PR rtl-optimization/88470
[official-gcc.git] / gcc / mode-switching.c
blob589fbeb07425f2c9ef1eb1201cdff1277b4a49d8
1 /* CPU mode switching
2 Copyright (C) 1998-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "cfghooks.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "cfgrtl.h"
33 #include "cfganal.h"
34 #include "lcm.h"
35 #include "cfgcleanup.h"
36 #include "tree-pass.h"
38 /* We want target macros for the mode switching code to be able to refer
39 to instruction attribute values. */
40 #include "insn-attr.h"
42 #ifdef OPTIMIZE_MODE_SWITCHING
44 /* The algorithm for setting the modes consists of scanning the insn list
45 and finding all the insns which require a specific mode. Each insn gets
46 a unique struct seginfo element. These structures are inserted into a list
47 for each basic block. For each entity, there is an array of bb_info over
48 the flow graph basic blocks (local var 'bb_info'), which contains a list
49 of all insns within that basic block, in the order they are encountered.
51 For each entity, any basic block WITHOUT any insns requiring a specific
52 mode are given a single entry without a mode (each basic block in the
53 flow graph must have at least one entry in the segment table).
55 The LCM algorithm is then run over the flow graph to determine where to
56 place the sets to the highest-priority mode with respect to the first
57 insn in any one block. Any adjustments required to the transparency
58 vectors are made, then the next iteration starts for the next-lower
59 priority mode, till for each entity all modes are exhausted.
61 More details can be found in the code of optimize_mode_switching. */
63 /* This structure contains the information for each insn which requires
64 either single or double mode to be set.
65 MODE is the mode this insn must be executed in.
66 INSN_PTR is the insn to be executed (may be the note that marks the
67 beginning of a basic block).
68 BBNUM is the flow graph basic block this insn occurs in.
69 NEXT is the next insn in the same basic block. */
70 struct seginfo
72 int mode;
73 rtx_insn *insn_ptr;
74 int bbnum;
75 struct seginfo *next;
76 HARD_REG_SET regs_live;
79 struct bb_info
81 struct seginfo *seginfo;
82 int computing;
83 int mode_out;
84 int mode_in;
87 static struct seginfo * new_seginfo (int, rtx_insn *, int, HARD_REG_SET);
88 static void add_seginfo (struct bb_info *, struct seginfo *);
89 static void reg_dies (rtx, HARD_REG_SET *);
90 static void reg_becomes_live (rtx, const_rtx, void *);
92 /* Clear ode I from entity J in bitmap B. */
93 #define clear_mode_bit(b, j, i) \
94 bitmap_clear_bit (b, (j * max_num_modes) + i)
96 /* Test mode I from entity J in bitmap B. */
97 #define mode_bit_p(b, j, i) \
98 bitmap_bit_p (b, (j * max_num_modes) + i)
100 /* Set mode I from entity J in bitmal B. */
101 #define set_mode_bit(b, j, i) \
102 bitmap_set_bit (b, (j * max_num_modes) + i)
104 /* Emit modes segments from EDGE_LIST associated with entity E.
105 INFO gives mode availability for each mode. */
107 static bool
108 commit_mode_sets (struct edge_list *edge_list, int e, struct bb_info *info)
110 bool need_commit = false;
112 for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
114 edge eg = INDEX_EDGE (edge_list, ed);
115 int mode;
117 if ((mode = (int)(intptr_t)(eg->aux)) != -1)
119 HARD_REG_SET live_at_edge;
120 basic_block src_bb = eg->src;
121 int cur_mode = info[src_bb->index].mode_out;
122 rtx_insn *mode_set;
124 REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));
126 rtl_profile_for_edge (eg);
127 start_sequence ();
129 targetm.mode_switching.emit (e, mode, cur_mode, live_at_edge);
131 mode_set = get_insns ();
132 end_sequence ();
133 default_rtl_profile ();
135 /* Do not bother to insert empty sequence. */
136 if (mode_set == NULL)
137 continue;
139 /* We should not get an abnormal edge here. */
140 gcc_assert (! (eg->flags & EDGE_ABNORMAL));
142 need_commit = true;
143 insert_insn_on_edge (mode_set, eg);
147 return need_commit;
150 /* Allocate a new BBINFO structure, initialized with the MODE, INSN,
151 and basic block BB parameters.
