PR rtl-optimization/88470
[official-gcc.git] / gcc / ira-lives.c
blobf74958f18017228feb5f9292cafb361c04979622
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "ira-int.h"
35 #include "sparseset.h"
37 /* The code in this file is similar to one in global but the code
38 works on the allocno basis and creates live ranges instead of
39 pseudo-register conflicts. */
41 /* Program points are enumerated by numbers from range
42 0..IRA_MAX_POINT-1. There are approximately two times more program
43 points than insns. Program points are places in the program where
44 liveness info can be changed. In most general case (there are more
45 complicated cases too) some program points correspond to places
46 where input operand dies and other ones correspond to places where
47 output operands are born. */
48 int ira_max_point;
50 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
51 live ranges with given start/finish point. */
52 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
54 /* Number of the current program point. */
55 static int curr_point;
57 /* Point where register pressure excess started or -1 if there is no
58 register pressure excess. Excess pressure for a register class at
59 some point means that there are more allocnos of given register
60 class living at the point than number of hard-registers of the
61 class available for the allocation. It is defined only for
62 pressure classes. */
63 static int high_pressure_start_point[N_REG_CLASSES];
65 /* Objects live at current point in the scan. */
66 static sparseset objects_live;
68 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
69 multiple times. */
70 static sparseset allocnos_processed;
72 /* Set of hard regs (except eliminable ones) currently live. */
73 static HARD_REG_SET hard_regs_live;
75 /* The loop tree node corresponding to the current basic block. */
76 static ira_loop_tree_node_t curr_bb_node;
78 /* The number of the last processed call. */
79 static int last_call_num;
80 /* The number of last call at which given allocno was saved. */
81 static int *allocno_saved_at_call;
83 /* The value of get_preferred_alternatives for the current instruction,
84 supplemental to recog_data. */
85 static alternative_mask preferred_alternatives;
87 /* If non-NULL, the source operand of a register to register copy for which
88 we should not add a conflict with the copy's destination operand. */
89 static rtx ignore_reg_for_conflicts;
91 /* Record hard register REGNO as now being live. */
92 static void
93 make_hard_regno_live (int regno)
95 SET_HARD_REG_BIT (hard_regs_live, regno);
98 /* Process the definition of hard register REGNO. This updates
99 hard_regs_live and hard reg conflict information for living allocnos. */
100 static void
101 make_hard_regno_dead (int regno)
103 unsigned int i;
104 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
106 ira_object_t obj = ira_object_id_map[i];
108 if (ignore_reg_for_conflicts != NULL_RTX
109 && REGNO (ignore_reg_for_conflicts)
110 == (unsigned int) ALLOCNO_REGNO (OBJECT_ALLOCNO (obj)))
111 continue;
113 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
114 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
116 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
119 /* Record object OBJ as now being live. Set a bit for it in objects_live,
120 and start a new live range for it if necessary. */
121 static void
122 make_object_live (ira_object_t obj)
124 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
126 live_range_t lr = OBJECT_LIVE_RANGES (obj);
127 if (lr == NULL
128 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
129 ira_add_live_range_to_object (obj, curr_point, -1);
132 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
133 associated with object OBJ. */
134 static void
135 update_allocno_pressure_excess_length (ira_object_t obj)
137 ira_allocno_t a = OBJECT_ALLOCNO (obj);
138 int start, i;
139 enum reg_class aclass, pclass, cl;
140 live_range_t p;
142 aclass = ALLOCNO_CLASS (a);
143 pclass = ira_pressure_class_translate[aclass];
144 for (i = 0;
145 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
146 i++)
148 if (! ira_reg_pressure_class_p[cl])
149 continue;
150 if (high_pressure_start_point[cl] < 0)
151 continue;
152 p = OBJECT_LIVE_RANGES (obj);
153 ira_assert (p != NULL);
154 start = (high_pressure_start_point[cl] > p->start
155 ? high_pressure_start_point[cl] : p->start);
156 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
160 /* Process the definition of object OBJ, which is associated with allocno A.
161 This finishes the current live range for it. */
162 static void
163 make_object_dead (ira_object_t obj)
165 live_range_t lr;
166 int ignore_regno = -1;
167 int end_regno = -1;
169 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
171 /* Check whether any part of IGNORE_REG_FOR_CONFLICTS already conflicts
172 with OBJ. */
173 if (ignore_reg_for_conflicts != NULL_RTX
174 && REGNO (ignore_reg_for_conflicts) < FIRST_PSEUDO_REGISTER)
176 end_regno = END_REGNO (ignore_reg_for_conflicts);
177 int src_regno = ignore_regno = REGNO (ignore_reg_for_conflicts);
179 while (src_regno < end_regno)
181 if (TEST_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), src_regno))
183 ignore_regno = end_regno = -1;
184 break;
186 src_regno++;
190 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
191 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
193 /* If IGNORE_REG_FOR_CONFLICTS did not already conflict with OBJ, make
194 sure it still doesn't. */
195 for (; ignore_regno < end_regno; ignore_regno++)
196 CLEAR_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), ignore_regno);
198 lr = OBJECT_LIVE_RANGES (obj);
199 ira_assert (lr != NULL);
200 lr->finish = curr_point;
201 update_allocno_pressure_excess_length (obj);
204 /* The current register pressures for each pressure class for the current
205 basic block. */
206 static int curr_reg_pressure[N_REG_CLASSES];
208 /* Record that register pressure for PCLASS increased by N registers.
