counting from zero each iteration of the loop. */
2689 unique_id = 0;
2691 /* We're at the start of the function each iteration through the
2692 loop, so we're copying arguments. */
2693 copying_arguments = true;
2695 /* Wipe the potential alias information clean for this pass. */
2696 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2698 /* Wipe the reg_seen array clean. */
2699 memset (reg_seen, 0, maxreg);
2701 /* Mark all hard registers which may contain an address.
2702 The stack, frame and argument pointers may contain an address.
2703 An argument register which can hold a Pmode value may contain
2704 an address even if it is not in BASE_REGS.
2706 The address expression is VOIDmode for an argument and
2707 Pmode for other registers. */
2709 memcpy (new_reg_base_value, static_reg_base_value,
2710 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2712 /* Walk the insns adding values to the new_reg_base_value array. */
2713 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2715 if (INSN_P (insn))
2717 rtx note, set;
2719 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2720 /* The prologue/epilogue insns are not threaded onto the
2721 insn chain until after reload has completed. Thus,
2722 there is no sense wasting time checking if INSN is in
2723 the prologue/epilogue until after reload has completed. */
2724 if (reload_completed
2725 && prologue_epilogue_contains (insn))
2726 continue;
2727 #endif
2729 /* If this insn has a noalias note, process it, Otherwise,
2730 scan for sets. A simple set will have no side effects
2731 which could change the base value of any other register. */
2733 if (GET_CODE (PATTERN (insn)) == SET
2734 && REG_NOTES (insn) != 0
2735 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2736 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2737 else
2738 note_stores (PATTERN (insn), record_set, NULL);
2740 set = single_set (insn);
2742 if (set != 0
2743 && REG_P (SET_DEST (set))
2744 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2746 unsigned int regno = REGNO (SET_DEST (set));
2747 rtx src = SET_SRC (set);
2748 rtx t;
2750 note = find_reg_equal_equiv_note (insn);
2751 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2752 && DF_REG_DEF_COUNT (regno) != 1)
2753 note = NULL_RTX;
2755 if (note != NULL_RTX
2756 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2757 && ! rtx_varies_p (XEXP (note, 0), 1)
2758 && ! reg_overlap_mentioned_p (SET_DEST (set),
2759 XEXP (note, 0)))
2761 set_reg_known_value (regno, XEXP (note, 0));
2762 set_reg_known_equiv_p (regno,
2763 REG_NOTE_KIND (note) == REG_EQUIV);
2765 else if (DF_REG_DEF_COUNT (regno) == 1
2766 && GET_CODE (src) == PLUS
2767 && REG_P (XEXP (src, 0))
2768 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2769 && CONST_INT_P (XEXP (src, 1)))
2771 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2772 set_reg_known_value (regno, t);
2773 set_reg_known_equiv_p (regno, 0);
2775 else if (DF_REG_DEF_COUNT (regno) == 1
2776 && ! rtx_varies_p (src, 1))
2778 set_reg_known_value (regno, src);
2779 set_reg_known_equiv_p (regno, 0);
2783 else if (NOTE_P (insn)
2784 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2785 copying_arguments = false;
2788 /* Now propagate values from new_reg_base_value to reg_base_value. */
2789 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2791 for (ui = 0; ui < maxreg; ui++)
2793 if (new_reg_base_value[ui]
2794 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2795 && ! rtx_equal_p (new_reg_base_value[ui],
2796 VEC_index (rtx, reg_base_value, ui)))
2798 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2799 changed = 1;
2803 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2805 /* Fill in the remaining entries. */
2806 for (i = 0; i < (int)reg_known_value_size; i++)
2807 if (reg_known_value[i] == 0)
2808 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2810 /* Clean up. */
2811 free (new_reg_base_value);
2812 new_reg_base_value = 0;
2813 free (reg_seen);
2814 reg_seen = 0;
2815 timevar_pop (TV_ALIAS_ANALYSIS);
2818 void
2819 end_alias_analysis (void)
2821 old_reg_base_value = reg_base_value;
2822 ggc_free (reg_known_value);
2823 reg_known_value = 0;
2824 reg_known_value_size = 0;
2825 free (reg_known_equiv_p);
2826 reg_known_equiv_p = 0;
2829 #include "gt-alias.h"