152 INSN may not be a NOTE_INSN_BASIC_BLOCK, unless it is an empty
153 basic block; that allows us later to insert instructions in a FIFO-like
154 manner. */
156 static struct seginfo *
157 new_seginfo (int mode, rtx_insn *insn, int bb, HARD_REG_SET regs_live)
159 struct seginfo *ptr;
161 gcc_assert (!NOTE_INSN_BASIC_BLOCK_P (insn)
162 || insn == BB_END (NOTE_BASIC_BLOCK (insn)));
163 ptr = XNEW (struct seginfo);
164 ptr->mode = mode;
165 ptr->insn_ptr = insn;
166 ptr->bbnum = bb;
167 ptr->next = NULL;
168 COPY_HARD_REG_SET (ptr->regs_live, regs_live);
169 return ptr;
172 /* Add a seginfo element to the end of a list.
173 HEAD is a pointer to the list beginning.
174 INFO is the structure to be linked in. */
176 static void
177 add_seginfo (struct bb_info *head, struct seginfo *info)
179 struct seginfo *ptr;
181 if (head->seginfo == NULL)
182 head->seginfo = info;
183 else
185 ptr = head->seginfo;
186 while (ptr->next != NULL)
187 ptr = ptr->next;
188 ptr->next = info;
192 /* Record in LIVE that register REG died. */
194 static void
195 reg_dies (rtx reg, HARD_REG_SET *live)
197 int regno;
199 if (!REG_P (reg))
200 return;
202 regno = REGNO (reg);
203 if (regno < FIRST_PSEUDO_REGISTER)
204 remove_from_hard_reg_set (live, GET_MODE (reg), regno);
207 /* Record in LIVE that register REG became live.
208 This is called via note_stores. */
210 static void
211 reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
213 int regno;
215 if (GET_CODE (reg) == SUBREG)
216 reg = SUBREG_REG (reg);
218 if (!REG_P (reg))
219 return;
221 regno = REGNO (reg);
222 if (regno < FIRST_PSEUDO_REGISTER)
223 add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
226 /* Split the fallthrough edge to the exit block, so that we can note
227 that there NORMAL_MODE is required. Return the new block if it's
228 inserted before the exit block. Otherwise return null. */
230 static basic_block
231 create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
233 edge eg;
234 edge_iterator ei;
235 basic_block pre_exit;
237 /* The only non-call predecessor at this stage is a block with a
238 fallthrough edge; there can be at most one, but there could be
239 none at all, e.g. when exit is called. */
240 pre_exit = 0;
241 FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
242 if (eg->flags & EDGE_FALLTHRU)
244 basic_block src_bb = eg->src;
245 rtx_insn *last_insn;
246 rtx ret_reg;
248 gcc_assert (!pre_exit);
249 /* If this function returns a value at the end, we have to
250 insert the final mode switch before the return value copy
251 to its hard register.
253 x86 targets use mode-switching infrastructure to
254 conditionally insert vzeroupper instruction at the exit
255 from the function where there is no need to switch the
256 mode before the return value copy. The vzeroupper insertion
257 pass runs after reload, so use !reload_completed as a stand-in
258 for x86 to skip the search for the return value copy insn.