209 Update the current register pressure, maximal register pressure for
210 the current BB and the start point of the register pressure
211 excess. */
212 static void
213 inc_register_pressure (enum reg_class pclass, int n)
215 int i;
216 enum reg_class cl;
218 for (i = 0;
219 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
220 i++)
222 if (! ira_reg_pressure_class_p[cl])
223 continue;
224 curr_reg_pressure[cl] += n;
225 if (high_pressure_start_point[cl] < 0
226 && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
227 high_pressure_start_point[cl] = curr_point;
228 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
229 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
233 /* Record that register pressure for PCLASS has decreased by NREGS
234 registers; update current register pressure, start point of the
235 register pressure excess, and register pressure excess length for
236 living allocnos. */
238 static void
239 dec_register_pressure (enum reg_class pclass, int nregs)
241 int i;
242 unsigned int j;
243 enum reg_class cl;
244 bool set_p = false;
246 for (i = 0;
247 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
248 i++)
250 if (! ira_reg_pressure_class_p[cl])
251 continue;
252 curr_reg_pressure[cl] -= nregs;
253 ira_assert (curr_reg_pressure[cl] >= 0);
254 if (high_pressure_start_point[cl] >= 0
255 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
256 set_p = true;
258 if (set_p)
260 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
261 update_allocno_pressure_excess_length (ira_object_id_map[j]);
262 for (i = 0;
263 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
264 i++)
266 if (! ira_reg_pressure_class_p[cl])
267 continue;
268 if (high_pressure_start_point[cl] >= 0
269 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
270 high_pressure_start_point[cl] = -1;
275 /* Determine from the objects_live bitmap whether REGNO is currently live,
276 and occupies only one object. Return false if we have no information. */
277 static bool
278 pseudo_regno_single_word_and_live_p (int regno)
280 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
281 ira_object_t obj;
283 if (a == NULL)
284 return false;
285 if (ALLOCNO_NUM_OBJECTS (a) > 1)
286 return false;
288 obj = ALLOCNO_OBJECT (a, 0);
290 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
293 /* Mark the pseudo register REGNO as live. Update all information about
294 live ranges and register pressure. */
295 static void
296 mark_pseudo_regno_live (int regno)
298 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
299 enum reg_class pclass;
300 int i, n, nregs;
302 if (a == NULL)
303 return;
305 /* Invalidate because it is referenced. */
306 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
308 n = ALLOCNO_NUM_OBJECTS (a);
309 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
310 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
311 if (n > 1)
313 /* We track every subobject separately. */
314 gcc_assert (nregs == n);
315 nregs = 1;
318 for (i = 0; i < n; i++)
320 ira_object_t obj = ALLOCNO_OBJECT (a, i);
322 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
323 continue;
325 inc_register_pressure (pclass, nregs);
326 make_object_live (obj);
330 /* Like mark_pseudo_regno_live, but try to only mark one subword of
331 the pseudo as live. SUBWORD indicates which; a value of 0
332 indicates the low part. */
333 static void
334 mark_pseudo_regno_subword_live (int regno, int subword)
336 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
337 int n;
338 enum reg_class pclass;
339 ira_object_t obj;
341 if (a == NULL)
342 return;
344 /* Invalidate because it is referenced. */
345 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
347 n = ALLOCNO_NUM_OBJECTS (a);
348 if (n == 1)
350 mark_pseudo_regno_live (regno);
351 return;
354 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
355 gcc_assert
356 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
357 obj = ALLOCNO_OBJECT (a, subword);
359 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
360 return;
362 inc_register_pressure (pclass, 1);
363 make_object_live (obj);
366 /* Mark the register REG as live. Store a 1 in hard_regs_live for
367 this register, record how many consecutive hardware registers it
368 actually needs. */
369 static void
370 mark_hard_reg_live (rtx reg)
372 int regno = REGNO (reg);
374 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
376 int last = END_REGNO (reg);
377 enum reg_class aclass, pclass;
379 while (regno < last)
381 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
382 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
384 aclass = ira_hard_regno_allocno_class[regno];
385 pclass = ira_pressure_class_translate[aclass];
386 inc_register_pressure (pclass, 1);
387 make_hard_regno_live (regno);
389 regno++;
394 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
395 register number; ORIG_REG is the access in the insn, which may be a
396 subreg. */
397 static void
398 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
400 if (read_modify_subreg_p (orig_reg))
402 mark_pseudo_regno_subword_live (regno,
403 subreg_lowpart_p (orig_reg) ? 0 : 1);
405 else
406 mark_pseudo_regno_live (regno);
409 /* Mark the register referenced by use or def REF as live. */
410 static void
411 mark_ref_live (df_ref ref)
413 rtx reg = DF_REF_REG (ref);
414 rtx orig_reg = reg;
416 if (GET_CODE (reg) == SUBREG)
417 reg = SUBREG_REG (reg);
419 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
420 mark_pseudo_reg_live (orig_reg, REGNO (reg));
421 else
422 mark_hard_reg_live (reg);
425 /* Mark the pseudo register REGNO as dead. Update all information about
426 live ranges and register pressure. */
427 static void
428 mark_pseudo_regno_dead (int regno)
430 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
431 int n, i, nregs;
432 enum reg_class cl;
434 if (a == NULL)
435 return;
