1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
38 #include "diagnostic-core.h"
46 #include "hard-reg-set.h"
48 #include "insn-config.h"
51 #include "basic-block.h"
54 #include "langhooks.h"
59 struct target_rtl default_target_rtl
;
61 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
64 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
66 /* Commonly used modes. */
68 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
69 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
70 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
71 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
73 /* Datastructures maintained for currently processed function in RTL form. */
75 struct rtl_data x_rtl
;
77 /* Indexed by pseudo register number, gives the rtx for that pseudo.
78 Allocated in parallel with regno_pointer_align.
79 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
80 with length attribute nested in top level structures. */
84 /* This is *not* reset after each function. It gives each CODE_LABEL
85 in the entire compilation a unique label number. */
87 static GTY(()) int label_num
= 1;
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
92 is set only for MODE_INT and MODE_VECTOR_INT modes. */
94 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
98 REAL_VALUE_TYPE dconst0
;
99 REAL_VALUE_TYPE dconst1
;
100 REAL_VALUE_TYPE dconst2
;
101 REAL_VALUE_TYPE dconstm1
;
102 REAL_VALUE_TYPE dconsthalf
;
104 /* Record fixed-point constant 0 and 1. */
105 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
106 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
108 /* We make one copy of (const_int C) where C is in
109 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
110 to save space during the compilation and simplify comparisons of
113 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
115 /* Standard pieces of rtx, to be substituted directly into things. */
118 rtx simple_return_rtx
;
121 /* A hash table storing CONST_INTs whose absolute value is greater
122 than MAX_SAVED_CONST_INT. */
124 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
125 htab_t const_int_htab
;
127 /* A hash table storing memory attribute structures. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
129 htab_t mem_attrs_htab
;
131 /* A hash table storing register attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
133 htab_t reg_attrs_htab
;
135 /* A hash table storing all CONST_DOUBLEs. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
137 htab_t const_double_htab
;
139 /* A hash table storing all CONST_FIXEDs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
141 htab_t const_fixed_htab
;
143 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
144 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
145 #define first_label_num (crtl->emit.x_first_label_num)
147 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
148 static void set_used_decls (tree
);
149 static void mark_label_nuses (rtx
);
150 static hashval_t
const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t
const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx
lookup_const_double (rtx
);
155 static hashval_t
const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx
lookup_const_fixed (rtx
);
158 static hashval_t
mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static hashval_t
reg_attrs_htab_hash (const void *);
161 static int reg_attrs_htab_eq (const void *, const void *);
162 static reg_attrs
*get_reg_attrs (tree
, int);
163 static rtx
gen_const_vector (enum machine_mode
, int);
164 static void copy_rtx_if_shared_1 (rtx
*orig
);
166 /* Probability of the conditional branch currently proceeded by try_split.
167 Set to -1 otherwise. */
168 int split_branch_probability
= -1;
170 /* Returns a hash code for X (which is a really a CONST_INT). */
173 const_int_htab_hash (const void *x
)
175 return (hashval_t
) INTVAL ((const_rtx
) x
);
178 /* Returns nonzero if the value represented by X (which is really a
179 CONST_INT) is the same as that given by Y (which is really a
183 const_int_htab_eq (const void *x
, const void *y
)
185 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
188 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
190 const_double_htab_hash (const void *x
)
192 const_rtx
const value
= (const_rtx
) x
;
195 if (GET_MODE (value
) == VOIDmode
)
196 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
199 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
200 /* MODE is used in the comparison, so it should be in the hash. */
201 h
^= GET_MODE (value
);
206 /* Returns nonzero if the value represented by X (really a ...)
