1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 #include "coretypes.h"
28 #include "insn-config.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
40 #include "tree-pass.h"
44 struct du_chain
*next_chain
;
45 struct du_chain
*next_use
;
49 ENUM_BITFIELD(reg_class
) cl
: 16;
50 unsigned int need_caller_save_reg
:1;
51 unsigned int earlyclobber
:1;
57 terminate_overlapping_read
,
62 /* mark_access is for marking the destination regs in
63 REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
64 note is updated properly. */
68 static const char * const scan_actions_name
[] =
71 "terminate_overlapping_read",
79 static struct obstack rename_obstack
;
81 static void do_replace (struct du_chain
*, int);
82 static void scan_rtx_reg (rtx
, rtx
*, enum reg_class
,
83 enum scan_actions
, enum op_type
, int);
84 static void scan_rtx_address (rtx
, rtx
*, enum reg_class
,
85 enum scan_actions
, enum machine_mode
);
86 static void scan_rtx (rtx
, rtx
*, enum reg_class
, enum scan_actions
,
88 static struct du_chain
*build_def_use (basic_block
);
89 static void dump_def_use_chain (struct du_chain
*);
90 static void note_sets (rtx
, rtx
, void *);
91 static void clear_dead_regs (HARD_REG_SET
*, enum machine_mode
, rtx
);
92 static void merge_overlapping_regs (basic_block
, HARD_REG_SET
*,
95 /* Called through note_stores from update_life. Find sets of registers, and
96 record them in *DATA (which is actually a HARD_REG_SET *). */
99 note_sets (rtx x
, rtx set ATTRIBUTE_UNUSED
, void *data
)
101 HARD_REG_SET
*pset
= (HARD_REG_SET
*) data
;
105 if (GET_CODE (x
) == SUBREG
)
110 nregs
= hard_regno_nregs
[regno
][GET_MODE (x
)];
112 /* There must not be pseudos at this point. */
113 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
116 SET_HARD_REG_BIT (*pset
, regno
+ nregs
);
119 /* Clear all registers from *PSET for which a note of kind KIND can be found
120 in the list NOTES. */
123 clear_dead_regs (HARD_REG_SET
*pset
, enum machine_mode kind
, rtx notes
)
126 for (note
= notes
; note
; note
= XEXP (note
, 1))
127 if (REG_NOTE_KIND (note
) == kind
&& REG_P (XEXP (note
, 0)))
129 rtx reg
= XEXP (note
, 0);
130 unsigned int regno
= REGNO (reg
);
131 int nregs
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
133 /* There must not be pseudos at this point. */
134 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
137 CLEAR_HARD_REG_BIT (*pset
, regno
+ nregs
);
141 /* For a def-use chain CHAIN in basic block B, find which registers overlap
142 its lifetime and set the corresponding bits in *PSET. */
145 merge_overlapping_regs (basic_block b
, HARD_REG_SET
*pset
,
146 struct du_chain
*chain
)
148 struct du_chain
*t
= chain
;
152 REG_SET_TO_HARD_REG_SET (live
, b
->il
.rtl
->global_live_at_start
);
156 /* Search forward until the next reference to the register to be
158 while (insn
!= t
->insn
)
162 clear_dead_regs (&live
, REG_DEAD
, REG_NOTES (insn
));
163 note_stores (PATTERN (insn
), note_sets
, (void *) &live
);
164 /* Only record currently live regs if we are inside the
167 IOR_HARD_REG_SET (*pset
, live
);
168 clear_dead_regs (&live
, REG_UNUSED
, REG_NOTES (insn
));
170 insn
= NEXT_INSN (insn
);
173 IOR_HARD_REG_SET (*pset
, live
);
175 /* For the last reference, also merge in all registers set in the
177 @@@ We only have take earlyclobbered sets into account. */
179 note_stores (PATTERN (insn
), note_sets
, (void *) pset
);
185 /* Perform register renaming on the current function. */
188 regrename_optimize (void)
190 int tick
[FIRST_PSEUDO_REGISTER
];
195 memset (tick
, 0, sizeof tick
);
197 gcc_obstack_init (&rename_obstack
);
198 first_obj
= obstack_alloc (&rename_obstack
, 0);
202 struct du_chain
*all_chains
= 0;
203 HARD_REG_SET unavailable
;
204 HARD_REG_SET regs_seen
;
206 CLEAR_HARD_REG_SET (unavailable
);
209 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
211 all_chains
= build_def_use (bb
);
214 dump_def_use_chain (all_chains
);
216 CLEAR_HARD_REG_SET (unavailable
);
217 /* Don't clobber traceback for noreturn functions. */
218 if (frame_pointer_needed
)
222 for (i
= hard_regno_nregs
[FRAME_POINTER_REGNUM
][Pmode
]; i
--;)
223 SET_HARD_REG_BIT (unavailable
, FRAME_POINTER_REGNUM
+ i
);
225 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
226 for (i
= hard_regno_nregs
[HARD_FRAME_POINTER_REGNUM
][Pmode
]; i
--;)
227 SET_HARD_REG_BIT (unavailable
, HARD_FRAME_POINTER_REGNUM
+ i
);
231 CLEAR_HARD_REG_SET (regs_seen
);
234 int new_reg
, best_new_reg
;
236 struct du_chain
*this = all_chains
;
237 struct du_chain
*tmp
, *last
;
238 HARD_REG_SET this_unavailable
;
239 int reg
= REGNO (*this->loc
);
242 all_chains
= this->next_chain
;
246 #if 0 /* This just disables optimization opportunities. */
247 /* Only rename once we've seen the reg more than once. */
248 if (! TEST_HARD_REG_BIT (regs_seen
, reg
))
250 SET_HARD_REG_BIT (regs_seen
, reg
);
255 if (fixed_regs
[reg
] || global_regs
[reg
]
256 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
257 || (frame_pointer_needed
&& reg
== HARD_FRAME_POINTER_REGNUM
)
259 || (frame_pointer_needed
&& reg
== FRAME_POINTER_REGNUM
)
264 COPY_HARD_REG_SET (this_unavailable
, unavailable
);
266 /* Find last entry on chain (which has the need_caller_save bit),
267 count number of uses, and narrow the set of registers we can
270 for (last
= this; last
->next_use
; last
= last
->next_use
)
273 IOR_COMPL_HARD_REG_SET (this_unavailable
,
274 reg_class_contents
[last
->cl
]);
279 IOR_COMPL_HARD_REG_SET (this_unavailable
,
280 reg_class_contents
[last
->cl
]);