437 /* Invalidate because it is referenced. */
438 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
440 n = ALLOCNO_NUM_OBJECTS (a);
441 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
442 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
443 if (n > 1)
445 /* We track every subobject separately. */
446 gcc_assert (nregs == n);
447 nregs = 1;
449 for (i = 0; i < n; i++)
451 ira_object_t obj = ALLOCNO_OBJECT (a, i);
452 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
453 continue;
455 dec_register_pressure (cl, nregs);
456 make_object_dead (obj);
460 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
461 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
462 static void
463 mark_pseudo_regno_subword_dead (int regno, int subword)
465 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
466 int n;
467 enum reg_class cl;
468 ira_object_t obj;
470 if (a == NULL)
471 return;
473 /* Invalidate because it is referenced. */
474 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
476 n = ALLOCNO_NUM_OBJECTS (a);
477 if (n == 1)
478 /* The allocno as a whole doesn't die in this case. */
479 return;
481 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
482 gcc_assert
483 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
485 obj = ALLOCNO_OBJECT (a, subword);
486 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
487 return;
489 dec_register_pressure (cl, 1);
490 make_object_dead (obj);
493 /* Process the definition of hard register REG. This updates hard_regs_live
494 and hard reg conflict information for living allocnos. */
495 static void
496 mark_hard_reg_dead (rtx reg)
498 int regno = REGNO (reg);
500 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
502 int last = END_REGNO (reg);
503 enum reg_class aclass, pclass;
505 while (regno < last)
507 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
509 aclass = ira_hard_regno_allocno_class[regno];
510 pclass = ira_pressure_class_translate[aclass];
511 dec_register_pressure (pclass, 1);
512 make_hard_regno_dead (regno);
514 regno++;
519 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
520 register number; ORIG_REG is the access in the insn, which may be a
521 subreg. */
522 static void
523 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
525 if (read_modify_subreg_p (orig_reg))
527 mark_pseudo_regno_subword_dead (regno,
528 subreg_lowpart_p (orig_reg) ? 0 : 1);
530 else
531 mark_pseudo_regno_dead (regno);
534 /* Mark the register referenced by definition DEF as dead, if the
535 definition is a total one. */
536 static void
537 mark_ref_dead (df_ref def)
539 rtx reg = DF_REF_REG (def);
540 rtx orig_reg = reg;
542 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
543 return;
545 if (GET_CODE (reg) == SUBREG)
546 reg = SUBREG_REG (reg);
548 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
549 && (GET_CODE (orig_reg) != SUBREG
550 || REGNO (reg) < FIRST_PSEUDO_REGISTER
551 || !read_modify_subreg_p (orig_reg)))
552 return;
554 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
555 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
556 else
557 mark_hard_reg_dead (reg);
560 /* If REG is a pseudo or a subreg of it, and the class of its allocno
561 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
562 rtx actually accessed, it may be identical to DREG or a subreg of it.
563 Advance the current program point before making the conflict if
564 ADVANCE_P. Return TRUE if we will need to advance the current
565 program point. */
566 static bool
567 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
568 bool advance_p)
570 rtx orig_reg = reg;
571 ira_allocno_t a;
573 if (GET_CODE (reg) == SUBREG)
574 reg = SUBREG_REG (reg);
576 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
577 return advance_p;
579 a = ira_curr_regno_allocno_map[REGNO (reg)];
580 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
581 return advance_p;
583 if (advance_p)
584 curr_point++;
586 mark_pseudo_reg_live (orig_reg, REGNO (reg));
587 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
588 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
589 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
591 return false;
594 /* Check and make if necessary conflicts for pseudo DREG of class
595 DEF_CL of the current insn with input operand USE of class USE_CL.
596 ORIG_DREG is the rtx actually accessed, it may be identical to
597 DREG or a subreg of it. Advance the current program point before
598 making the conflict if ADVANCE_P. Return TRUE if we will need to
599 advance the current program point. */
600 static bool
601 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
602 enum reg_class def_cl, int use,
603 enum reg_class use_cl, bool advance_p)
605 if (! reg_classes_intersect_p (def_cl, use_cl))
606 return advance_p;
608 advance_p = make_pseudo_conflict (recog_data.operand[use],
609 use_cl, dreg, orig_dreg, advance_p);
611 /* Reload may end up swapping commutative operands, so you
612 have to take both orderings into account. The
613 constraints for the two operands can be completely
614 different. (Indeed, if the constraints for the two
615 operands are the same for all alternatives, there's no
616 point marking them as commutative.) */
617 if (use < recog_data.n_operands - 1
618 && recog_data.constraints[use][0] == '%')
619 advance_p
620 = make_pseudo_conflict (recog_data.operand[use + 1],
621 use_cl, dreg, orig_dreg, advance_p);
622 if (use >= 1
623 && recog_data.constraints[use - 1][0] == '%')
624 advance_p
625 = make_pseudo_conflict (recog_data.operand[use - 1],
626 use_cl, dreg, orig_dreg, advance_p);
627 return advance_p;
630 /* Check and make if necessary conflicts for definition DEF of class
631 DEF_CL of the current insn with input operands. Process only
632 constraints of alternative ALT. */
633 static void
634 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
