2015-03-21 Sandra Loosemore <sandra@codesourcery.com>
[official-gcc.git] / gcc / gcse.c
blobe03b36c3a8529d23a8a0ba92563de099214d8dea
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141 #include "hard-reg-set.h"
142 #include "rtl.h"
143 #include "hash-set.h"
144 #include "machmode.h"
145 #include "vec.h"
146 #include "double-int.h"
147 #include "input.h"
148 #include "alias.h"
149 #include "symtab.h"
150 #include "wide-int.h"
151 #include "inchash.h"
152 #include "tree.h"
153 #include "tm_p.h"
154 #include "regs.h"
155 #include "ira.h"
156 #include "flags.h"
157 #include "insn-config.h"
158 #include "recog.h"
159 #include "predict.h"
160 #include "function.h"
161 #include "dominance.h"
162 #include "cfg.h"
163 #include "cfgrtl.h"
164 #include "cfganal.h"
165 #include "lcm.h"
166 #include "cfgcleanup.h"
167 #include "basic-block.h"
168 #include "hashtab.h"
169 #include "statistics.h"
170 #include "real.h"
171 #include "fixed-value.h"
172 #include "expmed.h"
173 #include "dojump.h"
174 #include "explow.h"
175 #include "calls.h"
176 #include "emit-rtl.h"
177 #include "varasm.h"
178 #include "stmt.h"
179 #include "expr.h"
180 #include "except.h"
181 #include "ggc.h"
182 #include "params.h"
183 #include "cselib.h"
184 #include "intl.h"
185 #include "obstack.h"
186 #include "tree-pass.h"
187 #include "hash-table.h"
188 #include "df.h"
189 #include "dbgcnt.h"
190 #include "target.h"
191 #include "gcse.h"
193 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
194 are a superset of those done by classic GCSE.
196 Two passes of copy/constant propagation are done around PRE or hoisting
197 because the first one enables more GCSE and the second one helps to clean
198 up the copies that PRE and HOIST create. This is needed more for PRE than
199 for HOIST because code hoisting will try to use an existing register
200 containing the common subexpression rather than create a new one. This is
201 harder to do for PRE because of the code motion (which HOIST doesn't do).
203 Expressions we are interested in GCSE-ing are of the form
204 (set (pseudo-reg) (expression)).
205 Function want_to_gcse_p says what these are.
207 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
208 This allows PRE to hoist expressions that are expressed in multiple insns,
209 such as complex address calculations (e.g. for PIC code, or loads with a
210 high part and a low part).
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
215 **********************
217 We used to support multiple passes but there are diminishing returns in
218 doing so. The first pass usually makes 90% of the changes that are doable.
219 A second pass can make a few more changes made possible by the first pass.
220 Experiments show any further passes don't make enough changes to justify
221 the expense.
223 A study of spec92 using an unlimited number of passes:
224 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
225 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
226 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
228 It was found doing copy propagation between each pass enables further
229 substitutions.
231 This study was done before expressions in REG_EQUAL notes were added as
232 candidate expressions for optimization, and before the GIMPLE optimizers
233 were added. Probably, multiple passes is even less efficient now than
234 at the time when the study was conducted.
236 PRE is quite expensive in complicated functions because the DFA can take
237 a while to converge. Hence we only perform one pass.
239 **********************
241 The steps for PRE are:
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 2) Perform the data flow analysis for PRE.
247 3) Delete the redundant instructions
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing
268 register. */
270 /* GCSE global vars. */
272 struct target_gcse default_target_gcse;
273 #if SWITCHABLE_TARGET
274 struct target_gcse *this_target_gcse = &default_target_gcse;
275 #endif
277 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
278 int flag_rerun_cse_after_global_opts;
280 /* An obstack for our working variables. */
281 static struct obstack gcse_obstack;
283 /* Hash table of expressions. */
285 struct gcse_expr
287 /* The expression. */
288 rtx expr;
289 /* Index in the available expression bitmaps. */
290 int bitmap_index;
291 /* Next entry with the same hash. */
292 struct gcse_expr *next_same_hash;
293 /* List of anticipatable occurrences in basic blocks in the function.
294 An "anticipatable occurrence" is one that is the first occurrence in the
295 basic block, the operands are not modified in the basic block prior
296 to the occurrence and the output is not used between the start of
297 the block and the occurrence. */
298 struct gcse_occr *antic_occr;
299 /* List of available occurrence in basic blocks in the function.
300 An "available occurrence" is one that is the last occurrence in the
301 basic block and the operands are not modified by following statements in
302 the basic block [including this insn]. */
303 struct gcse_occr *avail_occr;
304 /* Non-null if the computation is PRE redundant.
305 The value is the newly created pseudo-reg to record a copy of the
306 expression in all the places that reach the redundant copy. */
307 rtx reaching_reg;
308 /* Maximum distance in instructions this expression can travel.
309 We avoid moving simple expressions for more than a few instructions
310 to keep register pressure under control.
311 A value of "0" removes restrictions on how far the expression can
312 travel. */
313 int max_distance;
316 /* Occurrence of an expression.
317 There is one per basic block. If a pattern appears more than once the
318 last appearance is used [or first for anticipatable expressions]. */
320 struct gcse_occr
322 /* Next occurrence of this expression. */
323 struct gcse_occr *next;
324 /* The insn that computes the expression. */
325 rtx_insn *insn;
326 /* Nonzero if this [anticipatable] occurrence has been deleted. */
327 char deleted_p;
328 /* Nonzero if this [available] occurrence has been copied to
329 reaching_reg. */
330 /* ??? This is mutually exclusive with deleted_p, so they could share
331 the same byte. */
332 char copied_p;
335 typedef struct gcse_occr *occr_t;
337 /* Expression hash tables.
338 Each hash table is an array of buckets.
339 ??? It is known that if it were an array of entries, structure elements
340 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
341 not clear whether in the final analysis a sufficient amount of memory would
342 be saved as the size of the available expression bitmaps would be larger
343 [one could build a mapping table without holes afterwards though].
344 Someday I'll perform the computation and figure it out. */
346 struct gcse_hash_table_d
348 /* The table itself.
349 This is an array of `expr_hash_table_size' elements. */
350 struct gcse_expr **table;
352 /* Size of the hash table, in elements. */
353 unsigned int size;
355 /* Number of hash table elements. */
356 unsigned int n_elems;
359 /* Expression hash table. */
360 static struct gcse_hash_table_d expr_hash_table;
362 /* This is a list of expressions which are MEMs and will be used by load
363 or store motion.
364 Load motion tracks MEMs which aren't killed by anything except itself,
365 i.e. loads and stores to a single location.
366 We can then allow movement of these MEM refs with a little special
367 allowance. (all stores copy the same value to the reaching reg used
368 for the loads). This means all values used to store into memory must have
369 no side effects so we can re-issue the setter value. */
371 struct ls_expr
373 struct gcse_expr * expr; /* Gcse expression reference for LM. */
374 rtx pattern; /* Pattern of this mem. */
375 rtx pattern_regs; /* List of registers mentioned by the mem. */
376 rtx_insn_list *loads; /* INSN list of loads seen. */
377 rtx_insn_list *stores; /* INSN list of stores seen. */
378 struct ls_expr * next; /* Next in the list. */
379 int invalid; /* Invalid for some reason. */
380 int index; /* If it maps to a bitmap index. */
381 unsigned int hash_index; /* Index when in a hash table. */
382 rtx reaching_reg; /* Register to use when re-writing. */
385 /* Head of the list of load/store memory refs. */
386 static struct ls_expr * pre_ldst_mems = NULL;
388 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
390 typedef ls_expr value_type;
391 typedef value_type compare_type;
392 static inline hashval_t hash (const value_type *);
393 static inline bool equal (const value_type *, const compare_type *);
396 /* Hashtable helpers. */
397 inline hashval_t
398 pre_ldst_expr_hasher::hash (const value_type *x)
400 int do_not_record_p = 0;
401 return
402 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
405 static int expr_equiv_p (const_rtx, const_rtx);
407 inline bool
408 pre_ldst_expr_hasher::equal (const value_type *ptr1,
409 const compare_type *ptr2)
411 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
414 /* Hashtable for the load/store memory refs. */
415 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
417 /* Bitmap containing one bit for each register in the program.
418 Used when performing GCSE to track which registers have been set since
419 the start of the basic block. */
420 static regset reg_set_bitmap;
422 /* Array, indexed by basic block number for a list of insns which modify
423 memory within that block. */
424 static vec<rtx_insn *> *modify_mem_list;
425 static bitmap modify_mem_list_set;
427 typedef struct modify_pair_s
429 rtx dest; /* A MEM. */
430 rtx dest_addr; /* The canonical address of `dest'. */
431 } modify_pair;
434 /* This array parallels modify_mem_list, except that it stores MEMs
435 being set and their canonicalized memory addresses. */
436 static vec<modify_pair> *canon_modify_mem_list;
438 /* Bitmap indexed by block numbers to record which blocks contain
439 function calls. */
440 static bitmap blocks_with_calls;
442 /* Various variables for statistics gathering. */
444 /* Memory used in a pass.
445 This isn't intended to be absolutely precise. Its intent is only
446 to keep an eye on memory usage. */
447 static int bytes_used;
449 /* GCSE substitutions made. */
450 static int gcse_subst_count;
451 /* Number of copy instructions created. */
452 static int gcse_create_count;
454 /* Doing code hoisting. */
455 static bool doing_code_hoisting_p = false;
457 /* For available exprs */
458 static sbitmap *ae_kill;
460 /* Data stored for each basic block. */
461 struct bb_data
463 /* Maximal register pressure inside basic block for given register class
464 (defined only for the pressure classes). */
465 int max_reg_pressure[N_REG_CLASSES];
466 /* Recorded register pressure of basic block before trying to hoist
467 an expression. Will be used to restore the register pressure
468 if the expression should not be hoisted. */
469 int old_pressure;
470 /* Recorded register live_in info of basic block during code hoisting
471 process. BACKUP is used to record live_in info before trying to
472 hoist an expression, and will be used to restore LIVE_IN if the
473 expression should not be hoisted. */
474 bitmap live_in, backup;
477 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
479 static basic_block curr_bb;
481 /* Current register pressure for each pressure class. */
482 static int curr_reg_pressure[N_REG_CLASSES];
485 static void compute_can_copy (void);
486 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
487 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
488 static void *gcse_alloc (unsigned long);
489 static void alloc_gcse_mem (void);
490 static void free_gcse_mem (void);
491 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
492 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
493 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
494 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
495 static int want_to_gcse_p (rtx, int *);
496 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
497 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
498 static int oprs_available_p (const_rtx, const rtx_insn *);
499 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
500 int, struct gcse_hash_table_d *);
501 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
502 static void record_last_reg_set_info (rtx, int);
503 static void record_last_mem_set_info (rtx_insn *);
504 static void record_last_set_info (rtx, const_rtx, void *);
505 static void compute_hash_table (struct gcse_hash_table_d *);
506 static void alloc_hash_table (struct gcse_hash_table_d *);
507 static void free_hash_table (struct gcse_hash_table_d *);
508 static void compute_hash_table_work (struct gcse_hash_table_d *);
509 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
510 static void compute_transp (const_rtx, int, sbitmap *);
511 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
512 struct gcse_hash_table_d *);
513 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
514 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
515 static void canon_list_insert (rtx, const_rtx, void *);
516 static void alloc_pre_mem (int, int);
517 static void free_pre_mem (void);
518 static struct edge_list *compute_pre_data (void);
519 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
520 basic_block);
521 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
522 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
523 static void pre_insert_copies (void);
524 static int pre_delete (void);
525 static int pre_gcse (struct edge_list *);
526 static int one_pre_gcse_pass (void);
527 static void add_label_notes (rtx, rtx);
528 static void alloc_code_hoist_mem (int, int);
529 static void free_code_hoist_mem (void);
530 static void compute_code_hoist_vbeinout (void);
531 static void compute_code_hoist_data (void);
532 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
533 sbitmap, int, int *, enum reg_class,
534 int *, bitmap, rtx_insn *);
535 static int hoist_code (void);
536 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
537 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
538 static int one_code_hoisting_pass (void);
539 static rtx_insn *process_insert_insn (struct gcse_expr *);
540 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
541 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
542 basic_block, char *);
543 static struct ls_expr * ldst_entry (rtx);
544 static void free_ldst_entry (struct ls_expr *);
545 static void free_ld_motion_mems (void);
546 static void print_ldst_list (FILE *);
547 static struct ls_expr * find_rtx_in_ldst (rtx);
548 static int simple_mem (const_rtx);
549 static void invalidate_any_buried_refs (rtx);
550 static void compute_ld_motion_mems (void);
551 static void trim_ld_motion_mems (void);
552 static void update_ld_motion_stores (struct gcse_expr *);
553 static void clear_modify_mem_tables (void);
554 static void free_modify_mem_tables (void);
555 static rtx gcse_emit_move_after (rtx, rtx, rtx_insn *);
556 static bool is_too_expensive (const char *);
558 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
559 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
561 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
562 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
564 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
565 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
567 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
568 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
570 /* Misc. utilities. */
572 #define can_copy \
573 (this_target_gcse->x_can_copy)
574 #define can_copy_init_p \
575 (this_target_gcse->x_can_copy_init_p)
577 /* Compute which modes support reg/reg copy operations. */
579 static void
580 compute_can_copy (void)
582 int i;
583 #ifndef AVOID_CCMODE_COPIES
584 rtx reg, insn;
585 #endif
586 memset (can_copy, 0, NUM_MACHINE_MODES);
588 start_sequence ();
589 for (i = 0; i < NUM_MACHINE_MODES; i++)
590 if (GET_MODE_CLASS (i) == MODE_CC)
592 #ifdef AVOID_CCMODE_COPIES
593 can_copy[i] = 0;
594 #else
595 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
596 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
597 if (recog (PATTERN (insn), insn, NULL) >= 0)
598 can_copy[i] = 1;
599 #endif
601 else
602 can_copy[i] = 1;
604 end_sequence ();
607 /* Returns whether the mode supports reg/reg copy operations. */
609 bool
610 can_copy_p (machine_mode mode)
612 if (! can_copy_init_p)
614 compute_can_copy ();
615 can_copy_init_p = true;
618 return can_copy[mode] != 0;
621 /* Cover function to xmalloc to record bytes allocated. */
623 static void *
624 gmalloc (size_t size)
626 bytes_used += size;
627 return xmalloc (size);
630 /* Cover function to xcalloc to record bytes allocated. */
632 static void *
633 gcalloc (size_t nelem, size_t elsize)
635 bytes_used += nelem * elsize;
636 return xcalloc (nelem, elsize);
639 /* Cover function to obstack_alloc. */
641 static void *
642 gcse_alloc (unsigned long size)
644 bytes_used += size;
645 return obstack_alloc (&gcse_obstack, size);
648 /* Allocate memory for the reg/memory set tracking tables.
