PR rtl-optimization/88470
[official-gcc.git] / gcc / tree-ssa-reassoc.c
bloba9f45bfd891c65b32e2dd36506211c9c8a06ead2
1 /* Reassociation for trees.
2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "alloc-pool.h"
31 #include "tree-pass.h"
32 #include "memmodel.h"
33 #include "tm_p.h"
34 #include "ssa.h"
35 #include "optabs-tree.h"
36 #include "gimple-pretty-print.h"
37 #include "diagnostic-core.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
40 #include "cfganal.h"
41 #include "gimple-fold.h"
42 #include "tree-eh.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop.h"
47 #include "flags.h"
48 #include "tree-ssa.h"
49 #include "langhooks.h"
50 #include "cfgloop.h"
51 #include "params.h"
52 #include "builtins.h"
53 #include "gimplify.h"
54 #include "case-cfn-macros.h"
56 /* This is a simple global reassociation pass. It is, in part, based
57 on the LLVM pass of the same name (They do some things more/less
58 than we do, in different orders, etc).
60 It consists of five steps:
62 1. Breaking up subtract operations into addition + negate, where
63 it would promote the reassociation of adds.
65 2. Left linearization of the expression trees, so that (A+B)+(C+D)
66 becomes (((A+B)+C)+D), which is easier for us to rewrite later.
67 During linearization, we place the operands of the binary
68 expressions into a vector of operand_entry_*
70 3. Optimization of the operand lists, eliminating things like a +
71 -a, a & a, etc.
73 3a. Combine repeated factors with the same occurrence counts
74 into a __builtin_powi call that will later be optimized into
75 an optimal number of multiplies.
77 4. Rewrite the expression trees we linearized and optimized so
78 they are in proper rank order.
80 5. Repropagate negates, as nothing else will clean it up ATM.
82 A bit of theory on #4, since nobody seems to write anything down
83 about why it makes sense to do it the way they do it:
85 We could do this much nicer theoretically, but don't (for reasons
86 explained after how to do it theoretically nice :P).
88 In order to promote the most redundancy elimination, you want
89 binary expressions whose operands are the same rank (or
90 preferably, the same value) exposed to the redundancy eliminator,
91 for possible elimination.
93 So the way to do this if we really cared, is to build the new op
94 tree from the leaves to the roots, merging as you go, and putting the
95 new op on the end of the worklist, until you are left with one
96 thing on the worklist.
98 IE if you have to rewrite the following set of operands (listed with
99 rank in parentheses), with opcode PLUS_EXPR:
101 a (1), b (1), c (1), d (2), e (2)
104 We start with our merge worklist empty, and the ops list with all of
105 those on it.
107 You want to first merge all leaves of the same rank, as much as
108 possible.
110 So first build a binary op of
112 mergetmp = a + b, and put "mergetmp" on the merge worklist.
114 Because there is no three operand form of PLUS_EXPR, c is not going to
115 be exposed to redundancy elimination as a rank 1 operand.
117 So you might as well throw it on the merge worklist (you could also
118 consider it to now be a rank two operand, and merge it with d and e,
119 but in this case, you then have evicted e from a binary op. So at
120 least in this situation, you can't win.)
122 Then build a binary op of d + e
123 mergetmp2 = d + e
125 and put mergetmp2 on the merge worklist.
127 so merge worklist = {mergetmp, c, mergetmp2}
129 Continue building binary ops of these operations until you have only
130 one operation left on the worklist.
132 So we have
134 build binary op
135 mergetmp3 = mergetmp + c
137 worklist = {mergetmp2, mergetmp3}
139 mergetmp4 = mergetmp2 + mergetmp3
141 worklist = {mergetmp4}
143 because we have one operation left, we can now just set the original
144 statement equal to the result of that operation.
146 This will at least expose a + b and d + e to redundancy elimination
147 as binary operations.
149 For extra points, you can reuse the old statements to build the
150 mergetmps, since you shouldn't run out.
152 So why don't we do this?
154 Because it's expensive, and rarely will help. Most trees we are
155 reassociating have 3 or less ops. If they have 2 ops, they already
156 will be written into a nice single binary op. If you have 3 ops, a
157 single simple check suffices to tell you whether the first two are of the
158 same rank. If so, you know to order it
160 mergetmp = op1 + op2
161 newstmt = mergetmp + op3
163 instead of
164 mergetmp = op2 + op3
165 newstmt = mergetmp + op1
167 If all three are of the same rank, you can't expose them all in a
168 single binary operator anyway, so the above is *still* the best you
169 can do.
171 Thus, this is what we do. When we have three ops left, we check to see
172 what order to put them in, and call it a day. As a nod to vector sum
173 reduction, we check if any of the ops are really a phi node that is a
174 destructive update for the associating op, and keep the destructive
175 update together for vector sum reduction recognition. */
177 /* Enable insertion of __builtin_powi calls during execute_reassoc. See
178 point 3a in the pass header comment. */
179 static bool reassoc_insert_powi_p;
181 /* Statistics */
182 static struct
184 int linearized;
185 int constants_eliminated;
186 int ops_eliminated;
187 int rewritten;
188 int pows_encountered;
189 int pows_created;
190 } reassociate_stats;
192 /* Operator, rank pair. */
193 struct operand_entry
195 unsigned int rank;
196 unsigned int id;
197 tree op;
198 unsigned int count;
199 gimple *stmt_to_insert;
202 static object_allocator<operand_entry> operand_entry_pool
203 ("operand entry pool");
205 /* This is used to assign a unique ID to each struct operand_entry
206 so that qsort results are identical on different hosts. */
207 static unsigned int next_operand_entry_id;
209 /* Starting rank number for a given basic block, so that we can rank
210 operations using unmovable instructions in that BB based on the bb
211 depth. */
212 static long *bb_rank;
214 /* Operand->rank hashtable. */
215 static hash_map<tree, long> *operand_rank;
217 /* Vector of SSA_NAMEs on which after reassociate_bb is done with
218 all basic blocks the CFG should be adjusted - basic blocks
219 split right after that SSA_NAME's definition statement and before
220 the only use, which must be a bit ior. */
221 static vec<tree> reassoc_branch_fixups;
223 /* Forward decls. */
224 static long get_rank (tree);
225 static bool reassoc_stmt_dominates_stmt_p (gimple *, gimple *);
227 /* Wrapper around gsi_remove, which adjusts gimple_uid of debug stmts
228 possibly added by gsi_remove. */
230 bool
231 reassoc_remove_stmt (gimple_stmt_iterator *gsi)
233 gimple *stmt = gsi_stmt (*gsi);
235 if (!MAY_HAVE_DEBUG_BIND_STMTS || gimple_code (stmt) == GIMPLE_PHI)
236 return gsi_remove (gsi, true);
238 gimple_stmt_iterator prev = *gsi;
239 gsi_prev (&prev);
240 unsigned uid = gimple_uid (stmt);
241 basic_block bb = gimple_bb (stmt);
242 bool ret = gsi_remove (gsi, true);
243 if (!gsi_end_p (prev))
244 gsi_next (&prev);
245 else
246 prev = gsi_start_bb (bb);
247 gimple *end_stmt = gsi_stmt (*gsi);
248 while ((stmt = gsi_stmt (prev)) != end_stmt)
250 gcc_assert (stmt && is_gimple_debug (stmt) && gimple_uid (stmt) == 0);
251 gimple_set_uid (stmt, uid);
252 gsi_next (&prev);
254 return ret;
257 /* Bias amount for loop-carried phis. We want this to be larger than
258 the depth of any reassociation tree we can see, but not larger than
259 the rank difference between two blocks. */
260 #define PHI_LOOP_BIAS (1 << 15)
262 /* Rank assigned to a phi statement. If STMT is a loop-carried phi of
263 an innermost loop, and the phi has only a single use which is inside
264 the loop, then the rank is the block rank of the loop latch plus an
265 extra bias for the loop-carried dependence. This causes expressions
266 calculated into an accumulator variable to be independent for each
267 iteration of the loop. If STMT is some other phi, the rank is the
268 block rank of its containing block. */
269 static long
270 phi_rank (gimple *stmt)
272 basic_block bb = gimple_bb (stmt);
273 struct loop *father = bb->loop_father;
274 tree res;
275 unsigned i;
276 use_operand_p use;
277 gimple *use_stmt;
279 /* We only care about real loops (those with a latch). */
280 if (!father->latch)
281 return bb_rank[bb->index];
283 /* Interesting phis must be in headers of innermost loops. */
284 if (bb != father->header
285 || father->inner)
286 return bb_rank[bb->index];
288 /* Ignore virtual SSA_NAMEs. */
289 res = gimple_phi_result (stmt);
290 if (virtual_operand_p (res))
291 return bb_rank[bb->index];
293 /* The phi definition must have a single use, and that use must be
294 within the loop. Otherwise this isn't an accumulator pattern. */
295 if (!single_imm_use (res, &use, &use_stmt)
296 || gimple_bb (use_stmt)->loop_father != father)
297 return bb_rank[bb->index];
299 /* Look for phi arguments from within the loop. If found, bias this phi. */
300 for (i = 0; i < gimple_phi_num_args (stmt); i++)
302 tree arg = gimple_phi_arg_def (stmt, i);
303 if (TREE_CODE (arg) == SSA_NAME
304 && !SSA_NAME_IS_DEFAULT_DEF (arg))
306 gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
307 if (gimple_bb (def_stmt)->loop_father == father)
308 return bb_rank[father->latch->index] + PHI_LOOP_BIAS;
312 /* Must be an uninteresting phi. */
313 return bb_rank[bb->index];
316 /* If EXP is an SSA_NAME defined by a PHI statement that represents a
317 loop-carried dependence of an innermost loop, return TRUE; else
318 return FALSE. */
319 static bool
320 loop_carried_phi (tree exp)
322 gimple *phi_stmt;
323 long block_rank;
325 if (TREE_CODE (exp) != SSA_NAME
326 || SSA_NAME_IS_DEFAULT_DEF (exp))
327 return false;
329 phi_stmt = SSA_NAME_DEF_STMT (exp);
331 if (gimple_code (SSA_NAME_DEF_STMT (exp)) != GIMPLE_PHI)
332 return false;
334 /* Non-loop-carried phis have block rank. Loop-carried phis have
335 an additional bias added in. If this phi doesn't have block rank,
336 it's biased and should not be propagated. */
337 block_rank = bb_rank[gimple_bb (phi_stmt)->index];
339 if (phi_rank (phi_stmt) != block_rank)
340 return true;
342 return false;
345 /* Return the maximum of RANK and the rank that should be propagated
346 from expression OP. For most operands, this is just the rank of OP.
347 For loop-carried phis, the value is zero to avoid undoing the bias
348 in favor of the phi. */
349 static long
350 propagate_rank (long rank, tree op)
352 long op_rank;
354 if (loop_carried_phi (op))
355 return rank;
357 op_rank = get_rank (op);
359 return MAX (rank, op_rank);
362 /* Look up the operand rank structure for expression E. */
364 static inline long
365 find_operand_rank (tree e)
367 long *slot = operand_rank->get (e);
368 return slot ? *slot : -1;
371 /* Insert {E,RANK} into the operand rank hashtable. */
373 static inline void
374 insert_operand_rank (tree e, long rank)
376 gcc_assert (rank > 0);
377 gcc_assert (!operand_rank->put (e, rank));
380 /* Given an expression E, return the rank of the expression. */
382 static long
383 get_rank (tree e)
385 /* SSA_NAME's have the rank of the expression they are the result
387 For globals and uninitialized values, the rank is 0.
388 For function arguments, use the pre-setup rank.
389 For PHI nodes, stores, asm statements, etc, we use the rank of
390 the BB.
391 For simple operations, the rank is the maximum rank of any of
392 its operands, or the bb_rank, whichever is less.
393 I make no claims that this is optimal, however, it gives good
394 results. */
396 /* We make an exception to the normal ranking system to break
397 dependences of accumulator variables in loops. Suppose we
398 have a simple one-block loop containing:
400 x_1 = phi(x_0, x_2)
401 b = a + x_1
402 c = b + d
403 x_2 = c + e
405 As shown, each iteration of the calculation into x is fully
406 dependent upon the iteration before it. We would prefer to
407 see this in the form:
409 x_1 = phi(x_0, x_2)
410 b = a + d
411 c = b + e
412 x_2 = c + x_1
414 If the loop is unrolled, the calculations of b and c from
415 different iterations can be interleaved.
417 To obtain this result during reassociation, we bias the rank
418 of the phi definition x_1 upward, when it is recognized as an
419 accumulator pattern. The artificial rank causes it to be
420 added last, providing the desired independence. */
422 if (TREE_CODE (e) == SSA_NAME)
424 ssa_op_iter iter;
425 gimple *stmt;
426 long rank;
427 tree op;
429 if (SSA_NAME_IS_DEFAULT_DEF (e))
430 return find_operand_rank (e);
432 stmt = SSA_NAME_DEF_STMT (e);
433 if (gimple_code (stmt) == GIMPLE_PHI)
434 return phi_rank (stmt);
436 if (!is_gimple_assign (stmt))
437 return bb_rank[gimple_bb (stmt)->index];
439 /* If we already have a rank for this expression, use that. */
440 rank = find_operand_rank (e);
441 if (rank != -1)
442 return rank;
444 /* Otherwise, find the maximum rank for the operands. As an
445 exception, remove the bias from loop-carried phis when propagating
446 the rank so that dependent operations are not also biased. */
447 /* Simply walk over all SSA uses - this takes advatage of the
448 fact that non-SSA operands are is_gimple_min_invariant and
449 thus have rank 0. */
450 rank = 0;
451 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
452 rank = propagate_rank (rank, op);
454 if (dump_file && (dump_flags & TDF_DETAILS))
456 fprintf (dump_file, "Rank for ");
457 print_generic_expr (dump_file, e);
458 fprintf (dump_file, " is %ld\n", (rank + 1));
461 /* Note the rank in the hashtable so we don't recompute it. */
462 insert_operand_rank (e, (rank + 1));
463 return (rank + 1);
466 /* Constants, globals, etc., are rank 0 */
467 return 0;
471 /* We want integer ones to end up last no matter what, since they are
472 the ones we can do the most with. */
473 #define INTEGER_CONST_TYPE 1 << 4
474 #define FLOAT_ONE_CONST_TYPE 1 << 3
475 #define FLOAT_CONST_TYPE 1 << 2
476 #define OTHER_CONST_TYPE 1 << 1
478 /* Classify an invariant tree into integer, float, or other, so that
479 we can sort them to be near other constants of the same type. */
480 static inline int
481 constant_type (tree t)
483 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
484 return INTEGER_CONST_TYPE;
485 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
487 /* Sort -1.0 and 1.0 constants last, while in some cases
488 const_binop can't optimize some inexact operations, multiplication
489 by -1.0 or 1.0 can be always merged with others. */
490 if (real_onep (t) || real_minus_onep (t))
491 return FLOAT_ONE_CONST_TYPE;
492 return FLOAT_CONST_TYPE;
494 else
495 return OTHER_CONST_TYPE;
498 /* qsort comparison function to sort operand entries PA and PB by rank
499 so that the sorted array is ordered by rank in decreasing order. */
500 static int
501 sort_by_operand_rank (const void *pa, const void *pb)
503 const operand_entry *oea = *(const operand_entry *const *)pa;
504 const operand_entry *oeb = *(const operand_entry *const *)pb;
506 if (oeb->rank != oea->rank)
507 return oeb->rank > oea->rank ? 1 : -1;
509 /* It's nicer for optimize_expression if constants that are likely
510 to fold when added/multiplied/whatever are put next to each
511 other. Since all constants have rank 0, order them by type. */
512 if (oea->rank == 0)
514 if (constant_type (oeb->op) != constant_type (oea->op))
515 return constant_type (oea->op) - constant_type (oeb->op);
516 else
517 /* To make sorting result stable, we use unique IDs to determine
518 order. */
519 return oeb->id > oea->id ? 1 : -1;
522 if (TREE_CODE (oea->op) != SSA_NAME)
524 if (TREE_CODE (oeb->op) != SSA_NAME)
525 return oeb->id > oea->id ? 1 : -1;
526 else
527 return 1;
529 else if (TREE_CODE (oeb->op) != SSA_NAME)
530 return -1;
532 /* Lastly, make sure the versions that are the same go next to each
533 other. */
534 if (SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
536 /* As SSA_NAME_VERSION is assigned pretty randomly, because we reuse
537 versions of removed SSA_NAMEs, so if possible, prefer to sort
538 based on basic block and gimple_uid of the SSA_NAME_DEF_STMT.
539 See PR60418. */
540 gimple *stmta = SSA_NAME_DEF_STMT (oea->op);
541 gimple *stmtb = SSA_NAME_DEF_STMT (oeb->op);
542 basic_block bba = gimple_bb (stmta);
543 basic_block bbb = gimple_bb (stmtb);
544 if (bbb != bba)
546 /* One of the SSA_NAMEs can be defined in oeN->stmt_to_insert
547 but the other might not. */
548 if (!bba)
549 return 1;
550 if (!bbb)
551 return -1;
552 /* If neither is, compare bb_rank. */
553 if (bb_rank[bbb->index] != bb_rank[bba->index])
554 return (bb_rank[bbb->index] >> 16) - (bb_rank[bba->index] >> 16);
557 bool da = reassoc_stmt_dominates_stmt_p (stmta, stmtb);
558 bool db = reassoc_stmt_dominates_stmt_p (stmtb, stmta);
559 if (da != db)
560 return da ? 1 : -1;
562 return SSA_NAME_VERSION (oeb->op) > SSA_NAME_VERSION (oea->op) ? 1 : -1;
565 return oeb->id > oea->id ? 1 : -1;
568 /* Add an operand entry to *OPS for the tree operand OP. */
570 static void
571 add_to_ops_vec (vec<operand_entry *> *ops, tree op, gimple *stmt_to_insert = NULL)
573 operand_entry *oe = operand_entry_pool.allocate ();
575 oe->op = op;
576 oe->rank = get_rank (op);
577 oe->id = next_operand_entry_id++;
578 oe->count = 1;
579 oe->stmt_to_insert = stmt_to_insert;
580 ops->safe_push (oe);
583 /* Add an operand entry to *OPS for the tree operand OP with repeat
584 count REPEAT. */
586 static void
587 add_repeat_to_ops_vec (vec<operand_entry *> *ops, tree op,
588 HOST_WIDE_INT repeat)
590 operand_entry *oe = operand_entry_pool.allocate ();
592 oe->op = op;
593 oe->rank = get_rank (op);
594 oe->id = next_operand_entry_id++;
595 oe->count = repeat;
596 oe->stmt_to_insert = NULL;
597 ops->safe_push (oe);
599 reassociate_stats.pows_encountered++;
602 /* Return true if STMT is reassociable operation containing a binary
603 operation with tree code CODE, and is inside LOOP. */
605 static bool
606 is_reassociable_op (gimple *stmt, enum tree_code code, struct loop *loop)
608 basic_block bb = gimple_bb (stmt);
610 if (gimple_bb (stmt) == NULL)
611 return false;
613 if (!flow_bb_inside_loop_p (loop, bb))
614 return false;
616 if (is_gimple_assign (stmt)
617 && gimple_assign_rhs_code (stmt) == code
618 && has_single_use (gimple_assign_lhs (stmt)))
620 tree rhs1 = gimple_assign_rhs1 (stmt);
621 tree rhs2 = gimple_assign_rhs2 (stmt);
622 if (TREE_CODE (rhs1) == SSA_NAME
623 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs1))
624 return false;
625 if (rhs2
626 && TREE_CODE (rhs2) == SSA_NAME
627 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs2))
628 return false;
629 return true;
632 return false;
636 /* Return true if STMT is a nop-conversion. */
638 static bool
639 gimple_nop_conversion_p (gimple *stmt)
641 if (gassign *ass = dyn_cast <gassign *> (stmt))
643 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (ass))
644 && tree_nop_conversion_p (TREE_TYPE (gimple_assign_lhs (ass)),
645 TREE_TYPE (gimple_assign_rhs1 (ass))))
646 return true;
648 return false;
651 /* Given NAME, if NAME is defined by a unary operation OPCODE, return the
652 operand of the negate operation. Otherwise, return NULL. */
654 static tree
655 get_unary_op (tree name, enum tree_code opcode)
657 gimple *stmt = SSA_NAME_DEF_STMT (name);
659 /* Look through nop conversions (sign changes). */
660 if (gimple_nop_conversion_p (stmt)
661 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
662 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
664 if (!is_gimple_assign (stmt))
665 return NULL_TREE;
667 if (gimple_assign_rhs_code (stmt) == opcode)
668 return gimple_assign_rhs1 (stmt);
669 return NULL_TREE;
672 /* Return true if OP1 and OP2 have the same value if casted to either type. */
674 static bool
675 ops_equal_values_p (tree op1, tree op2)
677 if (op1 == op2)
678 return true;
680 tree orig_op1 = op1;
681 if (TREE_CODE (op1) == SSA_NAME)
683 gimple *stmt = SSA_NAME_DEF_STMT (op1);
684 if (gimple_nop_conversion_p (stmt))
686 op1 = gimple_assign_rhs1 (stmt);
687 if (op1 == op2)
688 return true;
692 if (TREE_CODE (op2) == SSA_NAME)
694 gimple *stmt = SSA_NAME_DEF_STMT (op2);
695 if (gimple_nop_conversion_p (stmt))
697 op2 = gimple_assign_rhs1 (stmt);
698 if (op1 == op2
699 || orig_op1 == op2)
700 return true;
704 return false;
708 /* If CURR and LAST are a pair of ops that OPCODE allows us to
709 eliminate through equivalences, do so, remove them from OPS, and
710 return true. Otherwise, return false. */
712 static bool
713 eliminate_duplicate_pair (enum tree_code opcode,
714 vec<operand_entry *> *ops,
715 bool *all_done,
716 unsigned int i,
717 operand_entry *curr,
718 operand_entry *last)
721 /* If we have two of the same op, and the opcode is & |, min, or max,
722 we can eliminate one of them.