282 if (this->need_caller_save_reg
)
283 IOR_HARD_REG_SET (this_unavailable
, call_used_reg_set
);
285 merge_overlapping_regs (bb
, &this_unavailable
, this);
287 /* Now potential_regs is a reasonable approximation, let's
288 have a closer look at each register still in there. */
289 for (new_reg
= 0; new_reg
< FIRST_PSEUDO_REGISTER
; new_reg
++)
291 int nregs
= hard_regno_nregs
[new_reg
][GET_MODE (*this->loc
)];
293 for (i
= nregs
- 1; i
>= 0; --i
)
294 if (TEST_HARD_REG_BIT (this_unavailable
, new_reg
+ i
)
295 || fixed_regs
[new_reg
+ i
]
296 || global_regs
[new_reg
+ i
]
297 /* Can't use regs which aren't saved by the prologue. */
298 || (! regs_ever_live
[new_reg
+ i
]
299 && ! call_used_regs
[new_reg
+ i
])
300 #ifdef LEAF_REGISTERS
301 /* We can't use a non-leaf register if we're in a
303 || (current_function_is_leaf
304 && !LEAF_REGISTERS
[new_reg
+ i
])
306 #ifdef HARD_REGNO_RENAME_OK
307 || ! HARD_REGNO_RENAME_OK (reg
+ i
, new_reg
+ i
)
314 /* See whether it accepts all modes that occur in
315 definition and uses. */
316 for (tmp
= this; tmp
; tmp
= tmp
->next_use
)
317 if (! HARD_REGNO_MODE_OK (new_reg
, GET_MODE (*tmp
->loc
))
318 || (tmp
->need_caller_save_reg
319 && ! (HARD_REGNO_CALL_PART_CLOBBERED
320 (reg
, GET_MODE (*tmp
->loc
)))
321 && (HARD_REGNO_CALL_PART_CLOBBERED
322 (new_reg
, GET_MODE (*tmp
->loc
)))))
326 if (tick
[best_new_reg
] > tick
[new_reg
])
327 best_new_reg
= new_reg
;
333 fprintf (dump_file
, "Register %s in insn %d",
334 reg_names
[reg
], INSN_UID (last
->insn
));
335 if (last
->need_caller_save_reg
)
336 fprintf (dump_file
, " crosses a call");
339 if (best_new_reg
== reg
)
341 tick
[reg
] = ++this_tick
;
343 fprintf (dump_file
, "; no available better choice\n");
347 do_replace (this, best_new_reg
);
348 tick
[best_new_reg
] = ++this_tick
;
349 regs_ever_live
[best_new_reg
] = 1;
352 fprintf (dump_file
, ", renamed as %s\n", reg_names
[best_new_reg
]);
355 obstack_free (&rename_obstack
, first_obj
);
358 obstack_free (&rename_obstack
, NULL
);
361 fputc ('\n', dump_file
);
363 count_or_remove_death_notes (NULL
, 1);
364 update_life_info (NULL
, UPDATE_LIFE_LOCAL
,
369 do_replace (struct du_chain
*chain
, int reg
)
373 unsigned int regno
= ORIGINAL_REGNO (*chain
->loc
);
374 struct reg_attrs
* attr
= REG_ATTRS (*chain
->loc
);
376 *chain
->loc
= gen_raw_REG (GET_MODE (*chain
->loc
), reg
);
377 if (regno
>= FIRST_PSEUDO_REGISTER
)
378 ORIGINAL_REGNO (*chain
->loc
) = regno
;
379 REG_ATTRS (*chain
->loc
) = attr
;
380 chain
= chain
->next_use
;
385 static struct du_chain
*open_chains
;
386 static struct du_chain
*closed_chains
;
389 scan_rtx_reg (rtx insn
, rtx
*loc
, enum reg_class cl
,
390 enum scan_actions action
, enum op_type type
, int earlyclobber
)
394 enum machine_mode mode
= GET_MODE (x
);
395 int this_regno
= REGNO (x
);
396 int this_nregs
= hard_regno_nregs
[this_regno
][mode
];
398 if (action
== mark_write
)
402 struct du_chain
*this
403 = obstack_alloc (&rename_obstack
, sizeof (struct du_chain
));
405 this->next_chain
= open_chains
;
409 this->need_caller_save_reg
= 0;
410 this->earlyclobber
= earlyclobber
;
416 if ((type
== OP_OUT
) != (action
== terminate_write
|| action
== mark_access
))
419 for (p
= &open_chains
; *p
;)
421 struct du_chain
*this = *p
;
423 /* Check if the chain has been terminated if it has then skip to
426 This can happen when we've already appended the location to
427 the chain in Step 3, but are trying to hide in-out operands
428 from terminate_write in Step 5. */
430 if (*this->loc
== cc0_rtx
)
431 p
= &this->next_chain
;
434 int regno
= REGNO (*this->loc
);
435 int nregs
= hard_regno_nregs
[regno
][GET_MODE (*this->loc
)];
436 int exact_match
= (regno
== this_regno
&& nregs
== this_nregs
);
438 if (regno
+ nregs
<= this_regno
439 || this_regno
+ this_nregs
<= regno
)
441 p
= &this->next_chain
;
445 if (action
== mark_read
|| action
== mark_access
)
447 gcc_assert (exact_match
);
449 /* ??? Class NO_REGS can happen if the md file makes use of
450 EXTRA_CONSTRAINTS to match registers. Which is arguably
451 wrong, but there we are. Since we know not what this may
452 be replaced with, terminate the chain. */
455 this = obstack_alloc (&rename_obstack
, sizeof (struct du_chain
));
457 this->next_chain
= (*p
)->next_chain
;
461 this->need_caller_save_reg
= 0;
469 if (action
!= terminate_overlapping_read
|| ! exact_match
)
471 struct du_chain
*next
= this->next_chain
;
473 /* Whether the terminated chain can be used for renaming
474 depends on the action and this being an exact match.
475 In either case, we remove this element from open_chains. */
477 if ((action
== terminate_dead
|| action
== terminate_write
)
480 this->next_chain
= closed_chains
;
481 closed_chains
= this;
484 "Closing chain %s at insn %d (%s)\n",
485 reg_names
[REGNO (*this->loc
)], INSN_UID (insn
),
486 scan_actions_name
[(int) action
]);
492 "Discarding chain %s at insn %d (%s)\n",
493 reg_names
[REGNO (*this->loc
)], INSN_UID (insn
),
494 scan_actions_name
[(int) action
]);
499 p
= &this->next_chain
;
504 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
505 BASE_REG_CLASS depending on how the register is being considered. */
508 scan_rtx_address (rtx insn
, rtx
*loc
, enum reg_class cl
,
509 enum scan_actions action
, enum machine_mode mode
)
512 RTX_CODE code
= GET_CODE (x
);
516 if (action
== mark_write
|| action
== mark_access
)
523 rtx orig_op0
= XEXP (x
, 0);
524 rtx orig_op1
= XEXP (x
, 1);
525 RTX_CODE code0
= GET_CODE (orig_op0
);
526 RTX_CODE code1
= GET_CODE (orig_op1