207 is the same as that represented by Y (really a ...) */
209 const_double_htab_eq (const void *x
, const void *y
)
211 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
213 if (GET_MODE (a
) != GET_MODE (b
))
215 if (GET_MODE (a
) == VOIDmode
)
216 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
217 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
219 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
220 CONST_DOUBLE_REAL_VALUE (b
));
223 /* Returns a hash code for X (which is really a CONST_FIXED). */
226 const_fixed_htab_hash (const void *x
)
228 const_rtx
const value
= (const_rtx
) x
;
231 h
= fixed_hash (CONST_FIXED_VALUE (value
));
232 /* MODE is used in the comparison, so it should be in the hash. */
233 h
^= GET_MODE (value
);
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...). */
241 const_fixed_htab_eq (const void *x
, const void *y
)
243 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
245 if (GET_MODE (a
) != GET_MODE (b
))
247 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
250 /* Returns a hash code for X (which is a really a mem_attrs *). */
253 mem_attrs_htab_hash (const void *x
)
255 const mem_attrs
*const p
= (const mem_attrs
*) x
;
257 return (p
->alias
^ (p
->align
* 1000)
258 ^ (p
->addrspace
* 4000)
259 ^ ((p
->offset_known_p
? p
->offset
: 0) * 50000)
260 ^ ((p
->size_known_p
? p
->size
: 0) * 2500000)
261 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
264 /* Return true if the given memory attributes are equal. */
267 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
269 return (p
->alias
== q
->alias
270 && p
->offset_known_p
== q
->offset_known_p
271 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
272 && p
->size_known_p
== q
->size_known_p
273 && (!p
->size_known_p
|| p
->size
== q
->size
)
274 && p
->align
== q
->align
275 && p
->addrspace
== q
->addrspace
276 && (p
->expr
== q
->expr
277 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
278 && operand_equal_p (p
->expr
, q
->expr
, 0))));
281 /* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
286 mem_attrs_htab_eq (const void *x
, const void *y
)
288 return mem_attrs_eq_p ((const mem_attrs
*) x
, (const mem_attrs
*) y
);
291 /* Set MEM's memory attributes so that they are the same as ATTRS. */
294 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
298 /* If everything is the default, we can just clear the attributes. */
299 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
305 slot
= htab_find_slot (mem_attrs_htab
, attrs
, INSERT
);
308 *slot
= ggc_alloc_mem_attrs ();
309 memcpy (*slot
, attrs
, sizeof (mem_attrs
));
312 MEM_ATTRS (mem
) = (mem_attrs
*) *slot
;
315 /* Returns a hash code for X (which is a really a reg_attrs *). */
318 reg_attrs_htab_hash (const void *x
)
320 const reg_attrs
*const p
= (const reg_attrs
*) x
;
322 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
325 /* Returns nonzero if the value represented by X (which is really a
326 reg_attrs *) is the same as that given by Y (which is also really a
330 reg_attrs_htab_eq (const void *x
, const void *y
)
332 const reg_attrs
*const p
= (const reg_attrs
*) x
;
333 const reg_attrs
*const q
= (const reg_attrs
*) y
;
335 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
337 /* Allocate a new reg_attrs structure and insert it into the hash table if
338 one identical to it is not already in the table. We are doing this for
342 get_reg_attrs (tree decl
, int offset
)
347 /* If everything is the default, we can just return zero. */
348 if (decl
== 0 && offset
== 0)
352 attrs
.offset
= offset
;
354 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
357 *slot
= ggc_alloc_reg_attrs ();
358 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
361 return (reg_attrs
*) *slot
;
366 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
367 and to block register equivalences to be seen across this insn. */
372 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
373 MEM_VOLATILE_P (x
) = true;
379 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
380 don't attempt to share with the various global pieces of rtl (such as
381 frame_pointer_rtx). */
384 gen_raw_REG (enum machine_mode mode
, int regno
)
386 rtx x
= gen_rtx_raw_REG (mode
, regno
);
387 ORIGINAL_REGNO (x
) = regno
;
391 /* There are some RTL codes that require special attention; the generation
392 functions do the raw handling. If you add to this list, modify
393 special_rtx in gengenrtl.c as well. */
396 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
400 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
401 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
403 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
404 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
405 return const_true_rtx
;
408 /* Look up the CONST_INT in the hash table. */
409 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
410 (hashval_t
) arg
, INSERT
);
412 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
418 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
420 return GEN_INT (trunc_int_for_mode (c
, mode
));
423 /* CONST_DOUBLEs might be created from pairs of integers, or from
