1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 #ifndef GCC_BASIC_BLOCK_H
23 #define GCC_BASIC_BLOCK_H
28 #include "partition.h"
29 #include "hard-reg-set.h"
34 /* Head of register set linked list. */
35 typedef bitmap_head regset_head
;
37 /* A pointer to a regset_head. */
38 typedef bitmap regset
;
40 /* Allocate a register set with oballoc. */
41 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
43 /* Do any cleanup needed on a regset when it is no longer used. */
44 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
46 /* Initialize a new regset. */
47 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, ®_obstack)
49 /* Clear a register set by freeing up the linked list. */
50 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
52 /* Copy a register set to another register set. */
53 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
55 /* Compare two register sets. */
56 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
58 /* `and' a register set with a second register set. */
59 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
61 /* `and' the complement of a register set with a register set. */
62 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
64 /* Inclusive or a register set with a second register set. */
65 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
67 /* Exclusive or a register set with a second register set. */
68 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
70 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
71 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
72 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
74 /* Clear a single register in a register set. */
75 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
77 /* Set a single register in a register set. */
78 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
80 /* Return true if a register is set in a register set. */
81 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
83 /* Copy the hard registers in a register set to the hard register set. */
84 extern void reg_set_to_hard_reg_set (HARD_REG_SET
*, bitmap
);
85 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
87 CLEAR_HARD_REG_SET (TO); \
88 reg_set_to_hard_reg_set (&TO, FROM); \
91 typedef bitmap_iterator reg_set_iterator
;
93 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
94 register number and executing CODE for all registers that are set. */
95 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
96 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
98 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
99 REGNUM to the register number and executing CODE for all registers that are
100 set in the first regset and not set in the second. */
101 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
102 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
104 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
105 REGNUM to the register number and executing CODE for all registers that are
106 set in both regsets. */
107 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
108 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
110 /* Type we use to hold basic block counters. Should be at least
111 64bit. Although a counter cannot be negative, we use a signed
112 type, because erroneous negative counts can be generated when the
113 flow graph is manipulated by various optimizations. A signed type
114 makes those easy to detect. */
115 typedef HOST_WIDEST_INT gcov_type
;
117 /* Control flow edge information. */
118 struct edge_def
GTY(())
120 /* The two blocks at the ends of the edge. */
121 struct basic_block_def
*src
;
122 struct basic_block_def
*dest
;
124 /* Instructions queued on the edge. */
125 union edge_def_insns
{
126 rtx
GTY ((tag ("0"))) r
;
127 tree
GTY ((tag ("1"))) t
;
128 } GTY ((desc ("ir_type ()"))) insns
;
130 /* Auxiliary info specific to a pass. */
131 PTR
GTY ((skip (""))) aux
;
133 /* Location of any goto implicit in the edge, during tree-ssa. */
134 source_locus goto_locus
;
136 int flags
; /* see EDGE_* below */
137 int probability
; /* biased by REG_BR_PROB_BASE */
138 gcov_type count
; /* Expected number of executions calculated
141 /* The index number corresponding to this edge in the edge vector
143 unsigned int dest_idx
;
146 typedef struct edge_def
*edge
;
148 DEF_VEC_ALLOC_P(edge
,gc
);
150 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
151 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
153 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
154 like an exception, or sibcall */
155 #define EDGE_EH 8 /* Exception throw */
156 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
157 #define EDGE_DFS_BACK 32 /* A backwards edge */
158 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
160 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
161 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
162 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
163 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
164 predicate is nonzero. */
165 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
166 predicate is zero. */
167 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
168 valid during SSA-CCP. */
169 #define EDGE_CROSSING 8192 /* Edge crosses between hot
170 and cold sections, when we
172 #define EDGE_ALL_FLAGS 16383
174 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
176 /* Counter summary from the last set of coverage counts read by
178 extern const struct gcov_ctr_summary
*profile_info
;
180 /* Declared in cfgloop.h. */
184 /* Declared in tree-flow.h. */
185 struct edge_prediction
;
188 /* A basic block is a sequence of instructions with only entry and
189 only one exit. If any one of the instructions are executed, they
190 will all be executed, and in sequence from first to last.
192 There may be COND_EXEC instructions in the basic block. The
193 COND_EXEC *instructions* will be executed -- but if the condition
194 is false the conditionally executed *expressions* will of course
195 not be executed. We don't consider the conditionally executed
196 expression (which might have side-effects) to be in a separate
197 basic block because the program counter will always be at the same
198 location after the COND_EXEC instruction, regardless of whether the
199 condition is true or not.
201 Basic blocks need not start with a label nor end with a jump insn.
202 For example, a previous basic block may just "conditionally fall"
203 into the succeeding basic block, and the last basic block need not
204 end with a jump insn. Block 0 is a descendant of the entry block.