260 N.b.: the code below assumes that the return copy insn
261 immediately precedes its corresponding use insn. This
262 assumption does not hold after reload, since sched1 pass
263 can schedule the return copy insn away from its
264 corresponding use insn. */
265 if (!reload_completed
266 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 1
267 && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
268 && GET_CODE (PATTERN (last_insn)) == USE
269 && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
271 int ret_start = REGNO (ret_reg);
272 int nregs = REG_NREGS (ret_reg);
273 int ret_end = ret_start + nregs;
274 bool short_block = false;
275 bool multi_reg_return = false;
276 bool forced_late_switch = false;
277 rtx_insn *before_return_copy;
281 rtx_insn *return_copy = PREV_INSN (last_insn);
282 rtx return_copy_pat, copy_reg;
283 int copy_start, copy_num;
284 int j;
286 if (NONDEBUG_INSN_P (return_copy))
288 /* When using SJLJ exceptions, the call to the
289 unregister function is inserted between the
290 clobber of the return value and the copy.
291 We do not want to split the block before this
292 or any other call; if we have not found the
293 copy yet, the copy must have been deleted. */
294 if (CALL_P (return_copy))
296 short_block = true;
297 break;
299 return_copy_pat = PATTERN (return_copy);
300 switch (GET_CODE (return_copy_pat))
302 case USE:
303 /* Skip USEs of multiple return registers.
304 __builtin_apply pattern is also handled here. */
305 if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
306 && (targetm.calls.function_value_regno_p
307 (REGNO (XEXP (return_copy_pat, 0)))))
309 multi_reg_return = true;
310 last_insn = return_copy;
311 continue;
313 break;
315 case ASM_OPERANDS:
316 /* Skip barrier insns. */
317 if (!MEM_VOLATILE_P (return_copy_pat))
318 break;
320 /* Fall through. */
322 case ASM_INPUT:
323 case UNSPEC_VOLATILE:
324 last_insn = return_copy;
325 continue;
327 default:
328 break;
331 /* If the return register is not (in its entirety)
332 likely spilled, the return copy might be
333 partially or completely optimized away. */
334 return_copy_pat = single_set (return_copy);
335 if (!return_copy_pat)
337 return_copy_pat = PATTERN (return_copy);
338 if (GET_CODE (return_copy_pat) != CLOBBER)
339 break;
340 else if (!optimize)
342 /* This might be (clobber (reg [<result>]))
343 when not optimizing. Then check if
344 the previous insn is the clobber for
345 the return register. */
346 copy_reg = SET_DEST (return_copy_pat);
347 if (GET_CODE (copy_reg) == REG
348 && !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
350 if (INSN_P (PREV_INSN (return_copy)))
352 return_copy = PREV_INSN (return_copy);
353 return_copy_pat = PATTERN (return_copy);
354 if (GET_CODE (return_copy_pat) != CLOBBER)
355 break;
360 copy_reg = SET_DEST (return_copy_pat);
361 if (GET_CODE (copy_reg) == REG)
362 copy_start = REGNO (copy_reg);
363 else if (GET_CODE (copy_reg) == SUBREG
364 && GET_CODE (SUBREG_REG (copy_reg)) == REG)
365 copy_start = REGNO (SUBREG_REG (copy_reg));
366 else
368 /* When control reaches end of non-void function,
369 there are no return copy insns at all. This
370 avoids an ice on that invalid function. */
371 if (ret_start + nregs == ret_end)
372 short_block = true;
373 break;
375 if (!targetm.calls.function_value_regno_p (copy_start))
376 copy_num = 0;
377 else
378 copy_num = hard_regno_nregs (copy_start,
379 GET_MODE (copy_reg));
381 /* If the return register is not likely spilled, - as is
382 the case for floating point on SH4 - then it might
383 be set by an arithmetic operation that needs a
384 different mode than the exit block. */
385 for (j = n_entities - 1; j >= 0; j--)
387 int e = entity_map[j];
388 int mode =
389 targetm.mode_switching.needed (e, return_copy);
391 if (mode != num_modes[e]
392 && mode != targetm.mode_switching.exit (e))
393 break;
395 if (j >= 0)
397 /* __builtin_return emits a sequence of loads to all
398 return registers. One of them might require
399 another mode than MODE_EXIT, even if it is
400 unrelated to the return value, so we want to put
401 the final mode switch after it. */
402 if (multi_reg_return
403 && targetm.calls.function_value_regno_p
404 (copy_start))
405 forced_late_switch = true;
407 /* For the SH4, floating point loads depend on fpscr,
408 thus we might need to put the final mode switch
409 after the return value copy. That is still OK,
410 because a floating point return value does not
411 conflict with address reloads. */
412 if (copy_start >= ret_start
413 && copy_start + copy_num <= ret_end
414 && OBJECT_P (SET_SRC (return_copy_pat)))
415 forced_late_switch = true;
416 break;
418 if (copy_num == 0)
420 last_insn = return_copy;
421 continue;
424 if (copy_start >= ret_start
425 && copy_start + copy_num <= ret_end)
426 nregs -= copy_num;
427 else if (!multi_reg_return
428 || !targetm.calls.function_value_regno_p
429 (copy_start))
430 break;
431 last_insn = return_copy;
433 /* ??? Exception handling can lead to the return value
434 copy being already separated from the return value use,
435 as in unwind-dw2.c .