424 REAL_VALUE_TYPEs. Also, their length is known only at run time,
425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
427 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
428 hash table. If so, return its counterpart; otherwise add it
429 to the hash table and return it. */
431 lookup_const_double (rtx real
)
433 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
440 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
441 VALUE in mode MODE. */
443 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
445 rtx real
= rtx_alloc (CONST_DOUBLE
);
446 PUT_MODE (real
, mode
);
450 return lookup_const_double (real
);
453 /* Determine whether FIXED, a CONST_FIXED, already exists in the
454 hash table. If so, return its counterpart; otherwise add it
455 to the hash table and return it. */
458 lookup_const_fixed (rtx fixed
)
460 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
467 /* Return a CONST_FIXED rtx for a fixed-point value specified by
468 VALUE in mode MODE. */
471 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
473 rtx fixed
= rtx_alloc (CONST_FIXED
);
474 PUT_MODE (fixed
, mode
);
478 return lookup_const_fixed (fixed
);
481 /* Constructs double_int from rtx CST. */
484 rtx_to_double_int (const_rtx cst
)
488 if (CONST_INT_P (cst
))
489 r
= double_int::from_shwi (INTVAL (cst
));
490 else if (CONST_DOUBLE_AS_INT_P (cst
))
492 r
.low
= CONST_DOUBLE_LOW (cst
);
493 r
.high
= CONST_DOUBLE_HIGH (cst
);
502 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
506 immed_double_int_const (double_int i
, enum machine_mode mode
)
508 return immed_double_const (i
.low
, i
.high
, mode
);
511 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
512 of ints: I0 is the low-order word and I1 is the high-order word.
513 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
514 implied upper bits are copies of the high bit of i1. The value
515 itself is neither signed nor unsigned. Do not use this routine for
516 non-integer modes; convert to REAL_VALUE_TYPE and use
517 CONST_DOUBLE_FROM_REAL_VALUE. */
520 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
525 /* There are the following cases (note that there are no modes with
526 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
528 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
530 2) If the value of the integer fits into HOST_WIDE_INT anyway
531 (i.e., i1 consists only from copies of the sign bit, and sign
532 of i0 and i1 are the same), then we return a CONST_INT for i0.
533 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
534 if (mode
!= VOIDmode
)
536 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
537 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
538 /* We can get a 0 for an error mark. */
539 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
540 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
542 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
543 return gen_int_mode (i0
, mode
);
546 /* If this integer fits in one word, return a CONST_INT. */
547 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
550 /* We use VOIDmode for integers. */
551 value
= rtx_alloc (CONST_DOUBLE
);
552 PUT_MODE (value
, VOIDmode
);
554 CONST_DOUBLE_LOW (value
) = i0
;
555 CONST_DOUBLE_HIGH (value
) = i1
;
557 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
558 XWINT (value
, i
) = 0;
560 return lookup_const_double (value
);
564 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
566 /* In case the MD file explicitly references the frame pointer, have
567 all such references point to the same frame pointer. This is
568 used during frame pointer elimination to distinguish the explicit
569 references to these registers from pseudos that happened to be
572 If we have eliminated the frame pointer or arg pointer, we will
573 be using it as a normal register, for example as a spill
574 register. In such cases, we might be accessing it in a mode that
575 is not Pmode and therefore cannot use the pre-allocated rtx.
577 Also don't do this when we are making new REGs in reload, since
578 we don't want to get confused with the real pointers. */
580 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
582 if (regno
== FRAME_POINTER_REGNUM
583 && (!reload_completed
|| frame_pointer_needed
))
584 return frame_pointer_rtx
;
585 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
586 if (regno
== HARD_FRAME_POINTER_REGNUM
587 && (!reload_completed
|| frame_pointer_needed
))
588 return hard_frame_pointer_rtx
;
590 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
591 if (regno
== ARG_POINTER_REGNUM
)
592 return arg_pointer_rtx
;
594 #ifdef RETURN_ADDRESS_POINTER_REGNUM
595 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
596 return return_address_pointer_rtx
;
598 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
599 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
600 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
601 return pic_offset_table_rtx
;
602 if (regno
== STACK_POINTER_REGNUM
)
603 return stack_pointer_rtx
;
607 /* If the per-function register table has been set up, try to re-use
608 an existing entry in that table to avoid useless generation of RTL.