206 A basic block beginning with two labels cannot have notes between
209 Data for jump tables are stored in jump_insns that occur in no
210 basic block even though these insns can follow or precede insns in
213 /* Basic block information indexed by block number. */
214 struct basic_block_def
GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
216 /* Pointers to the first and last trees of the block. */
219 /* The edges into and out of the block. */
223 /* Auxiliary info specific to a pass. */
224 PTR
GTY ((skip (""))) aux
;
226 /* Innermost loop containing the block. */
227 struct loop
* GTY ((skip (""))) loop_father
;
229 /* The dominance and postdominance information node. */
230 struct et_node
* GTY ((skip (""))) dom
[2];
232 /* Previous and next blocks in the chain. */
233 struct basic_block_def
*prev_bb
;
234 struct basic_block_def
*next_bb
;
236 union basic_block_il_dependent
{
237 struct rtl_bb_info
* GTY ((tag ("1"))) rtl
;
238 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il
;
240 /* Chain of PHI nodes for this block. */
243 /* A list of predictions. */
244 struct edge_prediction
*predictions
;
246 /* Expected number of executions: calculated in profile.c. */
249 /* The index of this block. */
252 /* The loop depth of this block. */
255 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
258 /* Various flags. See BB_* below. */
262 struct rtl_bb_info
GTY(())
264 /* The first and last insns of the block. */
268 /* The registers that are live on entry to this block. */
269 bitmap
GTY ((skip (""))) global_live_at_start
;
271 /* The registers that are live on exit from this block. */
272 bitmap
GTY ((skip (""))) global_live_at_end
;
274 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
275 and after the block. */
279 /* This field is used by the bb-reorder and tracer passes. */
283 typedef struct basic_block_def
*basic_block
;
285 #define BB_FREQ_MAX 10000
287 /* Masks for basic_block.flags.
289 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
290 the compilation, so they are never cleared.
292 All other flags may be cleared by clear_bb_flags(). It is generally
293 a bad idea to rely on any flags being up-to-date. */
298 /* Set if insns in BB have are modified. Used for updating liveness info. */
301 /* Only set on blocks that have just been created by create_bb. */
304 /* Set by find_unreachable_blocks. Do not rely on this being set in any
308 /* Set for blocks in an irreducible loop by loop analysis. */
309 BB_IRREDUCIBLE_LOOP
= 8,
311 /* Set on blocks that may actually not be single-entry single-exit block. */
314 /* Set on basic blocks that the scheduler should not touch. This is used
315 by SMS to prevent other schedulers from messing with the loop schedule. */
316 BB_DISABLE_SCHEDULE
= 32,
318 /* Set on blocks that should be put in a hot section. */
319 BB_HOT_PARTITION
= 64,
321 /* Set on blocks that should be put in a cold section. */
322 BB_COLD_PARTITION
= 128,
324 /* Set on block that was duplicated. */
327 /* Set on blocks that are in RTL format. */
330 /* Set on blocks that are forwarder blocks.
331 Only used in cfgcleanup.c. */
332 BB_FORWARDER_BLOCK
= 2048,
334 /* Set on blocks that cannot be threaded through.
335 Only used in cfgcleanup.c. */
336 BB_NONTHREADABLE_BLOCK
= 4096
339 /* Dummy flag for convenience in the hot/cold partitioning code. */
340 #define BB_UNPARTITIONED 0
342 /* Partitions, to be used when partitioning hot and cold basic blocks into
343 separate sections. */
344 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
345 #define BB_SET_PARTITION(bb, part) do { \
346 basic_block bb_ = (bb); \
347 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
351 #define BB_COPY_PARTITION(dstbb, srcbb) \
352 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
354 /* A structure to group all the per-function control flow graph data.
355 The x_* prefixing is necessary because otherwise references to the
356 fields of this struct are interpreted as the defines for backward
357 source compatibility following the definition of this struct. */
358 struct control_flow_graph
GTY(())
360 /* Block pointers for the exit and entry of a function.