649 This is called at the start of each pass. */
651 static void
652 alloc_gcse_mem (void)
654 /* Allocate vars to track sets of regs. */
655 reg_set_bitmap = ALLOC_REG_SET (NULL);
657 /* Allocate array to keep a list of insns which modify memory in each
658 basic block. The two typedefs are needed to work around the
659 pre-processor limitation with template types in macro arguments. */
660 typedef vec<rtx_insn *> vec_rtx_heap;
661 typedef vec<modify_pair> vec_modify_pair_heap;
662 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
663 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
664 last_basic_block_for_fn (cfun));
665 modify_mem_list_set = BITMAP_ALLOC (NULL);
666 blocks_with_calls = BITMAP_ALLOC (NULL);
669 /* Free memory allocated by alloc_gcse_mem. */
671 static void
672 free_gcse_mem (void)
674 FREE_REG_SET (reg_set_bitmap);
676 free_modify_mem_tables ();
677 BITMAP_FREE (modify_mem_list_set);
678 BITMAP_FREE (blocks_with_calls);
681 /* Compute the local properties of each recorded expression.
683 Local properties are those that are defined by the block, irrespective of
684 other blocks.
686 An expression is transparent in a block if its operands are not modified
687 in the block.
689 An expression is computed (locally available) in a block if it is computed
690 at least once and expression would contain the same value if the
691 computation was moved to the end of the block.
693 An expression is locally anticipatable in a block if it is computed at
694 least once and expression would contain the same value if the computation
695 was moved to the beginning of the block.
697 We call this routine for pre and code hoisting. They all compute
698 basically the same information and thus can easily share this code.
700 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
701 properties. If NULL, then it is not necessary to compute or record that
702 particular property.
704 TABLE controls which hash table to look at. */
706 static void
707 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
708 struct gcse_hash_table_d *table)
710 unsigned int i;
712 /* Initialize any bitmaps that were passed in. */
713 if (transp)
715 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
718 if (comp)
719 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
720 if (antloc)
721 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
723 for (i = 0; i < table->size; i++)
725 struct gcse_expr *expr;
727 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
729 int indx = expr->bitmap_index;
730 struct gcse_occr *occr;
732 /* The expression is transparent in this block if it is not killed.
733 We start by assuming all are transparent [none are killed], and
734 then reset the bits for those that are. */
735 if (transp)
736 compute_transp (expr->expr, indx, transp);
738 /* The occurrences recorded in antic_occr are exactly those that
739 we want to set to nonzero in ANTLOC. */
740 if (antloc)
741 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
743 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
745 /* While we're scanning the table, this is a good place to
746 initialize this. */
747 occr->deleted_p = 0;
750 /* The occurrences recorded in avail_occr are exactly those that
751 we want to set to nonzero in COMP. */
752 if (comp)
753 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
755 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
757 /* While we're scanning the table, this is a good place to
758 initialize this. */
759 occr->copied_p = 0;
762 /* While we're scanning the table, this is a good place to
763 initialize this. */
764 expr->reaching_reg = 0;
769 /* Hash table support. */
771 struct reg_avail_info
773 basic_block last_bb;
774 int first_set;
775 int last_set;
778 static struct reg_avail_info *reg_avail_info;
779 static basic_block current_bb;
781 /* See whether X, the source of a set, is something we want to consider for
782 GCSE. */
784 static int
785 want_to_gcse_p (rtx x, int *max_distance_ptr)
787 #ifdef STACK_REGS
788 /* On register stack architectures, don't GCSE constants from the
789 constant pool, as the benefits are often swamped by the overhead
790 of shuffling the register stack between basic blocks. */
791 if (IS_STACK_MODE (GET_MODE (x)))
792 x = avoid_constant_pool_reference (x);
793 #endif
795 /* GCSE'ing constants:
797 We do not specifically distinguish between constant and non-constant
798 expressions in PRE and Hoist. We use set_src_cost below to limit
799 the maximum distance simple expressions can travel.
801 Nevertheless, constants are much easier to GCSE, and, hence,
802 it is easy to overdo the optimizations. Usually, excessive PRE and
803 Hoisting of constant leads to increased register pressure.
805 RA can deal with this by rematerialing some of the constants.
806 Therefore, it is important that the back-end generates sets of constants
807 in a way that allows reload rematerialize them under high register
808 pressure, i.e., a pseudo register with REG_EQUAL to constant
809 is set only once. Failing to do so will result in IRA/reload
810 spilling such constants under high register pressure instead of
811 rematerializing them. */
813 switch (GET_CODE (x))
815 case REG:
816 case SUBREG:
817 case CALL:
818 return 0;
820 CASE_CONST_ANY:
821 if (!doing_code_hoisting_p)
822 /* Do not PRE constants. */
823 return 0;
825 /* FALLTHRU */
827 default:
828 if (doing_code_hoisting_p)
829 /* PRE doesn't implement max_distance restriction. */
831 int cost;
832 int max_distance;
834 gcc_assert (!optimize_function_for_speed_p (cfun)
835 && optimize_function_for_size_p (cfun));
836 cost = set_src_cost (x, 0);
838 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
840 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
841 if (max_distance == 0)
842 return 0;
844 gcc_assert (max_distance > 0);
846 else
847 max_distance = 0;
849 if (max_distance_ptr)
850 *max_distance_ptr = max_distance;
853 return can_assign_to_reg_without_clobbers_p (x);
857 /* Used internally by can_assign_to_reg_without_clobbers_p. */
859 static GTY(()) rtx_insn *test_insn;
861 /* Return true if we can assign X to a pseudo register such that the
862 resulting insn does not result in clobbering a hard register as a
863 side-effect.
865 Additionally, if the target requires it, check that the resulting insn
866 can be copied. If it cannot, this means that X is special and probably
867 has hidden side-effects we don't want to mess with.
869 This function is typically used by code motion passes, to verify
870 that it is safe to insert an insn without worrying about clobbering
871 maybe live hard regs. */
873 bool
874 can_assign_to_reg_without_clobbers_p (rtx x)
876 int num_clobbers = 0;
877 int icode;
878 bool can_assign = false;
880 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
881 if (general_operand (x, GET_MODE (x)))
882 return 1;
883 else if (GET_MODE (x) == VOIDmode)
884 return 0;
886 /* Otherwise, check if we can make a valid insn from it. First initialize
887 our test insn if we haven't already. */
888 if (test_insn == 0)
890 test_insn
891 = make_insn_raw (gen_rtx_SET (VOIDmode,
892 gen_rtx_REG (word_mode,
893 FIRST_PSEUDO_REGISTER * 2),
894 const0_rtx));
895 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
896 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
899 /* Now make an insn like the one we would make when GCSE'ing and see if
900 valid. */
901 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
902 SET_SRC (PATTERN (test_insn)) = x;
904 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
906 /* If the test insn is valid and doesn't need clobbers, and the target also
907 has no objections, we're good. */
908 if (icode >= 0
909 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
910 && ! (targetm.cannot_copy_insn_p
911 && targetm.cannot_copy_insn_p (test_insn)))
912 can_assign = true;
914 /* Make sure test_insn doesn't have any pointers into GC space. */
915 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
917 return can_assign;
920 /* Return nonzero if the operands of expression X are unchanged from the
921 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
922 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
924 static int
925 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
927 int i, j;
928 enum rtx_code code;
929 const char *fmt;
931 if (x == 0)
932 return 1;
934 code = GET_CODE (x);
935 switch (code)
937 case REG:
939 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
941 if (info->last_bb != current_bb)
942 return 1;
943 if (avail_p)
944 return info->last_set < DF_INSN_LUID (insn);
945 else
946 return info->first_set >= DF_INSN_LUID (insn);
949 case MEM:
950 if (! flag_gcse_lm
951 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
952 x, avail_p))
953 return 0;
954 else
955 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
957 case PRE_DEC:
958 case PRE_INC:
959 case POST_DEC:
960 case POST_INC:
961 case PRE_MODIFY:
962 case POST_MODIFY:
963 return 0;
965 case PC:
966 case CC0: /*FIXME*/
967 case CONST:
968 CASE_CONST_ANY:
969 case SYMBOL_REF:
970 case LABEL_REF:
971 case ADDR_VEC:
972 case ADDR_DIFF_VEC:
973 return 1;
975 default:
976 break;
979 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
981 if (fmt[i] == 'e')
983 /* If we are about to do the last recursive call needed at this
984 level, change it into iteration. This function is called enough
985 to be worth it. */
986 if (i == 0)
987 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
989 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
990 return 0;
992 else if (fmt[i] == 'E')
993 for (j = 0; j < XVECLEN (x, i); j++)
994 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
995 return 0;
998 return 1;
1001 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
1003 struct mem_conflict_info
1005 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
1006 see if a memory store conflicts with this memory load. */
1007 const_rtx mem;
1009 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
1010 references. */
1011 bool conflict;
1014 /* DEST is the output of an instruction. If it is a memory reference and
1015 possibly conflicts with the load found in DATA, then communicate this
1016 information back through DATA. */
1018 static void
1019 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1020 void *data)
1022 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
1024 while (GET_CODE (dest) == SUBREG
1025 || GET_CODE (dest) == ZERO_EXTRACT
1026 || GET_CODE (dest) == STRICT_LOW_PART)
1027 dest = XEXP (dest, 0);
1029 /* If DEST is not a MEM, then it will not conflict with the load. Note
1030 that function calls are assumed to clobber memory, but are handled
1031 elsewhere. */
1032 if (! MEM_P (dest))
1033 return;
1035 /* If we are setting a MEM in our list of specially recognized MEMs,
1036 don't mark as killed this time. */
1037 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1039 if (!find_rtx_in_ldst (dest))
1040 mci->conflict = true;
1041 return;
1044 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1045 mci->conflict = true;
1048 /* Return nonzero if the expression in X (a memory reference) is killed
1049 in block BB before or after the insn with the LUID in UID_LIMIT.
1050 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1051 before UID_LIMIT.
1053 To check the entire block, set UID_LIMIT to max_uid + 1 and
1054 AVAIL_P to 0. */
1056 static int
1057 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1058 int avail_p)
1060 vec<rtx_insn *> list = modify_mem_list[bb->index];
1061 rtx_insn *setter;
1062 unsigned ix;
1064 /* If this is a readonly then we aren't going to be changing it. */
1065 if (MEM_READONLY_P (x))
1066 return 0;
1068 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1070 struct mem_conflict_info mci;
1072 /* Ignore entries in the list that do not apply. */
1073 if ((avail_p
1074 && DF_INSN_LUID (setter) < uid_limit)
1075 || (! avail_p
1076 && DF_INSN_LUID (setter) > uid_limit))
1077 continue;
1079 /* If SETTER is a call everything is clobbered. Note that calls
1080 to pure functions are never put on the list, so we need not
1081 worry about them. */
1082 if (CALL_P (setter))
1083 return 1;
1085 /* SETTER must be an INSN of some kind that sets memory. Call
1086 note_stores to examine each hunk of memory that is modified. */
1087 mci.mem = x;
1088 mci.conflict = false;
1089 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1090 if (mci.conflict)
1091 return 1;
1093 return 0;
1096 /* Return nonzero if the operands of expression X are unchanged from
1097 the start of INSN's basic block up to but not including INSN. */
1099 static int
1100 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1102 return oprs_unchanged_p (x, insn, 0);
1105 /* Return nonzero if the operands of expression X are unchanged from
1106 INSN to the end of INSN's basic block. */
1108 static int
1109 oprs_available_p (const_rtx x, const rtx_insn *insn)
1111 return oprs_unchanged_p (x, insn, 1);
1114 /* Hash expression X.
1116 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1117 indicating if a volatile operand is found or if the expression contains
1118 something we don't want to insert in the table. HASH_TABLE_SIZE is
1119 the current size of the hash table to be probed. */
1121 static unsigned int
1122 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1123 int hash_table_size)
1125 unsigned int hash;
1127 *do_not_record_p = 0;
1129 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1130 return hash % hash_table_size;
1133 /* Return nonzero if exp1 is equivalent to exp2. */
1135 static int
1136 expr_equiv_p (const_rtx x, const_rtx y)
1138 return exp_equiv_p (x, y, 0, true);
1141 /* Insert expression X in INSN in the hash TABLE.
1142 If it is already present, record it as the last occurrence in INSN's
1143 basic block.
1145 MODE is the mode of the value X is being stored into.
1146 It is only used if X is a CONST_INT.
1148 ANTIC_P is nonzero if X is an anticipatable expression.
1149 AVAIL_P is nonzero if X is an available expression.
1151 MAX_DISTANCE is the maximum distance in instructions this expression can
1152 be moved. */
1154 static void
1155 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1156 int antic_p,
1157 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1159 int found, do_not_record_p;
1160 unsigned int hash;
1161 struct gcse_expr *cur_expr, *last_expr = NULL;
1162 struct gcse_occr *antic_occr, *avail_occr;
1164 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1166 /* Do not insert expression in table if it contains volatile operands,
1167 or if hash_expr determines the expression is something we don't want
1168 to or can't handle. */
1169 if (do_not_record_p)
1170 return;
1172 cur_expr = table->table[hash];
1173 found = 0;
1175 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1177 /* If the expression isn't found, save a pointer to the end of
1178 the list. */
1179 last_expr = cur_expr;
1180 cur_expr = cur_expr->next_same_hash;
1183 if (! found)
1185 cur_expr = GOBNEW (struct gcse_expr);
1186 bytes_used += sizeof (struct gcse_expr);
1187 if (table->table[hash] == NULL)
1188 /* This is the first pattern that hashed to this index. */
1189 table->table[hash] = cur_expr;
1190 else
1191 /* Add EXPR to end of this hash chain. */
1192 last_expr->next_same_hash = cur_expr;
1194 /* Set the fields of the expr element. */
1195 cur_expr->expr = x;
1196 cur_expr->bitmap_index = table->n_elems++;
1197 cur_expr->next_same_hash = NULL;
1198 cur_expr->antic_occr = NULL;
1199 cur_expr->avail_occr = NULL;
1200 gcc_assert (max_distance >= 0);
1201 cur_expr->max_distance = max_distance;
1203 else
1204 gcc_assert (cur_expr->max_distance == max_distance);
1206 /* Now record the occurrence(s). */
1207 if (antic_p)
1209 antic_occr = cur_expr->antic_occr;
1211 if (antic_occr
1212 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1213 antic_occr = NULL;
1215 if (antic_occr)
1216 /* Found another instance of the expression in the same basic block.