436 Similarly, conditionally returning without a value,
437 and conditionally using builtin_return can lead to an
438 isolated use. */
439 if (return_copy == BB_HEAD (src_bb))
441 short_block = true;
442 break;
444 last_insn = return_copy;
446 while (nregs);
448 /* If we didn't see a full return value copy, verify that there
449 is a plausible reason for this. If some, but not all of the
450 return register is likely spilled, we can expect that there
451 is a copy for the likely spilled part. */
452 gcc_assert (!nregs
453 || forced_late_switch
454 || short_block
455 || !(targetm.class_likely_spilled_p
456 (REGNO_REG_CLASS (ret_start)))
457 || nregs != REG_NREGS (ret_reg)
458 /* For multi-hard-register floating point
459 values, sometimes the likely-spilled part
460 is ordinarily copied first, then the other
461 part is set with an arithmetic operation.
462 This doesn't actually cause reload
463 failures, so let it pass. */
464 || (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
465 && nregs != 1));
467 if (!NOTE_INSN_BASIC_BLOCK_P (last_insn))
469 before_return_copy
470 = emit_note_before (NOTE_INSN_DELETED, last_insn);
471 /* Instructions preceding LAST_INSN in the same block might
472 require a different mode than MODE_EXIT, so if we might
473 have such instructions, keep them in a separate block
474 from pre_exit. */
475 src_bb = split_block (src_bb,
476 PREV_INSN (before_return_copy))->dest;
478 else
479 before_return_copy = last_insn;
480 pre_exit = split_block (src_bb, before_return_copy)->src;
482 else
484 pre_exit = split_edge (eg);
488 return pre_exit;
491 /* Find all insns that need a particular mode setting, and insert the
492 necessary mode switches. Return true if we did work. */
494 static int
495 optimize_mode_switching (void)
497 int e;
498 basic_block bb;
499 bool need_commit = false;
500 static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
501 #define N_ENTITIES ARRAY_SIZE (num_modes)
502 int entity_map[N_ENTITIES];
503 struct bb_info *bb_info[N_ENTITIES];
504 int i, j;
505 int n_entities = 0;
506 int max_num_modes = 0;
507 bool emitted ATTRIBUTE_UNUSED = false;
508 basic_block post_entry = 0;
509 basic_block pre_exit = 0;
510 struct edge_list *edge_list = 0;
512 /* These bitmaps are used for the LCM algorithm. */
513 sbitmap *kill, *del, *insert, *antic, *transp, *comp;
514 sbitmap *avin, *avout;
516 for (e = N_ENTITIES - 1; e >= 0; e--)
517 if (OPTIMIZE_MODE_SWITCHING (e))
519 int entry_exit_extra = 0;
521 /* Create the list of segments within each basic block.