361 These are always the head and tail of the basic block list. */
362 basic_block x_entry_block_ptr
;
363 basic_block x_exit_block_ptr
;
365 /* Index by basic block number, get basic block struct info. */
366 varray_type x_basic_block_info
;
368 /* Number of basic blocks in this flow graph. */
369 int x_n_basic_blocks
;
371 /* Number of edges in this flow graph. */
374 /* The first free basic block number. */
375 int x_last_basic_block
;
377 /* Mapping of labels to their associated blocks. At present
378 only used for the tree CFG. */
379 varray_type x_label_to_block_map
;
381 enum profile_status
{
388 /* Defines for accessing the fields of the CFG structure for function FN. */
389 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
390 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
391 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
392 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
393 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
394 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
395 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
397 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
398 (VARRAY_BB (basic_block_info_for_function(FN), (N)))
400 /* Defines for textual backward source compatibility. */
401 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
402 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
403 #define basic_block_info (cfun->cfg->x_basic_block_info)
404 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
405 #define n_edges (cfun->cfg->x_n_edges)
406 #define last_basic_block (cfun->cfg->x_last_basic_block)
407 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
408 #define profile_status (cfun->cfg->x_profile_status)
410 #define BASIC_BLOCK(N) (VARRAY_BB (basic_block_info, (N)))
412 /* TRUE if we should re-run loop discovery after threading jumps, FALSE
414 extern bool rediscover_loops_after_threading
;
416 /* For iterating over basic blocks. */
417 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
418 for (BB = FROM; BB != TO; BB = BB->DIR)
420 #define FOR_EACH_BB_FN(BB, FN) \
421 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
423 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
425 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
426 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
428 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
430 /* For iterating over insns in basic block. */
431 #define FOR_BB_INSNS(BB, INSN) \
432 for ((INSN) = BB_HEAD (BB); \
433 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
434 (INSN) = NEXT_INSN (INSN))
436 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
437 for ((INSN) = BB_END (BB); \
438 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
439 (INSN) = PREV_INSN (INSN))
441 /* Cycles through _all_ basic blocks, even the fake ones (entry and
444 #define FOR_ALL_BB(BB) \
445 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
447 #define FOR_ALL_BB_FN(BB, FN) \
448 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
450 extern bitmap_obstack reg_obstack
;
452 /* Indexed by n, gives number of basic block that (REG n) is used in.
453 If the value is REG_BLOCK_GLOBAL (-2),
454 it means (REG n) is used in more than one basic block.
455 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
456 This information remains valid for the rest of the compilation
457 of the current function; it is used to control register allocation. */
459 #define REG_BLOCK_UNKNOWN -1
460 #define REG_BLOCK_GLOBAL -2
462 #define REG_BASIC_BLOCK(N) (VARRAY_REG (reg_n_info, N)->basic_block)
464 /* Stuff for recording basic block info. */
466 #define BB_HEAD(B) (B)->il.rtl->head_
467 #define BB_END(B) (B)->il.rtl->end_
469 /* Special block numbers [markers] for entry and exit. */
470 #define ENTRY_BLOCK (0)
471 #define EXIT_BLOCK (1)
473 /* The two blocks that are always in the cfg. */
474 #define NUM_FIXED_BLOCKS (2)
477 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
478 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
480 extern void compute_bb_for_insn (void);
481 extern void free_bb_for_insn (void);
482 extern void update_bb_for_insn (basic_block
);
484 extern void free_basic_block_vars (void);
486 extern void insert_insn_on_edge (rtx
, edge
);
487 bool safe_insert_insn_on_edge (rtx
, edge
);
489 extern void commit_edge_insertions (void);
490 extern void commit_edge_insertions_watch_calls (void);
492 extern void remove_fake_edges (void);
493 extern void remove_fake_exit_edges (void);
494 extern void add_noreturn_fake_exit_edges (void);
495 extern void connect_infinite_loops_to_exit (void);
496 extern edge
unchecked_make_edge (basic_block
, basic_block
, int);
497 extern edge
cached_make_edge (sbitmap
, basic_block
, basic_block
, int);
498 extern edge
make_edge (basic_block
, basic_block
, int);
499 extern edge
make_single_succ_edge (basic_block
, basic_block
, int);
500 extern void remove_edge (edge
);
501 extern void redirect_edge_succ (edge
, basic_block
);
502 extern edge
redirect_edge_succ_nodup (edge
, basic_block
);
503 extern void redirect_edge_pred (edge
, basic_block
);
504 extern basic_block
create_basic_block_structure (rtx
, rtx
, rtx
, basic_block
);
505 extern void clear_bb_flags (void);
506 extern int post_order_compute (int *, bool);
507 extern int pre_and_rev_post_order_compute (int *, int *, bool);
508 extern int dfs_enumerate_from (basic_block
, int,
509 bool (*)(basic_block
, void *),
510 basic_block
*, int, void *);
511 extern void compute_dominance_frontiers (bitmap
*);
512 extern void dump_edge_info (FILE *, edge
, int);
513 extern void brief_dump_cfg (FILE *);
514 extern void clear_edges (void);
515 extern rtx
first_insn_after_basic_block_note (basic_block
);
516 extern void scale_bbs_frequencies_int (basic_block