1217 Prefer the currently recorded one. We want the first one in the
1218 block and the block is scanned from start to end. */
1219 ; /* nothing to do */
1220 else
1222 /* First occurrence of this expression in this basic block. */
1223 antic_occr = GOBNEW (struct gcse_occr);
1224 bytes_used += sizeof (struct gcse_occr);
1225 antic_occr->insn = insn;
1226 antic_occr->next = cur_expr->antic_occr;
1227 antic_occr->deleted_p = 0;
1228 cur_expr->antic_occr = antic_occr;
1232 if (avail_p)
1234 avail_occr = cur_expr->avail_occr;
1236 if (avail_occr
1237 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1239 /* Found another instance of the expression in the same basic block.
1240 Prefer this occurrence to the currently recorded one. We want
1241 the last one in the block and the block is scanned from start
1242 to end. */
1243 avail_occr->insn = insn;
1245 else
1247 /* First occurrence of this expression in this basic block. */
1248 avail_occr = GOBNEW (struct gcse_occr);
1249 bytes_used += sizeof (struct gcse_occr);
1250 avail_occr->insn = insn;
1251 avail_occr->next = cur_expr->avail_occr;
1252 avail_occr->deleted_p = 0;
1253 cur_expr->avail_occr = avail_occr;
1258 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1260 static void
1261 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1263 rtx src = SET_SRC (set);
1264 rtx dest = SET_DEST (set);
1265 rtx note;
1267 if (GET_CODE (src) == CALL)
1268 hash_scan_call (src, insn, table);
1270 else if (REG_P (dest))
1272 unsigned int regno = REGNO (dest);
1273 int max_distance = 0;
1275 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1277 This allows us to do a single GCSE pass and still eliminate
1278 redundant constants, addresses or other expressions that are
1279 constructed with multiple instructions.
1281 However, keep the original SRC if INSN is a simple reg-reg move.
1282 In this case, there will almost always be a REG_EQUAL note on the
1283 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1284 for INSN, we miss copy propagation opportunities and we perform the
1285 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1286 do more than one PRE GCSE pass.
1288 Note that this does not impede profitable constant propagations. We
1289 "look through" reg-reg sets in lookup_avail_set. */
1290 note = find_reg_equal_equiv_note (insn);
1291 if (note != 0
1292 && REG_NOTE_KIND (note) == REG_EQUAL
1293 && !REG_P (src)
1294 && want_to_gcse_p (XEXP (note, 0), NULL))
1295 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1297 /* Only record sets of pseudo-regs in the hash table. */
1298 if (regno >= FIRST_PSEUDO_REGISTER
1299 /* Don't GCSE something if we can't do a reg/reg copy. */
1300 && can_copy_p (GET_MODE (dest))
1301 /* GCSE commonly inserts instruction after the insn. We can't
1302 do that easily for EH edges so disable GCSE on these for now. */
1303 /* ??? We can now easily create new EH landing pads at the
1304 gimple level, for splitting edges; there's no reason we
1305 can't do the same thing at the rtl level. */
1306 && !can_throw_internal (insn)
1307 /* Is SET_SRC something we want to gcse? */
1308 && want_to_gcse_p (src, &max_distance)
1309 /* Don't CSE a nop. */
1310 && ! set_noop_p (set)
1311 /* Don't GCSE if it has attached REG_EQUIV note.
1312 At this point this only function parameters should have
1313 REG_EQUIV notes and if the argument slot is used somewhere
1314 explicitly, it means address of parameter has been taken,
1315 so we should not extend the lifetime of the pseudo. */
1316 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1318 /* An expression is not anticipatable if its operands are
1319 modified before this insn or if this is not the only SET in
1320 this insn. The latter condition does not have to mean that
1321 SRC itself is not anticipatable, but we just will not be
1322 able to handle code motion of insns with multiple sets. */
1323 int antic_p = oprs_anticipatable_p (src, insn)
1324 && !multiple_sets (insn);
1325 /* An expression is not available if its operands are
1326 subsequently modified, including this insn. It's also not
1327 available if this is a branch, because we can't insert
1328 a set after the branch. */
1329 int avail_p = (oprs_available_p (src, insn)
1330 && ! JUMP_P (insn));
1332 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1333 max_distance, table);
1336 /* In case of store we want to consider the memory value as available in
1337 the REG stored in that memory. This makes it possible to remove
1338 redundant loads from due to stores to the same location. */
1339 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1341 unsigned int regno = REGNO (src);
1342 int max_distance = 0;
1344 /* Only record sets of pseudo-regs in the hash table. */
1345 if (regno >= FIRST_PSEUDO_REGISTER
1346 /* Don't GCSE something if we can't do a reg/reg copy. */
1347 && can_copy_p (GET_MODE (src))
1348 /* GCSE commonly inserts instruction after the insn. We can't
1349 do that easily for EH edges so disable GCSE on these for now. */
1350 && !can_throw_internal (insn)
1351 /* Is SET_DEST something we want to gcse? */
1352 && want_to_gcse_p (dest, &max_distance)
1353 /* Don't CSE a nop. */
1354 && ! set_noop_p (set)
1355 /* Don't GCSE if it has attached REG_EQUIV note.
1356 At this point this only function parameters should have
1357 REG_EQUIV notes and if the argument slot is used somewhere
1358 explicitly, it means address of parameter has been taken,
1359 so we should not extend the lifetime of the pseudo. */
1360 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1361 || ! MEM_P (XEXP (note, 0))))
1363 /* Stores are never anticipatable. */
1364 int antic_p = 0;
1365 /* An expression is not available if its operands are
1366 subsequently modified, including this insn. It's also not
1367 available if this is a branch, because we can't insert
1368 a set after the branch. */
1369 int avail_p = oprs_available_p (dest, insn)
1370 && ! JUMP_P (insn);
1372 /* Record the memory expression (DEST) in the hash table. */
1373 insert_expr_in_table (dest, GET_MODE (dest), insn,
1374 antic_p, avail_p, max_distance, table);
1379 static void
1380 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1381 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1383 /* Currently nothing to do. */
1386 static void
1387 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1388 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1390 /* Currently nothing to do. */
1393 /* Process INSN and add hash table entries as appropriate. */
1395 static void
1396 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1398 rtx pat = PATTERN (insn);
1399 int i;
1401 /* Pick out the sets of INSN and for other forms of instructions record
1402 what's been modified. */
1404 if (GET_CODE (pat) == SET)
1405 hash_scan_set (pat, insn, table);
1407 else if (GET_CODE (pat) == CLOBBER)
1408 hash_scan_clobber (pat, insn, table);
1410 else if (GET_CODE (pat) == CALL)
1411 hash_scan_call (pat, insn, table);
1413 else if (GET_CODE (pat) == PARALLEL)
1414 for (i = 0; i < XVECLEN (pat, 0); i++)
1416 rtx x = XVECEXP (pat, 0, i);
1418 if (GET_CODE (x) == SET)
1419 hash_scan_set (x, insn, table);
1420 else if (GET_CODE (x) == CLOBBER)
1421 hash_scan_clobber (x, insn, table);
1422 else if (GET_CODE (x) == CALL)
1423 hash_scan_call (x, insn, table);
1427 /* Dump the hash table TABLE to file FILE under the name NAME. */
1429 static void
1430 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1432 int i;
1433 /* Flattened out table, so it's printed in proper order. */
1434 struct gcse_expr **flat_table;
1435 unsigned int *hash_val;
1436 struct gcse_expr *expr;
1438 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1439 hash_val = XNEWVEC (unsigned int, table->n_elems);
1441 for (i = 0; i < (int) table->size; i++)
1442 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1444 flat_table[expr->bitmap_index] = expr;
1445 hash_val[expr->bitmap_index] = i;
1448 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1449 name, table->size, table->n_elems);
1451 for (i = 0; i < (int) table->n_elems; i++)
1452 if (flat_table[i] != 0)
1454 expr = flat_table[i];
1455 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1456 expr->bitmap_index, hash_val[i], expr->max_distance);
1457 print_rtl (file, expr->expr);
1458 fprintf (file, "\n");
1461 fprintf (file, "\n");
1463 free (flat_table);
1464 free (hash_val);
1467 /* Record register first/last/block set information for REGNO in INSN.
1469 first_set records the first place in the block where the register
1470 is set and is used to compute "anticipatability".
1472 last_set records the last place in the block where the register
1473 is set and is used to compute "availability".
1475 last_bb records the block for which first_set and last_set are
1476 valid, as a quick test to invalidate them. */
1478 static void
1479 record_last_reg_set_info (rtx insn, int regno)
1481 struct reg_avail_info *info = &reg_avail_info[regno];
1482 int luid = DF_INSN_LUID (insn);
1484 info->last_set = luid;
1485 if (info->last_bb != current_bb)
1487 info->last_bb = current_bb;
1488 info->first_set = luid;
1492 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1493 Note we store a pair of elements in the list, so they have to be
1494 taken off pairwise. */
1496 static void
1497 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1498 void * v_insn)
1500 rtx dest_addr, insn;
1501 int bb;
1502 modify_pair pair;
1504 while (GET_CODE (dest) == SUBREG
1505 || GET_CODE (dest) == ZERO_EXTRACT
1506 || GET_CODE (dest) == STRICT_LOW_PART)
1507 dest = XEXP (dest, 0);
1509 /* If DEST is not a MEM, then it will not conflict with a load. Note
1510 that function calls are assumed to clobber memory, but are handled
1511 elsewhere. */
1513 if (! MEM_P (dest))
1514 return;
1516 dest_addr = get_addr (XEXP (dest, 0));
1517 dest_addr = canon_rtx (dest_addr);
1518 insn = (rtx) v_insn;
1519 bb = BLOCK_FOR_INSN (insn)->index;
1521 pair.dest = dest;
1522 pair.dest_addr = dest_addr;
1523 canon_modify_mem_list[bb].safe_push (pair);
1526 /* Record memory modification information for INSN. We do not actually care
1527 about the memory location(s) that are set, or even how they are set (consider
1528 a CALL_INSN). We merely need to record which insns modify memory. */
1530 static void
1531 record_last_mem_set_info (rtx_insn *insn)
1533 int bb;
1535 if (! flag_gcse_lm)
1536 return;
1538 /* load_killed_in_block_p will handle the case of calls clobbering
1539 everything. */
1540 bb = BLOCK_FOR_INSN (insn)->index;
1541 modify_mem_list[bb].safe_push (insn);
1542 bitmap_set_bit (modify_mem_list_set, bb);
1544 if (CALL_P (insn))
1545 bitmap_set_bit (blocks_with_calls, bb);
1546 else
1547 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1550 /* Called from compute_hash_table via note_stores to handle one
1551 SET or CLOBBER in an insn. DATA is really the instruction in which
1552 the SET is taking place. */
1554 static void
1555 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1557 rtx_insn *last_set_insn = (rtx_insn *) data;
1559 if (GET_CODE (dest) == SUBREG)
1560 dest = SUBREG_REG (dest);
1562 if (REG_P (dest))
1563 record_last_reg_set_info (last_set_insn, REGNO (dest));
1564 else if (MEM_P (dest)
1565 /* Ignore pushes, they clobber nothing. */
1566 && ! push_operand (dest, GET_MODE (dest)))
1567 record_last_mem_set_info (last_set_insn);
1570 /* Top level function to create an expression hash table.
1572 Expression entries are placed in the hash table if
1573 - they are of the form (set (pseudo-reg) src),
1574 - src is something we want to perform GCSE on,
1575 - none of the operands are subsequently modified in the block
1577 Currently src must be a pseudo-reg or a const_int.
1579 TABLE is the table computed. */
1581 static void
1582 compute_hash_table_work (struct gcse_hash_table_d *table)
1584 int i;
1586 /* re-Cache any INSN_LIST nodes we have allocated. */
1587 clear_modify_mem_tables ();
1588 /* Some working arrays used to track first and last set in each block. */
1589 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1591 for (i = 0; i < max_reg_num (); ++i)
1592 reg_avail_info[i].last_bb = NULL;
1594 FOR_EACH_BB_FN (current_bb, cfun)
1596 rtx_insn *insn;
1597 unsigned int regno;
1599 /* First pass over the instructions records information used to
1600 determine when registers and memory are first and last set. */
1601 FOR_BB_INSNS (current_bb, insn)
1603 if (!NONDEBUG_INSN_P (insn))
1604 continue;
1606 if (CALL_P (insn))
1608 hard_reg_set_iterator hrsi;
1609 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1610 0, regno, hrsi)
1611 record_last_reg_set_info (insn, regno);
1613 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1614 record_last_mem_set_info (insn);
1617 note_stores (PATTERN (insn), record_last_set_info, insn);
1620 /* The next pass builds the hash table. */
1621 FOR_BB_INSNS (current_bb, insn)
1622 if (NONDEBUG_INSN_P (insn))
1623 hash_scan_insn (insn, table);
1626 free (reg_avail_info);
1627 reg_avail_info = NULL;
1630 /* Allocate space for the set/expr hash TABLE.
1631 It is used to determine the number of buckets to use. */
1633 static void
1634 alloc_hash_table (struct gcse_hash_table_d *table)
1636 int n;
1638 n = get_max_insn_count ();
1640 table->size = n / 4;
1641 if (table->size < 11)
1642 table->size = 11;
1644 /* Attempt to maintain efficient use of hash table.