723 If we have two of the same op, and the opcode is ^, we can
724 eliminate both of them. */
726 if (last && last->op == curr->op)
728 switch (opcode)
730 case MAX_EXPR:
731 case MIN_EXPR:
732 case BIT_IOR_EXPR:
733 case BIT_AND_EXPR:
734 if (dump_file && (dump_flags & TDF_DETAILS))
736 fprintf (dump_file, "Equivalence: ");
737 print_generic_expr (dump_file, curr->op);
738 fprintf (dump_file, " [&|minmax] ");
739 print_generic_expr (dump_file, last->op);
740 fprintf (dump_file, " -> ");
741 print_generic_stmt (dump_file, last->op);
744 ops->ordered_remove (i);
745 reassociate_stats.ops_eliminated ++;
747 return true;
749 case BIT_XOR_EXPR:
750 if (dump_file && (dump_flags & TDF_DETAILS))
752 fprintf (dump_file, "Equivalence: ");
753 print_generic_expr (dump_file, curr->op);
754 fprintf (dump_file, " ^ ");
755 print_generic_expr (dump_file, last->op);
756 fprintf (dump_file, " -> nothing\n");
759 reassociate_stats.ops_eliminated += 2;
761 if (ops->length () == 2)
763 ops->truncate (0);
764 add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (last->op)));
765 *all_done = true;
767 else
769 ops->ordered_remove (i-1);
770 ops->ordered_remove (i-1);
773 return true;
775 default:
776 break;
779 return false;
782 static vec<tree> plus_negates;
784 /* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not
785 expression, look in OPS for a corresponding positive operation to cancel
786 it out. If we find one, remove the other from OPS, replace
787 OPS[CURRINDEX] with 0 or -1, respectively, and return true. Otherwise,
788 return false. */
790 static bool
791 eliminate_plus_minus_pair (enum tree_code opcode,
792 vec<operand_entry *> *ops,
793 unsigned int currindex,
794 operand_entry *curr)
796 tree negateop;
797 tree notop;
798 unsigned int i;
799 operand_entry *oe;
801 if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
802 return false;
804 negateop = get_unary_op (curr->op, NEGATE_EXPR);
805 notop = get_unary_op (curr->op, BIT_NOT_EXPR);
806 if (negateop == NULL_TREE && notop == NULL_TREE)
807 return false;
809 /* Any non-negated version will have a rank that is one less than
810 the current rank. So once we hit those ranks, if we don't find
811 one, we can stop. */
813 for (i = currindex + 1;
814 ops->iterate (i, &oe)
815 && oe->rank >= curr->rank - 1 ;
816 i++)
818 if (negateop
819 && ops_equal_values_p (oe->op, negateop))
821 if (dump_file && (dump_flags & TDF_DETAILS))
823 fprintf (dump_file, "Equivalence: ");
824 print_generic_expr (dump_file, negateop);
825 fprintf (dump_file, " + -");
826 print_generic_expr (dump_file, oe->op);
827 fprintf (dump_file, " -> 0\n");
830 ops->ordered_remove (i);
831 add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (oe->op)));
832 ops->ordered_remove (currindex);
833 reassociate_stats.ops_eliminated ++;
835 return true;
837 else if (notop
838 && ops_equal_values_p (oe->op, notop))
840 tree op_type = TREE_TYPE (oe->op);
842 if (dump_file && (dump_flags & TDF_DETAILS))
844 fprintf (dump_file, "Equivalence: ");
845 print_generic_expr (dump_file, notop);
846 fprintf (dump_file, " + ~");
847 print_generic_expr (dump_file, oe->op);
848 fprintf (dump_file, " -> -1\n");
851 ops->ordered_remove (i);
852 add_to_ops_vec (ops, build_all_ones_cst (op_type));
853 ops->ordered_remove (currindex);
854 reassociate_stats.ops_eliminated ++;
856 return true;
860 /* If CURR->OP is a negate expr without nop conversion in a plus expr:
861 save it for later inspection in repropagate_negates(). */
862 if (negateop != NULL_TREE
863 && gimple_assign_rhs_code (SSA_NAME_DEF_STMT (curr->op)) == NEGATE_EXPR)
864 plus_negates.safe_push (curr->op);
866 return false;
869 /* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
870 bitwise not expression, look in OPS for a corresponding operand to
871 cancel it out. If we find one, remove the other from OPS, replace
872 OPS[CURRINDEX] with 0, and return true. Otherwise, return
873 false. */
875 static bool
876 eliminate_not_pairs (enum tree_code opcode,
877 vec<operand_entry *> *ops,
878 unsigned int currindex,
879 operand_entry *curr)
881 tree notop;
882 unsigned int i;
883 operand_entry *oe;
885 if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
886 || TREE_CODE (curr->op) != SSA_NAME)
887 return false;
889 notop = get_unary_op (curr->op, BIT_NOT_EXPR);
890 if (notop == NULL_TREE)
891 return false;
893 /* Any non-not version will have a rank that is one less than
894 the current rank. So once we hit those ranks, if we don't find
895 one, we can stop. */
897 for (i = currindex + 1;
898 ops->iterate (i, &oe)
899 && oe->rank >= curr->rank - 1;
900 i++)
902 if (oe->op == notop)
904 if (dump_file && (dump_flags & TDF_DETAILS))
906 fprintf (dump_file, "Equivalence: ");
907 print_generic_expr (dump_file, notop);
908 if (opcode == BIT_AND_EXPR)
909 fprintf (dump_file, " & ~");
910 else if (opcode == BIT_IOR_EXPR)
911 fprintf (dump_file, " | ~");
912 print_generic_expr (dump_file, oe->op);
913 if (opcode == BIT_AND_EXPR)
914 fprintf (dump_file, " -> 0\n");
915 else if (opcode == BIT_IOR_EXPR)
916 fprintf (dump_file, " -> -1\n");
919 if (opcode == BIT_AND_EXPR)
920 oe->op = build_zero_cst (TREE_TYPE (oe->op));
921 else if (opcode == BIT_IOR_EXPR)
922 oe->op = build_all_ones_cst (TREE_TYPE (oe->op));
924 reassociate_stats.ops_eliminated += ops->length () - 1;
925 ops->truncate (0);
926 ops->quick_push (oe);
927 return true;
931 return false;
934 /* Use constant value that may be present in OPS to try to eliminate
935 operands. Note that this function is only really used when we've
936 eliminated ops for other reasons, or merged constants. Across
937 single statements, fold already does all of this, plus more. There
938 is little point in duplicating logic, so I've only included the
939 identities that I could ever construct testcases to trigger. */
941 static void
942 eliminate_using_constants (enum tree_code opcode,
943 vec<operand_entry *> *ops)
945 operand_entry *oelast = ops->last ();
946 tree type = TREE_TYPE (oelast->op);
948 if (oelast->rank == 0
949 && (ANY_INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
951 switch (opcode)
953 case BIT_AND_EXPR:
954 if (integer_zerop (oelast->op))
956 if (ops->length () != 1)
958 if (dump_file && (dump_flags & TDF_DETAILS))
959 fprintf (dump_file, "Found & 0, removing all other ops\n");
961 reassociate_stats.ops_eliminated += ops->length () - 1;
963 ops->truncate (0);
964 ops->quick_push (oelast);
965 return;
968 else if (integer_all_onesp (oelast->op))
970 if (ops->length () != 1)
972 if (dump_file && (dump_flags & TDF_DETAILS))
973 fprintf (dump_file, "Found & -1, removing\n");
974 ops->pop ();
975 reassociate_stats.ops_eliminated++;
978 break;
979 case BIT_IOR_EXPR:
980 if (integer_all_onesp (oelast->op))
982 if (ops->length () != 1)
984 if (dump_file && (dump_flags & TDF_DETAILS))
985 fprintf (dump_file, "Found | -1, removing all other ops\n");
987 reassociate_stats.ops_eliminated += ops->length () - 1;
989 ops->truncate (0);
990 ops->quick_push (oelast);
991 return;
994 else if (integer_zerop (oelast->op))
996 if (ops->length () != 1)
998 if (dump_file && (dump_flags & TDF_DETAILS))
999 fprintf (dump_file, "Found | 0, removing\n");
1000 ops->pop ();
1001 reassociate_stats.ops_eliminated++;
1004 break;
1005 case MULT_EXPR:
1006 if (integer_zerop (oelast->op)
1007 || (FLOAT_TYPE_P (type)
1008 && !HONOR_NANS (type)
1009 && !HONOR_SIGNED_ZEROS (type)
1010 && real_zerop (oelast->op)))
1012 if (ops->length () != 1)
1014 if (dump_file && (dump_flags & TDF_DETAILS))
1015 fprintf (dump_file, "Found * 0, removing all other ops\n");
1017 reassociate_stats.ops_eliminated += ops->length () - 1;
1018 ops->truncate (1);
1019 ops->quick_push (oelast);
1020 return;
1023 else if (integer_onep (oelast->op)
1024 || (FLOAT_TYPE_P (type)
1025 && !HONOR_SNANS (type)
1026 && real_onep (oelast->op)))
1028 if (ops->length () != 1)
1030 if (dump_file && (dump_flags & TDF_DETAILS))
1031 fprintf (dump_file, "Found * 1, removing\n");
1032 ops->pop ();
1033 reassociate_stats.ops_eliminated++;
1034 return;
1037 break;
1038 case BIT_XOR_EXPR:
1039 case PLUS_EXPR:
1040 case MINUS_EXPR:
1041 if (integer_zerop (oelast->op)
1042 || (FLOAT_TYPE_P (type)
1043 && (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
1044 && fold_real_zero_addition_p (type, oelast->op,
1045 opcode == MINUS_EXPR)))
1047 if (ops->length () != 1)
1049 if (dump_file && (dump_flags & TDF_DETAILS))
1050 fprintf (dump_file, "Found [|^+] 0, removing\n");
1051 ops->pop ();
1052 reassociate_stats.ops_eliminated++;
1053 return;
1056 break;
1057 default:
1058 break;
1064 static void linearize_expr_tree (vec<operand_entry *> *, gimple *,
1065 bool, bool);
1067 /* Structure for tracking and counting operands. */
1068 struct oecount {
1069 unsigned int cnt;
1070 unsigned int id;
1071 enum tree_code oecode;
1072 tree op;
1076 /* The heap for the oecount hashtable and the sorted list of operands. */
1077 static vec<oecount> cvec;
1080 /* Oecount hashtable helpers. */
1082 struct oecount_hasher : int_hash <int, 0, 1>
1084 static inline hashval_t hash (int);
1085 static inline bool equal (int, int);
1088 /* Hash function for oecount. */
1090 inline hashval_t
1091 oecount_hasher::hash (int p)
1093 const oecount *c = &cvec[p - 42];
1094 return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
1097 /* Comparison function for oecount. */
1099 inline bool
1100 oecount_hasher::equal (int p1, int p2)
1102 const oecount *c1 = &cvec[p1 - 42];
1103 const oecount *c2 = &cvec[p2 - 42];
1104 return c1->oecode == c2->oecode && c1->op == c2->op;
1107 /* Comparison function for qsort sorting oecount elements by count. */
1109 static int
1110 oecount_cmp (const void *p1, const void *p2)
1112 const oecount *c1 = (const oecount *)p1;
1113 const oecount *c2 = (const oecount *)p2;
1114 if (c1->cnt != c2->cnt)
1115 return c1->cnt > c2->cnt ? 1 : -1;
1116 else
1117 /* If counts are identical, use unique IDs to stabilize qsort. */
1118 return c1->id > c2->id ? 1 : -1;
1121 /* Return TRUE iff STMT represents a builtin call that raises OP
1122 to some exponent. */
1124 static bool
1125 stmt_is_power_of_op (gimple *stmt, tree op)
1127 if (!is_gimple_call (stmt))
1128 return false;
1130 switch (gimple_call_combined_fn (stmt))
1132 CASE_CFN_POW:
1133 CASE_CFN_POWI:
1134 return (operand_equal_p (gimple_call_arg (stmt, 0), op, 0));
1136 default:
1137 return false;
1141 /* Given STMT which is a __builtin_pow* call, decrement its exponent
1142 in place and return the result. Assumes that stmt_is_power_of_op
1143 was previously called for STMT and returned TRUE. */
1145 static HOST_WIDE_INT
1146 decrement_power (gimple *stmt)
1148 REAL_VALUE_TYPE c, cint;
1149 HOST_WIDE_INT power;
1150 tree arg1;
1152 switch (gimple_call_combined_fn (stmt))
1154 CASE_CFN_POW:
1155 arg1 = gimple_call_arg (stmt, 1);
1156 c = TREE_REAL_CST (arg1);
1157 power = real_to_integer (&c) - 1;
1158 real_from_integer (&cint, VOIDmode, power, SIGNED);
1159 gimple_call_set_arg (stmt, 1, build_real (TREE_TYPE (arg1), cint));
1160 return power;
1162 CASE_CFN_POWI:
1163 arg1 = gimple_call_arg (stmt, 1);
1164 power = TREE_INT_CST_LOW (arg1) - 1;
1165 gimple_call_set_arg (stmt, 1, build_int_cst (TREE_TYPE (arg1), power));
1166 return power;
1168 default:
1169 gcc_unreachable ();
1173 /* Replace SSA defined by STMT and replace all its uses with new
1174 SSA. Also return the new SSA. */
1176 static tree
1177 make_new_ssa_for_def (gimple *stmt, enum tree_code opcode, tree op)
1179 gimple *use_stmt;
1180 use_operand_p use;
1181 imm_use_iterator iter;
1182 tree new_lhs, new_debug_lhs = NULL_TREE;
1183 tree lhs = gimple_get_lhs (stmt);
1185 new_lhs = make_ssa_name (TREE_TYPE (lhs));
1186 gimple_set_lhs (stmt, new_lhs);
1188 /* Also need to update GIMPLE_DEBUGs. */
1189 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
1191 tree repl = new_lhs;
1192 if (is_gimple_debug (use_stmt))
1194 if (new_debug_lhs == NULL_TREE)
1196 new_debug_lhs = make_node (DEBUG_EXPR_DECL);
1197 gdebug *def_temp
1198 = gimple_build_debug_bind (new_debug_lhs,
1199 build2 (opcode, TREE_TYPE (lhs),
1200 new_lhs, op),
1201 stmt);
1202 DECL_ARTIFICIAL (new_debug_lhs) = 1;
1203 TREE_TYPE (new_debug_lhs) = TREE_TYPE (lhs);
1204 SET_DECL_MODE (new_debug_lhs, TYPE_MODE (TREE_TYPE (lhs)));
1205 gimple_set_uid (def_temp, gimple_uid (stmt));
1206 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1207 gsi_insert_after (&gsi, def_temp, GSI_SAME_STMT);
1209 repl = new_debug_lhs;
1211 FOR_EACH_IMM_USE_ON_STMT (use, iter)
1212 SET_USE (use, repl);
1213 update_stmt (use_stmt);
1215 return new_lhs;
1218 /* Replace all SSAs defined in STMTS_TO_FIX and replace its
1219 uses with new SSAs. Also do this for the stmt that defines DEF
1220 if *DEF is not OP. */
1222 static void
1223 make_new_ssa_for_all_defs (tree *def, enum tree_code opcode, tree op,
1224 vec<gimple *> &stmts_to_fix)
1226 unsigned i;
1227 gimple *stmt;
1229 if (*def != op
1230 && TREE_CODE (*def) == SSA_NAME
1231 && (stmt = SSA_NAME_DEF_STMT (*def))
1232 && gimple_code (stmt) != GIMPLE_NOP)
1233 *def = make_new_ssa_for_def (stmt, opcode, op);
1235 FOR_EACH_VEC_ELT (stmts_to_fix, i, stmt)
1236 make_new_ssa_for_def (stmt, opcode, op);
1239 /* Find the single immediate use of STMT's LHS, and replace it
1240 with OP. Remove STMT. If STMT's LHS is the same as *DEF,
1241 replace *DEF with OP as well. */
1243 static void
1244 propagate_op_to_single_use (tree op, gimple *stmt, tree *def)
1246 tree lhs;
1247 gimple *use_stmt;
1248 use_operand_p use;
1249 gimple_stmt_iterator gsi;
1251 if (is_gimple_call (stmt))
1252 lhs = gimple_call_lhs (stmt);
1253 else
1254 lhs = gimple_assign_lhs (stmt);
1256 gcc_assert (has_single_use (lhs));
1257 single_imm_use (lhs, &use, &use_stmt);
1258 if (lhs == *def)
1259 *def = op;
1260 SET_USE (use, op);
1261 if (TREE_CODE (op) != SSA_NAME)
1262 update_stmt (use_stmt);
1263 gsi = gsi_for_stmt (stmt);
1264 unlink_stmt_vdef (stmt);
1265 reassoc_remove_stmt (&gsi);
1266 release_defs (stmt);
1269 /* Walks the linear chain with result *DEF searching for an operation
1270 with operand OP and code OPCODE removing that from the chain. *DEF
1271 is updated if there is only one operand but no operation left. */
1273 static void
1274 zero_one_operation (tree *def, enum tree_code opcode, tree op)
1276 tree orig_def = *def;
1277 gimple *stmt = SSA_NAME_DEF_STMT (*def);
1278 /* PR72835 - Record the stmt chain that has to be updated such that
1279 we dont use the same LHS when the values computed are different. */
1280 auto_vec<gimple *, 64> stmts_to_fix;
1284 tree name;
1286 if (opcode == MULT_EXPR)
1288 if (stmt_is_power_of_op (stmt, op))
1290 if (decrement_power (stmt) == 1)
1292 if (stmts_to_fix.length () > 0)
1293 stmts_to_fix.pop ();
1294 propagate_op_to_single_use (op, stmt, def);
1296 break;
1298 else if (gimple_assign_rhs_code (stmt) == NEGATE_EXPR)
1300 if (gimple_assign_rhs1 (stmt) == op)
1302 tree cst = build_minus_one_cst (TREE_TYPE (op));
1303 if (stmts_to_fix.length () > 0)
1304 stmts_to_fix.pop ();
1305 propagate_op_to_single_use (cst, stmt, def);
1306 break;
1308 else if (integer_minus_onep (op)
1309 || real_minus_onep (op))
1311 gimple_assign_set_rhs_code
1312 (stmt, TREE_CODE (gimple_assign_rhs1 (stmt)));
1313 break;
1318 name = gimple_assign_rhs1 (stmt);
1320 /* If this is the operation we look for and one of the operands
1321 is ours simply propagate the other operand into the stmts
1322 single use. */
1323 if (gimple_assign_rhs_code (stmt) == opcode
1324 && (name == op
1325 || gimple_assign_rhs2 (stmt) == op))
1327 if (name == op)
1328 name = gimple_assign_rhs2 (stmt);
1329 if (stmts_to_fix.length () > 0)
1330 stmts_to_fix.pop ();
1331 propagate_op_to_single_use (name, stmt, def);
1332 break;
1335 /* We might have a multiply of two __builtin_pow* calls, and
1336 the operand might be hiding in the rightmost one. Likewise
1337 this can happen for a negate. */
1338 if (opcode == MULT_EXPR
1339 && gimple_assign_rhs_code (stmt) == opcode
1340 && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
1341 && has_single_use (gimple_assign_rhs2 (stmt)))
1343 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
1344 if (stmt_is_power_of_op (stmt2, op))
1346 if (decrement_power (stmt2) == 1)
1347 propagate_op_to_single_use (op, stmt2, def);
1348 else
1349 stmts_to_fix.safe_push (stmt2);
1350 break;
1352 else if (is_gimple_assign (stmt2)
1353 && gimple_assign_rhs_code (stmt2) == NEGATE_EXPR)
1355 if (gimple_assign_rhs1 (stmt2) == op)
1357 tree cst = build_minus_one_cst (TREE_TYPE (op));
1358 propagate_op_to_single_use (cst, stmt2, def);
1359 break;
1361 else if (integer_minus_onep (op)
1362 || real_minus_onep (op))
1364 stmts_to_fix.safe_push (stmt2);
1365 gimple_assign_set_rhs_code
1366 (stmt2, TREE_CODE (gimple_assign_rhs1 (stmt2)));
1367 break;
1372 /* Continue walking the chain. */
1373 gcc_assert (name != op
1374 && TREE_CODE (name) == SSA_NAME);
1375 stmt = SSA_NAME_DEF_STMT (name);
1376 stmts_to_fix.safe_push (stmt);
1378 while (1);
1380 if (stmts_to_fix.length () > 0 || *def == orig_def)
1381 make_new_ssa_for_all_defs (def, opcode, op, stmts_to_fix);
1384 /* Returns true if statement S1 dominates statement S2. Like
1385 stmt_dominates_stmt_p, but uses stmt UIDs to optimize. */
1387 static bool
1388 reassoc_stmt_dominates_stmt_p (gimple *s1, gimple *s2)
1390 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1392 /* If bb1 is NULL, it should be a GIMPLE_NOP def stmt of an (D)
1393 SSA_NAME. Assume it lives at the beginning of function and
1394 thus dominates everything. */
1395 if (!bb1 || s1 == s2)
1396 return true;
1398 /* If bb2 is NULL, it doesn't dominate any stmt with a bb. */
1399 if (!bb2)
1400 return false;
1402 if (bb1 == bb2)
1404 /* PHIs in the same basic block are assumed to be
1405 executed all in parallel, if only one stmt is a PHI,
1406 it dominates the other stmt in the same basic block. */
1407 if (gimple_code (s1) == GIMPLE_PHI)
1408 return true;
1410 if (gimple_code (s2) == GIMPLE_PHI)
1411 return false;
1413 gcc_assert (gimple_uid (s1) && gimple_uid (s2));
1415 if (gimple_uid (s1) < gimple_uid (s2))
1416 return true;
1418 if (gimple_uid (s1) > gimple_uid (s2))
1419 return false;
1421 gimple_stmt_iterator gsi = gsi_for_stmt (s1);
1422 unsigned int uid = gimple_uid (s1);
1423 for (gsi_next (&gsi); !gsi_end_p (gsi); gsi_next (&gsi))
1425 gimple *s = gsi_stmt (gsi);
1426 if (gimple_uid (s) != uid)
1427 break;
1428 if (s == s2)
1429 return true;
1432 return false;
1435 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
1438 /* Insert STMT after INSERT_POINT. */
1440 static void
1441 insert_stmt_after (gimple *stmt, gimple *insert_point)
1443 gimple_stmt_iterator gsi;
1444 basic_block bb;
1446 if (gimple_code (insert_point) == GIMPLE_PHI)
1447 bb = gimple_bb (insert_point);
1448 else if (!stmt_ends_bb_p (insert_point))
1450 gsi = gsi_for_stmt (insert_point);
1451 gimple_set_uid (stmt, gimple_uid (insert_point));
1452 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1453 return;
1455 else
1456 /* We assume INSERT_POINT is a SSA_NAME_DEF_STMT of some SSA_NAME,
1457 thus if it must end a basic block, it should be a call that can
1458 throw, or some assignment that can throw. If it throws, the LHS
1459 of it will not be initialized though, so only valid places using
1460 the SSA_NAME should be dominated by the fallthru edge. */
1461 bb = find_fallthru_edge (gimple_bb (insert_point)->succs)->dest;
1462 gsi = gsi_after_labels (bb);
1463 if (gsi_end_p (gsi))
1465 gimple_stmt_iterator gsi2 = gsi_last_bb (bb);
1466 gimple_set_uid (stmt,
1467 gsi_end_p (gsi2) ? 1 : gimple_uid (gsi_stmt (gsi2)));
1469 else
1470 gimple_set_uid (stmt, gimple_uid (gsi_stmt (gsi)));
1471 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1474 /* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
1475 the result. Places the statement after the definition of either
1476 OP1 or OP2. Returns the new statement. */
1478 static gimple *
1479 build_and_add_sum (tree type, tree op1, tree op2, enum tree_code opcode)
1481 gimple *op1def = NULL, *op2def = NULL;
1482 gimple_stmt_iterator gsi;
1483 tree op;
1484 gassign *sum;
1486 /* Create the addition statement. */
1487 op = make_ssa_name (type);
1488 sum = gimple_build_assign (op, opcode, op1, op2);
1490 /* Find an insertion place and insert. */
1491 if (TREE_CODE (op1) == SSA_NAME)
1492 op1def = SSA_NAME_DEF_STMT (op1);
1493 if (TREE_CODE (op2) == SSA_NAME)
1494 op2def = SSA_NAME_DEF_STMT (op2);
1495 if ((!op1def || gimple_nop_p (op1def))
1496 && (!op2def || gimple_nop_p (op2def)))
1498 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1499 if (gsi_end_p (gsi))
1501 gimple_stmt_iterator gsi2
1502 = gsi_last_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1503 gimple_set_uid (sum,
1504 gsi_end_p (gsi2) ? 1 : gimple_uid (gsi_stmt (gsi2)));
1506 else
1507 gimple_set_uid (sum, gimple_uid (gsi_stmt (gsi)));
1508 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
1510 else
1512 gimple *insert_point;
1513 if ((!op1def || gimple_nop_p (op1def))
1514 || (op2def && !gimple_nop_p (op2def)
1515 && reassoc_stmt_dominates_stmt_p (op1def, op2def)))
1516 insert_point = op2def;
1517 else
1518 insert_point = op1def;
1519 insert_stmt_after (sum, insert_point);
1521 update_stmt (sum);
1523 return sum;
1526 /* Perform un-distribution of divisions and multiplications.
1527 A * X + B * X is transformed into (A + B) * X and A / X + B / X
1528 to (A + B) / X for real X.
1530 The algorithm is organized as follows.
1532 - First we walk the addition chain *OPS looking for summands that
1533 are defined by a multiplication or a real division. This results
1534 in the candidates bitmap with relevant indices into *OPS.
1536 - Second we build the chains of multiplications or divisions for
1537 these candidates, counting the number of occurrences of (operand, code)
1538 pairs in all of the candidates chains.
1540 - Third we sort the (operand, code) pairs by number of occurrence and
1541 process them starting with the pair with the most uses.
1543 * For each such pair we walk the candidates again to build a
1544 second candidate bitmap noting all multiplication/division chains
1545 that have at least one occurrence of (operand, code).
1547 * We build an alternate addition chain only covering these
1548 candidates with one (operand, code) operation removed from their
1549 multiplication/division chain.
1551 * The first candidate gets replaced by the alternate addition chain
1552 multiplied/divided by the operand.
1554 * All candidate chains get disabled for further processing and
1555 processing of (operand, code) pairs continues.
1557 The alternate addition chains built are re-processed by the main
1558 reassociation algorithm which allows optimizing a * x * y + b * y * x
1559 to (a + b ) * x * y in one invocation of the reassociation pass. */
1561 static bool
1562 undistribute_ops_list (enum tree_code opcode,
1563 vec<operand_entry *> *ops, struct loop *loop)
1565 unsigned int length = ops->length ();
1566 operand_entry *oe1;
1567 unsigned i, j;
1568 unsigned nr_candidates, nr_candidates2;
1569 sbitmap_iterator sbi0;
1570 vec<operand_entry *> *subops;
1571 bool changed = false;
1572 unsigned int next_oecount_id = 0;
1574 if (length <= 1
1575 || opcode != PLUS_EXPR)
1576 return false;
1578 /* Build a list of candidates to process. */
1579 auto_sbitmap candidates (length);
1580 bitmap_clear (candidates);
1581 nr_candidates = 0;
1582 FOR_EACH_VEC_ELT (*ops, i, oe1)
1584 enum tree_code dcode;
1585 gimple *oe1def;
1587 if (TREE_CODE (oe1->op) != SSA_NAME)
1588 continue;
1589 oe1def = SSA_NAME_DEF_STMT (oe1->op);
1590 if (!is_gimple_assign (oe1def))
1591 continue;
1592 dcode = gimple_assign_rhs_code (oe1def);
1593 if ((dcode != MULT_EXPR
1594 && dcode != RDIV_EXPR)
1595 || !is_reassociable_op (oe1def, dcode, loop))
1596 continue;
1598 bitmap_set_bit (candidates, i);
1599 nr_candidates++;
1602 if (nr_candidates < 2)
1603 return false;
1605 if (dump_file && (dump_flags & TDF_DETAILS))
1607 fprintf (dump_file, "searching for un-distribute opportunities ");
1608 print_generic_expr (dump_file,
1609 (*ops)[bitmap_first_set_bit (candidates)]->op, TDF_NONE);
1610 fprintf (dump_file, " %d\n", nr_candidates);
1613 /* Build linearized sub-operand lists and the counting table. */
1614 cvec.create (0);
1616 hash_table<oecount_hasher> ctable (15);
1618 /* ??? Macro arguments cannot have multi-argument template types in
1619 them. This typedef is needed to workaround that limitation. */
1620 typedef vec<operand_entry *> vec_operand_entry_t_heap;
1621 subops = XCNEWVEC (vec_operand_entry_t_heap, ops->length ());
1622 EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
1624 gimple *oedef;
1625 enum tree_code oecode;
1626 unsigned j;
1628 oedef = SSA_NAME_DEF_STMT ((*ops)[i]->op);
1629 oecode = gimple_assign_rhs_code (oedef);
1630 linearize_expr_tree (&subops[i], oedef,
1631 associative_tree_code (oecode), false);
1633 FOR_EACH_VEC_ELT (subops[i], j, oe1)
1635 oecount c;
1636 int *slot;
1637 int idx;
1638 c.oecode = oecode;
1639 c.cnt = 1;
1640 c.id = next_oecount_id++;
1641 c.op = oe1->op;
1642 cvec.safe_push (c);
1643 idx = cvec.length () + 41;
1644 slot = ctable.find_slot (idx, INSERT);
1645 if (!*slot)
1647 *slot = idx;
1649 else
1651 cvec.pop ();
1652 cvec[*slot - 42].cnt++;
1657 /* Sort the counting table. */
1658 cvec.qsort (oecount_cmp);
1660 if (dump_file && (dump_flags & TDF_DETAILS))
1662 oecount *c;
1663 fprintf (dump_file, "Candidates:\n");
1664 FOR_EACH_VEC_ELT (cvec, j, c)
1666 fprintf (dump_file, " %u %s: ", c->cnt,
1667 c->oecode == MULT_EXPR
1668 ? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
1669 print_generic_expr (dump_file, c->op);
1670 fprintf (dump_file, "\n");
1674 /* Process the (operand, code) pairs in order of most occurrence. */
1675 auto_sbitmap candidates2 (length);
1676 while (!cvec.is_empty ())
1678 oecount *c = &cvec.last ();
1679 if (c->cnt < 2)
1680 break;
1682 /* Now collect the operands in the outer chain that contain
1683 the common operand in their inner chain. */
1684 bitmap_clear (candidates2);
1685 nr_candidates2 = 0;
1686 EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
1688 gimple *oedef;
1689 enum tree_code oecode;
1690 unsigned j;
1691 tree op = (*ops)[i]->op;
1693 /* If we undistributed in this chain already this may be
1694 a constant. */
1695 if (TREE_CODE (op) != SSA_NAME)
1696 continue;
1698 oedef = SSA_NAME_DEF_STMT (op);
1699 oecode = gimple_assign_rhs_code (oedef);
1700 if (oecode != c->oecode)
1701 continue;
1703 FOR_EACH_VEC_ELT (subops[i], j, oe1)
1705 if (oe1->op == c->op)
1707 bitmap_set_bit (candidates2, i);
1708 ++nr_candidates2;
1709 break;
1714 if (nr_candidates2 >= 2)
1716 operand_entry *oe1, *oe2;
1717 gimple *prod;
1718 int first = bitmap_first_set_bit (candidates2);
1720 /* Build the new addition chain. */
1721 oe1 = (*ops)[first];
1722 if (dump_file && (dump_flags & TDF_DETAILS))
1724 fprintf (dump_file, "Building (");
1725 print_generic_expr (dump_file, oe1->op);
1727 zero_one_operation (&oe1->op, c->oecode, c->op);
1728 EXECUTE_IF_SET_IN_BITMAP (candidates2, first+1, i, sbi0)
1730 gimple *sum;
1731 oe2 = (*ops)[i];
1732 if (dump_file && (dump_flags & TDF_DETAILS))
1734 fprintf (dump_file, " + ");
1735 print_generic_expr (dump_file, oe2->op);
1737 zero_one_operation (&oe2->op, c->oecode, c->op);
1738 sum = build_and_add_sum (TREE_TYPE (oe1->op),
1739 oe1->op, oe2->op, opcode);
1740 oe2->op = build_zero_cst (TREE_TYPE (oe2->op));
1741 oe2->rank = 0;
1742 oe1->op = gimple_get_lhs (sum);
1745 /* Apply the multiplication/division. */
1746 prod = build_and_add_sum (TREE_TYPE (oe1->op),
1747 oe1->op, c->op, c->oecode);
1748 if (dump_file && (dump_flags & TDF_DETAILS))
1750 fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
1751 print_generic_expr (dump_file, c->op);
1752 fprintf (dump_file, "\n");
1755 /* Record it in the addition chain and disable further
1756 undistribution with this op. */
1757 oe1->op = gimple_assign_lhs (prod);
1758 oe1->rank = get_rank (oe1->op);
1759 subops[first].release ();
1761 changed = true;
1764 cvec.pop ();
1767 for (i = 0; i < ops->length (); ++i)
1768 subops[i].release ();
1769 free (subops);
1770 cvec.release ();
1772 return changed;
1775 /* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
1776 expression, examine the other OPS to see if any of them are comparisons
1777 of the same values, which we may be able to combine or eliminate.
