PR rtl-optimization/88470
[official-gcc.git] / gcc / alias.c
blob835ac82ae8222eaa33f699a3480a4a4409eb0be3
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2018 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
43 /* The aliasing API provided here solves related but different problems:
45 Say there exists (in c)
47 struct X {
48 struct Y y1;
49 struct Z z2;
50 } x1, *px1, *px2;
52 struct Y y2, *py;
53 struct Z z2, *pz;
56 py = &x1.y1;
57 px2 = &x1;
59 Consider the four questions:
61 Can a store to x1 interfere with px2->y1?
62 Can a store to x1 interfere with px2->z2?
63 Can a store to x1 change the value pointed to by with py?
64 Can a store to x1 change the value pointed to by with pz?
66 The answer to these questions can be yes, yes, yes, and maybe.
68 The first two questions can be answered with a simple examination
69 of the type system. If structure X contains a field of type Y then
70 a store through a pointer to an X can overwrite any field that is
71 contained (recursively) in an X (unless we know that px1 != px2).
73 The last two questions can be solved in the same way as the first
74 two questions but this is too conservative. The observation is
75 that in some cases we can know which (if any) fields are addressed
76 and if those addresses are used in bad ways. This analysis may be
77 language specific. In C, arbitrary operations may be applied to
78 pointers. However, there is some indication that this may be too
79 conservative for some C++ types.
81 The pass ipa-type-escape does this analysis for the types whose
82 instances do not escape across the compilation boundary.
84 Historically in GCC, these two problems were combined and a single
85 data structure that was used to represent the solution to these
86 problems. We now have two similar but different data structures,
87 The data structure to solve the last two questions is similar to
88 the first, but does not contain the fields whose address are never
89 taken. For types that do escape the compilation unit, the data
90 structures will have identical information.
93 /* The alias sets assigned to MEMs assist the back-end in determining
94 which MEMs can alias which other MEMs. In general, two MEMs in
95 different alias sets cannot alias each other, with one important
96 exception. Consider something like:
98 struct S { int i; double d; };
100 a store to an `S' can alias something of either type `int' or type
101 `double'. (However, a store to an `int' cannot alias a `double'
102 and vice versa.) We indicate this via a tree structure that looks
103 like:
104 struct S
107 |/_ _\|
108 int double
110 (The arrows are directed and point downwards.)
111 In this situation we say the alias set for `struct S' is the
112 `superset' and that those for `int' and `double' are `subsets'.
114 To see whether two alias sets can point to the same memory, we must
115 see if either alias set is a subset of the other. We need not trace
116 past immediate descendants, however, since we propagate all
117 grandchildren up one level.
119 Alias set zero is implicitly a superset of all other alias sets.
120 However, this is no actual entry for alias set zero. It is an
121 error to attempt to explicitly construct a subset of zero. */
123 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
125 struct GTY(()) alias_set_entry {
126 /* The alias set number, as stored in MEM_ALIAS_SET. */
127 alias_set_type alias_set;
129 /* Nonzero if would have a child of zero: this effectively makes this
130 alias set the same as alias set zero. */
131 bool has_zero_child;
132 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
133 aggregate contaiing pointer.
134 This is used for a special case where we need an universal pointer type
135 compatible with all other pointer types. */
136 bool is_pointer;
137 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
138 bool has_pointer;
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
143 struct T { struct S s; float f; }
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 hash_map<alias_set_hash, int> *children;
150 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
151 static void record_set (rtx, const_rtx, void *);
152 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
153 machine_mode);
154 static rtx find_base_value (rtx);
155 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
156 static alias_set_entry *get_alias_set_entry (alias_set_type);
157 static tree decl_for_component_ref (tree);
158 static int write_dependence_p (const_rtx,
159 const_rtx, machine_mode, rtx,
160 bool, bool, bool);
161 static int compare_base_symbol_refs (const_rtx, const_rtx);
163 static void memory_modified_1 (rtx, const_rtx, void *);
165 /* Query statistics for the different low-level disambiguators.
166 A high-level query may trigger multiple of them. */
168 static struct {
169 unsigned long long num_alias_zero;
170 unsigned long long num_same_alias_set;
171 unsigned long long num_same_objects;
172 unsigned long long num_volatile;
173 unsigned long long num_dag;
174 unsigned long long num_universal;
175 unsigned long long num_disambiguated;
176 } alias_stats;
179 /* Set up all info needed to perform alias analysis on memory references. */
181 /* Returns the size in bytes of the mode of X. */
182 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains.
186 ??? 10 is a completely arbitrary choice. This should be based on the
187 maximum loop depth in the CFG, but we do not have this information
188 available (even if current_loops _is_ available). */
189 #define MAX_ALIAS_LOOP_PASSES 10
191 /* reg_base_value[N] gives an address to which register N is related.
192 If all sets after the first add or subtract to the current value
193 or otherwise modify it so it does not point to a different top level
194 object, reg_base_value[N] is equal to the address part of the source
195 of the first set.
197 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
198 expressions represent three types of base:
200 1. incoming arguments. There is just one ADDRESS to represent all
201 arguments, since we do not know at this level whether accesses
202 based on different arguments can alias. The ADDRESS has id 0.
204 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
205 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
206 Each of these rtxes has a separate ADDRESS associated with it,
207 each with a negative id.
209 GCC is (and is required to be) precise in which register it
210 chooses to access a particular region of stack. We can therefore
211 assume that accesses based on one of these rtxes do not alias
212 accesses based on another of these rtxes.
214 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
215 Each such piece of memory has a separate ADDRESS associated
216 with it, each with an id greater than 0.
218 Accesses based on one ADDRESS do not alias accesses based on other
219 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
220 alias globals either; the ADDRESSes have Pmode to indicate this.
221 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
222 indicate this. */
224 static GTY(()) vec<rtx, va_gc> *reg_base_value;
225 static rtx *new_reg_base_value;
227 /* The single VOIDmode ADDRESS that represents all argument bases.
228 It has id 0. */
229 static GTY(()) rtx arg_base_value;
231 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
232 static int unique_id;
234 /* We preserve the copy of old array around to avoid amount of garbage
235 produced. About 8% of garbage produced were attributed to this
236 array. */
237 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
239 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
240 registers. */
241 #define UNIQUE_BASE_VALUE_SP -1
242 #define UNIQUE_BASE_VALUE_ARGP -2
243 #define UNIQUE_BASE_VALUE_FP -3
244 #define UNIQUE_BASE_VALUE_HFP -4
246 #define static_reg_base_value \
247 (this_target_rtl->x_static_reg_base_value)
249 #define REG_BASE_VALUE(X) \
250 (REGNO (X) < vec_safe_length (reg_base_value) \
251 ? (*reg_base_value)[REGNO (X)] : 0)
253 /* Vector indexed by N giving the initial (unchanging) value known for
254 pseudo-register N. This vector is initialized in init_alias_analysis,
255 and does not change until end_alias_analysis is called. */
256 static GTY(()) vec<rtx, va_gc> *reg_known_value;
258 /* Vector recording for each reg_known_value whether it is due to a
259 REG_EQUIV note. Future passes (viz., reload) may replace the
260 pseudo with the equivalent expression and so we account for the
261 dependences that would be introduced if that happens.
263 The REG_EQUIV notes created in assign_parms may mention the arg
264 pointer, and there are explicit insns in the RTL that modify the
265 arg pointer. Thus we must ensure that such insns don't get
266 scheduled across each other because that would invalidate the
267 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
268 wrong, but solving the problem in the scheduler will likely give
269 better code, so we do it here. */
270 static sbitmap reg_known_equiv_p;
272 /* True when scanning insns from the start of the rtl to the
273 NOTE_INSN_FUNCTION_BEG note. */
274 static bool copying_arguments;
277 /* The splay-tree used to store the various alias set entries. */
278 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
280 /* Build a decomposed reference object for querying the alias-oracle
281 from the MEM rtx and store it in *REF.
282 Returns false if MEM is not suitable for the alias-oracle. */
284 static bool
285 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
287 tree expr = MEM_EXPR (mem);
288 tree base;
290 if (!expr)
291 return false;
293 ao_ref_init (ref, expr);
295 /* Get the base of the reference and see if we have to reject or
296 adjust it. */
297 base = ao_ref_base (ref);
298 if (base == NULL_TREE)
299 return false;
301 /* The tree oracle doesn't like bases that are neither decls
302 nor indirect references of SSA names. */
303 if (!(DECL_P (base)
304 || (TREE_CODE (base) == MEM_REF
305 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
306 || (TREE_CODE (base) == TARGET_MEM_REF
307 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
308 return false;
310 /* If this is a reference based on a partitioned decl replace the
311 base with a MEM_REF of the pointer representative we
312 created during stack slot partitioning. */
313 if (VAR_P (base)
314 && ! is_global_var (base)
315 && cfun->gimple_df->decls_to_pointers != NULL)
317 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
318 if (namep)
319 ref->base = build_simple_mem_ref (*namep);
322 ref->ref_alias_set = MEM_ALIAS_SET (mem);
324 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
325 is conservative, so trust it. */
326 if (!MEM_OFFSET_KNOWN_P (mem)
327 || !MEM_SIZE_KNOWN_P (mem))
328 return true;
330 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
331 drop ref->ref. */
332 if (maybe_lt (MEM_OFFSET (mem), 0)
333 || (ref->max_size_known_p ()
334 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
335 ref->max_size)))
336 ref->ref = NULL_TREE;
338 /* Refine size and offset we got from analyzing MEM_EXPR by using
339 MEM_SIZE and MEM_OFFSET. */
341 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
342 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
344 /* The MEM may extend into adjacent fields, so adjust max_size if
345 necessary. */
346 if (ref->max_size_known_p ())
347 ref->max_size = upper_bound (ref->max_size, ref->size);
349 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
350 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
351 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
352 && (maybe_lt (ref->offset, 0)
353 || (DECL_P (ref->base)
354 && (DECL_SIZE (ref->base) == NULL_TREE
355 || !poly_int_tree_p (DECL_SIZE (ref->base))
356 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
357 ref->offset + ref->size)))))
358 return false;
360 return true;
363 /* Query the alias-oracle on whether the two memory rtx X and MEM may
364 alias. If TBAA_P is set also apply TBAA. Returns true if the
365 two rtxen may alias, false otherwise. */
367 static bool
368 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
370 ao_ref ref1, ref2;
372 if (!ao_ref_from_mem (&ref1, x)
373 || !ao_ref_from_mem (&ref2, mem))
374 return true;
376 return refs_may_alias_p_1 (&ref1, &ref2,
377 tbaa_p
378 && MEM_ALIAS_SET (x) != 0
379 && MEM_ALIAS_SET (mem) != 0);
382 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
383 such an entry, or NULL otherwise. */
385 static inline alias_set_entry *
386 get_alias_set_entry (alias_set_type alias_set)
388 return (*alias_sets)[alias_set];
391 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
392 the two MEMs cannot alias each other. */
394 static inline int
395 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
397 return (flag_strict_aliasing
398 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
399 MEM_ALIAS_SET (mem2)));
402 /* Return true if the first alias set is a subset of the second. */
404 bool
405 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
407 alias_set_entry *ase2;
409 /* Disable TBAA oracle with !flag_strict_aliasing. */
410 if (!flag_strict_aliasing)
411 return true;
413 /* Everything is a subset of the "aliases everything" set. */
414 if (set2 == 0)
415 return true;
417 /* Check if set1 is a subset of set2. */
418 ase2 = get_alias_set_entry (set2);
419 if (ase2 != 0
420 && (ase2->has_zero_child
421 || (ase2->children && ase2->children->get (set1))))
422 return true;
424 /* As a special case we consider alias set of "void *" to be both subset
425 and superset of every alias set of a pointer. This extra symmetry does
426 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
427 to return true on the following testcase:
429 void *ptr;
430 char **ptr2=(char **)&ptr;
431 *ptr2 = ...
433 Additionally if a set contains universal pointer, we consider every pointer
434 to be a subset of it, but we do not represent this explicitely - doing so
435 would require us to update transitive closure each time we introduce new
436 pointer type. This makes aliasing_component_refs_p to return true
437 on the following testcase:
439 struct a {void *ptr;}
440 char **ptr = (char **)&a.ptr;
441 ptr = ...