1645 Making it an odd number is simplest for now.
1646 ??? Later take some measurements. */
1647 table->size |= 1;
1648 n = table->size * sizeof (struct gcse_expr *);
1649 table->table = GNEWVAR (struct gcse_expr *, n);
1652 /* Free things allocated by alloc_hash_table. */
1654 static void
1655 free_hash_table (struct gcse_hash_table_d *table)
1657 free (table->table);
1660 /* Compute the expression hash table TABLE. */
1662 static void
1663 compute_hash_table (struct gcse_hash_table_d *table)
1665 /* Initialize count of number of entries in hash table. */
1666 table->n_elems = 0;
1667 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1669 compute_hash_table_work (table);
1672 /* Expression tracking support. */
1674 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1675 static void
1676 clear_modify_mem_tables (void)
1678 unsigned i;
1679 bitmap_iterator bi;
1681 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1683 modify_mem_list[i].release ();
1684 canon_modify_mem_list[i].release ();
1686 bitmap_clear (modify_mem_list_set);
1687 bitmap_clear (blocks_with_calls);
1690 /* Release memory used by modify_mem_list_set. */
1692 static void
1693 free_modify_mem_tables (void)
1695 clear_modify_mem_tables ();
1696 free (modify_mem_list);
1697 free (canon_modify_mem_list);
1698 modify_mem_list = 0;
1699 canon_modify_mem_list = 0;
1702 /* For each block, compute whether X is transparent. X is either an
1703 expression or an assignment [though we don't care which, for this context
1704 an assignment is treated as an expression]. For each block where an
1705 element of X is modified, reset the INDX bit in BMAP. */
1707 static void
1708 compute_transp (const_rtx x, int indx, sbitmap *bmap)
1710 int i, j;
1711 enum rtx_code code;
1712 const char *fmt;
1714 /* repeat is used to turn tail-recursion into iteration since GCC
1715 can't do it when there's no return value. */
1716 repeat:
1718 if (x == 0)
1719 return;
1721 code = GET_CODE (x);
1722 switch (code)
1724 case REG:
1726 df_ref def;
1727 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1728 def;
1729 def = DF_REF_NEXT_REG (def))
1730 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
1733 return;
1735 case MEM:
1736 if (! MEM_READONLY_P (x))
1738 bitmap_iterator bi;
1739 unsigned bb_index;
1740 rtx x_addr;
1742 x_addr = get_addr (XEXP (x, 0));
1743 x_addr = canon_rtx (x_addr);
1745 /* First handle all the blocks with calls. We don't need to
1746 do any list walking for them. */
1747 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1749 bitmap_clear_bit (bmap[bb_index], indx);
1752 /* Now iterate over the blocks which have memory modifications
1753 but which do not have any calls. */
1754 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1755 blocks_with_calls,
1756 0, bb_index, bi)
1758 vec<modify_pair> list
1759 = canon_modify_mem_list[bb_index];
1760 modify_pair *pair;
1761 unsigned ix;
1763 FOR_EACH_VEC_ELT_REVERSE (list, ix, pair)
1765 rtx dest = pair->dest;
1766 rtx dest_addr = pair->dest_addr;
1768 if (canon_true_dependence (dest, GET_MODE (dest),
1769 dest_addr, x, x_addr))
1771 bitmap_clear_bit (bmap[bb_index], indx);
1772 break;
1778 x = XEXP (x, 0);
1779 goto repeat;
1781 case PC:
1782 case CC0: /*FIXME*/
1783 case CONST:
1784 CASE_CONST_ANY:
1785 case SYMBOL_REF:
1786 case LABEL_REF:
1787 case ADDR_VEC:
1788 case ADDR_DIFF_VEC:
1789 return;
1791 default:
1792 break;
1795 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1797 if (fmt[i] == 'e')
1799 /* If we are about to do the last recursive call
1800 needed at this level, change it into iteration.
1801 This function is called enough to be worth it. */
1802 if (i == 0)
1804 x = XEXP (x, i);
1805 goto repeat;
1808 compute_transp (XEXP (x, i), indx, bmap);
1810 else if (fmt[i] == 'E')
1811 for (j = 0; j < XVECLEN (x, i); j++)
1812 compute_transp (XVECEXP (x, i, j), indx, bmap);
1816 /* Compute PRE+LCM working variables. */
1818 /* Local properties of expressions. */
1820 /* Nonzero for expressions that are transparent in the block. */
1821 static sbitmap *transp;
1823 /* Nonzero for expressions that are computed (available) in the block. */
1824 static sbitmap *comp;
1826 /* Nonzero for expressions that are locally anticipatable in the block. */
1827 static sbitmap *antloc;
1829 /* Nonzero for expressions where this block is an optimal computation
1830 point. */
1831 static sbitmap *pre_optimal;
1833 /* Nonzero for expressions which are redundant in a particular block. */
1834 static sbitmap *pre_redundant;
1836 /* Nonzero for expressions which should be inserted on a specific edge. */
1837 static sbitmap *pre_insert_map;
1839 /* Nonzero for expressions which should be deleted in a specific block. */
1840 static sbitmap *pre_delete_map;
1842 /* Allocate vars used for PRE analysis. */
1844 static void
1845 alloc_pre_mem (int n_blocks, int n_exprs)
1847 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1848 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1849 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1851 pre_optimal = NULL;
1852 pre_redundant = NULL;
1853 pre_insert_map = NULL;
1854 pre_delete_map = NULL;
1855 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1857 /* pre_insert and pre_delete are allocated later. */
1860 /* Free vars used for PRE analysis. */
1862 static void
1863 free_pre_mem (void)
1865 sbitmap_vector_free (transp);
1866 sbitmap_vector_free (comp);
1868 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1870 if (pre_optimal)
1871 sbitmap_vector_free (pre_optimal);
1872 if (pre_redundant)
1873 sbitmap_vector_free (pre_redundant);
1874 if (pre_insert_map)
1875 sbitmap_vector_free (pre_insert_map);
1876 if (pre_delete_map)
1877 sbitmap_vector_free (pre_delete_map);
1879 transp = comp = NULL;
1880 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1883 /* Remove certain expressions from anticipatable and transparent
1884 sets of basic blocks that have incoming abnormal edge.
1885 For PRE remove potentially trapping expressions to avoid placing
1886 them on abnormal edges. For hoisting remove memory references that
1887 can be clobbered by calls. */
1889 static void
1890 prune_expressions (bool pre_p)
1892 sbitmap prune_exprs;
1893 struct gcse_expr *expr;
1894 unsigned int ui;
1895 basic_block bb;
1897 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1898 bitmap_clear (prune_exprs);
1899 for (ui = 0; ui < expr_hash_table.size; ui++)
1901 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1903 /* Note potentially trapping expressions. */
1904 if (may_trap_p (expr->expr))
1906 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1907 continue;
1910 if (!pre_p && MEM_P (expr->expr))
1911 /* Note memory references that can be clobbered by a call.
1912 We do not split abnormal edges in hoisting, so would
1913 a memory reference get hoisted along an abnormal edge,
1914 it would be placed /before/ the call. Therefore, only
1915 constant memory references can be hoisted along abnormal
1916 edges. */
1918 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1919 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1920 continue;
1922 if (MEM_READONLY_P (expr->expr)
1923 && !MEM_VOLATILE_P (expr->expr)
1924 && MEM_NOTRAP_P (expr->expr))
1925 /* Constant memory reference, e.g., a PIC address. */
1926 continue;
1928 /* ??? Optimally, we would use interprocedural alias
1929 analysis to determine if this mem is actually killed
1930 by this call. */
1932 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1937 FOR_EACH_BB_FN (bb, cfun)
1939 edge e;
1940 edge_iterator ei;
1942 /* If the current block is the destination of an abnormal edge, we
1943 kill all trapping (for PRE) and memory (for hoist) expressions
1944 because we won't be able to properly place the instruction on
1945 the edge. So make them neither anticipatable nor transparent.
1946 This is fairly conservative.
1948 ??? For hoisting it may be necessary to check for set-and-jump
1949 instructions here, not just for abnormal edges. The general problem
1950 is that when an expression cannot not be placed right at the end of
1951 a basic block we should account for any side-effects of a subsequent
1952 jump instructions that could clobber the expression. It would
1953 be best to implement this check along the lines of
1954 should_hoist_expr_to_dom where the target block is already known
1955 and, hence, there's no need to conservatively prune expressions on
1956 "intermediate" set-and-jump instructions. */
1957 FOR_EACH_EDGE (e, ei, bb->preds)
1958 if ((e->flags & EDGE_ABNORMAL)
1959 && (pre_p || CALL_P (BB_END (e->src))))
1961 bitmap_and_compl (antloc[bb->index],
1962 antloc[bb->index], prune_exprs);
1963 bitmap_and_compl (transp[bb->index],
1964 transp[bb->index], prune_exprs);
1965 break;
1969 sbitmap_free (prune_exprs);
1972 /* It may be necessary to insert a large number of insns on edges to
1973 make the existing occurrences of expressions fully redundant. This
1974 routine examines the set of insertions and deletions and if the ratio
1975 of insertions to deletions is too high for a particular expression, then
1976 the expression is removed from the insertion/deletion sets.
1978 N_ELEMS is the number of elements in the hash table. */
1980 static void
1981 prune_insertions_deletions (int n_elems)
1983 sbitmap_iterator sbi;
1984 sbitmap prune_exprs;
1986 /* We always use I to iterate over blocks/edges and J to iterate over
1987 expressions. */
1988 unsigned int i, j;
1990 /* Counts for the number of times an expression needs to be inserted and
1991 number of times an expression can be removed as a result. */
1992 int *insertions = GCNEWVEC (int, n_elems);
1993 int *deletions = GCNEWVEC (int, n_elems);
1995 /* Set of expressions which require too many insertions relative to
1996 the number of deletions achieved. We will prune these out of the
1997 insertion/deletion sets. */
1998 prune_exprs = sbitmap_alloc (n_elems);
1999 bitmap_clear (prune_exprs);
2001 /* Iterate over the edges counting the number of times each expression
2002 needs to be inserted. */
2003 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
2005 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
2006 insertions[j]++;
2009 /* Similarly for deletions, but those occur in blocks rather than on
2010 edges. */
2011 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
2013 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
2014 deletions[j]++;
2017 /* Now that we have accurate counts, iterate over the elements in the
2018 hash table and see if any need too many insertions relative to the
2019 number of evaluations that can be removed. If so, mark them in
2020 PRUNE_EXPRS. */
2021 for (j = 0; j < (unsigned) n_elems; j++)
2022 if (deletions[j]
2023 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
2024 bitmap_set_bit (prune_exprs, j);
2026 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
2027 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
2029 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
2030 bitmap_clear_bit (pre_insert_map[i], j);
2032 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
2033 bitmap_clear_bit (pre_delete_map[i], j);
2036 sbitmap_free (prune_exprs);
2037 free (insertions);
2038 free (deletions);
2041 /* Top level routine to do the dataflow analysis needed by PRE. */
2043 static struct edge_list *
2044 compute_pre_data (void)
2046 struct edge_list *edge_list;
2047 basic_block bb;
2049 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2050 prune_expressions (true);
2051 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
2053 /* Compute ae_kill for each basic block using:
2055 ~(TRANSP | COMP)
2058 FOR_EACH_BB_FN (bb, cfun)
2060 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
2061 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
2064 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
2065 ae_kill, &pre_insert_map, &pre_delete_map);
2066 sbitmap_vector_free (antloc);
2067 antloc = NULL;
2068 sbitmap_vector_free (ae_kill);
2069 ae_kill = NULL;
2071 prune_insertions_deletions (expr_hash_table.n_elems);
2073 return edge_list;
2076 /* PRE utilities */
2078 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
2079 block BB.
2081 VISITED is a pointer to a working buffer for tracking which BB's have
2082 been visited. It is NULL for the top-level call.
2084 We treat reaching expressions that go through blocks containing the same
2085 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2086 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2087 2 as not reaching. The intent is to improve the probability of finding
2088 only one reaching expression and to reduce register lifetimes by picking
2089 the closest such expression. */
2091 static int
2092 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
2093 basic_block bb, char *visited)
2095 edge pred;
2096 edge_iterator ei;
2098 FOR_EACH_EDGE (pred, ei, bb->preds)
2100 basic_block pred_bb = pred->src;
2102 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2103 /* Has predecessor has already been visited? */
2104 || visited[pred_bb->index])
2105 ;/* Nothing to do. */
2107 /* Does this predecessor generate this expression? */
2108 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
2110 /* Is this the occurrence we're looking for?
2111 Note that there's only one generating occurrence per block
2112 so we just need to check the block number. */
2113 if (occr_bb == pred_bb)
2114 return 1;
2116 visited[pred_bb->index] = 1;
2118 /* Ignore this predecessor if it kills the expression. */
2119 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2120 visited[pred_bb->index] = 1;
2122 /* Neither gen nor kill. */
2123 else
2125 visited[pred_bb->index] = 1;
2126 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
2127 return 1;
2131 /* All paths have been checked. */
2132 return 0;
2135 /* The wrapper for pre_expr_reaches_here_work that ensures that any
2136 memory allocated for that function is returned. */
2138 static int
2139 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
2141 int rval;
2142 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
2144 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
2146 free (visited);
2147 return rval;
2150 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2152 static rtx_insn *
2153 process_insert_insn (struct gcse_expr *expr)
2155 rtx reg = expr->reaching_reg;
2156 /* Copy the expression to make sure we don't have any sharing issues. */
2157 rtx exp = copy_rtx (expr->expr);
2158 rtx_insn *pat;
2160 start_sequence ();
2162 /* If the expression is something that's an operand, like a constant,
2163 just copy it to a register. */
2164 if (general_operand (exp, GET_MODE (reg)))
2165 emit_move_insn (reg, exp);
2167 /* Otherwise, make a new insn to compute this expression and make sure the
2168 insn will be recognized (this also adds any needed CLOBBERs). */
2169 else
2171 rtx_insn *insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2173 if (insn_invalid_p (insn, false))
2174 gcc_unreachable ();
2177 pat = get_insns ();
2178 end_sequence ();
2180 return pat;
2183 /* Add EXPR to the end of basic block BB.