1778 For example, we can rewrite (a < b) | (a == b) as (a <= b). */
1780 static bool
1781 eliminate_redundant_comparison (enum tree_code opcode,
1782 vec<operand_entry *> *ops,
1783 unsigned int currindex,
1784 operand_entry *curr)
1786 tree op1, op2;
1787 enum tree_code lcode, rcode;
1788 gimple *def1, *def2;
1789 int i;
1790 operand_entry *oe;
1792 if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
1793 return false;
1795 /* Check that CURR is a comparison. */
1796 if (TREE_CODE (curr->op) != SSA_NAME)
1797 return false;
1798 def1 = SSA_NAME_DEF_STMT (curr->op);
1799 if (!is_gimple_assign (def1))
1800 return false;
1801 lcode = gimple_assign_rhs_code (def1);
1802 if (TREE_CODE_CLASS (lcode) != tcc_comparison)
1803 return false;
1804 op1 = gimple_assign_rhs1 (def1);
1805 op2 = gimple_assign_rhs2 (def1);
1807 /* Now look for a similar comparison in the remaining OPS. */
1808 for (i = currindex + 1; ops->iterate (i, &oe); i++)
1810 tree t;
1812 if (TREE_CODE (oe->op) != SSA_NAME)
1813 continue;
1814 def2 = SSA_NAME_DEF_STMT (oe->op);
1815 if (!is_gimple_assign (def2))
1816 continue;
1817 rcode = gimple_assign_rhs_code (def2);
1818 if (TREE_CODE_CLASS (rcode) != tcc_comparison)
1819 continue;
1821 /* If we got here, we have a match. See if we can combine the
1822 two comparisons. */
1823 if (opcode == BIT_IOR_EXPR)
1824 t = maybe_fold_or_comparisons (lcode, op1, op2,
1825 rcode, gimple_assign_rhs1 (def2),
1826 gimple_assign_rhs2 (def2));
1827 else
1828 t = maybe_fold_and_comparisons (lcode, op1, op2,
1829 rcode, gimple_assign_rhs1 (def2),
1830 gimple_assign_rhs2 (def2));
1831 if (!t)
1832 continue;
1834 /* maybe_fold_and_comparisons and maybe_fold_or_comparisons
1835 always give us a boolean_type_node value back. If the original
1836 BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
1837 we need to convert. */
1838 if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t)))
1839 t = fold_convert (TREE_TYPE (curr->op), t);
1841 if (TREE_CODE (t) != INTEGER_CST
1842 && !operand_equal_p (t, curr->op, 0))
1844 enum tree_code subcode;
1845 tree newop1, newop2;
1846 if (!COMPARISON_CLASS_P (t))
1847 continue;
1848 extract_ops_from_tree (t, &subcode, &newop1, &newop2);
1849 STRIP_USELESS_TYPE_CONVERSION (newop1);
1850 STRIP_USELESS_TYPE_CONVERSION (newop2);
1851 if (!is_gimple_val (newop1) || !is_gimple_val (newop2))
1852 continue;
1855 if (dump_file && (dump_flags & TDF_DETAILS))
1857 fprintf (dump_file, "Equivalence: ");
1858 print_generic_expr (dump_file, curr->op);
1859 fprintf (dump_file, " %s ", op_symbol_code (opcode));
1860 print_generic_expr (dump_file, oe->op);
1861 fprintf (dump_file, " -> ");
1862 print_generic_expr (dump_file, t);
1863 fprintf (dump_file, "\n");
1866 /* Now we can delete oe, as it has been subsumed by the new combined
1867 expression t. */
1868 ops->ordered_remove (i);
1869 reassociate_stats.ops_eliminated ++;
1871 /* If t is the same as curr->op, we're done. Otherwise we must
1872 replace curr->op with t. Special case is if we got a constant
1873 back, in which case we add it to the end instead of in place of
1874 the current entry. */
1875 if (TREE_CODE (t) == INTEGER_CST)
1877 ops->ordered_remove (currindex);
1878 add_to_ops_vec (ops, t);
1880 else if (!operand_equal_p (t, curr->op, 0))
1882 gimple *sum;
1883 enum tree_code subcode;
1884 tree newop1;
1885 tree newop2;
1886 gcc_assert (COMPARISON_CLASS_P (t));
1887 extract_ops_from_tree (t, &subcode, &newop1, &newop2);
1888 STRIP_USELESS_TYPE_CONVERSION (newop1);
1889 STRIP_USELESS_TYPE_CONVERSION (newop2);
1890 gcc_checking_assert (is_gimple_val (newop1)
1891 && is_gimple_val (newop2));
1892 sum = build_and_add_sum (TREE_TYPE (t), newop1, newop2, subcode);
1893 curr->op = gimple_get_lhs (sum);
1895 return true;
1898 return false;
1902 /* Transform repeated addition of same values into multiply with
1903 constant. */
1904 static bool
1905 transform_add_to_multiply (vec<operand_entry *> *ops)
1907 operand_entry *oe;
1908 tree op = NULL_TREE;
1909 int j;
1910 int i, start = -1, end = 0, count = 0;
1911 auto_vec<std::pair <int, int> > indxs;
1912 bool changed = false;
1914 if (!INTEGRAL_TYPE_P (TREE_TYPE ((*ops)[0]->op))
1915 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE ((*ops)[0]->op))
1916 || !flag_unsafe_math_optimizations))
1917 return false;
1919 /* Look for repeated operands. */
1920 FOR_EACH_VEC_ELT (*ops, i, oe)
1922 if (start == -1)
1924 count = 1;
1925 op = oe->op;
1926 start = i;
1928 else if (operand_equal_p (oe->op, op, 0))
1930 count++;
1931 end = i;
1933 else
1935 if (count > 1)
1936 indxs.safe_push (std::make_pair (start, end));
1937 count = 1;
1938 op = oe->op;
1939 start = i;
1943 if (count > 1)
1944 indxs.safe_push (std::make_pair (start, end));
1946 for (j = indxs.length () - 1; j >= 0; --j)
1948 /* Convert repeated operand addition to multiplication. */
1949 start = indxs[j].first;
1950 end = indxs[j].second;
1951 op = (*ops)[start]->op;
1952 count = end - start + 1;
1953 for (i = end; i >= start; --i)
1954 ops->unordered_remove (i);
1955 tree tmp = make_ssa_name (TREE_TYPE (op));
1956 tree cst = build_int_cst (integer_type_node, count);
1957 gassign *mul_stmt
1958 = gimple_build_assign (tmp, MULT_EXPR,
1959 op, fold_convert (TREE_TYPE (op), cst));
1960 gimple_set_visited (mul_stmt, true);
1961 add_to_ops_vec (ops, tmp, mul_stmt);
1962 changed = true;
1965 return changed;
1969 /* Perform various identities and other optimizations on the list of
1970 operand entries, stored in OPS. The tree code for the binary
1971 operation between all the operands is OPCODE. */
1973 static void
1974 optimize_ops_list (enum tree_code opcode,
1975 vec<operand_entry *> *ops)
1977 unsigned int length = ops->length ();
1978 unsigned int i;
1979 operand_entry *oe;
1980 operand_entry *oelast = NULL;
1981 bool iterate = false;
1983 if (length == 1)
1984 return;
1986 oelast = ops->last ();
1988 /* If the last two are constants, pop the constants off, merge them
1989 and try the next two. */
1990 if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
1992 operand_entry *oelm1 = (*ops)[length - 2];
1994 if (oelm1->rank == 0
1995 && is_gimple_min_invariant (oelm1->op)
1996 && useless_type_conversion_p (TREE_TYPE (oelm1->op),
1997 TREE_TYPE (oelast->op)))
1999 tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
2000 oelm1->op, oelast->op);
2002 if (folded && is_gimple_min_invariant (folded))
2004 if (dump_file && (dump_flags & TDF_DETAILS))
2005 fprintf (dump_file, "Merging constants\n");
2007 ops->pop ();
2008 ops->pop ();
2010 add_to_ops_vec (ops, folded);
2011 reassociate_stats.constants_eliminated++;
2013 optimize_ops_list (opcode, ops);
2014 return;
2019 eliminate_using_constants (opcode, ops);
2020 oelast = NULL;
2022 for (i = 0; ops->iterate (i, &oe);)
2024 bool done = false;
2026 if (eliminate_not_pairs (opcode, ops, i, oe))
2027 return;
2028 if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
2029 || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))
2030 || (!done && eliminate_redundant_comparison (opcode, ops, i, oe)))
2032 if (done)
2033 return;
2034 iterate = true;
2035 oelast = NULL;
2036 continue;
2038 oelast = oe;
2039 i++;
2042 length = ops->length ();
2043 oelast = ops->last ();
2045 if (iterate)
2046 optimize_ops_list (opcode, ops);
2049 /* The following functions are subroutines to optimize_range_tests and allow
2050 it to try to change a logical combination of comparisons into a range
2051 test.
2053 For example, both
2054 X == 2 || X == 5 || X == 3 || X == 4
2056 X >= 2 && X <= 5
2057 are converted to
2058 (unsigned) (X - 2) <= 3
2060 For more information see comments above fold_test_range in fold-const.c,
2061 this implementation is for GIMPLE. */
2063 struct range_entry
2065 tree exp;
2066 tree low;
2067 tree high;
2068 bool in_p;
2069 bool strict_overflow_p;
2070 unsigned int idx, next;
2073 /* This is similar to make_range in fold-const.c, but on top of
2074 GIMPLE instead of trees. If EXP is non-NULL, it should be
2075 an SSA_NAME and STMT argument is ignored, otherwise STMT
2076 argument should be a GIMPLE_COND. */
2078 static void
2079 init_range_entry (struct range_entry *r, tree exp, gimple *stmt)
2081 int in_p;
2082 tree low, high;
2083 bool is_bool, strict_overflow_p;
2085 r->exp = NULL_TREE;
2086 r->in_p = false;
2087 r->strict_overflow_p = false;
2088 r->low = NULL_TREE;
2089 r->high = NULL_TREE;
2090 if (exp != NULL_TREE
2091 && (TREE_CODE (exp) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (exp))))
2092 return;
2094 /* Start with simply saying "EXP != 0" and then look at the code of EXP
2095 and see if we can refine the range. Some of the cases below may not
2096 happen, but it doesn't seem worth worrying about this. We "continue"
2097 the outer loop when we've changed something; otherwise we "break"
2098 the switch, which will "break" the while. */
2099 low = exp ? build_int_cst (TREE_TYPE (exp), 0) : boolean_false_node;
2100 high = low;
2101 in_p = 0;
2102 strict_overflow_p = false;
2103 is_bool = false;
2104 if (exp == NULL_TREE)
2105 is_bool = true;
2106 else if (TYPE_PRECISION (TREE_TYPE (exp)) == 1)
2108 if (TYPE_UNSIGNED (TREE_TYPE (exp)))
2109 is_bool = true;
2110 else
2111 return;
2113 else if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE)
2114 is_bool = true;
2116 while (1)
2118 enum tree_code code;
2119 tree arg0, arg1, exp_type;
2120 tree nexp;
2121 location_t loc;
2123 if (exp != NULL_TREE)
2125 if (TREE_CODE (exp) != SSA_NAME
2126 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp))
2127 break;
2129 stmt = SSA_NAME_DEF_STMT (exp);
2130 if (!is_gimple_assign (stmt))
2131 break;
2133 code = gimple_assign_rhs_code (stmt);
2134 arg0 = gimple_assign_rhs1 (stmt);
2135 arg1 = gimple_assign_rhs2 (stmt);
2136 exp_type = TREE_TYPE (exp);
2138 else
2140 code = gimple_cond_code (stmt);
2141 arg0 = gimple_cond_lhs (stmt);
2142 arg1 = gimple_cond_rhs (stmt);
2143 exp_type = boolean_type_node;
2146 if (TREE_CODE (arg0) != SSA_NAME)
2147 break;
2148 loc = gimple_location (stmt);
2149 switch (code)
2151 case BIT_NOT_EXPR:
2152 if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE
2153 /* Ensure the range is either +[-,0], +[0,0],
2154 -[-,0], -[0,0] or +[1,-], +[1,1], -[1,-] or
2155 -[1,1]. If it is e.g. +[-,-] or -[-,-]
2156 or similar expression of unconditional true or
2157 false, it should not be negated. */
2158 && ((high && integer_zerop (high))
2159 || (low && integer_onep (low))))
2161 in_p = !in_p;
2162 exp = arg0;
2163 continue;
2165 break;
2166 case SSA_NAME:
2167 exp = arg0;
2168 continue;
2169 CASE_CONVERT:
2170 if (is_bool)
2172 if ((TYPE_PRECISION (exp_type) == 1
2173 || TREE_CODE (exp_type) == BOOLEAN_TYPE)
2174 && TYPE_PRECISION (TREE_TYPE (arg0)) > 1)
2175 return;
2177 else if (TYPE_PRECISION (TREE_TYPE (arg0)) == 1)
2179 if (TYPE_UNSIGNED (TREE_TYPE (arg0)))
2180 is_bool = true;
2181 else
2182 return;
2184 else if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE)
2185 is_bool = true;
2186 goto do_default;
2187 case EQ_EXPR:
2188 case NE_EXPR:
2189 case LT_EXPR:
2190 case LE_EXPR:
2191 case GE_EXPR:
2192 case GT_EXPR:
2193 is_bool = true;
2194 /* FALLTHRU */
2195 default:
2196 if (!is_bool)
2197 return;
2198 do_default:
2199 nexp = make_range_step (loc, code, arg0, arg1, exp_type,
2200 &low, &high, &in_p,
2201 &strict_overflow_p);
2202 if (nexp != NULL_TREE)
2204 exp = nexp;
2205 gcc_assert (TREE_CODE (exp) == SSA_NAME);
2206 continue;
2208 break;
2210 break;
2212 if (is_bool)
2214 r->exp = exp;
2215 r->in_p = in_p;
2216 r->low = low;
2217 r->high = high;
2218 r->strict_overflow_p = strict_overflow_p;
2222 /* Comparison function for qsort. Sort entries
2223 without SSA_NAME exp first, then with SSA_NAMEs sorted
2224 by increasing SSA_NAME_VERSION, and for the same SSA_NAMEs
2225 by increasing ->low and if ->low is the same, by increasing
2226 ->high. ->low == NULL_TREE means minimum, ->high == NULL_TREE
2227 maximum. */
2229 static int
2230 range_entry_cmp (const void *a, const void *b)
2232 const struct range_entry *p = (const struct range_entry *) a;
2233 const struct range_entry *q = (const struct range_entry *) b;
2235 if (p->exp != NULL_TREE && TREE_CODE (p->exp) == SSA_NAME)
2237 if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
2239 /* Group range_entries for the same SSA_NAME together. */
2240 if (SSA_NAME_VERSION (p->exp) < SSA_NAME_VERSION (q->exp))
2241 return -1;
2242 else if (SSA_NAME_VERSION (p->exp) > SSA_NAME_VERSION (q->exp))
2243 return 1;
2244 /* If ->low is different, NULL low goes first, then by
2245 ascending low. */
2246 if (p->low != NULL_TREE)
2248 if (q->low != NULL_TREE)
2250 tree tem = fold_binary (LT_EXPR, boolean_type_node,
2251 p->low, q->low);
2252 if (tem && integer_onep (tem))
2253 return -1;
2254 tem = fold_binary (GT_EXPR, boolean_type_node,
2255 p->low, q->low);
2256 if (tem && integer_onep (tem))
2257 return 1;
2259 else
2260 return 1;
2262 else if (q->low != NULL_TREE)
2263 return -1;
2264 /* If ->high is different, NULL high goes last, before that by
2265 ascending high. */
2266 if (p->high != NULL_TREE)
2268 if (q->high != NULL_TREE)
2270 tree tem = fold_binary (LT_EXPR, boolean_type_node,
2271 p->high, q->high);
2272 if (tem && integer_onep (tem))
2273 return -1;
2274 tem = fold_binary (GT_EXPR, boolean_type_node,
2275 p->high, q->high);
2276 if (tem && integer_onep (tem))
2277 return 1;
2279 else
2280 return -1;
2282 else if (q->high != NULL_TREE)
2283 return 1;
2284 /* If both ranges are the same, sort below by ascending idx. */
2286 else
2287 return 1;
2289 else if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
2290 return -1;
2292 if (p->idx < q->idx)
2293 return -1;
2294 else
2296 gcc_checking_assert (p->idx > q->idx);
2297 return 1;
2301 /* Helper function for update_range_test. Force EXPR into an SSA_NAME,
2302 insert needed statements BEFORE or after GSI. */
2304 static tree
2305 force_into_ssa_name (gimple_stmt_iterator *gsi, tree expr, bool before)
2307 enum gsi_iterator_update m = before ? GSI_SAME_STMT : GSI_CONTINUE_LINKING;
2308 tree ret = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE, before, m);
2309 if (TREE_CODE (ret) != SSA_NAME)
2311 gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (ret)), ret);
2312 if (before)
2313 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2314 else
2315 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
2316 ret = gimple_assign_lhs (g);
2318 return ret;
2321 /* Helper routine of optimize_range_test.
2322 [EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for
2323 RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges,
2324 OPCODE and OPS are arguments of optimize_range_tests. If OTHERRANGE
2325 is NULL, OTHERRANGEP should not be and then OTHERRANGEP points to
2326 an array of COUNT pointers to other ranges. Return
2327 true if the range merge has been successful.
2328 If OPCODE is ERROR_MARK, this is called from within
2329 maybe_optimize_range_tests and is performing inter-bb range optimization.
2330 In that case, whether an op is BIT_AND_EXPR or BIT_IOR_EXPR is found in
2331 oe->rank. */
2333 static bool
2334 update_range_test (struct range_entry *range, struct range_entry *otherrange,
2335 struct range_entry **otherrangep,
2336 unsigned int count, enum tree_code opcode,
2337 vec<operand_entry *> *ops, tree exp, gimple_seq seq,
2338 bool in_p, tree low, tree high, bool strict_overflow_p)
2340 operand_entry *oe = (*ops)[range->idx];
2341 tree op = oe->op;
2342 gimple *stmt = op ? SSA_NAME_DEF_STMT (op)
2343 : last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id));
2344 location_t loc = gimple_location (stmt);
2345 tree optype = op ? TREE_TYPE (op) : boolean_type_node;
2346 tree tem = build_range_check (loc, optype, unshare_expr (exp),
2347 in_p, low, high);
2348 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
2349 gimple_stmt_iterator gsi;
2350 unsigned int i, uid;
2352 if (tem == NULL_TREE)
2353 return false;
2355 /* If op is default def SSA_NAME, there is no place to insert the
2356 new comparison. Give up, unless we can use OP itself as the
2357 range test. */
2358 if (op && SSA_NAME_IS_DEFAULT_DEF (op))
2360 if (op == range->exp
2361 && ((TYPE_PRECISION (optype) == 1 && TYPE_UNSIGNED (optype))
2362 || TREE_CODE (optype) == BOOLEAN_TYPE)
2363 && (op == tem
2364 || (TREE_CODE (tem) == EQ_EXPR
2365 && TREE_OPERAND (tem, 0) == op
2366 && integer_onep (TREE_OPERAND (tem, 1))))
2367 && opcode != BIT_IOR_EXPR
2368 && (opcode != ERROR_MARK || oe->rank != BIT_IOR_EXPR))
2370 stmt = NULL;
2371 tem = op;
2373 else
2374 return false;
2377 if (strict_overflow_p && issue_strict_overflow_warning (wc))
2378 warning_at (loc, OPT_Wstrict_overflow,
2379 "assuming signed overflow does not occur "
2380 "when simplifying range test");
2382 if (dump_file && (dump_flags & TDF_DETAILS))
2384 struct range_entry *r;
2385 fprintf (dump_file, "Optimizing range tests ");
2386 print_generic_expr (dump_file, range->exp);
2387 fprintf (dump_file, " %c[", range->in_p ? '+' : '-');
2388 print_generic_expr (dump_file, range->low);
2389 fprintf (dump_file, ", ");
2390 print_generic_expr (dump_file, range->high);
2391 fprintf (dump_file, "]");
2392 for (i = 0; i < count; i++)
2394 if (otherrange)
2395 r = otherrange + i;
2396 else
2397 r = otherrangep[i];
2398 if (r->exp
2399 && r->exp != range->exp
2400 && TREE_CODE (r->exp) == SSA_NAME)
2402 fprintf (dump_file, " and ");
2403 print_generic_expr (dump_file, r->exp);
2405 else
2406 fprintf (dump_file, " and");
2407 fprintf (dump_file, " %c[", r->in_p ? '+' : '-');
2408 print_generic_expr (dump_file, r->low);
2409 fprintf (dump_file, ", ");
2410 print_generic_expr (dump_file, r->high);
2411 fprintf (dump_file, "]");
2413 fprintf (dump_file, "\n into ");
2414 print_generic_expr (dump_file, tem);
2415 fprintf (dump_file, "\n");
2418 if (opcode == BIT_IOR_EXPR
2419 || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
2420 tem = invert_truthvalue_loc (loc, tem);
2422 tem = fold_convert_loc (loc, optype, tem);
2423 if (stmt)
2425 gsi = gsi_for_stmt (stmt);
2426 uid = gimple_uid (stmt);
2428 else
2430 gsi = gsi_none ();
2431 uid = 0;
2433 if (stmt == NULL)
2434 gcc_checking_assert (tem == op);
2435 /* In rare cases range->exp can be equal to lhs of stmt.
2436 In that case we have to insert after the stmt rather then before
2437 it. If stmt is a PHI, insert it at the start of the basic block. */
2438 else if (op != range->exp)
2440 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
2441 tem = force_into_ssa_name (&gsi, tem, true);
2442 gsi_prev (&gsi);
2444 else if (gimple_code (stmt) != GIMPLE_PHI)
2446 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2447 tem = force_into_ssa_name (&gsi, tem, false);
2449 else
2451 gsi = gsi_after_labels (gimple_bb (stmt));
2452 if (!gsi_end_p (gsi))
2453 uid = gimple_uid (gsi_stmt (gsi));
2454 else
2456 gsi = gsi_start_bb (gimple_bb (stmt));
2457 uid = 1;
2458 while (!gsi_end_p (gsi))
2460 uid = gimple_uid (gsi_stmt (gsi));
2461 gsi_next (&gsi);
2464 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
2465 tem = force_into_ssa_name (&gsi, tem, true);
2466 if (gsi_end_p (gsi))
2467 gsi = gsi_last_bb (gimple_bb (stmt));
2468 else
2469 gsi_prev (&gsi);
2471 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
2472 if (gimple_uid (gsi_stmt (gsi)))
2473 break;
2474 else
2475 gimple_set_uid (gsi_stmt (gsi), uid);
2477 oe->op = tem;
2478 range->exp = exp;
2479 range->low = low;
2480 range->high = high;
2481 range->in_p = in_p;
2482 range->strict_overflow_p = false;
2484 for (i = 0; i < count; i++)
2486 if (otherrange)
2487 range = otherrange + i;
2488 else
2489 range = otherrangep[i];
2490 oe = (*ops)[range->idx];
2491 /* Now change all the other range test immediate uses, so that
2492 those tests will be optimized away. */
2493 if (opcode == ERROR_MARK)
2495 if (oe->op)
2496 oe->op = build_int_cst (TREE_TYPE (oe->op),
2497 oe->rank == BIT_IOR_EXPR ? 0 : 1);
2498 else
2499 oe->op = (oe->rank == BIT_IOR_EXPR
2500 ? boolean_false_node : boolean_true_node);
2502 else
2503 oe->op = error_mark_node;
2504 range->exp = NULL_TREE;
2505 range->low = NULL_TREE;
2506 range->high = NULL_TREE;
2508 return true;
2511 /* Optimize X == CST1 || X == CST2
2512 if popcount (CST1 ^ CST2) == 1 into
2513 (X & ~(CST1 ^ CST2)) == (CST1 & ~(CST1 ^ CST2)).
2514 Similarly for ranges. E.g.
2515 X != 2 && X != 3 && X != 10 && X != 11
2516 will be transformed by the previous optimization into
2517 !((X - 2U) <= 1U || (X - 10U) <= 1U)
2518 and this loop can transform that into
2519 !(((X & ~8) - 2U) <= 1U). */
2521 static bool
2522 optimize_range_tests_xor (enum tree_code opcode, tree type,
2523 tree lowi, tree lowj, tree highi, tree highj,
2524 vec<operand_entry *> *ops,
2525 struct range_entry *rangei,
2526 struct range_entry *rangej)
2528 tree lowxor, highxor, tem, exp;
2529 /* Check lowi ^ lowj == highi ^ highj and
2530 popcount (lowi ^ lowj) == 1. */
2531 lowxor = fold_binary (BIT_XOR_EXPR, type, lowi, lowj);
2532 if (lowxor == NULL_TREE || TREE_CODE (lowxor) != INTEGER_CST)
2533 return false;
2534 if (!integer_pow2p (lowxor))
2535 return false;
2536 highxor = fold_binary (BIT_XOR_EXPR, type, highi, highj);
2537 if (!tree_int_cst_equal (lowxor, highxor))
2538 return false;
2540 exp = rangei->exp;
2541 scalar_int_mode mode = as_a <scalar_int_mode> (TYPE_MODE (type));
2542 int prec = GET_MODE_PRECISION (mode);
2543 if (TYPE_PRECISION (type) < prec
2544 || (wi::to_wide (TYPE_MIN_VALUE (type))
2545 != wi::min_value (prec, TYPE_SIGN (type)))
2546 || (wi::to_wide (TYPE_MAX_VALUE (type))
2547 != wi::max_value (prec, TYPE_SIGN (type))))
2549 type = build_nonstandard_integer_type (prec, TYPE_UNSIGNED (type));
2550 exp = fold_convert (type, exp);
2551 lowxor = fold_convert (type, lowxor);
2552 lowi = fold_convert (type, lowi);
2553 highi = fold_convert (type, highi);
2555 tem = fold_build1 (BIT_NOT_EXPR, type, lowxor);
2556 exp = fold_build2 (BIT_AND_EXPR, type, exp, tem);
2557 lowj = fold_build2 (BIT_AND_EXPR, type, lowi, tem);
2558 highj = fold_build2 (BIT_AND_EXPR, type, highi, tem);
2559 if (update_range_test (rangei, rangej, NULL, 1, opcode, ops, exp,
2560 NULL, rangei->in_p, lowj, highj,
2561 rangei->strict_overflow_p
2562 || rangej->strict_overflow_p))
2563 return true;
2564 return false;
2567 /* Optimize X == CST1 || X == CST2
2568 if popcount (CST2 - CST1) == 1 into
2569 ((X - CST1) & ~(CST2 - CST1)) == 0.