636 int use, use_match;
637 ira_allocno_t a;
638 enum reg_class use_cl, acl;
639 bool advance_p;
640 rtx dreg = recog_data.operand[def];
641 rtx orig_dreg = dreg;
643 if (def_cl == NO_REGS)
644 return;
646 if (GET_CODE (dreg) == SUBREG)
647 dreg = SUBREG_REG (dreg);
649 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
650 return;
652 a = ira_curr_regno_allocno_map[REGNO (dreg)];
653 acl = ALLOCNO_CLASS (a);
654 if (! reg_classes_intersect_p (acl, def_cl))
655 return;
657 advance_p = true;
659 int n_operands = recog_data.n_operands;
660 const operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
661 for (use = 0; use < n_operands; use++)
663 int alt1;
665 if (use == def || recog_data.operand_type[use] == OP_OUT)
666 continue;
668 if (op_alt[use].anything_ok)
669 use_cl = ALL_REGS;
670 else
671 use_cl = op_alt[use].cl;
673 /* If there's any alternative that allows USE to match DEF, do not
674 record a conflict. If that causes us to create an invalid
675 instruction due to the earlyclobber, reload must fix it up. */
676 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
678 if (!TEST_BIT (preferred_alternatives, alt1))
679 continue;
680 const operand_alternative *op_alt1
681 = &recog_op_alt[alt1 * n_operands];
682 if (op_alt1[use].matches == def
683 || (use < n_operands - 1
684 && recog_data.constraints[use][0] == '%'
685 && op_alt1[use + 1].matches == def)
686 || (use >= 1
687 && recog_data.constraints[use - 1][0] == '%'
688 && op_alt1[use - 1].matches == def))
689 break;
692 if (alt1 < recog_data.n_alternatives)
693 continue;
695 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
696 use, use_cl, advance_p);
698 if ((use_match = op_alt[use].matches) >= 0)
700 if (use_match == def)
701 continue;
703 if (op_alt[use_match].anything_ok)
704 use_cl = ALL_REGS;
705 else
706 use_cl = op_alt[use_match].cl;
707 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
708 use, use_cl, advance_p);
713 /* Make conflicts of early clobber pseudo registers of the current
714 insn with its inputs. Avoid introducing unnecessary conflicts by
715 checking classes of the constraints and pseudos because otherwise
716 significant code degradation is possible for some targets. */
717 static void
718 make_early_clobber_and_input_conflicts (void)
720 int alt;
721 int def, def_match;
722 enum reg_class def_cl;
724 int n_alternatives = recog_data.n_alternatives;
725 int n_operands = recog_data.n_operands;
726 const operand_alternative *op_alt = recog_op_alt;
727 for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
728 if (TEST_BIT (preferred_alternatives, alt))
729 for (def = 0; def < n_operands; def++)
731 def_cl = NO_REGS;
732 if (op_alt[def].earlyclobber)
734 if (op_alt[def].anything_ok)
735 def_cl = ALL_REGS;
736 else
737 def_cl = op_alt[def].cl;
738 check_and_make_def_conflict (alt, def, def_cl);
740 if ((def_match = op_alt[def].matches) >= 0
741 && (op_alt[def_match].earlyclobber
742 || op_alt[def].earlyclobber))
744 if (op_alt[def_match].anything_ok)
745 def_cl = ALL_REGS;
746 else
747 def_cl = op_alt[def_match].cl;
748 check_and_make_def_conflict (alt, def, def_cl);
753 /* Mark early clobber hard registers of the current INSN as live (if
754 LIVE_P) or dead. Return true if there are such registers. */
755 static bool
756 mark_hard_reg_early_clobbers (rtx_insn *insn, bool live_p)
758 df_ref def;
759 bool set_p = false;
761 FOR_EACH_INSN_DEF (def, insn)
762 if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER))
764 rtx dreg = DF_REF_REG (def);
766 if (GET_CODE (dreg) == SUBREG)
767 dreg = SUBREG_REG (dreg);
768 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
769 continue;
771 /* Hard register clobbers are believed to be early clobber
772 because there is no way to say that non-operand hard
773 register clobbers are not early ones. */
774 if (live_p)
775 mark_ref_live (def);
776 else
777 mark_ref_dead (def);
778 set_p = true;
781 return set_p;
784 /* Checks that CONSTRAINTS permits to use only one hard register. If
785 it is so, the function returns the class of the hard register.
786 Otherwise it returns NO_REGS. */
787 static enum reg_class
788 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
790 int c;
791 enum reg_class cl, next_cl;
792 enum constraint_num cn;
794 cl = NO_REGS;
795 alternative_mask preferred = preferred_alternatives;
796 for (; (c = *constraints); constraints += CONSTRAINT_LEN (c, constraints))
797 if (c == '#')
798 preferred &= ~ALTERNATIVE_BIT (0);
799 else if (c == ',')
800 preferred >>= 1;
801 else if (preferred & 1)
802 switch (c)
804 case 'g':
805 return NO_REGS;
807 default:
808 /* ??? Is this the best way to handle memory constraints? */
809 cn = lookup_constraint (constraints);
810 if (insn_extra_memory_constraint (cn)
811 || insn_extra_special_memory_constraint (cn)
812 || insn_extra_address_constraint (cn))
813 return NO_REGS;
814 if (constraint_satisfied_p (op, cn)
815 || (equiv_const != NULL_RTX
816 && CONSTANT_P (equiv_const)
817 && constraint_satisfied_p (equiv_const, cn)))
818 return NO_REGS;
819 next_cl = reg_class_for_constraint (cn);
820 if (next_cl == NO_REGS)
821 break;
822 if (cl == NO_REGS
823 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
824 : (ira_class_singleton[cl][GET_MODE (op)]
825 != ira_class_singleton[next_cl][GET_MODE (op)]))
826 return NO_REGS;
827 cl = next_cl;
828 break;
830 case '0': case '1': case '2': case '3': case '4':
831 case '5': case '6': case '7': case '8': case '9':
832 next_cl
833 = single_reg_class (recog_data.constraints[c - '0'],
834 recog_data.operand[c - '0'], NULL_RTX);
835 if (cl == NO_REGS
836 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
837 : (ira_class_singleton[cl][GET_MODE (op)]
838 != ira_class_singleton[next_cl][GET_MODE (op)]))
839 return NO_REGS;
840 cl = next_cl;
841 break;
843 return cl;
846 /* The function checks that operand OP_NUM of the current insn can use
