hppa: Export main in pr104869.C on hpux
[official-gcc.git] / gcc / ifcvt.cc
blobbe42609a848f3e574428eb224cd3c3a395508811
1 /* If-conversion support.
2 Copyright (C) 2000-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
37 #include "cfgrtl.h"
38 #include "cfganal.h"
39 #include "cfgcleanup.h"
40 #include "expr.h"
41 #include "output.h"
42 #include "cfgloop.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "shrink-wrap.h"
46 #include "rtl-iter.h"
47 #include "ifcvt.h"
49 #ifndef MAX_CONDITIONAL_EXECUTE
50 #define MAX_CONDITIONAL_EXECUTE \
51 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
52 + 1)
53 #endif
55 #define IFCVT_MULTIPLE_DUMPS 1
57 #define NULL_BLOCK ((basic_block) NULL)
59 /* True if after combine pass. */
60 static bool ifcvt_after_combine;
62 /* True if the target has the cbranchcc4 optab. */
63 static bool have_cbranchcc4;
65 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
66 static int num_possible_if_blocks;
68 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
69 execution. */
70 static int num_updated_if_blocks;
72 /* # of changes made. */
73 static int num_true_changes;
75 /* Whether conditional execution changes were made. */
76 static bool cond_exec_changed_p;
78 /* Forward references. */
79 static int count_bb_insns (const_basic_block);
80 static bool cheap_bb_rtx_cost_p (const_basic_block, profile_probability, int);
81 static rtx_insn *first_active_insn (basic_block);
82 static rtx_insn *last_active_insn (basic_block, bool);
83 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
84 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
85 static basic_block block_fallthru (basic_block);
86 static rtx cond_exec_get_condition (rtx_insn *, bool);
87 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
88 static bool noce_operand_ok (const_rtx);
89 static void merge_if_block (ce_if_block *);
90 static bool find_cond_trap (basic_block, edge, edge);
91 static basic_block find_if_header (basic_block, int);
92 static int block_jumps_and_fallthru (basic_block, basic_block);
93 static bool noce_find_if_block (basic_block, edge, edge, int);
94 static bool cond_exec_find_if_block (ce_if_block *);
95 static bool find_if_case_1 (basic_block, edge, edge);
96 static bool find_if_case_2 (basic_block, edge, edge);
97 static bool dead_or_predicable (basic_block, basic_block, basic_block,
98 edge, bool);
99 static void noce_emit_move_insn (rtx, rtx);
100 static rtx_insn *block_has_only_trap (basic_block);
101 static void need_cmov_or_rewire (basic_block, hash_set<rtx_insn *> *,
102 hash_map<rtx_insn *, int> *);
103 static bool noce_convert_multiple_sets_1 (struct noce_if_info *,
104 hash_set<rtx_insn *> *,
105 hash_map<rtx_insn *, int> *,
106 auto_vec<rtx> *,
107 auto_vec<rtx> *,
108 auto_vec<rtx_insn *> *, int *);
110 /* Count the number of non-jump active insns in BB. */
112 static int
113 count_bb_insns (const_basic_block bb)
115 int count = 0;
116 rtx_insn *insn = BB_HEAD (bb);
118 while (1)
120 if (active_insn_p (insn) && !JUMP_P (insn))
121 count++;
123 if (insn == BB_END (bb))
124 break;
125 insn = NEXT_INSN (insn);
128 return count;
131 /* Determine whether the total insn_cost on non-jump insns in
132 basic block BB is less than MAX_COST. This function returns
133 false if the cost of any instruction could not be estimated.
135 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
136 as those insns are being speculated. MAX_COST is scaled with SCALE
137 plus a small fudge factor. */
139 static bool
140 cheap_bb_rtx_cost_p (const_basic_block bb,
141 profile_probability prob, int max_cost)
143 int count = 0;
144 rtx_insn *insn = BB_HEAD (bb);
145 bool speed = optimize_bb_for_speed_p (bb);
146 int scale = prob.initialized_p () ? prob.to_reg_br_prob_base ()
147 : REG_BR_PROB_BASE;
149 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
150 applied to insn_cost when optimizing for size. Only do
151 this after combine because if-conversion might interfere with
152 passes before combine.
154 Use optimize_function_for_speed_p instead of the pre-defined
155 variable speed to make sure it is set to same value for all
156 basic blocks in one if-conversion transformation. */
157 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
158 scale = REG_BR_PROB_BASE;
159 /* Our branch probability/scaling factors are just estimates and don't
160 account for cases where we can get speculation for free and other
161 secondary benefits. So we fudge the scale factor to make speculating
162 appear a little more profitable when optimizing for performance. */
163 else
164 scale += REG_BR_PROB_BASE / 8;
167 max_cost *= scale;
169 while (1)
171 if (NONJUMP_INSN_P (insn))
173 int cost = insn_cost (insn, speed) * REG_BR_PROB_BASE;
174 if (cost == 0)
175 return false;
177 /* If this instruction is the load or set of a "stack" register,
178 such as a floating point register on x87, then the cost of
179 speculatively executing this insn may need to include
180 the additional cost of popping its result off of the
181 register stack. Unfortunately, correctly recognizing and
182 accounting for this additional overhead is tricky, so for
183 now we simply prohibit such speculative execution. */
184 #ifdef STACK_REGS
186 rtx set = single_set (insn);
187 if (set && STACK_REG_P (SET_DEST (set)))
188 return false;
190 #endif
192 count += cost;
193 if (count >= max_cost)
194 return false;
196 else if (CALL_P (insn))
197 return false;
199 if (insn == BB_END (bb))
200 break;
201 insn = NEXT_INSN (insn);
204 return true;
207 /* Return the first non-jump active insn in the basic block. */
209 static rtx_insn *
210 first_active_insn (basic_block bb)
212 rtx_insn *insn = BB_HEAD (bb);
214 if (LABEL_P (insn))
216 if (insn == BB_END (bb))
217 return NULL;
218 insn = NEXT_INSN (insn);
221 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
223 if (insn == BB_END (bb))
224 return NULL;
225 insn = NEXT_INSN (insn);
228 if (JUMP_P (insn))
229 return NULL;
231 return insn;
234 /* Return the last non-jump active (non-jump) insn in the basic block. */
236 static rtx_insn *
237 last_active_insn (basic_block bb, bool skip_use_p)
239 rtx_insn *insn = BB_END (bb);
240 rtx_insn *head = BB_HEAD (bb);
242 while (NOTE_P (insn)
243 || JUMP_P (insn)
244 || DEBUG_INSN_P (insn)
245 || (skip_use_p
246 && NONJUMP_INSN_P (insn)
247 && GET_CODE (PATTERN (insn)) == USE))
249 if (insn == head)
250 return NULL;
251 insn = PREV_INSN (insn);
254 if (LABEL_P (insn))
255 return NULL;
257 return insn;
260 /* Return the active insn before INSN inside basic block CURR_BB. */
262 static rtx_insn *
263 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
265 if (!insn || insn == BB_HEAD (curr_bb))
266 return NULL;
268 while ((insn = PREV_INSN (insn)) != NULL_RTX)
270 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
271 break;
273 /* No other active insn all the way to the start of the basic block. */
274 if (insn == BB_HEAD (curr_bb))
275 return NULL;
278 return insn;
281 /* Return the active insn after INSN inside basic block CURR_BB. */
283 static rtx_insn *
284 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
286 if (!insn || insn == BB_END (curr_bb))
287 return NULL;
289 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
291 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
292 break;
294 /* No other active insn all the way to the end of the basic block. */
295 if (insn == BB_END (curr_bb))
296 return NULL;
299 return insn;
302 /* Return the basic block reached by falling though the basic block BB. */
304 static basic_block
305 block_fallthru (basic_block bb)
307 edge e = find_fallthru_edge (bb->succs);
309 return (e) ? e->dest : NULL_BLOCK;
312 /* Return true if RTXs A and B can be safely interchanged. */
314 static bool
315 rtx_interchangeable_p (const_rtx a, const_rtx b)
317 if (!rtx_equal_p (a, b))
318 return false;
320 if (GET_CODE (a) != MEM)
321 return true;
323 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
324 reference is not. Interchanging a dead type-unsafe memory reference with
325 a live type-safe one creates a live type-unsafe memory reference, in other
326 words, it makes the program illegal.
327 We check here conservatively whether the two memory references have equal
328 memory attributes. */
330 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
334 /* Go through a bunch of insns, converting them to conditional
335 execution format if possible. Return TRUE if all of the non-note
336 insns were processed. */
338 static bool
339 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
340 /* if block information */rtx_insn *start,
341 /* first insn to look at */rtx end,
342 /* last insn to look at */rtx test,
343 /* conditional execution test */profile_probability
344 prob_val,
345 /* probability of branch taken. */bool mod_ok)
347 bool must_be_last = false;
348 rtx_insn *insn;
349 rtx xtest;
350 rtx pattern;
352 if (!start || !end)
353 return false;
355 for (insn = start; ; insn = NEXT_INSN (insn))
357 /* dwarf2out can't cope with conditional prologues. */
358 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
359 return false;
361 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
362 goto insn_done;
364 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
366 /* dwarf2out can't cope with conditional unwind info. */
367 if (RTX_FRAME_RELATED_P (insn))
368 return false;
370 /* Remove USE insns that get in the way. */
371 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
373 /* ??? Ug. Actually unlinking the thing is problematic,
374 given what we'd have to coordinate with our callers. */
375 SET_INSN_DELETED (insn);
376 goto insn_done;
379 /* Last insn wasn't last? */
380 if (must_be_last)
381 return false;
383 if (modified_in_p (test, insn))
385 if (!mod_ok)
386 return false;
387 must_be_last = true;
390 /* Now build the conditional form of the instruction. */
391 pattern = PATTERN (insn);
392 xtest = copy_rtx (test);
394 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
395 two conditions. */
396 if (GET_CODE (pattern) == COND_EXEC)
398 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
399 return false;
401 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
402 COND_EXEC_TEST (pattern));
403 pattern = COND_EXEC_CODE (pattern);
406 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
408 /* If the machine needs to modify the insn being conditionally executed,
409 say for example to force a constant integer operand into a temp
410 register, do so here. */
411 #ifdef IFCVT_MODIFY_INSN
412 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
413 if (! pattern)
414 return false;
415 #endif
417 validate_change (insn, &PATTERN (insn), pattern, 1);
419 if (CALL_P (insn) && prob_val.initialized_p ())
420 validate_change (insn, &REG_NOTES (insn),
421 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
422 prob_val.to_reg_br_prob_note (),
423 REG_NOTES (insn)), 1);
425 insn_done:
426 if (insn == end)
427 break;
430 return true;
433 /* Return the condition for a jump. Do not do any special processing. */
435 static rtx
436 cond_exec_get_condition (rtx_insn *jump, bool get_reversed = false)
438 rtx test_if, cond;
440 if (any_condjump_p (jump))
441 test_if = SET_SRC (pc_set (jump));
442 else
443 return NULL_RTX;
444 cond = XEXP (test_if, 0);
446 /* If this branches to JUMP_LABEL when the condition is false,
447 reverse the condition. */
448 if (get_reversed
449 || (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
450 && label_ref_label (XEXP (test_if, 2))
451 == JUMP_LABEL (jump)))
453 enum rtx_code rev = reversed_comparison_code (cond, jump);
454 if (rev == UNKNOWN)
455 return NULL_RTX;
457 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
458 XEXP (cond, 1));
461 return cond;
464 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
465 to conditional execution. Return TRUE if we were successful at
466 converting the block. */
468 static bool
469 cond_exec_process_if_block (ce_if_block * ce_info,
470 /* if block information */bool do_multiple_p)
472 basic_block test_bb = ce_info->test_bb; /* last test block */
473 basic_block then_bb = ce_info->then_bb; /* THEN */
474 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
475 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
476 rtx_insn *then_start; /* first insn in THEN block */
477 rtx_insn *then_end; /* last insn + 1 in THEN block */
478 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
479 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
480 int max; /* max # of insns to convert. */
481 bool then_mod_ok; /* whether conditional mods are ok in THEN */
482 rtx true_expr; /* test for else block insns */
483 rtx false_expr; /* test for then block insns */
484 profile_probability true_prob_val;/* probability of else block */
485 profile_probability false_prob_val;/* probability of then block */
486 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
487 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
488 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
489 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
490 int then_n_insns, else_n_insns, n_insns;
491 enum rtx_code false_code;
492 rtx note;
494 /* If test is comprised of && or || elements, and we've failed at handling
495 all of them together, just use the last test if it is the special case of
496 && elements without an ELSE block. */
497 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
499 if (else_bb || ! ce_info->and_and_p)
500 return false;
502 ce_info->test_bb = test_bb = ce_info->last_test_bb;
503 ce_info->num_multiple_test_blocks = 0;
504 ce_info->num_and_and_blocks = 0;
505 ce_info->num_or_or_blocks = 0;
508 /* Find the conditional jump to the ELSE or JOIN part, and isolate
509 the test. */
510 test_expr = cond_exec_get_condition (BB_END (test_bb));
511 if (! test_expr)
512 return false;
514 /* If the conditional jump is more than just a conditional jump,
515 then we cannot do conditional execution conversion on this block. */
516 if (! onlyjump_p (BB_END (test_bb)))
517 return false;
519 /* Collect the bounds of where we're to search, skipping any labels, jumps
520 and notes at the beginning and end of the block. Then count the total
521 number of insns and see if it is small enough to convert. */
522 then_start = first_active_insn (then_bb);
523 then_end = last_active_insn (then_bb, true);
524 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
525 n_insns = then_n_insns;
526 max = MAX_CONDITIONAL_EXECUTE;
528 if (else_bb)
530 int n_matching;
532 max *= 2;
533 else_start = first_active_insn (else_bb);
534 else_end = last_active_insn (else_bb, true);
535 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
536 n_insns += else_n_insns;
538 /* Look for matching sequences at the head and tail of the two blocks,
539 and limit the range of insns to be converted if possible. */
540 n_matching = flow_find_cross_jump (then_bb, else_bb,
541 &then_first_tail, &else_first_tail,
542 NULL);
543 if (then_first_tail == BB_HEAD (then_bb))
544 then_start = then_end = NULL;
545 if (else_first_tail == BB_HEAD (else_bb))
546 else_start = else_end = NULL;
548 if (n_matching > 0)
550 if (then_end)
551 then_end = find_active_insn_before (then_bb, then_first_tail);
552 if (else_end)
553 else_end = find_active_insn_before (else_bb, else_first_tail);
554 n_insns -= 2 * n_matching;
557 if (then_start
558 && else_start
559 && then_n_insns > n_matching
560 && else_n_insns > n_matching)
562 int longest_match = MIN (then_n_insns - n_matching,
563 else_n_insns - n_matching);
564 n_matching
565 = flow_find_head_matching_sequence (then_bb, else_bb,
566 &then_last_head,
567 &else_last_head,
568 longest_match);
570 if (n_matching > 0)
572 rtx_insn *insn;
574 /* We won't pass the insns in the head sequence to
575 cond_exec_process_insns, so we need to test them here
576 to make sure that they don't clobber the condition. */
577 for (insn = BB_HEAD (then_bb);
578 insn != NEXT_INSN (then_last_head);
579 insn = NEXT_INSN (insn))
580 if (!LABEL_P (insn) && !NOTE_P (insn)
581 && !DEBUG_INSN_P (insn)
582 && modified_in_p (test_expr, insn))
583 return false;
586 if (then_last_head == then_end)
587 then_start = then_end = NULL;
588 if (else_last_head == else_end)
589 else_start = else_end = NULL;
591 if (n_matching > 0)
593 if (then_start)
594 then_start = find_active_insn_after (then_bb, then_last_head);
595 if (else_start)
596 else_start = find_active_insn_after (else_bb, else_last_head);
597 n_insns -= 2 * n_matching;
602 if (n_insns > max)
603 return false;
605 /* Map test_expr/test_jump into the appropriate MD tests to use on
606 the conditionally executed code. */
608 true_expr = test_expr;
610 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
611 if (false_code != UNKNOWN)
612 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
613 XEXP (true_expr, 0), XEXP (true_expr, 1));
614 else
615 false_expr = NULL_RTX;
617 #ifdef IFCVT_MODIFY_TESTS
618 /* If the machine description needs to modify the tests, such as setting a
619 conditional execution register from a comparison, it can do so here. */
620 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
622 /* See if the conversion failed. */
623 if (!true_expr || !false_expr)
624 goto fail;
625 #endif
627 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
628 if (note)
630 true_prob_val = profile_probability::from_reg_br_prob_note (XINT (note, 0));
631 false_prob_val = true_prob_val.invert ();
633 else
635 true_prob_val = profile_probability::uninitialized ();
636 false_prob_val = profile_probability::uninitialized ();
639 /* If we have && or || tests, do them here. These tests are in the adjacent
640 blocks after the first block containing the test. */
641 if (ce_info->num_multiple_test_blocks > 0)
643 basic_block bb = test_bb;
644 basic_block last_test_bb = ce_info->last_test_bb;
646 if (! false_expr)
647 goto fail;
651 rtx_insn *start, *end;
652 rtx t, f;
653 enum rtx_code f_code;
655 bb = block_fallthru (bb);
656 start = first_active_insn (bb);
657 end = last_active_insn (bb, true);
658 if (start
659 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
660 false_prob_val, false))
661 goto fail;
663 /* If the conditional jump is more than just a conditional jump, then
664 we cannot do conditional execution conversion on this block. */
665 if (! onlyjump_p (BB_END (bb)))
666 goto fail;
668 /* Find the conditional jump and isolate the test. */
669 t = cond_exec_get_condition (BB_END (bb));
670 if (! t)
671 goto fail;
673 f_code = reversed_comparison_code (t, BB_END (bb));
674 if (f_code == UNKNOWN)
675 goto fail;
677 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
678 if (ce_info->and_and_p)
680 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
681 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
683 else
685 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
686 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
689 /* If the machine description needs to modify the tests, such as
690 setting a conditional execution register from a comparison, it can
691 do so here. */
692 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
693 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
695 /* See if the conversion failed. */
696 if (!t || !f)
697 goto fail;
698 #endif
700 true_expr = t;
701 false_expr = f;
703 while (bb != last_test_bb);
706 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
707 on then THEN block. */
708 then_mod_ok = (else_bb == NULL_BLOCK);
710 /* Go through the THEN and ELSE blocks converting the insns if possible
711 to conditional execution. */
713 if (then_end
714 && (! false_expr
715 || ! cond_exec_process_insns (ce_info, then_start, then_end,
716 false_expr, false_prob_val,
717 then_mod_ok)))
718 goto fail;
720 if (else_bb && else_end
721 && ! cond_exec_process_insns (ce_info, else_start, else_end,
722 true_expr, true_prob_val, true))
723 goto fail;
725 /* If we cannot apply the changes, fail. Do not go through the normal fail
726 processing, since apply_change_group will call cancel_changes. */
727 if (! apply_change_group ())
729 #ifdef IFCVT_MODIFY_CANCEL
730 /* Cancel any machine dependent changes. */
731 IFCVT_MODIFY_CANCEL (ce_info);
732 #endif
733 return false;
736 #ifdef IFCVT_MODIFY_FINAL
737 /* Do any machine dependent final modifications. */
738 IFCVT_MODIFY_FINAL (ce_info);
739 #endif
741 /* Conversion succeeded. */
742 if (dump_file)
743 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
744 n_insns, (n_insns == 1) ? " was" : "s were");
746 /* Merge the blocks! If we had matching sequences, make sure to delete one
747 copy at the appropriate location first: delete the copy in the THEN branch
748 for a tail sequence so that the remaining one is executed last for both
749 branches, and delete the copy in the ELSE branch for a head sequence so
750 that the remaining one is executed first for both branches. */
751 if (then_first_tail)
753 rtx_insn *from = then_first_tail;
754 if (!INSN_P (from))
755 from = find_active_insn_after (then_bb, from);
756 delete_insn_chain (from, get_last_bb_insn (then_bb), false);
758 if (else_last_head)
759 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
761 merge_if_block (ce_info);
762 cond_exec_changed_p = true;
763 return true;
765 fail:
766 #ifdef IFCVT_MODIFY_CANCEL
767 /* Cancel any machine dependent changes. */
768 IFCVT_MODIFY_CANCEL (ce_info);
769 #endif
771 cancel_changes (0);
772 return false;
775 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, bool, int);
776 static bool noce_try_move (struct noce_if_info *);
777 static bool noce_try_ifelse_collapse (struct noce_if_info *);
778 static bool noce_try_store_flag (struct noce_if_info *);
779 static bool noce_try_addcc (struct noce_if_info *);
780 static bool noce_try_store_flag_constants (struct noce_if_info *);
781 static bool noce_try_store_flag_mask (struct noce_if_info *);
782 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
783 rtx, rtx, rtx, rtx = NULL, rtx = NULL);
784 static bool noce_try_cmove (struct noce_if_info *);
785 static bool noce_try_cmove_arith (struct noce_if_info *);
786 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
787 static bool noce_try_minmax (struct noce_if_info *);
788 static bool noce_try_abs (struct noce_if_info *);
789 static bool noce_try_sign_mask (struct noce_if_info *);
791 /* Return the comparison code for reversed condition for IF_INFO,
792 or UNKNOWN if reversing the condition is not possible. */
794 static inline enum rtx_code
795 noce_reversed_cond_code (struct noce_if_info *if_info)
797 if (if_info->rev_cond)
798 return GET_CODE (if_info->rev_cond);
799 return reversed_comparison_code (if_info->cond, if_info->jump);
802 /* Return true if SEQ is a good candidate as a replacement for the
803 if-convertible sequence described in IF_INFO.