522 If NORMAL_MODE is defined, allow for two extra
523 blocks split from the entry and exit block. */
524 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
525 entry_exit_extra = 3;
527 bb_info[n_entities]
528 = XCNEWVEC (struct bb_info,
529 last_basic_block_for_fn (cfun) + entry_exit_extra);
530 entity_map[n_entities++] = e;
531 if (num_modes[e] > max_num_modes)
532 max_num_modes = num_modes[e];
535 if (! n_entities)
536 return 0;
538 /* Make sure if MODE_ENTRY is defined MODE_EXIT is defined. */
539 gcc_assert ((targetm.mode_switching.entry && targetm.mode_switching.exit)
540 || (!targetm.mode_switching.entry
541 && !targetm.mode_switching.exit));
543 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
545 /* Split the edge from the entry block, so that we can note that
546 there NORMAL_MODE is supplied. */
547 post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
548 pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
551 df_analyze ();
553 /* Create the bitmap vectors. */
554 antic = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
555 n_entities * max_num_modes);
556 transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
557 n_entities * max_num_modes);
558 comp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
559 n_entities * max_num_modes);
560 avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
561 n_entities * max_num_modes);
562 avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
563 n_entities * max_num_modes);
564 kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
565 n_entities * max_num_modes);
567 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
568 bitmap_vector_clear (antic, last_basic_block_for_fn (cfun));
569 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
571 for (j = n_entities - 1; j >= 0; j--)
573 int e = entity_map[j];
574 int no_mode = num_modes[e];
575 struct bb_info *info = bb_info[j];
576 rtx_insn *insn;
578 /* Determine what the first use (if any) need for a mode of entity E is.
579 This will be the mode that is anticipatable for this block.
580 Also compute the initial transparency settings. */
581 FOR_EACH_BB_FN (bb, cfun)
583 struct seginfo *ptr;
584 int last_mode = no_mode;
585 bool any_set_required = false;
586 HARD_REG_SET live_now;
588 info[bb->index].mode_out = info[bb->index].mode_in = no_mode;
590 REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));
592 /* Pretend the mode is clobbered across abnormal edges. */
594 edge_iterator ei;
595 edge eg;
596 FOR_EACH_EDGE (eg, ei, bb->preds)
597 if (eg->flags & EDGE_COMPLEX)
598 break;
599 if (eg)
601 rtx_insn *ins_pos = BB_HEAD (bb);
602 if (LABEL_P (ins_pos))
603 ins_pos = NEXT_INSN (ins_pos);
604 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (ins_pos));
605 if (ins_pos != BB_END (bb))
606 ins_pos = NEXT_INSN (ins_pos);
607 ptr = new_seginfo (no_mode, ins_pos, bb->index, live_now);
608 add_seginfo (info + bb->index, ptr);
609 for (i = 0; i < no_mode; i++)
610 clear_mode_bit (transp[bb->index], j, i);
614 FOR_BB_INSNS (bb, insn)
616 if (INSN_P (insn))
618 int mode = targetm.mode_switching.needed (e, insn);
619 rtx link;
621 if (mode != no_mode && mode != last_mode)
623 any_set_required = true;
624 last_mode = mode;
625 ptr = new_seginfo (mode, insn, bb->index, live_now);
626 add_seginfo (info + bb->index, ptr);
627 for (i = 0; i < no_mode; i++)
628 clear_mode_bit (transp[bb->index], j, i);
631 if (targetm.mode_switching.after)
632 last_mode = targetm.mode_switching.after (e, last_mode,
633 insn);
635 /* Update LIVE_NOW. */
636 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
637 if (REG_NOTE_KIND (link) == REG_DEAD)
638 reg_dies (XEXP (link, 0), &live_now);
640 note_stores (PATTERN (insn), reg_becomes_live, &live_now);
641 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
642 if (REG_NOTE_KIND (link) == REG_UNUSED)
643 reg_dies (XEXP (link, 0), &live_now);
647 info[bb->index].computing = last_mode;
648 /* Check for blocks without ANY mode requirements.