847 only one hard register. If it is so, the function returns the
848 class of the hard register. Otherwise it returns NO_REGS. */
849 static enum reg_class
850 single_reg_operand_class (int op_num)
852 if (op_num < 0 || recog_data.n_alternatives == 0)
853 return NO_REGS;
854 return single_reg_class (recog_data.constraints[op_num],
855 recog_data.operand[op_num], NULL_RTX);
858 /* The function sets up hard register set *SET to hard registers which
859 might be used by insn reloads because the constraints are too
860 strict. */
861 void
862 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set,
863 alternative_mask preferred)
865 int i, c, regno = 0;
866 enum reg_class cl;
867 rtx op;
868 machine_mode mode;
870 CLEAR_HARD_REG_SET (*set);
871 for (i = 0; i < recog_data.n_operands; i++)
873 op = recog_data.operand[i];
875 if (GET_CODE (op) == SUBREG)
876 op = SUBREG_REG (op);
878 if (GET_CODE (op) == SCRATCH
879 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
881 const char *p = recog_data.constraints[i];
883 mode = (GET_CODE (op) == SCRATCH
884 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
885 cl = NO_REGS;
886 for (; (c = *p); p += CONSTRAINT_LEN (c, p))
887 if (c == '#')
888 preferred &= ~ALTERNATIVE_BIT (0);
889 else if (c == ',')
890 preferred >>= 1;
891 else if (preferred & 1)
893 cl = reg_class_for_constraint (lookup_constraint (p));
894 if (cl != NO_REGS)
896 /* There is no register pressure problem if all of the
897 regs in this class are fixed. */
898 int regno = ira_class_singleton[cl][mode];
899 if (regno >= 0)
900 add_to_hard_reg_set (set, mode, regno);
906 /* Processes input operands, if IN_P, or output operands otherwise of
907 the current insn with FREQ to find allocno which can use only one
908 hard register and makes other currently living allocnos conflicting
909 with the hard register. */
910 static void
911 process_single_reg_class_operands (bool in_p, int freq)
913 int i, regno;
914 unsigned int px;
915 enum reg_class cl;
916 rtx operand;
917 ira_allocno_t operand_a, a;
919 for (i = 0; i < recog_data.n_operands; i++)
921 operand = recog_data.operand[i];
922 if (in_p && recog_data.operand_type[i] != OP_IN
923 && recog_data.operand_type[i] != OP_INOUT)
924 continue;
925 if (! in_p && recog_data.operand_type[i] != OP_OUT
926 && recog_data.operand_type[i] != OP_INOUT)
927 continue;
928 cl = single_reg_operand_class (i);
929 if (cl == NO_REGS)
930 continue;
932 operand_a = NULL;
934 if (GET_CODE (operand) == SUBREG)
935 operand = SUBREG_REG (operand);
937 if (REG_P (operand)
938 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
940 enum reg_class aclass;
942 operand_a = ira_curr_regno_allocno_map[regno];
943 aclass = ALLOCNO_CLASS (operand_a);
944 if (ira_class_subset_p[cl][aclass])
946 /* View the desired allocation of OPERAND as:
948 (REG:YMODE YREGNO),
950 a simplification of:
952 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
953 machine_mode ymode, xmode;
954 int xregno, yregno;
955 poly_int64 offset;
957 xmode = recog_data.operand_mode[i];
958 xregno = ira_class_singleton[cl][xmode];
959 gcc_assert (xregno >= 0);
960 ymode = ALLOCNO_MODE (operand_a);
961 offset = subreg_lowpart_offset (ymode, xmode);
962 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
963 if (yregno >= 0
964 && ira_class_hard_reg_index[aclass][yregno] >= 0)
966 int cost;
968 ira_allocate_and_set_costs
969 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
970 aclass, 0);
971 ira_init_register_move_cost_if_necessary (xmode);
972 cost = freq * (in_p
973 ? ira_register_move_cost[xmode][aclass][cl]
974 : ira_register_move_cost[xmode][cl][aclass]);
975 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
976 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
981 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
983 ira_object_t obj = ira_object_id_map[px];
984 a = OBJECT_ALLOCNO (obj);
985 if (a != operand_a)
987 /* We could increase costs of A instead of making it
988 conflicting with the hard register. But it works worse
989 because it will be spilled in reload in anyway. */
990 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
991 reg_class_contents[cl]);
992 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
993 reg_class_contents[cl]);
999 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
1000 we find a SET rtx that we can use to deduce that a register can be cheaply
1001 caller-saved. Return such a register, or NULL_RTX if none is found. */
1002 static rtx
1003 find_call_crossed_cheap_reg (rtx_insn *insn)
1005 rtx cheap_reg = NULL_RTX;
1006 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
1008 while (exp != NULL)
1010 rtx x = XEXP (exp, 0);
1011 if (GET_CODE (x) == SET)
1013 exp = x;
1014 break;
1016 exp = XEXP (exp, 1);
1018 if (exp != NULL)
1020 basic_block bb = BLOCK_FOR_INSN (insn);
1021 rtx reg = SET_SRC (exp);
1022 rtx_insn *prev = PREV_INSN (insn);
1023 while (prev && !(INSN_P (prev)
1024 && BLOCK_FOR_INSN (prev) != bb))
1026 if (NONDEBUG_INSN_P (prev))
1028 rtx set = single_set (prev);
1030 if (set && rtx_equal_p (SET_DEST (set), reg))
1032 rtx src = SET_SRC (set);
1033 if (!REG_P (src) || HARD_REGISTER_P (src)
1034 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1035 break;
1036 if (!modified_between_p (src, prev, insn))
1037 cheap_reg = src;
1038 break;
1040 if (set && rtx_equal_p (SET_SRC (set), reg))
1042 rtx dest = SET_DEST (set);
1043 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1044 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1045 break;
1046 if (!modified_between_p (dest, prev, insn))
1047 cheap_reg = dest;
1048 break;
1051 if (reg_set_p (reg, prev))
1052 break;
1054 prev = PREV_INSN (prev);
1057 return cheap_reg;
1060 /* Determine whether INSN is a register to register copy of the type where
1061 we do not need to make the source and destiniation registers conflict.