804 This is the default implementation that targets can override
805 through a target hook. */
807 bool
808 default_noce_conversion_profitable_p (rtx_insn *seq,
809 struct noce_if_info *if_info)
811 bool speed_p = if_info->speed_p;
813 /* Cost up the new sequence. */
814 unsigned int cost = seq_cost (seq, speed_p);
816 if (cost <= if_info->original_cost)
817 return true;
819 /* When compiling for size, we can make a reasonably accurately guess
820 at the size growth. When compiling for speed, use the maximum. */
821 return speed_p && cost <= if_info->max_seq_cost;
824 /* Helper function for noce_try_store_flag*. */
826 static rtx
827 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, bool reversep,
828 int normalize)
830 rtx cond = if_info->cond;
831 bool cond_complex;
832 enum rtx_code code;
834 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
835 || ! general_operand (XEXP (cond, 1), VOIDmode));
837 /* If earliest == jump, or when the condition is complex, try to
838 build the store_flag insn directly. */
840 if (cond_complex)
842 rtx set = pc_set (if_info->jump);
843 cond = XEXP (SET_SRC (set), 0);
844 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
845 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
846 reversep = !reversep;
847 if (if_info->then_else_reversed)
848 reversep = !reversep;
850 else if (reversep
851 && if_info->rev_cond
852 && general_operand (XEXP (if_info->rev_cond, 0), VOIDmode)
853 && general_operand (XEXP (if_info->rev_cond, 1), VOIDmode))
855 cond = if_info->rev_cond;
856 reversep = false;
859 if (reversep)
860 code = reversed_comparison_code (cond, if_info->jump);
861 else
862 code = GET_CODE (cond);
864 if ((if_info->cond_earliest == if_info->jump || cond_complex)
865 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
867 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
868 XEXP (cond, 1));
869 rtx set = gen_rtx_SET (x, src);
871 start_sequence ();
872 rtx_insn *insn = emit_insn (set);
874 if (recog_memoized (insn) >= 0)
876 rtx_insn *seq = get_insns ();
877 end_sequence ();
878 emit_insn (seq);
880 if_info->cond_earliest = if_info->jump;
882 return x;
885 end_sequence ();
888 /* Don't even try if the comparison operands or the mode of X are weird. */
889 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
890 return NULL_RTX;
892 return emit_store_flag (x, code, XEXP (cond, 0),
893 XEXP (cond, 1), VOIDmode,
894 (code == LTU || code == LEU
895 || code == GEU || code == GTU), normalize);
898 /* Return true if X can be safely forced into a register by copy_to_mode_reg
899 / force_operand. */
901 static bool
902 noce_can_force_operand (rtx x)
904 if (general_operand (x, VOIDmode))
905 return true;
906 if (SUBREG_P (x))
908 if (!noce_can_force_operand (SUBREG_REG (x)))
909 return false;
910 return true;
912 if (ARITHMETIC_P (x))
914 if (!noce_can_force_operand (XEXP (x, 0))
915 || !noce_can_force_operand (XEXP (x, 1)))
916 return false;
917 switch (GET_CODE (x))
919 case MULT:
920 case DIV:
921 case MOD:
922 case UDIV:
923 case UMOD:
924 return true;
925 default:
926 return code_to_optab (GET_CODE (x));
929 if (UNARY_P (x))
931 if (!noce_can_force_operand (XEXP (x, 0)))
932 return false;
933 switch (GET_CODE (x))
935 case ZERO_EXTEND:
936 case SIGN_EXTEND:
937 case TRUNCATE:
938 case FLOAT_EXTEND:
939 case FLOAT_TRUNCATE:
940 case FIX:
941 case UNSIGNED_FIX:
942 case FLOAT:
943 case UNSIGNED_FLOAT:
944 return true;
945 default:
946 return code_to_optab (GET_CODE (x));
949 return false;
952 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
953 X is the destination/target and Y is the value to copy. */
955 static void
956 noce_emit_move_insn (rtx x, rtx y)
958 machine_mode outmode;
959 rtx outer, inner;
960 poly_int64 bitpos;
962 if (GET_CODE (x) != STRICT_LOW_PART)
964 rtx_insn *seq, *insn;
965 rtx target;
966 optab ot;
968 start_sequence ();
969 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
970 otherwise construct a suitable SET pattern ourselves. */
971 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
972 ? emit_move_insn (x, y)
973 : emit_insn (gen_rtx_SET (x, y));
974 seq = get_insns ();
975 end_sequence ();
977 if (recog_memoized (insn) <= 0)
979 if (GET_CODE (x) == ZERO_EXTRACT)
981 rtx op = XEXP (x, 0);
982 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
983 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
985 /* store_bit_field expects START to be relative to
986 BYTES_BIG_ENDIAN and adjusts this value for machines with
987 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
988 invoke store_bit_field again it is necessary to have the START
989 value from the first call. */
990 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
992 if (MEM_P (op))
993 start = BITS_PER_UNIT - start - size;
994 else
996 gcc_assert (REG_P (op));
997 start = BITS_PER_WORD - start - size;
1001 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
1002 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y, false,
1003 false);
1004 return;
1007 switch (GET_RTX_CLASS (GET_CODE (y)))
1009 case RTX_UNARY:
1010 ot = code_to_optab (GET_CODE (y));
1011 if (ot && noce_can_force_operand (XEXP (y, 0)))
1013 start_sequence ();
1014 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
1015 if (target != NULL_RTX)
1017 if (target != x)
1018 emit_move_insn (x, target);
1019 seq = get_insns ();
1021 end_sequence ();
1023 break;
1025 case RTX_BIN_ARITH:
1026 case RTX_COMM_ARITH:
1027 ot = code_to_optab (GET_CODE (y));
1028 if (ot
1029 && noce_can_force_operand (XEXP (y, 0))
1030 && noce_can_force_operand (XEXP (y, 1)))
1032 start_sequence ();
1033 target = expand_binop (GET_MODE (y), ot,
1034 XEXP (y, 0), XEXP (y, 1),
1035 x, 0, OPTAB_DIRECT);
1036 if (target != NULL_RTX)
1038 if (target != x)
1039 emit_move_insn (x, target);
1040 seq = get_insns ();
1042 end_sequence ();
1044 break;
1046 default:
1047 break;
1051 emit_insn (seq);
1052 return;
1055 outer = XEXP (x, 0);
1056 inner = XEXP (outer, 0);
1057 outmode = GET_MODE (outer);
1058 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1059 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1060 0, 0, outmode, y, false, false);
1063 /* Return the CC reg if it is used in COND. */
1065 static rtx
1066 cc_in_cond (rtx cond)
1068 if (have_cbranchcc4 && cond
1069 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1070 return XEXP (cond, 0);
1072 return NULL_RTX;
1075 /* Return sequence of instructions generated by if conversion. This
1076 function calls end_sequence() to end the current stream, ensures
1077 that the instructions are unshared, recognizable non-jump insns.
1078 On failure, this function returns a NULL_RTX. */
1080 static rtx_insn *
1081 end_ifcvt_sequence (struct noce_if_info *if_info)
1083 rtx_insn *insn;
1084 rtx_insn *seq = get_insns ();
1085 rtx cc = cc_in_cond (if_info->cond);
1087 set_used_flags (if_info->x);
1088 set_used_flags (if_info->cond);
1089 set_used_flags (if_info->a);
1090 set_used_flags (if_info->b);
1092 for (insn = seq; insn; insn = NEXT_INSN (insn))
1093 set_used_flags (insn);
1095 unshare_all_rtl_in_chain (seq);
1096 end_sequence ();
1098 /* Make sure that all of the instructions emitted are recognizable,
1099 and that we haven't introduced a new jump instruction.
1100 As an exercise for the reader, build a general mechanism that
1101 allows proper placement of required clobbers. */
1102 for (insn = seq; insn; insn = NEXT_INSN (insn))
1103 if (JUMP_P (insn)
1104 || recog_memoized (insn) == -1
1105 /* Make sure new generated code does not clobber CC. */
1106 || (cc && set_of (cc, insn)))
1107 return NULL;
1109 return seq;
1112 /* Return true iff the then and else basic block (if it exists)
1113 consist of a single simple set instruction. */
1115 static bool
1116 noce_simple_bbs (struct noce_if_info *if_info)
1118 if (!if_info->then_simple)
1119 return false;
1121 if (if_info->else_bb)
1122 return if_info->else_simple;
1124 return true;
1127 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1128 "if (a == b) x = a; else x = b" into "x = b". */
1130 static bool
1131 noce_try_move (struct noce_if_info *if_info)
1133 rtx cond = if_info->cond;
1134 enum rtx_code code = GET_CODE (cond);
1135 rtx y;
1136 rtx_insn *seq;
1138 if (code != NE && code != EQ)
1139 return false;
1141 if (!noce_simple_bbs (if_info))
1142 return false;
1144 /* This optimization isn't valid if either A or B could be a NaN
1145 or a signed zero. */
1146 if (HONOR_NANS (if_info->x)
1147 || HONOR_SIGNED_ZEROS (if_info->x))
1148 return false;
1150 /* Check whether the operands of the comparison are A and in
1151 either order. */
1152 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1153 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1154 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1155 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1157 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1158 return false;
1160 y = (code == EQ) ? if_info->a : if_info->b;
1162 /* Avoid generating the move if the source is the destination. */
1163 if (! rtx_equal_p (if_info->x, y))
1165 start_sequence ();
1166 noce_emit_move_insn (if_info->x, y);
1167 seq = end_ifcvt_sequence (if_info);
1168 if (!seq)
1169 return false;
1171 emit_insn_before_setloc (seq, if_info->jump,
1172 INSN_LOCATION (if_info->insn_a));
1174 if_info->transform_name = "noce_try_move";
1175 return true;
1177 return false;
1180 /* Try forming an IF_THEN_ELSE (cond, b, a) and collapsing that
1181 through simplify_rtx. Sometimes that can eliminate the IF_THEN_ELSE.
1182 If that is the case, emit the result into x. */
1184 static bool
1185 noce_try_ifelse_collapse (struct noce_if_info * if_info)
1187 if (!noce_simple_bbs (if_info))
1188 return false;
1190 machine_mode mode = GET_MODE (if_info->x);
1191 rtx if_then_else = simplify_gen_ternary (IF_THEN_ELSE, mode, mode,
1192 if_info->cond, if_info->b,
1193 if_info->a);
1195 if (GET_CODE (if_then_else) == IF_THEN_ELSE)
1196 return false;
1198 rtx_insn *seq;
1199 start_sequence ();
1200 noce_emit_move_insn (if_info->x, if_then_else);
1201 seq = end_ifcvt_sequence (if_info);
1202 if (!seq)
1203 return false;
1205 emit_insn_before_setloc (seq, if_info->jump,
1206 INSN_LOCATION (if_info->insn_a));
1208 if_info->transform_name = "noce_try_ifelse_collapse";
1209 return true;
1213 /* Convert "if (test) x = 1; else x = 0".
1215 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1216 tried in noce_try_store_flag_constants after noce_try_cmove has had
1217 a go at the conversion. */
1219 static bool
1220 noce_try_store_flag (struct noce_if_info *if_info)
1222 bool reversep;
1223 rtx target;
1224 rtx_insn *seq;
1226 if (!noce_simple_bbs (if_info))
1227 return false;
1229 if (CONST_INT_P (if_info->b)
1230 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1231 && if_info->a == const0_rtx)
1232 reversep = false;
1233 else if (if_info->b == const0_rtx
1234 && CONST_INT_P (if_info->a)
1235 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1236 && noce_reversed_cond_code (if_info) != UNKNOWN)
1237 reversep = true;
1238 else
1239 return false;
1241 start_sequence ();
1243 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1244 if (target)
1246 if (target != if_info->x)
1247 noce_emit_move_insn (if_info->x, target);
1249 seq = end_ifcvt_sequence (if_info);
1250 if (! seq)
1251 return false;
1253 emit_insn_before_setloc (seq, if_info->jump,
1254 INSN_LOCATION (if_info->insn_a));
1255 if_info->transform_name = "noce_try_store_flag";
1256 return true;
1258 else
1260 end_sequence ();
1261 return false;
1266 /* Convert "if (test) x = -A; else x = A" into
1267 x = A; if (test) x = -x if the machine can do the
1268 conditional negate form of this cheaply.
1269 Try this before noce_try_cmove that will just load the
1270 immediates into two registers and do a conditional select
1271 between them. If the target has a conditional negate or
1272 conditional invert operation we can save a potentially
1273 expensive constant synthesis. */
1275 static bool
1276 noce_try_inverse_constants (struct noce_if_info *if_info)
1278 if (!noce_simple_bbs (if_info))
1279 return false;
1281 if (!CONST_INT_P (if_info->a)
1282 || !CONST_INT_P (if_info->b)
1283 || !REG_P (if_info->x))
1284 return false;
1286 machine_mode mode = GET_MODE (if_info->x);
1288 HOST_WIDE_INT val_a = INTVAL (if_info->a);
1289 HOST_WIDE_INT val_b = INTVAL (if_info->b);
1291 rtx cond = if_info->cond;
1293 rtx x = if_info->x;
1294 rtx target;
1296 start_sequence ();
1298 rtx_code code;
1299 if (val_b != HOST_WIDE_INT_MIN && val_a == -val_b)
1300 code = NEG;
1301 else if (val_a == ~val_b)
1302 code = NOT;
1303 else
1305 end_sequence ();
1306 return false;
1309 rtx tmp = gen_reg_rtx (mode);
1310 noce_emit_move_insn (tmp, if_info->a);
1312 target = emit_conditional_neg_or_complement (x, code, mode, cond, tmp, tmp);
1314 if (target)
1316 rtx_insn *seq = get_insns ();
1318 if (!seq)
1320 end_sequence ();
1321 return false;
1324 if (target != if_info->x)
1325 noce_emit_move_insn (if_info->x, target);
1327 seq = end_ifcvt_sequence (if_info);
1329 if (!seq)
1330 return false;
1332 emit_insn_before_setloc (seq, if_info->jump,
1333 INSN_LOCATION (if_info->insn_a));
1334 if_info->transform_name = "noce_try_inverse_constants";
1335 return true;
1338 end_sequence ();
1339 return false;
1343 /* Convert "if (test) x = a; else x = b", for A and B constant.
1344 Also allow A = y + c1, B = y + c2, with a common y between A
1345 and B. */
1347 static bool
1348 noce_try_store_flag_constants (struct noce_if_info *if_info)
1350 rtx target;
1351 rtx_insn *seq;
1352 bool reversep;
1353 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1354 int normalize;
1355 bool can_reverse;
1356 machine_mode mode = GET_MODE (if_info->x);
1357 rtx common = NULL_RTX;
1359 rtx a = if_info->a;
1360 rtx b = if_info->b;
1362 /* Handle cases like x := test ? y + 3 : y + 4. */
1363 if (GET_CODE (a) == PLUS
1364 && GET_CODE (b) == PLUS
1365 && CONST_INT_P (XEXP (a, 1))
1366 && CONST_INT_P (XEXP (b, 1))
1367 && rtx_equal_p (XEXP (a, 0), XEXP (b, 0))
1368 /* Allow expressions that are not using the result or plain
1369 registers where we handle overlap below. */
1370 && (REG_P (XEXP (a, 0))
1371 || (noce_operand_ok (XEXP (a, 0))
1372 && ! reg_overlap_mentioned_p (if_info->x, XEXP (a, 0)))))
1374 common = XEXP (a, 0);
1375 a = XEXP (a, 1);
1376 b = XEXP (b, 1);
1379 if (!noce_simple_bbs (if_info))
1380 return false;
1382 if (CONST_INT_P (a)
1383 && CONST_INT_P (b))
1385 ifalse = INTVAL (a);
1386 itrue = INTVAL (b);
1387 bool subtract_flag_p = false;
1389 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1390 /* Make sure we can represent the difference between the two values. */
1391 if ((diff > 0)
1392 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1393 return false;
1395 diff = trunc_int_for_mode (diff, mode);
1397 can_reverse = noce_reversed_cond_code (if_info) != UNKNOWN;
1398 reversep = false;
1399 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1401 normalize = 0;
1402 /* We could collapse these cases but it is easier to follow the
1403 diff/STORE_FLAG_VALUE combinations when they are listed
1404 explicitly. */
1406 /* test ? 3 : 4
1407 => 4 + (test != 0). */
1408 if (diff < 0 && STORE_FLAG_VALUE < 0)
1409 reversep = false;
1410 /* test ? 4 : 3
1411 => can_reverse | 4 + (test == 0)
1412 !can_reverse | 3 - (test != 0). */
1413 else if (diff > 0 && STORE_FLAG_VALUE < 0)
1415 reversep = can_reverse;
1416 subtract_flag_p = !can_reverse;
1417 /* If we need to subtract the flag and we have PLUS-immediate
1418 A and B then it is unlikely to be beneficial to play tricks
1419 here. */
1420 if (subtract_flag_p && common)
1421 return false;
1423 /* test ? 3 : 4
1424 => can_reverse | 3 + (test == 0)
1425 !can_reverse | 4 - (test != 0). */
1426 else if (diff < 0 && STORE_FLAG_VALUE > 0)
1428 reversep = can_reverse;
1429 subtract_flag_p = !can_reverse;
1430 /* If we need to subtract the flag and we have PLUS-immediate
1431 A and B then it is unlikely to be beneficial to play tricks
1432 here. */
1433 if (subtract_flag_p && common)
1434 return false;
1436 /* test ? 4 : 3
1437 => 4 + (test != 0). */
1438 else if (diff > 0 && STORE_FLAG_VALUE > 0)
1439 reversep = false;
1440 else
1441 gcc_unreachable ();
1443 /* Is this (cond) ? 2^n : 0? */
1444 else if (ifalse == 0 && pow2p_hwi (itrue)
1445 && STORE_FLAG_VALUE == 1)
1446 normalize = 1;
1447 /* Is this (cond) ? 0 : 2^n? */
1448 else if (itrue == 0 && pow2p_hwi (ifalse) && can_reverse
1449 && STORE_FLAG_VALUE == 1)
1451 normalize = 1;
1452 reversep = true;
1454 /* Is this (cond) ? -1 : x? */
1455 else if (itrue == -1
1456 && STORE_FLAG_VALUE == -1)
1457 normalize = -1;
1458 /* Is this (cond) ? x : -1? */
1459 else if (ifalse == -1 && can_reverse
1460 && STORE_FLAG_VALUE == -1)
1462 normalize = -1;
1463 reversep = true;
1465 else
1466 return false;
1468 if (reversep)
1470 std::swap (itrue, ifalse);
1471 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1474 start_sequence ();
1476 /* If we have x := test ? x + 3 : x + 4 then move the original
1477 x out of the way while we store flags. */
1478 if (common && rtx_equal_p (common, if_info->x))
1480 common = gen_reg_rtx (mode);
1481 noce_emit_move_insn (common, if_info->x);
1484 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1485 if (! target)
1487 end_sequence ();
1488 return false;
1491 /* if (test) x = 3; else x = 4;
1492 => x = 3 + (test == 0); */
1493 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1495 /* Add the common part now. This may allow combine to merge this
1496 with the store flag operation earlier into some sort of conditional
1497 increment/decrement if the target allows it. */
1498 if (common)
1499 target = expand_simple_binop (mode, PLUS,
1500 target, common,
1501 target, 0, OPTAB_WIDEN);
1503 /* Always use ifalse here. It should have been swapped with itrue
1504 when appropriate when reversep is true. */
1505 target = expand_simple_binop (mode, subtract_flag_p ? MINUS : PLUS,
1506 gen_int_mode (ifalse, mode), target,
1507 if_info->x, 0, OPTAB_WIDEN);
1509 /* Other cases are not beneficial when the original A and B are PLUS
1510 expressions. */
1511 else if (common)
1513 end_sequence ();
1514 return false;
1516 /* if (test) x = 8; else x = 0;
1517 => x = (test != 0) << 3; */
1518 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1520 target = expand_simple_binop (mode, ASHIFT,
1521 target, GEN_INT (tmp), if_info->x, 0,
1522 OPTAB_WIDEN);
1525 /* if (test) x = -1; else x = b;
1526 => x = -(test != 0) | b; */
1527 else if (itrue == -1)
1529 target = expand_simple_binop (mode, IOR,
1530 target, gen_int_mode (ifalse, mode),
1531 if_info->x, 0, OPTAB_WIDEN);
1533 else
1535 end_sequence ();
1536 return false;
1539 if (! target)
1541 end_sequence ();
1542 return false;
1545 if (target != if_info->x)
1546 noce_emit_move_insn (if_info->x, target);
1548 seq = end_ifcvt_sequence (if_info);
1549 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1550 return false;
1552 emit_insn_before_setloc (seq, if_info->jump,
1553 INSN_LOCATION (if_info->insn_a));
1554 if_info->transform_name = "noce_try_store_flag_constants";
1556 return true;
1559 return false;
1562 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1563 similarly for "foo--". */
1565 static bool
1566 noce_try_addcc (struct noce_if_info *if_info)
1568 rtx target;
1569 rtx_insn *seq;
1570 bool subtract;
1571 int normalize;
1573 if (!noce_simple_bbs (if_info))
1574 return false;
1576 if (GET_CODE (if_info->a) == PLUS
1577 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1578 && noce_reversed_cond_code (if_info) != UNKNOWN)
1580 rtx cond = if_info->rev_cond;
1581 enum rtx_code code;
1583 if (cond == NULL_RTX)
1585 cond = if_info->cond;
1586 code = reversed_comparison_code (cond, if_info->jump);
1588 else
1589 code = GET_CODE (cond);
1591 /* First try to use addcc pattern. */
1592 if (general_operand (XEXP (cond, 0), VOIDmode)
1593 && general_operand (XEXP (cond, 1), VOIDmode))
1595 start_sequence ();
1596 target = emit_conditional_add (if_info->x, code,
1597 XEXP (cond, 0),
1598 XEXP (cond, 1),
1599 VOIDmode,
1600 if_info->b,
1601 XEXP (if_info->a, 1),
1602 GET_MODE (if_info->x),
1603 (code == LTU || code == GEU
1604 || code == LEU || code == GTU));
1605 if (target)
1607 if (target != if_info->x)
1608 noce_emit_move_insn (if_info->x, target);
1610 seq = end_ifcvt_sequence (if_info);
1611 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1612 return false;
1614 emit_insn_before_setloc (seq, if_info->jump,
1615 INSN_LOCATION (if_info->insn_a));
1616 if_info->transform_name = "noce_try_addcc";
1618 return true;
1620 end_sequence ();
1623 /* If that fails, construct conditional increment or decrement using
1624 setcc. We're changing a branch and an increment to a comparison and
1625 an ADD/SUB. */
1626 if (XEXP (if_info->a, 1) == const1_rtx
1627 || XEXP (if_info->a, 1) == constm1_rtx)
1629 start_sequence ();
1630 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1631 subtract = false, normalize = 0;
1632 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1633 subtract = true, normalize = 0;
1634 else
1635 subtract = false, normalize = INTVAL (XEXP (if_info->a, 1));
1638 target = noce_emit_store_flag (if_info,
1639 gen_reg_rtx (GET_MODE (if_info->x)),
1640 true, normalize);
1642 if (target)
1643 target = expand_simple_binop (GET_MODE (if_info->x),
1644 subtract ? MINUS : PLUS,
1645 if_info->b, target, if_info->x,
1646 0, OPTAB_WIDEN);
1647 if (target)
1649 if (target != if_info->x)
1650 noce_emit_move_insn (if_info->x, target);
1652 seq = end_ifcvt_sequence (if_info);
1653 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1654 return false;
1656 emit_insn_before_setloc (seq, if_info->jump,
1657 INSN_LOCATION (if_info->insn_a));
1658 if_info->transform_name = "noce_try_addcc";
1659 return true;
1661 end_sequence ();
1665 return false;
1668 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1670 static bool
1671 noce_try_store_flag_mask (struct noce_if_info *if_info)
1673 rtx target;
1674 rtx_insn *seq;
1675 bool reversep;
1677 if (!noce_simple_bbs (if_info))
1678 return false;
1680 reversep = false;
1682 if ((if_info->a == const0_rtx
1683 && (REG_P (if_info->b) || rtx_equal_p (if_info->b, if_info->x)))
1684 || ((reversep = (noce_reversed_cond_code (if_info) != UNKNOWN))
1685 && if_info->b == const0_rtx
1686 && (REG_P (if_info->a) || rtx_equal_p (if_info->a, if_info->x))))
1688 start_sequence ();
1689 target = noce_emit_store_flag (if_info,
1690 gen_reg_rtx (GET_MODE (if_info->x)),
1691 reversep, -1);
1692 if (target)
1693 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1694 reversep ? if_info->a : if_info->b,
1695 target, if_info->x, 0,
1696 OPTAB_WIDEN);
1698 if (target)
1700 if (target != if_info->x)
1701 noce_emit_move_insn (if_info->x, target);
1703 seq = end_ifcvt_sequence (if_info);
1704 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1705 return false;
1707 emit_insn_before_setloc (seq, if_info->jump,
1708 INSN_LOCATION (if_info->insn_a));
1709 if_info->transform_name = "noce_try_store_flag_mask";
1711 return true;
1714 end_sequence ();
1717 return false;
1720 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1722 static rtx
1723 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1724 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue, rtx cc_cmp,
1725 rtx rev_cc_cmp)
1727 rtx target ATTRIBUTE_UNUSED;
1728 bool unsignedp ATTRIBUTE_UNUSED;
1730 /* If earliest == jump, try to build the cmove insn directly.