443 This makes void * truly universal pointer type. See pointer handling in
444 get_alias_set for more details. */
445 if (ase2 && ase2->has_pointer)
447 alias_set_entry *ase1 = get_alias_set_entry (set1);
449 if (ase1 && ase1->is_pointer)
451 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
452 /* If one is ptr_type_node and other is pointer, then we consider
453 them subset of each other. */
454 if (set1 == voidptr_set || set2 == voidptr_set)
455 return true;
456 /* If SET2 contains universal pointer's alias set, then we consdier
457 every (non-universal) pointer. */
458 if (ase2->children && set1 != voidptr_set
459 && ase2->children->get (voidptr_set))
460 return true;
463 return false;
466 /* Return 1 if the two specified alias sets may conflict. */
469 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
471 alias_set_entry *ase1;
472 alias_set_entry *ase2;
474 /* The easy case. */
475 if (alias_sets_must_conflict_p (set1, set2))
476 return 1;
478 /* See if the first alias set is a subset of the second. */
479 ase1 = get_alias_set_entry (set1);
480 if (ase1 != 0
481 && ase1->children && ase1->children->get (set2))
483 ++alias_stats.num_dag;
484 return 1;
487 /* Now do the same, but with the alias sets reversed. */
488 ase2 = get_alias_set_entry (set2);
489 if (ase2 != 0
490 && ase2->children && ase2->children->get (set1))
492 ++alias_stats.num_dag;
493 return 1;
496 /* We want void * to be compatible with any other pointer without
497 really dropping it to alias set 0. Doing so would make it
498 compatible with all non-pointer types too.
500 This is not strictly necessary by the C/C++ language
501 standards, but avoids common type punning mistakes. In
502 addition to that, we need the existence of such universal
503 pointer to implement Fortran's C_PTR type (which is defined as
504 type compatible with all C pointers). */
505 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
507 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
509 /* If one of the sets corresponds to universal pointer,
510 we consider it to conflict with anything that is
511 or contains pointer. */
512 if (set1 == voidptr_set || set2 == voidptr_set)
514 ++alias_stats.num_universal;
515 return true;
517 /* If one of sets is (non-universal) pointer and the other
518 contains universal pointer, we also get conflict. */
519 if (ase1->is_pointer && set2 != voidptr_set
520 && ase2->children && ase2->children->get (voidptr_set))
522 ++alias_stats.num_universal;
523 return true;
525 if (ase2->is_pointer && set1 != voidptr_set
526 && ase1->children && ase1->children->get (voidptr_set))
528 ++alias_stats.num_universal;
529 return true;
533 ++alias_stats.num_disambiguated;
535 /* The two alias sets are distinct and neither one is the
536 child of the other. Therefore, they cannot conflict. */
537 return 0;
540 /* Return 1 if the two specified alias sets will always conflict. */
543 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
545 /* Disable TBAA oracle with !flag_strict_aliasing. */
546 if (!flag_strict_aliasing)
547 return 1;
548 if (set1 == 0 || set2 == 0)
550 ++alias_stats.num_alias_zero;
551 return 1;
553 if (set1 == set2)
555 ++alias_stats.num_same_alias_set;
556 return 1;
559 return 0;
562 /* Return 1 if any MEM object of type T1 will always conflict (using the
563 dependency routines in this file) with any MEM object of type T2.
564 This is used when allocating temporary storage. If T1 and/or T2 are
565 NULL_TREE, it means we know nothing about the storage. */
568 objects_must_conflict_p (tree t1, tree t2)
570 alias_set_type set1, set2;
572 /* If neither has a type specified, we don't know if they'll conflict
573 because we may be using them to store objects of various types, for
574 example the argument and local variables areas of inlined functions. */
575 if (t1 == 0 && t2 == 0)
576 return 0;
578 /* If they are the same type, they must conflict. */
579 if (t1 == t2)
581 ++alias_stats.num_same_objects;
582 return 1;
584 /* Likewise if both are volatile. */
585 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
587 ++alias_stats.num_volatile;
588 return 1;
591 set1 = t1 ? get_alias_set (t1) : 0;
592 set2 = t2 ? get_alias_set (t2) : 0;
594 /* We can't use alias_sets_conflict_p because we must make sure
595 that every subtype of t1 will conflict with every subtype of
596 t2 for which a pair of subobjects of these respective subtypes
597 overlaps on the stack. */
598 return alias_sets_must_conflict_p (set1, set2);
601 /* Return the outermost parent of component present in the chain of
602 component references handled by get_inner_reference in T with the
603 following property:
604 - the component is non-addressable
605 or NULL_TREE if no such parent exists. In the former cases, the alias
606 set of this parent is the alias set that must be used for T itself. */
608 tree
609 component_uses_parent_alias_set_from (const_tree t)
611 const_tree found = NULL_TREE;
613 while (handled_component_p (t))
615 switch (TREE_CODE (t))
617 case COMPONENT_REF:
618 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
619 found = t;
620 /* Permit type-punning when accessing a union, provided the access
621 is directly through the union. For example, this code does not
622 permit taking the address of a union member and then storing
623 through it. Even the type-punning allowed here is a GCC
624 extension, albeit a common and useful one; the C standard says
625 that such accesses have implementation-defined behavior. */
626 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
627 found = t;
628 break;
630 case ARRAY_REF:
631 case ARRAY_RANGE_REF:
632 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
633 found = t;
634 break;
636 case REALPART_EXPR:
637 case IMAGPART_EXPR:
638 break;
640 case BIT_FIELD_REF:
641 case VIEW_CONVERT_EXPR:
642 /* Bitfields and casts are never addressable. */
643 found = t;
644 break;
646 default:
647 gcc_unreachable ();
650 t = TREE_OPERAND (t, 0);
653 if (found)
654 return TREE_OPERAND (found, 0);
656 return NULL_TREE;
660 /* Return whether the pointer-type T effective for aliasing may
661 access everything and thus the reference has to be assigned
662 alias-set zero. */
664 static bool
665 ref_all_alias_ptr_type_p (const_tree t)
667 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
668 || TYPE_REF_CAN_ALIAS_ALL (t));
671 /* Return the alias set for the memory pointed to by T, which may be
672 either a type or an expression. Return -1 if there is nothing
673 special about dereferencing T. */
675 static alias_set_type
676 get_deref_alias_set_1 (tree t)
678 /* All we care about is the type. */
679 if (! TYPE_P (t))
680 t = TREE_TYPE (t);
682 /* If we have an INDIRECT_REF via a void pointer, we don't
683 know anything about what that might alias. Likewise if the
684 pointer is marked that way. */
685 if (ref_all_alias_ptr_type_p (t))
686 return 0;
688 return -1;
691 /* Return the alias set for the memory pointed to by T, which may be
692 either a type or an expression. */
694 alias_set_type
695 get_deref_alias_set (tree t)
697 /* If we're not doing any alias analysis, just assume everything
698 aliases everything else. */
699 if (!flag_strict_aliasing)
700 return 0;
702 alias_set_type set = get_deref_alias_set_1 (t);
704 /* Fall back to the alias-set of the pointed-to type. */
705 if (set == -1)
707 if (! TYPE_P (t))
708 t = TREE_TYPE (t);
709 set = get_alias_set (TREE_TYPE (t));
712 return set;
715 /* Return the pointer-type relevant for TBAA purposes from the
716 memory reference tree *T or NULL_TREE in which case *T is
717 adjusted to point to the outermost component reference that
718 can be used for assigning an alias set. */
720 static tree
721 reference_alias_ptr_type_1 (tree *t)
723 tree inner;
725 /* Get the base object of the reference. */
726 inner = *t;
727 while (handled_component_p (inner))
729 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
730 the type of any component references that wrap it to
731 determine the alias-set. */
732 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
733 *t = TREE_OPERAND (inner, 0);
734 inner = TREE_OPERAND (inner, 0);
737 /* Handle pointer dereferences here, they can override the
738 alias-set. */
739 if (INDIRECT_REF_P (inner)
740 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
741 return TREE_TYPE (TREE_OPERAND (inner, 0));
742 else if (TREE_CODE (inner) == TARGET_MEM_REF)
743 return TREE_TYPE (TMR_OFFSET (inner));
744 else if (TREE_CODE (inner) == MEM_REF
745 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
746 return TREE_TYPE (TREE_OPERAND (inner, 1));
748 /* If the innermost reference is a MEM_REF that has a
749 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
750 using the memory access type for determining the alias-set. */
751 if (TREE_CODE (inner) == MEM_REF
752 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
753 != TYPE_MAIN_VARIANT
754 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
755 return TREE_TYPE (TREE_OPERAND (inner, 1));
757 /* Otherwise, pick up the outermost object that we could have
758 a pointer to. */
759 tree tem = component_uses_parent_alias_set_from (*t);
760 if (tem)
761 *t = tem;
763 return NULL_TREE;
766 /* Return the pointer-type relevant for TBAA purposes from the
767 gimple memory reference tree T. This is the type to be used for
768 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
769 and guarantees that get_alias_set will return the same alias
770 set for T and the replacement. */
772 tree
773 reference_alias_ptr_type (tree t)
775 /* If the frontend assigns this alias-set zero, preserve that. */
776 if (lang_hooks.get_alias_set (t) == 0)
777 return ptr_type_node;
779 tree ptype = reference_alias_ptr_type_1 (&t);
780 /* If there is a given pointer type for aliasing purposes, return it. */
781 if (ptype != NULL_TREE)
782 return ptype;
784 /* Otherwise build one from the outermost component reference we
785 may use. */
786 if (TREE_CODE (t) == MEM_REF
787 || TREE_CODE (t) == TARGET_MEM_REF)
788 return TREE_TYPE (TREE_OPERAND (t, 1));
789 else
790 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
793 /* Return whether the pointer-types T1 and T2 used to determine
794 two alias sets of two references will yield the same answer
795 from get_deref_alias_set. */
797 bool
798 alias_ptr_types_compatible_p (tree t1, tree t2)
800 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
801 return true;
803 if (ref_all_alias_ptr_type_p (t1)
804 || ref_all_alias_ptr_type_p (t2))
805 return false;
807 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
808 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
811 /* Create emptry alias set entry. */
813 alias_set_entry *
814 init_alias_set_entry (alias_set_type set)
816 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
817 ase->alias_set = set;
818 ase->children = NULL;
819 ase->has_zero_child = false;
820 ase->is_pointer = false;
821 ase->has_pointer = false;
822 gcc_checking_assert (!get_alias_set_entry (set));
823 (*alias_sets)[set] = ase;
824 return ase;
827 /* Return the alias set for T, which may be either a type or an
828 expression. Call language-specific routine for help, if needed. */
830 alias_set_type
831 get_alias_set (tree t)
833 alias_set_type set;
835 /* We can not give up with -fno-strict-aliasing because we need to build
836 proper type representation for possible functions which are build with
837 -fstrict-aliasing. */
839 /* return 0 if this or its type is an error. */
840 if (t == error_mark_node
841 || (! TYPE_P (t)
842 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
843 return 0;
845 /* We can be passed either an expression or a type. This and the
846 language-specific routine may make mutually-recursive calls to each other
847 to figure out what to do. At each juncture, we see if this is a tree
848 that the language may need to handle specially. First handle things that
849 aren't types. */
850 if (! TYPE_P (t))
852 /* Give the language a chance to do something with this tree
853 before we look at it. */
854 STRIP_NOPS (t);
855 set = lang_hooks.get_alias_set (t);
856 if (set != -1)
857 return set;
859 /* Get the alias pointer-type to use or the outermost object
860 that we could have a pointer to. */
861 tree ptype = reference_alias_ptr_type_1 (&t);
862 if (ptype != NULL)
863 return get_deref_alias_set (ptype);
865 /* If we've already determined the alias set for a decl, just return
866 it. This is necessary for C++ anonymous unions, whose component
867 variables don't look like union members (boo!). */
868 if (VAR_P (t)
869 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
870 return MEM_ALIAS_SET (DECL_RTL (t));
872 /* Now all we care about is the type. */
873 t = TREE_TYPE (t);
876 /* Variant qualifiers don't affect the alias set, so get the main
877 variant. */
878 t = TYPE_MAIN_VARIANT (t);
880 if (AGGREGATE_TYPE_P (t)
881 && TYPE_TYPELESS_STORAGE (t))
882 return 0;
884 /* Always use the canonical type as well. If this is a type that
885 requires structural comparisons to identify compatible types
886 use alias set zero. */
887 if (TYPE_STRUCTURAL_EQUALITY_P (t))
889 /* Allow the language to specify another alias set for this
890 type. */
891 set = lang_hooks.get_alias_set (t);
892 if (set != -1)
893 return set;
894 /* Handle structure type equality for pointer types, arrays and vectors.