);
531 rtx
*locB_reg
= NULL
;
533 if (GET_CODE (op0
) == SUBREG
)
535 op0
= SUBREG_REG (op0
);
536 code0
= GET_CODE (op0
);
539 if (GET_CODE (op1
) == SUBREG
)
541 op1
= SUBREG_REG (op1
);
542 code1
= GET_CODE (op1
);
545 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
546 || code0
== ZERO_EXTEND
|| code1
== MEM
)
551 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
552 || code1
== ZERO_EXTEND
|| code0
== MEM
)
557 else if (code0
== CONST_INT
|| code0
== CONST
558 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
560 else if (code1
== CONST_INT
|| code1
== CONST
561 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
563 else if (code0
== REG
&& code1
== REG
)
567 if (REG_OK_FOR_INDEX_P (op0
)
568 && REG_MODE_OK_FOR_REG_BASE_P (op1
, mode
))
570 else if (REG_OK_FOR_INDEX_P (op1
)
571 && REG_MODE_OK_FOR_REG_BASE_P (op0
, mode
))
573 else if (REG_MODE_OK_FOR_REG_BASE_P (op1
, mode
))
575 else if (REG_MODE_OK_FOR_REG_BASE_P (op0
, mode
))
577 else if (REG_OK_FOR_INDEX_P (op1
))
582 locI
= &XEXP (x
, index_op
);
583 locB_reg
= &XEXP (x
, !index_op
);
585 else if (code0
== REG
)
590 else if (code1
== REG
)
597 scan_rtx_address (insn
, locI
, INDEX_REG_CLASS
, action
, mode
);
599 scan_rtx_address (insn
, locB
, MODE_BASE_REG_CLASS (mode
), action
, mode
);
601 scan_rtx_address (insn
, locB_reg
, MODE_BASE_REG_REG_CLASS (mode
),
613 /* If the target doesn't claim to handle autoinc, this must be
614 something special, like a stack push. Kill this chain. */
615 action
= terminate_all_read
;
620 scan_rtx_address (insn
, &XEXP (x
, 0),
621 MODE_BASE_REG_CLASS (GET_MODE (x
)), action
,
626 scan_rtx_reg (insn
, loc
, cl
, action
, OP_IN
, 0);
633 fmt
= GET_RTX_FORMAT (code
);
634 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
637 scan_rtx_address (insn
, &XEXP (x
, i
), cl
, action
, mode
);
638 else if (fmt
[i
] == 'E')
639 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
640 scan_rtx_address (insn
, &XVECEXP (x
, i
, j
), cl
, action
, mode
);
645 scan_rtx (rtx insn
, rtx
*loc
, enum reg_class cl
,
646 enum scan_actions action
, enum op_type type
, int earlyclobber
)
650 enum rtx_code code
= GET_CODE (x
);
667 scan_rtx_reg (insn
, loc
, cl
, action
, type
, earlyclobber
);
671 scan_rtx_address (insn
, &XEXP (x
, 0),
672 MODE_BASE_REG_CLASS (GET_MODE (x
)), action
,
677 scan_rtx (insn
, &SET_SRC (x
), cl
, action
, OP_IN
, 0);
678 scan_rtx (insn
, &SET_DEST (x
), cl
, action
,
679 GET_CODE (PATTERN (insn
)) == COND_EXEC
? OP_INOUT
: OP_OUT
, 0);
682 case STRICT_LOW_PART
:
683 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
, OP_INOUT
, earlyclobber
);
688 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
,
689 type
== OP_IN
? OP_IN
: OP_INOUT
, earlyclobber
);
690 scan_rtx (insn
, &XEXP (x
, 1), cl
, action
, OP_IN
, 0);
691 scan_rtx (insn
, &XEXP (x
, 2), cl
, action
, OP_IN
, 0);
700 /* Should only happen inside MEM. */
704 scan_rtx (insn
, &SET_DEST (x
), cl
, action
,
705 GET_CODE (PATTERN (insn
)) == COND_EXEC
? OP_INOUT
: OP_OUT
, 0);
709 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
, type
, 0);
711 scan_rtx (insn
, &XEXP (x
, 1), cl
, action
, type
, 0);
718 fmt
= GET_RTX_FORMAT (code
);
719 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
722 scan_rtx (insn
, &XEXP (x
, i
), cl
, action
, type
, 0);
723 else if (fmt
[i
] == 'E')
724 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
725 scan_rtx (insn
, &XVECEXP (x
, i
, j
), cl
, action
, type
, 0);
729 /* Build def/use chain. */
731 static struct du_chain
*
732 build_def_use (basic_block bb
)
736 open_chains
= closed_chains
= NULL
;
738 for (insn
= BB_HEAD (bb
); ; insn
= NEXT_INSN (insn
))
744 rtx old_operands
[MAX_RECOG_OPERANDS
];
745 rtx old_dups
[MAX_DUP_OPERANDS
];
750 /* Process the insn, determining its effect on the def-use
751 chains. We perform the following steps with the register
752 references in the insn:
753 (1) Any read that overlaps an open chain, but doesn't exactly
754 match, causes that chain to be closed. We can't deal
756 (2) Any read outside an operand causes any chain it overlaps
757 with to be closed, since we can't replace it.
758 (3) Any read inside an operand is added if there's already
759 an open chain for it.
760 (4) For any REG_DEAD note we find, close open chains that
762 (5) For any write we find, close open chains that overlap it.
763 (6) For any write we find in an operand, make a new chain.
764 (7) For any REG_UNUSED, close any chains we just opened. */
766 icode
= recog_memoized (insn
);
768 if (! constrain_operands (1))
769 fatal_insn_not_found (insn
);
770 preprocess_constraints ();
771 alt
= which_alternative
;
772 n_ops
= recog_data
.n_operands
;
774 /* Simplify the code below by rewriting things to reflect
775 matching constraints. Also promote OP_OUT to OP_INOUT
776 in predicated instructions. */
778 predicated
= GET_CODE (PATTERN (insn
)) == COND_EXEC
;
779 for (i
= 0; i
< n_ops
; ++i
)
781 int matches
= recog_op_alt
[i
][alt
].matches
;
783 recog_op_alt
[i
][alt
].cl
= recog_op_alt
[matches
][alt
].cl
;
784 if (matches
>= 0 || recog_op_alt
[i
][alt
].matched
>= 0
785 || (predicated
&& recog_data
.operand_type
[i
] == OP_OUT
))
786 recog_data
.operand_type
[i
] = OP_INOUT
;
789 /* Step 1: Close chains for which we have overlapping reads. */
790 for (i
= 0; i
< n_ops
; i
++)
791 scan_rtx (insn
, recog_data
.operand_loc
[i
],
792 NO_REGS
, terminate_overlapping_read
,
793 recog_data
.operand_type
[i
], 0);
795 /* Step 2: Close chains for which we have reads outside operands.