*, int, int, int);
517 extern void scale_bbs_frequencies_gcov_type (basic_block
*, int, gcov_type
,
520 /* Structure to group all of the information to process IF-THEN and
521 IF-THEN-ELSE blocks for the conditional execution support. This
522 needs to be in a public file in case the IFCVT macros call
523 functions passing the ce_if_block data structure. */
525 typedef struct ce_if_block
527 basic_block test_bb
; /* First test block. */
528 basic_block then_bb
; /* THEN block. */
529 basic_block else_bb
; /* ELSE block or NULL. */
530 basic_block join_bb
; /* Join THEN/ELSE blocks. */
531 basic_block last_test_bb
; /* Last bb to hold && or || tests. */
532 int num_multiple_test_blocks
; /* # of && and || basic blocks. */
533 int num_and_and_blocks
; /* # of && blocks. */
534 int num_or_or_blocks
; /* # of || blocks. */
535 int num_multiple_test_insns
; /* # of insns in && and || blocks. */
536 int and_and_p
; /* Complex test is &&. */
537 int num_then_insns
; /* # of insns in THEN block. */
538 int num_else_insns
; /* # of insns in ELSE block. */
539 int pass
; /* Pass number. */
541 #ifdef IFCVT_EXTRA_FIELDS
542 IFCVT_EXTRA_FIELDS
/* Any machine dependent fields. */
547 /* This structure maintains an edge list vector. */
555 /* The base value for branch probability notes and edge probabilities. */
556 #define REG_BR_PROB_BASE 10000
558 /* This is the value which indicates no edge is present. */
559 #define EDGE_INDEX_NO_EDGE -1
561 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
562 if there is no edge between the 2 basic blocks. */
563 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
565 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
566 block which is either the pred or succ end of the indexed edge. */
567 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
568 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
570 /* INDEX_EDGE returns a pointer to the edge. */
571 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
573 /* Number of edges in the compressed edge list. */
574 #define NUM_EDGES(el) ((el)->num_edges)
576 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
577 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
578 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
580 /* BB is assumed to contain conditional jump. Return the branch edge. */
581 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
582 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
584 /* Return expected execution frequency of the edge E. */
585 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
587 + REG_BR_PROB_BASE / 2) \
590 /* Return nonzero if edge is critical. */
591 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
592 && EDGE_COUNT ((e)->dest->preds) >= 2)
594 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
595 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
596 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
597 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
599 /* Returns true if BB has precisely one successor. */
602 single_succ_p (basic_block bb
)
604 return EDGE_COUNT (bb
->succs
) == 1;
607 /* Returns true if BB has precisely one predecessor. */
610 single_pred_p (basic_block bb
)
612 return EDGE_COUNT (bb
->preds
) == 1;
615 /* Returns the single successor edge of basic block BB. Aborts if
616 BB does not have exactly one successor. */
619 single_succ_edge (basic_block bb
)
621 gcc_assert (single_succ_p (bb
));
622 return EDGE_SUCC (bb
, 0);
625 /* Returns the single predecessor edge of basic block BB. Aborts
626 if BB does not have exactly one predecessor. */
629 single_pred_edge (basic_block bb
)
631 gcc_assert (single_pred_p (bb
));
632 return EDGE_PRED (bb
, 0);
635 /* Returns the single successor block of basic block BB. Aborts
636 if BB does not have exactly one successor. */
638 static inline basic_block
639 single_succ (basic_block bb
)
641 return single_succ_edge (bb
)->dest
;
644 /* Returns the single predecessor block of basic block BB. Aborts
645 if BB does not have exactly one predecessor.*/
647 static inline basic_block
648 single_pred (basic_block bb
)
650 return single_pred_edge (bb
)->src
;
653 /* Iterator object for edges. */
657 VEC(edge
,gc
) **container
;
660 static inline VEC(edge
,gc
) *
661 ei_container (edge_iterator i
)
663 gcc_assert (i
.container
);
667 #define ei_start(iter) ei_start_1 (&(iter))
668 #define ei_last(iter) ei_last_1 (&(iter))
670 /* Return an iterator pointing to the start of an edge vector. */
671 static inline edge_iterator
672 ei_start_1 (VEC(edge
,gc
) **ev
)
682 /* Return an iterator pointing to the last element of an edge
684 static inline edge_iterator
685 ei_last_1 (VEC(edge
,gc
) **ev
)
689 i
.index
= EDGE_COUNT (*ev
) - 1;
695 /* Is the iterator `i' at the end of the sequence? */
697 ei_end_p (edge_iterator i
)
699 return (i
.index
== EDGE_COUNT (ei_container (i
)));
702 /* Is the iterator `i' at one position before the end of the
705 ei_one_before_end_p (edge_iterator i
)
707 return (i
.index
+ 1 == EDGE_COUNT (ei_container (i
)));
710 /* Advance the iterator to the next element. */
712 ei_next (edge_iterator
*i
)
714 gcc_assert (i
->index
< EDGE_COUNT (ei_container (*i
)));
718 /* Move the iterator to the previous element. */
720 ei_prev (edge_iterator
*i
)
722 gcc_assert (i
->index
> 0);
726 /* Return the edge pointed to by the iterator `i'. */
728 ei_edge (edge_iterator i
)
730 return EDGE_I (ei_container (i
), i
.index
);
733 /* Return an edge pointed to by the iterator. Do it safely so that
734 NULL is returned when the iterator is pointing at the end of the
737 ei_safe_edge (edge_iterator i
)
739 return !ei_end_p (i
) ? ei_edge (i
) : NULL
;
742 /* Return 1 if we should continue to iterate. Return 0 otherwise.