1062 If this is a copy instruction, then return the source reg. Otherwise,
1063 return NULL_RTX. */
1065 non_conflicting_reg_copy_p (rtx_insn *insn)
1067 /* Reload has issues with overlapping pseudos being assigned to the
1068 same hard register, so don't allow it. See PR87600 for details. */
1069 if (!targetm.lra_p ())
1070 return NULL_RTX;
1072 rtx set = single_set (insn);
1074 /* Disallow anything other than a simple register to register copy
1075 that has no side effects. */
1076 if (set == NULL_RTX
1077 || !REG_P (SET_DEST (set))
1078 || !REG_P (SET_SRC (set))
1079 || side_effects_p (set))
1080 return NULL_RTX;
1082 int dst_regno = REGNO (SET_DEST (set));
1083 int src_regno = REGNO (SET_SRC (set));
1084 machine_mode mode = GET_MODE (SET_DEST (set));
1086 /* By definition, a register does not conflict with itself, therefore we
1087 do not have to handle it specially. Returning NULL_RTX now, helps
1088 simplify the callers of this function. */
1089 if (dst_regno == src_regno)
1090 return NULL_RTX;
1092 /* Computing conflicts for register pairs is difficult to get right, so
1093 for now, disallow it. */
1094 if ((HARD_REGISTER_NUM_P (dst_regno)
1095 && hard_regno_nregs (dst_regno, mode) != 1)
1096 || (HARD_REGISTER_NUM_P (src_regno)
1097 && hard_regno_nregs (src_regno, mode) != 1))
1098 return NULL_RTX;
1100 return SET_SRC (set);
1103 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1104 update allocno live ranges, allocno hard register conflicts,
1105 intersected calls, and register pressure info for allocnos for the
1106 basic block for and regions containing the basic block. */
1107 static void
1108 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1110 int i, freq;
1111 unsigned int j;
1112 basic_block bb;
1113 rtx_insn *insn;
1114 bitmap_iterator bi;
1115 bitmap reg_live_out;
1116 unsigned int px;
1117 bool set_p;
1119 bb = loop_tree_node->bb;
1120 if (bb != NULL)
1122 for (i = 0; i < ira_pressure_classes_num; i++)
1124 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1125 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1127 curr_bb_node = loop_tree_node;
1128 reg_live_out = df_get_live_out (bb);
1129 sparseset_clear (objects_live);
1130 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1131 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1132 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1133 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1134 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1136 enum reg_class aclass, pclass, cl;
1138 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1139 pclass = ira_pressure_class_translate[aclass];
1140 for (j = 0;
1141 (cl = ira_reg_class_super_classes[pclass][j])
1142 != LIM_REG_CLASSES;
1143 j++)
1145 if (! ira_reg_pressure_class_p[cl])
1146 continue;
1147 curr_reg_pressure[cl]++;
1148 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1149 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1150 ira_assert (curr_reg_pressure[cl]
1151 <= ira_class_hard_regs_num[cl]);
1154 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1155 mark_pseudo_regno_live (j);
1157 freq = REG_FREQ_FROM_BB (bb);
1158 if (freq == 0)
1159 freq = 1;
1161 /* Invalidate all allocno_saved_at_call entries. */
1162 last_call_num++;
1164 /* Scan the code of this basic block, noting which allocnos and
1165 hard regs are born or die.
1167 Note that this loop treats uninitialized values as live until
1168 the beginning of the block. For example, if an instruction
1169 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1170 set, FOO will remain live until the beginning of the block.
1171 Likewise if FOO is not set at all. This is unnecessarily
1172 pessimistic, but it probably doesn't matter much in practice. */
1173 FOR_BB_INSNS_REVERSE (bb, insn)
1175 ira_allocno_t a;
1176 df_ref def, use;
1177 bool call_p;
1179 if (!NONDEBUG_INSN_P (insn))
1180 continue;
1182 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1183 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1184 INSN_UID (insn), loop_tree_node->parent->loop_num,
1185 curr_point);
1187 call_p = CALL_P (insn);
1188 ignore_reg_for_conflicts = non_conflicting_reg_copy_p (insn);
1190 /* Mark each defined value as live. We need to do this for
1191 unused values because they still conflict with quantities
1192 that are live at the time of the definition.
1194 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1195 references represent the effect of the called function
1196 on a call-clobbered register. Marking the register as
1197 live would stop us from allocating it to a call-crossing
1198 allocno. */
1199 FOR_EACH_INSN_DEF (def, insn)
1200 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1201 mark_ref_live (def);
1203 /* If INSN has multiple outputs, then any value used in one
1204 of the outputs conflicts with the other outputs. Model this
1205 by making the used value live during the output phase.