2185 This is used by both the PRE and code hoisting. */
2187 static void
2188 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2190 rtx_insn *insn = BB_END (bb);
2191 rtx_insn *new_insn;
2192 rtx reg = expr->reaching_reg;
2193 int regno = REGNO (reg);
2194 rtx_insn *pat, *pat_end;
2196 pat = process_insert_insn (expr);
2197 gcc_assert (pat && INSN_P (pat));
2199 pat_end = pat;
2200 while (NEXT_INSN (pat_end) != NULL_RTX)
2201 pat_end = NEXT_INSN (pat_end);
2203 /* If the last insn is a jump, insert EXPR in front [taking care to
2204 handle cc0, etc. properly]. Similarly we need to care trapping
2205 instructions in presence of non-call exceptions. */
2207 if (JUMP_P (insn)
2208 || (NONJUMP_INSN_P (insn)
2209 && (!single_succ_p (bb)
2210 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2212 #ifdef HAVE_cc0
2213 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2214 if cc0 isn't set. */
2215 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2216 if (note)
2217 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2218 else
2220 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2221 if (maybe_cc0_setter
2222 && INSN_P (maybe_cc0_setter)
2223 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2224 insn = maybe_cc0_setter;
2226 #endif
2227 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2228 new_insn = emit_insn_before_noloc (pat, insn, bb);
2231 /* Likewise if the last insn is a call, as will happen in the presence
2232 of exception handling. */
2233 else if (CALL_P (insn)
2234 && (!single_succ_p (bb)
2235 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2237 /* Keeping in mind targets with small register classes and parameters
2238 in registers, we search backward and place the instructions before
2239 the first parameter is loaded. Do this for everyone for consistency
2240 and a presumption that we'll get better code elsewhere as well. */
2242 /* Since different machines initialize their parameter registers
2243 in different orders, assume nothing. Collect the set of all
2244 parameter registers. */
2245 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2247 /* If we found all the parameter loads, then we want to insert
2248 before the first parameter load.
2250 If we did not find all the parameter loads, then we might have
2251 stopped on the head of the block, which could be a CODE_LABEL.
2252 If we inserted before the CODE_LABEL, then we would be putting
2253 the insn in the wrong basic block. In that case, put the insn
2254 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2255 while (LABEL_P (insn)
2256 || NOTE_INSN_BASIC_BLOCK_P (insn))
2257 insn = NEXT_INSN (insn);
2259 new_insn = emit_insn_before_noloc (pat, insn, bb);
2261 else
2262 new_insn = emit_insn_after_noloc (pat, insn, bb);
2264 while (1)
2266 if (INSN_P (pat))
2267 add_label_notes (PATTERN (pat), new_insn);
2268 if (pat == pat_end)
2269 break;
2270 pat = NEXT_INSN (pat);
2273 gcse_create_count++;
2275 if (dump_file)
2277 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2278 bb->index, INSN_UID (new_insn));
2279 fprintf (dump_file, "copying expression %d to reg %d\n",
2280 expr->bitmap_index, regno);
2284 /* Insert partially redundant expressions on edges in the CFG to make
2285 the expressions fully redundant. */
2287 static int
2288 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2290 int e, i, j, num_edges, set_size, did_insert = 0;
2291 sbitmap *inserted;
2293 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2294 if it reaches any of the deleted expressions. */
2296 set_size = pre_insert_map[0]->size;
2297 num_edges = NUM_EDGES (edge_list);
2298 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2299 bitmap_vector_clear (inserted, num_edges);
2301 for (e = 0; e < num_edges; e++)
2303 int indx;
2304 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2306 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2308 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2310 for (j = indx;
2311 insert && j < (int) expr_hash_table.n_elems;
2312 j++, insert >>= 1)
2313 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2315 struct gcse_expr *expr = index_map[j];
2316 struct gcse_occr *occr;
2318 /* Now look at each deleted occurrence of this expression. */
2319 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2321 if (! occr->deleted_p)
2322 continue;
2324 /* Insert this expression on this edge if it would
2325 reach the deleted occurrence in BB. */
2326 if (!bitmap_bit_p (inserted[e], j))
2328 rtx_insn *insn;
2329 edge eg = INDEX_EDGE (edge_list, e);
2331 /* We can't insert anything on an abnormal and
2332 critical edge, so we insert the insn at the end of
2333 the previous block. There are several alternatives
2334 detailed in Morgans book P277 (sec 10.5) for
2335 handling this situation. This one is easiest for
2336 now. */
2338 if (eg->flags & EDGE_ABNORMAL)
2339 insert_insn_end_basic_block (index_map[j], bb);
2340 else
2342 insn = process_insert_insn (index_map[j]);
2343 insert_insn_on_edge (insn, eg);
2346 if (dump_file)
2348 fprintf (dump_file, "PRE: edge (%d,%d), ",
2349 bb->index,
2350 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2351 fprintf (dump_file, "copy expression %d\n",
2352 expr->bitmap_index);
2355 update_ld_motion_stores (expr);
2356 bitmap_set_bit (inserted[e], j);
2357 did_insert = 1;
2358 gcse_create_count++;
2365 sbitmap_vector_free (inserted);
2366 return did_insert;
2369 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2370 Given "old_reg <- expr" (INSN), instead of adding after it
2371 reaching_reg <- old_reg
2372 it's better to do the following:
2373 reaching_reg <- expr
2374 old_reg <- reaching_reg
2375 because this way copy propagation can discover additional PRE
2376 opportunities. But if this fails, we try the old way.
2377 When "expr" is a store, i.e.
2378 given "MEM <- old_reg", instead of adding after it
2379 reaching_reg <- old_reg
2380 it's better to add it before as follows:
2381 reaching_reg <- old_reg
2382 MEM <- reaching_reg. */
2384 static void
2385 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2387 rtx reg = expr->reaching_reg;
2388 int regno = REGNO (reg);
2389 int indx = expr->bitmap_index;
2390 rtx pat = PATTERN (insn);
2391 rtx set, first_set, new_insn;
2392 rtx old_reg;
2393 int i;
2395 /* This block matches the logic in hash_scan_insn. */
2396 switch (GET_CODE (pat))
2398 case SET:
2399 set = pat;
2400 break;
2402 case PARALLEL:
2403 /* Search through the parallel looking for the set whose
2404 source was the expression that we're interested in. */
2405 first_set = NULL_RTX;
2406 set = NULL_RTX;
2407 for (i = 0; i < XVECLEN (pat, 0); i++)
2409 rtx x = XVECEXP (pat, 0, i);
2410 if (GET_CODE (x) == SET)
2412 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2413 may not find an equivalent expression, but in this
2414 case the PARALLEL will have a single set. */
2415 if (first_set == NULL_RTX)
2416 first_set = x;
2417 if (expr_equiv_p (SET_SRC (x), expr->expr))
2419 set = x;
2420 break;
2425 gcc_assert (first_set);
2426 if (set == NULL_RTX)
2427 set = first_set;
2428 break;
2430 default:
2431 gcc_unreachable ();
2434 if (REG_P (SET_DEST (set)))
2436 old_reg = SET_DEST (set);
2437 /* Check if we can modify the set destination in the original insn. */
2438 if (validate_change (insn, &SET_DEST (set), reg, 0))
2440 new_insn = gen_move_insn (old_reg, reg);
2441 new_insn = emit_insn_after (new_insn, insn);
2443 else
2445 new_insn = gen_move_insn (reg, old_reg);
2446 new_insn = emit_insn_after (new_insn, insn);
2449 else /* This is possible only in case of a store to memory. */
2451 old_reg = SET_SRC (set);
2452 new_insn = gen_move_insn (reg, old_reg);
2454 /* Check if we can modify the set source in the original insn. */
2455 if (validate_change (insn, &SET_SRC (set), reg, 0))
2456 new_insn = emit_insn_before (new_insn, insn);
2457 else
2458 new_insn = emit_insn_after (new_insn, insn);
2461 gcse_create_count++;
2463 if (dump_file)
2464 fprintf (dump_file,
2465 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2466 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2467 INSN_UID (insn), regno);
2470 /* Copy available expressions that reach the redundant expression
2471 to `reaching_reg'. */
2473 static void
2474 pre_insert_copies (void)
2476 unsigned int i, added_copy;
2477 struct gcse_expr *expr;
2478 struct gcse_occr *occr;
2479 struct gcse_occr *avail;
2481 /* For each available expression in the table, copy the result to
2482 `reaching_reg' if the expression reaches a deleted one.
2484 ??? The current algorithm is rather brute force.
2485 Need to do some profiling. */
2487 for (i = 0; i < expr_hash_table.size; i++)
2488 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2490 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2491 we don't want to insert a copy here because the expression may not
2492 really be redundant. So only insert an insn if the expression was
2493 deleted. This test also avoids further processing if the
2494 expression wasn't deleted anywhere. */
2495 if (expr->reaching_reg == NULL)
2496 continue;
2498 /* Set when we add a copy for that expression. */
2499 added_copy = 0;
2501 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2503 if (! occr->deleted_p)
2504 continue;
2506 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2508 rtx_insn *insn = avail->insn;
2510 /* No need to handle this one if handled already. */
2511 if (avail->copied_p)
2512 continue;
2514 /* Don't handle this one if it's a redundant one. */
2515 if (insn->deleted ())
2516 continue;
2518 /* Or if the expression doesn't reach the deleted one. */
2519 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2520 expr,
2521 BLOCK_FOR_INSN (occr->insn)))
2522 continue;
2524 added_copy = 1;
2526 /* Copy the result of avail to reaching_reg. */
2527 pre_insert_copy_insn (expr, insn);
2528 avail->copied_p = 1;
2532 if (added_copy)
2533 update_ld_motion_stores (expr);
2537 struct set_data
2539 rtx_insn *insn;
2540 const_rtx set;
2541 int nsets;
2544 /* Increment number of sets and record set in DATA. */
2546 static void
2547 record_set_data (rtx dest, const_rtx set, void *data)
2549 struct set_data *s = (struct set_data *)data;
2551 if (GET_CODE (set) == SET)
2553 /* We allow insns having multiple sets, where all but one are
2554 dead as single set insns. In the common case only a single
2555 set is present, so we want to avoid checking for REG_UNUSED
2556 notes unless necessary. */
2557 if (s->nsets == 1
2558 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2559 && !side_effects_p (s->set))
2560 s->nsets = 0;
2562 if (!s->nsets)
2564 /* Record this set. */
2565 s->nsets += 1;
2566 s->set = set;
2568 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2569 || side_effects_p (set))
2570 s->nsets += 1;
2574 static const_rtx
2575 single_set_gcse (rtx_insn *insn)
2577 struct set_data s;
2578 rtx pattern;
2580 gcc_assert (INSN_P (insn));
2582 /* Optimize common case. */
2583 pattern = PATTERN (insn);
2584 if (GET_CODE (pattern) == SET)
2585 return pattern;
2587 s.insn = insn;
2588 s.nsets = 0;
2589 note_stores (pattern, record_set_data, &s);
2591 /* Considered invariant insns have exactly one set. */
2592 gcc_assert (s.nsets == 1);
2593 return s.set;
2596 /* Emit move from SRC to DEST noting the equivalence with expression computed
2597 in INSN. */
2599 static rtx
2600 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2602 rtx_insn *new_rtx;
2603 const_rtx set = single_set_gcse (insn);
2604 rtx set2;
2605 rtx note;
2606 rtx eqv = NULL_RTX;
2608 /* This should never fail since we're creating a reg->reg copy
2609 we've verified to be valid. */
2611 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2613 /* Note the equivalence for local CSE pass. Take the note from the old
2614 set if there was one. Otherwise record the SET_SRC from the old set
2615 unless DEST is also an operand of the SET_SRC. */
2616 set2 = single_set (new_rtx);
2617 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2618 return new_rtx;
2619 if ((note = find_reg_equal_equiv_note (insn)))
2620 eqv = XEXP (note, 0);
2621 else if (! REG_P (dest)
2622 || ! reg_mentioned_p (dest, SET_SRC (set)))
2623 eqv = SET_SRC (set);
2625 if (eqv != NULL_RTX)
2626 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2628 return new_rtx;
2631 /* Delete redundant computations.
2632 Deletion is done by changing the insn to copy the `reaching_reg' of
2633 the expression into the result of the SET. It is left to later passes
2634 to propagate the copy or eliminate it.
2636 Return nonzero if a change is made. */
2638 static int
2639 pre_delete (void)
2641 unsigned int i;
2642 int changed;
2643 struct gcse_expr *expr;
2644 struct gcse_occr *occr;
2646 changed = 0;
2647 for (i = 0; i < expr_hash_table.size; i++)
2648 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2650 int indx = expr->bitmap_index;
2652 /* We only need to search antic_occr since we require ANTLOC != 0. */
2653 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2655 rtx_insn *insn = occr->insn;
2656 rtx set;
2657 basic_block bb = BLOCK_FOR_INSN (insn);
2659 /* We only delete insns that have a single_set. */
2660 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2661 && (set = single_set (insn)) != 0
2662 && dbg_cnt (pre_insn))
2664 /* Create a pseudo-reg to store the result of reaching
2665 expressions into. Get the mode for the new pseudo from
2666 the mode of the original destination pseudo. */
2667 if (expr->reaching_reg == NULL)
2668 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2670 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2671 delete_insn (insn);
2672 occr->deleted_p = 1;
2673 changed = 1;
2674 gcse_subst_count++;
2676 if (dump_file)
2678 fprintf (dump_file,
2679 "PRE: redundant insn %d (expression %d) in ",
2680 INSN_UID (insn), indx);
2681 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2682 bb->index, REGNO (expr->reaching_reg));
2688 return changed;
2691 /* Perform GCSE optimizations using PRE.
2692 This is called by one_pre_gcse_pass after all the dataflow analysis
2693 has been done.
2695 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2696 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2697 Compiler Design and Implementation.
2699 ??? A new pseudo reg is created to hold the reaching expression. The nice
2700 thing about the classical approach is that it would try to use an existing
2701 reg. If the register can't be adequately optimized [i.e. we introduce
2702 reload problems], one could add a pass here to propagate the new register
2703 through the block.
2705 ??? We don't handle single sets in PARALLELs because we're [currently] not
2706 able to copy the rest of the parallel when we insert copies to create full
2707 redundancies from partial redundancies. However, there's no reason why we
2708 can't handle PARALLELs in the cases where there are no partial
2709 redundancies. */
2711 static int
2712 pre_gcse (struct edge_list *edge_list)
2714 unsigned int i;
2715 int did_insert, changed;
2716 struct gcse_expr **index_map;
2717 struct gcse_expr *expr;
2719 /* Compute a mapping from expression number (`bitmap_index') to
2720 hash table entry. */
2722 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2723 for (i = 0; i < expr_hash_table.size; i++)
2724 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2725 index_map[expr->bitmap_index] = expr;
2727 /* Delete the redundant insns first so that
2728 - we know what register to use for the new insns and for the other
2729 ones with reaching expressions
2730 - we know which insns are redundant when we go to create copies */
2732 changed = pre_delete ();
2733 did_insert = pre_edge_insert (edge_list, index_map);
2735 /* In other places with reaching expressions, copy the expression to the
2736 specially allocated pseudo-reg that reaches the redundant expr. */
2737 pre_insert_copies ();
2738 if (did_insert)
2740 commit_edge_insertions ();
2741 changed = 1;
2744 free (index_map);
2745 return changed;
2748 /* Top level routine to perform one PRE GCSE pass.