895 This is easy to do, because the code bellow ignore canonical types on
896 these anyway. This is important for LTO, where TYPE_CANONICAL for
897 pointers can not be meaningfuly computed by the frotnend. */
898 if (canonical_type_used_p (t))
900 /* In LTO we set canonical types for all types where it makes
901 sense to do so. Double check we did not miss some type. */
902 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
903 return 0;
906 else
908 t = TYPE_CANONICAL (t);
909 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
912 /* If this is a type with a known alias set, return it. */
913 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
914 if (TYPE_ALIAS_SET_KNOWN_P (t))
915 return TYPE_ALIAS_SET (t);
917 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
918 if (!COMPLETE_TYPE_P (t))
920 /* For arrays with unknown size the conservative answer is the
921 alias set of the element type. */
922 if (TREE_CODE (t) == ARRAY_TYPE)
923 return get_alias_set (TREE_TYPE (t));
925 /* But return zero as a conservative answer for incomplete types. */
926 return 0;
929 /* See if the language has special handling for this type. */
930 set = lang_hooks.get_alias_set (t);
931 if (set != -1)
932 return set;
934 /* There are no objects of FUNCTION_TYPE, so there's no point in
935 using up an alias set for them. (There are, of course, pointers
936 and references to functions, but that's different.) */
937 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
938 set = 0;
940 /* Unless the language specifies otherwise, let vector types alias
941 their components. This avoids some nasty type punning issues in
942 normal usage. And indeed lets vectors be treated more like an
943 array slice. */
944 else if (TREE_CODE (t) == VECTOR_TYPE)
945 set = get_alias_set (TREE_TYPE (t));
947 /* Unless the language specifies otherwise, treat array types the
948 same as their components. This avoids the asymmetry we get
949 through recording the components. Consider accessing a
950 character(kind=1) through a reference to a character(kind=1)[1:1].
951 Or consider if we want to assign integer(kind=4)[0:D.1387] and
952 integer(kind=4)[4] the same alias set or not.
953 Just be pragmatic here and make sure the array and its element
954 type get the same alias set assigned. */
955 else if (TREE_CODE (t) == ARRAY_TYPE
956 && (!TYPE_NONALIASED_COMPONENT (t)
957 || TYPE_STRUCTURAL_EQUALITY_P (t)))
958 set = get_alias_set (TREE_TYPE (t));
960 /* From the former common C and C++ langhook implementation:
962 Unfortunately, there is no canonical form of a pointer type.
963 In particular, if we have `typedef int I', then `int *', and
964 `I *' are different types. So, we have to pick a canonical
965 representative. We do this below.
967 Technically, this approach is actually more conservative that
968 it needs to be. In particular, `const int *' and `int *'
969 should be in different alias sets, according to the C and C++
970 standard, since their types are not the same, and so,
971 technically, an `int **' and `const int **' cannot point at
972 the same thing.
974 But, the standard is wrong. In particular, this code is
975 legal C++:
977 int *ip;
978 int **ipp = &ip;
979 const int* const* cipp = ipp;
980 And, it doesn't make sense for that to be legal unless you
981 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
982 the pointed-to types. This issue has been reported to the
983 C++ committee.
985 For this reason go to canonical type of the unqalified pointer type.
986 Until GCC 6 this code set all pointers sets to have alias set of
987 ptr_type_node but that is a bad idea, because it prevents disabiguations
988 in between pointers. For Firefox this accounts about 20% of all
989 disambiguations in the program. */
990 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
992 tree p;
993 auto_vec <bool, 8> reference;
995 /* Unnest all pointers and references.
996 We also want to make pointer to array/vector equivalent to pointer to
997 its element (see the reasoning above). Skip all those types, too. */
998 for (p = t; POINTER_TYPE_P (p)
999 || (TREE_CODE (p) == ARRAY_TYPE
1000 && (!TYPE_NONALIASED_COMPONENT (p)
1001 || !COMPLETE_TYPE_P (p)
1002 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1003 || TREE_CODE (p) == VECTOR_TYPE;
1004 p = TREE_TYPE (p))
1006 /* Ada supports recusive pointers. Instead of doing recrusion check
1007 just give up once the preallocated space of 8 elements is up.
1008 In this case just punt to void * alias set. */
1009 if (reference.length () == 8)
1011 p = ptr_type_node;
1012 break;
1014 if (TREE_CODE (p) == REFERENCE_TYPE)
1015 /* In LTO we want languages that use references to be compatible
1016 with languages that use pointers. */
1017 reference.safe_push (true && !in_lto_p);
1018 if (TREE_CODE (p) == POINTER_TYPE)
1019 reference.safe_push (false);
1021 p = TYPE_MAIN_VARIANT (p);
1023 /* Make void * compatible with char * and also void **.
1024 Programs are commonly violating TBAA by this.
1026 We also make void * to conflict with every pointer
1027 (see record_component_aliases) and thus it is safe it to use it for
1028 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1029 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1030 set = get_alias_set (ptr_type_node);
1031 else
1033 /* Rebuild pointer type starting from canonical types using
1034 unqualified pointers and references only. This way all such
1035 pointers will have the same alias set and will conflict with
1036 each other.
1038 Most of time we already have pointers or references of a given type.
1039 If not we build new one just to be sure that if someone later
1040 (probably only middle-end can, as we should assign all alias
1041 classes only after finishing translation unit) builds the pointer
1042 type, the canonical type will match. */
1043 p = TYPE_CANONICAL (p);
1044 while (!reference.is_empty ())
1046 if (reference.pop ())
1047 p = build_reference_type (p);
1048 else
1049 p = build_pointer_type (p);
1050 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1051 /* build_pointer_type should always return the canonical type.
1052 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1053 them. Be sure that frontends do not glob canonical types of
1054 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1055 in all other cases. */
1056 gcc_checking_assert (!TYPE_CANONICAL (p)
1057 || p == TYPE_CANONICAL (p));
1060 /* Assign the alias set to both p and t.
1061 We can not call get_alias_set (p) here as that would trigger
1062 infinite recursion when p == t. In other cases it would just
1063 trigger unnecesary legwork of rebuilding the pointer again. */
1064 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1065 if (TYPE_ALIAS_SET_KNOWN_P (p))
1066 set = TYPE_ALIAS_SET (p);
1067 else
1069 set = new_alias_set ();
1070 TYPE_ALIAS_SET (p) = set;
1074 /* Alias set of ptr_type_node is special and serve as universal pointer which
1075 is TBAA compatible with every other pointer type. Be sure we have the
1076 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1077 of pointer types NULL. */
1078 else if (t == ptr_type_node)
1079 set = new_alias_set ();
1081 /* Otherwise make a new alias set for this type. */
1082 else
1084 /* Each canonical type gets its own alias set, so canonical types
1085 shouldn't form a tree. It doesn't really matter for types
1086 we handle specially above, so only check it where it possibly
1087 would result in a bogus alias set. */
1088 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1090 set = new_alias_set ();
1093 TYPE_ALIAS_SET (t) = set;
1095 /* If this is an aggregate type or a complex type, we must record any
1096 component aliasing information. */
1097 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1098 record_component_aliases (t);
1100 /* We treat pointer types specially in alias_set_subset_of. */
1101 if (POINTER_TYPE_P (t) && set)
1103 alias_set_entry *ase = get_alias_set_entry (set);
1104 if (!ase)
1105 ase = init_alias_set_entry (set);
1106 ase->is_pointer = true;
1107 ase->has_pointer = true;
1110 return set;
1113 /* Return a brand-new alias set. */
1115 alias_set_type
1116 new_alias_set (void)
1118 if (alias_sets == 0)
1119 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1120 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1121 return alias_sets->length () - 1;
1124 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1125 not everything that aliases SUPERSET also aliases SUBSET. For example,
1126 in C, a store to an `int' can alias a load of a structure containing an
1127 `int', and vice versa. But it can't alias a load of a 'double' member
1128 of the same structure. Here, the structure would be the SUPERSET and
1129 `int' the SUBSET. This relationship is also described in the comment at
1130 the beginning of this file.
1132 This function should be called only once per SUPERSET/SUBSET pair.
1134 It is illegal for SUPERSET to be zero; everything is implicitly a
1135 subset of alias set zero. */
1137 void
1138 record_alias_subset (alias_set_type superset, alias_set_type subset)
1140 alias_set_entry *superset_entry;
1141 alias_set_entry *subset_entry;
1143 /* It is possible in complex type situations for both sets to be the same,
1144 in which case we can ignore this operation. */
1145 if (superset == subset)
1146 return;
1148 gcc_assert (superset);
1150 superset_entry = get_alias_set_entry (superset);
1151 if (superset_entry == 0)
1153 /* Create an entry for the SUPERSET, so that we have a place to
1154 attach the SUBSET. */
1155 superset_entry = init_alias_set_entry (superset);
1158 if (subset == 0)
1159 superset_entry->has_zero_child = 1;
1160 else
1162 subset_entry = get_alias_set_entry (subset);
1163 if (!superset_entry->children)
1164 superset_entry->children
1165 = hash_map<alias_set_hash, int>::create_ggc (64);
1166 /* If there is an entry for the subset, enter all of its children
1167 (if they are not already present) as children of the SUPERSET. */
1168 if (subset_entry)
1170 if (subset_entry->has_zero_child)
1171 superset_entry->has_zero_child = true;
1172 if (subset_entry->has_pointer)
1173 superset_entry->has_pointer = true;
1175 if (subset_entry->children)
1177 hash_map<alias_set_hash, int>::iterator iter
1178 = subset_entry->children->begin ();
1179 for (; iter != subset_entry->children->end (); ++iter)
1180 superset_entry->children->put ((*iter).first, (*iter).second);
1184 /* Enter the SUBSET itself as a child of the SUPERSET. */
1185 superset_entry->children->put (subset, 0);
1189 /* Record that component types of TYPE, if any, are part of that type for
1190 aliasing purposes. For record types, we only record component types
1191 for fields that are not marked non-addressable. For array types, we
1192 only record the component type if it is not marked non-aliased. */
1194 void
1195 record_component_aliases (tree type)
1197 alias_set_type superset = get_alias_set (type);
1198 tree field;
1200 if (superset == 0)
1201 return;
1203 switch (TREE_CODE (type))
1205 case RECORD_TYPE:
1206 case UNION_TYPE:
1207 case QUAL_UNION_TYPE:
1208 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1209 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1211 /* LTO type merging does not make any difference between
1212 component pointer types. We may have
1214 struct foo {int *a;};
1216 as TYPE_CANONICAL of
1218 struct bar {float *a;};
1220 Because accesses to int * and float * do not alias, we would get
1221 false negative when accessing the same memory location by
1222 float ** and bar *. We thus record the canonical type as:
1224 struct {void *a;};
1226 void * is special cased and works as a universal pointer type.
1227 Accesses to it conflicts with accesses to any other pointer
1228 type. */
1229 tree t = TREE_TYPE (field);
1230 if (in_lto_p)
1232 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1233 element type and that type has to be normalized to void *,
1234 too, in the case it is a pointer. */
1235 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1237 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1238 t = TREE_TYPE (t);
1240 if (POINTER_TYPE_P (t))
1241 t = ptr_type_node;
1242 else if (flag_checking)
1243 gcc_checking_assert (get_alias_set (t)
1244 == get_alias_set (TREE_TYPE (field)));
1247 record_alias_subset (superset, get_alias_set (t));
1249 break;
1251 case COMPLEX_TYPE:
1252 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1253 break;
1255 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1256 element type. */
1258 default:
1259 break;
1263 /* Allocate an alias set for use in storing and reading from the varargs
1264 spill area. */
1266 static GTY(()) alias_set_type varargs_set = -1;
1268 alias_set_type
1269 get_varargs_alias_set (void)
1271 #if 1
1272 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1273 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1274 consistently use the varargs alias set for loads from the varargs
1275 area. So don't use it anywhere. */
1276 return 0;
1277 #else
1278 if (varargs_set == -1)
1279 varargs_set = new_alias_set ();
1281 return varargs_set;
1282 #endif
1285 /* Likewise, but used for the fixed portions of the frame, e.g., register
1286 save areas. */
1288 static GTY(()) alias_set_type frame_set = -1;
1290 alias_set_type
1291 get_frame_alias_set (void)
1293 if (frame_set == -1)
1294 frame_set = new_alias_set ();
1296 return frame_set;
1299 /* Create a new, unique base with id ID. */
1301 static rtx
1302 unique_base_value (HOST_WIDE_INT id)
1304 return gen_rtx_ADDRESS (Pmode, id);
1307 /* Return true if accesses based on any other base value cannot alias
1308 those based on X. */
1310 static bool
1311 unique_base_value_p (rtx x)
1313 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1316 /* Return true if X is known to be a base value. */
1318 static bool
1319 known_base_value_p (rtx x)
1321 switch (GET_CODE (x))
1323 case LABEL_REF:
1324 case SYMBOL_REF:
1325 return true;
1327 case ADDRESS:
1328 /* Arguments may or may not be bases; we don't know for sure. */
1329 return GET_MODE (x) != VOIDmode;
1331 default:
1332 return false;
1336 /* Inside SRC, the source of a SET, find a base address. */
1338 static rtx
1339 find_base_value (rtx src)
1341 unsigned int regno;
1342 scalar_int_mode int_mode;
1344 #if defined (FIND_BASE_TERM)
1345 /* Try machine-dependent ways to find the base term. */
1346 src = FIND_BASE_TERM (src);
1347 #endif
1349 switch (GET_CODE (src))
1351 case SYMBOL_REF:
1352 case LABEL_REF:
1353 return src;
1355 case REG:
1356 regno = REGNO (src);
1357 /* At the start of a function, argument registers have known base
1358 values which may be lost later. Returning an ADDRESS
1359 expression here allows optimization based on argument values
1360 even when the argument registers are used for other purposes. */
1361 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1362 return new_reg_base_value[regno];
1364 /* If a pseudo has a known base value, return it. Do not do this
1365 for non-fixed hard regs since it can result in a circular
1366 dependency chain for registers which have values at function entry.