1731 This is helpful when combine has created some complex condition
1732 (like for alpha's cmovlbs) that we can't hope to regenerate
1733 through the normal interface. */
1735 if (if_info->cond_earliest == if_info->jump)
1737 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1738 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1739 cond, vtrue, vfalse);
1740 rtx set = gen_rtx_SET (x, if_then_else);
1742 start_sequence ();
1743 rtx_insn *insn = emit_insn (set);
1745 if (recog_memoized (insn) >= 0)
1747 rtx_insn *seq = get_insns ();
1748 end_sequence ();
1749 emit_insn (seq);
1751 return x;
1754 end_sequence ();
1757 unsignedp = (code == LTU || code == GEU
1758 || code == LEU || code == GTU);
1760 if (cc_cmp != NULL_RTX && rev_cc_cmp != NULL_RTX)
1761 target = emit_conditional_move (x, cc_cmp, rev_cc_cmp,
1762 vtrue, vfalse, GET_MODE (x));
1763 else
1765 /* Don't even try if the comparison operands are weird
1766 except that the target supports cbranchcc4. */
1767 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1768 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1770 if (!have_cbranchcc4
1771 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1772 || cmp_b != const0_rtx)
1773 return NULL_RTX;
1776 target = emit_conditional_move (x, { code, cmp_a, cmp_b, VOIDmode },
1777 vtrue, vfalse, GET_MODE (x),
1778 unsignedp);
1781 if (target)
1782 return target;
1784 /* We might be faced with a situation like:
1786 x = (reg:M TARGET)
1787 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1788 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1790 We can't do a conditional move in mode M, but it's possible that we
1791 could do a conditional move in mode N instead and take a subreg of
1792 the result.
1794 If we can't create new pseudos, though, don't bother. */
1795 if (reload_completed)
1796 return NULL_RTX;
1798 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1800 rtx reg_vtrue = SUBREG_REG (vtrue);
1801 rtx reg_vfalse = SUBREG_REG (vfalse);
1802 poly_uint64 byte_vtrue = SUBREG_BYTE (vtrue);
1803 poly_uint64 byte_vfalse = SUBREG_BYTE (vfalse);
1804 rtx promoted_target;
1806 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1807 || maybe_ne (byte_vtrue, byte_vfalse)
1808 || (SUBREG_PROMOTED_VAR_P (vtrue)
1809 != SUBREG_PROMOTED_VAR_P (vfalse))
1810 || (SUBREG_PROMOTED_GET (vtrue)
1811 != SUBREG_PROMOTED_GET (vfalse)))
1812 return NULL_RTX;
1814 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1816 target = emit_conditional_move (promoted_target,
1817 { code, cmp_a, cmp_b, VOIDmode },
1818 reg_vtrue, reg_vfalse,
1819 GET_MODE (reg_vtrue), unsignedp);
1820 /* Nope, couldn't do it in that mode either. */
1821 if (!target)
1822 return NULL_RTX;
1824 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1825 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1826 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1827 emit_move_insn (x, target);
1828 return x;
1830 else
1831 return NULL_RTX;
1834 /* Try only simple constants and registers here. More complex cases
1835 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1836 has had a go at it. */
1838 static bool
1839 noce_try_cmove (struct noce_if_info *if_info)
1841 enum rtx_code code;
1842 rtx target;
1843 rtx_insn *seq;
1845 if (!noce_simple_bbs (if_info))
1846 return false;
1848 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1849 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1851 start_sequence ();
1853 code = GET_CODE (if_info->cond);
1854 target = noce_emit_cmove (if_info, if_info->x, code,
1855 XEXP (if_info->cond, 0),
1856 XEXP (if_info->cond, 1),
1857 if_info->a, if_info->b);
1859 if (target)
1861 if (target != if_info->x)
1862 noce_emit_move_insn (if_info->x, target);
1864 seq = end_ifcvt_sequence (if_info);
1865 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1866 return false;
1868 emit_insn_before_setloc (seq, if_info->jump,
1869 INSN_LOCATION (if_info->insn_a));
1870 if_info->transform_name = "noce_try_cmove";
1872 return true;
1874 /* If both a and b are constants try a last-ditch transformation:
1875 if (test) x = a; else x = b;
1876 => x = (-(test != 0) & (b - a)) + a;
1877 Try this only if the target-specific expansion above has failed.
1878 The target-specific expander may want to generate sequences that
1879 we don't know about, so give them a chance before trying this
1880 approach. */
1881 else if (!targetm.have_conditional_execution ()
1882 && CONST_INT_P (if_info->a) && CONST_INT_P (if_info->b))
1884 machine_mode mode = GET_MODE (if_info->x);
1885 HOST_WIDE_INT ifalse = INTVAL (if_info->a);
1886 HOST_WIDE_INT itrue = INTVAL (if_info->b);
1887 rtx target = noce_emit_store_flag (if_info, if_info->x, false, -1);
1888 if (!target)
1890 end_sequence ();
1891 return false;
1894 HOST_WIDE_INT diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1895 /* Make sure we can represent the difference
1896 between the two values. */
1897 if ((diff > 0)
1898 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1900 end_sequence ();
1901 return false;
1904 diff = trunc_int_for_mode (diff, mode);
1905 target = expand_simple_binop (mode, AND,
1906 target, gen_int_mode (diff, mode),
1907 if_info->x, 0, OPTAB_WIDEN);
1908 if (target)
1909 target = expand_simple_binop (mode, PLUS,
1910 target, gen_int_mode (ifalse, mode),
1911 if_info->x, 0, OPTAB_WIDEN);
1912 if (target)
1914 if (target != if_info->x)
1915 noce_emit_move_insn (if_info->x, target);
1917 seq = end_ifcvt_sequence (if_info);
1918 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1919 return false;
1921 emit_insn_before_setloc (seq, if_info->jump,
1922 INSN_LOCATION (if_info->insn_a));
1923 if_info->transform_name = "noce_try_cmove";
1924 return true;
1926 else
1928 end_sequence ();
1929 return false;
1932 else
1933 end_sequence ();
1936 return false;
1939 /* Return true if X contains a conditional code mode rtx. */
1941 static bool
1942 contains_ccmode_rtx_p (rtx x)
1944 subrtx_iterator::array_type array;
1945 FOR_EACH_SUBRTX (iter, array, x, ALL)
1946 if (GET_MODE_CLASS (GET_MODE (*iter)) == MODE_CC)
1947 return true;
1949 return false;
1952 /* Helper for bb_valid_for_noce_process_p. Validate that
1953 the rtx insn INSN is a single set that does not set
1954 the conditional register CC and is in general valid for
1955 if-conversion. */
1957 static bool
1958 insn_valid_noce_process_p (rtx_insn *insn, rtx cc)
1960 if (!insn
1961 || !NONJUMP_INSN_P (insn)
1962 || (cc && set_of (cc, insn)))
1963 return false;
1965 rtx sset = single_set (insn);
1967 /* Currently support only simple single sets in test_bb. */
1968 if (!sset
1969 || !noce_operand_ok (SET_DEST (sset))
1970 || contains_ccmode_rtx_p (SET_DEST (sset))
1971 || !noce_operand_ok (SET_SRC (sset)))
1972 return false;
1974 return true;
1978 /* Return true iff the registers that the insns in BB_A set do not get
1979 used in BB_B. If TO_RENAME is non-NULL then it is a location that will be
1980 renamed later by the caller and so conflicts on it should be ignored
1981 in this function. */
1983 static bool
1984 bbs_ok_for_cmove_arith (basic_block bb_a, basic_block bb_b, rtx to_rename)
1986 rtx_insn *a_insn;
1987 bitmap bba_sets = BITMAP_ALLOC (&reg_obstack);
1989 df_ref def;
1990 df_ref use;
1992 FOR_BB_INSNS (bb_a, a_insn)
1994 if (!active_insn_p (a_insn))
1995 continue;
1997 rtx sset_a = single_set (a_insn);
1999 if (!sset_a)
2001 BITMAP_FREE (bba_sets);
2002 return false;
2004 /* Record all registers that BB_A sets. */
2005 FOR_EACH_INSN_DEF (def, a_insn)
2006 if (!(to_rename && DF_REF_REG (def) == to_rename))
2007 bitmap_set_bit (bba_sets, DF_REF_REGNO (def));
2010 rtx_insn *b_insn;
2012 FOR_BB_INSNS (bb_b, b_insn)
2014 if (!active_insn_p (b_insn))
2015 continue;
2017 rtx sset_b = single_set (b_insn);
2019 if (!sset_b)
2021 BITMAP_FREE (bba_sets);
2022 return false;
2025 /* Make sure this is a REG and not some instance
2026 of ZERO_EXTRACT or non-paradoxical SUBREG or other dangerous stuff.
2027 If we have a memory destination then we have a pair of simple
2028 basic blocks performing an operation of the form [addr] = c ? a : b.
2029 bb_valid_for_noce_process_p will have ensured that these are
2030 the only stores present. In that case [addr] should be the location
2031 to be renamed. Assert that the callers set this up properly. */
2032 if (MEM_P (SET_DEST (sset_b)))
2033 gcc_assert (rtx_equal_p (SET_DEST (sset_b), to_rename));
2034 else if (!REG_P (SET_DEST (sset_b))
2035 && !paradoxical_subreg_p (SET_DEST (sset_b)))
2037 BITMAP_FREE (bba_sets);
2038 return false;
2041 /* If the insn uses a reg set in BB_A return false. */
2042 FOR_EACH_INSN_USE (use, b_insn)
2044 if (bitmap_bit_p (bba_sets, DF_REF_REGNO (use)))
2046 BITMAP_FREE (bba_sets);
2047 return false;
2053 BITMAP_FREE (bba_sets);
2054 return true;
2057 /* Emit copies of all the active instructions in BB except the last.
2058 This is a helper for noce_try_cmove_arith. */
2060 static void
2061 noce_emit_all_but_last (basic_block bb)
2063 rtx_insn *last = last_active_insn (bb, false);
2064 rtx_insn *insn;
2065 FOR_BB_INSNS (bb, insn)
2067 if (insn != last && active_insn_p (insn))
2069 rtx_insn *to_emit = as_a <rtx_insn *> (copy_rtx (insn));
2071 emit_insn (PATTERN (to_emit));
2076 /* Helper for noce_try_cmove_arith. Emit the pattern TO_EMIT and return
2077 the resulting insn or NULL if it's not a valid insn. */
2079 static rtx_insn *
2080 noce_emit_insn (rtx to_emit)
2082 gcc_assert (to_emit);
2083 rtx_insn *insn = emit_insn (to_emit);
2085 if (recog_memoized (insn) < 0)
2086 return NULL;
2088 return insn;
2091 /* Helper for noce_try_cmove_arith. Emit a copy of the insns up to
2092 and including the penultimate one in BB if it is not simple
2093 (as indicated by SIMPLE). Then emit LAST_INSN as the last
2094 insn in the block. The reason for that is that LAST_INSN may
2095 have been modified by the preparation in noce_try_cmove_arith. */
2097 static bool
2098 noce_emit_bb (rtx last_insn, basic_block bb, bool simple)
2100 if (bb && !simple)
2101 noce_emit_all_but_last (bb);
2103 if (last_insn && !noce_emit_insn (last_insn))
2104 return false;
2106 return true;
2109 /* Try more complex cases involving conditional_move. */
2111 static bool
2112 noce_try_cmove_arith (struct noce_if_info *if_info)
2114 rtx a = if_info->a;
2115 rtx b = if_info->b;
2116 rtx x = if_info->x;
2117 rtx orig_a, orig_b;
2118 rtx_insn *insn_a, *insn_b;
2119 bool a_simple = if_info->then_simple;
2120 bool b_simple = if_info->else_simple;
2121 basic_block then_bb = if_info->then_bb;
2122 basic_block else_bb = if_info->else_bb;
2123 rtx target;
2124 bool is_mem = false;
2125 enum rtx_code code;
2126 rtx cond = if_info->cond;
2127 rtx_insn *ifcvt_seq;
2129 /* A conditional move from two memory sources is equivalent to a
2130 conditional on their addresses followed by a load. Don't do this
2131 early because it'll screw alias analysis. Note that we've
2132 already checked for no side effects. */
2133 if (cse_not_expected
2134 && MEM_P (a) && MEM_P (b)
2135 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b))
2137 machine_mode address_mode = get_address_mode (a);
2139 a = XEXP (a, 0);
2140 b = XEXP (b, 0);
2141 x = gen_reg_rtx (address_mode);
2142 is_mem = true;
2145 /* ??? We could handle this if we knew that a load from A or B could
2146 not trap or fault. This is also true if we've already loaded
2147 from the address along the path from ENTRY. */
2148 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
2149 return false;
2151 /* if (test) x = a + b; else x = c - d;
2152 => y = a + b;
2153 x = c - d;
2154 if (test)
2155 x = y;
2158 code = GET_CODE (cond);
2159 insn_a = if_info->insn_a;
2160 insn_b = if_info->insn_b;
2162 machine_mode x_mode = GET_MODE (x);
2164 if (!can_conditionally_move_p (x_mode))
2165 return false;
2167 /* Possibly rearrange operands to make things come out more natural. */
2168 if (noce_reversed_cond_code (if_info) != UNKNOWN)
2170 bool reversep = false;
2171 if (rtx_equal_p (b, x))
2172 reversep = true;
2173 else if (general_operand (b, GET_MODE (b)))
2174 reversep = true;
2176 if (reversep)
2178 if (if_info->rev_cond)
2180 cond = if_info->rev_cond;
2181 code = GET_CODE (cond);
2183 else
2184 code = reversed_comparison_code (cond, if_info->jump);
2185 std::swap (a, b);
2186 std::swap (insn_a, insn_b);
2187 std::swap (a_simple, b_simple);
2188 std::swap (then_bb, else_bb);
2192 if (then_bb && else_bb
2193 && (!bbs_ok_for_cmove_arith (then_bb, else_bb, if_info->orig_x)
2194 || !bbs_ok_for_cmove_arith (else_bb, then_bb, if_info->orig_x)))
2195 return false;
2197 start_sequence ();
2199 /* If one of the blocks is empty then the corresponding B or A value
2200 came from the test block. The non-empty complex block that we will
2201 emit might clobber the register used by B or A, so move it to a pseudo
2202 first. */
2204 rtx tmp_a = NULL_RTX;
2205 rtx tmp_b = NULL_RTX;
2207 if (b_simple || !else_bb)
2208 tmp_b = gen_reg_rtx (x_mode);
2210 if (a_simple || !then_bb)
2211 tmp_a = gen_reg_rtx (x_mode);
2213 orig_a = a;
2214 orig_b = b;
2216 rtx emit_a = NULL_RTX;
2217 rtx emit_b = NULL_RTX;
2218 rtx_insn *tmp_insn = NULL;
2219 bool modified_in_a = false;
2220 bool modified_in_b = false;
2221 /* If either operand is complex, load it into a register first.
2222 The best way to do this is to copy the original insn. In this
2223 way we preserve any clobbers etc that the insn may have had.
2224 This is of course not possible in the IS_MEM case. */
2226 if (! general_operand (a, GET_MODE (a)) || tmp_a)
2229 if (is_mem)
2231 rtx reg = gen_reg_rtx (GET_MODE (a));
2232 emit_a = gen_rtx_SET (reg, a);
2234 else
2236 if (insn_a)
2238 a = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2240 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
2241 rtx set = single_set (copy_of_a);
2242 SET_DEST (set) = a;
2244 emit_a = PATTERN (copy_of_a);
2246 else
2248 rtx tmp_reg = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2249 emit_a = gen_rtx_SET (tmp_reg, a);
2250 a = tmp_reg;
2255 if (! general_operand (b, GET_MODE (b)) || tmp_b)
2257 if (is_mem)
2259 rtx reg = gen_reg_rtx (GET_MODE (b));
2260 emit_b = gen_rtx_SET (reg, b);
2262 else
2264 if (insn_b)
2266 b = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2267 rtx_insn *copy_of_b = as_a <rtx_insn *> (copy_rtx (insn_b));
2268 rtx set = single_set (copy_of_b);
2270 SET_DEST (set) = b;
2271 emit_b = PATTERN (copy_of_b);
2273 else
2275 rtx tmp_reg = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2276 emit_b = gen_rtx_SET (tmp_reg, b);
2277 b = tmp_reg;
2282 modified_in_a = emit_a != NULL_RTX && modified_in_p (orig_b, emit_a);
2283 if (tmp_b && then_bb)
2285 FOR_BB_INSNS (then_bb, tmp_insn)
2286 /* Don't check inside insn_a. We will have changed it to emit_a
2287 with a destination that doesn't conflict. */
2288 if (!(insn_a && tmp_insn == insn_a)
2289 && modified_in_p (orig_b, tmp_insn))
2291 modified_in_a = true;
2292 break;
2297 modified_in_b = emit_b != NULL_RTX && modified_in_p (orig_a, emit_b);
2298 if (tmp_a && else_bb)
2300 FOR_BB_INSNS (else_bb, tmp_insn)
2301 /* Don't check inside insn_b. We will have changed it to emit_b
2302 with a destination that doesn't conflict. */
2303 if (!(insn_b && tmp_insn == insn_b)
2304 && modified_in_p (orig_a, tmp_insn))
2306 modified_in_b = true;
2307 break;
2311 /* If insn to set up A clobbers any registers B depends on, try to
2312 swap insn that sets up A with the one that sets up B. If even
2313 that doesn't help, punt. */
2314 if (modified_in_a && !modified_in_b)
2316 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2317 goto end_seq_and_fail;
2319 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2320 goto end_seq_and_fail;
2322 else if (!modified_in_a)
2324 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2325 goto end_seq_and_fail;
2327 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2328 goto end_seq_and_fail;
2330 else
2331 goto end_seq_and_fail;
2333 target = noce_emit_cmove (if_info, x, code, XEXP (cond, 0), XEXP (cond, 1),
2334 a, b);
2336 if (! target)
2337 goto end_seq_and_fail;
2339 /* If we're handling a memory for above, emit the load now. */
2340 if (is_mem)
2342 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
2344 /* Copy over flags as appropriate. */
2345 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
2346 MEM_VOLATILE_P (mem) = 1;
2347 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
2348 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
2349 set_mem_align (mem,
2350 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
2352 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
2353 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
2355 noce_emit_move_insn (if_info->x, mem);
2357 else if (target != x)
2358 noce_emit_move_insn (x, target);
2360 ifcvt_seq = end_ifcvt_sequence (if_info);
2361 if (!ifcvt_seq || !targetm.noce_conversion_profitable_p (ifcvt_seq, if_info))
2362 return false;
2364 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
2365 INSN_LOCATION (if_info->insn_a));
2366 if_info->transform_name = "noce_try_cmove_arith";
2367 return true;
2369 end_seq_and_fail:
2370 end_sequence ();
2371 return false;
2374 /* For most cases, the simplified condition we found is the best
2375 choice, but this is not the case for the min/max/abs transforms.