2750 Return nonzero if a change was made. */
2752 static int
2753 one_pre_gcse_pass (void)
2755 int changed = 0;
2757 gcse_subst_count = 0;
2758 gcse_create_count = 0;
2760 /* Return if there's nothing to do, or it is too expensive. */
2761 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2762 || is_too_expensive (_("PRE disabled")))
2763 return 0;
2765 /* We need alias. */
2766 init_alias_analysis ();
2768 bytes_used = 0;
2769 gcc_obstack_init (&gcse_obstack);
2770 alloc_gcse_mem ();
2772 alloc_hash_table (&expr_hash_table);
2773 add_noreturn_fake_exit_edges ();
2774 if (flag_gcse_lm)
2775 compute_ld_motion_mems ();
2777 compute_hash_table (&expr_hash_table);
2778 if (flag_gcse_lm)
2779 trim_ld_motion_mems ();
2780 if (dump_file)
2781 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2783 if (expr_hash_table.n_elems > 0)
2785 struct edge_list *edge_list;
2786 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2787 edge_list = compute_pre_data ();
2788 changed |= pre_gcse (edge_list);
2789 free_edge_list (edge_list);
2790 free_pre_mem ();
2793 if (flag_gcse_lm)
2794 free_ld_motion_mems ();
2795 remove_fake_exit_edges ();
2796 free_hash_table (&expr_hash_table);
2798 free_gcse_mem ();
2799 obstack_free (&gcse_obstack, NULL);
2801 /* We are finished with alias. */
2802 end_alias_analysis ();
2804 if (dump_file)
2806 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2807 current_function_name (), n_basic_blocks_for_fn (cfun),
2808 bytes_used);
2809 fprintf (dump_file, "%d substs, %d insns created\n",
2810 gcse_subst_count, gcse_create_count);
2813 return changed;
2816 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2817 to INSN. If such notes are added to an insn which references a
2818 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2819 that note, because the following loop optimization pass requires
2820 them. */
2822 /* ??? If there was a jump optimization pass after gcse and before loop,
2823 then we would not need to do this here, because jump would add the
2824 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2826 static void
2827 add_label_notes (rtx x, rtx insn)
2829 enum rtx_code code = GET_CODE (x);
2830 int i, j;
2831 const char *fmt;
2833 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2835 /* This code used to ignore labels that referred to dispatch tables to
2836 avoid flow generating (slightly) worse code.
2838 We no longer ignore such label references (see LABEL_REF handling in
2839 mark_jump_label for additional information). */
2841 /* There's no reason for current users to emit jump-insns with
2842 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2843 notes. */
2844 gcc_assert (!JUMP_P (insn));
2845 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2847 if (LABEL_P (LABEL_REF_LABEL (x)))
2848 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2850 return;
2853 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2855 if (fmt[i] == 'e')
2856 add_label_notes (XEXP (x, i), insn);
2857 else if (fmt[i] == 'E')
2858 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2859 add_label_notes (XVECEXP (x, i, j), insn);
2863 /* Code Hoisting variables and subroutines. */
2865 /* Very busy expressions. */
2866 static sbitmap *hoist_vbein;
2867 static sbitmap *hoist_vbeout;
2869 /* ??? We could compute post dominators and run this algorithm in
2870 reverse to perform tail merging, doing so would probably be
2871 more effective than the tail merging code in jump.c.
2873 It's unclear if tail merging could be run in parallel with
2874 code hoisting. It would be nice. */
2876 /* Allocate vars used for code hoisting analysis. */
2878 static void
2879 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2881 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2882 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2883 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2885 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2886 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2889 /* Free vars used for code hoisting analysis. */
2891 static void
2892 free_code_hoist_mem (void)
2894 sbitmap_vector_free (antloc);
2895 sbitmap_vector_free (transp);
2896 sbitmap_vector_free (comp);
2898 sbitmap_vector_free (hoist_vbein);
2899 sbitmap_vector_free (hoist_vbeout);
2901 free_dominance_info (CDI_DOMINATORS);
2904 /* Compute the very busy expressions at entry/exit from each block.
2906 An expression is very busy if all paths from a given point
2907 compute the expression. */
2909 static void
2910 compute_code_hoist_vbeinout (void)
2912 int changed, passes;
2913 basic_block bb;
2915 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2916 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2918 passes = 0;
2919 changed = 1;
2921 while (changed)
2923 changed = 0;
2925 /* We scan the blocks in the reverse order to speed up
2926 the convergence. */
2927 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2929 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2931 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2932 hoist_vbein, bb);
2934 /* Include expressions in VBEout that are calculated
2935 in BB and available at its end. */
2936 bitmap_ior (hoist_vbeout[bb->index],
2937 hoist_vbeout[bb->index], comp[bb->index]);
2940 changed |= bitmap_or_and (hoist_vbein[bb->index],
2941 antloc[bb->index],
2942 hoist_vbeout[bb->index],
2943 transp[bb->index]);
2946 passes++;
2949 if (dump_file)
2951 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2953 FOR_EACH_BB_FN (bb, cfun)
2955 fprintf (dump_file, "vbein (%d): ", bb->index);
2956 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2957 fprintf (dump_file, "vbeout(%d): ", bb->index);
2958 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2963 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2965 static void
2966 compute_code_hoist_data (void)
2968 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2969 prune_expressions (false);
2970 compute_code_hoist_vbeinout ();
2971 calculate_dominance_info (CDI_DOMINATORS);
2972 if (dump_file)
2973 fprintf (dump_file, "\n");
2976 /* Update register pressure for BB when hoisting an expression from
2977 instruction FROM, if live ranges of inputs are shrunk. Also
2978 maintain live_in information if live range of register referred
2979 in FROM is shrunk.
2981 Return 0 if register pressure doesn't change, otherwise return
2982 the number by which register pressure is decreased.
2984 NOTE: Register pressure won't be increased in this function. */
2986 static int
2987 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2989 rtx dreg;
2990 rtx_insn *insn;
2991 basic_block succ_bb;
2992 df_ref use, op_ref;
2993 edge succ;
2994 edge_iterator ei;
2995 int decreased_pressure = 0;
2996 int nregs;
2997 enum reg_class pressure_class;
2999 FOR_EACH_INSN_USE (use, from)
3001 dreg = DF_REF_REAL_REG (use);
3002 /* The live range of register is shrunk only if it isn't:
3003 1. referred on any path from the end of this block to EXIT, or
3004 2. referred by insns other than FROM in this block. */
3005 FOR_EACH_EDGE (succ, ei, bb->succs)
3007 succ_bb = succ->dest;
3008 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3009 continue;
3011 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
3012 break;
3014 if (succ != NULL)
3015 continue;
3017 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
3018 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
3020 if (!DF_REF_INSN_INFO (op_ref))
3021 continue;
3023 insn = DF_REF_INSN (op_ref);
3024 if (BLOCK_FOR_INSN (insn) == bb
3025 && NONDEBUG_INSN_P (insn) && insn != from)
3026 break;
3029 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
3030 /* Decrease register pressure and update live_in information for
3031 this block. */
3032 if (!op_ref && pressure_class != NO_REGS)
3034 decreased_pressure += nregs;
3035 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
3036 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
3039 return decreased_pressure;
3042 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
3043 flow graph, if it can reach BB unimpared. Stop the search if the
3044 expression would need to be moved more than DISTANCE instructions.
3046 DISTANCE is the number of instructions through which EXPR can be
3047 hoisted up in flow graph.
3049 BB_SIZE points to an array which contains the number of instructions
3050 for each basic block.
3052 PRESSURE_CLASS and NREGS are register class and number of hard registers
3053 for storing EXPR.
3055 HOISTED_BBS points to a bitmap indicating basic blocks through which
3056 EXPR is hoisted.
3058 FROM is the instruction from which EXPR is hoisted.
3060 It's unclear exactly what Muchnick meant by "unimpared". It seems
3061 to me that the expression must either be computed or transparent in
3062 *every* block in the path(s) from EXPR_BB to BB. Any other definition
3063 would allow the expression to be hoisted out of loops, even if
3064 the expression wasn't a loop invariant.
3066 Contrast this to reachability for PRE where an expression is
3067 considered reachable if *any* path reaches instead of *all*
3068 paths. */
3070 static int
3071 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
3072 basic_block bb, sbitmap visited, int distance,
3073 int *bb_size, enum reg_class pressure_class,
3074 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
3076 unsigned int i;
3077 edge pred;
3078 edge_iterator ei;
3079 sbitmap_iterator sbi;
3080 int visited_allocated_locally = 0;
3081 int decreased_pressure = 0;
3083 if (flag_ira_hoist_pressure)
3085 /* Record old information of basic block BB when it is visited
3086 at the first time. */
3087 if (!bitmap_bit_p (hoisted_bbs, bb->index))
3089 struct bb_data *data = BB_DATA (bb);
3090 bitmap_copy (data->backup, data->live_in);
3091 data->old_pressure = data->max_reg_pressure[pressure_class];
3093 decreased_pressure = update_bb_reg_pressure (bb, from);
3095 /* Terminate the search if distance, for which EXPR is allowed to move,
3096 is exhausted. */
3097 if (distance > 0)
3099 if (flag_ira_hoist_pressure)
3101 /* Prefer to hoist EXPR if register pressure is decreased. */
3102 if (decreased_pressure > *nregs)
3103 distance += bb_size[bb->index];
3104 /* Let EXPR be hoisted through basic block at no cost if one
3105 of following conditions is satisfied:
3107 1. The basic block has low register pressure.
3108 2. Register pressure won't be increases after hoisting EXPR.
3110 Constant expressions is handled conservatively, because
3111 hoisting constant expression aggressively results in worse
3112 code. This decision is made by the observation of CSiBE
3113 on ARM target, while it has no obvious effect on other
3114 targets like x86, x86_64, mips and powerpc. */
3115 else if (CONST_INT_P (expr->expr)
3116 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
3117 >= ira_class_hard_regs_num[pressure_class]
3118 && decreased_pressure < *nregs))
3119 distance -= bb_size[bb->index];
3121 else
3122 distance -= bb_size[bb->index];
3124 if (distance <= 0)
3125 return 0;
3127 else
3128 gcc_assert (distance == 0);
3130 if (visited == NULL)
3132 visited_allocated_locally = 1;
3133 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
3134 bitmap_clear (visited);
3137 FOR_EACH_EDGE (pred, ei, bb->preds)
3139 basic_block pred_bb = pred->src;
3141 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
3142 break;
3143 else if (pred_bb == expr_bb)
3144 continue;
3145 else if (bitmap_bit_p (visited, pred_bb->index))
3146 continue;
3147 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
3148 break;
3149 /* Not killed. */
3150 else
3152 bitmap_set_bit (visited, pred_bb->index);
3153 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3154 visited, distance, bb_size,
3155 pressure_class, nregs,
3156 hoisted_bbs, from))
3157 break;
3160 if (visited_allocated_locally)
3162 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3163 which EXPR is hoisted in hoisted_bbs. */
3164 if (flag_ira_hoist_pressure && !pred)
3166 /* Record the basic block from which EXPR is hoisted. */
3167 bitmap_set_bit (visited, bb->index);
3168 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3169 bitmap_set_bit (hoisted_bbs, i);
3171 sbitmap_free (visited);
3174 return (pred == NULL);
3177 /* Find occurrence in BB. */
3179 static struct gcse_occr *
3180 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3182 /* Find the right occurrence of this expression. */
3183 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3184 occr = occr->next;
3186 return occr;
3189 /* Actually perform code hoisting.
3191 The code hoisting pass can hoist multiple computations of the same
3192 expression along dominated path to a dominating basic block, like
3193 from b2/b3 to b1 as depicted below:
3195 b1 ------
3196 /\ |
3197 / \ |
3198 bx by distance
3199 / \ |
3200 / \ |
3201 b2 b3 ------
3203 Unfortunately code hoisting generally extends the live range of an
3204 output pseudo register, which increases register pressure and hurts
3205 register allocation. To address this issue, an attribute MAX_DISTANCE
3206 is computed and attached to each expression. The attribute is computed
3207 from rtx cost of the corresponding expression and it's used to control
3208 how long the expression can be hoisted up in flow graph. As the
3209 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3210 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3211 register pressure if live ranges of inputs are shrunk.
3213 Option "-fira-hoist-pressure" implements register pressure directed
3214 hoist based on upper method. The rationale is:
3215 1. Calculate register pressure for each basic block by reusing IRA
3216 facility.
3217 2. When expression is hoisted through one basic block, GCC checks
3218 the change of live ranges for inputs/output. The basic block's
3219 register pressure will be increased because of extended live
3220 range of output. However, register pressure will be decreased
3221 if the live ranges of inputs are shrunk.
3222 3. After knowing how hoisting affects register pressure, GCC prefers
3223 to hoist the expression if it can decrease register pressure, by
3224 increasing DISTANCE of the corresponding expression.
3225 4. If hoisting the expression increases register pressure, GCC checks
3226 register pressure of the basic block and decrease DISTANCE only if
3227 the register pressure is high. In other words, expression will be
3228 hoisted through at no cost if the basic block has low register
3229 pressure.