1207 It is unsafe to use !single_set here since it will ignore
1208 an unused output. Just because an output is unused does
1209 not mean the compiler can assume the side effect will not
1210 occur. Consider if ALLOCNO appears in the address of an
1211 output and we reload the output. If we allocate ALLOCNO
1212 to the same hard register as an unused output we could
1213 set the hard register before the output reload insn. */
1214 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1215 FOR_EACH_INSN_USE (use, insn)
1217 int i;
1218 rtx reg;
1220 reg = DF_REF_REG (use);
1221 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1223 rtx set;
1225 set = XVECEXP (PATTERN (insn), 0, i);
1226 if (GET_CODE (set) == SET
1227 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1229 /* After the previous loop, this is a no-op if
1230 REG is contained within SET_DEST (SET). */
1231 mark_ref_live (use);
1232 break;
1237 extract_insn (insn);
1238 preferred_alternatives = get_preferred_alternatives (insn);
1239 preprocess_constraints (insn);
1240 process_single_reg_class_operands (false, freq);
1242 /* See which defined values die here. */
1243 FOR_EACH_INSN_DEF (def, insn)
1244 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1245 mark_ref_dead (def);
1247 if (call_p)
1249 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1250 there, try to find a pseudo that is live across the call but
1251 can be cheaply reconstructed from the return value. */
1252 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1253 if (cheap_reg != NULL_RTX)
1254 add_reg_note (insn, REG_RETURNED, cheap_reg);
1256 last_call_num++;
1257 sparseset_clear (allocnos_processed);
1258 /* The current set of live allocnos are live across the call. */
1259 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1261 ira_object_t obj = ira_object_id_map[i];
1262 a = OBJECT_ALLOCNO (obj);
1263 int num = ALLOCNO_NUM (a);
1264 HARD_REG_SET this_call_used_reg_set;
1266 get_call_reg_set_usage (insn, &this_call_used_reg_set,
1267 call_used_reg_set);
1269 /* Don't allocate allocnos that cross setjmps or any
1270 call, if this function receives a nonlocal
1271 goto. */
1272 if (cfun->has_nonlocal_label
1273 || (!targetm.setjmp_preserves_nonvolatile_regs_p ()
1274 && (find_reg_note (insn, REG_SETJMP, NULL_RTX)
1275 != NULL_RTX)))
1277 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1278 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1280 if (can_throw_internal (insn))
1282 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1283 this_call_used_reg_set);
1284 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1285 this_call_used_reg_set);
1288 if (sparseset_bit_p (allocnos_processed, num))
1289 continue;
1290 sparseset_set_bit (allocnos_processed, num);
1292 if (allocno_saved_at_call[num] != last_call_num)
1293 /* Here we are mimicking caller-save.c behavior
1294 which does not save hard register at a call if
1295 it was saved on previous call in the same basic
1296 block and the hard register was not mentioned
1297 between the two calls. */
1298 ALLOCNO_CALL_FREQ (a) += freq;
1299 /* Mark it as saved at the next call. */
1300 allocno_saved_at_call[num] = last_call_num + 1;
1301 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1302 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1303 this_call_used_reg_set);
1304 if (cheap_reg != NULL_RTX
1305 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1306 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1310 make_early_clobber_and_input_conflicts ();
1312 curr_point++;
1314 /* Mark each used value as live. */
1315 FOR_EACH_INSN_USE (use, insn)
1316 mark_ref_live (use);
1318 process_single_reg_class_operands (true, freq);
1320 set_p = mark_hard_reg_early_clobbers (insn, true);
1322 if (set_p)
1324 mark_hard_reg_early_clobbers (insn, false);
1326 /* Mark each hard reg as live again. For example, a
1327 hard register can be in clobber and in an insn
1328 input. */
1329 FOR_EACH_INSN_USE (use, insn)
1331 rtx ureg = DF_REF_REG (use);
1333 if (GET_CODE (ureg) == SUBREG)
1334 ureg = SUBREG_REG (ureg);
1335 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1336 continue;
1338 mark_ref_live (use);
1342 curr_point++;
1344 ignore_reg_for_conflicts = NULL_RTX;
1346 if (bb_has_eh_pred (bb))
1347 for (j = 0; ; ++j)
1349 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1350 if (regno == INVALID_REGNUM)
1351 break;
1352 make_hard_regno_live (regno);
1355 /* Allocnos can't go in stack regs at the start of a basic block
1356 that is reached by an abnormal edge. Likewise for call
1357 clobbered regs, because caller-save, fixup_abnormal_edges and
1358 possibly the table driven EH machinery are not quite ready to
1359 handle such allocnos live across such edges. */
1360 if (bb_has_abnormal_pred (bb))
1362 #ifdef STACK_REGS
1363 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1365 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1367 ALLOCNO_NO_STACK_REG_P (a) = true;
1368 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1370 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1371 make_hard_regno_live (px);
1372 #endif
1373 /* No need to record conflicts for call clobbered regs if we
1374 have nonlocal labels around, as we don't ever try to
1375 allocate such regs in this case. */
1376 if (!cfun->has_nonlocal_label
1377 && has_abnormal_call_or_eh_pred_edge_p (bb))
1378 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1379 if (call_used_regs[px]
1380 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1381 /* We should create a conflict of PIC pseudo with
1382 PIC hard reg as PIC hard reg can have a wrong
1383 value after jump described by the abnormal edge.