796 We do this by munging all operands into CC0, and closing
797 everything remaining. */
799 for (i
= 0; i
< n_ops
; i
++)
801 old_operands
[i
] = recog_data
.operand
[i
];
802 /* Don't squash match_operator or match_parallel here, since
803 we don't know that all of the contained registers are
804 reachable by proper operands. */
805 if (recog_data
.constraints
[i
][0] == '\0')
807 *recog_data
.operand_loc
[i
] = cc0_rtx
;
809 for (i
= 0; i
< recog_data
.n_dups
; i
++)
811 int dup_num
= recog_data
.dup_num
[i
];
813 old_dups
[i
] = *recog_data
.dup_loc
[i
];
814 *recog_data
.dup_loc
[i
] = cc0_rtx
;
816 /* For match_dup of match_operator or match_parallel, share
817 them, so that we don't miss changes in the dup. */
819 && insn_data
[icode
].operand
[dup_num
].eliminable
== 0)
820 old_dups
[i
] = recog_data
.operand
[dup_num
];
823 scan_rtx (insn
, &PATTERN (insn
), NO_REGS
, terminate_all_read
,
826 for (i
= 0; i
< recog_data
.n_dups
; i
++)
827 *recog_data
.dup_loc
[i
] = old_dups
[i
];
828 for (i
= 0; i
< n_ops
; i
++)
829 *recog_data
.operand_loc
[i
] = old_operands
[i
];
831 /* Step 2B: Can't rename function call argument registers. */
832 if (CALL_P (insn
) && CALL_INSN_FUNCTION_USAGE (insn
))
833 scan_rtx (insn
, &CALL_INSN_FUNCTION_USAGE (insn
),
834 NO_REGS
, terminate_all_read
, OP_IN
, 0);
836 /* Step 2C: Can't rename asm operands that were originally
838 if (asm_noperands (PATTERN (insn
)) > 0)
839 for (i
= 0; i
< n_ops
; i
++)
841 rtx
*loc
= recog_data
.operand_loc
[i
];
845 && REGNO (op
) == ORIGINAL_REGNO (op
)
846 && (recog_data
.operand_type
[i
] == OP_IN
847 || recog_data
.operand_type
[i
] == OP_INOUT
))
848 scan_rtx (insn
, loc
, NO_REGS
, terminate_all_read
, OP_IN
, 0);
851 /* Step 3: Append to chains for reads inside operands. */
852 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
854 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
855 rtx
*loc
= (i
< n_ops
856 ? recog_data
.operand_loc
[opn
]
857 : recog_data
.dup_loc
[i
- n_ops
]);
858 enum reg_class cl
= recog_op_alt
[opn
][alt
].cl
;
859 enum op_type type
= recog_data
.operand_type
[opn
];
861 /* Don't scan match_operand here, since we've no reg class
862 information to pass down. Any operands that we could
863 substitute in will be represented elsewhere. */
864 if (recog_data
.constraints
[opn
][0] == '\0')
867 if (recog_op_alt
[opn
][alt
].is_address
)
868 scan_rtx_address (insn
, loc
, cl
, mark_read
, VOIDmode
);
870 scan_rtx (insn
, loc
, cl
, mark_read
, type
, 0);
873 /* Step 3B: Record updates for regs in REG_INC notes, and
874 source regs in REG_FRAME_RELATED_EXPR notes. */
875 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
876 if (REG_NOTE_KIND (note
) == REG_INC
877 || REG_NOTE_KIND (note
) == REG_FRAME_RELATED_EXPR
)
878 scan_rtx (insn
, &XEXP (note
, 0), ALL_REGS
, mark_read
,
881 /* Step 4: Close chains for registers that die here. */
882 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
883 if (REG_NOTE_KIND (note
) == REG_DEAD
)
884 scan_rtx (insn
, &XEXP (note
, 0), NO_REGS
, terminate_dead
,
887 /* Step 4B: If this is a call, any chain live at this point
888 requires a caller-saved reg. */
892 for (p
= open_chains
; p
; p
= p
->next_chain
)
893 p
->need_caller_save_reg
= 1;
896 /* Step 5: Close open chains that overlap writes. Similar to
897 step 2, we hide in-out operands, since we do not want to
898 close these chains. */
900 for (i
= 0; i
< n_ops
; i
++)
902 old_operands
[i
] = recog_data
.operand
[i
];
903 if (recog_data
.operand_type
[i
] == OP_INOUT
)
904 *recog_data
.operand_loc
[i
] = cc0_rtx
;
906 for (i
= 0; i
< recog_data
.n_dups
; i
++)
908 int opn
= recog_data
.dup_num
[i
];
909 old_dups
[i
] = *recog_data
.dup_loc
[i
];
910 if (recog_data
.operand_type
[opn
] == OP_INOUT
)
911 *recog_data
.dup_loc
[i
] = cc0_rtx
;
914 scan_rtx (insn
, &PATTERN (insn
), NO_REGS
, terminate_write
, OP_IN
, 0);
916 for (i
= 0; i
< recog_data
.n_dups
; i
++)
917 *recog_data
.dup_loc
[i
] = old_dups
[i
];
918 for (i
= 0; i
< n_ops
; i
++)
919 *recog_data
.operand_loc
[i
] = old_operands
[i
];
921 /* Step 6: Begin new chains for writes inside operands. */
922 /* ??? Many targets have output constraints on the SET_DEST
923 of a call insn, which is stupid, since these are certainly
924 ABI defined hard registers. Don't change calls at all.
925 Similarly take special care for asm statement that originally
926 referenced hard registers. */
927 if (asm_noperands (PATTERN (insn
)) > 0)
929 for (i
= 0; i
< n_ops
; i
++)
930 if (recog_data
.operand_type
[i
] == OP_OUT
)
932 rtx
*loc
= recog_data
.operand_loc
[i
];
934 enum reg_class cl
= recog_op_alt
[i
][alt
].cl
;
937 && REGNO (op
) == ORIGINAL_REGNO (op
))
940 scan_rtx (insn
, loc
, cl
, mark_write
, OP_OUT
,
941 recog_op_alt
[i
][alt
].earlyclobber
);
944 else if (!CALL_P (insn
))
945 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
947 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
948 rtx
*loc
= (i
< n_ops
949 ? recog_data
.operand_loc
[opn
]
950 : recog_data
.dup_loc
[i
- n_ops
]);
951 enum reg_class cl
= recog_op_alt
[opn
][alt
].cl
;
953 if (recog_data
.operand_type
[opn
] == OP_OUT
)
954 scan_rtx (insn
, loc
, cl
, mark_write
, OP_OUT
,
955 recog_op_alt
[opn
][alt
].earlyclobber
);
958 /* Step 6B: Record destination regs in REG_FRAME_RELATED_EXPR
960 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
961 if (REG_NOTE_KIND (note
) == REG_FRAME_RELATED_EXPR
)
962 scan_rtx (insn
, &XEXP (note
, 0), ALL_REGS
, mark_access
,
965 /* Step 7: Close chains for registers that were never
967 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
968 if (REG_NOTE_KIND (note
) == REG_UNUSED
)
969 scan_rtx (insn
, &XEXP (note
, 0), NO_REGS
, terminate_dead
,
972 if (insn
== BB_END (bb
))
976 /* Since we close every chain when we find a REG_DEAD note, anything that
977 is still open lives past the basic block, so it can't be renamed. */
978 return closed_chains
;
981 /* Dump all def/use chains in CHAINS to DUMP_FILE. They are
982 printed in reverse order as that's how we build them. */
985 dump_def_use_chain (struct du_chain
*chains
)
989 struct du_chain
*this = chains
;
990 int r
= REGNO (*this->loc
);
991 int nregs
= hard_regno_nregs
[r
][GET_MODE (*this->loc
)];
992 fprintf (dump_file
, "Register %s (%d):", reg_names
[r
], nregs
);
995 fprintf (dump_file
, " %d [%s]", INSN_UID (this->insn
),
996 reg_class_names
[this->cl
]);
997 this = this->next_use
;
999 fprintf (dump_file
, "\n");
1000 chains
= chains
->next_chain
;
1004 /* The following code does forward propagation of hard register copies.