3230 5. Update register pressure information for basic blocks through
3231 which expression is hoisted. */
3233 static int
3234 hoist_code (void)
3236 basic_block bb, dominated;
3237 vec<basic_block> dom_tree_walk;
3238 unsigned int dom_tree_walk_index;
3239 vec<basic_block> domby;
3240 unsigned int i, j, k;
3241 struct gcse_expr **index_map;
3242 struct gcse_expr *expr;
3243 int *to_bb_head;
3244 int *bb_size;
3245 int changed = 0;
3246 struct bb_data *data;
3247 /* Basic blocks that have occurrences reachable from BB. */
3248 bitmap from_bbs;
3249 /* Basic blocks through which expr is hoisted. */
3250 bitmap hoisted_bbs = NULL;
3251 bitmap_iterator bi;
3253 /* Compute a mapping from expression number (`bitmap_index') to
3254 hash table entry. */
3256 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3257 for (i = 0; i < expr_hash_table.size; i++)
3258 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3259 index_map[expr->bitmap_index] = expr;
3261 /* Calculate sizes of basic blocks and note how far
3262 each instruction is from the start of its block. We then use this
3263 data to restrict distance an expression can travel. */
3265 to_bb_head = XCNEWVEC (int, get_max_uid ());
3266 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3268 FOR_EACH_BB_FN (bb, cfun)
3270 rtx_insn *insn;
3271 int to_head;
3273 to_head = 0;
3274 FOR_BB_INSNS (bb, insn)
3276 /* Don't count debug instructions to avoid them affecting
3277 decision choices. */
3278 if (NONDEBUG_INSN_P (insn))
3279 to_bb_head[INSN_UID (insn)] = to_head++;
3282 bb_size[bb->index] = to_head;
3285 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3286 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3287 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3289 from_bbs = BITMAP_ALLOC (NULL);
3290 if (flag_ira_hoist_pressure)
3291 hoisted_bbs = BITMAP_ALLOC (NULL);
3293 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3294 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3296 /* Walk over each basic block looking for potentially hoistable
3297 expressions, nothing gets hoisted from the entry block. */
3298 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3300 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3302 if (domby.length () == 0)
3303 continue;
3305 /* Examine each expression that is very busy at the exit of this
3306 block. These are the potentially hoistable expressions. */
3307 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3309 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3311 int nregs = 0;
3312 enum reg_class pressure_class = NO_REGS;
3313 /* Current expression. */
3314 struct gcse_expr *expr = index_map[i];
3315 /* Number of occurrences of EXPR that can be hoisted to BB. */
3316 int hoistable = 0;
3317 /* Occurrences reachable from BB. */
3318 vec<occr_t> occrs_to_hoist = vNULL;
3319 /* We want to insert the expression into BB only once, so
3320 note when we've inserted it. */
3321 int insn_inserted_p;
3322 occr_t occr;
3324 /* If an expression is computed in BB and is available at end of
3325 BB, hoist all occurrences dominated by BB to BB. */
3326 if (bitmap_bit_p (comp[bb->index], i))
3328 occr = find_occr_in_bb (expr->antic_occr, bb);
3330 if (occr)
3332 /* An occurrence might've been already deleted
3333 while processing a dominator of BB. */
3334 if (!occr->deleted_p)
3336 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3337 hoistable++;
3340 else
3341 hoistable++;
3344 /* We've found a potentially hoistable expression, now
3345 we look at every block BB dominates to see if it
3346 computes the expression. */
3347 FOR_EACH_VEC_ELT (domby, j, dominated)
3349 int max_distance;
3351 /* Ignore self dominance. */
3352 if (bb == dominated)
3353 continue;
3354 /* We've found a dominated block, now see if it computes
3355 the busy expression and whether or not moving that
3356 expression to the "beginning" of that block is safe. */
3357 if (!bitmap_bit_p (antloc[dominated->index], i))
3358 continue;
3360 occr = find_occr_in_bb (expr->antic_occr, dominated);
3361 gcc_assert (occr);
3363 /* An occurrence might've been already deleted
3364 while processing a dominator of BB. */
3365 if (occr->deleted_p)
3366 continue;
3367 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3369 max_distance = expr->max_distance;
3370 if (max_distance > 0)
3371 /* Adjust MAX_DISTANCE to account for the fact that
3372 OCCR won't have to travel all of DOMINATED, but
3373 only part of it. */
3374 max_distance += (bb_size[dominated->index]
3375 - to_bb_head[INSN_UID (occr->insn)]);
3377 pressure_class = get_pressure_class_and_nregs (occr->insn,
3378 &nregs);
3380 /* Note if the expression should be hoisted from the dominated
3381 block to BB if it can reach DOMINATED unimpared.
3383 Keep track of how many times this expression is hoistable
3384 from a dominated block into BB. */
3385 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3386 max_distance, bb_size,
3387 pressure_class, &nregs,
3388 hoisted_bbs, occr->insn))
3390 hoistable++;
3391 occrs_to_hoist.safe_push (occr);
3392 bitmap_set_bit (from_bbs, dominated->index);
3396 /* If we found more than one hoistable occurrence of this
3397 expression, then note it in the vector of expressions to
3398 hoist. It makes no sense to hoist things which are computed
3399 in only one BB, and doing so tends to pessimize register
3400 allocation. One could increase this value to try harder
3401 to avoid any possible code expansion due to register
3402 allocation issues; however experiments have shown that
3403 the vast majority of hoistable expressions are only movable
3404 from two successors, so raising this threshold is likely
3405 to nullify any benefit we get from code hoisting. */
3406 if (hoistable > 1 && dbg_cnt (hoist_insn))
3408 /* If (hoistable != vec::length), then there is
3409 an occurrence of EXPR in BB itself. Don't waste
3410 time looking for LCA in this case. */
3411 if ((unsigned) hoistable == occrs_to_hoist.length ())
3413 basic_block lca;
3415 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3416 from_bbs);
3417 if (lca != bb)
3418 /* Punt, it's better to hoist these occurrences to
3419 LCA. */
3420 occrs_to_hoist.release ();
3423 else
3424 /* Punt, no point hoisting a single occurrence. */
3425 occrs_to_hoist.release ();
3427 if (flag_ira_hoist_pressure
3428 && !occrs_to_hoist.is_empty ())
3430 /* Increase register pressure of basic blocks to which
3431 expr is hoisted because of extended live range of
3432 output. */
3433 data = BB_DATA (bb);
3434 data->max_reg_pressure[pressure_class] += nregs;
3435 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3437 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3438 data->max_reg_pressure[pressure_class] += nregs;
3441 else if (flag_ira_hoist_pressure)
3443 /* Restore register pressure and live_in info for basic
3444 blocks recorded in hoisted_bbs when expr will not be
3445 hoisted. */
3446 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3448 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3449 bitmap_copy (data->live_in, data->backup);
3450 data->max_reg_pressure[pressure_class]
3451 = data->old_pressure;
3455 if (flag_ira_hoist_pressure)
3456 bitmap_clear (hoisted_bbs);
3458 insn_inserted_p = 0;
3460 /* Walk through occurrences of I'th expressions we want
3461 to hoist to BB and make the transformations. */
3462 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3464 rtx_insn *insn;
3465 const_rtx set;
3467 gcc_assert (!occr->deleted_p);
3469 insn = occr->insn;
3470 set = single_set_gcse (insn);
3472 /* Create a pseudo-reg to store the result of reaching
3473 expressions into. Get the mode for the new pseudo
3474 from the mode of the original destination pseudo.
3476 It is important to use new pseudos whenever we
3477 emit a set. This will allow reload to use
3478 rematerialization for such registers. */
3479 if (!insn_inserted_p)
3480 expr->reaching_reg
3481 = gen_reg_rtx_and_attrs (SET_DEST (set));
3483 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3484 insn);
3485 delete_insn (insn);
3486 occr->deleted_p = 1;
3487 changed = 1;
3488 gcse_subst_count++;
3490 if (!insn_inserted_p)
3492 insert_insn_end_basic_block (expr, bb);
3493 insn_inserted_p = 1;
3497 occrs_to_hoist.release ();
3498 bitmap_clear (from_bbs);
3501 domby.release ();
3504 dom_tree_walk.release ();
3505 BITMAP_FREE (from_bbs);
3506 if (flag_ira_hoist_pressure)
3507 BITMAP_FREE (hoisted_bbs);
3509 free (bb_size);
3510 free (to_bb_head);
3511 free (index_map);
3513 return changed;
3516 /* Return pressure class and number of needed hard registers (through
3517 *NREGS) of register REGNO. */
3518 static enum reg_class
3519 get_regno_pressure_class (int regno, int *nregs)
3521 if (regno >= FIRST_PSEUDO_REGISTER)
3523 enum reg_class pressure_class;
3525 pressure_class = reg_allocno_class (regno);
3526 pressure_class = ira_pressure_class_translate[pressure_class];
3527 *nregs
3528 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3529 return pressure_class;
3531 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3532 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3534 *nregs = 1;
3535 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3537 else
3539 *nregs = 0;
3540 return NO_REGS;
3544 /* Return pressure class and number of hard registers (through *NREGS)
3545 for destination of INSN. */
3546 static enum reg_class
3547 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3549 rtx reg;
3550 enum reg_class pressure_class;
3551 const_rtx set = single_set_gcse (insn);
3553 reg = SET_DEST (set);
3554 if (GET_CODE (reg) == SUBREG)
3555 reg = SUBREG_REG (reg);
3556 if (MEM_P (reg))
3558 *nregs = 0;
3559 pressure_class = NO_REGS;
3561 else
3563 gcc_assert (REG_P (reg));
3564 pressure_class = reg_allocno_class (REGNO (reg));
3565 pressure_class = ira_pressure_class_translate[pressure_class];
3566 *nregs
3567 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3569 return pressure_class;
3572 /* Increase (if INCR_P) or decrease current register pressure for
3573 register REGNO. */
3574 static void
3575 change_pressure (int regno, bool incr_p)
3577 int nregs;
3578 enum reg_class pressure_class;
3580 pressure_class = get_regno_pressure_class (regno, &nregs);
3581 if (! incr_p)
3582 curr_reg_pressure[pressure_class] -= nregs;
3583 else
3585 curr_reg_pressure[pressure_class] += nregs;
3586 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3587 < curr_reg_pressure[pressure_class])
3588 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3589 = curr_reg_pressure[pressure_class];
3593 /* Calculate register pressure for each basic block by walking insns
3594 from last to first. */
3595 static void
3596 calculate_bb_reg_pressure (void)
3598 int i;
3599 unsigned int j;
3600 rtx_insn *insn;
3601 basic_block bb;
3602 bitmap curr_regs_live;
3603 bitmap_iterator bi;
3606 ira_setup_eliminable_regset ();
3607 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3608 FOR_EACH_BB_FN (bb, cfun)
3610 curr_bb = bb;
3611 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3612 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3613 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3614 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3615 for (i = 0; i < ira_pressure_classes_num; i++)
3616 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3617 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3618 change_pressure (j, true);
3620 FOR_BB_INSNS_REVERSE (bb, insn)
3622 rtx dreg;
3623 int regno;
3624 df_ref def, use;
3626 if (! NONDEBUG_INSN_P (insn))
3627 continue;
3629 FOR_EACH_INSN_DEF (def, insn)
3631 dreg = DF_REF_REAL_REG (def);
3632 gcc_assert (REG_P (dreg));
3633 regno = REGNO (dreg);
3634 if (!(DF_REF_FLAGS (def)
3635 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3637 if (bitmap_clear_bit (curr_regs_live, regno))
3638 change_pressure (regno, false);
3642 FOR_EACH_INSN_USE (use, insn)
3644 dreg = DF_REF_REAL_REG (use);
3645 gcc_assert (REG_P (dreg));
3646 regno = REGNO (dreg);
3647 if (bitmap_set_bit (curr_regs_live, regno))
3648 change_pressure (regno, true);
3652 BITMAP_FREE (curr_regs_live);
3654 if (dump_file == NULL)
3655 return;
3657 fprintf (dump_file, "\nRegister Pressure: \n");
3658 FOR_EACH_BB_FN (bb, cfun)
3660 fprintf (dump_file, " Basic block %d: \n", bb->index);
3661 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3663 enum reg_class pressure_class;
3665 pressure_class = ira_pressure_classes[i];
3666 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3667 continue;
3669 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3670 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3673 fprintf (dump_file, "\n");
3676 /* Top level routine to perform one code hoisting (aka unification) pass
3678 Return nonzero if a change was made. */
3680 static int
3681 one_code_hoisting_pass (void)
3683 int changed = 0;
3685 gcse_subst_count = 0;
3686 gcse_create_count = 0;
3688 /* Return if there's nothing to do, or it is too expensive. */
3689 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3690 || is_too_expensive (_("GCSE disabled")))
3691 return 0;
3693 doing_code_hoisting_p = true;
3695 /* Calculate register pressure for each basic block. */
3696 if (flag_ira_hoist_pressure)
3698 regstat_init_n_sets_and_refs ();
3699 ira_set_pseudo_classes (false, dump_file);
3700 alloc_aux_for_blocks (sizeof (struct bb_data));
3701 calculate_bb_reg_pressure ();
3702 regstat_free_n_sets_and_refs ();
3705 /* We need alias. */
3706 init_alias_analysis ();
3708 bytes_used = 0;
3709 gcc_obstack_init (&gcse_obstack);
3710 alloc_gcse_mem ();
3712 alloc_hash_table (&expr_hash_table);
3713 compute_hash_table (&expr_hash_table);
3714 if (dump_file)
3715 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3717 if (expr_hash_table.n_elems > 0)
3719 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3720 expr_hash_table.n_elems);
3721 compute_code_hoist_data ();
3722 changed = hoist_code ();
3723 free_code_hoist_mem ();
3726 if (flag_ira_hoist_pressure)
3728 free_aux_for_blocks ();
3729 free_reg_info ();
3731 free_hash_table (&expr_hash_table);
3732 free_gcse_mem ();
3733 obstack_free (&gcse_obstack, NULL);
3735 /* We are finished with alias. */
3736 end_alias_analysis ();
3738 if (dump_file)
3740 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3741 current_function_name (), n_basic_blocks_for_fn (cfun),
3742 bytes_used);
3743 fprintf (dump_file, "%d substs, %d insns created\n",
3744 gcse_subst_count, gcse_create_count);
3747 doing_code_hoisting_p = false;
3749 return changed;
3752 /* Here we provide the things required to do store motion towards the exit.
3753 In order for this to be effective, gcse also needed to be taught how to
3754 move a load when it is killed only by a store to itself.
3756 int i;
3757 float a[10];
3759 void foo(float scale)
3761 for (i=0; i<10; i++)
3762 a[i] *= scale;
3765 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3766 the load out since its live around the loop, and stored at the bottom
3767 of the loop.
3769 The 'Load Motion' referred to and implemented in this file is
3770 an enhancement to gcse which when using edge based LCM, recognizes
3771 this situation and allows gcse to move the load out of the loop.