610 This code is disabled for now until we can fix the various backends
611 which depend on having non-shared hard registers in some cases. Long
612 term we want to re-enable this code as it can significantly cut down
613 on the amount of useless RTL that gets generated.
615 We'll also need to fix some code that runs after reload that wants to
616 set ORIGINAL_REGNO. */
621 && regno
< FIRST_PSEUDO_REGISTER
622 && reg_raw_mode
[regno
] == mode
)
623 return regno_reg_rtx
[regno
];
626 return gen_raw_REG (mode
, regno
);
630 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
632 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
634 /* This field is not cleared by the mere allocation of the rtx, so
641 /* Generate a memory referring to non-trapping constant memory. */
644 gen_const_mem (enum machine_mode mode
, rtx addr
)
646 rtx mem
= gen_rtx_MEM (mode
, addr
);
647 MEM_READONLY_P (mem
) = 1;
648 MEM_NOTRAP_P (mem
) = 1;
652 /* Generate a MEM referring to fixed portions of the frame, e.g., register
656 gen_frame_mem (enum machine_mode mode
, rtx addr
)
658 rtx mem
= gen_rtx_MEM (mode
, addr
);
659 MEM_NOTRAP_P (mem
) = 1;
660 set_mem_alias_set (mem
, get_frame_alias_set ());
664 /* Generate a MEM referring to a temporary use of the stack, not part
665 of the fixed stack frame. For example, something which is pushed
666 by a target splitter. */
668 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
670 rtx mem
= gen_rtx_MEM (mode
, addr
);
671 MEM_NOTRAP_P (mem
) = 1;
672 if (!cfun
->calls_alloca
)
673 set_mem_alias_set (mem
, get_frame_alias_set ());
677 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
678 this construct would be valid, and false otherwise. */
681 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
682 const_rtx reg
, unsigned int offset
)
684 unsigned int isize
= GET_MODE_SIZE (imode
);
685 unsigned int osize
= GET_MODE_SIZE (omode
);
687 /* All subregs must be aligned. */
688 if (offset
% osize
!= 0)
691 /* The subreg offset cannot be outside the inner object. */
695 /* ??? This should not be here. Temporarily continue to allow word_mode
696 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
697 Generally, backends are doing something sketchy but it'll take time to
699 if (omode
== word_mode
)
701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
702 is the culprit here, and not the backends. */
703 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
705 /* Allow component subregs of complex and vector. Though given the below
706 extraction rules, it's not always clear what that means. */
707 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
708 && GET_MODE_INNER (imode
) == omode
)
710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
712 represent this. It's questionable if this ought to be represented at
713 all -- why can't this all be hidden in post-reload splitters that make
714 arbitrarily mode changes to the registers themselves. */
715 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
717 /* Subregs involving floating point modes are not allowed to
718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
719 (subreg:SI (reg:DF) 0) isn't. */
720 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
722 if (! (isize
== osize
723 /* LRA can use subreg to store a floating point value in
724 an integer mode. Although the floating point and the
725 integer modes need the same number of hard registers,
726 the size of floating point mode can be less than the
727 integer mode. LRA also uses subregs for a register
728 should be used in different mode in on insn. */
733 /* Paradoxical subregs must have offset zero. */
737 /* This is a normal subreg. Verify that the offset is representable. */
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
743 unsigned int regno
= REGNO (reg
);
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
747 && GET_MODE_INNER (imode
) == omode
)
749 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
753 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize
< UNITS_PER_WORD
763 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
765 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
766 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
767 if (offset
% UNITS_PER_WORD
!= low_off
)
774 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
776 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
777 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
784 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
786 enum machine_mode inmode
;
788 inmode
= GET_MODE (reg
);
789 if (inmode
== VOIDmode
)
791 return gen_rtx_SUBREG (mode
, reg
,
792 subreg_lowpart_offset (mode
, inmode
));
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
799 gen_rtvec (int n
, ...)