1005 The object is to eliminate as many dependencies as possible, so that
1006 we have the most scheduling freedom. As a side effect, we also clean
1007 up some silly register allocation decisions made by reload. This
1008 code may be obsoleted by a new register allocator. */
1010 /* For each register, we have a list of registers that contain the same
1011 value. The OLDEST_REGNO field points to the head of the list, and
1012 the NEXT_REGNO field runs through the list. The MODE field indicates
1013 what mode the data is known to be in; this field is VOIDmode when the
1014 register is not known to contain valid data. */
1016 struct value_data_entry
1018 enum machine_mode mode
;
1019 unsigned int oldest_regno
;
1020 unsigned int next_regno
;
1025 struct value_data_entry e
[FIRST_PSEUDO_REGISTER
];
1026 unsigned int max_value_regs
;
1029 static void kill_value_one_regno (unsigned, struct value_data
*);
1030 static void kill_value_regno (unsigned, unsigned, struct value_data
*);
1031 static void kill_value (rtx
, struct value_data
*);
1032 static void set_value_regno (unsigned, enum machine_mode
, struct value_data
*);
1033 static void init_value_data (struct value_data
*);
1034 static void kill_clobbered_value (rtx
, rtx
, void *);
1035 static void kill_set_value (rtx
, rtx
, void *);
1036 static int kill_autoinc_value (rtx
*, void *);
1037 static void copy_value (rtx
, rtx
, struct value_data
*);
1038 static bool mode_change_ok (enum machine_mode
, enum machine_mode
,
1040 static rtx
maybe_mode_change (enum machine_mode
, enum machine_mode
,
1041 enum machine_mode
, unsigned int, unsigned int);
1042 static rtx
find_oldest_value_reg (enum reg_class
, rtx
, struct value_data
*);
1043 static bool replace_oldest_value_reg (rtx
*, enum reg_class
, rtx
,
1044 struct value_data
*);
1045 static bool replace_oldest_value_addr (rtx
*, enum reg_class
,
1046 enum machine_mode
, rtx
,
1047 struct value_data
*);
1048 static bool replace_oldest_value_mem (rtx
, rtx
, struct value_data
*);
1049 static bool copyprop_hardreg_forward_1 (basic_block
, struct value_data
*);
1050 extern void debug_value_data (struct value_data
*);
1051 #ifdef ENABLE_CHECKING
1052 static void validate_value_data (struct value_data
*);
1055 /* Kill register REGNO. This involves removing it from any value
1056 lists, and resetting the value mode to VOIDmode. This is only a
1057 helper function; it does not handle any hard registers overlapping
1061 kill_value_one_regno (unsigned int regno
, struct value_data
*vd
)
1063 unsigned int i
, next
;
1065 if (vd
->e
[regno
].oldest_regno
!= regno
)
1067 for (i
= vd
->e
[regno
].oldest_regno
;
1068 vd
->e
[i
].next_regno
!= regno
;
1069 i
= vd
->e
[i
].next_regno
)
1071 vd
->e
[i
].next_regno
= vd
->e
[regno
].next_regno
;
1073 else if ((next
= vd
->e
[regno
].next_regno
) != INVALID_REGNUM
)
1075 for (i
= next
; i
!= INVALID_REGNUM
; i
= vd
->e
[i
].next_regno
)
1076 vd
->e
[i
].oldest_regno
= next
;
1079 vd
->e
[regno
].mode
= VOIDmode
;
1080 vd
->e
[regno
].oldest_regno
= regno
;
1081 vd
->e
[regno
].next_regno
= INVALID_REGNUM
;
1083 #ifdef ENABLE_CHECKING
1084 validate_value_data (vd
);
1088 /* Kill the value in register REGNO for NREGS, and any other registers
1089 whose values overlap. */
1092 kill_value_regno (unsigned int regno
, unsigned int nregs
,
1093 struct value_data
*vd
)
1097 /* Kill the value we're told to kill. */
1098 for (j
= 0; j
< nregs
; ++j
)
1099 kill_value_one_regno (regno
+ j
, vd
);
1101 /* Kill everything that overlapped what we're told to kill. */
1102 if (regno
< vd
->max_value_regs
)
1105 j
= regno
- vd
->max_value_regs
;
1106 for (; j
< regno
; ++j
)
1109 if (vd
->e
[j
].mode
== VOIDmode
)
1111 n
= hard_regno_nregs
[j
][vd
->e
[j
].mode
];
1113 for (i
= 0; i
< n
; ++i
)
1114 kill_value_one_regno (j
+ i
, vd
);
1118 /* Kill X. This is a convenience function wrapping kill_value_regno
1119 so that we mind the mode the register is in. */
1122 kill_value (rtx x
, struct value_data
*vd
)
1126 if (GET_CODE (x
) == SUBREG
)
1128 x
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
),
1129 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
1131 x
= SUBREG_REG (orig_rtx
);
1135 unsigned int regno
= REGNO (x
);
1136 unsigned int n
= hard_regno_nregs
[regno
][GET_MODE (x
)];
1138 kill_value_regno (regno
, n
, vd
);
1142 /* Remember that REGNO is valid in MODE. */
1145 set_value_regno (unsigned int regno
, enum machine_mode mode
,
1146 struct value_data
*vd
)
1150 vd
->e
[regno
].mode
= mode
;
1152 nregs
= hard_regno_nregs
[regno
][mode
];
1153 if (nregs
> vd
->max_value_regs
)
1154 vd
->max_value_regs
= nregs
;
1157 /* Initialize VD such that there are no known relationships between regs. */
1160 init_value_data (struct value_data
*vd
)
1163 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1165 vd
->e
[i
].mode
= VOIDmode
;
1166 vd
->e
[i
].oldest_regno
= i
;
1167 vd
->e
[i
].next_regno
= INVALID_REGNUM
;
1169 vd
->max_value_regs
= 0;
1172 /* Called through note_stores. If X is clobbered, kill its value. */
1175 kill_clobbered_value (rtx x
, rtx set
, void *data
)
1177 struct value_data
*vd
= data
;
1178 if (GET_CODE (set
) == CLOBBER
)
1182 /* Called through note_stores. If X is set, not clobbered, kill its
1183 current value and install it as the root of its own value list. */
1186 kill_set_value (rtx x
, rtx set
, void *data
)
1188 struct value_data
*vd
= data
;
1189 if (GET_CODE (set
) != CLOBBER
)
1193 set_value_regno (REGNO (x
), GET_MODE (x
), vd
);
1197 /* Called through for_each_rtx. Kill any register used as the base of an
1198 auto-increment expression, and install that register as the root of its
1202 kill_autoinc_value (rtx
*px
, void *data
)
1205 struct value_data
*vd
= data
;
1207 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
)
1211 set_value_regno (REGNO (x
), Pmode
, vd
);
1218 /* Assert that SRC has been copied to DEST. Adjust the data structures
1219 to reflect that SRC contains an older copy of the shared value. */
1222 copy_value (rtx dest
, rtx src
, struct value_data
*vd
)
1224 unsigned int dr
= REGNO (dest
);
1225 unsigned int sr
= REGNO (src
);
1226 unsigned int dn
, sn
;
1229 /* ??? At present, it's possible to see noop sets. It'd be nice if
1230 this were cleaned up beforehand... */
1234 /* Do not propagate copies to the stack pointer, as that can leave
1235 memory accesses with no scheduling dependency on the stack update. */
1236 if (dr
== STACK_POINTER_REGNUM
)
1239 /* Likewise with the frame pointer, if we're using one. */
1240 if (frame_pointer_needed
&& dr
== HARD_FRAME_POINTER_REGNUM
)
1243 /* Do not propagate copies to fixed or global registers, patterns
1244 can be relying to see particular fixed register or users can
1245 expect the chosen global register in asm. */
1246 if (fixed_regs
[dr
] || global_regs
[dr
])
1249 /* If SRC and DEST overlap, don't record anything. */
1250 dn
= hard_regno_nregs
[dr
][GET_MODE (dest
)];
1251 sn
= hard_regno_nregs
[sr
][GET_MODE (dest
)];
1252 if ((dr
> sr
&& dr
< sr
+ sn
)
1253 || (sr
> dr
&& sr
< dr
+ dn
))
1256 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1257 assign it now and assume the value came from an input argument
1259 if (vd
->e
[sr
].mode
== VOIDmode
)
1260 set_value_regno (sr
, vd
->e
[dr
].mode
, vd
);
1262 /* If we are narrowing the input to a smaller number of hard regs,
1263 and it is in big endian, we are really extracting a high part.