2570 Similarly for ranges. E.g.
2571 X == 43 || X == 76 || X == 44 || X == 78 || X == 77 || X == 46
2572 || X == 75 || X == 45
2573 will be transformed by the previous optimization into
2574 (X - 43U) <= 3U || (X - 75U) <= 3U
2575 and this loop can transform that into
2576 ((X - 43U) & ~(75U - 43U)) <= 3U. */
2577 static bool
2578 optimize_range_tests_diff (enum tree_code opcode, tree type,
2579 tree lowi, tree lowj, tree highi, tree highj,
2580 vec<operand_entry *> *ops,
2581 struct range_entry *rangei,
2582 struct range_entry *rangej)
2584 tree tem1, tem2, mask;
2585 /* Check highi - lowi == highj - lowj. */
2586 tem1 = fold_binary (MINUS_EXPR, type, highi, lowi);
2587 if (tem1 == NULL_TREE || TREE_CODE (tem1) != INTEGER_CST)
2588 return false;
2589 tem2 = fold_binary (MINUS_EXPR, type, highj, lowj);
2590 if (!tree_int_cst_equal (tem1, tem2))
2591 return false;
2592 /* Check popcount (lowj - lowi) == 1. */
2593 tem1 = fold_binary (MINUS_EXPR, type, lowj, lowi);
2594 if (tem1 == NULL_TREE || TREE_CODE (tem1) != INTEGER_CST)
2595 return false;
2596 if (!integer_pow2p (tem1))
2597 return false;
2599 scalar_int_mode mode = as_a <scalar_int_mode> (TYPE_MODE (type));
2600 int prec = GET_MODE_PRECISION (mode);
2601 if (TYPE_PRECISION (type) < prec
2602 || (wi::to_wide (TYPE_MIN_VALUE (type))
2603 != wi::min_value (prec, TYPE_SIGN (type)))
2604 || (wi::to_wide (TYPE_MAX_VALUE (type))
2605 != wi::max_value (prec, TYPE_SIGN (type))))
2606 type = build_nonstandard_integer_type (prec, 1);
2607 else
2608 type = unsigned_type_for (type);
2609 tem1 = fold_convert (type, tem1);
2610 tem2 = fold_convert (type, tem2);
2611 lowi = fold_convert (type, lowi);
2612 mask = fold_build1 (BIT_NOT_EXPR, type, tem1);
2613 tem1 = fold_build2 (MINUS_EXPR, type,
2614 fold_convert (type, rangei->exp), lowi);
2615 tem1 = fold_build2 (BIT_AND_EXPR, type, tem1, mask);
2616 lowj = build_int_cst (type, 0);
2617 if (update_range_test (rangei, rangej, NULL, 1, opcode, ops, tem1,
2618 NULL, rangei->in_p, lowj, tem2,
2619 rangei->strict_overflow_p
2620 || rangej->strict_overflow_p))
2621 return true;
2622 return false;
2625 /* It does some common checks for function optimize_range_tests_xor and
2626 optimize_range_tests_diff.
2627 If OPTIMIZE_XOR is TRUE, it calls optimize_range_tests_xor.
2628 Else it calls optimize_range_tests_diff. */
2630 static bool
2631 optimize_range_tests_1 (enum tree_code opcode, int first, int length,
2632 bool optimize_xor, vec<operand_entry *> *ops,
2633 struct range_entry *ranges)
2635 int i, j;
2636 bool any_changes = false;
2637 for (i = first; i < length; i++)
2639 tree lowi, highi, lowj, highj, type, tem;
2641 if (ranges[i].exp == NULL_TREE || ranges[i].in_p)
2642 continue;
2643 type = TREE_TYPE (ranges[i].exp);
2644 if (!INTEGRAL_TYPE_P (type))
2645 continue;
2646 lowi = ranges[i].low;
2647 if (lowi == NULL_TREE)
2648 lowi = TYPE_MIN_VALUE (type);
2649 highi = ranges[i].high;
2650 if (highi == NULL_TREE)
2651 continue;
2652 for (j = i + 1; j < length && j < i + 64; j++)
2654 bool changes;
2655 if (ranges[i].exp != ranges[j].exp || ranges[j].in_p)
2656 continue;
2657 lowj = ranges[j].low;
2658 if (lowj == NULL_TREE)
2659 continue;
2660 highj = ranges[j].high;
2661 if (highj == NULL_TREE)
2662 highj = TYPE_MAX_VALUE (type);
2663 /* Check lowj > highi. */
2664 tem = fold_binary (GT_EXPR, boolean_type_node,
2665 lowj, highi);
2666 if (tem == NULL_TREE || !integer_onep (tem))
2667 continue;
2668 if (optimize_xor)
2669 changes = optimize_range_tests_xor (opcode, type, lowi, lowj,
2670 highi, highj, ops,
2671 ranges + i, ranges + j);
2672 else
2673 changes = optimize_range_tests_diff (opcode, type, lowi, lowj,
2674 highi, highj, ops,
2675 ranges + i, ranges + j);
2676 if (changes)
2678 any_changes = true;
2679 break;
2683 return any_changes;
2686 /* Helper function of optimize_range_tests_to_bit_test. Handle a single
2687 range, EXP, LOW, HIGH, compute bit mask of bits to test and return
2688 EXP on success, NULL otherwise. */
2690 static tree
2691 extract_bit_test_mask (tree exp, int prec, tree totallow, tree low, tree high,
2692 wide_int *mask, tree *totallowp)
2694 tree tem = int_const_binop (MINUS_EXPR, high, low);
2695 if (tem == NULL_TREE
2696 || TREE_CODE (tem) != INTEGER_CST
2697 || TREE_OVERFLOW (tem)
2698 || tree_int_cst_sgn (tem) == -1
2699 || compare_tree_int (tem, prec) != -1)
2700 return NULL_TREE;
2702 unsigned HOST_WIDE_INT max = tree_to_uhwi (tem) + 1;
2703 *mask = wi::shifted_mask (0, max, false, prec);
2704 if (TREE_CODE (exp) == BIT_AND_EXPR
2705 && TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
2707 widest_int msk = wi::to_widest (TREE_OPERAND (exp, 1));
2708 msk = wi::zext (~msk, TYPE_PRECISION (TREE_TYPE (exp)));
2709 if (wi::popcount (msk) == 1
2710 && wi::ltu_p (msk, prec - max))
2712 *mask |= wi::shifted_mask (msk.to_uhwi (), max, false, prec);
2713 max += msk.to_uhwi ();
2714 exp = TREE_OPERAND (exp, 0);
2715 if (integer_zerop (low)
2716 && TREE_CODE (exp) == PLUS_EXPR
2717 && TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
2719 tree ret = TREE_OPERAND (exp, 0);
2720 STRIP_NOPS (ret);
2721 widest_int bias
2722 = wi::neg (wi::sext (wi::to_widest (TREE_OPERAND (exp, 1)),
2723 TYPE_PRECISION (TREE_TYPE (low))));
2724 tree tbias = wide_int_to_tree (TREE_TYPE (ret), bias);
2725 if (totallowp)
2727 *totallowp = tbias;
2728 return ret;
2730 else if (!tree_int_cst_lt (totallow, tbias))
2731 return NULL_TREE;
2732 bias = wi::to_widest (tbias);
2733 bias -= wi::to_widest (totallow);
2734 if (bias >= 0 && bias < prec - max)
2736 *mask = wi::lshift (*mask, bias);
2737 return ret;
2742 if (totallowp)
2743 return exp;
2744 if (!tree_int_cst_lt (totallow, low))
2745 return exp;
2746 tem = int_const_binop (MINUS_EXPR, low, totallow);
2747 if (tem == NULL_TREE
2748 || TREE_CODE (tem) != INTEGER_CST
2749 || TREE_OVERFLOW (tem)
2750 || compare_tree_int (tem, prec - max) == 1)
2751 return NULL_TREE;
2753 *mask = wi::lshift (*mask, wi::to_widest (tem));
2754 return exp;
2757 /* Attempt to optimize small range tests using bit test.
2758 E.g.
2759 X != 43 && X != 76 && X != 44 && X != 78 && X != 49
2760 && X != 77 && X != 46 && X != 75 && X != 45 && X != 82
2761 has been by earlier optimizations optimized into:
2762 ((X - 43U) & ~32U) > 3U && X != 49 && X != 82
2763 As all the 43 through 82 range is less than 64 numbers,
2764 for 64-bit word targets optimize that into:
2765 (X - 43U) > 40U && ((1 << (X - 43U)) & 0x8F0000004FULL) == 0 */
2767 static bool
2768 optimize_range_tests_to_bit_test (enum tree_code opcode, int first, int length,
2769 vec<operand_entry *> *ops,
2770 struct range_entry *ranges)
2772 int i, j;
2773 bool any_changes = false;
2774 int prec = GET_MODE_BITSIZE (word_mode);
2775 auto_vec<struct range_entry *, 64> candidates;
2777 for (i = first; i < length - 2; i++)
2779 tree lowi, highi, lowj, highj, type;
2781 if (ranges[i].exp == NULL_TREE || ranges[i].in_p)
2782 continue;
2783 type = TREE_TYPE (ranges[i].exp);
2784 if (!INTEGRAL_TYPE_P (type))
2785 continue;
2786 lowi = ranges[i].low;
2787 if (lowi == NULL_TREE)
2788 lowi = TYPE_MIN_VALUE (type);
2789 highi = ranges[i].high;
2790 if (highi == NULL_TREE)
2791 continue;
2792 wide_int mask;
2793 tree exp = extract_bit_test_mask (ranges[i].exp, prec, lowi, lowi,
2794 highi, &mask, &lowi);
2795 if (exp == NULL_TREE)
2796 continue;
2797 bool strict_overflow_p = ranges[i].strict_overflow_p;
2798 candidates.truncate (0);
2799 int end = MIN (i + 64, length);
2800 for (j = i + 1; j < end; j++)
2802 tree exp2;
2803 if (ranges[j].exp == NULL_TREE || ranges[j].in_p)
2804 continue;
2805 if (ranges[j].exp == exp)
2807 else if (TREE_CODE (ranges[j].exp) == BIT_AND_EXPR)
2809 exp2 = TREE_OPERAND (ranges[j].exp, 0);
2810 if (exp2 == exp)
2812 else if (TREE_CODE (exp2) == PLUS_EXPR)
2814 exp2 = TREE_OPERAND (exp2, 0);
2815 STRIP_NOPS (exp2);
2816 if (exp2 != exp)
2817 continue;
2819 else
2820 continue;
2822 else
2823 continue;
2824 lowj = ranges[j].low;
2825 if (lowj == NULL_TREE)
2826 continue;
2827 highj = ranges[j].high;
2828 if (highj == NULL_TREE)
2829 highj = TYPE_MAX_VALUE (type);
2830 wide_int mask2;
2831 exp2 = extract_bit_test_mask (ranges[j].exp, prec, lowi, lowj,
2832 highj, &mask2, NULL);
2833 if (exp2 != exp)
2834 continue;
2835 mask |= mask2;
2836 strict_overflow_p |= ranges[j].strict_overflow_p;
2837 candidates.safe_push (&ranges[j]);
2840 /* If we need otherwise 3 or more comparisons, use a bit test. */
2841 if (candidates.length () >= 2)
2843 tree high = wide_int_to_tree (TREE_TYPE (lowi),
2844 wi::to_widest (lowi)
2845 + prec - 1 - wi::clz (mask));
2846 operand_entry *oe = (*ops)[ranges[i].idx];
2847 tree op = oe->op;
2848 gimple *stmt = op ? SSA_NAME_DEF_STMT (op)
2849 : last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id));
2850 location_t loc = gimple_location (stmt);
2851 tree optype = op ? TREE_TYPE (op) : boolean_type_node;
2853 /* See if it isn't cheaper to pretend the minimum value of the
2854 range is 0, if maximum value is small enough.
2855 We can avoid then subtraction of the minimum value, but the
2856 mask constant could be perhaps more expensive. */
2857 if (compare_tree_int (lowi, 0) > 0
2858 && compare_tree_int (high, prec) < 0)
2860 int cost_diff;
2861 HOST_WIDE_INT m = tree_to_uhwi (lowi);
2862 rtx reg = gen_raw_REG (word_mode, 10000);
2863 bool speed_p = optimize_bb_for_speed_p (gimple_bb (stmt));
2864 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
2865 GEN_INT (-m)), speed_p);
2866 rtx r = immed_wide_int_const (mask, word_mode);
2867 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
2868 word_mode, speed_p);
2869 r = immed_wide_int_const (wi::lshift (mask, m), word_mode);
2870 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
2871 word_mode, speed_p);
2872 if (cost_diff > 0)
2874 mask = wi::lshift (mask, m);
2875 lowi = build_zero_cst (TREE_TYPE (lowi));
2879 tree tem = build_range_check (loc, optype, unshare_expr (exp),
2880 false, lowi, high);
2881 if (tem == NULL_TREE || is_gimple_val (tem))
2882 continue;
2883 tree etype = unsigned_type_for (TREE_TYPE (exp));
2884 exp = fold_build2_loc (loc, MINUS_EXPR, etype,
2885 fold_convert_loc (loc, etype, exp),
2886 fold_convert_loc (loc, etype, lowi));
2887 exp = fold_convert_loc (loc, integer_type_node, exp);
2888 tree word_type = lang_hooks.types.type_for_mode (word_mode, 1);
2889 exp = fold_build2_loc (loc, LSHIFT_EXPR, word_type,
2890 build_int_cst (word_type, 1), exp);
2891 exp = fold_build2_loc (loc, BIT_AND_EXPR, word_type, exp,
2892 wide_int_to_tree (word_type, mask));
2893 exp = fold_build2_loc (loc, EQ_EXPR, optype, exp,
2894 build_zero_cst (word_type));
2895 if (is_gimple_val (exp))
2896 continue;
2898 /* The shift might have undefined behavior if TEM is true,
2899 but reassociate_bb isn't prepared to have basic blocks
2900 split when it is running. So, temporarily emit a code
2901 with BIT_IOR_EXPR instead of &&, and fix it up in
2902 branch_fixup. */
2903 gimple_seq seq;
2904 tem = force_gimple_operand (tem, &seq, true, NULL_TREE);
2905 gcc_assert (TREE_CODE (tem) == SSA_NAME);
2906 gimple_set_visited (SSA_NAME_DEF_STMT (tem), true);
2907 gimple_seq seq2;
2908 exp = force_gimple_operand (exp, &seq2, true, NULL_TREE);
2909 gimple_seq_add_seq_without_update (&seq, seq2);
2910 gcc_assert (TREE_CODE (exp) == SSA_NAME);
2911 gimple_set_visited (SSA_NAME_DEF_STMT (exp), true);
2912 gimple *g = gimple_build_assign (make_ssa_name (optype),
2913 BIT_IOR_EXPR, tem, exp);
2914 gimple_set_location (g, loc);
2915 gimple_seq_add_stmt_without_update (&seq, g);
2916 exp = gimple_assign_lhs (g);
2917 tree val = build_zero_cst (optype);
2918 if (update_range_test (&ranges[i], NULL, candidates.address (),
2919 candidates.length (), opcode, ops, exp,
2920 seq, false, val, val, strict_overflow_p))
2922 any_changes = true;
2923 reassoc_branch_fixups.safe_push (tem);
2925 else
2926 gimple_seq_discard (seq);
2929 return any_changes;
2932 /* Optimize x != 0 && y != 0 && z != 0 into (x | y | z) != 0
2933 and similarly x != -1 && y != -1 && y != -1 into (x & y & z) != -1. */
2935 static bool
2936 optimize_range_tests_cmp_bitwise (enum tree_code opcode, int first, int length,
2937 vec<operand_entry *> *ops,
2938 struct range_entry *ranges)
2940 int i;
2941 unsigned int b;
2942 bool any_changes = false;
2943 auto_vec<int, 128> buckets;
2944 auto_vec<int, 32> chains;
2945 auto_vec<struct range_entry *, 32> candidates;
2947 for (i = first; i < length; i++)
2949 if (ranges[i].exp == NULL_TREE
2950 || TREE_CODE (ranges[i].exp) != SSA_NAME
2951 || !ranges[i].in_p
2952 || TYPE_PRECISION (TREE_TYPE (ranges[i].exp)) <= 1
2953 || TREE_CODE (TREE_TYPE (ranges[i].exp)) == BOOLEAN_TYPE
2954 || ranges[i].low == NULL_TREE
2955 || ranges[i].low != ranges[i].high)
2956 continue;
2958 bool zero_p = integer_zerop (ranges[i].low);
2959 if (!zero_p && !integer_all_onesp (ranges[i].low))
2960 continue;
2962 b = TYPE_PRECISION (TREE_TYPE (ranges[i].exp)) * 2 + !zero_p;
2963 if (buckets.length () <= b)
2964 buckets.safe_grow_cleared (b + 1);
2965 if (chains.length () <= (unsigned) i)
2966 chains.safe_grow (i + 1);
2967 chains[i] = buckets[b];
2968 buckets[b] = i + 1;
2971 FOR_EACH_VEC_ELT (buckets, b, i)
2972 if (i && chains[i - 1])
2974 int j, k = i;
2975 for (j = chains[i - 1]; j; j = chains[j - 1])
2977 gimple *gk = SSA_NAME_DEF_STMT (ranges[k - 1].exp);
2978 gimple *gj = SSA_NAME_DEF_STMT (ranges[j - 1].exp);
2979 if (reassoc_stmt_dominates_stmt_p (gk, gj))
2980 k = j;
2982 tree type1 = TREE_TYPE (ranges[k - 1].exp);
2983 tree type2 = NULL_TREE;
2984 bool strict_overflow_p = false;
2985 candidates.truncate (0);
2986 for (j = i; j; j = chains[j - 1])
2988 tree type = TREE_TYPE (ranges[j - 1].exp);
2989 strict_overflow_p |= ranges[j - 1].strict_overflow_p;
2990 if (j == k
2991 || useless_type_conversion_p (type1, type))
2993 else if (type2 == NULL_TREE
2994 || useless_type_conversion_p (type2, type))
2996 if (type2 == NULL_TREE)
2997 type2 = type;
2998 candidates.safe_push (&ranges[j - 1]);
3001 unsigned l = candidates.length ();
3002 for (j = i; j; j = chains[j - 1])
3004 tree type = TREE_TYPE (ranges[j - 1].exp);
3005 if (j == k)
3006 continue;
3007 if (useless_type_conversion_p (type1, type))
3009 else if (type2 == NULL_TREE
3010 || useless_type_conversion_p (type2, type))
3011 continue;
3012 candidates.safe_push (&ranges[j - 1]);
3014 gimple_seq seq = NULL;
3015 tree op = NULL_TREE;
3016 unsigned int id;
3017 struct range_entry *r;
3018 candidates.safe_push (&ranges[k - 1]);
3019 FOR_EACH_VEC_ELT (candidates, id, r)
3021 gimple *g;
3022 if (id == 0)
3024 op = r->exp;
3025 continue;
3027 if (id == l)
3029 g = gimple_build_assign (make_ssa_name (type1), NOP_EXPR, op);
3030 gimple_seq_add_stmt_without_update (&seq, g);
3031 op = gimple_assign_lhs (g);
3033 tree type = TREE_TYPE (r->exp);
3034 tree exp = r->exp;
3035 if (id >= l && !useless_type_conversion_p (type1, type))
3037 g = gimple_build_assign (make_ssa_name (type1), NOP_EXPR, exp);
3038 gimple_seq_add_stmt_without_update (&seq, g);
3039 exp = gimple_assign_lhs (g);
3041 g = gimple_build_assign (make_ssa_name (id >= l ? type1 : type2),
3042 (b & 1) ? BIT_AND_EXPR : BIT_IOR_EXPR,
3043 op, exp);
3044 gimple_seq_add_stmt_without_update (&seq, g);
3045 op = gimple_assign_lhs (g);
3047 candidates.pop ();
3048 if (update_range_test (&ranges[k - 1], NULL, candidates.address (),
3049 candidates.length (), opcode, ops, op,
3050 seq, true, ranges[k - 1].low,
3051 ranges[k - 1].low, strict_overflow_p))
3052 any_changes = true;
3053 else
3054 gimple_seq_discard (seq);
3057 return any_changes;
3060 /* Attempt to optimize for signed a and b where b is known to be >= 0:
3061 a >= 0 && a < b into (unsigned) a < (unsigned) b
3062 a >= 0 && a <= b into (unsigned) a <= (unsigned) b */
3064 static bool
3065 optimize_range_tests_var_bound (enum tree_code opcode, int first, int length,
3066 vec<operand_entry *> *ops,
3067 struct range_entry *ranges,
3068 basic_block first_bb)
3070 int i;
3071 bool any_changes = false;
3072 hash_map<tree, int> *map = NULL;
3074 for (i = first; i < length; i++)
3076 if (ranges[i].exp == NULL_TREE
3077 || TREE_CODE (ranges[i].exp) != SSA_NAME
3078 || !ranges[i].in_p)
3079 continue;
3081 tree type = TREE_TYPE (ranges[i].exp);
3082 if (!INTEGRAL_TYPE_P (type)
3083 || TYPE_UNSIGNED (type)
3084 || ranges[i].low == NULL_TREE
3085 || !integer_zerop (ranges[i].low)
3086 || ranges[i].high != NULL_TREE)
3087 continue;
3088 /* EXP >= 0 here. */
3089 if (map == NULL)
3090 map = new hash_map <tree, int>;
3091 map->put (ranges[i].exp, i);
3094 if (map == NULL)
3095 return false;
3097 for (i = 0; i < length; i++)
3099 bool in_p = ranges[i].in_p;
3100 if (ranges[i].low == NULL_TREE
3101 || ranges[i].high == NULL_TREE)
3102 continue;
3103 if (!integer_zerop (ranges[i].low)
3104 || !integer_zerop (ranges[i].high))
3106 if (ranges[i].exp
3107 && TYPE_PRECISION (TREE_TYPE (ranges[i].exp)) == 1
3108 && TYPE_UNSIGNED (TREE_TYPE (ranges[i].exp))
3109 && integer_onep (ranges[i].low)
3110 && integer_onep (ranges[i].high))
3111 in_p = !in_p;
3112 else
3113 continue;
3116 gimple *stmt;
3117 tree_code ccode;
3118 tree rhs1, rhs2;
3119 if (ranges[i].exp)
3121 if (TREE_CODE (ranges[i].exp) != SSA_NAME)
3122 continue;
3123 stmt = SSA_NAME_DEF_STMT (ranges[i].exp);
3124 if (!is_gimple_assign (stmt))
3125 continue;
3126 ccode = gimple_assign_rhs_code (stmt);
3127 rhs1 = gimple_assign_rhs1 (stmt);
3128 rhs2 = gimple_assign_rhs2 (stmt);
3130 else
3132 operand_entry *oe = (*ops)[ranges[i].idx];
3133 stmt = last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id));
3134 if (gimple_code (stmt) != GIMPLE_COND)
3135 continue;
3136 ccode = gimple_cond_code (stmt);
3137 rhs1 = gimple_cond_lhs (stmt);
3138 rhs2 = gimple_cond_rhs (stmt);
3141 if (TREE_CODE (rhs1) != SSA_NAME
3142 || rhs2 == NULL_TREE
3143 || TREE_CODE (rhs2) != SSA_NAME)
3144 continue;
3146 switch (ccode)
3148 case GT_EXPR:
3149 case GE_EXPR:
3150 case LT_EXPR:
3151 case LE_EXPR:
3152 break;
3153 default:
3154 continue;
3156 if (in_p)
3157 ccode = invert_tree_comparison (ccode, false);
3158 switch (ccode)
3160 case GT_EXPR:
3161 case GE_EXPR:
3162 std::swap (rhs1, rhs2);
3163 ccode = swap_tree_comparison (ccode);
3164 break;
3165 case LT_EXPR:
3166 case LE_EXPR:
3167 break;
3168 default:
3169 gcc_unreachable ();
3172 int *idx = map->get (rhs1);
3173 if (idx == NULL)
3174 continue;
3176 /* maybe_optimize_range_tests allows statements without side-effects
3177 in the basic blocks as long as they are consumed in the same bb.