743 *Edge P is set to the next edge if we are to continue to iterate
744 and NULL otherwise. */
747 ei_cond (edge_iterator ei
, edge
*p
)
761 /* This macro serves as a convenient way to iterate each edge in a
762 vector of predecessor or successor edges. It must not be used when
763 an element might be removed during the traversal, otherwise
764 elements will be missed. Instead, use a for-loop like that shown
765 in the following pseudo-code:
767 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
776 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
777 for ((ITER) = ei_start ((EDGE_VEC)); \
778 ei_cond ((ITER), &(EDGE)); \
781 struct edge_list
* create_edge_list (void);
782 void free_edge_list (struct edge_list
*);
783 void print_edge_list (FILE *, struct edge_list
*);
784 void verify_edge_list (FILE *, struct edge_list
*);
785 int find_edge_index (struct edge_list
*, basic_block
, basic_block
);
786 edge
find_edge (basic_block
, basic_block
);
789 enum update_life_extent
791 UPDATE_LIFE_LOCAL
= 0,
792 UPDATE_LIFE_GLOBAL
= 1,
793 UPDATE_LIFE_GLOBAL_RM_NOTES
= 2
796 /* Flags for life_analysis and update_life_info. */
798 #define PROP_DEATH_NOTES 1 /* Create DEAD and UNUSED notes. */
799 #define PROP_LOG_LINKS 2 /* Create LOG_LINKS. */
800 #define PROP_REG_INFO 4 /* Update regs_ever_live et al. */
801 #define PROP_KILL_DEAD_CODE 8 /* Remove dead code. */
802 #define PROP_SCAN_DEAD_CODE 16 /* Scan for dead code. */
803 #define PROP_ALLOW_CFG_CHANGES 32 /* Allow the CFG to be changed
804 by dead code removal. */
805 #define PROP_AUTOINC 64 /* Create autoinc mem references. */
806 #define PROP_SCAN_DEAD_STORES 128 /* Scan for dead code. */
807 #define PROP_ASM_SCAN 256 /* Internal flag used within flow.c
808 to flag analysis of asms. */
809 #define PROP_DEAD_INSN 1024 /* Internal flag used within flow.c
810 to flag analysis of dead insn. */
811 #define PROP_POST_REGSTACK 2048 /* We run after reg-stack and need
812 to preserve REG_DEAD notes for
814 #define PROP_FINAL (PROP_DEATH_NOTES | PROP_LOG_LINKS \
815 | PROP_REG_INFO | PROP_KILL_DEAD_CODE \
816 | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
817 | PROP_ALLOW_CFG_CHANGES \
818 | PROP_SCAN_DEAD_STORES)
819 #define PROP_POSTRELOAD (PROP_DEATH_NOTES \
820 | PROP_KILL_DEAD_CODE \
821 | PROP_SCAN_DEAD_CODE \
822 | PROP_SCAN_DEAD_STORES)
824 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
825 except for edge forwarding */
826 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
827 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
828 to care REG_DEAD notes. */
829 #define CLEANUP_PRE_LOOP 8 /* Take care to preserve syntactic loop
831 #define CLEANUP_UPDATE_LIFE 16 /* Keep life information up to date. */
832 #define CLEANUP_THREADING 32 /* Do jump threading. */
833 #define CLEANUP_NO_INSN_DEL 64 /* Do not try to delete trivially dead
835 #define CLEANUP_CFGLAYOUT 128 /* Do cleanup in cfglayout mode. */
836 #define CLEANUP_LOG_LINKS 256 /* Update log links. */
838 /* The following are ORed in on top of the CLEANUP* flags in calls to
839 struct_equiv_block_eq. */
840 #define STRUCT_EQUIV_START 512 /* Initializes the search range. */
841 #define STRUCT_EQUIV_RERUN 1024 /* Rerun to find register use in
842 found equivalence. */
843 #define STRUCT_EQUIV_FINAL 2048 /* Make any changes necessary to get
844 actual equivalence. */
845 #define STRUCT_EQUIV_NEED_FULL_BLOCK 4096 /* struct_equiv_block_eq is required
846 to match only full blocks */
847 #define STRUCT_EQUIV_MATCH_JUMPS 8192 /* Also include the jumps at the end of the block in the comparison. */
849 extern void life_analysis (FILE *, int);
850 extern int update_life_info (sbitmap
, enum update_life_extent
, int);
851 extern int update_life_info_in_dirty_blocks (enum update_life_extent
, int);
852 extern int count_or_remove_death_notes (sbitmap
, int);
853 extern int propagate_block (basic_block
, regset
, regset
, regset
, int);
855 struct propagate_block_info
;
856 extern rtx
propagate_one_insn (struct propagate_block_info
*, rtx
);
857 extern struct propagate_block_info
*init_propagate_block_info
858 (basic_block
, regset
, regset
, regset
, int);
859 extern void free_propagate_block_info (struct propagate_block_info
*);
862 extern struct edge_list
*pre_edge_lcm (FILE *, int, sbitmap
*, sbitmap
*,
863 sbitmap
*, sbitmap
*, sbitmap
**,
865 extern struct edge_list
*pre_edge_rev_lcm (FILE *, int, sbitmap
*,
866 sbitmap
*, sbitmap
*,
867 sbitmap
*, sbitmap
**,
869 extern void compute_available (sbitmap
*, sbitmap
*, sbitmap
*, sbitmap
*);