2376 For these we wish to know that it is A or B in the condition. */
2378 static rtx
2379 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
2380 rtx_insn **earliest)
2382 rtx cond, set;
2383 rtx_insn *insn;
2384 bool reverse;
2386 /* If target is already mentioned in the known condition, return it. */
2387 if (reg_mentioned_p (target, if_info->cond))
2389 *earliest = if_info->cond_earliest;
2390 return if_info->cond;
2393 set = pc_set (if_info->jump);
2394 cond = XEXP (SET_SRC (set), 0);
2395 reverse
2396 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2397 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
2398 if (if_info->then_else_reversed)
2399 reverse = !reverse;
2401 /* If we're looking for a constant, try to make the conditional
2402 have that constant in it. There are two reasons why it may
2403 not have the constant we want:
2405 1. GCC may have needed to put the constant in a register, because
2406 the target can't compare directly against that constant. For
2407 this case, we look for a SET immediately before the comparison
2408 that puts a constant in that register.
2410 2. GCC may have canonicalized the conditional, for example
2411 replacing "if x < 4" with "if x <= 3". We can undo that (or
2412 make equivalent types of changes) to get the constants we need
2413 if they're off by one in the right direction. */
2415 if (CONST_INT_P (target))
2417 enum rtx_code code = GET_CODE (if_info->cond);
2418 rtx op_a = XEXP (if_info->cond, 0);
2419 rtx op_b = XEXP (if_info->cond, 1);
2420 rtx_insn *prev_insn;
2422 /* First, look to see if we put a constant in a register. */
2423 prev_insn = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2424 if (prev_insn
2425 && BLOCK_FOR_INSN (prev_insn)
2426 == BLOCK_FOR_INSN (if_info->cond_earliest)
2427 && INSN_P (prev_insn)
2428 && GET_CODE (PATTERN (prev_insn)) == SET)
2430 rtx src = find_reg_equal_equiv_note (prev_insn);
2431 if (!src)
2432 src = SET_SRC (PATTERN (prev_insn));
2433 if (CONST_INT_P (src))
2435 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
2436 op_a = src;
2437 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
2438 op_b = src;
2440 if (CONST_INT_P (op_a))
2442 std::swap (op_a, op_b);
2443 code = swap_condition (code);
2448 /* Now, look to see if we can get the right constant by
2449 adjusting the conditional. */
2450 if (CONST_INT_P (op_b))
2452 HOST_WIDE_INT desired_val = INTVAL (target);
2453 HOST_WIDE_INT actual_val = INTVAL (op_b);
2455 switch (code)
2457 case LT:
2458 if (desired_val != HOST_WIDE_INT_MAX
2459 && actual_val == desired_val + 1)
2461 code = LE;
2462 op_b = GEN_INT (desired_val);
2464 break;
2465 case LE:
2466 if (desired_val != HOST_WIDE_INT_MIN
2467 && actual_val == desired_val - 1)
2469 code = LT;
2470 op_b = GEN_INT (desired_val);
2472 break;
2473 case GT:
2474 if (desired_val != HOST_WIDE_INT_MIN
2475 && actual_val == desired_val - 1)
2477 code = GE;
2478 op_b = GEN_INT (desired_val);
2480 break;
2481 case GE:
2482 if (desired_val != HOST_WIDE_INT_MAX
2483 && actual_val == desired_val + 1)
2485 code = GT;
2486 op_b = GEN_INT (desired_val);
2488 break;
2489 default:
2490 break;
2494 /* If we made any changes, generate a new conditional that is
2495 equivalent to what we started with, but has the right
2496 constants in it. */
2497 if (code != GET_CODE (if_info->cond)
2498 || op_a != XEXP (if_info->cond, 0)
2499 || op_b != XEXP (if_info->cond, 1))
2501 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
2502 *earliest = if_info->cond_earliest;
2503 return cond;
2507 cond = canonicalize_condition (if_info->jump, cond, reverse,
2508 earliest, target, have_cbranchcc4, true);
2509 if (! cond || ! reg_mentioned_p (target, cond))
2510 return NULL;
2512 /* We almost certainly searched back to a different place.
2513 Need to re-verify correct lifetimes. */
2515 /* X may not be mentioned in the range (cond_earliest, jump]. */
2516 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
2517 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
2518 return NULL;
2520 /* A and B may not be modified in the range [cond_earliest, jump). */
2521 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
2522 if (INSN_P (insn)
2523 && (modified_in_p (if_info->a, insn)
2524 || modified_in_p (if_info->b, insn)))
2525 return NULL;
2527 return cond;
2530 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
2532 static bool
2533 noce_try_minmax (struct noce_if_info *if_info)
2535 rtx cond, target;
2536 rtx_insn *earliest, *seq;
2537 enum rtx_code code, op;
2538 bool unsignedp;
2540 if (!noce_simple_bbs (if_info))
2541 return false;
2543 /* ??? Reject modes with NaNs or signed zeros since we don't know how
2544 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
2545 to get the target to tell us... */
2546 if (HONOR_SIGNED_ZEROS (if_info->x)
2547 || HONOR_NANS (if_info->x))
2548 return false;
2550 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
2551 if (!cond)
2552 return false;
2554 /* Verify the condition is of the form we expect, and canonicalize
2555 the comparison code. */
2556 code = GET_CODE (cond);
2557 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2559 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2560 return false;
2562 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2564 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2565 return false;
2566 code = swap_condition (code);
2568 else
2569 return false;
2571 /* Determine what sort of operation this is. Note that the code is for
2572 a taken branch, so the code->operation mapping appears backwards. */
2573 switch (code)
2575 case LT:
2576 case LE:
2577 case UNLT:
2578 case UNLE:
2579 op = SMAX;
2580 unsignedp = false;
2581 break;
2582 case GT:
2583 case GE:
2584 case UNGT:
2585 case UNGE:
2586 op = SMIN;
2587 unsignedp = false;
2588 break;
2589 case LTU:
2590 case LEU:
2591 op = UMAX;
2592 unsignedp = true;
2593 break;
2594 case GTU:
2595 case GEU:
2596 op = UMIN;
2597 unsignedp = true;
2598 break;
2599 default:
2600 return false;
2603 start_sequence ();
2605 target = expand_simple_binop (GET_MODE (if_info->x), op,
2606 if_info->a, if_info->b,
2607 if_info->x, unsignedp, OPTAB_WIDEN);
2608 if (! target)
2610 end_sequence ();
2611 return false;
2613 if (target != if_info->x)
2614 noce_emit_move_insn (if_info->x, target);
2616 seq = end_ifcvt_sequence (if_info);
2617 if (!seq)
2618 return false;
2620 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2621 if_info->cond = cond;
2622 if_info->cond_earliest = earliest;
2623 if_info->rev_cond = NULL_RTX;
2624 if_info->transform_name = "noce_try_minmax";
2626 return true;
2629 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2630 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2631 etc. */
2633 static bool
2634 noce_try_abs (struct noce_if_info *if_info)
2636 rtx cond, target, a, b, c;
2637 rtx_insn *earliest, *seq;
2638 bool negate;
2639 bool one_cmpl = false;
2641 if (!noce_simple_bbs (if_info))
2642 return false;
2644 /* Reject modes with signed zeros. */
2645 if (HONOR_SIGNED_ZEROS (if_info->x))
2646 return false;
2648 /* Recognize A and B as constituting an ABS or NABS. The canonical
2649 form is a branch around the negation, taken when the object is the
2650 first operand of a comparison against 0 that evaluates to true. */
2651 a = if_info->a;
2652 b = if_info->b;
2653 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2654 negate = false;
2655 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2657 std::swap (a, b);
2658 negate = true;
2660 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2662 negate = false;
2663 one_cmpl = true;
2665 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2667 std::swap (a, b);
2668 negate = true;
2669 one_cmpl = true;
2671 else
2672 return false;
2674 cond = noce_get_alt_condition (if_info, b, &earliest);
2675 if (!cond)
2676 return false;
2678 /* Verify the condition is of the form we expect. */
2679 if (rtx_equal_p (XEXP (cond, 0), b))
2680 c = XEXP (cond, 1);
2681 else if (rtx_equal_p (XEXP (cond, 1), b))
2683 c = XEXP (cond, 0);
2684 negate = !negate;
2686 else
2687 return false;
2689 /* Verify that C is zero. Search one step backward for a
2690 REG_EQUAL note or a simple source if necessary. */
2691 if (REG_P (c))
2693 rtx set;
2694 rtx_insn *insn = prev_nonnote_nondebug_insn (earliest);
2695 if (insn
2696 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2697 && (set = single_set (insn))
2698 && rtx_equal_p (SET_DEST (set), c))
2700 rtx note = find_reg_equal_equiv_note (insn);
2701 if (note)
2702 c = XEXP (note, 0);
2703 else
2704 c = SET_SRC (set);
2706 else
2707 return false;
2709 if (MEM_P (c)
2710 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2711 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2712 c = get_pool_constant (XEXP (c, 0));
2714 /* Work around funny ideas get_condition has wrt canonicalization.
2715 Note that these rtx constants are known to be CONST_INT, and
2716 therefore imply integer comparisons.
2717 The one_cmpl case is more complicated, as we want to handle
2718 only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
2719 and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
2720 but not other cases (x > -1 is equivalent of x >= 0). */
2721 if (c == constm1_rtx && GET_CODE (cond) == GT)
2723 else if (c == const1_rtx && GET_CODE (cond) == LT)
2725 if (one_cmpl)
2726 return false;
2728 else if (c == CONST0_RTX (GET_MODE (b)))
2730 if (one_cmpl
2731 && GET_CODE (cond) != GE
2732 && GET_CODE (cond) != LT)
2733 return false;
2735 else
2736 return false;
2738 /* Determine what sort of operation this is. */
2739 switch (GET_CODE (cond))
2741 case LT:
2742 case LE:
2743 case UNLT:
2744 case UNLE:
2745 negate = !negate;
2746 break;
2747 case GT:
2748 case GE:
2749 case UNGT:
2750 case UNGE:
2751 break;
2752 default:
2753 return false;
2756 start_sequence ();
2757 if (one_cmpl)
2758 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2759 if_info->x);
2760 else
2761 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2763 /* ??? It's a quandary whether cmove would be better here, especially
2764 for integers. Perhaps combine will clean things up. */
2765 if (target && negate)
2767 if (one_cmpl)
2768 target = expand_simple_unop (GET_MODE (target), NOT, target,
2769 if_info->x, 0);
2770 else
2771 target = expand_simple_unop (GET_MODE (target), NEG, target,
2772 if_info->x, 0);
2775 if (! target)
2777 end_sequence ();
2778 return false;
2781 if (target != if_info->x)
2782 noce_emit_move_insn (if_info->x, target);
2784 seq = end_ifcvt_sequence (if_info);
2785 if (!seq)
2786 return false;
2788 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2789 if_info->cond = cond;
2790 if_info->cond_earliest = earliest;
2791 if_info->rev_cond = NULL_RTX;
2792 if_info->transform_name = "noce_try_abs";
2794 return true;
2797 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2799 static bool
2800 noce_try_sign_mask (struct noce_if_info *if_info)
2802 rtx cond, t, m, c;
2803 rtx_insn *seq;
2804 machine_mode mode;
2805 enum rtx_code code;
2806 bool t_unconditional;
2808 if (!noce_simple_bbs (if_info))
2809 return false;
2811 cond = if_info->cond;
2812 code = GET_CODE (cond);
2813 m = XEXP (cond, 0);
2814 c = XEXP (cond, 1);
2816 t = NULL_RTX;
2817 if (if_info->a == const0_rtx)
2819 if ((code == LT && c == const0_rtx)
2820 || (code == LE && c == constm1_rtx))
2821 t = if_info->b;
2823 else if (if_info->b == const0_rtx)
2825 if ((code == GE && c == const0_rtx)
2826 || (code == GT && c == constm1_rtx))
2827 t = if_info->a;
2830 if (! t || side_effects_p (t))
2831 return false;
2833 /* We currently don't handle different modes. */
2834 mode = GET_MODE (t);
2835 if (GET_MODE (m) != mode)
2836 return false;
2838 /* This is only profitable if T is unconditionally executed/evaluated in the
2839 original insn sequence or T is cheap and can't trap or fault. The former
2840 happens if B is the non-zero (T) value and if INSN_B was taken from
2841 TEST_BB, or there was no INSN_B which can happen for e.g. conditional
2842 stores to memory. For the cost computation use the block TEST_BB where
2843 the evaluation will end up after the transformation. */
2844 t_unconditional
2845 = (t == if_info->b
2846 && (if_info->insn_b == NULL_RTX
2847 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2848 if (!(t_unconditional
2849 || ((set_src_cost (t, mode, if_info->speed_p)
2850 < COSTS_N_INSNS (2))
2851 && !may_trap_or_fault_p (t))))
2852 return false;
2854 if (!noce_can_force_operand (t))
2855 return false;
2857 start_sequence ();
2858 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2859 "(signed) m >> 31" directly. This benefits targets with specialized
2860 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2861 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2862 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2863 : NULL_RTX;
2865 if (!t)
2867 end_sequence ();
2868 return false;
2871 noce_emit_move_insn (if_info->x, t);
2873 seq = end_ifcvt_sequence (if_info);
2874 if (!seq)
2875 return false;
2877 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2878 if_info->transform_name = "noce_try_sign_mask";
2880 return true;
2884 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2885 transformations. */
2887 static bool
2888 noce_try_bitop (struct noce_if_info *if_info)
2890 rtx cond, x, a, result;
2891 rtx_insn *seq;
2892 scalar_int_mode mode;
2893 enum rtx_code code;
2894 int bitnum;
2896 x = if_info->x;
2897 cond = if_info->cond;
2898 code = GET_CODE (cond);
2900 /* Check for an integer operation. */
2901 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
2902 return false;
2904 if (!noce_simple_bbs (if_info))
2905 return false;
2907 /* Check for no else condition. */
2908 if (! rtx_equal_p (x, if_info->b))
2909 return false;
2911 /* Check for a suitable condition. */
2912 if (code != NE && code != EQ)
2913 return false;
2914 if (XEXP (cond, 1) != const0_rtx)
2915 return false;
2916 cond = XEXP (cond, 0);
2918 /* ??? We could also handle AND here. */
2919 if (GET_CODE (cond) == ZERO_EXTRACT)
2921 if (XEXP (cond, 1) != const1_rtx
2922 || !CONST_INT_P (XEXP (cond, 2))
2923 || ! rtx_equal_p (x, XEXP (cond, 0)))
2924 return false;
2925 bitnum = INTVAL (XEXP (cond, 2));
2926 if (BITS_BIG_ENDIAN)
2927 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2928 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2929 return false;
2931 else
2932 return false;
2934 a = if_info->a;
2935 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2937 /* Check for "if (X & C) x = x op C". */
2938 if (! rtx_equal_p (x, XEXP (a, 0))
2939 || !CONST_INT_P (XEXP (a, 1))
2940 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2941 != HOST_WIDE_INT_1U << bitnum)
2942 return false;
2944 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2945 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2946 if (GET_CODE (a) == IOR)
2947 result = (code == NE) ? a : NULL_RTX;
2948 else if (code == NE)
2950 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2951 result = gen_int_mode (HOST_WIDE_INT_1 << bitnum, mode);
2952 result = simplify_gen_binary (IOR, mode, x, result);
2954 else
2956 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2957 result = gen_int_mode (~(HOST_WIDE_INT_1 << bitnum), mode);
2958 result = simplify_gen_binary (AND, mode, x, result);
2961 else if (GET_CODE (a) == AND)
2963 /* Check for "if (X & C) x &= ~C". */
2964 if (! rtx_equal_p (x, XEXP (a, 0))
2965 || !CONST_INT_P (XEXP (a, 1))
2966 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2967 != (~(HOST_WIDE_INT_1 << bitnum) & GET_MODE_MASK (mode)))
2968 return false;
2970 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2971 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2972 result = (code == EQ) ? a : NULL_RTX;
2974 else
2975 return false;
2977 if (result)
2979 start_sequence ();
2980 noce_emit_move_insn (x, result);
2981 seq = end_ifcvt_sequence (if_info);
2982 if (!seq)
2983 return false;
2985 emit_insn_before_setloc (seq, if_info->jump,
2986 INSN_LOCATION (if_info->insn_a));
2988 if_info->transform_name = "noce_try_bitop";
2989 return true;
2993 /* Similar to get_condition, only the resulting condition must be
2994 valid at JUMP, instead of at EARLIEST.
2996 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2997 THEN block of the caller, and we have to reverse the condition. */
2999 static rtx
3000 noce_get_condition (rtx_insn *jump, rtx_insn **earliest,
3001 bool then_else_reversed)
3003 rtx cond, set, tmp;
3004 bool reverse;
3006 if (! any_condjump_p (jump))
3007 return NULL_RTX;
3009 set = pc_set (jump);
3011 /* If this branches to JUMP_LABEL when the condition is false,
3012 reverse the condition. */
3013 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
3014 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
3016 /* We may have to reverse because the caller's if block is not canonical,
3017 i.e. the THEN block isn't the fallthrough block for the TEST block
3018 (see find_if_header). */
3019 if (then_else_reversed)
3020 reverse = !reverse;
3022 /* If the condition variable is a register and is MODE_INT, accept it. */
3024 cond = XEXP (SET_SRC (set), 0);
3025 tmp = XEXP (cond, 0);
3026 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
3027 && (GET_MODE (tmp) != BImode
3028 || !targetm.small_register_classes_for_mode_p (BImode)))
3030 *earliest = jump;
3032 if (reverse)
3033 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
3034 GET_MODE (cond), tmp, XEXP (cond, 1));
3035 return cond;
3038 /* Otherwise, fall back on canonicalize_condition to do the dirty
3039 work of manipulating MODE_CC values and COMPARE rtx codes. */
3040 tmp = canonicalize_condition (jump, cond, reverse, earliest,
3041 NULL_RTX, have_cbranchcc4, true);
3043 /* We don't handle side-effects in the condition, like handling
3044 REG_INC notes and making sure no duplicate conditions are emitted. */
3045 if (tmp != NULL_RTX && side_effects_p (tmp))
3046 return NULL_RTX;
3048 return tmp;
3051 /* Return true if OP is ok for if-then-else processing. */
3053 static bool
3054 noce_operand_ok (const_rtx op)
3056 if (side_effects_p (op))
3057 return false;
3059 /* We special-case memories, so handle any of them with
3060 no address side effects. */
3061 if (MEM_P (op))
3062 return ! side_effects_p (XEXP (op, 0));
3064 return ! may_trap_p (op);
3067 /* Return true iff basic block TEST_BB is valid for noce if-conversion.
3068 The condition used in this if-conversion is in COND.
3069 In practice, check that TEST_BB ends with a single set
3070 x := a and all previous computations
3071 in TEST_BB don't produce any values that are live after TEST_BB.
3072 In other words, all the insns in TEST_BB are there only
3073 to compute a value for x. Add the rtx cost of the insns
3074 in TEST_BB to COST. Record whether TEST_BB is a single simple
3075 set instruction in SIMPLE_P. */
3077 static bool
3078 bb_valid_for_noce_process_p (basic_block test_bb, rtx cond,
3079 unsigned int *cost, bool *simple_p)
3081 if (!test_bb)
3082 return false;
3084 rtx_insn *last_insn = last_active_insn (test_bb, false);
3085 rtx last_set = NULL_RTX;
3087 rtx cc = cc_in_cond (cond);
3089 if (!insn_valid_noce_process_p (last_insn, cc))
3090 return false;
3092 /* Punt on blocks ending with asm goto or jumps with other side-effects,
3093 last_active_insn ignores JUMP_INSNs. */
3094 if (JUMP_P (BB_END (test_bb)) && !onlyjump_p (BB_END (test_bb)))
3095 return false;
3097 last_set = single_set (last_insn);
3099 rtx x = SET_DEST (last_set);
3100 rtx_insn *first_insn = first_active_insn (test_bb);
3101 rtx first_set = single_set (first_insn);
3103 if (!first_set)
3104 return false;
3106 /* We have a single simple set, that's okay. */
3107 bool speed_p = optimize_bb_for_speed_p (test_bb);
3109 if (first_insn == last_insn)
3111 *simple_p = noce_operand_ok (SET_DEST (first_set));
3112 *cost += pattern_cost (first_set, speed_p);
3113 return *simple_p;
3116 rtx_insn *prev_last_insn = PREV_INSN (last_insn);
3117 gcc_assert (prev_last_insn);
3119 /* For now, disallow setting x multiple times in test_bb. */
3120 if (REG_P (x) && reg_set_between_p (x, first_insn, prev_last_insn))
3121 return false;
3123 bitmap test_bb_temps = BITMAP_ALLOC (&reg_obstack);
3125 /* The regs that are live out of test_bb. */
3126 bitmap test_bb_live_out = df_get_live_out (test_bb);
3128 int potential_cost = pattern_cost (last_set, speed_p);
3129 rtx_insn *insn;
3130 FOR_BB_INSNS (test_bb, insn)
3132 if (insn != last_insn)
3134 if (!active_insn_p (insn))
3135 continue;
3137 if (!insn_valid_noce_process_p (insn, cc))
3138 goto free_bitmap_and_fail;
3140 rtx sset = single_set (insn);
3141 gcc_assert (sset);
3142 rtx dest = SET_DEST (sset);
3143 if (SUBREG_P (dest))
3144 dest = SUBREG_REG (dest);
3146 if (contains_mem_rtx_p (SET_SRC (sset))
3147 || !REG_P (dest)
3148 || reg_overlap_mentioned_p (dest, cond))
3149 goto free_bitmap_and_fail;
3151 potential_cost += pattern_cost (sset, speed_p);
3152 bitmap_set_bit (test_bb_temps, REGNO (dest));
3156 /* If any of the intermediate results in test_bb are live after test_bb
3157 then fail. */
3158 if (bitmap_intersect_p (test_bb_live_out, test_bb_temps))
3159 goto free_bitmap_and_fail;
3161 BITMAP_FREE (test_bb_temps);
3162 *cost += potential_cost;
3163 *simple_p = false;
3164 return true;
3166 free_bitmap_and_fail:
3167 BITMAP_FREE (test_bb_temps);
3168 return false;
3171 /* Helper function to emit a cmov sequence encapsulated in
3172 start_sequence () and end_sequence (). If NEED_CMOV is true
3173 we call noce_emit_cmove to create a cmove sequence. Otherwise emit
3174 a simple move. If successful, store the first instruction of the
3175 sequence in TEMP_DEST and the sequence costs in SEQ_COST. */
3177 static rtx_insn*
3178 try_emit_cmove_seq (struct noce_if_info *if_info, rtx temp,
3179 rtx cond, rtx new_val, rtx old_val, bool need_cmov,
3180 unsigned *cost, rtx *temp_dest,
3181 rtx cc_cmp = NULL, rtx rev_cc_cmp = NULL)
3183 rtx_insn *seq = NULL;
3184 *cost = 0;
3186 rtx x = XEXP (cond, 0);
3187 rtx y = XEXP (cond, 1);
3188 rtx_code cond_code = GET_CODE (cond);
3190 start_sequence ();
3192 if (need_cmov)
3193 *temp_dest = noce_emit_cmove (if_info, temp, cond_code,
3194 x, y, new_val, old_val, cc_cmp, rev_cc_cmp);
3195 else
3197 *temp_dest = temp;
3198 if (if_info->then_else_reversed)
3199 noce_emit_move_insn (temp, old_val);
3200 else
3201 noce_emit_move_insn (temp, new_val);
3204 if (*temp_dest != NULL_RTX)
3206 seq = get_insns ();
3207 *cost = seq_cost (seq, if_info->speed_p);
3210 end_sequence ();
3212 return seq;
3215 /* We have something like:
3217 if (x > y)
3218 { i = a; j = b; k = c; }
3220 Make it:
3222 tmp_i = (x > y) ? a : i;
3223 tmp_j = (x > y) ? b : j;
3224 tmp_k = (x > y) ? c : k;
3225 i = tmp_i;
3226 j = tmp_j;
3227 k = tmp_k;
3229 Subsequent passes are expected to clean up the extra moves.
3231 Look for special cases such as writes to one register which are
3232 read back in another SET, as might occur in a swap idiom or
3233 similar.