1264 Since we generally associate a low part of a value with the value itself,
1265 we must not do the same for the high part.
1266 Note we can still get low parts for the same mode combination through
1267 a two-step copy involving differently sized hard regs.
1268 Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
1269 (set (reg:DI r0) (reg:DI fr0))
1270 (set (reg:SI fr2) (reg:SI r0))
1271 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
1272 (set (reg:SI fr2) (reg:SI fr0))
1273 loads the high part of (reg:DI fr0) into fr2.
1275 We can't properly represent the latter case in our tables, so don't
1276 record anything then. */
1277 else if (sn
< (unsigned int) hard_regno_nregs
[sr
][vd
->e
[sr
].mode
]
1278 && (GET_MODE_SIZE (vd
->e
[sr
].mode
) > UNITS_PER_WORD
1279 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
))
1282 /* If SRC had been assigned a mode narrower than the copy, we can't
1283 link DEST into the chain, because not all of the pieces of the
1284 copy came from oldest_regno. */
1285 else if (sn
> (unsigned int) hard_regno_nregs
[sr
][vd
->e
[sr
].mode
])
1288 /* Link DR at the end of the value chain used by SR. */
1290 vd
->e
[dr
].oldest_regno
= vd
->e
[sr
].oldest_regno
;
1292 for (i
= sr
; vd
->e
[i
].next_regno
!= INVALID_REGNUM
; i
= vd
->e
[i
].next_regno
)
1294 vd
->e
[i
].next_regno
= dr
;
1296 #ifdef ENABLE_CHECKING
1297 validate_value_data (vd
);
1301 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1304 mode_change_ok (enum machine_mode orig_mode
, enum machine_mode new_mode
,
1305 unsigned int regno ATTRIBUTE_UNUSED
)
1307 if (GET_MODE_SIZE (orig_mode
) < GET_MODE_SIZE (new_mode
))
1310 #ifdef CANNOT_CHANGE_MODE_CLASS
1311 return !REG_CANNOT_CHANGE_MODE_P (regno
, orig_mode
, new_mode
);
1317 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
1318 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
1320 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
1323 maybe_mode_change (enum machine_mode orig_mode
, enum machine_mode copy_mode
,
1324 enum machine_mode new_mode
, unsigned int regno
,
1325 unsigned int copy_regno ATTRIBUTE_UNUSED
)
1327 if (orig_mode
== new_mode
)
1328 return gen_rtx_raw_REG (new_mode
, regno
);
1329 else if (mode_change_ok (orig_mode
, new_mode
, regno
))
1331 int copy_nregs
= hard_regno_nregs
[copy_regno
][copy_mode
];
1332 int use_nregs
= hard_regno_nregs
[copy_regno
][new_mode
];
1334 = GET_MODE_SIZE (copy_mode
) / copy_nregs
* (copy_nregs
- use_nregs
);
1336 = GET_MODE_SIZE (orig_mode
) - GET_MODE_SIZE (new_mode
) - copy_offset
;
1337 int byteoffset
= offset
% UNITS_PER_WORD
;
1338 int wordoffset
= offset
- byteoffset
;
1340 offset
= ((WORDS_BIG_ENDIAN
? wordoffset
: 0)
1341 + (BYTES_BIG_ENDIAN
? byteoffset
: 0));
1342 return gen_rtx_raw_REG (new_mode
,
1343 regno
+ subreg_regno_offset (regno
, orig_mode
,
1350 /* Find the oldest copy of the value contained in REGNO that is in
1351 register class CL and has mode MODE. If found, return an rtx
1352 of that oldest register, otherwise return NULL. */
1355 find_oldest_value_reg (enum reg_class cl
, rtx reg
, struct value_data
*vd
)
1357 unsigned int regno
= REGNO (reg
);
1358 enum machine_mode mode
= GET_MODE (reg
);
1361 /* If we are accessing REG in some mode other that what we set it in,
1362 make sure that the replacement is valid. In particular, consider
1363 (set (reg:DI r11) (...))
1364 (set (reg:SI r9) (reg:SI r11))
1365 (set (reg:SI r10) (...))
1366 (set (...) (reg:DI r9))
1367 Replacing r9 with r11 is invalid. */
1368 if (mode
!= vd
->e
[regno
].mode
)
1370 if (hard_regno_nregs
[regno
][mode
]
1371 > hard_regno_nregs
[regno
][vd
->e
[regno
].mode
])
1375 for (i
= vd
->e
[regno
].oldest_regno
; i
!= regno
; i
= vd
->e
[i
].next_regno
)
1377 enum machine_mode oldmode
= vd
->e
[i
].mode
;
1381 for (last
= i
; last
< i
+ hard_regno_nregs
[i
][mode
]; last
++)
1382 if (!TEST_HARD_REG_BIT (reg_class_contents
[cl
], last
))
1385 new = maybe_mode_change (oldmode
, vd
->e
[regno
].mode
, mode
, i
, regno
);
1388 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg
);
1389 REG_ATTRS (new) = REG_ATTRS (reg
);
1397 /* If possible, replace the register at *LOC with the oldest register
1398 in register class CL. Return true if successfully replaced. */
1401 replace_oldest_value_reg (rtx
*loc
, enum reg_class cl
, rtx insn
,
1402 struct value_data
*vd
)
1404 rtx
new = find_oldest_value_reg (cl
, *loc
, vd
);
1408 fprintf (dump_file
, "insn %u: replaced reg %u with %u\n",
1409 INSN_UID (insn
), REGNO (*loc
), REGNO (new));
1417 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1418 Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1419 BASE_REG_CLASS depending on how the register is being considered. */
1422 replace_oldest_value_addr (rtx
*loc
, enum reg_class cl
,
1423 enum machine_mode mode
, rtx insn
,
1424 struct value_data
*vd
)
1427 RTX_CODE code
= GET_CODE (x
);
1430 bool changed
= false;
1436 rtx orig_op0
= XEXP (x
, 0);
1437 rtx orig_op1
= XEXP (x
, 1);
1438 RTX_CODE code0
= GET_CODE (orig_op0
);
1439 RTX_CODE code1
= GET_CODE (orig_op1
);
1444 rtx
*locB_reg
= NULL
;
1446 if (GET_CODE (op0
) == SUBREG
)
1448 op0
= SUBREG_REG (op0
);
1449 code0
= GET_CODE (op0
);
1452 if (GET_CODE (op1
) == SUBREG
)
1454 op1
= SUBREG_REG (op1
);
1455 code1
= GET_CODE (op1
);
1458 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
1459 || code0
== ZERO_EXTEND
|| code1
== MEM
)
1461 locI
= &XEXP (x
, 0);
1462 locB
= &XEXP (x
, 1);
1464 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
1465 || code1
== ZERO_EXTEND
|| code0
== MEM
)
1467 locI
= &XEXP (x
, 1);
1468 locB
= &XEXP (x
, 0);
1470 else if (code0
== CONST_INT
|| code0
== CONST
1471 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
1472 locB
= &XEXP (x
, 1);
1473 else if (code1
== CONST_INT
|| code1
== CONST
1474 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