1368 The test above is not sufficient because the scheduler may move
1369 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1370 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1371 && regno < vec_safe_length (reg_base_value))
1373 /* If we're inside init_alias_analysis, use new_reg_base_value
1374 to reduce the number of relaxation iterations. */
1375 if (new_reg_base_value && new_reg_base_value[regno]
1376 && DF_REG_DEF_COUNT (regno) == 1)
1377 return new_reg_base_value[regno];
1379 if ((*reg_base_value)[regno])
1380 return (*reg_base_value)[regno];
1383 return 0;
1385 case MEM:
1386 /* Check for an argument passed in memory. Only record in the
1387 copying-arguments block; it is too hard to track changes
1388 otherwise. */
1389 if (copying_arguments
1390 && (XEXP (src, 0) == arg_pointer_rtx
1391 || (GET_CODE (XEXP (src, 0)) == PLUS
1392 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1393 return arg_base_value;
1394 return 0;
1396 case CONST:
1397 src = XEXP (src, 0);
1398 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1399 break;
1401 /* fall through */
1403 case PLUS:
1404 case MINUS:
1406 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1408 /* If either operand is a REG that is a known pointer, then it
1409 is the base. */
1410 if (REG_P (src_0) && REG_POINTER (src_0))
1411 return find_base_value (src_0);
1412 if (REG_P (src_1) && REG_POINTER (src_1))
1413 return find_base_value (src_1);
1415 /* If either operand is a REG, then see if we already have
1416 a known value for it. */
1417 if (REG_P (src_0))
1419 temp = find_base_value (src_0);
1420 if (temp != 0)
1421 src_0 = temp;
1424 if (REG_P (src_1))
1426 temp = find_base_value (src_1);
1427 if (temp!= 0)
1428 src_1 = temp;
1431 /* If either base is named object or a special address
1432 (like an argument or stack reference), then use it for the
1433 base term. */
1434 if (src_0 != 0 && known_base_value_p (src_0))
1435 return src_0;
1437 if (src_1 != 0 && known_base_value_p (src_1))
1438 return src_1;
1440 /* Guess which operand is the base address:
1441 If either operand is a symbol, then it is the base. If
1442 either operand is a CONST_INT, then the other is the base. */
1443 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1444 return find_base_value (src_0);
1445 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1446 return find_base_value (src_1);
1448 return 0;
1451 case LO_SUM:
1452 /* The standard form is (lo_sum reg sym) so look only at the
1453 second operand. */
1454 return find_base_value (XEXP (src, 1));
1456 case AND:
1457 /* If the second operand is constant set the base
1458 address to the first operand. */
1459 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1460 return find_base_value (XEXP (src, 0));
1461 return 0;
1463 case TRUNCATE:
1464 /* As we do not know which address space the pointer is referring to, we can
1465 handle this only if the target does not support different pointer or
1466 address modes depending on the address space. */
1467 if (!target_default_pointer_address_modes_p ())
1468 break;
1469 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1470 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1471 break;
1472 /* Fall through. */
1473 case HIGH:
1474 case PRE_INC:
1475 case PRE_DEC:
1476 case POST_INC:
1477 case POST_DEC:
1478 case PRE_MODIFY:
1479 case POST_MODIFY:
1480 return find_base_value (XEXP (src, 0));
1482 case ZERO_EXTEND:
1483 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1484 /* As we do not know which address space the pointer is referring to, we can
1485 handle this only if the target does not support different pointer or
1486 address modes depending on the address space. */
1487 if (!target_default_pointer_address_modes_p ())
1488 break;
1491 rtx temp = find_base_value (XEXP (src, 0));
1493 if (temp != 0 && CONSTANT_P (temp))
1494 temp = convert_memory_address (Pmode, temp);
1496 return temp;
1499 default:
1500 break;
1503 return 0;
1506 /* Called from init_alias_analysis indirectly through note_stores,
1507 or directly if DEST is a register with a REG_NOALIAS note attached.
1508 SET is null in the latter case. */
1510 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1511 register N has been set in this function. */
1512 static sbitmap reg_seen;
1514 static void
1515 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1517 unsigned regno;
1518 rtx src;
1519 int n;
1521 if (!REG_P (dest))
1522 return;
1524 regno = REGNO (dest);
1526 gcc_checking_assert (regno < reg_base_value->length ());
1528 n = REG_NREGS (dest);
1529 if (n != 1)
1531 while (--n >= 0)
1533 bitmap_set_bit (reg_seen, regno + n);
1534 new_reg_base_value[regno + n] = 0;
1536 return;
1539 if (set)
1541 /* A CLOBBER wipes out any old value but does not prevent a previously
1542 unset register from acquiring a base address (i.e. reg_seen is not
1543 set). */
1544 if (GET_CODE (set) == CLOBBER)
1546 new_reg_base_value[regno] = 0;
1547 return;
1549 /* A CLOBBER_HIGH only wipes out the old value if the mode of the old
1550 value is greater than that of the clobber. */
1551 else if (GET_CODE (set) == CLOBBER_HIGH)
1553 if (new_reg_base_value[regno] != 0
1554 && reg_is_clobbered_by_clobber_high (
1555 regno, GET_MODE (new_reg_base_value[regno]), XEXP (set, 0)))
1556 new_reg_base_value[regno] = 0;
1557 return;
1560 src = SET_SRC (set);
1562 else
1564 /* There's a REG_NOALIAS note against DEST. */
1565 if (bitmap_bit_p (reg_seen, regno))
1567 new_reg_base_value[regno] = 0;
1568 return;
1570 bitmap_set_bit (reg_seen, regno);
1571 new_reg_base_value[regno] = unique_base_value (unique_id++);
1572 return;
1575 /* If this is not the first set of REGNO, see whether the new value
1576 is related to the old one. There are two cases of interest:
1578 (1) The register might be assigned an entirely new value
1579 that has the same base term as the original set.
1581 (2) The set might be a simple self-modification that
1582 cannot change REGNO's base value.
1584 If neither case holds, reject the original base value as invalid.
1585 Note that the following situation is not detected:
1587 extern int x, y; int *p = &x; p += (&y-&x);
1589 ANSI C does not allow computing the difference of addresses
1590 of distinct top level objects. */
1591 if (new_reg_base_value[regno] != 0
1592 && find_base_value (src) != new_reg_base_value[regno])
1593 switch (GET_CODE (src))
1595 case LO_SUM:
1596 case MINUS:
1597 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1598 new_reg_base_value[regno] = 0;
1599 break;
1600 case PLUS:
1601 /* If the value we add in the PLUS is also a valid base value,
1602 this might be the actual base value, and the original value
1603 an index. */
1605 rtx other = NULL_RTX;
1607 if (XEXP (src, 0) == dest)
1608 other = XEXP (src, 1);
1609 else if (XEXP (src, 1) == dest)
1610 other = XEXP (src, 0);
1612 if (! other || find_base_value (other))
1613 new_reg_base_value[regno] = 0;
1614 break;
1616 case AND:
1617 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1618 new_reg_base_value[regno] = 0;
1619 break;
1620 default:
1621 new_reg_base_value[regno] = 0;
1622 break;
1624 /* If this is the first set of a register, record the value. */
1625 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1626 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1627 new_reg_base_value[regno] = find_base_value (src);
1629 bitmap_set_bit (reg_seen, regno);
1632 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1633 using hard registers with non-null REG_BASE_VALUE for renaming. */
1635 get_reg_base_value (unsigned int regno)
1637 return (*reg_base_value)[regno];
1640 /* If a value is known for REGNO, return it. */
1643 get_reg_known_value (unsigned int regno)
1645 if (regno >= FIRST_PSEUDO_REGISTER)
1647 regno -= FIRST_PSEUDO_REGISTER;
1648 if (regno < vec_safe_length (reg_known_value))
1649 return (*reg_known_value)[regno];
1651 return NULL;
1654 /* Set it. */
1656 static void
1657 set_reg_known_value (unsigned int regno, rtx val)
1659 if (regno >= FIRST_PSEUDO_REGISTER)
1661 regno -= FIRST_PSEUDO_REGISTER;
1662 if (regno < vec_safe_length (reg_known_value))
1663 (*reg_known_value)[regno] = val;
1667 /* Similarly for reg_known_equiv_p. */
1669 bool
1670 get_reg_known_equiv_p (unsigned int regno)
1672 if (regno >= FIRST_PSEUDO_REGISTER)
1674 regno -= FIRST_PSEUDO_REGISTER;
1675 if (regno < vec_safe_length (reg_known_value))
1676 return bitmap_bit_p (reg_known_equiv_p, regno);
1678 return false;
1681 static void
1682 set_reg_known_equiv_p (unsigned int regno, bool val)
1684 if (regno >= FIRST_PSEUDO_REGISTER)
1686 regno -= FIRST_PSEUDO_REGISTER;
1687 if (regno < vec_safe_length (reg_known_value))
1689 if (val)
1690 bitmap_set_bit (reg_known_equiv_p, regno);
1691 else
1692 bitmap_clear_bit (reg_known_equiv_p, regno);
1698 /* Returns a canonical version of X, from the point of view alias
1699 analysis. (For example, if X is a MEM whose address is a register,
1700 and the register has a known value (say a SYMBOL_REF), then a MEM
1701 whose address is the SYMBOL_REF is returned.) */
1704 canon_rtx (rtx x)
1706 /* Recursively look for equivalences. */
1707 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1709 rtx t = get_reg_known_value (REGNO (x));
1710 if (t == x)
1711 return x;
1712 if (t)
1713 return canon_rtx (t);
1716 if (GET_CODE (x) == PLUS)
1718 rtx x0 = canon_rtx (XEXP (x, 0));
1719 rtx x1 = canon_rtx (XEXP (x, 1));
1721 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1722 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1725 /* This gives us much better alias analysis when called from
1726 the loop optimizer. Note we want to leave the original
1727 MEM alone, but need to return the canonicalized MEM with
1728 all the flags with their original values. */
1729 else if (MEM_P (x))
1730 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1732 return x;
1735 /* Return 1 if X and Y are identical-looking rtx's.