807 /* Don't allocate an empty rtvec... */
814 rt_val
= rtvec_alloc (n
);
816 for (i
= 0; i
< n
; i
++)
817 rt_val
->elem
[i
] = va_arg (p
, rtx
);
824 gen_rtvec_v (int n
, rtx
*argp
)
829 /* Don't allocate an empty rtvec... */
833 rt_val
= rtvec_alloc (n
);
835 for (i
= 0; i
< n
; i
++)
836 rt_val
->elem
[i
] = *argp
++;
841 /* Return the number of bytes between the start of an OUTER_MODE
842 in-memory value and the start of an INNER_MODE in-memory value,
843 given that the former is a lowpart of the latter. It may be a
844 paradoxical lowpart, in which case the offset will be negative
845 on big-endian targets. */
848 byte_lowpart_offset (enum machine_mode outer_mode
,
849 enum machine_mode inner_mode
)
851 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
852 return subreg_lowpart_offset (outer_mode
, inner_mode
);
854 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
857 /* Generate a REG rtx for a new pseudo register of mode MODE.
858 This pseudo is assigned the next sequential register number. */
861 gen_reg_rtx (enum machine_mode mode
)
864 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
866 gcc_assert (can_create_pseudo_p ());
868 /* If a virtual register with bigger mode alignment is generated,
869 increase stack alignment estimation because it might be spilled
871 if (SUPPORTS_STACK_ALIGNMENT
872 && crtl
->stack_alignment_estimated
< align
873 && !crtl
->stack_realign_processed
)
875 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
876 if (crtl
->stack_alignment_estimated
< min_align
)
877 crtl
->stack_alignment_estimated
= min_align
;
880 if (generating_concat_p
881 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
882 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
884 /* For complex modes, don't make a single pseudo.
885 Instead, make a CONCAT of two pseudos.
886 This allows noncontiguous allocation of the real and imaginary parts,
887 which makes much better code. Besides, allocating DCmode
888 pseudos overstrains reload on some machines like the 386. */
889 rtx realpart
, imagpart
;
890 enum machine_mode partmode
= GET_MODE_INNER (mode
);
892 realpart
= gen_reg_rtx (partmode
);
893 imagpart
= gen_reg_rtx (partmode
);
894 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
897 /* Make sure regno_pointer_align, and regno_reg_rtx are large
898 enough to have an element for this pseudo reg number. */
900 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
902 int old_size
= crtl
->emit
.regno_pointer_align_length
;
906 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
907 memset (tmp
+ old_size
, 0, old_size
);
908 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
910 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
911 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
912 regno_reg_rtx
= new1
;
914 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
917 val
= gen_raw_REG (mode
, reg_rtx_no
);
918 regno_reg_rtx
[reg_rtx_no
++] = val
;
922 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
925 reg_is_parm_p (rtx reg
)
929 gcc_assert (REG_P (reg
));
930 decl
= REG_EXPR (reg
);
931 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
934 /* Update NEW with the same attributes as REG, but with OFFSET added
935 to the REG_OFFSET. */
938 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
940 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
941 REG_OFFSET (reg
) + offset
);
944 /* Generate a register with same attributes as REG, but with OFFSET
945 added to the REG_OFFSET. */
948 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
951 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
953 update_reg_offset (new_rtx
, reg
, offset
);
957 /* Generate a new pseudo-register with the same attributes as REG, but
958 with OFFSET added to the REG_OFFSET. */
961 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
963 rtx new_rtx
= gen_reg_rtx (mode
);
965 update_reg_offset (new_rtx
, reg
, offset
);
969 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
970 new register is a (possibly paradoxical) lowpart of the old one. */
973 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
975 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
976 PUT_MODE (reg
, mode
);
979 /* Copy REG's attributes from X, if X has any attributes. If REG and X
980 have different modes, REG is a (possibly paradoxical) lowpart of X. */
983 set_reg_attrs_from_value (rtx reg
, rtx x
)
986 bool can_be_reg_pointer
= true;
988 /* Don't call mark_reg_pointer for incompatible pointer sign
990 while (GET_CODE (x
) == SIGN_EXTEND
991 || GET_CODE (x
) == ZERO_EXTEND
992 || GET_CODE (x
) == TRUNCATE
993 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
995 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
996 if ((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
997 || (GET_CODE (x
) != SIGN_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
))
998 can_be_reg_pointer
= false;
1003 /* Hard registers can be reused for multiple purposes within the same
1004 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1005 on them is wrong. */
1006 if (HARD_REGISTER_P (reg
))
1009 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1012 if (MEM_OFFSET_KNOWN_P (x
))
1013 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1014 MEM_OFFSET (x
) + offset
);
1015 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1016 mark_reg_pointer (reg
, 0);
1021 update_reg_offset (reg
, x
, offset
);
1022 if (can_be_reg_pointer
&& REG_POINTER (x
))
1023 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1027 /* Generate a REG rtx for a new pseudo register, copying the mode
1028 and attributes from X. */
1031 gen_reg_rtx_and_attrs (rtx x
)
1033 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1034 set_reg_attrs_from_value (reg
, x
);
1038 /* Set the register attributes for registers contained in PARM_RTX.