3178 Make sure rhs2's def stmt is not among them, otherwise we can't
3179 use safely get_nonzero_bits on it. E.g. in:
3180 # RANGE [-83, 1] NONZERO 173
3181 # k_32 = PHI <k_47(13), k_12(9)>
3183 if (k_32 >= 0)
3184 goto <bb 5>; [26.46%]
3185 else
3186 goto <bb 9>; [73.54%]
3188 <bb 5> [local count: 140323371]:
3189 # RANGE [0, 1] NONZERO 1
3190 _5 = (int) k_32;
3191 # RANGE [0, 4] NONZERO 4
3192 _21 = _5 << 2;
3193 # RANGE [0, 4] NONZERO 4
3194 iftmp.0_44 = (char) _21;
3195 if (k_32 < iftmp.0_44)
3196 goto <bb 6>; [84.48%]
3197 else
3198 goto <bb 9>; [15.52%]
3199 the ranges on _5/_21/iftmp.0_44 are flow sensitive, assume that
3200 k_32 >= 0. If we'd optimize k_32 >= 0 to true and k_32 < iftmp.0_44
3201 to (unsigned) k_32 < (unsigned) iftmp.0_44, then we would execute
3202 those stmts even for negative k_32 and the value ranges would be no
3203 longer guaranteed and so the optimization would be invalid. */
3204 while (opcode == ERROR_MARK)
3206 gimple *g = SSA_NAME_DEF_STMT (rhs2);
3207 basic_block bb2 = gimple_bb (g);
3208 if (bb2
3209 && bb2 != first_bb
3210 && dominated_by_p (CDI_DOMINATORS, bb2, first_bb))
3212 /* As an exception, handle a few common cases. */
3213 if (gimple_assign_cast_p (g)
3214 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (g))))
3216 tree op0 = gimple_assign_rhs1 (g);
3217 if (TYPE_UNSIGNED (TREE_TYPE (op0))
3218 && (TYPE_PRECISION (TREE_TYPE (rhs2))
3219 > TYPE_PRECISION (TREE_TYPE (op0))))
3220 /* Zero-extension is always ok. */
3221 break;
3222 else if (TYPE_PRECISION (TREE_TYPE (rhs2))
3223 == TYPE_PRECISION (TREE_TYPE (op0))
3224 && TREE_CODE (op0) == SSA_NAME)
3226 /* Cast from signed to unsigned or vice versa. Retry
3227 with the op0 as new rhs2. */
3228 rhs2 = op0;
3229 continue;
3232 else if (is_gimple_assign (g)
3233 && gimple_assign_rhs_code (g) == BIT_AND_EXPR
3234 && TREE_CODE (gimple_assign_rhs2 (g)) == INTEGER_CST
3235 && !wi::neg_p (wi::to_wide (gimple_assign_rhs2 (g))))
3236 /* Masking with INTEGER_CST with MSB clear is always ok
3237 too. */
3238 break;
3239 rhs2 = NULL_TREE;
3241 break;
3243 if (rhs2 == NULL_TREE)
3244 continue;
3246 wide_int nz = get_nonzero_bits (rhs2);
3247 if (wi::neg_p (nz))
3248 continue;
3250 /* We have EXP < RHS2 or EXP <= RHS2 where EXP >= 0
3251 and RHS2 is known to be RHS2 >= 0. */
3252 tree utype = unsigned_type_for (TREE_TYPE (rhs1));
3254 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
3255 if ((ranges[*idx].strict_overflow_p
3256 || ranges[i].strict_overflow_p)
3257 && issue_strict_overflow_warning (wc))
3258 warning_at (gimple_location (stmt), OPT_Wstrict_overflow,
3259 "assuming signed overflow does not occur "
3260 "when simplifying range test");
3262 if (dump_file && (dump_flags & TDF_DETAILS))
3264 struct range_entry *r = &ranges[*idx];
3265 fprintf (dump_file, "Optimizing range test ");
3266 print_generic_expr (dump_file, r->exp);
3267 fprintf (dump_file, " +[");
3268 print_generic_expr (dump_file, r->low);
3269 fprintf (dump_file, ", ");
3270 print_generic_expr (dump_file, r->high);
3271 fprintf (dump_file, "] and comparison ");
3272 print_generic_expr (dump_file, rhs1);
3273 fprintf (dump_file, " %s ", op_symbol_code (ccode));
3274 print_generic_expr (dump_file, rhs2);
3275 fprintf (dump_file, "\n into (");
3276 print_generic_expr (dump_file, utype);
3277 fprintf (dump_file, ") ");
3278 print_generic_expr (dump_file, rhs1);
3279 fprintf (dump_file, " %s (", op_symbol_code (ccode));
3280 print_generic_expr (dump_file, utype);
3281 fprintf (dump_file, ") ");
3282 print_generic_expr (dump_file, rhs2);
3283 fprintf (dump_file, "\n");
3286 operand_entry *oe = (*ops)[ranges[i].idx];
3287 ranges[i].in_p = 0;
3288 if (opcode == BIT_IOR_EXPR
3289 || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
3291 ranges[i].in_p = 1;
3292 ccode = invert_tree_comparison (ccode, false);
3295 unsigned int uid = gimple_uid (stmt);
3296 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3297 gimple *g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, rhs1);
3298 gimple_set_uid (g, uid);
3299 rhs1 = gimple_assign_lhs (g);
3300 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3301 if (!useless_type_conversion_p (utype, TREE_TYPE (rhs2)))
3303 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, rhs2);
3304 gimple_set_uid (g, uid);
3305 rhs2 = gimple_assign_lhs (g);
3306 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3308 if (tree_swap_operands_p (rhs1, rhs2))
3310 std::swap (rhs1, rhs2);
3311 ccode = swap_tree_comparison (ccode);
3313 if (gimple_code (stmt) == GIMPLE_COND)
3315 gcond *c = as_a <gcond *> (stmt);
3316 gimple_cond_set_code (c, ccode);
3317 gimple_cond_set_lhs (c, rhs1);
3318 gimple_cond_set_rhs (c, rhs2);
3319 update_stmt (stmt);
3321 else
3323 tree ctype = oe->op ? TREE_TYPE (oe->op) : boolean_type_node;
3324 if (!INTEGRAL_TYPE_P (ctype)
3325 || (TREE_CODE (ctype) != BOOLEAN_TYPE
3326 && TYPE_PRECISION (ctype) != 1))
3327 ctype = boolean_type_node;
3328 g = gimple_build_assign (make_ssa_name (ctype), ccode, rhs1, rhs2);
3329 gimple_set_uid (g, uid);
3330 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3331 if (oe->op && ctype != TREE_TYPE (oe->op))
3333 g = gimple_build_assign (make_ssa_name (TREE_TYPE (oe->op)),
3334 NOP_EXPR, gimple_assign_lhs (g));
3335 gimple_set_uid (g, uid);
3336 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3338 ranges[i].exp = gimple_assign_lhs (g);
3339 oe->op = ranges[i].exp;
3340 ranges[i].low = build_zero_cst (TREE_TYPE (ranges[i].exp));
3341 ranges[i].high = ranges[i].low;
3343 ranges[i].strict_overflow_p = false;
3344 oe = (*ops)[ranges[*idx].idx];
3345 /* Now change all the other range test immediate uses, so that
3346 those tests will be optimized away. */
3347 if (opcode == ERROR_MARK)
3349 if (oe->op)
3350 oe->op = build_int_cst (TREE_TYPE (oe->op),
3351 oe->rank == BIT_IOR_EXPR ? 0 : 1);
3352 else
3353 oe->op = (oe->rank == BIT_IOR_EXPR
3354 ? boolean_false_node : boolean_true_node);
3356 else
3357 oe->op = error_mark_node;
3358 ranges[*idx].exp = NULL_TREE;
3359 ranges[*idx].low = NULL_TREE;
3360 ranges[*idx].high = NULL_TREE;
3361 any_changes = true;
3364 delete map;
3365 return any_changes;
3368 /* Optimize range tests, similarly how fold_range_test optimizes
3369 it on trees. The tree code for the binary
3370 operation between all the operands is OPCODE.
3371 If OPCODE is ERROR_MARK, optimize_range_tests is called from within
3372 maybe_optimize_range_tests for inter-bb range optimization.
3373 In that case if oe->op is NULL, oe->id is bb->index whose
3374 GIMPLE_COND is && or ||ed into the test, and oe->rank says
3375 the actual opcode.
3376 FIRST_BB is the first basic block if OPCODE is ERROR_MARK. */
3378 static bool
3379 optimize_range_tests (enum tree_code opcode,
3380 vec<operand_entry *> *ops, basic_block first_bb)
3382 unsigned int length = ops->length (), i, j, first;
3383 operand_entry *oe;
3384 struct range_entry *ranges;
3385 bool any_changes = false;
3387 if (length == 1)
3388 return false;
3390 ranges = XNEWVEC (struct range_entry, length);
3391 for (i = 0; i < length; i++)
3393 oe = (*ops)[i];
3394 ranges[i].idx = i;
3395 init_range_entry (ranges + i, oe->op,
3396 oe->op
3397 ? NULL
3398 : last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id)));
3399 /* For | invert it now, we will invert it again before emitting
3400 the optimized expression. */
3401 if (opcode == BIT_IOR_EXPR
3402 || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
3403 ranges[i].in_p = !ranges[i].in_p;
3406 qsort (ranges, length, sizeof (*ranges), range_entry_cmp);
3407 for (i = 0; i < length; i++)
3408 if (ranges[i].exp != NULL_TREE && TREE_CODE (ranges[i].exp) == SSA_NAME)
3409 break;
3411 /* Try to merge ranges. */
3412 for (first = i; i < length; i++)
3414 tree low = ranges[i].low;
3415 tree high = ranges[i].high;
3416 int in_p = ranges[i].in_p;
3417 bool strict_overflow_p = ranges[i].strict_overflow_p;
3418 int update_fail_count = 0;
3420 for (j = i + 1; j < length; j++)
3422 if (ranges[i].exp != ranges[j].exp)
3423 break;
3424 if (!merge_ranges (&in_p, &low, &high, in_p, low, high,
3425 ranges[j].in_p, ranges[j].low, ranges[j].high))
3426 break;
3427 strict_overflow_p |= ranges[j].strict_overflow_p;
3430 if (j == i + 1)
3431 continue;
3433 if (update_range_test (ranges + i, ranges + i + 1, NULL, j - i - 1,
3434 opcode, ops, ranges[i].exp, NULL, in_p,
3435 low, high, strict_overflow_p))
3437 i = j - 1;
3438 any_changes = true;
3440 /* Avoid quadratic complexity if all merge_ranges calls would succeed,
3441 while update_range_test would fail. */
3442 else if (update_fail_count == 64)
3443 i = j - 1;
3444 else
3445 ++update_fail_count;
3448 any_changes |= optimize_range_tests_1 (opcode, first, length, true,
3449 ops, ranges);
3451 if (BRANCH_COST (optimize_function_for_speed_p (cfun), false) >= 2)
3452 any_changes |= optimize_range_tests_1 (opcode, first, length, false,
3453 ops, ranges);
3454 if (lshift_cheap_p (optimize_function_for_speed_p (cfun)))
3455 any_changes |= optimize_range_tests_to_bit_test (opcode, first, length,
3456 ops, ranges);
3457 any_changes |= optimize_range_tests_cmp_bitwise (opcode, first, length,
3458 ops, ranges);
3459 any_changes |= optimize_range_tests_var_bound (opcode, first, length, ops,
3460 ranges, first_bb);
3462 if (any_changes && opcode != ERROR_MARK)
3464 j = 0;
3465 FOR_EACH_VEC_ELT (*ops, i, oe)
3467 if (oe->op == error_mark_node)
3468 continue;
3469 else if (i != j)
3470 (*ops)[j] = oe;
3471 j++;
3473 ops->truncate (j);
3476 XDELETEVEC (ranges);
3477 return any_changes;
3480 /* A subroutine of optimize_vec_cond_expr to extract and canonicalize
3481 the operands of the VEC_COND_EXPR. Returns ERROR_MARK on failure,
3482 otherwise the comparison code. */
3484 static tree_code
3485 ovce_extract_ops (tree var, gassign **rets, bool *reti)
3487 if (TREE_CODE (var) != SSA_NAME)
3488 return ERROR_MARK;
3490 gassign *stmt = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (var));
3491 if (stmt == NULL)
3492 return ERROR_MARK;
3494 /* ??? If we start creating more COND_EXPR, we could perform
3495 this same optimization with them. For now, simplify. */
3496 if (gimple_assign_rhs_code (stmt) != VEC_COND_EXPR)
3497 return ERROR_MARK;
3499 tree cond = gimple_assign_rhs1 (stmt);
3500 tree_code cmp = TREE_CODE (cond);
3501 if (TREE_CODE_CLASS (cmp) != tcc_comparison)
3502 return ERROR_MARK;
3504 /* ??? For now, allow only canonical true and false result vectors.
3505 We could expand this to other constants should the need arise,
3506 but at the moment we don't create them. */
3507 tree t = gimple_assign_rhs2 (stmt);
3508 tree f = gimple_assign_rhs3 (stmt);
3509 bool inv;
3510 if (integer_all_onesp (t))
3511 inv = false;
3512 else if (integer_all_onesp (f))
3514 cmp = invert_tree_comparison (cmp, false);
3515 inv = true;
3517 else
3518 return ERROR_MARK;
3519 if (!integer_zerop (f))
3520 return ERROR_MARK;
3522 /* Success! */
3523 if (rets)
3524 *rets = stmt;
3525 if (reti)
3526 *reti = inv;
3527 return cmp;
3530 /* Optimize the condition of VEC_COND_EXPRs which have been combined
3531 with OPCODE (either BIT_AND_EXPR or BIT_IOR_EXPR). */
3533 static bool
3534 optimize_vec_cond_expr (tree_code opcode, vec<operand_entry *> *ops)
3536 unsigned int length = ops->length (), i, j;
3537 bool any_changes = false;
3539 if (length == 1)
3540 return false;
3542 for (i = 0; i < length; ++i)
3544 tree elt0 = (*ops)[i]->op;
3546 gassign *stmt0;
3547 bool invert;
3548 tree_code cmp0 = ovce_extract_ops (elt0, &stmt0, &invert);
3549 if (cmp0 == ERROR_MARK)
3550 continue;
3552 for (j = i + 1; j < length; ++j)
3554 tree &elt1 = (*ops)[j]->op;
3556 gassign *stmt1;
3557 tree_code cmp1 = ovce_extract_ops (elt1, &stmt1, NULL);
3558 if (cmp1 == ERROR_MARK)
3559 continue;
3561 tree cond0 = gimple_assign_rhs1 (stmt0);
3562 tree x0 = TREE_OPERAND (cond0, 0);
3563 tree y0 = TREE_OPERAND (cond0, 1);
3565 tree cond1 = gimple_assign_rhs1 (stmt1);
3566 tree x1 = TREE_OPERAND (cond1, 0);
3567 tree y1 = TREE_OPERAND (cond1, 1);
3569 tree comb;
3570 if (opcode == BIT_AND_EXPR)
3571 comb = maybe_fold_and_comparisons (cmp0, x0, y0, cmp1, x1, y1);
3572 else if (opcode == BIT_IOR_EXPR)
3573 comb = maybe_fold_or_comparisons (cmp0, x0, y0, cmp1, x1, y1);
3574 else
3575 gcc_unreachable ();
3576 if (comb == NULL)
3577 continue;
3579 /* Success! */
3580 if (dump_file && (dump_flags & TDF_DETAILS))
3582 fprintf (dump_file, "Transforming ");
3583 print_generic_expr (dump_file, cond0);
3584 fprintf (dump_file, " %c ", opcode == BIT_AND_EXPR ? '&' : '|');
3585 print_generic_expr (dump_file, cond1);
3586 fprintf (dump_file, " into ");
3587 print_generic_expr (dump_file, comb);
3588 fputc ('\n', dump_file);
3591 gimple_assign_set_rhs1 (stmt0, comb);
3592 if (invert)
3593 std::swap (*gimple_assign_rhs2_ptr (stmt0),
3594 *gimple_assign_rhs3_ptr (stmt0));
3595 update_stmt (stmt0);
3597 elt1 = error_mark_node;
3598 any_changes = true;
3602 if (any_changes)
3604 operand_entry *oe;
3605 j = 0;
3606 FOR_EACH_VEC_ELT (*ops, i, oe)
3608 if (oe->op == error_mark_node)
3609 continue;
3610 else if (i != j)
3611 (*ops)[j] = oe;
3612 j++;
3614 ops->truncate (j);
3617 return any_changes;
3620 /* Return true if STMT is a cast like:
3621 <bb N>:
3623 _123 = (int) _234;
3625 <bb M>:
3626 # _345 = PHI <_123(N), 1(...), 1(...)>
3627 where _234 has bool type, _123 has single use and
3628 bb N has a single successor M. This is commonly used in
3629 the last block of a range test.
3631 Also Return true if STMT is tcc_compare like:
3632 <bb N>:
3634 _234 = a_2(D) == 2;
3636 <bb M>:
3637 # _345 = PHI <_234(N), 1(...), 1(...)>
3638 _346 = (int) _345;
3639 where _234 has booltype, single use and
3640 bb N has a single successor M. This is commonly used in
3641 the last block of a range test. */
3643 static bool
3644 final_range_test_p (gimple *stmt)
3646 basic_block bb, rhs_bb, lhs_bb;
3647 edge e;
3648 tree lhs, rhs;
3649 use_operand_p use_p;
3650 gimple *use_stmt;
3652 if (!gimple_assign_cast_p (stmt)
3653 && (!is_gimple_assign (stmt)
3654 || (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
3655 != tcc_comparison)))
3656 return false;
3657 bb = gimple_bb (stmt);
3658 if (!single_succ_p (bb))
3659 return false;
3660 e = single_succ_edge (bb);
3661 if (e->flags & EDGE_COMPLEX)
3662 return false;
3664 lhs = gimple_assign_lhs (stmt);
3665 rhs = gimple_assign_rhs1 (stmt);
3666 if (gimple_assign_cast_p (stmt)
3667 && (!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3668 || TREE_CODE (rhs) != SSA_NAME
3669 || TREE_CODE (TREE_TYPE (rhs)) != BOOLEAN_TYPE))
3670 return false;
3672 if (!gimple_assign_cast_p (stmt)
3673 && (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE))
3674 return false;
3676 /* Test whether lhs is consumed only by a PHI in the only successor bb. */
3677 if (!single_imm_use (lhs, &use_p, &use_stmt))
3678 return false;
3680 if (gimple_code (use_stmt) != GIMPLE_PHI
3681 || gimple_bb (use_stmt) != e->dest)
3682 return false;
3684 /* And that the rhs is defined in the same loop. */
3685 if (gimple_assign_cast_p (stmt))
3687 if (TREE_CODE (rhs) != SSA_NAME
3688 || !(rhs_bb = gimple_bb (SSA_NAME_DEF_STMT (rhs)))
3689 || !flow_bb_inside_loop_p (loop_containing_stmt (stmt), rhs_bb))
3690 return false;
3692 else
3694 if (TREE_CODE (lhs) != SSA_NAME
3695 || !(lhs_bb = gimple_bb (SSA_NAME_DEF_STMT (lhs)))
3696 || !flow_bb_inside_loop_p (loop_containing_stmt (stmt), lhs_bb))
3697 return false;
3700 return true;
3703 /* Return true if BB is suitable basic block for inter-bb range test
3704 optimization. If BACKWARD is true, BB should be the only predecessor
3705 of TEST_BB, and *OTHER_BB is either NULL and filled by the routine,
3706 or compared with to find a common basic block to which all conditions
3707 branch to if true resp. false. If BACKWARD is false, TEST_BB should
3708 be the only predecessor of BB. */
3710 static bool
3711 suitable_cond_bb (basic_block bb, basic_block test_bb, basic_block *other_bb,
3712 bool backward)
3714 edge_iterator ei, ei2;
3715 edge e, e2;
3716 gimple *stmt;
3717 gphi_iterator gsi;
3718 bool other_edge_seen = false;
3719 bool is_cond;
3721 if (test_bb == bb)
3722 return false;
3723 /* Check last stmt first. */
3724 stmt = last_stmt (bb);
3725 if (stmt == NULL
3726 || (gimple_code (stmt) != GIMPLE_COND
3727 && (backward || !final_range_test_p (stmt)))
3728 || gimple_visited_p (stmt)
3729 || stmt_could_throw_p (cfun, stmt)
3730 || *other_bb == bb)
3731 return false;
3732 is_cond = gimple_code (stmt) == GIMPLE_COND;
3733 if (is_cond)
3735 /* If last stmt is GIMPLE_COND, verify that one of the succ edges
3736 goes to the next bb (if BACKWARD, it is TEST_BB), and the other
3737 to *OTHER_BB (if not set yet, try to find it out). */
3738 if (EDGE_COUNT (bb->succs) != 2)
3739 return false;
3740 FOR_EACH_EDGE (e, ei, bb->succs)
3742 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3743 return false;
3744 if (e->dest == test_bb)
3746 if (backward)
3747 continue;
3748 else
3749 return false;
3751 if (e->dest == bb)
3752 return false;
3753 if (*other_bb == NULL)
3755 FOR_EACH_EDGE (e2, ei2, test_bb->succs)
3756 if (!(e2->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3757 return false;
3758 else if (e->dest == e2->dest)
3759 *other_bb = e->dest;
3760 if (*other_bb == NULL)
3761 return false;
3763 if (e->dest == *other_bb)
3764 other_edge_seen = true;
3765 else if (backward)
3766 return false;
3768 if (*other_bb == NULL || !other_edge_seen)
3769 return false;
3771 else if (single_succ (bb) != *other_bb)
3772 return false;
3774 /* Now check all PHIs of *OTHER_BB. */
3775 e = find_edge (bb, *other_bb);
3776 e2 = find_edge (test_bb, *other_bb);
3777 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3779 gphi *phi = gsi.phi ();
3780 /* If both BB and TEST_BB end with GIMPLE_COND, all PHI arguments
3781 corresponding to BB and TEST_BB predecessor must be the same. */
3782 if (!operand_equal_p (gimple_phi_arg_def (phi, e->dest_idx),
3783 gimple_phi_arg_def (phi, e2->dest_idx), 0))
3785 /* Otherwise, if one of the blocks doesn't end with GIMPLE_COND,
3786 one of the PHIs should have the lhs of the last stmt in
3787 that block as PHI arg and that PHI should have 0 or 1
3788 corresponding to it in all other range test basic blocks
3789 considered. */
3790 if (!is_cond)
3792 if (gimple_phi_arg_def (phi, e->dest_idx)
3793 == gimple_assign_lhs (stmt)
3794 && (integer_zerop (gimple_phi_arg_def (phi, e2->dest_idx))
3795 || integer_onep (gimple_phi_arg_def (phi,
3796 e2->dest_idx))))
3797 continue;
3799 else
3801 gimple *test_last = last_stmt (test_bb);
3802 if (gimple_code (test_last) != GIMPLE_COND
3803 && gimple_phi_arg_def (phi, e2->dest_idx)
3804 == gimple_assign_lhs (test_last)
3805 && (integer_zerop (gimple_phi_arg_def (phi, e->dest_idx))
3806 || integer_onep (gimple_phi_arg_def (phi, e->dest_idx))))
3807 continue;
3810 return false;
3813 return true;
3816 /* Return true if BB doesn't have side-effects that would disallow
3817 range test optimization, all SSA_NAMEs set in the bb are consumed
3818 in the bb and there are no PHIs. */
3820 static bool
3821 no_side_effect_bb (basic_block bb)
3823 gimple_stmt_iterator gsi;
3824 gimple *last;
3826 if (!gimple_seq_empty_p (phi_nodes (bb)))
3827 return false;
3828 last = last_stmt (bb);
3829 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3831 gimple *stmt = gsi_stmt (gsi);
3832 tree lhs;
3833 imm_use_iterator imm_iter;
3834 use_operand_p use_p;
3836 if (is_gimple_debug (stmt))
3837 continue;
3838 if (gimple_has_side_effects (stmt))
3839 return false;
3840 if (stmt == last)
3841 return true;
3842 if (!is_gimple_assign (stmt))
3843 return false;
3844 lhs = gimple_assign_lhs (stmt);
3845 if (TREE_CODE (lhs) != SSA_NAME)
3846 return false;
3847 if (gimple_assign_rhs_could_trap_p (stmt))
3848 return false;
3849 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
3851 gimple *use_stmt = USE_STMT (use_p);
3852 if (is_gimple_debug (use_stmt))
3853 continue;
3854 if (gimple_bb (use_stmt) != bb)
3855 return false;
3858 return false;
3861 /* If VAR is set by CODE (BIT_{AND,IOR}_EXPR) which is reassociable,
3862 return true and fill in *OPS recursively. */
3864 static bool
3865 get_ops (tree var, enum tree_code code, vec<operand_entry *> *ops,
3866 struct loop *loop)
3868 gimple *stmt = SSA_NAME_DEF_STMT (var);
3869 tree rhs[2];
3870 int i;
3872 if (!is_reassociable_op (stmt, code, loop))
3873 return false;
3875 rhs[0] = gimple_assign_rhs1 (stmt);
3876 rhs[1] = gimple_assign_rhs2 (stmt);
3877 gimple_set_visited (stmt, true);
3878 for (i = 0; i < 2; i++)
3879 if (TREE_CODE (rhs[i]) == SSA_NAME
3880 && !get_ops (rhs[i], code, ops, loop)
3881 && has_single_use (rhs[i]))
3883 operand_entry *oe = operand_entry_pool.allocate ();
3885 oe->op = rhs[i];
3886 oe->rank = code;
3887 oe->id = 0;
3888 oe->count = 1;
3889 oe->stmt_to_insert = NULL;
3890 ops->safe_push (oe);
3892 return true;
3895 /* Find the ops that were added by get_ops starting from VAR, see if
3896 they were changed during update_range_test and if yes, create new
3897 stmts. */
3899 static tree
3900 update_ops (tree var, enum tree_code code, vec<operand_entry *> ops,
3901 unsigned int *pidx, struct loop *loop)
3903 gimple *stmt = SSA_NAME_DEF_STMT (var);
3904 tree rhs[4];
3905 int i;
3907 if (!is_reassociable_op (stmt, code, loop))
3908 return NULL;
3910 rhs[0] = gimple_assign_rhs1 (stmt);
3911 rhs[1] = gimple_assign_rhs2 (stmt);
3912 rhs[2] = rhs[0];
3913 rhs[3] = rhs[1];
3914 for (i = 0; i < 2; i++)
3915 if (TREE_CODE (rhs[i]) == SSA_NAME)
3917 rhs[2 + i] = update_ops (rhs[i], code, ops, pidx, loop);
3918 if (rhs[2 + i] == NULL_TREE)
3920 if (has_single_use (rhs[i]))
3921 rhs[2 + i] = ops[(*pidx)++]->op;
3922 else
3923 rhs[2 + i] = rhs[i];
3926 if ((rhs[2] != rhs[0] || rhs[3] != rhs[1])
3927 && (rhs[2] != rhs[1] || rhs[3] != rhs[0]))
3929 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3930 var = make_ssa_name (TREE_TYPE (var));
3931 gassign *g = gimple_build_assign (var, gimple_assign_rhs_code (stmt),
3932 rhs[2], rhs[3]);
3933 gimple_set_uid (g, gimple_uid (stmt));
3934 gimple_set_visited (g, true);
3935 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3937 return var;
3940 /* Structure to track the initial value passed to get_ops and
3941 the range in the ops vector for each basic block. */
3943 struct inter_bb_range_test_entry
3945 tree op;
3946 unsigned int first_idx, last_idx;
3949 /* Inter-bb range test optimization.
3951 Returns TRUE if a gimple conditional is optimized to a true/false,
3952 otherwise return FALSE.
3954 This indicates to the caller that it should run a CFG cleanup pass
3955 once reassociation is completed. */
3957 static bool
3958 maybe_optimize_range_tests (gimple *stmt)
3960 basic_block first_bb = gimple_bb (stmt);
3961 basic_block last_bb = first_bb;
3962 basic_block other_bb = NULL;
3963 basic_block bb;
3964 edge_iterator ei;
3965 edge e;
3966 auto_vec<operand_entry *> ops;
3967 auto_vec<inter_bb_range_test_entry> bbinfo;
3968 bool any_changes = false;
3969 bool cfg_cleanup_needed = false;
3971 /* Consider only basic blocks that end with GIMPLE_COND or
3972 a cast statement satisfying final_range_test_p. All
3973 but the last bb in the first_bb .. last_bb range
3974 should end with GIMPLE_COND. */
3975 if (gimple_code (stmt) == GIMPLE_COND)
3977 if (EDGE_COUNT (first_bb->succs) != 2)
3978 return cfg_cleanup_needed;
3980 else if (final_range_test_p (stmt))
3981 other_bb = single_succ (first_bb);
3982 else
3983 return cfg_cleanup_needed;
3985 if (stmt_could_throw_p (cfun, stmt))
3986 return cfg_cleanup_needed;
3988 /* As relative ordering of post-dominator sons isn't fixed,
3989 maybe_optimize_range_tests can be called first on any
3990 bb in the range we want to optimize. So, start searching
3991 backwards, if first_bb can be set to a predecessor. */
3992 while (single_pred_p (first_bb))
3994 basic_block pred_bb = single_pred (first_bb);
3995 if (!suitable_cond_bb (pred_bb, first_bb, &other_bb, true))
3996 break;
3997 if (!no_side_effect_bb (first_bb))
3998 break;
3999 first_bb = pred_bb;
4001 /* If first_bb is last_bb, other_bb hasn't been computed yet.