3235 These look like:
3237 if (x > y)
3238 i = a;
3239 j = i;
3241 Which we want to rewrite to:
3243 tmp_i = (x > y) ? a : i;
3244 tmp_j = (x > y) ? tmp_i : j;
3245 i = tmp_i;
3246 j = tmp_j;
3248 We can catch these when looking at (SET x y) by keeping a list of the
3249 registers we would have targeted before if-conversion and looking back
3250 through it for an overlap with Y. If we find one, we rewire the
3251 conditional set to use the temporary we introduced earlier.
3253 IF_INFO contains the useful information about the block structure and
3254 jump instructions. */
3256 static bool
3257 noce_convert_multiple_sets (struct noce_if_info *if_info)
3259 basic_block test_bb = if_info->test_bb;
3260 basic_block then_bb = if_info->then_bb;
3261 basic_block join_bb = if_info->join_bb;
3262 rtx_insn *jump = if_info->jump;
3263 rtx_insn *cond_earliest;
3264 rtx_insn *insn;
3266 start_sequence ();
3268 /* Decompose the condition attached to the jump. */
3269 rtx cond = noce_get_condition (jump, &cond_earliest, false);
3270 rtx x = XEXP (cond, 0);
3271 rtx y = XEXP (cond, 1);
3273 /* The true targets for a conditional move. */
3274 auto_vec<rtx> targets;
3275 /* The temporaries introduced to allow us to not consider register
3276 overlap. */
3277 auto_vec<rtx> temporaries;
3278 /* The insns we've emitted. */
3279 auto_vec<rtx_insn *> unmodified_insns;
3281 hash_set<rtx_insn *> need_no_cmov;
3282 hash_map<rtx_insn *, int> rewired_src;
3284 need_cmov_or_rewire (then_bb, &need_no_cmov, &rewired_src);
3286 int last_needs_comparison = -1;
3288 bool ok = noce_convert_multiple_sets_1
3289 (if_info, &need_no_cmov, &rewired_src, &targets, &temporaries,
3290 &unmodified_insns, &last_needs_comparison);
3291 if (!ok)
3292 return false;
3294 /* If there are insns that overwrite part of the initial
3295 comparison, we can still omit creating temporaries for
3296 the last of them.
3297 As the second try will always create a less expensive,
3298 valid sequence, we do not need to compare and can discard
3299 the first one. */
3300 if (last_needs_comparison != -1)
3302 end_sequence ();
3303 start_sequence ();
3304 ok = noce_convert_multiple_sets_1
3305 (if_info, &need_no_cmov, &rewired_src, &targets, &temporaries,
3306 &unmodified_insns, &last_needs_comparison);
3307 /* Actually we should not fail anymore if we reached here,
3308 but better still check. */
3309 if (!ok)
3310 return false;
3313 /* We must have seen some sort of insn to insert, otherwise we were
3314 given an empty BB to convert, and we can't handle that. */
3315 gcc_assert (!unmodified_insns.is_empty ());
3317 /* Now fixup the assignments. */
3318 for (unsigned i = 0; i < targets.length (); i++)
3319 if (targets[i] != temporaries[i])
3320 noce_emit_move_insn (targets[i], temporaries[i]);
3322 /* Actually emit the sequence if it isn't too expensive. */
3323 rtx_insn *seq = get_insns ();
3325 if (!targetm.noce_conversion_profitable_p (seq, if_info))
3327 end_sequence ();
3328 return false;
3331 for (insn = seq; insn; insn = NEXT_INSN (insn))
3332 set_used_flags (insn);
3334 /* Mark all our temporaries and targets as used. */
3335 for (unsigned i = 0; i < targets.length (); i++)
3337 set_used_flags (temporaries[i]);
3338 set_used_flags (targets[i]);
3341 set_used_flags (cond);
3342 set_used_flags (x);
3343 set_used_flags (y);
3345 unshare_all_rtl_in_chain (seq);
3346 end_sequence ();
3348 if (!seq)
3349 return false;
3351 for (insn = seq; insn; insn = NEXT_INSN (insn))
3352 if (JUMP_P (insn)
3353 || recog_memoized (insn) == -1)
3354 return false;
3356 emit_insn_before_setloc (seq, if_info->jump,
3357 INSN_LOCATION (unmodified_insns.last ()));
3359 /* Clean up THEN_BB and the edges in and out of it. */
3360 remove_edge (find_edge (test_bb, join_bb));
3361 remove_edge (find_edge (then_bb, join_bb));
3362 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3363 delete_basic_block (then_bb);
3364 num_true_changes++;
3366 /* Maybe merge blocks now the jump is simple enough. */
3367 if (can_merge_blocks_p (test_bb, join_bb))
3369 merge_blocks (test_bb, join_bb);
3370 num_true_changes++;
3373 num_updated_if_blocks++;
3374 if_info->transform_name = "noce_convert_multiple_sets";
3375 return true;
3378 /* Helper function for noce_convert_multiple_sets_1. If store to
3379 DEST can affect P[0] or P[1], clear P[0]. Called via note_stores. */
3381 static void
3382 check_for_cc_cmp_clobbers (rtx dest, const_rtx, void *p0)
3384 rtx *p = (rtx *) p0;
3385 if (p[0] == NULL_RTX)
3386 return;
3387 if (reg_overlap_mentioned_p (dest, p[0])
3388 || (p[1] && reg_overlap_mentioned_p (dest, p[1])))
3389 p[0] = NULL_RTX;
3392 /* This goes through all relevant insns of IF_INFO->then_bb and tries to
3393 create conditional moves. In case a simple move sufficis the insn
3394 should be listed in NEED_NO_CMOV. The rewired-src cases should be
3395 specified via REWIRED_SRC. TARGETS, TEMPORARIES and UNMODIFIED_INSNS
3396 are specified and used in noce_convert_multiple_sets and should be passed
3397 to this function.. */
3399 static bool
3400 noce_convert_multiple_sets_1 (struct noce_if_info *if_info,
3401 hash_set<rtx_insn *> *need_no_cmov,
3402 hash_map<rtx_insn *, int> *rewired_src,
3403 auto_vec<rtx> *targets,
3404 auto_vec<rtx> *temporaries,
3405 auto_vec<rtx_insn *> *unmodified_insns,
3406 int *last_needs_comparison)
3408 basic_block then_bb = if_info->then_bb;
3409 rtx_insn *jump = if_info->jump;
3410 rtx_insn *cond_earliest;
3412 /* Decompose the condition attached to the jump. */
3413 rtx cond = noce_get_condition (jump, &cond_earliest, false);
3415 rtx cc_cmp = cond_exec_get_condition (jump);
3416 if (cc_cmp)
3417 cc_cmp = copy_rtx (cc_cmp);
3418 rtx rev_cc_cmp = cond_exec_get_condition (jump, /* get_reversed */ true);
3419 if (rev_cc_cmp)
3420 rev_cc_cmp = copy_rtx (rev_cc_cmp);
3422 rtx_insn *insn;
3423 int count = 0;
3425 targets->truncate (0);
3426 temporaries->truncate (0);
3427 unmodified_insns->truncate (0);
3429 bool second_try = *last_needs_comparison != -1;
3431 FOR_BB_INSNS (then_bb, insn)
3433 /* Skip over non-insns. */
3434 if (!active_insn_p (insn))
3435 continue;
3437 rtx set = single_set (insn);
3438 gcc_checking_assert (set);
3440 rtx target = SET_DEST (set);
3441 rtx temp;
3443 rtx new_val = SET_SRC (set);
3444 if (int *ii = rewired_src->get (insn))
3445 new_val = simplify_replace_rtx (new_val, (*targets)[*ii],
3446 (*temporaries)[*ii]);
3447 rtx old_val = target;
3449 /* As we are transforming
3450 if (x > y)
3452 a = b;
3453 c = d;
3455 into
3456 a = (x > y) ...
3457 c = (x > y) ...
3459 we potentially check x > y before every set.
3460 Even though the check might be removed by subsequent passes, this means
3461 that we cannot transform
3462 if (x > y)
3464 x = y;
3467 into
3468 x = (x > y) ...
3470 since this would invalidate x and the following to-be-removed checks.
3471 Therefore we introduce a temporary every time we are about to
3472 overwrite a variable used in the check. Costing of a sequence with
3473 these is going to be inaccurate so only use temporaries when
3474 needed.
3476 If performing a second try, we know how many insns require a
3477 temporary. For the last of these, we can omit creating one. */
3478 if (reg_overlap_mentioned_p (target, cond)
3479 && (!second_try || count < *last_needs_comparison))
3480 temp = gen_reg_rtx (GET_MODE (target));
3481 else
3482 temp = target;
3484 /* We have identified swap-style idioms before. A normal
3485 set will need to be a cmov while the first instruction of a swap-style
3486 idiom can be a regular move. This helps with costing. */
3487 bool need_cmov = !need_no_cmov->contains (insn);
3489 /* If we had a non-canonical conditional jump (i.e. one where
3490 the fallthrough is to the "else" case) we need to reverse
3491 the conditional select. */
3492 if (if_info->then_else_reversed)
3493 std::swap (old_val, new_val);
3495 /* Try emitting a conditional move passing the backend the
3496 canonicalized comparison. The backend is then able to
3497 recognize expressions like
3499 if (x > y)
3500 y = x;
3502 as min/max and emit an insn, accordingly. */
3503 unsigned cost1 = 0, cost2 = 0;
3504 rtx_insn *seq, *seq1, *seq2 = NULL;
3505 rtx temp_dest = NULL_RTX, temp_dest1 = NULL_RTX, temp_dest2 = NULL_RTX;
3506 bool read_comparison = false;
3508 seq1 = try_emit_cmove_seq (if_info, temp, cond,
3509 new_val, old_val, need_cmov,
3510 &cost1, &temp_dest1);
3512 /* Here, we try to pass the backend a non-canonicalized cc comparison
3513 as well. This allows the backend to emit a cmov directly without
3514 creating an additional compare for each. If successful, costing
3515 is easier and this sequence is usually preferred. */
3516 if (cc_cmp)
3517 seq2 = try_emit_cmove_seq (if_info, temp, cond,
3518 new_val, old_val, need_cmov,
3519 &cost2, &temp_dest2, cc_cmp, rev_cc_cmp);
3521 /* The backend might have created a sequence that uses the
3522 condition. Check this. */
3523 rtx_insn *walk = seq2;
3524 while (walk)
3526 rtx set = single_set (walk);
3528 if (!set || !SET_SRC (set))
3530 walk = NEXT_INSN (walk);
3531 continue;
3534 rtx src = SET_SRC (set);
3536 if (XEXP (set, 1) && GET_CODE (XEXP (set, 1)) == IF_THEN_ELSE)
3537 ; /* We assume that this is the cmove created by the backend that
3538 naturally uses the condition. Therefore we ignore it. */
3539 else
3541 if (reg_mentioned_p (XEXP (cond, 0), src)
3542 || reg_mentioned_p (XEXP (cond, 1), src))
3544 read_comparison = true;
3545 break;
3549 walk = NEXT_INSN (walk);
3552 /* Check which version is less expensive. */
3553 if (seq1 != NULL_RTX && (cost1 <= cost2 || seq2 == NULL_RTX))
3555 seq = seq1;
3556 temp_dest = temp_dest1;
3557 if (!second_try)
3558 *last_needs_comparison = count;
3560 else if (seq2 != NULL_RTX)
3562 seq = seq2;
3563 temp_dest = temp_dest2;
3564 if (!second_try && read_comparison)
3565 *last_needs_comparison = count;
3567 else
3569 /* Nothing worked, bail out. */
3570 end_sequence ();
3571 return false;
3574 if (cc_cmp)
3576 /* Check if SEQ can clobber registers mentioned in
3577 cc_cmp and/or rev_cc_cmp. If yes, we need to use
3578 only seq1 from that point on. */
3579 rtx cc_cmp_pair[2] = { cc_cmp, rev_cc_cmp };
3580 for (walk = seq; walk; walk = NEXT_INSN (walk))
3582 note_stores (walk, check_for_cc_cmp_clobbers, cc_cmp_pair);
3583 if (cc_cmp_pair[0] == NULL_RTX)
3585 cc_cmp = NULL_RTX;
3586 rev_cc_cmp = NULL_RTX;
3587 break;
3592 /* End the sub sequence and emit to the main sequence. */
3593 emit_insn (seq);
3595 /* Bookkeeping. */
3596 count++;
3597 targets->safe_push (target);
3598 temporaries->safe_push (temp_dest);
3599 unmodified_insns->safe_push (insn);
3602 /* Even if we did not actually need the comparison, we want to make sure
3603 to try a second time in order to get rid of the temporaries. */
3604 if (*last_needs_comparison == -1)
3605 *last_needs_comparison = 0;
3608 return true;
3613 /* Return true iff basic block TEST_BB is comprised of only
3614 (SET (REG) (REG)) insns suitable for conversion to a series
3615 of conditional moves. Also check that we have more than one set
3616 (other routines can handle a single set better than we would), and
3617 fewer than PARAM_MAX_RTL_IF_CONVERSION_INSNS sets. While going
3618 through the insns store the sum of their potential costs in COST. */
3620 static bool
3621 bb_ok_for_noce_convert_multiple_sets (basic_block test_bb, unsigned *cost)
3623 rtx_insn *insn;
3624 unsigned count = 0;
3625 unsigned param = param_max_rtl_if_conversion_insns;
3626 bool speed_p = optimize_bb_for_speed_p (test_bb);
3627 unsigned potential_cost = 0;
3629 FOR_BB_INSNS (test_bb, insn)
3631 /* Skip over notes etc. */
3632 if (!active_insn_p (insn))
3633 continue;
3635 /* We only handle SET insns. */
3636 rtx set = single_set (insn);
3637 if (set == NULL_RTX)
3638 return false;
3640 rtx dest = SET_DEST (set);
3641 rtx src = SET_SRC (set);
3643 /* We can possibly relax this, but for now only handle REG to REG
3644 (including subreg) moves. This avoids any issues that might come
3645 from introducing loads/stores that might violate data-race-freedom
3646 guarantees. */
3647 if (!REG_P (dest))
3648 return false;
3650 if (!((REG_P (src) || CONSTANT_P (src))
3651 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3652 && subreg_lowpart_p (src))))
3653 return false;
3655 /* Destination must be appropriate for a conditional write. */
3656 if (!noce_operand_ok (dest))
3657 return false;
3659 /* We must be able to conditionally move in this mode. */
3660 if (!can_conditionally_move_p (GET_MODE (dest)))
3661 return false;
3663 potential_cost += insn_cost (insn, speed_p);
3665 count++;
3668 *cost += potential_cost;
3670 /* If we would only put out one conditional move, the other strategies
3671 this pass tries are better optimized and will be more appropriate.
3672 Some targets want to strictly limit the number of conditional moves
3673 that are emitted, they set this through PARAM, we need to respect
3674 that. */
3675 return count > 1 && count <= param;
3678 /* Compute average of two given costs weighted by relative probabilities
3679 of respective basic blocks in an IF-THEN-ELSE. E is the IF-THEN edge.
3680 With P as the probability to take the IF-THEN branch, return
3681 P * THEN_COST + (1 - P) * ELSE_COST. */
3682 static unsigned
3683 average_cost (unsigned then_cost, unsigned else_cost, edge e)
3685 return else_cost + e->probability.apply ((signed) (then_cost - else_cost));
3688 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3689 it without using conditional execution. Return TRUE if we were successful
3690 at converting the block. */
3692 static bool
3693 noce_process_if_block (struct noce_if_info *if_info)
3695 basic_block test_bb = if_info->test_bb; /* test block */
3696 basic_block then_bb = if_info->then_bb; /* THEN */
3697 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
3698 basic_block join_bb = if_info->join_bb; /* JOIN */
3699 rtx_insn *jump = if_info->jump;
3700 rtx cond = if_info->cond;
3701 rtx_insn *insn_a, *insn_b;
3702 rtx set_a, set_b;
3703 rtx orig_x, x, a, b;
3705 /* We're looking for patterns of the form
3707 (1) if (...) x = a; else x = b;
3708 (2) x = b; if (...) x = a;
3709 (3) if (...) x = a; // as if with an initial x = x.
3710 (4) if (...) { x = a; y = b; z = c; } // Like 3, for multiple SETS.
3711 The later patterns require jumps to be more expensive.
3712 For the if (...) x = a; else x = b; case we allow multiple insns
3713 inside the then and else blocks as long as their only effect is
3714 to calculate a value for x.
3715 ??? For future expansion, further expand the "multiple X" rules. */
3717 /* First look for multiple SETS. The original costs already include
3718 a base cost of COSTS_N_INSNS (2): one instruction for the compare
3719 (which we will be needing either way) and one instruction for the
3720 branch. When comparing costs we want to use the branch instruction
3721 cost and the sets vs. the cmovs generated here. Therefore subtract
3722 the costs of the compare before checking.