1736 Expect that X and Y has been already canonicalized.
1738 We use the data in reg_known_value above to see if two registers with
1739 different numbers are, in fact, equivalent. */
1741 static int
1742 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1744 int i;
1745 int j;
1746 enum rtx_code code;
1747 const char *fmt;
1749 if (x == 0 && y == 0)
1750 return 1;
1751 if (x == 0 || y == 0)
1752 return 0;
1754 if (x == y)
1755 return 1;
1757 code = GET_CODE (x);
1758 /* Rtx's of different codes cannot be equal. */
1759 if (code != GET_CODE (y))
1760 return 0;
1762 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1763 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1765 if (GET_MODE (x) != GET_MODE (y))
1766 return 0;
1768 /* Some RTL can be compared without a recursive examination. */
1769 switch (code)
1771 case REG:
1772 return REGNO (x) == REGNO (y);
1774 case LABEL_REF:
1775 return label_ref_label (x) == label_ref_label (y);
1777 case SYMBOL_REF:
1778 return compare_base_symbol_refs (x, y) == 1;
1780 case ENTRY_VALUE:
1781 /* This is magic, don't go through canonicalization et al. */
1782 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1784 case VALUE:
1785 CASE_CONST_UNIQUE:
1786 /* Pointer equality guarantees equality for these nodes. */
1787 return 0;
1789 default:
1790 break;
1793 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1794 if (code == PLUS)
1795 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1796 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1797 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1798 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1799 /* For commutative operations, the RTX match if the operand match in any
1800 order. Also handle the simple binary and unary cases without a loop. */
1801 if (COMMUTATIVE_P (x))
1803 rtx xop0 = canon_rtx (XEXP (x, 0));
1804 rtx yop0 = canon_rtx (XEXP (y, 0));
1805 rtx yop1 = canon_rtx (XEXP (y, 1));
1807 return ((rtx_equal_for_memref_p (xop0, yop0)
1808 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1809 || (rtx_equal_for_memref_p (xop0, yop1)
1810 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1812 else if (NON_COMMUTATIVE_P (x))
1814 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1815 canon_rtx (XEXP (y, 0)))
1816 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1817 canon_rtx (XEXP (y, 1))));
1819 else if (UNARY_P (x))
1820 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1821 canon_rtx (XEXP (y, 0)));
1823 /* Compare the elements. If any pair of corresponding elements
1824 fail to match, return 0 for the whole things.
1826 Limit cases to types which actually appear in addresses. */
1828 fmt = GET_RTX_FORMAT (code);
1829 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1831 switch (fmt[i])
1833 case 'i':
1834 if (XINT (x, i) != XINT (y, i))
1835 return 0;
1836 break;
1838 case 'p':
1839 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1840 return 0;
1841 break;
1843 case 'E':
1844 /* Two vectors must have the same length. */
1845 if (XVECLEN (x, i) != XVECLEN (y, i))
1846 return 0;
1848 /* And the corresponding elements must match. */
1849 for (j = 0; j < XVECLEN (x, i); j++)
1850 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1851 canon_rtx (XVECEXP (y, i, j))) == 0)
1852 return 0;
1853 break;
1855 case 'e':
1856 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1857 canon_rtx (XEXP (y, i))) == 0)
1858 return 0;
1859 break;
1861 /* This can happen for asm operands. */
1862 case 's':
1863 if (strcmp (XSTR (x, i), XSTR (y, i)))
1864 return 0;
1865 break;
1867 /* This can happen for an asm which clobbers memory. */
1868 case '0':
1869 break;
1871 /* It is believed that rtx's at this level will never
1872 contain anything but integers and other rtx's,
1873 except for within LABEL_REFs and SYMBOL_REFs. */
1874 default:
1875 gcc_unreachable ();
1878 return 1;
1881 static rtx
1882 find_base_term (rtx x, vec<std::pair<cselib_val *,
1883 struct elt_loc_list *> > &visited_vals)
1885 cselib_val *val;
1886 struct elt_loc_list *l, *f;
1887 rtx ret;
1888 scalar_int_mode int_mode;
1890 #if defined (FIND_BASE_TERM)
1891 /* Try machine-dependent ways to find the base term. */
1892 x = FIND_BASE_TERM (x);
1893 #endif
1895 switch (GET_CODE (x))
1897 case REG:
1898 return REG_BASE_VALUE (x);
1900 case TRUNCATE:
1901 /* As we do not know which address space the pointer is referring to, we can
1902 handle this only if the target does not support different pointer or
1903 address modes depending on the address space. */
1904 if (!target_default_pointer_address_modes_p ())
1905 return 0;
1906 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1907 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1908 return 0;
1909 /* Fall through. */
1910 case HIGH:
1911 case PRE_INC:
1912 case PRE_DEC:
1913 case POST_INC:
1914 case POST_DEC:
1915 case PRE_MODIFY:
1916 case POST_MODIFY:
1917 return find_base_term (XEXP (x, 0), visited_vals);
1919 case ZERO_EXTEND:
1920 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1921 /* As we do not know which address space the pointer is referring to, we can
1922 handle this only if the target does not support different pointer or
1923 address modes depending on the address space. */
1924 if (!target_default_pointer_address_modes_p ())
1925 return 0;
1928 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1930 if (temp != 0 && CONSTANT_P (temp))
1931 temp = convert_memory_address (Pmode, temp);
1933 return temp;
1936 case VALUE:
1937 val = CSELIB_VAL_PTR (x);
1938 ret = NULL_RTX;
1940 if (!val)
1941 return ret;
1943 if (cselib_sp_based_value_p (val))
1944 return static_reg_base_value[STACK_POINTER_REGNUM];
1946 f = val->locs;
1947 /* Reset val->locs to avoid infinite recursion. */
1948 if (f)
1949 visited_vals.safe_push (std::make_pair (val, f));
1950 val->locs = NULL;
1952 for (l = f; l; l = l->next)
1953 if (GET_CODE (l->loc) == VALUE
1954 && CSELIB_VAL_PTR (l->loc)->locs
1955 && !CSELIB_VAL_PTR (l->loc)->locs->next
1956 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1957 continue;
1958 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
1959 break;
1961 return ret;
1963 case LO_SUM:
1964 /* The standard form is (lo_sum reg sym) so look only at the
1965 second operand. */
1966 return find_base_term (XEXP (x, 1), visited_vals);
1968 case CONST:
1969 x = XEXP (x, 0);
1970 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1971 return 0;
1972 /* Fall through. */
1973 case PLUS:
1974 case MINUS:
1976 rtx tmp1 = XEXP (x, 0);
1977 rtx tmp2 = XEXP (x, 1);
1979 /* This is a little bit tricky since we have to determine which of
1980 the two operands represents the real base address. Otherwise this
1981 routine may return the index register instead of the base register.
1983 That may cause us to believe no aliasing was possible, when in
1984 fact aliasing is possible.
1986 We use a few simple tests to guess the base register. Additional
1987 tests can certainly be added. For example, if one of the operands
1988 is a shift or multiply, then it must be the index register and the
1989 other operand is the base register. */
1991 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1992 return find_base_term (tmp2, visited_vals);
1994 /* If either operand is known to be a pointer, then prefer it
1995 to determine the base term. */
1996 if (REG_P (tmp1) && REG_POINTER (tmp1))
1998 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1999 std::swap (tmp1, tmp2);
2000 /* If second argument is constant which has base term, prefer it
2001 over variable tmp1. See PR64025. */
2002 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2003 std::swap (tmp1, tmp2);
2005 /* Go ahead and find the base term for both operands. If either base
2006 term is from a pointer or is a named object or a special address
2007 (like an argument or stack reference), then use it for the
2008 base term. */
2009 rtx base = find_base_term (tmp1, visited_vals);
2010 if (base != NULL_RTX
2011 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2012 || known_base_value_p (base)))
2013 return base;
2014 base = find_base_term (tmp2, visited_vals);
2015 if (base != NULL_RTX
2016 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2017 || known_base_value_p (base)))
2018 return base;
2020 /* We could not determine which of the two operands was the
2021 base register and which was the index. So we can determine
2022 nothing from the base alias check. */
2023 return 0;
2026 case AND:
2027 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2028 return find_base_term (XEXP (x, 0), visited_vals);
2029 return 0;
2031 case SYMBOL_REF:
2032 case LABEL_REF:
2033 return x;
2035 default:
2036 return 0;
2040 /* Wrapper around the worker above which removes locs from visited VALUEs
2041 to avoid visiting them multiple times. We unwind that changes here. */
2043 static rtx
2044 find_base_term (rtx x)
2046 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2047 rtx res = find_base_term (x, visited_vals);
2048 for (unsigned i = 0; i < visited_vals.length (); ++i)
2049 visited_vals[i].first->locs = visited_vals[i].second;
2050 return res;
2053 /* Return true if accesses to address X may alias accesses based
2054 on the stack pointer. */
2056 bool
2057 may_be_sp_based_p (rtx x)
2059 rtx base = find_base_term (x);
2060 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2063 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2064 if they refer to different objects and -1 if we can not decide. */
2067 compare_base_decls (tree base1, tree base2)
2069 int ret;
2070 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2071 if (base1 == base2)
2072 return 1;
2074 /* If we have two register decls with register specification we
2075 cannot decide unless their assembler names are the same. */
2076 if (DECL_REGISTER (base1)
2077 && DECL_REGISTER (base2)
2078 && HAS_DECL_ASSEMBLER_NAME_P (base1)
2079 && HAS_DECL_ASSEMBLER_NAME_P (base2)
2080 && DECL_ASSEMBLER_NAME_SET_P (base1)
2081 && DECL_ASSEMBLER_NAME_SET_P (base2))
2083 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2084 return 1;
2085 return -1;
2088 /* Declarations of non-automatic variables may have aliases. All other
2089 decls are unique. */
2090 if (!decl_in_symtab_p (base1)
2091 || !decl_in_symtab_p (base2))
2092 return 0;
2094 /* Don't cause symbols to be inserted by the act of checking. */
2095 symtab_node *node1 = symtab_node::get (base1);
2096 if (!node1)
2097 return 0;
2098 symtab_node *node2 = symtab_node::get (base2);
2099 if (!node2)
2100 return 0;
2102 ret = node1->equal_address_to (node2, true);
2103 return ret;
2106 /* Same as compare_base_decls but for SYMBOL_REF. */
2108 static int
2109 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2111 tree x_decl = SYMBOL_REF_DECL (x_base);
2112 tree y_decl = SYMBOL_REF_DECL (y_base);
2113 bool binds_def = true;
2115 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2116 return 1;
2117 if (x_decl && y_decl)
2118 return compare_base_decls (x_decl, y_decl);
2119 if (x_decl || y_decl)
2121 if (!x_decl)
2123 std::swap (x_decl, y_decl);
2124 std::swap (x_base, y_base);
2126 /* We handle specially only section anchors and assume that other
2127 labels may overlap with user variables in an arbitrary way. */
2128 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2129 return -1;
2130 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2131 to ignore CONST_DECLs because they are readonly. */
2132 if (!VAR_P (x_decl)
2133 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2134 return 0;
2136 symtab_node *x_node = symtab_node::get_create (x_decl)
2137 ->ultimate_alias_target ();
2138 /* External variable can not be in section anchor. */
2139 if (!x_node->definition)
2140 return 0;
2141 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2142 /* If not in anchor, we can disambiguate. */
2143 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2144 return 0;
2146 /* We have an alias of anchored variable. If it can be interposed;
2147 we must assume it may or may not alias its anchor. */
2148 binds_def = decl_binds_to_current_def_p (x_decl);
2150 /* If we have variable in section anchor, we can compare by offset. */
2151 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2152 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2154 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2155 return 0;
2156 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2157 return binds_def ? 1 : -1;
2158 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2159 return -1;
2160 return 0;
2162 /* In general we assume that memory locations pointed to by different labels
2163 may overlap in undefined ways. */
2164 return -1;
2167 /* Return 0 if the addresses X and Y are known to point to different
2168 objects, 1 if they might be pointers to the same object. */
2170 static int
2171 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2172 machine_mode x_mode, machine_mode y_mode)
2174 /* If the address itself has no known base see if a known equivalent
2175 value has one. If either address still has no known base, nothing
2176 is known about aliasing. */
2177 if (x_base == 0)
2179 rtx x_c;
2181 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2182 return 1;
2184 x_base = find_base_term (x_c);
2185 if (x_base == 0)
2186 return 1;
2189 if (y_base == 0)
2191 rtx y_c;
2192 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2193 return 1;
2195 y_base = find_base_term (y_c);
2196 if (y_base == 0)