1384 In this case we can not allocate PIC hard reg to
1385 PIC pseudo as PIC pseudo will also have a wrong
1386 value. This code is not critical as LRA can fix
1387 it but it is better to have the right allocation
1388 earlier. */
1389 || (px == REAL_PIC_OFFSET_TABLE_REGNUM
1390 && pic_offset_table_rtx != NULL_RTX
1391 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
1392 #endif
1394 make_hard_regno_live (px);
1397 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1398 make_object_dead (ira_object_id_map[i]);
1400 curr_point++;
1403 /* Propagate register pressure to upper loop tree nodes. */
1404 if (loop_tree_node != ira_loop_tree_root)
1405 for (i = 0; i < ira_pressure_classes_num; i++)
1407 enum reg_class pclass;
1409 pclass = ira_pressure_classes[i];
1410 if (loop_tree_node->reg_pressure[pclass]
1411 > loop_tree_node->parent->reg_pressure[pclass])
1412 loop_tree_node->parent->reg_pressure[pclass]
1413 = loop_tree_node->reg_pressure[pclass];
1417 /* Create and set up IRA_START_POINT_RANGES and
1418 IRA_FINISH_POINT_RANGES. */
1419 static void
1420 create_start_finish_chains (void)
1422 ira_object_t obj;
1423 ira_object_iterator oi;
1424 live_range_t r;
1426 ira_start_point_ranges
1427 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1428 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1429 ira_finish_point_ranges
1430 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1431 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1432 FOR_EACH_OBJECT (obj, oi)
1433 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1435 r->start_next = ira_start_point_ranges[r->start];
1436 ira_start_point_ranges[r->start] = r;
1437 r->finish_next = ira_finish_point_ranges[r->finish];
1438 ira_finish_point_ranges[r->finish] = r;
1442 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1443 new live ranges and program points were added as a result if new
1444 insn generation. */
1445 void
1446 ira_rebuild_start_finish_chains (void)
1448 ira_free (ira_finish_point_ranges);
1449 ira_free (ira_start_point_ranges);
1450 create_start_finish_chains ();
1453 /* Compress allocno live ranges by removing program points where
1454 nothing happens. */
1455 static void
1456 remove_some_program_points_and_update_live_ranges (void)
1458 unsigned i;
1459 int n;
1460 int *map;
1461 ira_object_t obj;
1462 ira_object_iterator oi;
1463 live_range_t r, prev_r, next_r;
1464 sbitmap_iterator sbi;
1465 bool born_p, dead_p, prev_born_p, prev_dead_p;
1467 auto_sbitmap born (ira_max_point);
1468 auto_sbitmap dead (ira_max_point);
1469 bitmap_clear (born);
1470 bitmap_clear (dead);
1471 FOR_EACH_OBJECT (obj, oi)
1472 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1474 ira_assert (r->start <= r->finish);
1475 bitmap_set_bit (born, r->start);
1476 bitmap_set_bit (dead, r->finish);
1479 auto_sbitmap born_or_dead (ira_max_point);
1480 bitmap_ior (born_or_dead, born, dead);
1481 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1482 n = -1;
1483 prev_born_p = prev_dead_p = false;
1484 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
1486 born_p = bitmap_bit_p (born, i);
1487 dead_p = bitmap_bit_p (dead, i);
1488 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1489 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1490 map[i] = n;
1491 else
1492 map[i] = ++n;
1493 prev_born_p = born_p;
1494 prev_dead_p = dead_p;
1497 n++;
1498 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1499 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1500 ira_max_point, n, 100 * n / ira_max_point);
1501 ira_max_point = n;
1503 FOR_EACH_OBJECT (obj, oi)
1504 for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
1506 next_r = r->next;
1507 r->start = map[r->start];
1508 r->finish = map[r->finish];
1509 if (prev_r == NULL || prev_r->start > r->finish + 1)
1511 prev_r = r;
1512 continue;
1514 prev_r->start = r->start;
1515 prev_r->next = next_r;
1516 ira_finish_live_range (r);
1519 ira_free (map);
1522 /* Print live ranges R to file F. */
1523 void
1524 ira_print_live_range_list (FILE *f, live_range_t r)
1526 for (; r != NULL; r = r->next)
1527 fprintf (f, " [%d..%d]", r->start, r->finish);
1528 fprintf (f, "\n");
1531 DEBUG_FUNCTION void
1532 debug (live_range &ref)
1534 ira_print_live_range_list (stderr, &ref);
1537 DEBUG_FUNCTION void
1538 debug (live_range *ptr)
1540 if (ptr)
1541 debug (*ptr);
1542 else
1543 fprintf (stderr, "<nil>\n");
1546 /* Print live ranges R to stderr. */
1547 void
1548 ira_debug_live_range_list (live_range_t r)
1550 ira_print_live_range_list (stderr, r);
1553 /* Print live ranges of object OBJ to file F. */
1554 static void
1555 print_object_live_ranges (FILE *f, ira_object_t obj)
1557 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1560 /* Print live ranges of allocno A to file F. */
1561 static void
1562 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1564 int n = ALLOCNO_NUM_OBJECTS (a);
1565 int i;
1567 for (i = 0; i < n; i++)
1569 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1570 if (n > 1)
1571 fprintf (f, " [%d]", i);
1572 fprintf (f, "):");
1573 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1577 /* Print live ranges of allocno A to stderr. */
1578 void
1579 ira_debug_allocno_live_ranges (ira_allocno_t a)
1581 print_allocno_live_ranges (stderr, a);
1584 /* Print live ranges of all allocnos to file F. */
1585 static void
1586 print_live_ranges (FILE *f)
1588 ira_allocno_t a;
1589 ira_allocno_iterator ai;
1591 FOR_EACH_ALLOCNO (a, ai)
1592 print_allocno_live_ranges (f, a);
1595 /* Print live ranges of all allocnos to stderr. */
1596 void
1597 ira_debug_live_ranges (void)
1599 print_live_ranges (stderr);
1602 /* The main entry function creates live ranges, set up
1603 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1604 calculate register pressure info. */
1605 void
1606 ira_create_allocno_live_ranges (void)
1608 objects_live = sparseset_alloc (ira_objects_num);
1609 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1610 curr_point = 0;
1611 last_call_num = 0;
1612 allocno_saved_at_call
1613 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1614 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1615 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1616 process_bb_node_lives);
1617 ira_max_point = curr_point;
1618 create_start_finish_chains ();
1619 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1620 print_live_ranges (ira_dump_file);
1621 /* Clean up. */
1622 ira_free (allocno_saved_at_call);
1623 sparseset_free (objects_live);
1624 sparseset_free (allocnos_processed);
1627 /* Compress allocno live ranges. */
1628 void
1629 ira_compress_allocno_live_ranges (void)
1631 remove_some_program_points_and_update_live_ranges ();
1632 ira_rebuild_start_finish_chains ();
1633 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1635 fprintf (ira_dump_file, "Ranges after the compression:\n");
1636 print_live_ranges (ira_dump_file);
1640 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1641 void
1642 ira_finish_allocno_live_ranges (void)
1644 ira_free (ira_finish_point_ranges);
1645 ira_free (ira_start_point_ranges);