649 N.B. because of MODE_AFTER, last_mode might still
650 be different from no_mode, in which case we need to
651 mark the block as nontransparent. */
652 if (!any_set_required)
654 ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
655 add_seginfo (info + bb->index, ptr);
656 if (last_mode != no_mode)
657 for (i = 0; i < no_mode; i++)
658 clear_mode_bit (transp[bb->index], j, i);
661 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
663 int mode = targetm.mode_switching.entry (e);
665 info[post_entry->index].mode_out =
666 info[post_entry->index].mode_in = no_mode;
667 if (pre_exit)
669 info[pre_exit->index].mode_out =
670 info[pre_exit->index].mode_in = no_mode;
673 if (mode != no_mode)
675 bb = post_entry;
677 /* By always making this nontransparent, we save
678 an extra check in make_preds_opaque. We also
679 need this to avoid confusing pre_edge_lcm when
680 antic is cleared but transp and comp are set. */
681 for (i = 0; i < no_mode; i++)
682 clear_mode_bit (transp[bb->index], j, i);
684 /* Insert a fake computing definition of MODE into entry
685 blocks which compute no mode. This represents the mode on
686 entry. */
687 info[bb->index].computing = mode;
689 if (pre_exit)
690 info[pre_exit->index].seginfo->mode =
691 targetm.mode_switching.exit (e);
695 /* Set the anticipatable and computing arrays. */
696 for (i = 0; i < no_mode; i++)
698 int m = targetm.mode_switching.priority (entity_map[j], i);
700 FOR_EACH_BB_FN (bb, cfun)
702 if (info[bb->index].seginfo->mode == m)
703 set_mode_bit (antic[bb->index], j, m);
705 if (info[bb->index].computing == m)
706 set_mode_bit (comp[bb->index], j, m);
711 /* Calculate the optimal locations for the
712 placement mode switches to modes with priority I. */
714 FOR_EACH_BB_FN (bb, cfun)
715 bitmap_not (kill[bb->index], transp[bb->index]);
717 edge_list = pre_edge_lcm_avs (n_entities * max_num_modes, transp, comp, antic,
718 kill, avin, avout, &insert, &del);
720 for (j = n_entities - 1; j >= 0; j--)
722 int no_mode = num_modes[entity_map[j]];
724 /* Insert all mode sets that have been inserted by lcm. */
726 for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
728 edge eg = INDEX_EDGE (edge_list, ed);
730 eg->aux = (void *)(intptr_t)-1;
732 for (i = 0; i < no_mode; i++)
734 int m = targetm.mode_switching.priority (entity_map[j], i);
735 if (mode_bit_p (insert[ed], j, m))
737 eg->aux = (void *)(intptr_t)m;
738 break;
743 FOR_EACH_BB_FN (bb, cfun)
745 struct bb_info *info = bb_info[j];
746 int last_mode = no_mode;
748 /* intialize mode in availability for bb. */
749 for (i = 0; i < no_mode; i++)
750 if (mode_bit_p (avout[bb->index], j, i))
752 if (last_mode == no_mode)
753 last_mode = i;
754 if (last_mode != i)
756 last_mode = no_mode;
757 break;
760 info[bb->index].mode_out = last_mode;
762 /* intialize mode out availability for bb. */
763 last_mode = no_mode;
764 for (i = 0; i < no_mode; i++)
765 if (mode_bit_p (avin[bb->index], j, i))
767 if (last_mode == no_mode)
768 last_mode = i;
769 if (last_mode != i)
771 last_mode = no_mode;
772 break;
775 info[bb->index].mode_in = last_mode;
777 for (i = 0; i < no_mode; i++)
778 if (mode_bit_p (del[bb->index], j, i))
779 info[bb->index].seginfo->mode = no_mode;
782 /* Now output the remaining mode sets in all the segments. */
784 /* In case there was no mode inserted. the mode information on the edge
785 might not be complete.