2197 return 1;
2200 /* If the base addresses are equal nothing is known about aliasing. */
2201 if (rtx_equal_p (x_base, y_base))
2202 return 1;
2204 /* The base addresses are different expressions. If they are not accessed
2205 via AND, there is no conflict. We can bring knowledge of object
2206 alignment into play here. For example, on alpha, "char a, b;" can
2207 alias one another, though "char a; long b;" cannot. AND addresses may
2208 implicitly alias surrounding objects; i.e. unaligned access in DImode
2209 via AND address can alias all surrounding object types except those
2210 with aligment 8 or higher. */
2211 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2212 return 1;
2213 if (GET_CODE (x) == AND
2214 && (!CONST_INT_P (XEXP (x, 1))
2215 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2216 return 1;
2217 if (GET_CODE (y) == AND
2218 && (!CONST_INT_P (XEXP (y, 1))
2219 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2220 return 1;
2222 /* Differing symbols not accessed via AND never alias. */
2223 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2224 return compare_base_symbol_refs (x_base, y_base) != 0;
2226 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2227 return 0;
2229 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2230 return 0;
2232 return 1;
2235 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2236 (or equal to) that of V. */
2238 static bool
2239 refs_newer_value_p (const_rtx expr, rtx v)
2241 int minuid = CSELIB_VAL_PTR (v)->uid;
2242 subrtx_iterator::array_type array;
2243 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2244 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2245 return true;
2246 return false;
2249 /* Convert the address X into something we can use. This is done by returning
2250 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2251 we call cselib to get a more useful rtx. */
2254 get_addr (rtx x)
2256 cselib_val *v;
2257 struct elt_loc_list *l;
2259 if (GET_CODE (x) != VALUE)
2261 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2262 && GET_CODE (XEXP (x, 0)) == VALUE
2263 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2265 rtx op0 = get_addr (XEXP (x, 0));
2266 if (op0 != XEXP (x, 0))
2268 poly_int64 c;
2269 if (GET_CODE (x) == PLUS
2270 && poly_int_rtx_p (XEXP (x, 1), &c))
2271 return plus_constant (GET_MODE (x), op0, c);
2272 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2273 op0, XEXP (x, 1));
2276 return x;
2278 v = CSELIB_VAL_PTR (x);
2279 if (v)
2281 bool have_equivs = cselib_have_permanent_equivalences ();
2282 if (have_equivs)
2283 v = canonical_cselib_val (v);
2284 for (l = v->locs; l; l = l->next)
2285 if (CONSTANT_P (l->loc))
2286 return l->loc;
2287 for (l = v->locs; l; l = l->next)
2288 if (!REG_P (l->loc) && !MEM_P (l->loc)
2289 /* Avoid infinite recursion when potentially dealing with
2290 var-tracking artificial equivalences, by skipping the
2291 equivalences themselves, and not choosing expressions
2292 that refer to newer VALUEs. */
2293 && (!have_equivs
2294 || (GET_CODE (l->loc) != VALUE
2295 && !refs_newer_value_p (l->loc, x))))
2296 return l->loc;
2297 if (have_equivs)
2299 for (l = v->locs; l; l = l->next)
2300 if (REG_P (l->loc)
2301 || (GET_CODE (l->loc) != VALUE
2302 && !refs_newer_value_p (l->loc, x)))
2303 return l->loc;
2304 /* Return the canonical value. */
2305 return v->val_rtx;
2307 if (v->locs)
2308 return v->locs->loc;
2310 return x;
2313 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2314 where SIZE is the size in bytes of the memory reference. If ADDR
2315 is not modified by the memory reference then ADDR is returned. */
2317 static rtx
2318 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2320 poly_int64 offset = 0;
2322 switch (GET_CODE (addr))
2324 case PRE_INC:
2325 offset = (n_refs + 1) * size;
2326 break;
2327 case PRE_DEC:
2328 offset = -(n_refs + 1) * size;
2329 break;
2330 case POST_INC:
2331 offset = n_refs * size;
2332 break;
2333 case POST_DEC:
2334 offset = -n_refs * size;
2335 break;
2337 default:
2338 return addr;
2341 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2342 addr = canon_rtx (addr);
2344 return addr;
2347 /* Return TRUE if an object X sized at XSIZE bytes and another object
2348 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2349 any of the sizes is zero, assume an overlap, otherwise use the
2350 absolute value of the sizes as the actual sizes. */
2352 static inline bool
2353 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2355 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2356 return true;
2358 if (maybe_ge (c, 0))
2359 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2360 else
2361 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2364 /* Return one if X and Y (memory addresses) reference the
2365 same location in memory or if the references overlap.
2366 Return zero if they do not overlap, else return
2367 minus one in which case they still might reference the same location.
2369 C is an offset accumulator. When
2370 C is nonzero, we are testing aliases between X and Y + C.
2371 XSIZE is the size in bytes of the X reference,
2372 similarly YSIZE is the size in bytes for Y.
2373 Expect that canon_rtx has been already called for X and Y.
2375 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2376 referenced (the reference was BLKmode), so make the most pessimistic
2377 assumptions.
2379 If XSIZE or YSIZE is negative, we may access memory outside the object
2380 being referenced as a side effect. This can happen when using AND to
2381 align memory references, as is done on the Alpha.
2383 Nice to notice that varying addresses cannot conflict with fp if no
2384 local variables had their addresses taken, but that's too hard now.
2386 ??? Contrary to the tree alias oracle this does not return
2387 one for X + non-constant and Y + non-constant when X and Y are equal.
2388 If that is fixed the TBAA hack for union type-punning can be removed. */
2390 static int
2391 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2392 poly_int64 c)
2394 if (GET_CODE (x) == VALUE)
2396 if (REG_P (y))
2398 struct elt_loc_list *l = NULL;
2399 if (CSELIB_VAL_PTR (x))
2400 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2401 l; l = l->next)
2402 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2403 break;
2404 if (l)
2405 x = y;
2406 else
2407 x = get_addr (x);
2409 /* Don't call get_addr if y is the same VALUE. */
2410 else if (x != y)
2411 x = get_addr (x);
2413 if (GET_CODE (y) == VALUE)
2415 if (REG_P (x))
2417 struct elt_loc_list *l = NULL;
2418 if (CSELIB_VAL_PTR (y))
2419 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2420 l; l = l->next)
2421 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2422 break;
2423 if (l)
2424 y = x;
2425 else
2426 y = get_addr (y);
2428 /* Don't call get_addr if x is the same VALUE. */
2429 else if (y != x)
2430 y = get_addr (y);
2432 if (GET_CODE (x) == HIGH)
2433 x = XEXP (x, 0);
2434 else if (GET_CODE (x) == LO_SUM)
2435 x = XEXP (x, 1);
2436 else
2437 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2438 if (GET_CODE (y) == HIGH)
2439 y = XEXP (y, 0);
2440 else if (GET_CODE (y) == LO_SUM)
2441 y = XEXP (y, 1);
2442 else
2443 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2445 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2447 int cmp = compare_base_symbol_refs (x,y);
2449 /* If both decls are the same, decide by offsets. */
2450 if (cmp == 1)
2451 return offset_overlap_p (c, xsize, ysize);
2452 /* Assume a potential overlap for symbolic addresses that went
2453 through alignment adjustments (i.e., that have negative
2454 sizes), because we can't know how far they are from each
2455 other. */
2456 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2457 return -1;
2458 /* If decls are different or we know by offsets that there is no overlap,
2459 we win. */
2460 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2461 return 0;
2462 /* Decls may or may not be different and offsets overlap....*/
2463 return -1;
2465 else if (rtx_equal_for_memref_p (x, y))
2467 return offset_overlap_p (c, xsize, ysize);
2470 /* This code used to check for conflicts involving stack references and
2471 globals but the base address alias code now handles these cases. */
2473 if (GET_CODE (x) == PLUS)
2475 /* The fact that X is canonicalized means that this
2476 PLUS rtx is canonicalized. */
2477 rtx x0 = XEXP (x, 0);
2478 rtx x1 = XEXP (x, 1);
2480 /* However, VALUEs might end up in different positions even in
2481 canonical PLUSes. Comparing their addresses is enough. */
2482 if (x0 == y)
2483 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2484 else if (x1 == y)
2485 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2487 poly_int64 cx1, cy1;
2488 if (GET_CODE (y) == PLUS)
2490 /* The fact that Y is canonicalized means that this
2491 PLUS rtx is canonicalized. */
2492 rtx y0 = XEXP (y, 0);
2493 rtx y1 = XEXP (y, 1);
2495 if (x0 == y1)
2496 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2497 if (x1 == y0)
2498 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2500 if (rtx_equal_for_memref_p (x1, y1))
2501 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2502 if (rtx_equal_for_memref_p (x0, y0))
2503 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2504 if (poly_int_rtx_p (x1, &cx1))
2506 if (poly_int_rtx_p (y1, &cy1))
2507 return memrefs_conflict_p (xsize, x0, ysize, y0,
2508 c - cx1 + cy1);
2509 else
2510 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2512 else if (poly_int_rtx_p (y1, &cy1))
2513 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2515 return -1;
2517 else if (poly_int_rtx_p (x1, &cx1))
2518 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2520 else if (GET_CODE (y) == PLUS)
2522 /* The fact that Y is canonicalized means that this
2523 PLUS rtx is canonicalized. */
2524 rtx y0 = XEXP (y, 0);
2525 rtx y1 = XEXP (y, 1);
2527 if (x == y0)
2528 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2529 if (x == y1)
2530 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2532 poly_int64 cy1;
2533 if (poly_int_rtx_p (y1, &cy1))
2534 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2535 else
2536 return -1;
2539 if (GET_CODE (x) == GET_CODE (y))
2540 switch (GET_CODE (x))
2542 case MULT:
2544 /* Handle cases where we expect the second operands to be the
2545 same, and check only whether the first operand would conflict
2546 or not. */
2547 rtx x0, y0;
2548 rtx x1 = canon_rtx (XEXP (x, 1));
2549 rtx y1 = canon_rtx (XEXP (y, 1));
2550 if (! rtx_equal_for_memref_p (x1, y1))
2551 return -1;
2552 x0 = canon_rtx (XEXP (x, 0));
2553 y0 = canon_rtx (XEXP (y, 0));
2554 if (rtx_equal_for_memref_p (x0, y0))
2555 return offset_overlap_p (c, xsize, ysize);
2557 /* Can't properly adjust our sizes. */
2558 poly_int64 c1;
2559 if (!poly_int_rtx_p (x1, &c1)
2560 || !can_div_trunc_p (xsize, c1, &xsize)
2561 || !can_div_trunc_p (ysize, c1, &ysize)
2562 || !can_div_trunc_p (c, c1, &c))
2563 return -1;
2564 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2567 default:
2568 break;
2571 /* Deal with alignment ANDs by adjusting offset and size so as to
2572 cover the maximum range, without taking any previously known
2573 alignment into account. Make a size negative after such an
2574 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2575 assume a potential overlap, because they may end up in contiguous
2576 memory locations and the stricter-alignment access may span over
2577 part of both. */
2578 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2580 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2581 unsigned HOST_WIDE_INT uc = sc;
2582 if (sc < 0 && pow2_or_zerop (-uc))
2584 if (maybe_gt (xsize, 0))
2585 xsize = -xsize;
2586 if (maybe_ne (xsize, 0))
2587 xsize += sc + 1;
2588 c -= sc + 1;
2589 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2590 ysize, y, c);
2593 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2595 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2596 unsigned HOST_WIDE_INT uc = sc;
2597 if (sc < 0 && pow2_or_zerop (-uc))
2599 if (maybe_gt (ysize, 0))
2600 ysize = -ysize;
2601 if (maybe_ne (ysize, 0))
2602 ysize += sc + 1;
2603 c += sc + 1;
2604 return memrefs_conflict_p (xsize, x,
2605 ysize, canon_rtx (XEXP (y, 0)), c);
2609 if (CONSTANT_P (x))
2611 poly_int64 cx, cy;
2612 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2614 c += cy - cx;
2615 return offset_overlap_p (c, xsize, ysize);
2618 if (GET_CODE (x) == CONST)
2620 if (GET_CODE (y) == CONST)
2621 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2622 ysize, canon_rtx (XEXP (y, 0)), c);
2623 else
2624 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2625 ysize, y, c);
2627 if (GET_CODE (y) == CONST)
2628 return memrefs_conflict_p (xsize, x, ysize,
2629 canon_rtx (XEXP (y, 0)), c);
2631 /* Assume a potential overlap for symbolic addresses that went
2632 through alignment adjustments (i.e., that have negative
2633 sizes), because we can't know how far they are from each
2634 other. */
2635 if (CONSTANT_P (y))
2636 return (maybe_lt (xsize, 0)
2637 || maybe_lt (ysize, 0)
2638 || offset_overlap_p (c, xsize, ysize));
2640 return -1;
2643 return -1;
2646 /* Functions to compute memory dependencies.
2648 Since we process the insns in execution order, we can build tables
2649 to keep track of what registers are fixed (and not aliased), what registers
2650 are varying in known ways, and what registers are varying in unknown
2651 ways.