1475 locB
= &XEXP (x
, 0);
1476 else if (code0
== REG
&& code1
== REG
)
1480 if (REG_OK_FOR_INDEX_P (op0
)
1481 && REG_MODE_OK_FOR_REG_BASE_P (op1
, mode
))
1483 else if (REG_OK_FOR_INDEX_P (op1
)
1484 && REG_MODE_OK_FOR_REG_BASE_P (op0
, mode
))
1486 else if (REG_MODE_OK_FOR_REG_BASE_P (op1
, mode
))
1488 else if (REG_MODE_OK_FOR_REG_BASE_P (op0
, mode
))
1490 else if (REG_OK_FOR_INDEX_P (op1
))
1495 locI
= &XEXP (x
, index_op
);
1496 locB_reg
= &XEXP (x
, !index_op
);
1498 else if (code0
== REG
)
1500 locI
= &XEXP (x
, 0);
1501 locB
= &XEXP (x
, 1);
1503 else if (code1
== REG
)
1505 locI
= &XEXP (x
, 1);
1506 locB
= &XEXP (x
, 0);
1510 changed
|= replace_oldest_value_addr (locI
, INDEX_REG_CLASS
, mode
,
1513 changed
|= replace_oldest_value_addr (locB
,
1514 MODE_BASE_REG_CLASS (mode
),
1517 changed
|= replace_oldest_value_addr (locB_reg
,
1518 MODE_BASE_REG_REG_CLASS (mode
),
1532 return replace_oldest_value_mem (x
, insn
, vd
);
1535 return replace_oldest_value_reg (loc
, cl
, insn
, vd
);
1541 fmt
= GET_RTX_FORMAT (code
);
1542 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1545 changed
|= replace_oldest_value_addr (&XEXP (x
, i
), cl
, mode
,
1547 else if (fmt
[i
] == 'E')
1548 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1549 changed
|= replace_oldest_value_addr (&XVECEXP (x
, i
, j
), cl
,
1556 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1559 replace_oldest_value_mem (rtx x
, rtx insn
, struct value_data
*vd
)
1561 return replace_oldest_value_addr (&XEXP (x
, 0),
1562 MODE_BASE_REG_CLASS (GET_MODE (x
)),
1563 GET_MODE (x
), insn
, vd
);
1566 /* Perform the forward copy propagation on basic block BB. */
1569 copyprop_hardreg_forward_1 (basic_block bb
, struct value_data
*vd
)
1571 bool changed
= false;
1574 for (insn
= BB_HEAD (bb
); ; insn
= NEXT_INSN (insn
))
1576 int n_ops
, i
, alt
, predicated
;
1580 if (! INSN_P (insn
))
1582 if (insn
== BB_END (bb
))
1588 set
= single_set (insn
);
1589 extract_insn (insn
);
1590 if (! constrain_operands (1))
1591 fatal_insn_not_found (insn
);
1592 preprocess_constraints ();
1593 alt
= which_alternative
;
1594 n_ops
= recog_data
.n_operands
;
1595 is_asm
= asm_noperands (PATTERN (insn
)) >= 0;
1597 /* Simplify the code below by rewriting things to reflect
1598 matching constraints. Also promote OP_OUT to OP_INOUT
1599 in predicated instructions. */
1601 predicated
= GET_CODE (PATTERN (insn
)) == COND_EXEC
;
1602 for (i
= 0; i
< n_ops
; ++i
)
1604 int matches
= recog_op_alt
[i
][alt
].matches
;
1606 recog_op_alt
[i
][alt
].cl
= recog_op_alt
[matches
][alt
].cl
;
1607 if (matches
>= 0 || recog_op_alt
[i
][alt
].matched
>= 0
1608 || (predicated
&& recog_data
.operand_type
[i
] == OP_OUT
))
1609 recog_data
.operand_type
[i
] = OP_INOUT
;
1612 /* For each earlyclobber operand, zap the value data. */
1613 for (i
= 0; i
< n_ops
; i
++)
1614 if (recog_op_alt
[i
][alt
].earlyclobber
)
1615 kill_value (recog_data
.operand
[i
], vd
);
1617 /* Within asms, a clobber cannot overlap inputs or outputs.
1618 I wouldn't think this were true for regular insns, but
1619 scan_rtx treats them like that... */
1620 note_stores (PATTERN (insn
), kill_clobbered_value
, vd
);
1622 /* Kill all auto-incremented values. */
1623 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1624 for_each_rtx (&PATTERN (insn
), kill_autoinc_value
, vd
);
1626 /* Kill all early-clobbered operands. */
1627 for (i
= 0; i
< n_ops
; i
++)
1628 if (recog_op_alt
[i
][alt
].earlyclobber
)
1629 kill_value (recog_data
.operand
[i
], vd
);
1631 /* Special-case plain move instructions, since we may well
1632 be able to do the move from a different register class. */
1633 if (set
&& REG_P (SET_SRC (set
)))
1635 rtx src
= SET_SRC (set
);
1636 unsigned int regno
= REGNO (src
);
1637 enum machine_mode mode
= GET_MODE (src
);
1641 /* If we are accessing SRC in some mode other that what we
1642 set it in, make sure that the replacement is valid. */
1643 if (mode
!= vd
->e
[regno
].mode
)
1645 if (hard_regno_nregs
[regno
][mode
]
1646 > hard_regno_nregs
[regno
][vd
->e
[regno
].mode
])
1647 goto no_move_special_case
;
1650 /* If the destination is also a register, try to find a source
1651 register in the same class. */
1652 if (REG_P (SET_DEST (set
)))
1654 new = find_oldest_value_reg (REGNO_REG_CLASS (regno
), src
, vd
);
1655 if (new && validate_change (insn
, &SET_SRC (set
), new, 0))
1659 "insn %u: replaced reg %u with %u\n",
1660 INSN_UID (insn
), regno
, REGNO (new));
1662 goto did_replacement
;
1666 /* Otherwise, try all valid registers and see if its valid. */
1667 for (i
= vd
->e
[regno
].oldest_regno
; i
!= regno
;
1668 i
= vd
->e
[i
].next_regno
)
1670 new = maybe_mode_change (vd
->e
[i
].mode
, vd
->e
[regno
].mode
,
1672 if (new != NULL_RTX
)
1674 if (validate_change (insn
, &SET_SRC (set
), new, 0))
1676 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src
);
1677 REG_ATTRS (new) = REG_ATTRS (src
);
1680 "insn %u: replaced reg %u with %u\n",
1681 INSN_UID (insn
), regno
, REGNO (new));
1683 goto did_replacement
;
1688 no_move_special_case
:
1690 /* For each input operand, replace a hard register with the
1691 eldest live copy that's in an appropriate register class. */
1692 for (i
= 0; i
< n_ops
; i
++)
1694 bool replaced
= false;
1696 /* Don't scan match_operand here, since we've no reg class
1697 information to pass down. Any operands that we could
1698 substitute in will be represented elsewhere. */
1699 if (recog_data
.constraints
[i
][0] == '\0')
1702 /* Don't replace in asms intentionally referencing hard regs. */
1703 if (is_asm
&& REG_P (recog_data
.operand
[i
])
1704 && (REGNO (recog_data
.operand
[i
])
1705 == ORIGINAL_REGNO (recog_data
.operand
[i
])))
1708 if (recog_data
.operand_type
[i
] == OP_IN
)
1710 if (recog_op_alt
[i
][alt
].is_address
)