1039 Use needed values from memory attributes of MEM. */
1042 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1044 if (REG_P (parm_rtx
))
1045 set_reg_attrs_from_value (parm_rtx
, mem
);
1046 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1048 /* Check for a NULL entry in the first slot, used to indicate that the
1049 parameter goes both on the stack and in registers. */
1050 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1051 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1053 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1054 if (REG_P (XEXP (x
, 0)))
1055 REG_ATTRS (XEXP (x
, 0))
1056 = get_reg_attrs (MEM_EXPR (mem
),
1057 INTVAL (XEXP (x
, 1)));
1062 /* Set the REG_ATTRS for registers in value X, given that X represents
1066 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1068 if (GET_CODE (x
) == SUBREG
)
1070 gcc_assert (subreg_lowpart_p (x
));
1075 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1077 if (GET_CODE (x
) == CONCAT
)
1079 if (REG_P (XEXP (x
, 0)))
1080 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1081 if (REG_P (XEXP (x
, 1)))
1082 REG_ATTRS (XEXP (x
, 1))
1083 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1085 if (GET_CODE (x
) == PARALLEL
)
1089 /* Check for a NULL entry, used to indicate that the parameter goes
1090 both on the stack and in registers. */
1091 if (XEXP (XVECEXP (x
, 0, 0), 0))
1096 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1098 rtx y
= XVECEXP (x
, 0, i
);
1099 if (REG_P (XEXP (y
, 0)))
1100 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1105 /* Assign the RTX X to declaration T. */
1108 set_decl_rtl (tree t
, rtx x
)
1110 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1112 set_reg_attrs_for_decl_rtl (t
, x
);
1115 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1116 if the ABI requires the parameter to be passed by reference. */
1119 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1121 DECL_INCOMING_RTL (t
) = x
;
1122 if (x
&& !by_reference_p
)
1123 set_reg_attrs_for_decl_rtl (t
, x
);
1126 /* Identify REG (which may be a CONCAT) as a user register. */
1129 mark_user_reg (rtx reg
)
1131 if (GET_CODE (reg
) == CONCAT
)
1133 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1134 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1138 gcc_assert (REG_P (reg
));
1139 REG_USERVAR_P (reg
) = 1;
1143 /* Identify REG as a probable pointer register and show its alignment
1144 as ALIGN, if nonzero. */
1147 mark_reg_pointer (rtx reg
, int align
)
1149 if (! REG_POINTER (reg
))
1151 REG_POINTER (reg
) = 1;
1154 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1156 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1157 /* We can no-longer be sure just how aligned this pointer is. */
1158 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1161 /* Return 1 plus largest pseudo reg number used in the current function. */
1169 /* Return 1 + the largest label number used so far in the current function. */
1172 max_label_num (void)
1177 /* Return first label number used in this function (if any were used). */
1180 get_first_label_num (void)
1182 return first_label_num
;
1185 /* If the rtx for label was created during the expansion of a nested
1186 function, then first_label_num won't include this label number.