2653 If both memory references are volatile, then there must always be a
2654 dependence between the two references, since their order can not be
2655 changed. A volatile and non-volatile reference can be interchanged
2656 though.
2658 We also must allow AND addresses, because they may generate accesses
2659 outside the object being referenced. This is used to generate aligned
2660 addresses from unaligned addresses, for instance, the alpha
2661 storeqi_unaligned pattern. */
2663 /* Read dependence: X is read after read in MEM takes place. There can
2664 only be a dependence here if both reads are volatile, or if either is
2665 an explicit barrier. */
2668 read_dependence (const_rtx mem, const_rtx x)
2670 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2671 return true;
2672 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2673 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2674 return true;
2675 return false;
2678 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2680 static tree
2681 decl_for_component_ref (tree x)
2685 x = TREE_OPERAND (x, 0);
2687 while (x && TREE_CODE (x) == COMPONENT_REF);
2689 return x && DECL_P (x) ? x : NULL_TREE;
2692 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2693 for the offset of the field reference. *KNOWN_P says whether the
2694 offset is known. */
2696 static void
2697 adjust_offset_for_component_ref (tree x, bool *known_p,
2698 poly_int64 *offset)
2700 if (!*known_p)
2701 return;
2704 tree xoffset = component_ref_field_offset (x);
2705 tree field = TREE_OPERAND (x, 1);
2706 if (!poly_int_tree_p (xoffset))
2708 *known_p = false;
2709 return;
2712 poly_offset_int woffset
2713 = (wi::to_poly_offset (xoffset)
2714 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2715 >> LOG2_BITS_PER_UNIT)
2716 + *offset);
2717 if (!woffset.to_shwi (offset))
2719 *known_p = false;
2720 return;
2723 x = TREE_OPERAND (x, 0);
2725 while (x && TREE_CODE (x) == COMPONENT_REF);
2728 /* Return nonzero if we can determine the exprs corresponding to memrefs
2729 X and Y and they do not overlap.
2730 If LOOP_VARIANT is set, skip offset-based disambiguation */
2733 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2735 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2736 rtx rtlx, rtly;
2737 rtx basex, basey;
2738 bool moffsetx_known_p, moffsety_known_p;
2739 poly_int64 moffsetx = 0, moffsety = 0;
2740 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2742 /* Unless both have exprs, we can't tell anything. */
2743 if (exprx == 0 || expry == 0)
2744 return 0;
2746 /* For spill-slot accesses make sure we have valid offsets. */
2747 if ((exprx == get_spill_slot_decl (false)
2748 && ! MEM_OFFSET_KNOWN_P (x))
2749 || (expry == get_spill_slot_decl (false)
2750 && ! MEM_OFFSET_KNOWN_P (y)))
2751 return 0;
2753 /* If the field reference test failed, look at the DECLs involved. */
2754 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2755 if (moffsetx_known_p)
2756 moffsetx = MEM_OFFSET (x);
2757 if (TREE_CODE (exprx) == COMPONENT_REF)
2759 tree t = decl_for_component_ref (exprx);
2760 if (! t)
2761 return 0;
2762 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2763 exprx = t;
2766 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2767 if (moffsety_known_p)
2768 moffsety = MEM_OFFSET (y);
2769 if (TREE_CODE (expry) == COMPONENT_REF)
2771 tree t = decl_for_component_ref (expry);
2772 if (! t)
2773 return 0;
2774 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2775 expry = t;
2778 if (! DECL_P (exprx) || ! DECL_P (expry))
2779 return 0;
2781 /* If we refer to different gimple registers, or one gimple register
2782 and one non-gimple-register, we know they can't overlap. First,
2783 gimple registers don't have their addresses taken. Now, there
2784 could be more than one stack slot for (different versions of) the
2785 same gimple register, but we can presumably tell they don't
2786 overlap based on offsets from stack base addresses elsewhere.
2787 It's important that we don't proceed to DECL_RTL, because gimple
2788 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2789 able to do anything about them since no SSA information will have
2790 remained to guide it. */
2791 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2792 return exprx != expry
2793 || (moffsetx_known_p && moffsety_known_p
2794 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2795 && !offset_overlap_p (moffsety - moffsetx,
2796 MEM_SIZE (x), MEM_SIZE (y)));
2798 /* With invalid code we can end up storing into the constant pool.
2799 Bail out to avoid ICEing when creating RTL for this.
2800 See gfortran.dg/lto/20091028-2_0.f90. */
2801 if (TREE_CODE (exprx) == CONST_DECL
2802 || TREE_CODE (expry) == CONST_DECL)
2803 return 1;
2805 /* If one decl is known to be a function or label in a function and
2806 the other is some kind of data, they can't overlap. */
2807 if ((TREE_CODE (exprx) == FUNCTION_DECL
2808 || TREE_CODE (exprx) == LABEL_DECL)
2809 != (TREE_CODE (expry) == FUNCTION_DECL
2810 || TREE_CODE (expry) == LABEL_DECL))
2811 return 1;
2813 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2814 living in multiple places), we can't tell anything. Exception
2815 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2816 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2817 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2818 return 0;
2820 rtlx = DECL_RTL (exprx);
2821 rtly = DECL_RTL (expry);
2823 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2824 can't overlap unless they are the same because we never reuse that part
2825 of the stack frame used for locals for spilled pseudos. */
2826 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2827 && ! rtx_equal_p (rtlx, rtly))
2828 return 1;
2830 /* If we have MEMs referring to different address spaces (which can
2831 potentially overlap), we cannot easily tell from the addresses
2832 whether the references overlap. */
2833 if (MEM_P (rtlx) && MEM_P (rtly)
2834 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2835 return 0;
2837 /* Get the base and offsets of both decls. If either is a register, we
2838 know both are and are the same, so use that as the base. The only
2839 we can avoid overlap is if we can deduce that they are nonoverlapping
2840 pieces of that decl, which is very rare. */
2841 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2842 basex = strip_offset_and_add (basex, &offsetx);
2844 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2845 basey = strip_offset_and_add (basey, &offsety);
2847 /* If the bases are different, we know they do not overlap if both
2848 are constants or if one is a constant and the other a pointer into the
2849 stack frame. Otherwise a different base means we can't tell if they
2850 overlap or not. */
2851 if (compare_base_decls (exprx, expry) == 0)
2852 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2853 || (CONSTANT_P (basex) && REG_P (basey)
2854 && REGNO_PTR_FRAME_P (REGNO (basey)))
2855 || (CONSTANT_P (basey) && REG_P (basex)
2856 && REGNO_PTR_FRAME_P (REGNO (basex))));
2858 /* Offset based disambiguation not appropriate for loop invariant */
2859 if (loop_invariant)
2860 return 0;
2862 /* Offset based disambiguation is OK even if we do not know that the
2863 declarations are necessarily different
2864 (i.e. compare_base_decls (exprx, expry) == -1) */
2866 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2867 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2868 : -1);
2869 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2870 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2871 : -1);
2873 /* If we have an offset for either memref, it can update the values computed
2874 above. */
2875 if (moffsetx_known_p)
2876 offsetx += moffsetx, sizex -= moffsetx;
2877 if (moffsety_known_p)
2878 offsety += moffsety, sizey -= moffsety;
2880 /* If a memref has both a size and an offset, we can use the smaller size.
2881 We can't do this if the offset isn't known because we must view this
2882 memref as being anywhere inside the DECL's MEM. */
2883 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2884 sizex = MEM_SIZE (x);
2885 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2886 sizey = MEM_SIZE (y);
2888 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2891 /* Helper for true_dependence and canon_true_dependence.
2892 Checks for true dependence: X is read after store in MEM takes place.
2894 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2895 NULL_RTX, and the canonical addresses of MEM and X are both computed
2896 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2898 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2900 Returns 1 if there is a true dependence, 0 otherwise. */
2902 static int
2903 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2904 const_rtx x, rtx x_addr, bool mem_canonicalized)
2906 rtx true_mem_addr;
2907 rtx base;
2908 int ret;
2910 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2911 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2913 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2914 return 1;
2916 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2917 This is used in epilogue deallocation functions, and in cselib. */
2918 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2919 return 1;
2920 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2921 return 1;
2922 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2923 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2924 return 1;
2926 if (! x_addr)
2927 x_addr = XEXP (x, 0);
2928 x_addr = get_addr (x_addr);
2930 if (! mem_addr)
2932 mem_addr = XEXP (mem, 0);
2933 if (mem_mode == VOIDmode)
2934 mem_mode = GET_MODE (mem);
2936 true_mem_addr = get_addr (mem_addr);
2938 /* Read-only memory is by definition never modified, and therefore can't
2939 conflict with anything. However, don't assume anything when AND
2940 addresses are involved and leave to the code below to determine
2941 dependence. We don't expect to find read-only set on MEM, but
2942 stupid user tricks can produce them, so don't die. */
2943 if (MEM_READONLY_P (x)
2944 && GET_CODE (x_addr) != AND
2945 && GET_CODE (true_mem_addr) != AND)
2946 return 0;
2948 /* If we have MEMs referring to different address spaces (which can
2949 potentially overlap), we cannot easily tell from the addresses
2950 whether the references overlap. */
2951 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2952 return 1;
2954 base = find_base_term (x_addr);
2955 if (base && (GET_CODE (base) == LABEL_REF
2956 || (GET_CODE (base) == SYMBOL_REF
2957 && CONSTANT_POOL_ADDRESS_P (base))))
2958 return 0;
2960 rtx mem_base = find_base_term (true_mem_addr);
2961 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2962 GET_MODE (x), mem_mode))
2963 return 0;
2965 x_addr = canon_rtx (x_addr);
2966 if (!mem_canonicalized)
2967 mem_addr = canon_rtx (true_mem_addr);
2969 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2970 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2971 return ret;
2973 if (mems_in_disjoint_alias_sets_p (x, mem))
2974 return 0;
2976 if (nonoverlapping_memrefs_p (mem, x, false))
2977 return 0;
2979 return rtx_refs_may_alias_p (x, mem, true);
2982 /* True dependence: X is read after store in MEM takes place. */
2985 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2987 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2988 x, NULL_RTX, /*mem_canonicalized=*/false);
2991 /* Canonical true dependence: X is read after store in MEM takes place.
2992 Variant of true_dependence which assumes MEM has already been
2993 canonicalized (hence we no longer do that here).
2994 The mem_addr argument has been added, since true_dependence_1 computed
2995 this value prior to canonicalizing. */
2998 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2999 const_rtx x, rtx x_addr)
3001 return true_dependence_1 (mem, mem_mode, mem_addr,
3002 x, x_addr, /*mem_canonicalized=*/true);
3005 /* Returns nonzero if a write to X might alias a previous read from
3006 (or, if WRITEP is true, a write to) MEM.
3007 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3008 and X_MODE the mode for that access.
3009 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3011 static int
3012 write_dependence_p (const_rtx mem,
3013 const_rtx x, machine_mode x_mode, rtx x_addr,
3014 bool mem_canonicalized, bool x_canonicalized, bool writep)
3016 rtx mem_addr;
3017 rtx true_mem_addr, true_x_addr;
3018 rtx base;
3019 int ret;
3021 gcc_checking_assert (x_canonicalized
3022 ? (x_addr != NULL_RTX
3023 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3024 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3026 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3027 return 1;
3029 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3030 This is used in epilogue deallocation functions. */
3031 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3032 return 1;
3033 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3034 return 1;
3035 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3036 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3037 return 1;
3039 if (!x_addr)
3040 x_addr = XEXP (x, 0);
3041 true_x_addr = get_addr (x_addr);
3043 mem_addr = XEXP (mem, 0);
3044 true_mem_addr = get_addr (mem_addr);
3046 /* A read from read-only memory can't conflict with read-write memory.
