* config/m68k/m68k.c: Reindent and fix whitespace, remove
[official-gcc.git] / libgfortran / generated / matmul_c10.c
blob44e734f0863592d10461ef8c21820e221f5c6a25
1 /* Implementation of the MATMUL intrinsic
2 Copyright 2002, 2005 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <string.h>
34 #include <assert.h>
35 #include "libgfortran.h"
37 #if defined (HAVE_GFC_COMPLEX_10)
39 /* This is a C version of the following fortran pseudo-code. The key
40 point is the loop order -- we access all arrays column-first, which
41 improves the performance enough to boost galgel spec score by 50%.
43 DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
44 C = 0
45 DO J=1,N
46 DO K=1,COUNT
47 DO I=1,M
48 C(I,J) = C(I,J)+A(I,K)*B(K,J)
51 extern void matmul_c10 (gfc_array_c10 * const restrict retarray,
52 gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b);
53 export_proto(matmul_c10);
55 void
56 matmul_c10 (gfc_array_c10 * const restrict retarray,
57 gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b)
59 const GFC_COMPLEX_10 * restrict abase;
60 const GFC_COMPLEX_10 * restrict bbase;
61 GFC_COMPLEX_10 * restrict dest;
63 index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
64 index_type x, y, n, count, xcount, ycount;
66 assert (GFC_DESCRIPTOR_RANK (a) == 2
67 || GFC_DESCRIPTOR_RANK (b) == 2);
69 /* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
71 Either A or B (but not both) can be rank 1:
73 o One-dimensional argument A is implicitly treated as a row matrix
74 dimensioned [1,count], so xcount=1.
76 o One-dimensional argument B is implicitly treated as a column matrix
77 dimensioned [count, 1], so ycount=1.
80 if (retarray->data == NULL)
82 if (GFC_DESCRIPTOR_RANK (a) == 1)
84 retarray->dim[0].lbound = 0;
85 retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
86 retarray->dim[0].stride = 1;
88 else if (GFC_DESCRIPTOR_RANK (b) == 1)
90 retarray->dim[0].lbound = 0;
91 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
92 retarray->dim[0].stride = 1;
94 else
96 retarray->dim[0].lbound = 0;
97 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
98 retarray->dim[0].stride = 1;
100 retarray->dim[1].lbound = 0;
101 retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
102 retarray->dim[1].stride = retarray->dim[0].ubound+1;
105 retarray->data
106 = internal_malloc_size (sizeof (GFC_COMPLEX_10) * size0 ((array_t *) retarray));
107 retarray->offset = 0;
110 if (retarray->dim[0].stride == 0)
111 retarray->dim[0].stride = 1;
113 /* This prevents constifying the input arguments. */
114 if (a->dim[0].stride == 0)
115 a->dim[0].stride = 1;
116 if (b->dim[0].stride == 0)
117 b->dim[0].stride = 1;
120 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
122 /* One-dimensional result may be addressed in the code below
123 either as a row or a column matrix. We want both cases to
124 work. */
125 rxstride = rystride = retarray->dim[0].stride;
127 else
129 rxstride = retarray->dim[0].stride;
130 rystride = retarray->dim[1].stride;
134 if (GFC_DESCRIPTOR_RANK (a) == 1)
136 /* Treat it as a a row matrix A[1,count]. */
137 axstride = a->dim[0].stride;
138 aystride = 1;
140 xcount = 1;
141 count = a->dim[0].ubound + 1 - a->dim[0].lbound;
143 else
145 axstride = a->dim[0].stride;
146 aystride = a->dim[1].stride;
148 count = a->dim[1].ubound + 1 - a->dim[1].lbound;
149 xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
152 assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
154 if (GFC_DESCRIPTOR_RANK (b) == 1)
156 /* Treat it as a column matrix B[count,1] */
157 bxstride = b->dim[0].stride;
159 /* bystride should never be used for 1-dimensional b.
160 in case it is we want it to cause a segfault, rather than
161 an incorrect result. */
162 bystride = 0xDEADBEEF;
163 ycount = 1;
165 else
167 bxstride = b->dim[0].stride;
168 bystride = b->dim[1].stride;
169 ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
172 abase = a->data;
173 bbase = b->data;
174 dest = retarray->data;
176 if (rxstride == 1 && axstride == 1 && bxstride == 1)
178 const GFC_COMPLEX_10 * restrict bbase_y;
179 GFC_COMPLEX_10 * restrict dest_y;
180 const GFC_COMPLEX_10 * restrict abase_n;
181 GFC_COMPLEX_10 bbase_yn;
183 if (rystride == ycount)
184 memset (dest, 0, (sizeof (GFC_COMPLEX_10) * size0((array_t *) retarray)));
185 else
187 for (y = 0; y < ycount; y++)
188 for (x = 0; x < xcount; x++)
189 dest[x + y*rystride] = (GFC_COMPLEX_10)0;
192 for (y = 0; y < ycount; y++)
194 bbase_y = bbase + y*bystride;
195 dest_y = dest + y*rystride;
196 for (n = 0; n < count; n++)
198 abase_n = abase + n*aystride;
199 bbase_yn = bbase_y[n];
200 for (x = 0; x < xcount; x++)
202 dest_y[x] += abase_n[x] * bbase_yn;
207 else
209 for (y = 0; y < ycount; y++)
210 for (x = 0; x < xcount; x++)
211 dest[x*rxstride + y*rystride] = (GFC_COMPLEX_10)0;
213 for (y = 0; y < ycount; y++)
214 for (n = 0; n < count; n++)
215 for (x = 0; x < xcount; x++)
216 /* dest[x,y] += a[x,n] * b[n,y] */
217 dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
221 #endif