1712 = replace_oldest_value_addr (recog_data
.operand_loc
[i
],
1713 recog_op_alt
[i
][alt
].cl
,
1714 VOIDmode
, insn
, vd
);
1715 else if (REG_P (recog_data
.operand
[i
]))
1717 = replace_oldest_value_reg (recog_data
.operand_loc
[i
],
1718 recog_op_alt
[i
][alt
].cl
,
1720 else if (MEM_P (recog_data
.operand
[i
]))
1721 replaced
= replace_oldest_value_mem (recog_data
.operand
[i
],
1724 else if (MEM_P (recog_data
.operand
[i
]))
1725 replaced
= replace_oldest_value_mem (recog_data
.operand
[i
],
1728 /* If we performed any replacement, update match_dups. */
1736 new = *recog_data
.operand_loc
[i
];
1737 recog_data
.operand
[i
] = new;
1738 for (j
= 0; j
< recog_data
.n_dups
; j
++)
1739 if (recog_data
.dup_num
[j
] == i
)
1740 *recog_data
.dup_loc
[j
] = new;
1745 /* Clobber call-clobbered registers. */
1747 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1748 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1749 kill_value_regno (i
, 1, vd
);
1751 /* Notice stores. */
1752 note_stores (PATTERN (insn
), kill_set_value
, vd
);
1754 /* Notice copies. */
1755 if (set
&& REG_P (SET_DEST (set
)) && REG_P (SET_SRC (set
)))
1756 copy_value (SET_DEST (set
), SET_SRC (set
), vd
);
1758 if (insn
== BB_END (bb
))
1765 /* Main entry point for the forward copy propagation optimization. */
1768 copyprop_hardreg_forward (void)
1770 struct value_data
*all_vd
;
1775 need_refresh
= false;
1777 all_vd
= xmalloc (sizeof (struct value_data
) * last_basic_block
);
1779 visited
= sbitmap_alloc (last_basic_block
);
1780 sbitmap_zero (visited
);
1784 SET_BIT (visited
, bb
->index
);
1786 /* If a block has a single predecessor, that we've already
1787 processed, begin with the value data that was live at
1788 the end of the predecessor block. */
1789 /* ??? Ought to use more intelligent queuing of blocks. */
1790 if (single_pred_p (bb
)
1791 && TEST_BIT (visited
, single_pred (bb
)->index
)
1792 && ! (single_pred_edge (bb
)->flags
& (EDGE_ABNORMAL_CALL
| EDGE_EH
)))
1793 all_vd
[bb
->index
] = all_vd
[single_pred (bb
)->index
];
1795 init_value_data (all_vd
+ bb
->index
);
1797 if (copyprop_hardreg_forward_1 (bb
, all_vd
+ bb
->index
))
1798 need_refresh
= true;
1801 sbitmap_free (visited
);
1806 fputs ("\n\n", dump_file
);
1808 /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
1809 to scan, so we have to do a life update with no initial set of
1810 blocks Just In Case. */
1811 delete_noop_moves ();
1812 update_life_info (NULL
, UPDATE_LIFE_GLOBAL_RM_NOTES
,
1814 | PROP_SCAN_DEAD_CODE
1815 | PROP_KILL_DEAD_CODE
);
1821 /* Dump the value chain data to stderr. */
1824 debug_value_data (struct value_data
*vd
)
1829 CLEAR_HARD_REG_SET (set
);
1831 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1832 if (vd
->e
[i
].oldest_regno
== i
)
1834 if (vd
->e
[i
].mode
== VOIDmode
)
1836 if (vd
->e
[i
].next_regno
!= INVALID_REGNUM
)
1837 fprintf (stderr
, "[%u] Bad next_regno for empty chain (%u)\n",
1838 i
, vd
->e
[i
].next_regno
);
1842 SET_HARD_REG_BIT (set
, i
);
1843 fprintf (stderr
, "[%u %s] ", i
, GET_MODE_NAME (vd
->e
[i
].mode
));
1845 for (j
= vd
->e
[i
].next_regno
;
1846 j
!= INVALID_REGNUM
;
1847 j
= vd
->e
[j
].next_regno
)
1849 if (TEST_HARD_REG_BIT (set
, j
))
1851 fprintf (stderr
, "[%u] Loop in regno chain\n", j
);
1855 if (vd
->e
[j
].oldest_regno
!= i
)
1857 fprintf (stderr
, "[%u] Bad oldest_regno (%u)\n",
1858 j
, vd
->e
[j
].oldest_regno
);
1861 SET_HARD_REG_BIT (set
, j
);
1862 fprintf (stderr
, "[%u %s] ", j
, GET_MODE_NAME (vd
->e
[j
].mode
));
1864 fputc ('\n', stderr
);
1867 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1868 if (! TEST_HARD_REG_BIT (set
, i
)
1869 && (vd
->e
[i
].mode
!= VOIDmode
1870 || vd
->e
[i
].oldest_regno
!= i
1871 || vd
->e
[i
].next_regno
!= INVALID_REGNUM
))
1872 fprintf (stderr
, "[%u] Non-empty reg in chain (%s %u %i)\n",
1873 i
, GET_MODE_NAME (vd
->e
[i
].mode
), vd
->e
[i
].oldest_regno
,
1874 vd
->e
[i
].next_regno
);
1877 #ifdef ENABLE_CHECKING
1879 validate_value_data (struct value_data
*vd
)
1884 CLEAR_HARD_REG_SET (set
);
1886 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1887 if (vd
->e
[i
].oldest_regno
== i
)
1889 if (vd
->e
[i
].mode
== VOIDmode
)
1891 if (vd
->e
[i
].next_regno
!= INVALID_REGNUM
)
1892 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1893 i
, vd
->e
[i
].next_regno
);
1897 SET_HARD_REG_BIT (set
, i
);
1899 for (j
= vd
->e
[i
].next_regno
;
1900 j
!= INVALID_REGNUM
;
1901 j
= vd
->e
[j
].next_regno
)
1903 if (TEST_HARD_REG_BIT (set
, j
))
1904 internal_error ("validate_value_data: Loop in regno chain (%u)",
1906 if (vd
->e
[j
].oldest_regno
!= i
)
1907 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1908 j
, vd
->e
[j
].oldest_regno
);
1910 SET_HARD_REG_BIT (set
, j
);
1914 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1915 if (! TEST_HARD_REG_BIT (set
, i
)
1916 && (vd
->e
[i
].mode
!= VOIDmode
1917 || vd
->e
[i
].oldest_regno
!= i
1918 || vd
->e
[i
].next_regno
!= INVALID_REGNUM
))
1919 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1920 i
, GET_MODE_NAME (vd
->e
[i
].mode
), vd
->e
[i
].oldest_regno
,
1921 vd
->e
[i
].next_regno
);
1926 gate_handle_regrename (void)
1928 return (optimize
> 0 && (flag_rename_registers
|| flag_cprop_registers
));
1932 /* Run the regrename and cprop passes. */
1934 rest_of_handle_regrename (void)
1936 if (flag_rename_registers
)
1937 regrename_optimize ();
1938 if (flag_cprop_registers
)
1939 copyprop_hardreg_forward ();
1942 struct tree_opt_pass pass_regrename
=
1945 gate_handle_regrename
, /* gate */
1946 rest_of_handle_regrename
, /* execute */
1949 0, /* static_pass_number */
1950 TV_RENAME_REGISTERS
, /* tv_id */
1951 0, /* properties_required */
1952 0, /* properties_provided */
1953 0, /* properties_destroyed */
1954 0, /* todo_flags_start */
1955 TODO_dump_func
, /* todo_flags_finish */