3047 Don't assume anything when AND addresses are involved and leave to
3048 the code below to determine dependence. */
3049 if (!writep
3050 && MEM_READONLY_P (mem)
3051 && GET_CODE (true_x_addr) != AND
3052 && GET_CODE (true_mem_addr) != AND)
3053 return 0;
3055 /* If we have MEMs referring to different address spaces (which can
3056 potentially overlap), we cannot easily tell from the addresses
3057 whether the references overlap. */
3058 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3059 return 1;
3061 base = find_base_term (true_mem_addr);
3062 if (! writep
3063 && base
3064 && (GET_CODE (base) == LABEL_REF
3065 || (GET_CODE (base) == SYMBOL_REF
3066 && CONSTANT_POOL_ADDRESS_P (base))))
3067 return 0;
3069 rtx x_base = find_base_term (true_x_addr);
3070 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3071 GET_MODE (x), GET_MODE (mem)))
3072 return 0;
3074 if (!x_canonicalized)
3076 x_addr = canon_rtx (true_x_addr);
3077 x_mode = GET_MODE (x);
3079 if (!mem_canonicalized)
3080 mem_addr = canon_rtx (true_mem_addr);
3082 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3083 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3084 return ret;
3086 if (nonoverlapping_memrefs_p (x, mem, false))
3087 return 0;
3089 return rtx_refs_may_alias_p (x, mem, false);
3092 /* Anti dependence: X is written after read in MEM takes place. */
3095 anti_dependence (const_rtx mem, const_rtx x)
3097 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3098 /*mem_canonicalized=*/false,
3099 /*x_canonicalized*/false, /*writep=*/false);
3102 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3103 Also, consider X in X_MODE (which might be from an enclosing
3104 STRICT_LOW_PART / ZERO_EXTRACT).
3105 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3108 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3109 const_rtx x, machine_mode x_mode, rtx x_addr)
3111 return write_dependence_p (mem, x, x_mode, x_addr,
3112 mem_canonicalized, /*x_canonicalized=*/true,
3113 /*writep=*/false);
3116 /* Output dependence: X is written after store in MEM takes place. */
3119 output_dependence (const_rtx mem, const_rtx x)
3121 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3122 /*mem_canonicalized=*/false,
3123 /*x_canonicalized*/false, /*writep=*/true);
3126 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3127 Also, consider X in X_MODE (which might be from an enclosing
3128 STRICT_LOW_PART / ZERO_EXTRACT).
3129 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3132 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3133 const_rtx x, machine_mode x_mode, rtx x_addr)
3135 return write_dependence_p (mem, x, x_mode, x_addr,
3136 mem_canonicalized, /*x_canonicalized=*/true,
3137 /*writep=*/true);
3142 /* Check whether X may be aliased with MEM. Don't do offset-based
3143 memory disambiguation & TBAA. */
3145 may_alias_p (const_rtx mem, const_rtx x)
3147 rtx x_addr, mem_addr;
3149 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3150 return 1;
3152 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3153 This is used in epilogue deallocation functions. */
3154 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3155 return 1;
3156 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3157 return 1;
3158 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3159 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3160 return 1;
3162 x_addr = XEXP (x, 0);
3163 x_addr = get_addr (x_addr);
3165 mem_addr = XEXP (mem, 0);
3166 mem_addr = get_addr (mem_addr);
3168 /* Read-only memory is by definition never modified, and therefore can't
3169 conflict with anything. However, don't assume anything when AND
3170 addresses are involved and leave to the code below to determine
3171 dependence. We don't expect to find read-only set on MEM, but
3172 stupid user tricks can produce them, so don't die. */
3173 if (MEM_READONLY_P (x)
3174 && GET_CODE (x_addr) != AND
3175 && GET_CODE (mem_addr) != AND)
3176 return 0;
3178 /* If we have MEMs referring to different address spaces (which can
3179 potentially overlap), we cannot easily tell from the addresses
3180 whether the references overlap. */
3181 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3182 return 1;
3184 rtx x_base = find_base_term (x_addr);
3185 rtx mem_base = find_base_term (mem_addr);
3186 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3187 GET_MODE (x), GET_MODE (mem_addr)))
3188 return 0;
3190 if (nonoverlapping_memrefs_p (mem, x, true))
3191 return 0;
3193 /* TBAA not valid for loop_invarint */
3194 return rtx_refs_may_alias_p (x, mem, false);
3197 void
3198 init_alias_target (void)
3200 int i;
3202 if (!arg_base_value)
3203 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3205 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3207 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3208 /* Check whether this register can hold an incoming pointer
3209 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3210 numbers, so translate if necessary due to register windows. */
3211 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3212 && targetm.hard_regno_mode_ok (i, Pmode))
3213 static_reg_base_value[i] = arg_base_value;
3215 /* RTL code is required to be consistent about whether it uses the
3216 stack pointer, the frame pointer or the argument pointer to
3217 access a given area of the frame. We can therefore use the
3218 base address to distinguish between the different areas. */
3219 static_reg_base_value[STACK_POINTER_REGNUM]
3220 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3221 static_reg_base_value[ARG_POINTER_REGNUM]
3222 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3223 static_reg_base_value[FRAME_POINTER_REGNUM]
3224 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3226 /* The above rules extend post-reload, with eliminations applying
3227 consistently to each of the three pointers. Cope with cases in
3228 which the frame pointer is eliminated to the hard frame pointer
3229 rather than the stack pointer. */
3230 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3231 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3232 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3235 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3236 to be memory reference. */
3237 static bool memory_modified;
3238 static void
3239 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3241 if (MEM_P (x))
3243 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3244 memory_modified = true;
3249 /* Return true when INSN possibly modify memory contents of MEM
3250 (i.e. address can be modified). */
3251 bool
3252 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3254 if (!INSN_P (insn))
3255 return false;
3256 /* Conservatively assume all non-readonly MEMs might be modified in
3257 calls. */
3258 if (CALL_P (insn))
3259 return true;
3260 memory_modified = false;
3261 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3262 return memory_modified;
3265 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3266 array. */
3268 void
3269 init_alias_analysis (void)
3271 unsigned int maxreg = max_reg_num ();
3272 int changed, pass;
3273 int i;
3274 unsigned int ui;
3275 rtx_insn *insn;
3276 rtx val;
3277 int rpo_cnt;
3278 int *rpo;
3280 timevar_push (TV_ALIAS_ANALYSIS);
3282 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3283 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3284 bitmap_clear (reg_known_equiv_p);
3286 /* If we have memory allocated from the previous run, use it. */
3287 if (old_reg_base_value)
3288 reg_base_value = old_reg_base_value;
3290 if (reg_base_value)
3291 reg_base_value->truncate (0);
3293 vec_safe_grow_cleared (reg_base_value, maxreg);
3295 new_reg_base_value = XNEWVEC (rtx, maxreg);
3296 reg_seen = sbitmap_alloc (maxreg);
3298 /* The basic idea is that each pass through this loop will use the
3299 "constant" information from the previous pass to propagate alias
3300 information through another level of assignments.
3302 The propagation is done on the CFG in reverse post-order, to propagate
3303 things forward as far as possible in each iteration.
3305 This could get expensive if the assignment chains are long. Maybe
3306 we should throttle the number of iterations, possibly based on
3307 the optimization level or flag_expensive_optimizations.
3309 We could propagate more information in the first pass by making use
3310 of DF_REG_DEF_COUNT to determine immediately that the alias information
3311 for a pseudo is "constant".
3313 A program with an uninitialized variable can cause an infinite loop
3314 here. Instead of doing a full dataflow analysis to detect such problems
3315 we just cap the number of iterations for the loop.
3317 The state of the arrays for the set chain in question does not matter
3318 since the program has undefined behavior. */
3320 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3321 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3323 /* The prologue/epilogue insns are not threaded onto the
3324 insn chain until after reload has completed. Thus,
3325 there is no sense wasting time checking if INSN is in
3326 the prologue/epilogue until after reload has completed. */
3327 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3328 || targetm.have_epilogue ())
3329 && reload_completed);
3331 pass = 0;
3334 /* Assume nothing will change this iteration of the loop. */
3335 changed = 0;
3337 /* We want to assign the same IDs each iteration of this loop, so
3338 start counting from one each iteration of the loop. */
3339 unique_id = 1;
3341 /* We're at the start of the function each iteration through the
3342 loop, so we're copying arguments. */
3343 copying_arguments = true;
3345 /* Wipe the potential alias information clean for this pass. */
3346 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3348 /* Wipe the reg_seen array clean. */
3349 bitmap_clear (reg_seen);
3351 /* Initialize the alias information for this pass. */
3352 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3353 if (static_reg_base_value[i]
3354 /* Don't treat the hard frame pointer as special if we
3355 eliminated the frame pointer to the stack pointer instead. */
3356 && !(i == HARD_FRAME_POINTER_REGNUM
3357 && reload_completed
3358 && !frame_pointer_needed
3359 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3360 STACK_POINTER_REGNUM)))
3362 new_reg_base_value[i] = static_reg_base_value[i];
3363 bitmap_set_bit (reg_seen, i);
3366 /* Walk the insns adding values to the new_reg_base_value array. */
3367 for (i = 0; i < rpo_cnt; i++)
3369 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3370 FOR_BB_INSNS (bb, insn)
3372 if (NONDEBUG_INSN_P (insn))
3374 rtx note, set;
3376 if (could_be_prologue_epilogue
3377 && prologue_epilogue_contains (insn))
3378 continue;
3380 /* If this insn has a noalias note, process it, Otherwise,
3381 scan for sets. A simple set will have no side effects
3382 which could change the base value of any other register. */
3384 if (GET_CODE (PATTERN (insn)) == SET
3385 && REG_NOTES (insn) != 0
3386 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3387 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3388 else
3389 note_stores (PATTERN (insn), record_set, NULL);
3391 set = single_set (insn);
3393 if (set != 0
3394 && REG_P (SET_DEST (set))
3395 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3397 unsigned int regno = REGNO (SET_DEST (set));
3398 rtx src = SET_SRC (set);
3399 rtx t;
3401 note = find_reg_equal_equiv_note (insn);
3402 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3403 && DF_REG_DEF_COUNT (regno) != 1)
3404 note = NULL_RTX;
3406 poly_int64 offset;
3407 if (note != NULL_RTX
3408 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3409 && ! rtx_varies_p (XEXP (note, 0), 1)
3410 && ! reg_overlap_mentioned_p (SET_DEST (set),
3411 XEXP (note, 0)))
3413 set_reg_known_value (regno, XEXP (note, 0));
3414 set_reg_known_equiv_p (regno,
3415 REG_NOTE_KIND (note) == REG_EQUIV);
3417 else if (DF_REG_DEF_COUNT (regno) == 1
3418 && GET_CODE (src) == PLUS
3419 && REG_P (XEXP (src, 0))
3420 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3421 && poly_int_rtx_p (XEXP (src, 1), &offset))
3423 t = plus_constant (GET_MODE (src), t, offset);
3424 set_reg_known_value (regno, t);
3425 set_reg_known_equiv_p (regno, false);
3427 else if (DF_REG_DEF_COUNT (regno) == 1
3428 && ! rtx_varies_p (src, 1))
3430 set_reg_known_value (regno, src);
3431 set_reg_known_equiv_p (regno, false);
3435 else if (NOTE_P (insn)
3436 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3437 copying_arguments = false;
3441 /* Now propagate values from new_reg_base_value to reg_base_value. */
3442 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3444 for (ui = 0; ui < maxreg; ui++)
3446 if (new_reg_base_value[ui]
3447 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3448 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3450 (*reg_base_value)[ui] = new_reg_base_value[ui];
3451 changed = 1;
3455 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3456 XDELETEVEC (rpo);
3458 /* Fill in the remaining entries. */
3459 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3461 int regno = i + FIRST_PSEUDO_REGISTER;
3462 if (! val)
3463 set_reg_known_value (regno, regno_reg_rtx[regno]);
3466 /* Clean up. */
3467 free (new_reg_base_value);
3468 new_reg_base_value = 0;
3469 sbitmap_free (reg_seen);
3470 reg_seen = 0;
3471 timevar_pop (TV_ALIAS_ANALYSIS);
3474 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3475 Special API for var-tracking pass purposes. */
3477 void
3478 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3480 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3483 void
3484 end_alias_analysis (void)
3486 old_reg_base_value = reg_base_value;
3487 vec_free (reg_known_value);
3488 sbitmap_free (reg_known_equiv_p);
3491 void
3492 dump_alias_stats_in_alias_c (FILE *s)
3494 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3495 " %llu are in alias set 0\n"
3496 " %llu queries asked about the same object\n"
3497 " %llu queries asked about the same alias set\n"
3498 " %llu access volatile\n"
3499 " %llu are dependent in the DAG\n"
3500 " %llu are aritificially in conflict with void *\n",
3501 alias_stats.num_disambiguated,
3502 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3503 + alias_stats.num_same_objects + alias_stats.num_volatile
3504 + alias_stats.num_dag + alias_stats.num_disambiguated
3505 + alias_stats.num_universal,
3506 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3507 alias_stats.num_same_objects, alias_stats.num_volatile,
3508 alias_stats.num_dag, alias_stats.num_universal);
3510 #include "gt-alias.h"