870 extern int optimize_mode_switching (FILE *);
873 extern void estimate_probability (struct loops
*);
874 extern void expected_value_to_br_prob (void);
875 extern bool maybe_hot_bb_p (basic_block
);
876 extern bool probably_cold_bb_p (basic_block
);
877 extern bool probably_never_executed_bb_p (basic_block
);
878 extern bool tree_predicted_by_p (basic_block
, enum br_predictor
);
879 extern bool rtl_predicted_by_p (basic_block
, enum br_predictor
);
880 extern void tree_predict_edge (edge
, enum br_predictor
, int);
881 extern void rtl_predict_edge (edge
, enum br_predictor
, int);
882 extern void predict_edge_def (edge
, enum br_predictor
, enum prediction
);
883 extern void guess_outgoing_edge_probabilities (basic_block
);
884 extern void remove_predictions_associated_with_edge (edge
);
887 extern void init_flow (void);
888 extern void debug_bb (basic_block
);
889 extern basic_block
debug_bb_n (int);
890 extern void dump_regset (regset
, FILE *);
891 extern void debug_regset (regset
);
892 extern void allocate_reg_life_data (void);
893 extern void expunge_block (basic_block
);
894 extern void link_block (basic_block
, basic_block
);
895 extern void unlink_block (basic_block
);
896 extern void compact_blocks (void);
897 extern basic_block
alloc_block (void);
898 extern void find_unreachable_blocks (void);
899 extern int delete_noop_moves (void);
900 extern basic_block
force_nonfallthru (edge
);
901 extern rtx
block_label (basic_block
);
902 extern bool forwarder_block_p (basic_block
);
903 extern bool purge_all_dead_edges (void);
904 extern bool purge_dead_edges (basic_block
);
905 extern void find_many_sub_basic_blocks (sbitmap
);
906 extern void rtl_make_eh_edge (sbitmap
, basic_block
, rtx
);
907 extern bool can_fallthru (basic_block
, basic_block
);
908 extern bool could_fall_through (basic_block
, basic_block
);
909 extern void flow_nodes_print (const char *, const sbitmap
, FILE *);
910 extern void flow_edge_list_print (const char *, const edge
*, int, FILE *);
911 extern void alloc_aux_for_block (basic_block
, int);
912 extern void alloc_aux_for_blocks (int);
913 extern void clear_aux_for_blocks (void);
914 extern void free_aux_for_blocks (void);
915 extern void alloc_aux_for_edge (edge
, int);
916 extern void alloc_aux_for_edges (int);
917 extern void clear_aux_for_edges (void);
918 extern void free_aux_for_edges (void);
919 extern void find_basic_blocks (rtx
);
920 extern bool cleanup_cfg (int);
921 extern bool delete_unreachable_blocks (void);
922 extern bool merge_seq_blocks (void);
924 typedef struct conflict_graph_def
*conflict_graph
;
926 /* Callback function when enumerating conflicts. The arguments are
927 the smaller and larger regno in the conflict. Returns zero if
928 enumeration is to continue, nonzero to halt enumeration. */
929 typedef int (*conflict_graph_enum_fn
) (int, int, void *);
932 /* Prototypes of operations on conflict graphs. */
934 extern conflict_graph conflict_graph_new
936 extern void conflict_graph_delete (conflict_graph
);
937 extern int conflict_graph_add (conflict_graph
, int, int);
938 extern int conflict_graph_conflict_p (conflict_graph
, int, int);
939 extern void conflict_graph_enum (conflict_graph
, int, conflict_graph_enum_fn
,
941 extern void conflict_graph_merge_regs (conflict_graph
, int, int);
942 extern void conflict_graph_print (conflict_graph
, FILE*);
943 extern bool mark_dfs_back_edges (void);
944 extern void set_edge_can_fallthru_flag (void);
945 extern void update_br_prob_note (basic_block
);
946 extern void fixup_abnormal_edges (void);
947 extern bool inside_basic_block_p (rtx
);
948 extern bool control_flow_insn_p (rtx
);
950 /* In bb-reorder.c */
951 extern void reorder_basic_blocks (unsigned int);
952 extern void partition_hot_cold_basic_blocks (void);
964 DOM_NONE
, /* Not computed at all. */
965 DOM_NO_FAST_QUERY
, /* The data is OK, but the fast query data are not usable. */
966 DOM_OK
/* Everything is ok. */
969 extern enum dom_state dom_computed
[2];
971 extern bool dom_info_available_p (enum cdi_direction
);
972 extern void calculate_dominance_info (enum cdi_direction
);
973 extern void free_dominance_info (enum cdi_direction
);
974 extern basic_block
nearest_common_dominator (enum cdi_direction
,
975 basic_block
, basic_block
);
976 extern basic_block
nearest_common_dominator_for_set (enum cdi_direction
,
978 extern void set_immediate_dominator (enum cdi_direction
, basic_block
,
980 extern basic_block
get_immediate_dominator (enum cdi_direction
, basic_block
);
981 extern bool dominated_by_p (enum cdi_direction