3723 ??? Actually, instead of the branch instruction costs we might want
3724 to use COSTS_N_INSNS (BRANCH_COST ()) as in other places. */
3726 unsigned potential_cost = if_info->original_cost - COSTS_N_INSNS (1);
3727 unsigned old_cost = if_info->original_cost;
3728 if (!else_bb
3729 && HAVE_conditional_move
3730 && bb_ok_for_noce_convert_multiple_sets (then_bb, &potential_cost))
3732 /* Temporarily set the original costs to what we estimated so
3733 we can determine if the transformation is worth it. */
3734 if_info->original_cost = potential_cost;
3735 if (noce_convert_multiple_sets (if_info))
3737 if (dump_file && if_info->transform_name)
3738 fprintf (dump_file, "if-conversion succeeded through %s\n",
3739 if_info->transform_name);
3740 return true;
3743 /* Restore the original costs. */
3744 if_info->original_cost = old_cost;
3747 bool speed_p = optimize_bb_for_speed_p (test_bb);
3748 unsigned int then_cost = 0, else_cost = 0;
3749 if (!bb_valid_for_noce_process_p (then_bb, cond, &then_cost,
3750 &if_info->then_simple))
3751 return false;
3753 if (else_bb
3754 && !bb_valid_for_noce_process_p (else_bb, cond, &else_cost,
3755 &if_info->else_simple))
3756 return false;
3758 if (speed_p)
3759 if_info->original_cost += average_cost (then_cost, else_cost,
3760 find_edge (test_bb, then_bb));
3761 else
3762 if_info->original_cost += then_cost + else_cost;
3764 insn_a = last_active_insn (then_bb, false);
3765 set_a = single_set (insn_a);
3766 gcc_assert (set_a);
3768 x = SET_DEST (set_a);
3769 a = SET_SRC (set_a);
3771 /* Look for the other potential set. Make sure we've got equivalent
3772 destinations. */
3773 /* ??? This is overconservative. Storing to two different mems is
3774 as easy as conditionally computing the address. Storing to a
3775 single mem merely requires a scratch memory to use as one of the
3776 destination addresses; often the memory immediately below the
3777 stack pointer is available for this. */
3778 set_b = NULL_RTX;
3779 if (else_bb)
3781 insn_b = last_active_insn (else_bb, false);
3782 set_b = single_set (insn_b);
3783 gcc_assert (set_b);
3785 if (!rtx_interchangeable_p (x, SET_DEST (set_b)))
3786 return false;
3788 else
3790 insn_b = if_info->cond_earliest;
3792 insn_b = prev_nonnote_nondebug_insn (insn_b);
3793 while (insn_b
3794 && (BLOCK_FOR_INSN (insn_b)
3795 == BLOCK_FOR_INSN (if_info->cond_earliest))
3796 && !modified_in_p (x, insn_b));
3798 /* We're going to be moving the evaluation of B down from above
3799 COND_EARLIEST to JUMP. Make sure the relevant data is still
3800 intact. */
3801 if (! insn_b
3802 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
3803 || !NONJUMP_INSN_P (insn_b)
3804 || (set_b = single_set (insn_b)) == NULL_RTX
3805 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
3806 || ! noce_operand_ok (SET_SRC (set_b))
3807 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
3808 || modified_between_p (SET_SRC (set_b), insn_b, jump)
3809 /* Avoid extending the lifetime of hard registers on small
3810 register class machines. */
3811 || (REG_P (SET_SRC (set_b))
3812 && HARD_REGISTER_P (SET_SRC (set_b))
3813 && targetm.small_register_classes_for_mode_p
3814 (GET_MODE (SET_SRC (set_b))))
3815 /* Likewise with X. In particular this can happen when
3816 noce_get_condition looks farther back in the instruction
3817 stream than one might expect. */
3818 || reg_overlap_mentioned_p (x, cond)
3819 || reg_overlap_mentioned_p (x, a)
3820 || modified_between_p (x, insn_b, jump))
3822 insn_b = NULL;
3823 set_b = NULL_RTX;
3827 /* If x has side effects then only the if-then-else form is safe to
3828 convert. But even in that case we would need to restore any notes
3829 (such as REG_INC) at then end. That can be tricky if
3830 noce_emit_move_insn expands to more than one insn, so disable the
3831 optimization entirely for now if there are side effects. */
3832 if (side_effects_p (x))
3833 return false;
3835 b = (set_b ? SET_SRC (set_b) : x);
3837 /* Only operate on register destinations, and even then avoid extending
3838 the lifetime of hard registers on small register class machines. */
3839 orig_x = x;
3840 if_info->orig_x = orig_x;
3841 if (!REG_P (x)
3842 || (HARD_REGISTER_P (x)
3843 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
3845 if (GET_MODE (x) == BLKmode)
3846 return false;
3848 if (GET_CODE (x) == ZERO_EXTRACT
3849 && (!CONST_INT_P (XEXP (x, 1))
3850 || !CONST_INT_P (XEXP (x, 2))))
3851 return false;
3853 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
3854 ? XEXP (x, 0) : x));
3857 /* Don't operate on sources that may trap or are volatile. */
3858 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
3859 return false;
3861 retry:
3862 /* Set up the info block for our subroutines. */
3863 if_info->insn_a = insn_a;
3864 if_info->insn_b = insn_b;
3865 if_info->x = x;
3866 if_info->a = a;
3867 if_info->b = b;
3869 /* Try optimizations in some approximation of a useful order. */
3870 /* ??? Should first look to see if X is live incoming at all. If it
3871 isn't, we don't need anything but an unconditional set. */
3873 /* Look and see if A and B are really the same. Avoid creating silly
3874 cmove constructs that no one will fix up later. */
3875 if (noce_simple_bbs (if_info)
3876 && rtx_interchangeable_p (a, b))
3878 /* If we have an INSN_B, we don't have to create any new rtl. Just
3879 move the instruction that we already have. If we don't have an
3880 INSN_B, that means that A == X, and we've got a noop move. In
3881 that case don't do anything and let the code below delete INSN_A. */
3882 if (insn_b && else_bb)
3884 rtx note;
3886 if (else_bb && insn_b == BB_END (else_bb))
3887 BB_END (else_bb) = PREV_INSN (insn_b);
3888 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
3890 /* If there was a REG_EQUAL note, delete it since it may have been
3891 true due to this insn being after a jump. */
3892 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
3893 remove_note (insn_b, note);
3895 insn_b = NULL;
3897 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
3898 x must be executed twice. */
3899 else if (insn_b && side_effects_p (orig_x))
3900 return false;
3902 x = orig_x;
3903 goto success;
3906 if (!set_b && MEM_P (orig_x))
3907 /* We want to avoid store speculation to avoid cases like
3908 if (pthread_mutex_trylock(mutex))
3909 ++global_variable;
3910 Rather than go to much effort here, we rely on the SSA optimizers,
3911 which do a good enough job these days. */
3912 return false;
3914 if (noce_try_move (if_info))
3915 goto success;
3916 if (noce_try_ifelse_collapse (if_info))
3917 goto success;
3918 if (noce_try_store_flag (if_info))
3919 goto success;
3920 if (noce_try_bitop (if_info))
3921 goto success;
3922 if (noce_try_minmax (if_info))
3923 goto success;
3924 if (noce_try_abs (if_info))
3925 goto success;
3926 if (noce_try_inverse_constants (if_info))
3927 goto success;
3928 if (!targetm.have_conditional_execution ()
3929 && noce_try_store_flag_constants (if_info))
3930 goto success;
3931 if (HAVE_conditional_move
3932 && noce_try_cmove (if_info))
3933 goto success;
3934 if (! targetm.have_conditional_execution ())
3936 if (noce_try_addcc (if_info))
3937 goto success;
3938 if (noce_try_store_flag_mask (if_info))
3939 goto success;
3940 if (HAVE_conditional_move
3941 && noce_try_cmove_arith (if_info))
3942 goto success;
3943 if (noce_try_sign_mask (if_info))
3944 goto success;
3947 if (!else_bb && set_b)
3949 insn_b = NULL;
3950 set_b = NULL_RTX;
3951 b = orig_x;
3952 goto retry;
3955 return false;
3957 success:
3958 if (dump_file && if_info->transform_name)
3959 fprintf (dump_file, "if-conversion succeeded through %s\n",
3960 if_info->transform_name);
3962 /* If we used a temporary, fix it up now. */
3963 if (orig_x != x)
3965 rtx_insn *seq;
3967 start_sequence ();
3968 noce_emit_move_insn (orig_x, x);
3969 seq = get_insns ();
3970 set_used_flags (orig_x);
3971 unshare_all_rtl_in_chain (seq);
3972 end_sequence ();
3974 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
3977 /* The original THEN and ELSE blocks may now be removed. The test block
3978 must now jump to the join block. If the test block and the join block
3979 can be merged, do so. */
3980 if (else_bb)
3982 delete_basic_block (else_bb);
3983 num_true_changes++;
3985 else
3986 remove_edge (find_edge (test_bb, join_bb));
3988 remove_edge (find_edge (then_bb, join_bb));
3989 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3990 delete_basic_block (then_bb);
3991 num_true_changes++;
3993 if (can_merge_blocks_p (test_bb, join_bb))
3995 merge_blocks (test_bb, join_bb);
3996 num_true_changes++;
3999 num_updated_if_blocks++;
4000 return true;
4003 /* Check whether a block is suitable for conditional move conversion.
4004 Every insn must be a simple set of a register to a constant or a
4005 register. For each assignment, store the value in the pointer map
4006 VALS, keyed indexed by register pointer, then store the register
4007 pointer in REGS. COND is the condition we will test. */
4009 static bool
4010 check_cond_move_block (basic_block bb,
4011 hash_map<rtx, rtx> *vals,
4012 vec<rtx> *regs,
4013 rtx cond)
4015 rtx_insn *insn;
4016 rtx cc = cc_in_cond (cond);
4018 /* We can only handle simple jumps at the end of the basic block.
4019 It is almost impossible to update the CFG otherwise. */
4020 insn = BB_END (bb);
4021 if (JUMP_P (insn) && !onlyjump_p (insn))
4022 return false;
4024 FOR_BB_INSNS (bb, insn)
4026 rtx set, dest, src;
4028 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
4029 continue;
4030 set = single_set (insn);
4031 if (!set)
4032 return false;
4034 dest = SET_DEST (set);
4035 src = SET_SRC (set);
4036 if (!REG_P (dest)
4037 || (HARD_REGISTER_P (dest)
4038 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
4039 return false;
4041 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
4042 return false;
4044 if (side_effects_p (src) || side_effects_p (dest))
4045 return false;
4047 if (may_trap_p (src) || may_trap_p (dest))
4048 return false;
4050 /* Don't try to handle this if the source register was
4051 modified earlier in the block. */
4052 if ((REG_P (src)
4053 && vals->get (src))
4054 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
4055 && vals->get (SUBREG_REG (src))))
4056 return false;
4058 /* Don't try to handle this if the destination register was
4059 modified earlier in the block. */
4060 if (vals->get (dest))
4061 return false;
4063 /* Don't try to handle this if the condition uses the
4064 destination register. */
4065 if (reg_overlap_mentioned_p (dest, cond))
4066 return false;
4068 /* Don't try to handle this if the source register is modified
4069 later in the block. */
4070 if (!CONSTANT_P (src)
4071 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
4072 return false;
4074 /* Skip it if the instruction to be moved might clobber CC. */
4075 if (cc && set_of (cc, insn))
4076 return false;
4078 vals->put (dest, src);
4080 regs->safe_push (dest);
4083 return true;
4086 /* Find local swap-style idioms in BB and mark the first insn (1)
4087 that is only a temporary as not needing a conditional move as
4088 it is going to be dead afterwards anyway.
4090 (1) int tmp = a;
4091 a = b;
4092 b = tmp;
4094 ifcvt
4097 tmp = a;
4098 a = cond ? b : a_old;
4099 b = cond ? tmp : b_old;
4101 Additionally, store the index of insns like (2) when a subsequent
4102 SET reads from their destination.
4104 (2) int c = a;
4105 int d = c;
4107 ifcvt
4110 c = cond ? a : c_old;
4111 d = cond ? d : c; // Need to use c rather than c_old here.
4114 static void
4115 need_cmov_or_rewire (basic_block bb,
4116 hash_set<rtx_insn *> *need_no_cmov,
4117 hash_map<rtx_insn *, int> *rewired_src)
4119 rtx_insn *insn;
4120 int count = 0;
4121 auto_vec<rtx_insn *> insns;
4122 auto_vec<rtx> dests;
4124 /* Iterate over all SETs, storing the destinations
4125 in DEST.
4126 - If we hit a SET that reads from a destination
4127 that we have seen before and the corresponding register
4128 is dead afterwards, the register does not need to be
4129 moved conditionally.
4130 - If we encounter a previously changed register,
4131 rewire the read to the original source. */
4132 FOR_BB_INSNS (bb, insn)
4134 rtx set, src, dest;
4136 if (!active_insn_p (insn))
4137 continue;
4139 set = single_set (insn);
4140 if (set == NULL_RTX)
4141 continue;
4143 src = SET_SRC (set);
4144 if (SUBREG_P (src))
4145 src = SUBREG_REG (src);
4146 dest = SET_DEST (set);
4148 /* Check if the current SET's source is the same
4149 as any previously seen destination.
4150 This is quadratic but the number of insns in BB
4151 is bounded by PARAM_MAX_RTL_IF_CONVERSION_INSNS. */
4152 if (REG_P (src))
4153 for (int i = count - 1; i >= 0; --i)
4154 if (reg_overlap_mentioned_p (src, dests[i]))
4156 if (find_reg_note (insn, REG_DEAD, src) != NULL_RTX)
4157 need_no_cmov->add (insns[i]);
4158 else
4159 rewired_src->put (insn, i);
4162 insns.safe_push (insn);
4163 dests.safe_push (dest);
4165 count++;
4169 /* Given a basic block BB suitable for conditional move conversion,
4170 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
4171 the register values depending on COND, emit the insns in the block as
4172 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
4173 processed. The caller has started a sequence for the conversion.
4174 Return true if successful, false if something goes wrong. */
4176 static bool
4177 cond_move_convert_if_block (struct noce_if_info *if_infop,
4178 basic_block bb, rtx cond,
4179 hash_map<rtx, rtx> *then_vals,
4180 hash_map<rtx, rtx> *else_vals,
4181 bool else_block_p)
4183 enum rtx_code code;
4184 rtx_insn *insn;
4185 rtx cond_arg0, cond_arg1;
4187 code = GET_CODE (cond);
4188 cond_arg0 = XEXP (cond, 0);
4189 cond_arg1 = XEXP (cond, 1);
4191 FOR_BB_INSNS (bb, insn)
4193 rtx set, target, dest, t, e;
4195 /* ??? Maybe emit conditional debug insn? */
4196 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
4197 continue;
4198 set = single_set (insn);
4199 gcc_assert (set && REG_P (SET_DEST (set)));
4201 dest = SET_DEST (set);
4203 rtx *then_slot = then_vals->get (dest);
4204 rtx *else_slot = else_vals->get (dest);
4205 t = then_slot ? *then_slot : NULL_RTX;
4206 e = else_slot ? *else_slot : NULL_RTX;
4208 if (else_block_p)
4210 /* If this register was set in the then block, we already
4211 handled this case there. */
4212 if (t)
4213 continue;
4214 t = dest;
4215 gcc_assert (e);
4217 else
4219 gcc_assert (t);
4220 if (!e)
4221 e = dest;
4224 if (if_infop->cond_inverted)
4225 std::swap (t, e);
4227 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
4228 t, e);
4229 if (!target)
4230 return false;
4232 if (target != dest)
4233 noce_emit_move_insn (dest, target);
4236 return true;
4239 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
4240 it using only conditional moves. Return TRUE if we were successful at
4241 converting the block. */
4243 static bool
4244 cond_move_process_if_block (struct noce_if_info *if_info)
4246 basic_block test_bb = if_info->test_bb;
4247 basic_block then_bb = if_info->then_bb;
4248 basic_block else_bb = if_info->else_bb;
4249 basic_block join_bb = if_info->join_bb;
4250 rtx_insn *jump = if_info->jump;
4251 rtx cond = if_info->cond;
4252 rtx_insn *seq, *loc_insn;
4253 int c;
4254 vec<rtx> then_regs = vNULL;
4255 vec<rtx> else_regs = vNULL;
4256 bool success_p = false;
4257 int limit = param_max_rtl_if_conversion_insns;
4259 /* Build a mapping for each block to the value used for each
4260 register. */
4261 hash_map<rtx, rtx> then_vals;
4262 hash_map<rtx, rtx> else_vals;
4264 /* Make sure the blocks are suitable. */
4265 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
4266 || (else_bb
4267 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
4268 goto done;
4270 /* Make sure the blocks can be used together. If the same register
4271 is set in both blocks, and is not set to a constant in both
4272 cases, then both blocks must set it to the same register. We
4273 have already verified that if it is set to a register, that the
4274 source register does not change after the assignment. Also count
4275 the number of registers set in only one of the blocks. */
4276 c = 0;
4277 for (rtx reg : then_regs)
4279 rtx *then_slot = then_vals.get (reg);
4280 rtx *else_slot = else_vals.get (reg);
4282 gcc_checking_assert (then_slot);
4283 if (!else_slot)
4284 ++c;
4285 else
4287 rtx then_val = *then_slot;
4288 rtx else_val = *else_slot;
4289 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
4290 && !rtx_equal_p (then_val, else_val))
4291 goto done;
4295 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
4296 for (rtx reg : else_regs)
4298 gcc_checking_assert (else_vals.get (reg));
4299 if (!then_vals.get (reg))
4300 ++c;
4303 /* Make sure it is reasonable to convert this block. What matters
4304 is the number of assignments currently made in only one of the
4305 branches, since if we convert we are going to always execute
4306 them. */
4307 if (c > MAX_CONDITIONAL_EXECUTE
4308 || c > limit)
4309 goto done;
4311 /* Try to emit the conditional moves. First do the then block,
4312 then do anything left in the else blocks. */
4313 start_sequence ();
4314 if (!cond_move_convert_if_block (if_info, then_bb, cond,
4315 &then_vals, &else_vals, false)
4316 || (else_bb
4317 && !cond_move_convert_if_block (if_info, else_bb, cond,
4318 &then_vals, &else_vals, true)))
4320 end_sequence ();
4321 goto done;
4323 seq = end_ifcvt_sequence (if_info);
4324 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
4325 goto done;
4327 loc_insn = first_active_insn (then_bb);
4328 if (!loc_insn)
4330 loc_insn = first_active_insn (else_bb);
4331 gcc_assert (loc_insn);
4333 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
4335 if (else_bb)
4337 delete_basic_block (else_bb);
4338 num_true_changes++;
4340 else
4341 remove_edge (find_edge (test_bb, join_bb));
4343 remove_edge (find_edge (then_bb, join_bb));
4344 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
4345 delete_basic_block (then_bb);
4346 num_true_changes++;
4348 if (can_merge_blocks_p (test_bb, join_bb))
4350 merge_blocks (test_bb, join_bb);
4351 num_true_changes++;
4354 num_updated_if_blocks++;
4355 success_p = true;
4357 done:
4358 then_regs.release ();
4359 else_regs.release ();
4360 return success_p;
4364 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
4365 IF-THEN-ELSE-JOIN block.
4367 If so, we'll try to convert the insns to not require the branch,
4368 using only transformations that do not require conditional execution.
4370 Return TRUE if we were successful at converting the block. */
4372 static bool
4373 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
4374 int pass)
4376 basic_block then_bb, else_bb, join_bb;
4377 bool then_else_reversed = false;
4378 rtx_insn *jump;
4379 rtx_insn *cond_earliest;
4380 struct noce_if_info if_info;
4381 bool speed_p = optimize_bb_for_speed_p (test_bb);
4383 /* We only ever should get here before reload. */
4384 gcc_assert (!reload_completed);
4386 /* Recognize an IF-THEN-ELSE-JOIN block. */
4387 if (single_pred_p (then_edge->dest)
4388 && single_succ_p (then_edge->dest)
4389 && single_pred_p (else_edge->dest)
4390 && single_succ_p (else_edge->dest)
4391 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
4393 then_bb = then_edge->dest;
4394 else_bb = else_edge->dest;
4395 join_bb = single_succ (then_bb);
4397 /* Recognize an IF-THEN-JOIN block. */
4398 else if (single_pred_p (then_edge->dest)
4399 && single_succ_p (then_edge->dest)
4400 && single_succ (then_edge->dest) == else_edge->dest)
4402 then_bb = then_edge->dest;
4403 else_bb = NULL_BLOCK;
4404 join_bb = else_edge->dest;
4406 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
4407 of basic blocks in cfglayout mode does not matter, so the fallthrough
4408 edge can go to any basic block (and not just to bb->next_bb, like in
4409 cfgrtl mode). */
4410 else if (single_pred_p (else_edge->dest)
4411 && single_succ_p (else_edge->dest)
4412 && single_succ (else_edge->dest) == then_edge->dest)
4414 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
4415 To make this work, we have to invert the THEN and ELSE blocks
4416 and reverse the jump condition. */
4417 then_bb = else_edge->dest;
4418 else_bb = NULL_BLOCK;
4419 join_bb = single_succ (then_bb);
4420 then_else_reversed = true;
4422 else
4423 /* Not a form we can handle. */
4424 return false;
4426 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4427 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4428 return false;
4429 if (else_bb
4430 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4431 return false;
4433 num_possible_if_blocks++;
4435 if (dump_file)
4437 fprintf (dump_file,
4438 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
4439 (else_bb) ? "-ELSE" : "",
4440 pass, test_bb->index, then_bb->index);
4442 if (else_bb)
4443 fprintf (dump_file, ", else %d", else_bb->index);
4445 fprintf (dump_file, ", join %d\n", join_bb->index);
4448 /* If the conditional jump is more than just a conditional
4449 jump, then we cannot do if-conversion on this block. */
4450 jump = BB_END (test_bb);
4451 if (! onlyjump_p (jump))
4452 return false;
4454 /* Initialize an IF_INFO struct to pass around. */
4455 memset (&if_info, 0, sizeof if_info);
4456 if_info.test_bb = test_bb;
4457 if_info.then_bb = then_bb;
4458 if_info.else_bb = else_bb;
4459 if_info.join_bb = join_bb;
4460 if_info.cond = noce_get_condition (jump, &cond_earliest,
4461 then_else_reversed);
4462 rtx_insn *rev_cond_earliest;
4463 if_info.rev_cond = noce_get_condition (jump, &rev_cond_earliest,
4464 !then_else_reversed);
4465 if (!if_info.cond && !if_info.rev_cond)
4466 return false;
4467 if (!if_info.cond)
4469 std::swap (if_info.cond, if_info.rev_cond);
4470 std::swap (cond_earliest, rev_cond_earliest);
4471 if_info.cond_inverted = true;
4473 /* We must be comparing objects whose modes imply the size. */
4474 if (GET_MODE (XEXP (if_info.cond, 0)) == BLKmode)
4475 return false;
4476 gcc_assert (if_info.rev_cond == NULL_RTX
4477 || rev_cond_earliest == cond_earliest);
4478 if_info.cond_earliest = cond_earliest;
4479 if_info.jump = jump;
4480 if_info.then_else_reversed = then_else_reversed;
4481 if_info.speed_p = speed_p;
4482 if_info.max_seq_cost
4483 = targetm.max_noce_ifcvt_seq_cost (then_edge);
4484 /* We'll add in the cost of THEN_BB and ELSE_BB later, when we check
4485 that they are valid to transform. We can't easily get back to the insn
4486 for COND (and it may not exist if we had to canonicalize to get COND),
4487 and jump_insns are always given a cost of 1 by seq_cost, so treat
4488 both instructions as having cost COSTS_N_INSNS (1). */
4489 if_info.original_cost = COSTS_N_INSNS (2);
4492 /* Do the real work. */
4494 /* ??? noce_process_if_block has not yet been updated to handle
4495 inverted conditions. */
4496 if (!if_info.cond_inverted && noce_process_if_block (&if_info))
4497 return true;
4499 if (HAVE_conditional_move
4500 && cond_move_process_if_block (&if_info))
4501 return true;
4503 return false;
4507 /* Merge the blocks and mark for local life update. */
4509 static void
4510 merge_if_block (struct ce_if_block * ce_info)
4512 basic_block test_bb = ce_info->test_bb; /* last test block */
4513 basic_block then_bb = ce_info->then_bb; /* THEN */
4514 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
4515 basic_block join_bb = ce_info->join_bb; /* join block */
4516 basic_block combo_bb;
4518 /* All block merging is done into the lower block numbers. */
4520 combo_bb = test_bb;
4521 df_set_bb_dirty (test_bb);
4523 /* Merge any basic blocks to handle && and || subtests. Each of
4524 the blocks are on the fallthru path from the predecessor block. */
4525 if (ce_info->num_multiple_test_blocks > 0)
4527 basic_block bb = test_bb;
4528 basic_block last_test_bb = ce_info->last_test_bb;
4529 basic_block fallthru = block_fallthru (bb);
4533 bb = fallthru;
4534 fallthru = block_fallthru (bb);
4535 merge_blocks (combo_bb, bb);
4536 num_true_changes++;
4538 while (bb != last_test_bb);
4541 /* Merge TEST block into THEN block. Normally the THEN block won't have a
4542 label, but it might if there were || tests. That label's count should be
4543 zero, and it normally should be removed. */
4545 if (then_bb)
4547 /* If THEN_BB has no successors, then there's a BARRIER after it.