4002 Before starting forward search in last_bb successors, find
4003 out the other_bb. */
4004 if (first_bb == last_bb)
4006 other_bb = NULL;
4007 /* As non-GIMPLE_COND last stmt always terminates the range,
4008 if forward search didn't discover anything, just give up. */
4009 if (gimple_code (stmt) != GIMPLE_COND)
4010 return cfg_cleanup_needed;
4011 /* Look at both successors. Either it ends with a GIMPLE_COND
4012 and satisfies suitable_cond_bb, or ends with a cast and
4013 other_bb is that cast's successor. */
4014 FOR_EACH_EDGE (e, ei, first_bb->succs)
4015 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4016 || e->dest == first_bb)
4017 return cfg_cleanup_needed;
4018 else if (single_pred_p (e->dest))
4020 stmt = last_stmt (e->dest);
4021 if (stmt
4022 && gimple_code (stmt) == GIMPLE_COND
4023 && EDGE_COUNT (e->dest->succs) == 2)
4025 if (suitable_cond_bb (first_bb, e->dest, &other_bb, true))
4026 break;
4027 else
4028 other_bb = NULL;
4030 else if (stmt
4031 && final_range_test_p (stmt)
4032 && find_edge (first_bb, single_succ (e->dest)))
4034 other_bb = single_succ (e->dest);
4035 if (other_bb == first_bb)
4036 other_bb = NULL;
4039 if (other_bb == NULL)
4040 return cfg_cleanup_needed;
4042 /* Now do the forward search, moving last_bb to successor bbs
4043 that aren't other_bb. */
4044 while (EDGE_COUNT (last_bb->succs) == 2)
4046 FOR_EACH_EDGE (e, ei, last_bb->succs)
4047 if (e->dest != other_bb)
4048 break;
4049 if (e == NULL)
4050 break;
4051 if (!single_pred_p (e->dest))
4052 break;
4053 if (!suitable_cond_bb (e->dest, last_bb, &other_bb, false))
4054 break;
4055 if (!no_side_effect_bb (e->dest))
4056 break;
4057 last_bb = e->dest;
4059 if (first_bb == last_bb)
4060 return cfg_cleanup_needed;
4061 /* Here basic blocks first_bb through last_bb's predecessor
4062 end with GIMPLE_COND, all of them have one of the edges to
4063 other_bb and another to another block in the range,
4064 all blocks except first_bb don't have side-effects and
4065 last_bb ends with either GIMPLE_COND, or cast satisfying
4066 final_range_test_p. */
4067 for (bb = last_bb; ; bb = single_pred (bb))
4069 enum tree_code code;
4070 tree lhs, rhs;
4071 inter_bb_range_test_entry bb_ent;
4073 bb_ent.op = NULL_TREE;
4074 bb_ent.first_idx = ops.length ();
4075 bb_ent.last_idx = bb_ent.first_idx;
4076 e = find_edge (bb, other_bb);
4077 stmt = last_stmt (bb);
4078 gimple_set_visited (stmt, true);
4079 if (gimple_code (stmt) != GIMPLE_COND)
4081 use_operand_p use_p;
4082 gimple *phi;
4083 edge e2;
4084 unsigned int d;
4086 lhs = gimple_assign_lhs (stmt);
4087 rhs = gimple_assign_rhs1 (stmt);
4088 gcc_assert (bb == last_bb);
4090 /* stmt is
4091 _123 = (int) _234;
4093 _234 = a_2(D) == 2;
4095 followed by:
4096 <bb M>:
4097 # _345 = PHI <_123(N), 1(...), 1(...)>
4099 or 0 instead of 1. If it is 0, the _234
4100 range test is anded together with all the
4101 other range tests, if it is 1, it is ored with
4102 them. */
4103 single_imm_use (lhs, &use_p, &phi);
4104 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
4105 e2 = find_edge (first_bb, other_bb);
4106 d = e2->dest_idx;
4107 gcc_assert (gimple_phi_arg_def (phi, e->dest_idx) == lhs);
4108 if (integer_zerop (gimple_phi_arg_def (phi, d)))
4109 code = BIT_AND_EXPR;
4110 else
4112 gcc_checking_assert (integer_onep (gimple_phi_arg_def (phi, d)));
4113 code = BIT_IOR_EXPR;
4116 /* If _234 SSA_NAME_DEF_STMT is
4117 _234 = _567 | _789;
4118 (or &, corresponding to 1/0 in the phi arguments,
4119 push into ops the individual range test arguments
4120 of the bitwise or resp. and, recursively. */
4121 if (TREE_CODE (rhs) == SSA_NAME
4122 && (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
4123 != tcc_comparison)
4124 && !get_ops (rhs, code, &ops,
4125 loop_containing_stmt (stmt))
4126 && has_single_use (rhs))
4128 /* Otherwise, push the _234 range test itself. */
4129 operand_entry *oe = operand_entry_pool.allocate ();
4131 oe->op = rhs;
4132 oe->rank = code;
4133 oe->id = 0;
4134 oe->count = 1;
4135 oe->stmt_to_insert = NULL;
4136 ops.safe_push (oe);
4137 bb_ent.last_idx++;
4138 bb_ent.op = rhs;
4140 else if (is_gimple_assign (stmt)
4141 && (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
4142 == tcc_comparison)
4143 && !get_ops (lhs, code, &ops,
4144 loop_containing_stmt (stmt))
4145 && has_single_use (lhs))
4147 operand_entry *oe = operand_entry_pool.allocate ();
4148 oe->op = lhs;
4149 oe->rank = code;
4150 oe->id = 0;
4151 oe->count = 1;
4152 ops.safe_push (oe);
4153 bb_ent.last_idx++;
4154 bb_ent.op = lhs;
4156 else
4158 bb_ent.last_idx = ops.length ();
4159 bb_ent.op = rhs;
4161 bbinfo.safe_push (bb_ent);
4162 continue;
4164 /* Otherwise stmt is GIMPLE_COND. */
4165 code = gimple_cond_code (stmt);
4166 lhs = gimple_cond_lhs (stmt);
4167 rhs = gimple_cond_rhs (stmt);
4168 if (TREE_CODE (lhs) == SSA_NAME
4169 && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4170 && ((code != EQ_EXPR && code != NE_EXPR)
4171 || rhs != boolean_false_node
4172 /* Either push into ops the individual bitwise
4173 or resp. and operands, depending on which
4174 edge is other_bb. */
4175 || !get_ops (lhs, (((e->flags & EDGE_TRUE_VALUE) == 0)
4176 ^ (code == EQ_EXPR))
4177 ? BIT_AND_EXPR : BIT_IOR_EXPR, &ops,
4178 loop_containing_stmt (stmt))))
4180 /* Or push the GIMPLE_COND stmt itself. */
4181 operand_entry *oe = operand_entry_pool.allocate ();
4183 oe->op = NULL;
4184 oe->rank = (e->flags & EDGE_TRUE_VALUE)
4185 ? BIT_IOR_EXPR : BIT_AND_EXPR;
4186 /* oe->op = NULL signs that there is no SSA_NAME
4187 for the range test, and oe->id instead is the
4188 basic block number, at which's end the GIMPLE_COND
4189 is. */
4190 oe->id = bb->index;
4191 oe->count = 1;
4192 oe->stmt_to_insert = NULL;
4193 ops.safe_push (oe);
4194 bb_ent.op = NULL;
4195 bb_ent.last_idx++;
4197 else if (ops.length () > bb_ent.first_idx)
4199 bb_ent.op = lhs;
4200 bb_ent.last_idx = ops.length ();
4202 bbinfo.safe_push (bb_ent);
4203 if (bb == first_bb)
4204 break;
4206 if (ops.length () > 1)
4207 any_changes = optimize_range_tests (ERROR_MARK, &ops, first_bb);
4208 if (any_changes)
4210 unsigned int idx, max_idx = 0;
4211 /* update_ops relies on has_single_use predicates returning the
4212 same values as it did during get_ops earlier. Additionally it
4213 never removes statements, only adds new ones and it should walk
4214 from the single imm use and check the predicate already before
4215 making those changes.
4216 On the other side, the handling of GIMPLE_COND directly can turn
4217 previously multiply used SSA_NAMEs into single use SSA_NAMEs, so
4218 it needs to be done in a separate loop afterwards. */
4219 for (bb = last_bb, idx = 0; ; bb = single_pred (bb), idx++)
4221 if (bbinfo[idx].first_idx < bbinfo[idx].last_idx
4222 && bbinfo[idx].op != NULL_TREE)
4224 tree new_op;
4226 max_idx = idx;
4227 stmt = last_stmt (bb);
4228 new_op = update_ops (bbinfo[idx].op,
4229 (enum tree_code)
4230 ops[bbinfo[idx].first_idx]->rank,
4231 ops, &bbinfo[idx].first_idx,
4232 loop_containing_stmt (stmt));
4233 if (new_op == NULL_TREE)
4235 gcc_assert (bb == last_bb);
4236 new_op = ops[bbinfo[idx].first_idx++]->op;
4238 if (bbinfo[idx].op != new_op)
4240 imm_use_iterator iter;
4241 use_operand_p use_p;
4242 gimple *use_stmt, *cast_or_tcc_cmp_stmt = NULL;
4244 FOR_EACH_IMM_USE_STMT (use_stmt, iter, bbinfo[idx].op)
4245 if (is_gimple_debug (use_stmt))
4246 continue;
4247 else if (gimple_code (use_stmt) == GIMPLE_COND
4248 || gimple_code (use_stmt) == GIMPLE_PHI)
4249 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4250 SET_USE (use_p, new_op);
4251 else if ((is_gimple_assign (use_stmt)
4252 && (TREE_CODE_CLASS
4253 (gimple_assign_rhs_code (use_stmt))
4254 == tcc_comparison)))
4255 cast_or_tcc_cmp_stmt = use_stmt;
4256 else if (gimple_assign_cast_p (use_stmt))
4257 cast_or_tcc_cmp_stmt = use_stmt;
4258 else
4259 gcc_unreachable ();
4261 if (cast_or_tcc_cmp_stmt)
4263 gcc_assert (bb == last_bb);
4264 tree lhs = gimple_assign_lhs (cast_or_tcc_cmp_stmt);
4265 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
4266 enum tree_code rhs_code
4267 = gimple_assign_cast_p (cast_or_tcc_cmp_stmt)
4268 ? gimple_assign_rhs_code (cast_or_tcc_cmp_stmt)
4269 : CONVERT_EXPR;
4270 gassign *g;
4271 if (is_gimple_min_invariant (new_op))
4273 new_op = fold_convert (TREE_TYPE (lhs), new_op);
4274 g = gimple_build_assign (new_lhs, new_op);
4276 else
4277 g = gimple_build_assign (new_lhs, rhs_code, new_op);
4278 gimple_stmt_iterator gsi
4279 = gsi_for_stmt (cast_or_tcc_cmp_stmt);
4280 gimple_set_uid (g, gimple_uid (cast_or_tcc_cmp_stmt));
4281 gimple_set_visited (g, true);
4282 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
4283 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4284 if (is_gimple_debug (use_stmt))
4285 continue;
4286 else if (gimple_code (use_stmt) == GIMPLE_COND
4287 || gimple_code (use_stmt) == GIMPLE_PHI)
4288 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4289 SET_USE (use_p, new_lhs);
4290 else
4291 gcc_unreachable ();
4295 if (bb == first_bb)
4296 break;
4298 for (bb = last_bb, idx = 0; ; bb = single_pred (bb), idx++)
4300 if (bbinfo[idx].first_idx < bbinfo[idx].last_idx
4301 && bbinfo[idx].op == NULL_TREE
4302 && ops[bbinfo[idx].first_idx]->op != NULL_TREE)
4304 gcond *cond_stmt = as_a <gcond *> (last_stmt (bb));
4306 if (idx > max_idx)
4307 max_idx = idx;
4309 /* If we collapse the conditional to a true/false
4310 condition, then bubble that knowledge up to our caller. */
4311 if (integer_zerop (ops[bbinfo[idx].first_idx]->op))
4313 gimple_cond_make_false (cond_stmt);
4314 cfg_cleanup_needed = true;
4316 else if (integer_onep (ops[bbinfo[idx].first_idx]->op))
4318 gimple_cond_make_true (cond_stmt);
4319 cfg_cleanup_needed = true;
4321 else
4323 gimple_cond_set_code (cond_stmt, NE_EXPR);
4324 gimple_cond_set_lhs (cond_stmt,
4325 ops[bbinfo[idx].first_idx]->op);
4326 gimple_cond_set_rhs (cond_stmt, boolean_false_node);
4328 update_stmt (cond_stmt);
4330 if (bb == first_bb)
4331 break;
4334 /* The above changes could result in basic blocks after the first
4335 modified one, up to and including last_bb, to be executed even if
4336 they would not be in the original program. If the value ranges of
4337 assignment lhs' in those bbs were dependent on the conditions
4338 guarding those basic blocks which now can change, the VRs might
4339 be incorrect. As no_side_effect_bb should ensure those SSA_NAMEs
4340 are only used within the same bb, it should be not a big deal if
4341 we just reset all the VRs in those bbs. See PR68671. */
4342 for (bb = last_bb, idx = 0; idx < max_idx; bb = single_pred (bb), idx++)
4343 reset_flow_sensitive_info_in_bb (bb);
4345 return cfg_cleanup_needed;
4348 /* Return true if OPERAND is defined by a PHI node which uses the LHS
4349 of STMT in it's operands. This is also known as a "destructive
4350 update" operation. */
4352 static bool
4353 is_phi_for_stmt (gimple *stmt, tree operand)
4355 gimple *def_stmt;
4356 gphi *def_phi;
4357 tree lhs;
4358 use_operand_p arg_p;
4359 ssa_op_iter i;
4361 if (TREE_CODE (operand) != SSA_NAME)
4362 return false;
4364 lhs = gimple_assign_lhs (stmt);
4366 def_stmt = SSA_NAME_DEF_STMT (operand);
4367 def_phi = dyn_cast <gphi *> (def_stmt);
4368 if (!def_phi)
4369 return false;
4371 FOR_EACH_PHI_ARG (arg_p, def_phi, i, SSA_OP_USE)
4372 if (lhs == USE_FROM_PTR (arg_p))
4373 return true;
4374 return false;
4377 /* Remove def stmt of VAR if VAR has zero uses and recurse
4378 on rhs1 operand if so. */
4380 static void
4381 remove_visited_stmt_chain (tree var)
4383 gimple *stmt;
4384 gimple_stmt_iterator gsi;
4386 while (1)
4388 if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
4389 return;
4390 stmt = SSA_NAME_DEF_STMT (var);
4391 if (is_gimple_assign (stmt) && gimple_visited_p (stmt))
4393 var = gimple_assign_rhs1 (stmt);
4394 gsi = gsi_for_stmt (stmt);
4395 reassoc_remove_stmt (&gsi);
4396 release_defs (stmt);
4398 else
4399 return;
4403 /* This function checks three consequtive operands in
4404 passed operands vector OPS starting from OPINDEX and
4405 swaps two operands if it is profitable for binary operation
4406 consuming OPINDEX + 1 abnd OPINDEX + 2 operands.
4408 We pair ops with the same rank if possible.
4410 The alternative we try is to see if STMT is a destructive
4411 update style statement, which is like:
4412 b = phi (a, ...)
4413 a = c + b;
4414 In that case, we want to use the destructive update form to
4415 expose the possible vectorizer sum reduction opportunity.
4416 In that case, the third operand will be the phi node. This
4417 check is not performed if STMT is null.
4419 We could, of course, try to be better as noted above, and do a
4420 lot of work to try to find these opportunities in >3 operand
4421 cases, but it is unlikely to be worth it. */
4423 static void
4424 swap_ops_for_binary_stmt (vec<operand_entry *> ops,
4425 unsigned int opindex, gimple *stmt)
4427 operand_entry *oe1, *oe2, *oe3;
4429 oe1 = ops[opindex];
4430 oe2 = ops[opindex + 1];
4431 oe3 = ops[opindex + 2];
4433 if ((oe1->rank == oe2->rank
4434 && oe2->rank != oe3->rank)
4435 || (stmt && is_phi_for_stmt (stmt, oe3->op)
4436 && !is_phi_for_stmt (stmt, oe1->op)
4437 && !is_phi_for_stmt (stmt, oe2->op)))
4438 std::swap (*oe1, *oe3);
4439 else if ((oe1->rank == oe3->rank
4440 && oe2->rank != oe3->rank)
4441 || (stmt && is_phi_for_stmt (stmt, oe2->op)
4442 && !is_phi_for_stmt (stmt, oe1->op)
4443 && !is_phi_for_stmt (stmt, oe3->op)))
4444 std::swap (*oe1, *oe2);
4447 /* If definition of RHS1 or RHS2 dominates STMT, return the later of those
4448 two definitions, otherwise return STMT. */
4450 static inline gimple *
4451 find_insert_point (gimple *stmt, tree rhs1, tree rhs2)
4453 if (TREE_CODE (rhs1) == SSA_NAME
4454 && reassoc_stmt_dominates_stmt_p (stmt, SSA_NAME_DEF_STMT (rhs1)))
4455 stmt = SSA_NAME_DEF_STMT (rhs1);
4456 if (TREE_CODE (rhs2) == SSA_NAME
4457 && reassoc_stmt_dominates_stmt_p (stmt, SSA_NAME_DEF_STMT (rhs2)))
4458 stmt = SSA_NAME_DEF_STMT (rhs2);
4459 return stmt;
4462 /* If the stmt that defines operand has to be inserted, insert it
4463 before the use. */
4464 static void
4465 insert_stmt_before_use (gimple *stmt, gimple *stmt_to_insert)
4467 gcc_assert (is_gimple_assign (stmt_to_insert));
4468 tree rhs1 = gimple_assign_rhs1 (stmt_to_insert);
4469 tree rhs2 = gimple_assign_rhs2 (stmt_to_insert);
4470 gimple *insert_point = find_insert_point (stmt, rhs1, rhs2);
4471 gimple_stmt_iterator gsi = gsi_for_stmt (insert_point);
4472 gimple_set_uid (stmt_to_insert, gimple_uid (insert_point));
4474 /* If the insert point is not stmt, then insert_point would be
4475 the point where operand rhs1 or rhs2 is defined. In this case,
4476 stmt_to_insert has to be inserted afterwards. This would
4477 only happen when the stmt insertion point is flexible. */
4478 if (stmt == insert_point)
4479 gsi_insert_before (&gsi, stmt_to_insert, GSI_NEW_STMT);
4480 else
4481 insert_stmt_after (stmt_to_insert, insert_point);
4485 /* Recursively rewrite our linearized statements so that the operators
4486 match those in OPS[OPINDEX], putting the computation in rank
4487 order. Return new lhs.
4488 CHANGED is true if we shouldn't reuse the lhs SSA_NAME both in
4489 the current stmt and during recursive invocations.
4490 NEXT_CHANGED is true if we shouldn't reuse the lhs SSA_NAME in
4491 recursive invocations. */
4493 static tree
4494 rewrite_expr_tree (gimple *stmt, unsigned int opindex,
4495 vec<operand_entry *> ops, bool changed, bool next_changed)
4497 tree rhs1 = gimple_assign_rhs1 (stmt);
4498 tree rhs2 = gimple_assign_rhs2 (stmt);
4499 tree lhs = gimple_assign_lhs (stmt);
4500 operand_entry *oe;
4502 /* The final recursion case for this function is that you have
4503 exactly two operations left.
4504 If we had exactly one op in the entire list to start with, we
4505 would have never called this function, and the tail recursion
4506 rewrites them one at a time. */
4507 if (opindex + 2 == ops.length ())
4509 operand_entry *oe1, *oe2;
4511 oe1 = ops[opindex];
4512 oe2 = ops[opindex + 1];
4514 if (rhs1 != oe1->op || rhs2 != oe2->op)
4516 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
4517 unsigned int uid = gimple_uid (stmt);
4519 if (dump_file && (dump_flags & TDF_DETAILS))
4521 fprintf (dump_file, "Transforming ");
4522 print_gimple_stmt (dump_file, stmt, 0);
4525 /* If the stmt that defines operand has to be inserted, insert it
4526 before the use. */
4527 if (oe1->stmt_to_insert)
4528 insert_stmt_before_use (stmt, oe1->stmt_to_insert);
4529 if (oe2->stmt_to_insert)
4530 insert_stmt_before_use (stmt, oe2->stmt_to_insert);
4531 /* Even when changed is false, reassociation could have e.g. removed
4532 some redundant operations, so unless we are just swapping the
4533 arguments or unless there is no change at all (then we just
4534 return lhs), force creation of a new SSA_NAME. */
4535 if (changed || ((rhs1 != oe2->op || rhs2 != oe1->op) && opindex))
4537 gimple *insert_point
4538 = find_insert_point (stmt, oe1->op, oe2->op);
4539 lhs = make_ssa_name (TREE_TYPE (lhs));
4540 stmt
4541 = gimple_build_assign (lhs, gimple_assign_rhs_code (stmt),
4542 oe1->op, oe2->op);
4543 gimple_set_uid (stmt, uid);
4544 gimple_set_visited (stmt, true);
4545 if (insert_point == gsi_stmt (gsi))
4546 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
4547 else
4548 insert_stmt_after (stmt, insert_point);
4550 else
4552 gcc_checking_assert (find_insert_point (stmt, oe1->op, oe2->op)
4553 == stmt);
4554 gimple_assign_set_rhs1 (stmt, oe1->op);
4555 gimple_assign_set_rhs2 (stmt, oe2->op);
4556 update_stmt (stmt);
4559 if (rhs1 != oe1->op && rhs1 != oe2->op)
4560 remove_visited_stmt_chain (rhs1);
4562 if (dump_file && (dump_flags & TDF_DETAILS))
4564 fprintf (dump_file, " into ");
4565 print_gimple_stmt (dump_file, stmt, 0);
4568 return lhs;
4571 /* If we hit here, we should have 3 or more ops left. */
4572 gcc_assert (opindex + 2 < ops.length ());
4574 /* Rewrite the next operator. */
4575 oe = ops[opindex];
4577 /* If the stmt that defines operand has to be inserted, insert it
4578 before the use. */
4579 if (oe->stmt_to_insert)
4580 insert_stmt_before_use (stmt, oe->stmt_to_insert);
4582 /* Recurse on the LHS of the binary operator, which is guaranteed to
4583 be the non-leaf side. */
4584 tree new_rhs1
4585 = rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops,
4586 changed || oe->op != rhs2 || next_changed,
4587 false);
4589 if (oe->op != rhs2 || new_rhs1 != rhs1)
4591 if (dump_file && (dump_flags & TDF_DETAILS))
4593 fprintf (dump_file, "Transforming ");
4594 print_gimple_stmt (dump_file, stmt, 0);
4597 /* If changed is false, this is either opindex == 0
4598 or all outer rhs2's were equal to corresponding oe->op,
4599 and powi_result is NULL.
4600 That means lhs is equivalent before and after reassociation.
4601 Otherwise ensure the old lhs SSA_NAME is not reused and
4602 create a new stmt as well, so that any debug stmts will be
4603 properly adjusted. */
4604 if (changed)
4606 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
4607 unsigned int uid = gimple_uid (stmt);
4608 gimple *insert_point = find_insert_point (stmt, new_rhs1, oe->op);
4610 lhs = make_ssa_name (TREE_TYPE (lhs));
4611 stmt = gimple_build_assign (lhs, gimple_assign_rhs_code (stmt),
4612 new_rhs1, oe->op);
4613 gimple_set_uid (stmt, uid);
4614 gimple_set_visited (stmt, true);
4615 if (insert_point == gsi_stmt (gsi))
4616 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
4617 else
4618 insert_stmt_after (stmt, insert_point);
4620 else
4622 gcc_checking_assert (find_insert_point (stmt, new_rhs1, oe->op)
4623 == stmt);
4624 gimple_assign_set_rhs1 (stmt, new_rhs1);
4625 gimple_assign_set_rhs2 (stmt, oe->op);
4626 update_stmt (stmt);
4629 if (dump_file && (dump_flags & TDF_DETAILS))
4631 fprintf (dump_file, " into ");
4632 print_gimple_stmt (dump_file, stmt, 0);
4635 return lhs;
4638 /* Find out how many cycles we need to compute statements chain.
4639 OPS_NUM holds number os statements in a chain. CPU_WIDTH is a
4640 maximum number of independent statements we may execute per cycle. */
4642 static int
4643 get_required_cycles (int ops_num, int cpu_width)
4645 int res;
4646 int elog;
4647 unsigned int rest;
4649 /* While we have more than 2 * cpu_width operands
4650 we may reduce number of operands by cpu_width
4651 per cycle. */
4652 res = ops_num / (2 * cpu_width);
4654 /* Remained operands count may be reduced twice per cycle
4655 until we have only one operand. */
4656 rest = (unsigned)(ops_num - res * cpu_width);
4657 elog = exact_log2 (rest);
4658 if (elog >= 0)
4659 res += elog;
4660 else
4661 res += floor_log2 (rest) + 1;
4663 return res;
4666 /* Returns an optimal number of registers to use for computation of
4667 given statements. */
4669 static int
4670 get_reassociation_width (int ops_num, enum tree_code opc,
4671 machine_mode mode)
4673 int param_width = PARAM_VALUE (PARAM_TREE_REASSOC_WIDTH);
4674 int width;
4675 int width_min;
4676 int cycles_best;
4678 if (param_width > 0)
4679 width = param_width;
4680 else
4681 width = targetm.sched.reassociation_width (opc, mode);
4683 if (width == 1)
4684 return width;
4686 /* Get the minimal time required for sequence computation. */
4687 cycles_best = get_required_cycles (ops_num, width);
4689 /* Check if we may use less width and still compute sequence for
4690 the same time. It will allow us to reduce registers usage.
4691 get_required_cycles is monotonically increasing with lower width
4692 so we can perform a binary search for the minimal width that still
4693 results in the optimal cycle count. */
4694 width_min = 1;
4695 while (width > width_min)
4697 int width_mid = (width + width_min) / 2;
4699 if (get_required_cycles (ops_num, width_mid) == cycles_best)
4700 width = width_mid;
4701 else if (width_min < width_mid)
4702 width_min = width_mid;
4703 else
4704 break;
4707 return width;
4710 /* Recursively rewrite our linearized statements so that the operators
4711 match those in OPS[OPINDEX], putting the computation in rank
4712 order and trying to allow operations to be executed in
4713 parallel. */
4715 static void
4716 rewrite_expr_tree_parallel (gassign *stmt, int width,
4717 vec<operand_entry *> ops)
4719 enum tree_code opcode = gimple_assign_rhs_code (stmt);
4720 int op_num = ops.length ();
4721 gcc_assert (op_num > 0);
4722 int stmt_num = op_num - 1;
4723 gimple **stmts = XALLOCAVEC (gimple *, stmt_num);
4724 int op_index = op_num - 1;
4725 int stmt_index = 0;
4726 int ready_stmts_end = 0;
4727 int i = 0;
4728 gimple *stmt1 = NULL, *stmt2 = NULL;
4729 tree last_rhs1 = gimple_assign_rhs1 (stmt);
4731 /* We start expression rewriting from the top statements.