3773 Once gcse has hoisted the load, store motion can then push this
3774 load towards the exit, and we end up with no loads or stores of 'i'
3775 in the loop. */
3777 /* This will search the ldst list for a matching expression. If it
3778 doesn't find one, we create one and initialize it. */
3780 static struct ls_expr *
3781 ldst_entry (rtx x)
3783 int do_not_record_p = 0;
3784 struct ls_expr * ptr;
3785 unsigned int hash;
3786 ls_expr **slot;
3787 struct ls_expr e;
3789 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3790 NULL, /*have_reg_qty=*/false);
3792 e.pattern = x;
3793 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3794 if (*slot)
3795 return *slot;
3797 ptr = XNEW (struct ls_expr);
3799 ptr->next = pre_ldst_mems;
3800 ptr->expr = NULL;
3801 ptr->pattern = x;
3802 ptr->pattern_regs = NULL_RTX;
3803 ptr->loads = NULL;
3804 ptr->stores = NULL;
3805 ptr->reaching_reg = NULL_RTX;
3806 ptr->invalid = 0;
3807 ptr->index = 0;
3808 ptr->hash_index = hash;
3809 pre_ldst_mems = ptr;
3810 *slot = ptr;
3812 return ptr;
3815 /* Free up an individual ldst entry. */
3817 static void
3818 free_ldst_entry (struct ls_expr * ptr)
3820 free_INSN_LIST_list (& ptr->loads);
3821 free_INSN_LIST_list (& ptr->stores);
3823 free (ptr);
3826 /* Free up all memory associated with the ldst list. */
3828 static void
3829 free_ld_motion_mems (void)
3831 delete pre_ldst_table;
3832 pre_ldst_table = NULL;
3834 while (pre_ldst_mems)
3836 struct ls_expr * tmp = pre_ldst_mems;
3838 pre_ldst_mems = pre_ldst_mems->next;
3840 free_ldst_entry (tmp);
3843 pre_ldst_mems = NULL;
3846 /* Dump debugging info about the ldst list. */
3848 static void
3849 print_ldst_list (FILE * file)
3851 struct ls_expr * ptr;
3853 fprintf (file, "LDST list: \n");
3855 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3857 fprintf (file, " Pattern (%3d): ", ptr->index);
3859 print_rtl (file, ptr->pattern);
3861 fprintf (file, "\n Loads : ");
3863 if (ptr->loads)
3864 print_rtl (file, ptr->loads);
3865 else
3866 fprintf (file, "(nil)");
3868 fprintf (file, "\n Stores : ");
3870 if (ptr->stores)
3871 print_rtl (file, ptr->stores);
3872 else
3873 fprintf (file, "(nil)");
3875 fprintf (file, "\n\n");
3878 fprintf (file, "\n");
3881 /* Returns 1 if X is in the list of ldst only expressions. */
3883 static struct ls_expr *
3884 find_rtx_in_ldst (rtx x)
3886 struct ls_expr e;
3887 ls_expr **slot;
3888 if (!pre_ldst_table)
3889 return NULL;
3890 e.pattern = x;
3891 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3892 if (!slot || (*slot)->invalid)
3893 return NULL;
3894 return *slot;
3897 /* Load Motion for loads which only kill themselves. */
3899 /* Return true if x, a MEM, is a simple access with no side effects.
3900 These are the types of loads we consider for the ld_motion list,
3901 otherwise we let the usual aliasing take care of it. */
3903 static int
3904 simple_mem (const_rtx x)
3906 if (MEM_VOLATILE_P (x))
3907 return 0;
3909 if (GET_MODE (x) == BLKmode)
3910 return 0;
3912 /* If we are handling exceptions, we must be careful with memory references
3913 that may trap. If we are not, the behavior is undefined, so we may just
3914 continue. */
3915 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3916 return 0;
3918 if (side_effects_p (x))
3919 return 0;
3921 /* Do not consider function arguments passed on stack. */
3922 if (reg_mentioned_p (stack_pointer_rtx, x))
3923 return 0;
3925 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3926 return 0;
3928 return 1;
3931 /* Make sure there isn't a buried reference in this pattern anywhere.
3932 If there is, invalidate the entry for it since we're not capable
3933 of fixing it up just yet.. We have to be sure we know about ALL
3934 loads since the aliasing code will allow all entries in the
3935 ld_motion list to not-alias itself. If we miss a load, we will get
3936 the wrong value since gcse might common it and we won't know to
3937 fix it up. */
3939 static void
3940 invalidate_any_buried_refs (rtx x)
3942 const char * fmt;
3943 int i, j;
3944 struct ls_expr * ptr;
3946 /* Invalidate it in the list. */
3947 if (MEM_P (x) && simple_mem (x))
3949 ptr = ldst_entry (x);
3950 ptr->invalid = 1;
3953 /* Recursively process the insn. */
3954 fmt = GET_RTX_FORMAT (GET_CODE (x));
3956 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3958 if (fmt[i] == 'e')
3959 invalidate_any_buried_refs (XEXP (x, i));
3960 else if (fmt[i] == 'E')
3961 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3962 invalidate_any_buried_refs (XVECEXP (x, i, j));
3966 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3967 being defined as MEM loads and stores to symbols, with no side effects
3968 and no registers in the expression. For a MEM destination, we also
3969 check that the insn is still valid if we replace the destination with a
3970 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3971 which don't match this criteria, they are invalidated and trimmed out
3972 later. */
3974 static void
3975 compute_ld_motion_mems (void)
3977 struct ls_expr * ptr;
3978 basic_block bb;
3979 rtx_insn *insn;
3981 pre_ldst_mems = NULL;
3982 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3984 FOR_EACH_BB_FN (bb, cfun)
3986 FOR_BB_INSNS (bb, insn)
3988 if (NONDEBUG_INSN_P (insn))
3990 if (GET_CODE (PATTERN (insn)) == SET)
3992 rtx src = SET_SRC (PATTERN (insn));
3993 rtx dest = SET_DEST (PATTERN (insn));
3994 rtx note = find_reg_equal_equiv_note (insn);
3995 rtx src_eq;
3997 /* Check for a simple LOAD... */
3998 if (MEM_P (src) && simple_mem (src))
4000 ptr = ldst_entry (src);
4001 if (REG_P (dest))
4002 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
4003 else
4004 ptr->invalid = 1;
4006 else
4008 /* Make sure there isn't a buried load somewhere. */
4009 invalidate_any_buried_refs (src);
4012 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
4013 src_eq = XEXP (note, 0);
4014 else
4015 src_eq = NULL_RTX;
4017 if (src_eq != NULL_RTX
4018 && !(MEM_P (src_eq) && simple_mem (src_eq)))
4019 invalidate_any_buried_refs (src_eq);
4021 /* Check for stores. Don't worry about aliased ones, they
4022 will block any movement we might do later. We only care
4023 about this exact pattern since those are the only
4024 circumstance that we will ignore the aliasing info. */
4025 if (MEM_P (dest) && simple_mem (dest))
4027 ptr = ldst_entry (dest);
4029 if (! MEM_P (src)
4030 && GET_CODE (src) != ASM_OPERANDS
4031 /* Check for REG manually since want_to_gcse_p
4032 returns 0 for all REGs. */
4033 && can_assign_to_reg_without_clobbers_p (src))
4034 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
4035 else
4036 ptr->invalid = 1;
4039 else
4040 invalidate_any_buried_refs (PATTERN (insn));
4046 /* Remove any references that have been either invalidated or are not in the
4047 expression list for pre gcse. */
4049 static void
4050 trim_ld_motion_mems (void)
4052 struct ls_expr * * last = & pre_ldst_mems;
4053 struct ls_expr * ptr = pre_ldst_mems;
4055 while (ptr != NULL)
4057 struct gcse_expr * expr;
4059 /* Delete if entry has been made invalid. */
4060 if (! ptr->invalid)
4062 /* Delete if we cannot find this mem in the expression list. */
4063 unsigned int hash = ptr->hash_index % expr_hash_table.size;
4065 for (expr = expr_hash_table.table[hash];
4066 expr != NULL;
4067 expr = expr->next_same_hash)
4068 if (expr_equiv_p (expr->expr, ptr->pattern))
4069 break;
4071 else
4072 expr = (struct gcse_expr *) 0;
4074 if (expr)
4076 /* Set the expression field if we are keeping it. */
4077 ptr->expr = expr;
4078 last = & ptr->next;
4079 ptr = ptr->next;
4081 else
4083 *last = ptr->next;
4084 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
4085 free_ldst_entry (ptr);
4086 ptr = * last;
4090 /* Show the world what we've found. */
4091 if (dump_file && pre_ldst_mems != NULL)
4092 print_ldst_list (dump_file);
4095 /* This routine will take an expression which we are replacing with
4096 a reaching register, and update any stores that are needed if
4097 that expression is in the ld_motion list. Stores are updated by
4098 copying their SRC to the reaching register, and then storing
4099 the reaching register into the store location. These keeps the
4100 correct value in the reaching register for the loads. */
4102 static void
4103 update_ld_motion_stores (struct gcse_expr * expr)
4105 struct ls_expr * mem_ptr;
4107 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
4109 /* We can try to find just the REACHED stores, but is shouldn't
4110 matter to set the reaching reg everywhere... some might be
4111 dead and should be eliminated later. */
4113 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4114 where reg is the reaching reg used in the load. We checked in
4115 compute_ld_motion_mems that we can replace (set mem expr) with
4116 (set reg expr) in that insn. */
4117 rtx list = mem_ptr->stores;
4119 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4121 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
4122 rtx pat = PATTERN (insn);
4123 rtx src = SET_SRC (pat);
4124 rtx reg = expr->reaching_reg;
4125 rtx copy;
4127 /* If we've already copied it, continue. */
4128 if (expr->reaching_reg == src)
4129 continue;
4131 if (dump_file)
4133 fprintf (dump_file, "PRE: store updated with reaching reg ");
4134 print_rtl (dump_file, reg);
4135 fprintf (dump_file, ":\n ");
4136 print_inline_rtx (dump_file, insn, 8);
4137 fprintf (dump_file, "\n");
4140 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
4141 emit_insn_before (copy, insn);
4142 SET_SRC (pat) = reg;
4143 df_insn_rescan (insn);
4145 /* un-recognize this pattern since it's probably different now. */
4146 INSN_CODE (insn) = -1;
4147 gcse_create_count++;
4152 /* Return true if the graph is too expensive to optimize. PASS is the
4153 optimization about to be performed. */
4155 static bool
4156 is_too_expensive (const char *pass)
4158 /* Trying to perform global optimizations on flow graphs which have
4159 a high connectivity will take a long time and is unlikely to be
4160 particularly useful.
4162 In normal circumstances a cfg should have about twice as many
4163 edges as blocks. But we do not want to punish small functions
4164 which have a couple switch statements. Rather than simply
4165 threshold the number of blocks, uses something with a more
4166 graceful degradation. */
4167 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4169 warning (OPT_Wdisabled_optimization,
4170 "%s: %d basic blocks and %d edges/basic block",
4171 pass, n_basic_blocks_for_fn (cfun),
4172 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4174 return true;
4177 /* If allocating memory for the dataflow bitmaps would take up too much
4178 storage it's better just to disable the optimization. */
4179 if ((n_basic_blocks_for_fn (cfun)
4180 * SBITMAP_SET_SIZE (max_reg_num ())
4181 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4183 warning (OPT_Wdisabled_optimization,
4184 "%s: %d basic blocks and %d registers",
4185 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4187 return true;
4190 return false;
4193 static unsigned int
4194 execute_rtl_pre (void)
4196 int changed;
4197 delete_unreachable_blocks ();
4198 df_analyze ();
4199 changed = one_pre_gcse_pass ();
4200 flag_rerun_cse_after_global_opts |= changed;
4201 if (changed)
4202 cleanup_cfg (0);
4203 return 0;
4206 static unsigned int
4207 execute_rtl_hoist (void)
4209 int changed;
4210 delete_unreachable_blocks ();
4211 df_analyze ();
4212 changed = one_code_hoisting_pass ();
4213 flag_rerun_cse_after_global_opts |= changed;
4214 if (changed)
4215 cleanup_cfg (0);
4216 return 0;
4219 namespace {
4221 const pass_data pass_data_rtl_pre =
4223 RTL_PASS, /* type */
4224 "rtl pre", /* name */
4225 OPTGROUP_NONE, /* optinfo_flags */
4226 TV_PRE, /* tv_id */
4227 PROP_cfglayout, /* properties_required */
4228 0, /* properties_provided */
4229 0, /* properties_destroyed */
4230 0, /* todo_flags_start */
4231 TODO_df_finish, /* todo_flags_finish */
4234 class pass_rtl_pre : public rtl_opt_pass
4236 public:
4237 pass_rtl_pre (gcc::context *ctxt)
4238 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4241 /* opt_pass methods: */
4242 virtual bool gate (function *);
4243 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4245 }; // class pass_rtl_pre
4247 /* We do not construct an accurate cfg in functions which call
4248 setjmp, so none of these passes runs if the function calls
4249 setjmp.
4250 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4252 bool
4253 pass_rtl_pre::gate (function *fun)
4255 return optimize > 0 && flag_gcse
4256 && !fun->calls_setjmp
4257 && optimize_function_for_speed_p (fun)
4258 && dbg_cnt (pre);
4261 } // anon namespace
4263 rtl_opt_pass *
4264 make_pass_rtl_pre (gcc::context *ctxt)
4266 return new pass_rtl_pre (ctxt);
4269 namespace {
4271 const pass_data pass_data_rtl_hoist =
4273 RTL_PASS, /* type */
4274 "hoist", /* name */
4275 OPTGROUP_NONE, /* optinfo_flags */
4276 TV_HOIST, /* tv_id */
4277 PROP_cfglayout, /* properties_required */
4278 0, /* properties_provided */
4279 0, /* properties_destroyed */
4280 0, /* todo_flags_start */
4281 TODO_df_finish, /* todo_flags_finish */
4284 class pass_rtl_hoist : public rtl_opt_pass
4286 public:
4287 pass_rtl_hoist (gcc::context *ctxt)
4288 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4291 /* opt_pass methods: */
4292 virtual bool gate (function *);
4293 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4295 }; // class pass_rtl_hoist
4297 bool
4298 pass_rtl_hoist::gate (function *)
4300 return optimize > 0 && flag_gcse
4301 && !cfun->calls_setjmp
4302 /* It does not make sense to run code hoisting unless we are optimizing
4303 for code size -- it rarely makes programs faster, and can make then
4304 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4305 && optimize_function_for_size_p (cfun)
4306 && dbg_cnt (hoist);
4309 } // anon namespace
4311 rtl_opt_pass *
4312 make_pass_rtl_hoist (gcc::context *ctxt)
4314 return new pass_rtl_hoist (ctxt);
4317 /* Reset all state within gcse.c so that we can rerun the compiler
4318 within the same process. For use by toplev::finalize. */
4320 void
4321 gcse_c_finalize (void)
4323 test_insn = NULL;
4326 #include "gt-gcse.h"