1187 Fix this now so that array indices work later. */
1190 maybe_set_first_label_num (rtx x
)
1192 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1193 first_label_num
= CODE_LABEL_NUMBER (x
);
1196 /* Return a value representing some low-order bits of X, where the number
1197 of low-order bits is given by MODE. Note that no conversion is done
1198 between floating-point and fixed-point values, rather, the bit
1199 representation is returned.
1201 This function handles the cases in common between gen_lowpart, below,
1202 and two variants in cse.c and combine.c. These are the cases that can
1203 be safely handled at all points in the compilation.
1205 If this is not a case we can handle, return 0. */
1208 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1210 int msize
= GET_MODE_SIZE (mode
);
1213 enum machine_mode innermode
;
1215 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1216 so we have to make one up. Yuk. */
1217 innermode
= GET_MODE (x
);
1219 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1220 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1221 else if (innermode
== VOIDmode
)
1222 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1224 xsize
= GET_MODE_SIZE (innermode
);
1226 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1228 if (innermode
== mode
)
1231 /* MODE must occupy no more words than the mode of X. */
1232 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1233 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1236 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1237 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1240 offset
= subreg_lowpart_offset (mode
, innermode
);
1242 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1243 && (GET_MODE_CLASS (mode
) == MODE_INT
1244 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1246 /* If we are getting the low-order part of something that has been
1247 sign- or zero-extended, we can either just use the object being
1248 extended or make a narrower extension. If we want an even smaller
1249 piece than the size of the object being extended, call ourselves
1252 This case is used mostly by combine and cse. */
1254 if (GET_MODE (XEXP (x
, 0)) == mode
)
1256 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1257 return gen_lowpart_common (mode
, XEXP (x
, 0));
1258 else if (msize
< xsize
)
1259 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1261 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1262 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1263 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1264 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1266 /* Otherwise, we can't do this. */
1271 gen_highpart (enum machine_mode mode
, rtx x
)
1273 unsigned int msize
= GET_MODE_SIZE (mode
);
1276 /* This case loses if X is a subreg. To catch bugs early,
1277 complain if an invalid MODE is used even in other cases. */
1278 gcc_assert (msize
<= UNITS_PER_WORD
1279 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1281 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1282 subreg_highpart_offset (mode
, GET_MODE (x
)));
1283 gcc_assert (result
);
1285 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1286 the target if we have a MEM. gen_highpart must return a valid operand,
1287 emitting code if necessary to do so. */
1290 result
= validize_mem (result
);
1291 gcc_assert (result
);
1297 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1298 be VOIDmode constant. */
1300 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1302 if (GET_MODE (exp
) != VOIDmode
)
1304 gcc_assert (GET_MODE (exp
) == innermode
);
1305 return gen_highpart (outermode
, exp
);
1307 return simplify_gen_subreg (outermode
, exp
, innermode
,
1308 subreg_highpart_offset (outermode
, innermode
));
1311 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1314 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1316 unsigned int offset
= 0;
1317 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1321 if (WORDS_BIG_ENDIAN
)
1322 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1323 if (BYTES_BIG_ENDIAN
)
1324 offset
+= difference
% UNITS_PER_WORD
;
1330 /* Return offset in bytes to get OUTERMODE high part
1331 of the value in mode INNERMODE stored in memory in target format. */
1333 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1335 unsigned int offset
= 0;
1336 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1338 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1342 if (! WORDS_BIG_ENDIAN
)
1343 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1344 if (! BYTES_BIG_ENDIAN
)
1345 offset
+= difference
% UNITS_PER_WORD
;
1351 /* Return 1 iff X, assumed to be a SUBREG,
1352 refers to the least significant part of its containing reg.
1353 If X is not a SUBREG, always return 1 (it is its own low part!). */
1356 subreg_lowpart_p (const_rtx x
)
1358 if (GET_CODE (x
) != SUBREG
)
1360 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1363 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1364 == SUBREG_BYTE (x
));
1367 /* Return true if X is a paradoxical subreg, false otherwise. */
1369 paradoxical_subreg_p (const_rtx x
)
1371 if (GET_CODE (x
) != SUBREG
)
1373 return (GET_MODE_PRECISION (GET_MODE (x
))
1374 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1377 /* Return subword OFFSET of operand OP.