4732 So, in this loop we create a full list of statements
4733 we will work with. */
4734 stmts[stmt_num - 1] = stmt;
4735 for (i = stmt_num - 2; i >= 0; i--)
4736 stmts[i] = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmts[i+1]));
4738 for (i = 0; i < stmt_num; i++)
4740 tree op1, op2;
4742 /* Determine whether we should use results of
4743 already handled statements or not. */
4744 if (ready_stmts_end == 0
4745 && (i - stmt_index >= width || op_index < 1))
4746 ready_stmts_end = i;
4748 /* Now we choose operands for the next statement. Non zero
4749 value in ready_stmts_end means here that we should use
4750 the result of already generated statements as new operand. */
4751 if (ready_stmts_end > 0)
4753 op1 = gimple_assign_lhs (stmts[stmt_index++]);
4754 if (ready_stmts_end > stmt_index)
4755 op2 = gimple_assign_lhs (stmts[stmt_index++]);
4756 else if (op_index >= 0)
4758 operand_entry *oe = ops[op_index--];
4759 stmt2 = oe->stmt_to_insert;
4760 op2 = oe->op;
4762 else
4764 gcc_assert (stmt_index < i);
4765 op2 = gimple_assign_lhs (stmts[stmt_index++]);
4768 if (stmt_index >= ready_stmts_end)
4769 ready_stmts_end = 0;
4771 else
4773 if (op_index > 1)
4774 swap_ops_for_binary_stmt (ops, op_index - 2, NULL);
4775 operand_entry *oe2 = ops[op_index--];
4776 operand_entry *oe1 = ops[op_index--];
4777 op2 = oe2->op;
4778 stmt2 = oe2->stmt_to_insert;
4779 op1 = oe1->op;
4780 stmt1 = oe1->stmt_to_insert;
4783 /* If we emit the last statement then we should put
4784 operands into the last statement. It will also
4785 break the loop. */
4786 if (op_index < 0 && stmt_index == i)
4787 i = stmt_num - 1;
4789 if (dump_file && (dump_flags & TDF_DETAILS))
4791 fprintf (dump_file, "Transforming ");
4792 print_gimple_stmt (dump_file, stmts[i], 0);
4795 /* If the stmt that defines operand has to be inserted, insert it
4796 before the use. */
4797 if (stmt1)
4798 insert_stmt_before_use (stmts[i], stmt1);
4799 if (stmt2)
4800 insert_stmt_before_use (stmts[i], stmt2);
4801 stmt1 = stmt2 = NULL;
4803 /* We keep original statement only for the last one. All
4804 others are recreated. */
4805 if (i == stmt_num - 1)
4807 gimple_assign_set_rhs1 (stmts[i], op1);
4808 gimple_assign_set_rhs2 (stmts[i], op2);
4809 update_stmt (stmts[i]);
4811 else
4813 stmts[i] = build_and_add_sum (TREE_TYPE (last_rhs1), op1, op2, opcode);
4815 if (dump_file && (dump_flags & TDF_DETAILS))
4817 fprintf (dump_file, " into ");
4818 print_gimple_stmt (dump_file, stmts[i], 0);
4822 remove_visited_stmt_chain (last_rhs1);
4825 /* Transform STMT, which is really (A +B) + (C + D) into the left
4826 linear form, ((A+B)+C)+D.
4827 Recurse on D if necessary. */
4829 static void
4830 linearize_expr (gimple *stmt)
4832 gimple_stmt_iterator gsi;
4833 gimple *binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
4834 gimple *binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
4835 gimple *oldbinrhs = binrhs;
4836 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
4837 gimple *newbinrhs = NULL;
4838 struct loop *loop = loop_containing_stmt (stmt);
4839 tree lhs = gimple_assign_lhs (stmt);
4841 gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
4842 && is_reassociable_op (binrhs, rhscode, loop));
4844 gsi = gsi_for_stmt (stmt);
4846 gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
4847 binrhs = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
4848 gimple_assign_rhs_code (binrhs),
4849 gimple_assign_lhs (binlhs),
4850 gimple_assign_rhs2 (binrhs));
4851 gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
4852 gsi_insert_before (&gsi, binrhs, GSI_SAME_STMT);
4853 gimple_set_uid (binrhs, gimple_uid (stmt));
4855 if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
4856 newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
4858 if (dump_file && (dump_flags & TDF_DETAILS))
4860 fprintf (dump_file, "Linearized: ");
4861 print_gimple_stmt (dump_file, stmt, 0);
4864 reassociate_stats.linearized++;
4865 update_stmt (stmt);
4867 gsi = gsi_for_stmt (oldbinrhs);
4868 reassoc_remove_stmt (&gsi);
4869 release_defs (oldbinrhs);
4871 gimple_set_visited (stmt, true);
4872 gimple_set_visited (binlhs, true);
4873 gimple_set_visited (binrhs, true);
4875 /* Tail recurse on the new rhs if it still needs reassociation. */
4876 if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
4877 /* ??? This should probably be linearize_expr (newbinrhs) but I don't
4878 want to change the algorithm while converting to tuples. */
4879 linearize_expr (stmt);
4882 /* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
4883 it. Otherwise, return NULL. */
4885 static gimple *
4886 get_single_immediate_use (tree lhs)
4888 use_operand_p immuse;
4889 gimple *immusestmt;
4891 if (TREE_CODE (lhs) == SSA_NAME
4892 && single_imm_use (lhs, &immuse, &immusestmt)
4893 && is_gimple_assign (immusestmt))
4894 return immusestmt;
4896 return NULL;
4899 /* Recursively negate the value of TONEGATE, and return the SSA_NAME
4900 representing the negated value. Insertions of any necessary
4901 instructions go before GSI.
4902 This function is recursive in that, if you hand it "a_5" as the
4903 value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
4904 transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
4906 static tree
4907 negate_value (tree tonegate, gimple_stmt_iterator *gsip)
4909 gimple *negatedefstmt = NULL;
4910 tree resultofnegate;
4911 gimple_stmt_iterator gsi;
4912 unsigned int uid;
4914 /* If we are trying to negate a name, defined by an add, negate the
4915 add operands instead. */
4916 if (TREE_CODE (tonegate) == SSA_NAME)
4917 negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
4918 if (TREE_CODE (tonegate) == SSA_NAME
4919 && is_gimple_assign (negatedefstmt)
4920 && TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
4921 && has_single_use (gimple_assign_lhs (negatedefstmt))
4922 && gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
4924 tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
4925 tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
4926 tree lhs = gimple_assign_lhs (negatedefstmt);
4927 gimple *g;
4929 gsi = gsi_for_stmt (negatedefstmt);
4930 rhs1 = negate_value (rhs1, &gsi);
4932 gsi = gsi_for_stmt (negatedefstmt);
4933 rhs2 = negate_value (rhs2, &gsi);
4935 gsi = gsi_for_stmt (negatedefstmt);
4936 lhs = make_ssa_name (TREE_TYPE (lhs));
4937 gimple_set_visited (negatedefstmt, true);
4938 g = gimple_build_assign (lhs, PLUS_EXPR, rhs1, rhs2);
4939 gimple_set_uid (g, gimple_uid (negatedefstmt));
4940 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
4941 return lhs;
4944 tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
4945 resultofnegate = force_gimple_operand_gsi (gsip, tonegate, true,
4946 NULL_TREE, true, GSI_SAME_STMT);
4947 gsi = *gsip;
4948 uid = gimple_uid (gsi_stmt (gsi));
4949 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
4951 gimple *stmt = gsi_stmt (gsi);
4952 if (gimple_uid (stmt) != 0)
4953 break;
4954 gimple_set_uid (stmt, uid);
4956 return resultofnegate;
4959 /* Return true if we should break up the subtract in STMT into an add
4960 with negate. This is true when we the subtract operands are really
4961 adds, or the subtract itself is used in an add expression. In
4962 either case, breaking up the subtract into an add with negate
4963 exposes the adds to reassociation. */
4965 static bool
4966 should_break_up_subtract (gimple *stmt)
4968 tree lhs = gimple_assign_lhs (stmt);
4969 tree binlhs = gimple_assign_rhs1 (stmt);
4970 tree binrhs = gimple_assign_rhs2 (stmt);
4971 gimple *immusestmt;
4972 struct loop *loop = loop_containing_stmt (stmt);
4974 if (TREE_CODE (binlhs) == SSA_NAME
4975 && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
4976 return true;
4978 if (TREE_CODE (binrhs) == SSA_NAME
4979 && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
4980 return true;
4982 if (TREE_CODE (lhs) == SSA_NAME
4983 && (immusestmt = get_single_immediate_use (lhs))
4984 && is_gimple_assign (immusestmt)
4985 && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
4986 || (gimple_assign_rhs_code (immusestmt) == MINUS_EXPR
4987 && gimple_assign_rhs1 (immusestmt) == lhs)
4988 || gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
4989 return true;
4990 return false;
4993 /* Transform STMT from A - B into A + -B. */
4995 static void
4996 break_up_subtract (gimple *stmt, gimple_stmt_iterator *gsip)
4998 tree rhs1 = gimple_assign_rhs1 (stmt);
4999 tree rhs2 = gimple_assign_rhs2 (stmt);
5001 if (dump_file && (dump_flags & TDF_DETAILS))
5003 fprintf (dump_file, "Breaking up subtract ");
5004 print_gimple_stmt (dump_file, stmt, 0);
5007 rhs2 = negate_value (rhs2, gsip);
5008 gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
5009 update_stmt (stmt);
5012 /* Determine whether STMT is a builtin call that raises an SSA name
5013 to an integer power and has only one use. If so, and this is early
5014 reassociation and unsafe math optimizations are permitted, place
5015 the SSA name in *BASE and the exponent in *EXPONENT, and return TRUE.
5016 If any of these conditions does not hold, return FALSE. */
5018 static bool
5019 acceptable_pow_call (gcall *stmt, tree *base, HOST_WIDE_INT *exponent)
5021 tree arg1;
5022 REAL_VALUE_TYPE c, cint;
5024 switch (gimple_call_combined_fn (stmt))
5026 CASE_CFN_POW:
5027 if (flag_errno_math)
5028 return false;
5030 *base = gimple_call_arg (stmt, 0);
5031 arg1 = gimple_call_arg (stmt, 1);
5033 if (TREE_CODE (arg1) != REAL_CST)
5034 return false;
5036 c = TREE_REAL_CST (arg1);
5038 if (REAL_EXP (&c) > HOST_BITS_PER_WIDE_INT)
5039 return false;
5041 *exponent = real_to_integer (&c);
5042 real_from_integer (&cint, VOIDmode, *exponent, SIGNED);
5043 if (!real_identical (&c, &cint))
5044 return false;
5046 break;
5048 CASE_CFN_POWI:
5049 *base = gimple_call_arg (stmt, 0);
5050 arg1 = gimple_call_arg (stmt, 1);
5052 if (!tree_fits_shwi_p (arg1))
5053 return false;
5055 *exponent = tree_to_shwi (arg1);
5056 break;
5058 default:
5059 return false;
5062 /* Expanding negative exponents is generally unproductive, so we don't
5063 complicate matters with those. Exponents of zero and one should
5064 have been handled by expression folding. */
5065 if (*exponent < 2 || TREE_CODE (*base) != SSA_NAME)
5066 return false;
5068 return true;
5071 /* Try to derive and add operand entry for OP to *OPS. Return false if
5072 unsuccessful. */
5074 static bool
5075 try_special_add_to_ops (vec<operand_entry *> *ops,
5076 enum tree_code code,
5077 tree op, gimple* def_stmt)
5079 tree base = NULL_TREE;
5080 HOST_WIDE_INT exponent = 0;
5082 if (TREE_CODE (op) != SSA_NAME
5083 || ! has_single_use (op))
5084 return false;
5086 if (code == MULT_EXPR
5087 && reassoc_insert_powi_p
5088 && flag_unsafe_math_optimizations
5089 && is_gimple_call (def_stmt)
5090 && acceptable_pow_call (as_a <gcall *> (def_stmt), &base, &exponent))
5092 add_repeat_to_ops_vec (ops, base, exponent);
5093 gimple_set_visited (def_stmt, true);
5094 return true;
5096 else if (code == MULT_EXPR
5097 && is_gimple_assign (def_stmt)
5098 && gimple_assign_rhs_code (def_stmt) == NEGATE_EXPR
5099 && !HONOR_SNANS (TREE_TYPE (op))
5100 && (!HONOR_SIGNED_ZEROS (TREE_TYPE (op))
5101 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (op))))
5103 tree rhs1 = gimple_assign_rhs1 (def_stmt);
5104 tree cst = build_minus_one_cst (TREE_TYPE (op));
5105 add_to_ops_vec (ops, rhs1);
5106 add_to_ops_vec (ops, cst);
5107 gimple_set_visited (def_stmt, true);
5108 return true;
5111 return false;
5114 /* Recursively linearize a binary expression that is the RHS of STMT.
5115 Place the operands of the expression tree in the vector named OPS. */
5117 static void
5118 linearize_expr_tree (vec<operand_entry *> *ops, gimple *stmt,
5119 bool is_associative, bool set_visited)
5121 tree binlhs = gimple_assign_rhs1 (stmt);
5122 tree binrhs = gimple_assign_rhs2 (stmt);
5123 gimple *binlhsdef = NULL, *binrhsdef = NULL;
5124 bool binlhsisreassoc = false;
5125 bool binrhsisreassoc = false;
5126 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
5127 struct loop *loop = loop_containing_stmt (stmt);
5129 if (set_visited)
5130 gimple_set_visited (stmt, true);
5132 if (TREE_CODE (binlhs) == SSA_NAME)
5134 binlhsdef = SSA_NAME_DEF_STMT (binlhs);
5135 binlhsisreassoc = (is_reassociable_op (binlhsdef, rhscode, loop)
5136 && !stmt_could_throw_p (cfun, binlhsdef));
5139 if (TREE_CODE (binrhs) == SSA_NAME)
5141 binrhsdef = SSA_NAME_DEF_STMT (binrhs);
5142 binrhsisreassoc = (is_reassociable_op (binrhsdef, rhscode, loop)
5143 && !stmt_could_throw_p (cfun, binrhsdef));
5146 /* If the LHS is not reassociable, but the RHS is, we need to swap
5147 them. If neither is reassociable, there is nothing we can do, so
5148 just put them in the ops vector. If the LHS is reassociable,
5149 linearize it. If both are reassociable, then linearize the RHS
5150 and the LHS. */
5152 if (!binlhsisreassoc)
5154 /* If this is not a associative operation like division, give up. */
5155 if (!is_associative)
5157 add_to_ops_vec (ops, binrhs);
5158 return;
5161 if (!binrhsisreassoc)
5163 if (!try_special_add_to_ops (ops, rhscode, binrhs, binrhsdef))
5164 add_to_ops_vec (ops, binrhs);
5166 if (!try_special_add_to_ops (ops, rhscode, binlhs, binlhsdef))
5167 add_to_ops_vec (ops, binlhs);
5169 return;
5172 if (dump_file && (dump_flags & TDF_DETAILS))
5174 fprintf (dump_file, "swapping operands of ");
5175 print_gimple_stmt (dump_file, stmt, 0);
5178 swap_ssa_operands (stmt,
5179 gimple_assign_rhs1_ptr (stmt),
5180 gimple_assign_rhs2_ptr (stmt));
5181 update_stmt (stmt);
5183 if (dump_file && (dump_flags & TDF_DETAILS))
5185 fprintf (dump_file, " is now ");
5186 print_gimple_stmt (dump_file, stmt, 0);
5189 /* We want to make it so the lhs is always the reassociative op,
5190 so swap. */
5191 std::swap (binlhs, binrhs);
5193 else if (binrhsisreassoc)
5195 linearize_expr (stmt);
5196 binlhs = gimple_assign_rhs1 (stmt);
5197 binrhs = gimple_assign_rhs2 (stmt);
5200 gcc_assert (TREE_CODE (binrhs) != SSA_NAME
5201 || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
5202 rhscode, loop));
5203 linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
5204 is_associative, set_visited);
5206 if (!try_special_add_to_ops (ops, rhscode, binrhs, binrhsdef))
5207 add_to_ops_vec (ops, binrhs);
5210 /* Repropagate the negates back into subtracts, since no other pass
5211 currently does it. */
5213 static void
5214 repropagate_negates (void)
5216 unsigned int i = 0;
5217 tree negate;
5219 FOR_EACH_VEC_ELT (plus_negates, i, negate)
5221 gimple *user = get_single_immediate_use (negate);
5223 if (!user || !is_gimple_assign (user))
5224 continue;
5226 /* The negate operand can be either operand of a PLUS_EXPR
5227 (it can be the LHS if the RHS is a constant for example).
5229 Force the negate operand to the RHS of the PLUS_EXPR, then
5230 transform the PLUS_EXPR into a MINUS_EXPR. */
5231 if (gimple_assign_rhs_code (user) == PLUS_EXPR)
5233 /* If the negated operand appears on the LHS of the
5234 PLUS_EXPR, exchange the operands of the PLUS_EXPR
5235 to force the negated operand to the RHS of the PLUS_EXPR. */
5236 if (gimple_assign_rhs1 (user) == negate)
5238 swap_ssa_operands (user,
5239 gimple_assign_rhs1_ptr (user),
5240 gimple_assign_rhs2_ptr (user));
5243 /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
5244 the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
5245 if (gimple_assign_rhs2 (user) == negate)
5247 tree rhs1 = gimple_assign_rhs1 (user);
5248 tree rhs2 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (negate));
5249 gimple_stmt_iterator gsi = gsi_for_stmt (user);
5250 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
5251 update_stmt (user);
5254 else if (gimple_assign_rhs_code (user) == MINUS_EXPR)
5256 if (gimple_assign_rhs1 (user) == negate)
5258 /* We have
5259 x = -a
5260 y = x - b
5261 which we transform into
5262 x = a + b
5263 y = -x .
5264 This pushes down the negate which we possibly can merge
5265 into some other operation, hence insert it into the
5266 plus_negates vector. */
5267 gimple *feed = SSA_NAME_DEF_STMT (negate);
5268 tree a = gimple_assign_rhs1 (feed);
5269 tree b = gimple_assign_rhs2 (user);
5270 gimple_stmt_iterator gsi = gsi_for_stmt (feed);
5271 gimple_stmt_iterator gsi2 = gsi_for_stmt (user);
5272 tree x = make_ssa_name (TREE_TYPE (gimple_assign_lhs (feed)));
5273 gimple *g = gimple_build_assign (x, PLUS_EXPR, a, b);
5274 gsi_insert_before (&gsi2, g, GSI_SAME_STMT);
5275 gimple_assign_set_rhs_with_ops (&gsi2, NEGATE_EXPR, x);
5276 user = gsi_stmt (gsi2);
5277 update_stmt (user);
5278 reassoc_remove_stmt (&gsi);
5279 release_defs (feed);
5280 plus_negates.safe_push (gimple_assign_lhs (user));
5282 else
5284 /* Transform "x = -a; y = b - x" into "y = b + a", getting
5285 rid of one operation. */
5286 gimple *feed = SSA_NAME_DEF_STMT (negate);
5287 tree a = gimple_assign_rhs1 (feed);
5288 tree rhs1 = gimple_assign_rhs1 (user);
5289 gimple_stmt_iterator gsi = gsi_for_stmt (user);
5290 gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, rhs1, a);
5291 update_stmt (gsi_stmt (gsi));
5297 /* Returns true if OP is of a type for which we can do reassociation.
5298 That is for integral or non-saturating fixed-point types, and for
5299 floating point type when associative-math is enabled. */
5301 static bool
5302 can_reassociate_p (tree op)
5304 tree type = TREE_TYPE (op);
5305 if (TREE_CODE (op) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
5306 return false;
5307 if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
5308 || NON_SAT_FIXED_POINT_TYPE_P (type)
5309 || (flag_associative_math && FLOAT_TYPE_P (type)))
5310 return true;
5311 return false;
5314 /* Break up subtract operations in block BB.
5316 We do this top down because we don't know whether the subtract is
5317 part of a possible chain of reassociation except at the top.
5319 IE given
5320 d = f + g
5321 c = a + e
5322 b = c - d
5323 q = b - r
5324 k = t - q
5326 we want to break up k = t - q, but we won't until we've transformed q
5327 = b - r, which won't be broken up until we transform b = c - d.
5329 En passant, clear the GIMPLE visited flag on every statement
5330 and set UIDs within each basic block. */
5332 static void
5333 break_up_subtract_bb (basic_block bb)
5335 gimple_stmt_iterator gsi;
5336 basic_block son;
5337 unsigned int uid = 1;
5339 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5341 gimple *stmt = gsi_stmt (gsi);
5342 gimple_set_visited (stmt, false);
5343 gimple_set_uid (stmt, uid++);
5345 if (!is_gimple_assign (stmt)
5346 || !can_reassociate_p (gimple_assign_lhs (stmt)))
5347 continue;
5349 /* Look for simple gimple subtract operations. */
5350 if (gimple_assign_rhs_code (stmt) == MINUS_EXPR)
5352 if (!can_reassociate_p (gimple_assign_rhs1 (stmt))
5353 || !can_reassociate_p (gimple_assign_rhs2 (stmt)))
5354 continue;
5356 /* Check for a subtract used only in an addition. If this
5357 is the case, transform it into add of a negate for better
5358 reassociation. IE transform C = A-B into C = A + -B if C
5359 is only used in an addition. */
5360 if (should_break_up_subtract (stmt))
5361 break_up_subtract (stmt, &gsi);
5363 else if (gimple_assign_rhs_code (stmt) == NEGATE_EXPR
5364 && can_reassociate_p (gimple_assign_rhs1 (stmt)))
5365 plus_negates.safe_push (gimple_assign_lhs (stmt));
5367 for (son = first_dom_son (CDI_DOMINATORS, bb);
5368 son;
5369 son = next_dom_son (CDI_DOMINATORS, son))
5370 break_up_subtract_bb (son);
5373 /* Used for repeated factor analysis. */
5374 struct repeat_factor
5376 /* An SSA name that occurs in a multiply chain. */
5377 tree factor;
5379 /* Cached rank of the factor. */
5380 unsigned rank;
5382 /* Number of occurrences of the factor in the chain. */
5383 HOST_WIDE_INT count;
5385 /* An SSA name representing the product of this factor and
5386 all factors appearing later in the repeated factor vector. */
5387 tree repr;
5391 static vec<repeat_factor> repeat_factor_vec;
5393 /* Used for sorting the repeat factor vector. Sort primarily by
5394 ascending occurrence count, secondarily by descending rank. */
5396 static int
5397 compare_repeat_factors (const void *x1, const void *x2)
5399 const repeat_factor *rf1 = (const repeat_factor *) x1;
5400 const repeat_factor *rf2 = (const repeat_factor *) x2;
5402 if (rf1->count != rf2->count)
5403 return rf1->count - rf2->count;
5405 return rf2->rank - rf1->rank;
5408 /* Look for repeated operands in OPS in the multiply tree rooted at
5409 STMT. Replace them with an optimal sequence of multiplies and powi
5410 builtin calls, and remove the used operands from OPS. Return an
5411 SSA name representing the value of the replacement sequence. */
5413 static tree
5414 attempt_builtin_powi (gimple *stmt, vec<operand_entry *> *ops)
5416 unsigned i, j, vec_len;
5417 int ii;
5418 operand_entry *oe;
5419 repeat_factor *rf1, *rf2;
5420 repeat_factor rfnew;
5421 tree result = NULL_TREE;
5422 tree target_ssa, iter_result;
5423 tree type = TREE_TYPE (gimple_get_lhs (stmt));
5424 tree powi_fndecl = mathfn_built_in (type, BUILT_IN_POWI);
5425 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
5426 gimple *mul_stmt, *pow_stmt;
5428 /* Nothing to do if BUILT_IN_POWI doesn't exist for this type and
5429 target. */
5430 if (!powi_fndecl)
5431 return NULL_TREE;
5433 /* Allocate the repeated factor vector. */
5434 repeat_factor_vec.create (10);
5436 /* Scan the OPS vector for all SSA names in the product and build
5437 up a vector of occurrence counts for each factor. */
5438 FOR_EACH_VEC_ELT (*ops, i, oe)
5440 if (TREE_CODE (oe->op) == SSA_NAME)
5442 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
5444 if (rf1->factor == oe->op)
5446 rf1->count += oe->count;
5447 break;
5451 if (j >= repeat_factor_vec.length ())
5453 rfnew.factor = oe->op;
5454 rfnew.rank = oe->rank;
5455 rfnew.count = oe->count;
5456 rfnew.repr = NULL_TREE;
5457 repeat_factor_vec.safe_push (rfnew);
5462 /* Sort the repeated factor vector by (a) increasing occurrence count,
5463 and (b) decreasing rank. */
5464 repeat_factor_vec.qsort (compare_repeat_factors);
5466 /* It is generally best to combine as many base factors as possible
5467 into a product before applying __builtin_powi to the result.
5468 However, the sort order chosen for the repeated factor vector
5469 allows us to cache partial results for the product of the base
5470 factors for subsequent use. When we already have a cached partial
5471 result from a previous iteration, it is best to make use of it
5472 before looking for another __builtin_pow opportunity.
5474 As an example, consider x * x * y * y * y * z * z * z * z.
5475 We want to first compose the product x * y * z, raise it to the
5476 second power, then multiply this by y * z, and finally multiply
5477 by z. This can be done in 5 multiplies provided we cache y * z
5478 for use in both expressions:
5480 t1 = y * z
5481 t2 = t1 * x
5482 t3 = t2 * t2
5483 t4 = t1 * t3
5484 result = t4 * z
5486 If we instead ignored the cached y * z and first multiplied by
5487 the __builtin_pow opportunity z * z, we would get the inferior:
5489 t1 = y * z
5490 t2 = t1 * x
5491 t3 = t2 * t2
5492 t4 = z * z
5493 t5 = t3 * t4
5494 result = t5 * y */
5496 vec_len = repeat_factor_vec.length ();
5498 /* Repeatedly look for opportunities to create a builtin_powi call. */
5499 while (true)
5501 HOST_WIDE_INT power;
5503 /* First look for the largest cached product of factors from
5504 preceding iterations. If found, create a builtin_powi for
5505 it if the minimum occurrence count for its factors is at
5506 least 2, or just use this cached product as our next
5507 multiplicand if the minimum occurrence count is 1. */
5508 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
5510 if (rf1->repr && rf1->count > 0)
5511 break;
5514 if (j < vec_len)
5516 power = rf1->count;
5518 if (power == 1)
5520 iter_result = rf1->repr;
5522 if (dump_file && (dump_flags & TDF_DETAILS))
5524 unsigned elt;
5525 repeat_factor *rf;
5526 fputs ("Multiplying by cached product ", dump_file);
5527 for (elt = j; elt < vec_len; elt++)
5529 rf = &repeat_factor_vec[elt];
5530 print_generic_expr (dump_file, rf->factor);
5531 if (elt < vec_len - 1)
5532 fputs (" * ", dump_file);
5534 fputs ("\n", dump_file);
5537 else
5539 iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
5540 pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
5541 build_int_cst (integer_type_node,
5542 power));
5543 gimple_call_set_lhs (pow_stmt, iter_result);
5544 gimple_set_location (pow_stmt, gimple_location (stmt));
5545 gimple_set_uid (pow_stmt, gimple_uid (stmt));
5546 gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
5548 if (dump_file && (dump_flags & TDF_DETAILS))
5550 unsigned elt;
5551 repeat_factor *rf;
5552 fputs ("Building __builtin_pow call for cached product (",
5553 dump_file);
5554 for (elt = j; elt < vec_len; elt++)
5556 rf = &repeat_factor_vec[elt];
5557 print_generic_expr (dump_file, rf->factor);
5558 if (elt < vec_len - 1)
5559 fputs (" * ", dump_file);
5561 fprintf (dump_file, ")^" HOST_WIDE_INT_PRINT_DEC"\n",
5562 power);
5566 else
5568 /* Otherwise, find the first factor in the repeated factor
5569 vector whose occurrence count is at least 2. If no such
5570 factor exists, there are no builtin_powi opportunities
5571 remaining. */
5572 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
5574 if (rf1->count >= 2)
5575 break;
5578 if (j >= vec_len)
5579 break;
5581 power = rf1->count;
5583 if (dump_file && (dump_flags & TDF_DETAILS))
5585 unsigned elt;
5586 repeat_factor *rf;
5587 fputs ("Building __builtin_pow call for (", dump_file);
5588 for (elt = j; elt < vec_len; elt++)
5590 rf = &repeat_factor_vec[elt];
5591 print_generic_expr (dump_file, rf->factor);
5592 if (elt < vec_len - 1)
5593 fputs (" * ", dump_file);
5595 fprintf (dump_file, ")^" HOST_WIDE_INT_PRINT_DEC"\n", power);
5598 reassociate_stats.pows_created++;
5600 /* Visit each element of the vector in reverse order (so that
5601 high-occurrence elements are visited first, and within the
5602 same occurrence count, lower-ranked elements are visited
5603 first). Form a linear product of all elements in this order
5604 whose occurrencce count is at least that of element J.