, basic_block
, basic_block
);
982 extern int get_dominated_by (enum cdi_direction
, basic_block
, basic_block
**);
983 extern unsigned get_dominated_by_region (enum cdi_direction
, basic_block
*,
984 unsigned, basic_block
*);
985 extern void add_to_dominance_info (enum cdi_direction
, basic_block
);
986 extern void delete_from_dominance_info (enum cdi_direction
, basic_block
);
987 basic_block
recount_dominator (enum cdi_direction
, basic_block
);
988 extern void redirect_immediate_dominators (enum cdi_direction
, basic_block
,
990 extern void iterate_fix_dominators (enum cdi_direction
, basic_block
*, int);
991 extern void verify_dominators (enum cdi_direction
);
992 extern basic_block
first_dom_son (enum cdi_direction
, basic_block
);
993 extern basic_block
next_dom_son (enum cdi_direction
, basic_block
);
994 extern edge
try_redirect_by_replacing_jump (edge
, basic_block
, bool);
995 extern void break_superblocks (void);
996 extern void check_bb_profile (basic_block
, FILE *);
997 extern void update_bb_profile_for_threading (basic_block
, int, gcov_type
, edge
);
998 extern void init_rtl_bb_info (basic_block
);
1000 extern void initialize_original_copy_tables (void);
1001 extern void free_original_copy_tables (void);
1002 extern void set_bb_original (basic_block
, basic_block
);
1003 extern basic_block
get_bb_original (basic_block
);
1004 extern void set_bb_copy (basic_block
, basic_block
);
1005 extern basic_block
get_bb_copy (basic_block
);
1007 #include "cfghooks.h"
1009 /* In struct-equiv.c */
1011 /* Constants used to size arrays in struct equiv_info (currently only one).
1012 When these limits are exceeded, struct_equiv returns zero.
1013 The maximum number of pseudo registers that are different in the two blocks,
1014 but appear in equivalent places and are dead at the end (or where one of
1015 a pair is dead at the end). */
1016 #define STRUCT_EQUIV_MAX_LOCAL 16
1017 /* The maximum number of references to an input register that struct_equiv
1020 /* Structure used to track state during struct_equiv that can be rolled
1021 back when we find we can't match an insn, or if we want to match part
1022 of it in a different way.
1023 This information pertains to the pair of partial blocks that has been
1024 matched so far. Since this pair is structurally equivalent, this is
1025 conceptually just one partial block expressed in two potentially
1027 struct struct_equiv_checkpoint
1029 int ninsns
; /* Insns are matched so far. */
1030 int local_count
; /* Number of block-local registers. */
1031 int input_count
; /* Number of inputs to the block. */
1033 /* X_START and Y_START are the first insns (in insn stream order)
1034 of the partial blocks that have been considered for matching so far.
1035 Since we are scanning backwards, they are also the instructions that
1036 are currently considered - or the last ones that have been considered -
1037 for matching (Unless we tracked back to these because a preceding
1038 instruction failed to match). */
1039 rtx x_start
, y_start
;
1041 /* INPUT_VALID indicates if we have actually set up X_INPUT / Y_INPUT
1042 during the current pass; we keep X_INPUT / Y_INPUT around between passes
1043 so that we can match REG_EQUAL / REG_EQUIV notes referring to these. */
1046 /* Some information would be expensive to exactly checkpoint, so we
1047 merely increment VERSION any time information about local
1048 registers, inputs and/or register liveness changes. When backtracking,
1049 it is decremented for changes that can be undone, and if a discrepancy
1050 remains, NEED_RERUN in the relevant struct equiv_info is set to indicate
1051 that a new pass should be made over the entire block match to get
1052 accurate register information. */
1056 /* A struct equiv_info is used to pass information to struct_equiv and
1057 to gather state while two basic blocks are checked for structural
1062 /* Fields set up by the caller to struct_equiv_block_eq */
1064 basic_block x_block
, y_block
; /* The two blocks being matched. */
1066 /* MODE carries the mode bits from cleanup_cfg if we are called from
1067 try_crossjump_to_edge, and additionally it carries the
1068 STRUCT_EQUIV_* bits described above. */
1071 /* INPUT_COST is the cost that adding an extra input to the matched blocks
1072 is supposed to have, and is taken into account when considering if the
1073 matched sequence should be extended backwards. input_cost < 0 means
1074 don't accept any inputs at all. */
1078 /* Fields to track state inside of struct_equiv_block_eq. Some of these