4548 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
4549 is no longer needed, and in fact it is incorrect to leave it in
4550 the insn stream. */
4551 if (EDGE_COUNT (then_bb->succs) == 0
4552 && EDGE_COUNT (combo_bb->succs) > 1)
4554 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
4555 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4556 end = NEXT_INSN (end);
4558 if (end && BARRIER_P (end))
4559 delete_insn (end);
4561 merge_blocks (combo_bb, then_bb);
4562 num_true_changes++;
4565 /* The ELSE block, if it existed, had a label. That label count
4566 will almost always be zero, but odd things can happen when labels
4567 get their addresses taken. */
4568 if (else_bb)
4570 /* If ELSE_BB has no successors, then there's a BARRIER after it.
4571 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
4572 is no longer needed, and in fact it is incorrect to leave it in
4573 the insn stream. */
4574 if (EDGE_COUNT (else_bb->succs) == 0
4575 && EDGE_COUNT (combo_bb->succs) > 1)
4577 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
4578 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4579 end = NEXT_INSN (end);
4581 if (end && BARRIER_P (end))
4582 delete_insn (end);
4584 merge_blocks (combo_bb, else_bb);
4585 num_true_changes++;
4588 /* If there was no join block reported, that means it was not adjacent
4589 to the others, and so we cannot merge them. */
4591 if (! join_bb)
4593 rtx_insn *last = BB_END (combo_bb);
4595 /* The outgoing edge for the current COMBO block should already
4596 be correct. Verify this. */
4597 if (EDGE_COUNT (combo_bb->succs) == 0)
4598 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
4599 || (NONJUMP_INSN_P (last)
4600 && GET_CODE (PATTERN (last)) == TRAP_IF
4601 && (TRAP_CONDITION (PATTERN (last))
4602 == const_true_rtx)));
4604 else
4605 /* There should still be something at the end of the THEN or ELSE
4606 blocks taking us to our final destination. */
4607 gcc_assert (JUMP_P (last)
4608 || (EDGE_SUCC (combo_bb, 0)->dest
4609 == EXIT_BLOCK_PTR_FOR_FN (cfun)
4610 && CALL_P (last)
4611 && SIBLING_CALL_P (last))
4612 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
4613 && can_throw_internal (last)));
4616 /* The JOIN block may have had quite a number of other predecessors too.
4617 Since we've already merged the TEST, THEN and ELSE blocks, we should
4618 have only one remaining edge from our if-then-else diamond. If there
4619 is more than one remaining edge, it must come from elsewhere. There
4620 may be zero incoming edges if the THEN block didn't actually join
4621 back up (as with a call to a non-return function). */
4622 else if (EDGE_COUNT (join_bb->preds) < 2
4623 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4625 /* We can merge the JOIN cleanly and update the dataflow try
4626 again on this pass.*/
4627 merge_blocks (combo_bb, join_bb);
4628 num_true_changes++;
4630 else
4632 /* We cannot merge the JOIN. */
4634 /* The outgoing edge for the current COMBO block should already
4635 be correct. Verify this. */
4636 gcc_assert (single_succ_p (combo_bb)
4637 && single_succ (combo_bb) == join_bb);
4639 /* Remove the jump and cruft from the end of the COMBO block. */
4640 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4641 tidy_fallthru_edge (single_succ_edge (combo_bb));
4644 num_updated_if_blocks++;
4647 /* Find a block ending in a simple IF condition and try to transform it
4648 in some way. When converting a multi-block condition, put the new code
4649 in the first such block and delete the rest. Return a pointer to this
4650 first block if some transformation was done. Return NULL otherwise. */
4652 static basic_block
4653 find_if_header (basic_block test_bb, int pass)
4655 ce_if_block ce_info;
4656 edge then_edge;
4657 edge else_edge;
4659 /* The kind of block we're looking for has exactly two successors. */
4660 if (EDGE_COUNT (test_bb->succs) != 2)
4661 return NULL;
4663 then_edge = EDGE_SUCC (test_bb, 0);
4664 else_edge = EDGE_SUCC (test_bb, 1);
4666 if (df_get_bb_dirty (then_edge->dest))
4667 return NULL;
4668 if (df_get_bb_dirty (else_edge->dest))
4669 return NULL;
4671 /* Neither edge should be abnormal. */
4672 if ((then_edge->flags & EDGE_COMPLEX)
4673 || (else_edge->flags & EDGE_COMPLEX))
4674 return NULL;
4676 /* Nor exit the loop. */
4677 if ((then_edge->flags & EDGE_LOOP_EXIT)
4678 || (else_edge->flags & EDGE_LOOP_EXIT))
4679 return NULL;
4681 /* The THEN edge is canonically the one that falls through. */
4682 if (then_edge->flags & EDGE_FALLTHRU)
4684 else if (else_edge->flags & EDGE_FALLTHRU)
4685 std::swap (then_edge, else_edge);
4686 else
4687 /* Otherwise this must be a multiway branch of some sort. */
4688 return NULL;
4690 memset (&ce_info, 0, sizeof (ce_info));
4691 ce_info.test_bb = test_bb;
4692 ce_info.then_bb = then_edge->dest;
4693 ce_info.else_bb = else_edge->dest;
4694 ce_info.pass = pass;
4696 #ifdef IFCVT_MACHDEP_INIT
4697 IFCVT_MACHDEP_INIT (&ce_info);
4698 #endif
4700 if (!reload_completed
4701 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
4702 goto success;
4704 if (reload_completed
4705 && targetm.have_conditional_execution ()
4706 && cond_exec_find_if_block (&ce_info))
4707 goto success;
4709 if (targetm.have_trap ()
4710 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
4711 && find_cond_trap (test_bb, then_edge, else_edge))
4712 goto success;
4714 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
4715 && (reload_completed || !targetm.have_conditional_execution ()))
4717 if (find_if_case_1 (test_bb, then_edge, else_edge))
4718 goto success;
4719 if (find_if_case_2 (test_bb, then_edge, else_edge))
4720 goto success;
4723 return NULL;
4725 success:
4726 if (dump_file)
4727 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
4728 /* Set this so we continue looking. */
4729 cond_exec_changed_p = true;
4730 return ce_info.test_bb;
4733 /* Return true if a block has two edges, one of which falls through to the next
4734 block, and the other jumps to a specific block, so that we can tell if the
4735 block is part of an && test or an || test. Returns either -1 or the number
4736 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
4738 static int
4739 block_jumps_and_fallthru (basic_block cur_bb, basic_block target_bb)
4741 edge cur_edge;
4742 bool fallthru_p = false;
4743 bool jump_p = false;
4744 rtx_insn *insn;
4745 rtx_insn *end;
4746 int n_insns = 0;
4747 edge_iterator ei;
4749 if (!cur_bb || !target_bb)
4750 return -1;
4752 /* If no edges, obviously it doesn't jump or fallthru. */
4753 if (EDGE_COUNT (cur_bb->succs) == 0)
4754 return 0;
4756 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
4758 if (cur_edge->flags & EDGE_COMPLEX)
4759 /* Anything complex isn't what we want. */
4760 return -1;
4762 else if (cur_edge->flags & EDGE_FALLTHRU)
4763 fallthru_p = true;
4765 else if (cur_edge->dest == target_bb)
4766 jump_p = true;
4768 else
4769 return -1;
4772 if ((jump_p & fallthru_p) == 0)
4773 return -1;
4775 /* Don't allow calls in the block, since this is used to group && and ||
4776 together for conditional execution support. ??? we should support
4777 conditional execution support across calls for IA-64 some day, but
4778 for now it makes the code simpler. */
4779 end = BB_END (cur_bb);
4780 insn = BB_HEAD (cur_bb);
4782 while (insn != NULL_RTX)
4784 if (CALL_P (insn))
4785 return -1;
4787 if (INSN_P (insn)
4788 && !JUMP_P (insn)
4789 && !DEBUG_INSN_P (insn)
4790 && GET_CODE (PATTERN (insn)) != USE
4791 && GET_CODE (PATTERN (insn)) != CLOBBER)
4792 n_insns++;
4794 if (insn == end)
4795 break;
4797 insn = NEXT_INSN (insn);
4800 return n_insns;
4803 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
4804 block. If so, we'll try to convert the insns to not require the branch.
4805 Return TRUE if we were successful at converting the block. */
4807 static bool
4808 cond_exec_find_if_block (struct ce_if_block * ce_info)
4810 basic_block test_bb = ce_info->test_bb;
4811 basic_block then_bb = ce_info->then_bb;
4812 basic_block else_bb = ce_info->else_bb;
4813 basic_block join_bb = NULL_BLOCK;
4814 edge cur_edge;
4815 basic_block next;
4816 edge_iterator ei;
4818 ce_info->last_test_bb = test_bb;
4820 /* We only ever should get here after reload,
4821 and if we have conditional execution. */
4822 gcc_assert (reload_completed && targetm.have_conditional_execution ());
4824 /* Discover if any fall through predecessors of the current test basic block
4825 were && tests (which jump to the else block) or || tests (which jump to
4826 the then block). */
4827 if (single_pred_p (test_bb)
4828 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
4830 basic_block bb = single_pred (test_bb);
4831 basic_block target_bb;
4832 int max_insns = MAX_CONDITIONAL_EXECUTE;
4833 int n_insns;
4835 /* Determine if the preceding block is an && or || block. */
4836 if ((n_insns = block_jumps_and_fallthru (bb, else_bb)) >= 0)
4838 ce_info->and_and_p = true;
4839 target_bb = else_bb;
4841 else if ((n_insns = block_jumps_and_fallthru (bb, then_bb)) >= 0)
4843 ce_info->and_and_p = false;
4844 target_bb = then_bb;
4846 else
4847 target_bb = NULL_BLOCK;
4849 if (target_bb && n_insns <= max_insns)
4851 int total_insns = 0;
4852 int blocks = 0;
4854 ce_info->last_test_bb = test_bb;
4856 /* Found at least one && or || block, look for more. */
4859 ce_info->test_bb = test_bb = bb;
4860 total_insns += n_insns;
4861 blocks++;
4863 if (!single_pred_p (bb))
4864 break;
4866 bb = single_pred (bb);
4867 n_insns = block_jumps_and_fallthru (bb, target_bb);
4869 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
4871 ce_info->num_multiple_test_blocks = blocks;
4872 ce_info->num_multiple_test_insns = total_insns;
4874 if (ce_info->and_and_p)
4875 ce_info->num_and_and_blocks = blocks;
4876 else
4877 ce_info->num_or_or_blocks = blocks;
4881 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
4882 other than any || blocks which jump to the THEN block. */
4883 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
4884 return false;
4886 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4887 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
4889 if (cur_edge->flags & EDGE_COMPLEX)
4890 return false;
4893 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
4895 if (cur_edge->flags & EDGE_COMPLEX)
4896 return false;
4899 /* The THEN block of an IF-THEN combo must have zero or one successors. */
4900 if (EDGE_COUNT (then_bb->succs) > 0
4901 && (!single_succ_p (then_bb)
4902 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4903 || (epilogue_completed
4904 && tablejump_p (BB_END (then_bb), NULL, NULL))))
4905 return false;
4907 /* If the THEN block has no successors, conditional execution can still
4908 make a conditional call. Don't do this unless the ELSE block has
4909 only one incoming edge -- the CFG manipulation is too ugly otherwise.
4910 Check for the last insn of the THEN block being an indirect jump, which
4911 is listed as not having any successors, but confuses the rest of the CE
4912 code processing. ??? we should fix this in the future. */
4913 if (EDGE_COUNT (then_bb->succs) == 0)
4915 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4917 rtx_insn *last_insn = BB_END (then_bb);
4919 while (last_insn
4920 && NOTE_P (last_insn)
4921 && last_insn != BB_HEAD (then_bb))
4922 last_insn = PREV_INSN (last_insn);
4924 if (last_insn
4925 && JUMP_P (last_insn)
4926 && ! simplejump_p (last_insn))
4927 return false;
4929 join_bb = else_bb;
4930 else_bb = NULL_BLOCK;
4932 else
4933 return false;
4936 /* If the THEN block's successor is the other edge out of the TEST block,
4937 then we have an IF-THEN combo without an ELSE. */
4938 else if (single_succ (then_bb) == else_bb)
4940 join_bb = else_bb;
4941 else_bb = NULL_BLOCK;
4944 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
4945 has exactly one predecessor and one successor, and the outgoing edge
4946 is not complex, then we have an IF-THEN-ELSE combo. */
4947 else if (single_succ_p (else_bb)
4948 && single_succ (then_bb) == single_succ (else_bb)
4949 && single_pred_p (else_bb)
4950 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4951 && !(epilogue_completed
4952 && tablejump_p (BB_END (else_bb), NULL, NULL)))
4953 join_bb = single_succ (else_bb);
4955 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
4956 else
4957 return false;
4959 num_possible_if_blocks++;
4961 if (dump_file)
4963 fprintf (dump_file,
4964 "\nIF-THEN%s block found, pass %d, start block %d "
4965 "[insn %d], then %d [%d]",
4966 (else_bb) ? "-ELSE" : "",
4967 ce_info->pass,
4968 test_bb->index,
4969 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
4970 then_bb->index,
4971 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
4973 if (else_bb)
4974 fprintf (dump_file, ", else %d [%d]",
4975 else_bb->index,
4976 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
4978 fprintf (dump_file, ", join %d [%d]",
4979 join_bb->index,
4980 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
4982 if (ce_info->num_multiple_test_blocks > 0)
4983 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
4984 ce_info->num_multiple_test_blocks,
4985 (ce_info->and_and_p) ? "&&" : "||",
4986 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
4987 ce_info->last_test_bb->index,
4988 ((BB_HEAD (ce_info->last_test_bb))
4989 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
4990 : -1));
4992 fputc ('\n', dump_file);
4995 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
4996 first condition for free, since we've already asserted that there's a
4997 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
4998 we checked the FALLTHRU flag, those are already adjacent to the last IF
4999 block. */
5000 /* ??? As an enhancement, move the ELSE block. Have to deal with
5001 BLOCK notes, if by no other means than backing out the merge if they
5002 exist. Sticky enough I don't want to think about it now. */
5003 next = then_bb;
5004 if (else_bb && (next = next->next_bb) != else_bb)
5005 return false;
5006 if ((next = next->next_bb) != join_bb
5007 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
5009 if (else_bb)
5010 join_bb = NULL;
5011 else
5012 return false;
5015 /* Do the real work. */
5017 ce_info->else_bb = else_bb;
5018 ce_info->join_bb = join_bb;
5020 /* If we have && and || tests, try to first handle combining the && and ||
5021 tests into the conditional code, and if that fails, go back and handle
5022 it without the && and ||, which at present handles the && case if there
5023 was no ELSE block. */
5024 if (cond_exec_process_if_block (ce_info, true))
5025 return true;
5027 if (ce_info->num_multiple_test_blocks)
5029 cancel_changes (0);
5031 if (cond_exec_process_if_block (ce_info, false))
5032 return true;
5035 return false;
5038 /* Convert a branch over a trap, or a branch
5039 to a trap, into a conditional trap. */
5041 static bool
5042 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
5044 basic_block then_bb = then_edge->dest;
5045 basic_block else_bb = else_edge->dest;
5046 basic_block other_bb, trap_bb;
5047 rtx_insn *trap, *jump;
5048 rtx cond;
5049 rtx_insn *cond_earliest;
5051 /* Locate the block with the trap instruction. */
5052 /* ??? While we look for no successors, we really ought to allow
5053 EH successors. Need to fix merge_if_block for that to work. */
5054 if ((trap = block_has_only_trap (then_bb)) != NULL)
5055 trap_bb = then_bb, other_bb = else_bb;
5056 else if ((trap = block_has_only_trap (else_bb)) != NULL)
5057 trap_bb = else_bb, other_bb = then_bb;
5058 else
5059 return false;
5061 if (dump_file)
5063 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
5064 test_bb->index, trap_bb->index);
5067 /* If this is not a standard conditional jump, we can't parse it. */
5068 jump = BB_END (test_bb);
5069 cond = noce_get_condition (jump, &cond_earliest, then_bb == trap_bb);
5070 if (! cond)
5071 return false;
5073 /* If the conditional jump is more than just a conditional jump, then
5074 we cannot do if-conversion on this block. Give up for returnjump_p,
5075 changing a conditional return followed by unconditional trap for
5076 conditional trap followed by unconditional return is likely not
5077 beneficial and harder to handle. */
5078 if (! onlyjump_p (jump) || returnjump_p (jump))
5079 return false;
5081 /* We must be comparing objects whose modes imply the size. */
5082 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
5083 return false;
5085 /* Attempt to generate the conditional trap. */
5086 rtx_insn *seq = gen_cond_trap (GET_CODE (cond), copy_rtx (XEXP (cond, 0)),
5087 copy_rtx (XEXP (cond, 1)),
5088 TRAP_CODE (PATTERN (trap)));
5089 if (seq == NULL)
5090 return false;
5092 /* If that results in an invalid insn, back out. */
5093 for (rtx_insn *x = seq; x; x = NEXT_INSN (x))
5094 if (reload_completed
5095 ? !valid_insn_p (x)
5096 : recog_memoized (x) < 0)
5097 return false;
5099 /* Emit the new insns before cond_earliest. */
5100 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
5102 /* Delete the trap block if possible. */
5103 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
5104 df_set_bb_dirty (test_bb);
5105 df_set_bb_dirty (then_bb);
5106 df_set_bb_dirty (else_bb);
5108 if (EDGE_COUNT (trap_bb->preds) == 0)
5110 delete_basic_block (trap_bb);
5111 num_true_changes++;
5114 /* Wire together the blocks again. */
5115 if (current_ir_type () == IR_RTL_CFGLAYOUT)
5116 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
5117 else if (trap_bb == then_bb)
5119 rtx lab = JUMP_LABEL (jump);
5120 rtx_insn *seq = targetm.gen_jump (lab);
5121 rtx_jump_insn *newjump = emit_jump_insn_after (seq, jump);
5122 LABEL_NUSES (lab) += 1;
5123 JUMP_LABEL (newjump) = lab;
5124 emit_barrier_after (newjump);
5126 delete_insn (jump);
5128 if (can_merge_blocks_p (test_bb, other_bb))
5130 merge_blocks (test_bb, other_bb);
5131 num_true_changes++;
5134 num_updated_if_blocks++;
5135 return true;
5138 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
5139 return it. */
5141 static rtx_insn *
5142 block_has_only_trap (basic_block bb)
5144 rtx_insn *trap;
5146 /* We're not the exit block. */
5147 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
5148 return NULL;
5150 /* The block must have no successors. */
5151 if (EDGE_COUNT (bb->succs) > 0)
5152 return NULL;
5154 /* The only instruction in the THEN block must be the trap. */
5155 trap = first_active_insn (bb);
5156 if (! (trap == BB_END (bb)
5157 && GET_CODE (PATTERN (trap)) == TRAP_IF
5158 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
5159 return NULL;
5161 return trap;
5164 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
5165 transformable, but not necessarily the other. There need be no
5166 JOIN block.
5168 Return TRUE if we were successful at converting the block.
5170 Cases we'd like to look at:
5173 if (test) goto over; // x not live
5174 x = a;
5175 goto label;
5176 over:
5178 becomes
5180 x = a;
5181 if (! test) goto label;
5184 if (test) goto E; // x not live
5185 x = big();
5186 goto L;
5188 x = b;
5189 goto M;
5191 becomes
5193 x = b;
5194 if (test) goto M;
5195 x = big();
5196 goto L;
5198 (3) // This one's really only interesting for targets that can do
5199 // multiway branching, e.g. IA-64 BBB bundles. For other targets
5200 // it results in multiple branches on a cache line, which often
5201 // does not sit well with predictors.
5203 if (test1) goto E; // predicted not taken
5204 x = a;
5205 if (test2) goto F;
5208 x = b;
5211 becomes
5213 x = a;
5214 if (test1) goto E;
5215 if (test2) goto F;
5217 Notes:
5219 (A) Don't do (2) if the branch is predicted against the block we're
5220 eliminating. Do it anyway if we can eliminate a branch; this requires
5221 that the sole successor of the eliminated block postdominate the other
5222 side of the if.
5224 (B) With CE, on (3) we can steal from both sides of the if, creating
5226 if (test1) x = a;
5227 if (!test1) x = b;
5228 if (test1) goto J;
5229 if (test2) goto F;
5233 Again, this is most useful if J postdominates.
5235 (C) CE substitutes for helpful life information.
5237 (D) These heuristics need a lot of work. */
5239 /* Tests for case 1 above. */
5241 static bool
5242 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
5244 basic_block then_bb = then_edge->dest;
5245 basic_block else_bb = else_edge->dest;
5246 basic_block new_bb;
5247 int then_bb_index;
5248 profile_probability then_prob;
5249 rtx else_target = NULL_RTX;
5251 /* If we are partitioning hot/cold basic blocks, we don't want to
5252 mess up unconditional or indirect jumps that cross between hot
5253 and cold sections.