786 Update mode info on edges and commit pending mode sets. */
787 need_commit |= commit_mode_sets (edge_list, entity_map[j], bb_info[j]);
789 /* Reset modes for next entity. */
790 clear_aux_for_edges ();
792 FOR_EACH_BB_FN (bb, cfun)
794 struct seginfo *ptr, *next;
795 int cur_mode = bb_info[j][bb->index].mode_in;
797 for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
799 next = ptr->next;
800 if (ptr->mode != no_mode)
802 rtx_insn *mode_set;
804 rtl_profile_for_bb (bb);
805 start_sequence ();
807 targetm.mode_switching.emit (entity_map[j], ptr->mode,
808 cur_mode, ptr->regs_live);
809 mode_set = get_insns ();
810 end_sequence ();
812 /* modes kill each other inside a basic block. */
813 cur_mode = ptr->mode;
815 /* Insert MODE_SET only if it is nonempty. */
816 if (mode_set != NULL_RTX)
818 emitted = true;
819 if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
820 /* We need to emit the insns in a FIFO-like manner,
821 i.e. the first to be emitted at our insertion
822 point ends up first in the instruction steam.
823 Because we made sure that NOTE_INSN_BASIC_BLOCK is
824 only used for initially empty basic blocks, we
825 can achieve this by appending at the end of
826 the block. */
827 emit_insn_after
828 (mode_set, BB_END (NOTE_BASIC_BLOCK (ptr->insn_ptr)));
829 else
830 emit_insn_before (mode_set, ptr->insn_ptr);
833 default_rtl_profile ();
836 free (ptr);
840 free (bb_info[j]);
843 free_edge_list (edge_list);
845 /* Finished. Free up all the things we've allocated. */
846 sbitmap_vector_free (del);
847 sbitmap_vector_free (insert);
848 sbitmap_vector_free (kill);
849 sbitmap_vector_free (antic);
850 sbitmap_vector_free (transp);
851 sbitmap_vector_free (comp);
852 sbitmap_vector_free (avin);
853 sbitmap_vector_free (avout);
855 if (need_commit)
856 commit_edge_insertions ();
858 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
859 cleanup_cfg (CLEANUP_NO_INSN_DEL);
860 else if (!need_commit && !emitted)
861 return 0;
863 return 1;
866 #endif /* OPTIMIZE_MODE_SWITCHING */
868 namespace {
870 const pass_data pass_data_mode_switching =
872 RTL_PASS, /* type */
873 "mode_sw", /* name */
874 OPTGROUP_NONE, /* optinfo_flags */
875 TV_MODE_SWITCH, /* tv_id */
876 0, /* properties_required */
877 0, /* properties_provided */
878 0, /* properties_destroyed */
879 0, /* todo_flags_start */
880 TODO_df_finish, /* todo_flags_finish */
883 class pass_mode_switching : public rtl_opt_pass
885 public:
886 pass_mode_switching (gcc::context *ctxt)
887 : rtl_opt_pass (pass_data_mode_switching, ctxt)
890 /* opt_pass methods: */
891 /* The epiphany backend creates a second instance of this pass, so we need
892 a clone method. */
893 opt_pass * clone () { return new pass_mode_switching (m_ctxt); }
894 virtual bool gate (function *)
896 #ifdef OPTIMIZE_MODE_SWITCHING
897 return true;
898 #else
899 return false;
900 #endif
903 virtual unsigned int execute (function *)
905 #ifdef OPTIMIZE_MODE_SWITCHING
906 optimize_mode_switching ();
907 #endif /* OPTIMIZE_MODE_SWITCHING */
908 return 0;
911 }; // class pass_mode_switching
913 } // anon namespace
915 rtl_opt_pass *
916 make_pass_mode_switching (gcc::context *ctxt)
918 return new pass_mode_switching (ctxt);