1079 are also outputs. */
1081 /* X_INPUT and Y_INPUT are used by struct_equiv to record a register that
1082 is used as an input parameter, i.e. where different registers are used
1083 as sources. This is only used for a register that is live at the end
1084 of the blocks, or in some identical code at the end of the blocks;
1085 Inputs that are dead at the end go into X_LOCAL / Y_LOCAL. */
1086 rtx x_input
, y_input
;
1087 /* When a previous pass has identified a valid input, INPUT_REG is set
1088 by struct_equiv_block_eq, and it is henceforth replaced in X_BLOCK
1092 /* COMMON_LIVE keeps track of the registers which are currently live
1093 (as we scan backwards from the end) and have the same numbers in both
1094 blocks. N.B. a register that is in common_live is unsuitable to become
1097 /* Likewise, X_LOCAL_LIVE / Y_LOCAL_LIVE keep track of registers that are
1098 local to one of the blocks; these registers must not be accepted as
1099 identical when encountered in both blocks. */
1100 regset x_local_live
, y_local_live
;
1102 /* EQUIV_USED indicates for which insns a REG_EQUAL or REG_EQUIV note is
1103 being used, to avoid having to backtrack in the next pass, so that we
1104 get accurate life info for this insn then. For each such insn,
1105 the bit with the number corresponding to the CUR.NINSNS value at the
1106 time of scanning is set. */
1109 /* Current state that can be saved & restored easily. */
1110 struct struct_equiv_checkpoint cur
;
1111 /* BEST_MATCH is used to store the best match so far, weighing the
1112 cost of matched insns COSTS_N_INSNS (CUR.NINSNS) against the cost
1113 CUR.INPUT_COUNT * INPUT_COST of setting up the inputs. */
1114 struct struct_equiv_checkpoint best_match
;
1115 /* If a checkpoint restore failed, or an input conflict newly arises,
1116 NEED_RERUN is set. This has to be tested by the caller to re-run
1117 the comparison if the match appears otherwise sound. The state kept in
1118 x_start, y_start, equiv_used and check_input_conflict ensures that
1119 we won't loop indefinitely. */
1121 /* If there is indication of an input conflict at the end,
1122 CHECK_INPUT_CONFLICT is set so that we'll check for input conflicts
1123 for each insn in the next pass. This is needed so that we won't discard
1124 a partial match if there is a longer match that has to be abandoned due
1125 to an input conflict. */
1126 bool check_input_conflict
;
1127 /* HAD_INPUT_CONFLICT is set if CHECK_INPUT_CONFLICT was already set and we
1128 have passed a point where there were multiple dying inputs. This helps
1129 us decide if we should set check_input_conflict for the next pass. */
1130 bool had_input_conflict
;
1132 /* LIVE_UPDATE controls if we want to change any life info at all. We
1133 set it to false during REG_EQUAL / REG_EUQIV note comparison of the final
1134 pass so that we don't introduce new registers just for the note; if we
1135 can't match the notes without the current register information, we drop
1139 /* X_LOCAL and Y_LOCAL are used to gather register numbers of register pairs
1140 that are local to X_BLOCK and Y_BLOCK, with CUR.LOCAL_COUNT being the index
1141 to the next free entry. */
1142 rtx x_local
[STRUCT_EQUIV_MAX_LOCAL
], y_local
[STRUCT_EQUIV_MAX_LOCAL
];
1143 /* LOCAL_RVALUE is nonzero if the corresponding X_LOCAL / Y_LOCAL entry
1144 was a source operand (including STRICT_LOW_PART) for the last invocation
1145 of struct_equiv mentioning it, zero if it was a destination-only operand.
1146 Since we are scanning backwards, this means the register is input/local
1147 for the (partial) block scanned so far. */
1148 bool local_rvalue
[STRUCT_EQUIV_MAX_LOCAL
];
1151 /* Additional fields that are computed for the convenience of the caller. */
1153 /* DYING_INPUTS is set to the number of local registers that turn out
1154 to be inputs to the (possibly partial) block. */
1156 /* X_END and Y_END are the last insns in X_BLOCK and Y_BLOCK, respectively,
1157 that are being compared. A final jump insn will not be included. */
1160 /* If we are matching tablejumps, X_LABEL in X_BLOCK corresponds to
1161 Y_LABEL in Y_BLOCK. */
1162 rtx x_label
, y_label
;
1166 extern bool insns_match_p (rtx
, rtx
, struct equiv_info
*);
1167 extern int struct_equiv_block_eq (int, struct equiv_info
*);
1168 extern bool struct_equiv_init (int, struct equiv_info
*);
1169 extern bool rtx_equiv_p (rtx
*, rtx
, int, struct equiv_info
*);
1172 extern bool condjump_equiv_p (struct equiv_info
*, bool);
1174 #endif /* GCC_BASIC_BLOCK_H */