5255 Basic block partitioning may result in some jumps that appear to
5256 be optimizable (or blocks that appear to be mergeable), but which really
5257 must be left untouched (they are required to make it safely across
5258 partition boundaries). See the comments at the top of
5259 bb-reorder.cc:partition_hot_cold_basic_blocks for complete details. */
5261 if ((BB_END (then_bb)
5262 && JUMP_P (BB_END (then_bb))
5263 && CROSSING_JUMP_P (BB_END (then_bb)))
5264 || (JUMP_P (BB_END (test_bb))
5265 && CROSSING_JUMP_P (BB_END (test_bb)))
5266 || (BB_END (else_bb)
5267 && JUMP_P (BB_END (else_bb))
5268 && CROSSING_JUMP_P (BB_END (else_bb))))
5269 return false;
5271 /* Verify test_bb ends in a conditional jump with no other side-effects. */
5272 if (!onlyjump_p (BB_END (test_bb)))
5273 return false;
5275 /* THEN has one successor. */
5276 if (!single_succ_p (then_bb))
5277 return false;
5279 /* THEN does not fall through, but is not strange either. */
5280 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
5281 return false;
5283 /* THEN has one predecessor. */
5284 if (!single_pred_p (then_bb))
5285 return false;
5287 /* THEN must do something. */
5288 if (forwarder_block_p (then_bb))
5289 return false;
5291 num_possible_if_blocks++;
5292 if (dump_file)
5293 fprintf (dump_file,
5294 "\nIF-CASE-1 found, start %d, then %d\n",
5295 test_bb->index, then_bb->index);
5297 then_prob = then_edge->probability.invert ();
5299 /* We're speculating from the THEN path, we want to make sure the cost
5300 of speculation is within reason. */
5301 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
5302 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
5303 predictable_edge_p (then_edge)))))
5304 return false;
5306 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
5308 rtx_insn *jump = BB_END (else_edge->src);
5309 gcc_assert (JUMP_P (jump));
5310 else_target = JUMP_LABEL (jump);
5313 /* Registers set are dead, or are predicable. */
5314 if (! dead_or_predicable (test_bb, then_bb, else_bb,
5315 single_succ_edge (then_bb), true))
5316 return false;
5318 /* Conversion went ok, including moving the insns and fixing up the
5319 jump. Adjust the CFG to match. */
5321 /* We can avoid creating a new basic block if then_bb is immediately
5322 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
5323 through to else_bb. */
5325 if (then_bb->next_bb == else_bb
5326 && then_bb->prev_bb == test_bb
5327 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
5329 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
5330 new_bb = 0;
5332 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
5333 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
5334 else_bb, else_target);
5335 else
5336 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
5337 else_bb);
5339 df_set_bb_dirty (test_bb);
5340 df_set_bb_dirty (else_bb);
5342 then_bb_index = then_bb->index;
5343 delete_basic_block (then_bb);
5345 /* Make rest of code believe that the newly created block is the THEN_BB
5346 block we removed. */
5347 if (new_bb)
5349 df_bb_replace (then_bb_index, new_bb);
5350 /* This should have been done above via force_nonfallthru_and_redirect
5351 (possibly called from redirect_edge_and_branch_force). */
5352 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
5355 num_true_changes++;
5356 num_updated_if_blocks++;
5357 return true;
5360 /* Test for case 2 above. */
5362 static bool
5363 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
5365 basic_block then_bb = then_edge->dest;
5366 basic_block else_bb = else_edge->dest;
5367 edge else_succ;
5368 profile_probability then_prob, else_prob;
5370 /* We do not want to speculate (empty) loop latches. */
5371 if (current_loops
5372 && else_bb->loop_father->latch == else_bb)
5373 return false;
5375 /* If we are partitioning hot/cold basic blocks, we don't want to
5376 mess up unconditional or indirect jumps that cross between hot
5377 and cold sections.
5379 Basic block partitioning may result in some jumps that appear to
5380 be optimizable (or blocks that appear to be mergeable), but which really
5381 must be left untouched (they are required to make it safely across
5382 partition boundaries). See the comments at the top of
5383 bb-reorder.cc:partition_hot_cold_basic_blocks for complete details. */
5385 if ((BB_END (then_bb)
5386 && JUMP_P (BB_END (then_bb))
5387 && CROSSING_JUMP_P (BB_END (then_bb)))
5388 || (JUMP_P (BB_END (test_bb))
5389 && CROSSING_JUMP_P (BB_END (test_bb)))
5390 || (BB_END (else_bb)
5391 && JUMP_P (BB_END (else_bb))
5392 && CROSSING_JUMP_P (BB_END (else_bb))))
5393 return false;
5395 /* Verify test_bb ends in a conditional jump with no other side-effects. */
5396 if (!onlyjump_p (BB_END (test_bb)))
5397 return false;
5399 /* ELSE has one successor. */
5400 if (!single_succ_p (else_bb))
5401 return false;
5402 else
5403 else_succ = single_succ_edge (else_bb);
5405 /* ELSE outgoing edge is not complex. */
5406 if (else_succ->flags & EDGE_COMPLEX)
5407 return false;
5409 /* ELSE has one predecessor. */
5410 if (!single_pred_p (else_bb))
5411 return false;
5413 /* THEN is not EXIT. */
5414 if (then_bb->index < NUM_FIXED_BLOCKS)
5415 return false;
5417 else_prob = else_edge->probability;
5418 then_prob = else_prob.invert ();
5420 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
5421 if (else_prob > then_prob)
5423 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
5424 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
5425 else_succ->dest))
5427 else
5428 return false;
5430 num_possible_if_blocks++;
5431 if (dump_file)
5432 fprintf (dump_file,
5433 "\nIF-CASE-2 found, start %d, else %d\n",
5434 test_bb->index, else_bb->index);
5436 /* We're speculating from the ELSE path, we want to make sure the cost
5437 of speculation is within reason. */
5438 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
5439 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
5440 predictable_edge_p (else_edge)))))
5441 return false;
5443 /* Registers set are dead, or are predicable. */
5444 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, false))
5445 return false;
5447 /* Conversion went ok, including moving the insns and fixing up the
5448 jump. Adjust the CFG to match. */
5450 df_set_bb_dirty (test_bb);
5451 df_set_bb_dirty (then_bb);
5452 delete_basic_block (else_bb);
5454 num_true_changes++;
5455 num_updated_if_blocks++;
5457 /* ??? We may now fallthru from one of THEN's successors into a join
5458 block. Rerun cleanup_cfg? Examine things manually? Wait? */
5460 return true;
5463 /* Used by the code above to perform the actual rtl transformations.
5464 Return TRUE if successful.
5466 TEST_BB is the block containing the conditional branch. MERGE_BB
5467 is the block containing the code to manipulate. DEST_EDGE is an
5468 edge representing a jump to the join block; after the conversion,
5469 TEST_BB should be branching to its destination.
5470 REVERSEP is true if the sense of the branch should be reversed. */
5472 static bool
5473 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
5474 basic_block other_bb, edge dest_edge, bool reversep)
5476 basic_block new_dest = dest_edge->dest;
5477 rtx_insn *head, *end, *jump;
5478 rtx_insn *earliest = NULL;
5479 rtx old_dest;
5480 bitmap merge_set = NULL;
5481 /* Number of pending changes. */
5482 int n_validated_changes = 0;
5483 rtx new_dest_label = NULL_RTX;
5485 jump = BB_END (test_bb);
5487 /* Find the extent of the real code in the merge block. */
5488 head = BB_HEAD (merge_bb);
5489 end = BB_END (merge_bb);
5491 while (DEBUG_INSN_P (end) && end != head)
5492 end = PREV_INSN (end);
5494 /* If merge_bb ends with a tablejump, predicating/moving insn's
5495 into test_bb and then deleting merge_bb will result in the jumptable
5496 that follows merge_bb being removed along with merge_bb and then we
5497 get an unresolved reference to the jumptable. */
5498 if (tablejump_p (end, NULL, NULL))
5499 return false;
5501 if (LABEL_P (head))
5502 head = NEXT_INSN (head);
5503 while (DEBUG_INSN_P (head) && head != end)
5504 head = NEXT_INSN (head);
5505 if (NOTE_P (head))
5507 if (head == end)
5509 head = end = NULL;
5510 goto no_body;
5512 head = NEXT_INSN (head);
5513 while (DEBUG_INSN_P (head) && head != end)
5514 head = NEXT_INSN (head);
5517 if (JUMP_P (end))
5519 if (!onlyjump_p (end))
5520 return false;
5521 if (head == end)
5523 head = end = NULL;
5524 goto no_body;
5526 end = PREV_INSN (end);
5527 while (DEBUG_INSN_P (end) && end != head)
5528 end = PREV_INSN (end);
5531 /* Don't move frame-related insn across the conditional branch. This
5532 can lead to one of the paths of the branch having wrong unwind info. */
5533 if (epilogue_completed)
5535 rtx_insn *insn = head;
5536 while (1)
5538 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
5539 return false;
5540 if (insn == end)
5541 break;
5542 insn = NEXT_INSN (insn);
5546 /* Disable handling dead code by conditional execution if the machine needs
5547 to do anything funny with the tests, etc. */
5548 #ifndef IFCVT_MODIFY_TESTS
5549 if (targetm.have_conditional_execution ())
5551 /* In the conditional execution case, we have things easy. We know
5552 the condition is reversible. We don't have to check life info
5553 because we're going to conditionally execute the code anyway.
5554 All that's left is making sure the insns involved can actually
5555 be predicated. */
5557 rtx cond;
5559 /* If the conditional jump is more than just a conditional jump,
5560 then we cannot do conditional execution conversion on this block. */
5561 if (!onlyjump_p (jump))
5562 goto nce;
5564 cond = cond_exec_get_condition (jump);
5565 if (! cond)
5566 goto nce;
5568 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
5569 profile_probability prob_val
5570 = (note ? profile_probability::from_reg_br_prob_note (XINT (note, 0))
5571 : profile_probability::uninitialized ());
5573 if (reversep)
5575 enum rtx_code rev = reversed_comparison_code (cond, jump);
5576 if (rev == UNKNOWN)
5577 return false;
5578 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
5579 XEXP (cond, 1));
5580 prob_val = prob_val.invert ();
5583 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, false)
5584 && verify_changes (0))
5585 n_validated_changes = num_validated_changes ();
5586 else
5587 cancel_changes (0);
5589 earliest = jump;
5591 nce:
5592 #endif
5594 /* If we allocated new pseudos (e.g. in the conditional move
5595 expander called from noce_emit_cmove), we must resize the
5596 array first. */
5597 if (max_regno < max_reg_num ())
5598 max_regno = max_reg_num ();
5600 /* Try the NCE path if the CE path did not result in any changes. */
5601 if (n_validated_changes == 0)
5603 rtx cond;
5604 rtx_insn *insn;
5605 regset live;
5606 bool success;
5608 /* In the non-conditional execution case, we have to verify that there
5609 are no trapping operations, no calls, no references to memory, and
5610 that any registers modified are dead at the branch site. */
5612 if (!any_condjump_p (jump))
5613 return false;
5615 /* Find the extent of the conditional. */
5616 cond = noce_get_condition (jump, &earliest, false);
5617 if (!cond)
5618 return false;
5620 live = BITMAP_ALLOC (&reg_obstack);
5621 simulate_backwards_to_point (merge_bb, live, end);
5622 success = can_move_insns_across (head, end, earliest, jump,
5623 merge_bb, live,
5624 df_get_live_in (other_bb), NULL);
5625 BITMAP_FREE (live);
5626 if (!success)
5627 return false;
5629 /* Collect the set of registers set in MERGE_BB. */
5630 merge_set = BITMAP_ALLOC (&reg_obstack);
5632 FOR_BB_INSNS (merge_bb, insn)
5633 if (NONDEBUG_INSN_P (insn))
5634 df_simulate_find_defs (insn, merge_set);
5636 /* If shrink-wrapping, disable this optimization when test_bb is
5637 the first basic block and merge_bb exits. The idea is to not
5638 move code setting up a return register as that may clobber a
5639 register used to pass function parameters, which then must be
5640 saved in caller-saved regs. A caller-saved reg requires the
5641 prologue, killing a shrink-wrap opportunity. */
5642 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
5643 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
5644 && single_succ_p (new_dest)
5645 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
5646 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
5648 regset return_regs;
5649 unsigned int i;
5651 return_regs = BITMAP_ALLOC (&reg_obstack);
5653 /* Start off with the intersection of regs used to pass
5654 params and regs used to return values. */
5655 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5656 if (FUNCTION_ARG_REGNO_P (i)
5657 && targetm.calls.function_value_regno_p (i))
5658 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
5660 bitmap_and_into (return_regs,
5661 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5662 bitmap_and_into (return_regs,
5663 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
5664 if (!bitmap_empty_p (return_regs))
5666 FOR_BB_INSNS_REVERSE (new_dest, insn)
5667 if (NONDEBUG_INSN_P (insn))
5669 df_ref def;
5671 /* If this insn sets any reg in return_regs, add all
5672 reg uses to the set of regs we're interested in. */
5673 FOR_EACH_INSN_DEF (def, insn)
5674 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
5676 df_simulate_uses (insn, return_regs);
5677 break;
5680 if (bitmap_intersect_p (merge_set, return_regs))
5682 BITMAP_FREE (return_regs);
5683 BITMAP_FREE (merge_set);
5684 return false;
5687 BITMAP_FREE (return_regs);
5691 no_body:
5692 /* We don't want to use normal invert_jump or redirect_jump because
5693 we don't want to delete_insn called. Also, we want to do our own
5694 change group management. */
5696 old_dest = JUMP_LABEL (jump);
5697 if (other_bb != new_dest)
5699 if (!any_condjump_p (jump))
5700 goto cancel;
5702 if (JUMP_P (BB_END (dest_edge->src)))
5703 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
5704 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5705 new_dest_label = ret_rtx;
5706 else
5707 new_dest_label = block_label (new_dest);
5709 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
5710 if (reversep
5711 ? ! invert_jump_1 (jump_insn, new_dest_label)
5712 : ! redirect_jump_1 (jump_insn, new_dest_label))
5713 goto cancel;
5716 if (verify_changes (n_validated_changes))
5717 confirm_change_group ();
5718 else
5719 goto cancel;
5721 if (other_bb != new_dest)
5723 redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
5724 0, reversep);
5726 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
5727 if (reversep)
5729 std::swap (BRANCH_EDGE (test_bb)->probability,
5730 FALLTHRU_EDGE (test_bb)->probability);
5731 update_br_prob_note (test_bb);
5735 /* Move the insns out of MERGE_BB to before the branch. */
5736 if (head != NULL)
5738 rtx_insn *insn;
5740 if (end == BB_END (merge_bb))
5741 BB_END (merge_bb) = PREV_INSN (head);
5743 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
5744 notes being moved might become invalid. */
5745 insn = head;
5748 rtx note;
5750 if (! INSN_P (insn))
5751 continue;
5752 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5753 if (! note)
5754 continue;
5755 remove_note (insn, note);
5756 } while (insn != end && (insn = NEXT_INSN (insn)));
5758 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
5759 notes referring to the registers being set might become invalid. */
5760 if (merge_set)
5762 unsigned i;
5763 bitmap_iterator bi;
5765 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
5766 remove_reg_equal_equiv_notes_for_regno (i);
5768 BITMAP_FREE (merge_set);
5771 reorder_insns (head, end, PREV_INSN (earliest));
5774 /* Remove the jump and edge if we can. */
5775 if (other_bb == new_dest)
5777 delete_insn (jump);
5778 remove_edge (BRANCH_EDGE (test_bb));
5779 /* ??? Can't merge blocks here, as then_bb is still in use.
5780 At minimum, the merge will get done just before bb-reorder. */
5783 return true;
5785 cancel:
5786 cancel_changes (0);
5788 if (merge_set)
5789 BITMAP_FREE (merge_set);
5791 return false;
5794 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
5795 we are after combine pass. */
5797 static void
5798 if_convert (bool after_combine)
5800 basic_block bb;
5801 int pass;
5803 if (optimize == 1)
5805 df_live_add_problem ();
5806 df_live_set_all_dirty ();
5809 /* Record whether we are after combine pass. */
5810 ifcvt_after_combine = after_combine;
5811 have_cbranchcc4 = (direct_optab_handler (cbranch_optab, CCmode)
5812 != CODE_FOR_nothing);
5813 num_possible_if_blocks = 0;
5814 num_updated_if_blocks = 0;
5815 num_true_changes = 0;
5817 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5818 mark_loop_exit_edges ();
5819 loop_optimizer_finalize ();
5820 free_dominance_info (CDI_DOMINATORS);
5822 /* Compute postdominators. */
5823 calculate_dominance_info (CDI_POST_DOMINATORS);
5825 df_set_flags (DF_LR_RUN_DCE);
5827 /* Go through each of the basic blocks looking for things to convert. If we
5828 have conditional execution, we make multiple passes to allow us to handle
5829 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
5830 pass = 0;
5833 df_analyze ();
5834 /* Only need to do dce on the first pass. */
5835 df_clear_flags (DF_LR_RUN_DCE);
5836 cond_exec_changed_p = false;
5837 pass++;
5839 #ifdef IFCVT_MULTIPLE_DUMPS
5840 if (dump_file && pass > 1)
5841 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
5842 #endif
5844 FOR_EACH_BB_FN (bb, cfun)
5846 basic_block new_bb;
5847 while (!df_get_bb_dirty (bb)
5848 && (new_bb = find_if_header (bb, pass)) != NULL)
5849 bb = new_bb;
5852 #ifdef IFCVT_MULTIPLE_DUMPS
5853 if (dump_file && cond_exec_changed_p)
5854 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
5855 #endif
5857 while (cond_exec_changed_p);
5859 #ifdef IFCVT_MULTIPLE_DUMPS
5860 if (dump_file)
5861 fprintf (dump_file, "\n\n========== no more changes\n");
5862 #endif
5864 free_dominance_info (CDI_POST_DOMINATORS);
5866 if (dump_file)
5867 fflush (dump_file);
5869 clear_aux_for_blocks ();
5871 /* If we allocated new pseudos, we must resize the array for sched1. */
5872 if (max_regno < max_reg_num ())
5873 max_regno = max_reg_num ();
5875 /* Write the final stats. */
5876 if (dump_file && num_possible_if_blocks > 0)
5878 fprintf (dump_file,
5879 "\n%d possible IF blocks searched.\n",
5880 num_possible_if_blocks);
5881 fprintf (dump_file,
5882 "%d IF blocks converted.\n",
5883 num_updated_if_blocks);
5884 fprintf (dump_file,
5885 "%d true changes made.\n\n\n",
5886 num_true_changes);
5889 if (optimize == 1)
5890 df_remove_problem (df_live);
5892 /* Some non-cold blocks may now be only reachable from cold blocks.
5893 Fix that up. */
5894 fixup_partitions ();
5896 checking_verify_flow_info ();
5899 /* If-conversion and CFG cleanup. */
5900 static void
5901 rest_of_handle_if_conversion (void)
5903 int flags = 0;
5905 if (flag_if_conversion)
5907 if (dump_file)
5909 dump_reg_info (dump_file);
5910 dump_flow_info (dump_file, dump_flags);
5912 cleanup_cfg (CLEANUP_EXPENSIVE);
5913 if_convert (false);
5914 if (num_updated_if_blocks)
5915 /* Get rid of any dead CC-related instructions. */
5916 flags |= CLEANUP_FORCE_FAST_DCE;
5919 cleanup_cfg (flags);
5922 namespace {
5924 const pass_data pass_data_rtl_ifcvt =
5926 RTL_PASS, /* type */
5927 "ce1", /* name */
5928 OPTGROUP_NONE, /* optinfo_flags */
5929 TV_IFCVT, /* tv_id */
5930 0, /* properties_required */
5931 0, /* properties_provided */
5932 0, /* properties_destroyed */
5933 0, /* todo_flags_start */
5934 TODO_df_finish, /* todo_flags_finish */
5937 class pass_rtl_ifcvt : public rtl_opt_pass
5939 public:
5940 pass_rtl_ifcvt (gcc::context *ctxt)
5941 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
5944 /* opt_pass methods: */
5945 bool gate (function *) final override
5947 return (optimize > 0) && dbg_cnt (if_conversion);
5950 unsigned int execute (function *) final override
5952 rest_of_handle_if_conversion ();
5953 return 0;
5956 }; // class pass_rtl_ifcvt
5958 } // anon namespace
5960 rtl_opt_pass *
5961 make_pass_rtl_ifcvt (gcc::context *ctxt)
5963 return new pass_rtl_ifcvt (ctxt);
5967 /* Rerun if-conversion, as combine may have simplified things enough
5968 to now meet sequence length restrictions. */
5970 namespace {
5972 const pass_data pass_data_if_after_combine =
5974 RTL_PASS, /* type */
5975 "ce2", /* name */
5976 OPTGROUP_NONE, /* optinfo_flags */
5977 TV_IFCVT, /* tv_id */
5978 0, /* properties_required */
5979 0, /* properties_provided */
5980 0, /* properties_destroyed */
5981 0, /* todo_flags_start */
5982 TODO_df_finish, /* todo_flags_finish */
5985 class pass_if_after_combine : public rtl_opt_pass
5987 public:
5988 pass_if_after_combine (gcc::context *ctxt)
5989 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
5992 /* opt_pass methods: */
5993 bool gate (function *) final override
5995 return optimize > 0 && flag_if_conversion
5996 && dbg_cnt (if_after_combine);
5999 unsigned int execute (function *) final override
6001 if_convert (true);
6002 return 0;
6005 }; // class pass_if_after_combine
6007 } // anon namespace
6009 rtl_opt_pass *
6010 make_pass_if_after_combine (gcc::context *ctxt)
6012 return new pass_if_after_combine (ctxt);
6016 namespace {
6018 const pass_data pass_data_if_after_reload =
6020 RTL_PASS, /* type */
6021 "ce3", /* name */
6022 OPTGROUP_NONE, /* optinfo_flags */
6023 TV_IFCVT2, /* tv_id */
6024 0, /* properties_required */
6025 0, /* properties_provided */
6026 0, /* properties_destroyed */
6027 0, /* todo_flags_start */
6028 TODO_df_finish, /* todo_flags_finish */
6031 class pass_if_after_reload : public rtl_opt_pass
6033 public:
6034 pass_if_after_reload (gcc::context *ctxt)
6035 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
6038 /* opt_pass methods: */
6039 bool gate (function *) final override
6041 return optimize > 0 && flag_if_conversion2
6042 && dbg_cnt (if_after_reload);
6045 unsigned int execute (function *) final override
6047 if_convert (true);
6048 return 0;
6051 }; // class pass_if_after_reload
6053 } // anon namespace
6055 rtl_opt_pass *
6056 make_pass_if_after_reload (gcc::context *ctxt)
6058 return new pass_if_after_reload (ctxt);