5605 Record the SSA name representing the product of each element
5606 with all subsequent elements in the vector. */
5607 if (j == vec_len - 1)
5608 rf1->repr = rf1->factor;
5609 else
5611 for (ii = vec_len - 2; ii >= (int)j; ii--)
5613 tree op1, op2;
5615 rf1 = &repeat_factor_vec[ii];
5616 rf2 = &repeat_factor_vec[ii + 1];
5618 /* Init the last factor's representative to be itself. */
5619 if (!rf2->repr)
5620 rf2->repr = rf2->factor;
5622 op1 = rf1->factor;
5623 op2 = rf2->repr;
5625 target_ssa = make_temp_ssa_name (type, NULL, "reassocpow");
5626 mul_stmt = gimple_build_assign (target_ssa, MULT_EXPR,
5627 op1, op2);
5628 gimple_set_location (mul_stmt, gimple_location (stmt));
5629 gimple_set_uid (mul_stmt, gimple_uid (stmt));
5630 gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
5631 rf1->repr = target_ssa;
5633 /* Don't reprocess the multiply we just introduced. */
5634 gimple_set_visited (mul_stmt, true);
5638 /* Form a call to __builtin_powi for the maximum product
5639 just formed, raised to the power obtained earlier. */
5640 rf1 = &repeat_factor_vec[j];
5641 iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
5642 pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
5643 build_int_cst (integer_type_node,
5644 power));
5645 gimple_call_set_lhs (pow_stmt, iter_result);
5646 gimple_set_location (pow_stmt, gimple_location (stmt));
5647 gimple_set_uid (pow_stmt, gimple_uid (stmt));
5648 gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
5651 /* If we previously formed at least one other builtin_powi call,
5652 form the product of this one and those others. */
5653 if (result)
5655 tree new_result = make_temp_ssa_name (type, NULL, "reassocpow");
5656 mul_stmt = gimple_build_assign (new_result, MULT_EXPR,
5657 result, iter_result);
5658 gimple_set_location (mul_stmt, gimple_location (stmt));
5659 gimple_set_uid (mul_stmt, gimple_uid (stmt));
5660 gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
5661 gimple_set_visited (mul_stmt, true);
5662 result = new_result;
5664 else
5665 result = iter_result;
5667 /* Decrement the occurrence count of each element in the product
5668 by the count found above, and remove this many copies of each
5669 factor from OPS. */
5670 for (i = j; i < vec_len; i++)
5672 unsigned k = power;
5673 unsigned n;
5675 rf1 = &repeat_factor_vec[i];
5676 rf1->count -= power;
5678 FOR_EACH_VEC_ELT_REVERSE (*ops, n, oe)
5680 if (oe->op == rf1->factor)
5682 if (oe->count <= k)
5684 ops->ordered_remove (n);
5685 k -= oe->count;
5687 if (k == 0)
5688 break;
5690 else
5692 oe->count -= k;
5693 break;
5700 /* At this point all elements in the repeated factor vector have a
5701 remaining occurrence count of 0 or 1, and those with a count of 1
5702 don't have cached representatives. Re-sort the ops vector and
5703 clean up. */
5704 ops->qsort (sort_by_operand_rank);
5705 repeat_factor_vec.release ();
5707 /* Return the final product computed herein. Note that there may
5708 still be some elements with single occurrence count left in OPS;
5709 those will be handled by the normal reassociation logic. */
5710 return result;
5713 /* Attempt to optimize
5714 CST1 * copysign (CST2, y) -> copysign (CST1 * CST2, y) if CST1 > 0, or
5715 CST1 * copysign (CST2, y) -> -copysign (CST1 * CST2, y) if CST1 < 0. */
5717 static void
5718 attempt_builtin_copysign (vec<operand_entry *> *ops)
5720 operand_entry *oe;
5721 unsigned int i;
5722 unsigned int length = ops->length ();
5723 tree cst = ops->last ()->op;
5725 if (length == 1 || TREE_CODE (cst) != REAL_CST)
5726 return;
5728 FOR_EACH_VEC_ELT (*ops, i, oe)
5730 if (TREE_CODE (oe->op) == SSA_NAME
5731 && has_single_use (oe->op))
5733 gimple *def_stmt = SSA_NAME_DEF_STMT (oe->op);
5734 if (gcall *old_call = dyn_cast <gcall *> (def_stmt))
5736 tree arg0, arg1;
5737 switch (gimple_call_combined_fn (old_call))
5739 CASE_CFN_COPYSIGN:
5740 CASE_CFN_COPYSIGN_FN:
5741 arg0 = gimple_call_arg (old_call, 0);
5742 arg1 = gimple_call_arg (old_call, 1);
5743 /* The first argument of copysign must be a constant,
5744 otherwise there's nothing to do. */
5745 if (TREE_CODE (arg0) == REAL_CST)
5747 tree type = TREE_TYPE (arg0);
5748 tree mul = const_binop (MULT_EXPR, type, cst, arg0);
5749 /* If we couldn't fold to a single constant, skip it.
5750 That happens e.g. for inexact multiplication when
5751 -frounding-math. */
5752 if (mul == NULL_TREE)
5753 break;
5754 /* Instead of adjusting OLD_CALL, let's build a new
5755 call to not leak the LHS and prevent keeping bogus
5756 debug statements. DCE will clean up the old call. */
5757 gcall *new_call;
5758 if (gimple_call_internal_p (old_call))
5759 new_call = gimple_build_call_internal
5760 (IFN_COPYSIGN, 2, mul, arg1);
5761 else
5762 new_call = gimple_build_call
5763 (gimple_call_fndecl (old_call), 2, mul, arg1);
5764 tree lhs = make_ssa_name (type);
5765 gimple_call_set_lhs (new_call, lhs);
5766 gimple_set_location (new_call,
5767 gimple_location (old_call));
5768 insert_stmt_after (new_call, old_call);
5769 /* We've used the constant, get rid of it. */
5770 ops->pop ();
5771 bool cst1_neg = real_isneg (TREE_REAL_CST_PTR (cst));
5772 /* Handle the CST1 < 0 case by negating the result. */
5773 if (cst1_neg)
5775 tree negrhs = make_ssa_name (TREE_TYPE (lhs));
5776 gimple *negate_stmt
5777 = gimple_build_assign (negrhs, NEGATE_EXPR, lhs);
5778 insert_stmt_after (negate_stmt, new_call);
5779 oe->op = negrhs;
5781 else
5782 oe->op = lhs;
5783 if (dump_file && (dump_flags & TDF_DETAILS))
5785 fprintf (dump_file, "Optimizing copysign: ");
5786 print_generic_expr (dump_file, cst);
5787 fprintf (dump_file, " * COPYSIGN (");
5788 print_generic_expr (dump_file, arg0);
5789 fprintf (dump_file, ", ");
5790 print_generic_expr (dump_file, arg1);
5791 fprintf (dump_file, ") into %sCOPYSIGN (",
5792 cst1_neg ? "-" : "");
5793 print_generic_expr (dump_file, mul);
5794 fprintf (dump_file, ", ");
5795 print_generic_expr (dump_file, arg1);
5796 fprintf (dump_file, "\n");
5798 return;
5800 break;
5801 default:
5802 break;
5809 /* Transform STMT at *GSI into a copy by replacing its rhs with NEW_RHS. */
5811 static void
5812 transform_stmt_to_copy (gimple_stmt_iterator *gsi, gimple *stmt, tree new_rhs)
5814 tree rhs1;
5816 if (dump_file && (dump_flags & TDF_DETAILS))
5818 fprintf (dump_file, "Transforming ");
5819 print_gimple_stmt (dump_file, stmt, 0);
5822 rhs1 = gimple_assign_rhs1 (stmt);
5823 gimple_assign_set_rhs_from_tree (gsi, new_rhs);
5824 update_stmt (stmt);
5825 remove_visited_stmt_chain (rhs1);
5827 if (dump_file && (dump_flags & TDF_DETAILS))
5829 fprintf (dump_file, " into ");
5830 print_gimple_stmt (dump_file, stmt, 0);
5834 /* Transform STMT at *GSI into a multiply of RHS1 and RHS2. */
5836 static void
5837 transform_stmt_to_multiply (gimple_stmt_iterator *gsi, gimple *stmt,
5838 tree rhs1, tree rhs2)
5840 if (dump_file && (dump_flags & TDF_DETAILS))
5842 fprintf (dump_file, "Transforming ");
5843 print_gimple_stmt (dump_file, stmt, 0);
5846 gimple_assign_set_rhs_with_ops (gsi, MULT_EXPR, rhs1, rhs2);
5847 update_stmt (gsi_stmt (*gsi));
5848 remove_visited_stmt_chain (rhs1);
5850 if (dump_file && (dump_flags & TDF_DETAILS))
5852 fprintf (dump_file, " into ");
5853 print_gimple_stmt (dump_file, stmt, 0);
5857 /* Reassociate expressions in basic block BB and its post-dominator as
5858 children.
5860 Bubble up return status from maybe_optimize_range_tests. */
5862 static bool
5863 reassociate_bb (basic_block bb)
5865 gimple_stmt_iterator gsi;
5866 basic_block son;
5867 gimple *stmt = last_stmt (bb);
5868 bool cfg_cleanup_needed = false;
5870 if (stmt && !gimple_visited_p (stmt))
5871 cfg_cleanup_needed |= maybe_optimize_range_tests (stmt);
5873 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
5875 stmt = gsi_stmt (gsi);
5877 if (is_gimple_assign (stmt)
5878 && !stmt_could_throw_p (cfun, stmt))
5880 tree lhs, rhs1, rhs2;
5881 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
5883 /* If this is not a gimple binary expression, there is
5884 nothing for us to do with it. */
5885 if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
5886 continue;
5888 /* If this was part of an already processed statement,
5889 we don't need to touch it again. */
5890 if (gimple_visited_p (stmt))
5892 /* This statement might have become dead because of previous
5893 reassociations. */
5894 if (has_zero_uses (gimple_get_lhs (stmt)))
5896 reassoc_remove_stmt (&gsi);
5897 release_defs (stmt);
5898 /* We might end up removing the last stmt above which
5899 places the iterator to the end of the sequence.
5900 Reset it to the last stmt in this case which might
5901 be the end of the sequence as well if we removed
5902 the last statement of the sequence. In which case
5903 we need to bail out. */
5904 if (gsi_end_p (gsi))
5906 gsi = gsi_last_bb (bb);
5907 if (gsi_end_p (gsi))
5908 break;
5911 continue;
5914 lhs = gimple_assign_lhs (stmt);
5915 rhs1 = gimple_assign_rhs1 (stmt);
5916 rhs2 = gimple_assign_rhs2 (stmt);
5918 /* For non-bit or min/max operations we can't associate
5919 all types. Verify that here. */
5920 if (rhs_code != BIT_IOR_EXPR
5921 && rhs_code != BIT_AND_EXPR
5922 && rhs_code != BIT_XOR_EXPR
5923 && rhs_code != MIN_EXPR
5924 && rhs_code != MAX_EXPR
5925 && (!can_reassociate_p (lhs)
5926 || !can_reassociate_p (rhs1)
5927 || !can_reassociate_p (rhs2)))
5928 continue;
5930 if (associative_tree_code (rhs_code))
5932 auto_vec<operand_entry *> ops;
5933 tree powi_result = NULL_TREE;
5934 bool is_vector = VECTOR_TYPE_P (TREE_TYPE (lhs));
5936 /* There may be no immediate uses left by the time we
5937 get here because we may have eliminated them all. */
5938 if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
5939 continue;
5941 gimple_set_visited (stmt, true);
5942 linearize_expr_tree (&ops, stmt, true, true);
5943 ops.qsort (sort_by_operand_rank);
5944 int orig_len = ops.length ();
5945 optimize_ops_list (rhs_code, &ops);
5946 if (undistribute_ops_list (rhs_code, &ops,
5947 loop_containing_stmt (stmt)))
5949 ops.qsort (sort_by_operand_rank);
5950 optimize_ops_list (rhs_code, &ops);
5953 if (rhs_code == PLUS_EXPR
5954 && transform_add_to_multiply (&ops))
5955 ops.qsort (sort_by_operand_rank);
5957 if (rhs_code == BIT_IOR_EXPR || rhs_code == BIT_AND_EXPR)
5959 if (is_vector)
5960 optimize_vec_cond_expr (rhs_code, &ops);
5961 else
5962 optimize_range_tests (rhs_code, &ops, NULL);
5965 if (rhs_code == MULT_EXPR && !is_vector)
5967 attempt_builtin_copysign (&ops);
5969 if (reassoc_insert_powi_p
5970 && flag_unsafe_math_optimizations)
5971 powi_result = attempt_builtin_powi (stmt, &ops);
5974 operand_entry *last;
5975 bool negate_result = false;
5976 if (ops.length () > 1
5977 && rhs_code == MULT_EXPR)
5979 last = ops.last ();
5980 if ((integer_minus_onep (last->op)
5981 || real_minus_onep (last->op))
5982 && !HONOR_SNANS (TREE_TYPE (lhs))
5983 && (!HONOR_SIGNED_ZEROS (TREE_TYPE (lhs))
5984 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (lhs))))
5986 ops.pop ();
5987 negate_result = true;
5991 tree new_lhs = lhs;
5992 /* If the operand vector is now empty, all operands were
5993 consumed by the __builtin_powi optimization. */
5994 if (ops.length () == 0)
5995 transform_stmt_to_copy (&gsi, stmt, powi_result);
5996 else if (ops.length () == 1)
5998 tree last_op = ops.last ()->op;
6000 /* If the stmt that defines operand has to be inserted, insert it
6001 before the use. */
6002 if (ops.last ()->stmt_to_insert)
6003 insert_stmt_before_use (stmt, ops.last ()->stmt_to_insert);
6004 if (powi_result)
6005 transform_stmt_to_multiply (&gsi, stmt, last_op,
6006 powi_result);
6007 else
6008 transform_stmt_to_copy (&gsi, stmt, last_op);
6010 else
6012 machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
6013 int ops_num = ops.length ();
6014 int width = get_reassociation_width (ops_num, rhs_code, mode);
6016 if (dump_file && (dump_flags & TDF_DETAILS))
6017 fprintf (dump_file,
6018 "Width = %d was chosen for reassociation\n", width);
6021 /* For binary bit operations, if there are at least 3
6022 operands and the last last operand in OPS is a constant,
6023 move it to the front. This helps ensure that we generate
6024 (X & Y) & C rather than (X & C) & Y. The former will
6025 often match a canonical bit test when we get to RTL. */
6026 if (ops.length () > 2
6027 && (rhs_code == BIT_AND_EXPR
6028 || rhs_code == BIT_IOR_EXPR
6029 || rhs_code == BIT_XOR_EXPR)
6030 && TREE_CODE (ops.last ()->op) == INTEGER_CST)
6031 std::swap (*ops[0], *ops[ops_num - 1]);
6033 if (width > 1
6034 && ops.length () > 3)
6035 rewrite_expr_tree_parallel (as_a <gassign *> (stmt),
6036 width, ops);
6037 else
6039 /* When there are three operands left, we want
6040 to make sure the ones that get the double
6041 binary op are chosen wisely. */
6042 int len = ops.length ();
6043 if (len >= 3)
6044 swap_ops_for_binary_stmt (ops, len - 3, stmt);
6046 new_lhs = rewrite_expr_tree (stmt, 0, ops,
6047 powi_result != NULL
6048 || negate_result,
6049 len != orig_len);
6052 /* If we combined some repeated factors into a
6053 __builtin_powi call, multiply that result by the
6054 reassociated operands. */
6055 if (powi_result)
6057 gimple *mul_stmt, *lhs_stmt = SSA_NAME_DEF_STMT (lhs);
6058 tree type = TREE_TYPE (lhs);
6059 tree target_ssa = make_temp_ssa_name (type, NULL,
6060 "reassocpow");
6061 gimple_set_lhs (lhs_stmt, target_ssa);
6062 update_stmt (lhs_stmt);
6063 if (lhs != new_lhs)
6065 target_ssa = new_lhs;
6066 new_lhs = lhs;
6068 mul_stmt = gimple_build_assign (lhs, MULT_EXPR,
6069 powi_result, target_ssa);
6070 gimple_set_location (mul_stmt, gimple_location (stmt));
6071 gimple_set_uid (mul_stmt, gimple_uid (stmt));
6072 gsi_insert_after (&gsi, mul_stmt, GSI_NEW_STMT);
6076 if (negate_result)
6078 stmt = SSA_NAME_DEF_STMT (lhs);
6079 tree tmp = make_ssa_name (TREE_TYPE (lhs));
6080 gimple_set_lhs (stmt, tmp);
6081 if (lhs != new_lhs)
6082 tmp = new_lhs;
6083 gassign *neg_stmt = gimple_build_assign (lhs, NEGATE_EXPR,
6084 tmp);
6085 gimple_set_uid (neg_stmt, gimple_uid (stmt));
6086 gsi_insert_after (&gsi, neg_stmt, GSI_NEW_STMT);
6087 update_stmt (stmt);
6092 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
6093 son;
6094 son = next_dom_son (CDI_POST_DOMINATORS, son))
6095 cfg_cleanup_needed |= reassociate_bb (son);
6097 return cfg_cleanup_needed;
6100 /* Add jumps around shifts for range tests turned into bit tests.
6101 For each SSA_NAME VAR we have code like:
6102 VAR = ...; // final stmt of range comparison
6103 // bit test here...;
6104 OTHERVAR = ...; // final stmt of the bit test sequence
6105 RES = VAR | OTHERVAR;
6106 Turn the above into:
6107 VAR = ...;
6108 if (VAR != 0)
6109 goto <l3>;
6110 else
6111 goto <l2>;
6112 <l2>:
6113 // bit test here...;
6114 OTHERVAR = ...;
6115 <l3>:
6116 # RES = PHI<1(l1), OTHERVAR(l2)>; */
6118 static void
6119 branch_fixup (void)
6121 tree var;
6122 unsigned int i;
6124 FOR_EACH_VEC_ELT (reassoc_branch_fixups, i, var)
6126 gimple *def_stmt = SSA_NAME_DEF_STMT (var);
6127 gimple *use_stmt;
6128 use_operand_p use;
6129 bool ok = single_imm_use (var, &use, &use_stmt);
6130 gcc_assert (ok
6131 && is_gimple_assign (use_stmt)
6132 && gimple_assign_rhs_code (use_stmt) == BIT_IOR_EXPR
6133 && gimple_bb (def_stmt) == gimple_bb (use_stmt));
6135 basic_block cond_bb = gimple_bb (def_stmt);
6136 basic_block then_bb = split_block (cond_bb, def_stmt)->dest;
6137 basic_block merge_bb = split_block (then_bb, use_stmt)->dest;
6139 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
6140 gimple *g = gimple_build_cond (NE_EXPR, var,
6141 build_zero_cst (TREE_TYPE (var)),
6142 NULL_TREE, NULL_TREE);
6143 location_t loc = gimple_location (use_stmt);
6144 gimple_set_location (g, loc);
6145 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
6147 edge etrue = make_edge (cond_bb, merge_bb, EDGE_TRUE_VALUE);
6148 etrue->probability = profile_probability::even ();
6149 edge efalse = find_edge (cond_bb, then_bb);
6150 efalse->flags = EDGE_FALSE_VALUE;
6151 efalse->probability -= etrue->probability;
6152 then_bb->count -= etrue->count ();
6154 tree othervar = NULL_TREE;
6155 if (gimple_assign_rhs1 (use_stmt) == var)
6156 othervar = gimple_assign_rhs2 (use_stmt);
6157 else if (gimple_assign_rhs2 (use_stmt) == var)
6158 othervar = gimple_assign_rhs1 (use_stmt);
6159 else
6160 gcc_unreachable ();
6161 tree lhs = gimple_assign_lhs (use_stmt);
6162 gphi *phi = create_phi_node (lhs, merge_bb);
6163 add_phi_arg (phi, build_one_cst (TREE_TYPE (lhs)), etrue, loc);
6164 add_phi_arg (phi, othervar, single_succ_edge (then_bb), loc);
6165 gsi = gsi_for_stmt (use_stmt);
6166 gsi_remove (&gsi, true);
6168 set_immediate_dominator (CDI_DOMINATORS, merge_bb, cond_bb);
6169 set_immediate_dominator (CDI_POST_DOMINATORS, cond_bb, merge_bb);
6171 reassoc_branch_fixups.release ();
6174 void dump_ops_vector (FILE *file, vec<operand_entry *> ops);
6175 void debug_ops_vector (vec<operand_entry *> ops);
6177 /* Dump the operand entry vector OPS to FILE. */
6179 void
6180 dump_ops_vector (FILE *file, vec<operand_entry *> ops)
6182 operand_entry *oe;
6183 unsigned int i;
6185 FOR_EACH_VEC_ELT (ops, i, oe)
6187 fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
6188 print_generic_expr (file, oe->op);
6189 fprintf (file, "\n");
6193 /* Dump the operand entry vector OPS to STDERR. */
6195 DEBUG_FUNCTION void
6196 debug_ops_vector (vec<operand_entry *> ops)
6198 dump_ops_vector (stderr, ops);
6201 /* Bubble up return status from reassociate_bb. */
6203 static bool
6204 do_reassoc (void)
6206 break_up_subtract_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6207 return reassociate_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6210 /* Initialize the reassociation pass. */
6212 static void
6213 init_reassoc (void)
6215 int i;
6216 long rank = 2;
6217 int *bbs = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6219 /* Find the loops, so that we can prevent moving calculations in
6220 them. */
6221 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
6223 memset (&reassociate_stats, 0, sizeof (reassociate_stats));
6225 next_operand_entry_id = 0;
6227 /* Reverse RPO (Reverse Post Order) will give us something where
6228 deeper loops come later. */
6229 pre_and_rev_post_order_compute (NULL, bbs, false);
6230 bb_rank = XCNEWVEC (long, last_basic_block_for_fn (cfun));
6231 operand_rank = new hash_map<tree, long>;
6233 /* Give each default definition a distinct rank. This includes
6234 parameters and the static chain. Walk backwards over all
6235 SSA names so that we get proper rank ordering according
6236 to tree_swap_operands_p. */
6237 for (i = num_ssa_names - 1; i > 0; --i)
6239 tree name = ssa_name (i);
6240 if (name && SSA_NAME_IS_DEFAULT_DEF (name))
6241 insert_operand_rank (name, ++rank);
6244 /* Set up rank for each BB */
6245 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6246 bb_rank[bbs[i]] = ++rank << 16;
6248 free (bbs);
6249 calculate_dominance_info (CDI_POST_DOMINATORS);
6250 plus_negates = vNULL;
6253 /* Cleanup after the reassociation pass, and print stats if
6254 requested. */
6256 static void
6257 fini_reassoc (void)
6259 statistics_counter_event (cfun, "Linearized",
6260 reassociate_stats.linearized);
6261 statistics_counter_event (cfun, "Constants eliminated",
6262 reassociate_stats.constants_eliminated);
6263 statistics_counter_event (cfun, "Ops eliminated",
6264 reassociate_stats.ops_eliminated);
6265 statistics_counter_event (cfun, "Statements rewritten",
6266 reassociate_stats.rewritten);
6267 statistics_counter_event (cfun, "Built-in pow[i] calls encountered",
6268 reassociate_stats.pows_encountered);
6269 statistics_counter_event (cfun, "Built-in powi calls created",
6270 reassociate_stats.pows_created);
6272 delete operand_rank;
6273 operand_entry_pool.release ();
6274 free (bb_rank);
6275 plus_negates.release ();
6276 free_dominance_info (CDI_POST_DOMINATORS);
6277 loop_optimizer_finalize ();
6280 /* Gate and execute functions for Reassociation. If INSERT_POWI_P, enable
6281 insertion of __builtin_powi calls.
6283 Returns TODO_cfg_cleanup if a CFG cleanup pass is desired due to
6284 optimization of a gimple conditional. Otherwise returns zero. */
6286 static unsigned int
6287 execute_reassoc (bool insert_powi_p)
6289 reassoc_insert_powi_p = insert_powi_p;
6291 init_reassoc ();
6293 bool cfg_cleanup_needed;
6294 cfg_cleanup_needed = do_reassoc ();
6295 repropagate_negates ();
6296 branch_fixup ();
6298 fini_reassoc ();
6299 return cfg_cleanup_needed ? TODO_cleanup_cfg : 0;
6302 namespace {
6304 const pass_data pass_data_reassoc =
6306 GIMPLE_PASS, /* type */
6307 "reassoc", /* name */
6308 OPTGROUP_NONE, /* optinfo_flags */
6309 TV_TREE_REASSOC, /* tv_id */
6310 ( PROP_cfg | PROP_ssa ), /* properties_required */
6311 0, /* properties_provided */
6312 0, /* properties_destroyed */
6313 0, /* todo_flags_start */
6314 TODO_update_ssa_only_virtuals, /* todo_flags_finish */
6317 class pass_reassoc : public gimple_opt_pass
6319 public:
6320 pass_reassoc (gcc::context *ctxt)
6321 : gimple_opt_pass (pass_data_reassoc, ctxt), insert_powi_p (false)
6324 /* opt_pass methods: */
6325 opt_pass * clone () { return new pass_reassoc (m_ctxt); }
6326 void set_pass_param (unsigned int n, bool param)
6328 gcc_assert (n == 0);
6329 insert_powi_p = param;
6331 virtual bool gate (function *) { return flag_tree_reassoc != 0; }
6332 virtual unsigned int execute (function *)
6333 { return execute_reassoc (insert_powi_p); }
6335 private:
6336 /* Enable insertion of __builtin_powi calls during execute_reassoc. See
6337 point 3a in the pass header comment. */
6338 bool insert_powi_p;
6339 }; // class pass_reassoc
6341 } // anon namespace
6343 gimple_opt_pass *
6344 make_pass_reassoc (gcc::context *ctxt)
6346 return new pass_reassoc (ctxt);