1378 The word number, OFFSET, is interpreted as the word number starting
1379 at the low-order address. OFFSET 0 is the low-order word if not
1380 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1382 If we cannot extract the required word, we return zero. Otherwise,
1383 an rtx corresponding to the requested word will be returned.
1385 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1386 reload has completed, a valid address will always be returned. After
1387 reload, if a valid address cannot be returned, we return zero.
1389 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1390 it is the responsibility of the caller.
1392 MODE is the mode of OP in case it is a CONST_INT.
1394 ??? This is still rather broken for some cases. The problem for the
1395 moment is that all callers of this thing provide no 'goal mode' to
1396 tell us to work with. This exists because all callers were written
1397 in a word based SUBREG world.
1398 Now use of this function can be deprecated by simplify_subreg in most
1403 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1405 if (mode
== VOIDmode
)
1406 mode
= GET_MODE (op
);
1408 gcc_assert (mode
!= VOIDmode
);
1410 /* If OP is narrower than a word, fail. */
1412 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1415 /* If we want a word outside OP, return zero. */
1417 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1420 /* Form a new MEM at the requested address. */
1423 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1425 if (! validate_address
)
1428 else if (reload_completed
)
1430 if (! strict_memory_address_addr_space_p (word_mode
,
1432 MEM_ADDR_SPACE (op
)))
1436 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1439 /* Rest can be handled by simplify_subreg. */
1440 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1443 /* Similar to `operand_subword', but never return 0. If we can't
1444 extract the required subword, put OP into a register and try again.
1445 The second attempt must succeed. We always validate the address in
1448 MODE is the mode of OP, in case it is CONST_INT. */
1451 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1453 rtx result
= operand_subword (op
, offset
, 1, mode
);
1458 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1460 /* If this is a register which can not be accessed by words, copy it
1461 to a pseudo register. */
1463 op
= copy_to_reg (op
);
1465 op
= force_reg (mode
, op
);
1468 result
= operand_subword (op
, offset
, 1, mode
);
1469 gcc_assert (result
);
1474 /* Returns 1 if both MEM_EXPR can be considered equal
1478 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1483 if (! expr1
|| ! expr2
)
1486 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1489 return operand_equal_p (expr1
, expr2
, 0);
1492 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1493 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1497 get_mem_align_offset (rtx mem
, unsigned int align
)
1500 unsigned HOST_WIDE_INT offset
;
1502 /* This function can't use
1503 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1504 || (MAX (MEM_ALIGN (mem),
1505 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1509 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1511 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1512 for <variable>. get_inner_reference doesn't handle it and
1513 even if it did, the alignment in that case needs to be determined
1514 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1515 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1516 isn't sufficiently aligned, the object it is in might be. */
1517 gcc_assert (MEM_P (mem
));
1518 expr
= MEM_EXPR (mem
);
1519 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1522 offset
= MEM_OFFSET (mem
);
1525 if (DECL_ALIGN (expr
) < align
)
1528 else if (INDIRECT_REF_P (expr
))
1530 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1533 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1537 tree inner
= TREE_OPERAND (expr
, 0);
1538 tree field
= TREE_OPERAND (expr
, 1);
1539 tree byte_offset
= component_ref_field_offset (expr
);
1540 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1543 || !host_integerp (byte_offset
, 1)
1544 || !host_integerp (bit_offset
, 1))
1547 offset
+= tree_low_cst (byte_offset
, 1);
1548 offset
+= tree_low_cst (bit_offset
, 1) / BITS_PER_UNIT
;
1550 if (inner
== NULL_TREE
)
1552 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1553 < (unsigned int) align
)
1557 else if (DECL_P (inner
))
1559 if (DECL_ALIGN (inner
) < align
)
1563 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1571 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1574 /* Given REF (a MEM) and T, either the type of X or the expression
1575 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1576 if we are making a new object of this type. BITPOS is nonzero if
1577 there is an offset outstanding on T that will be applied later. */
1580 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1581 HOST_WIDE_INT bitpos
)
1583 HOST_WIDE_INT apply_bitpos
= 0;
1585 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1588 /* It can happen that type_for_mode was given a mode for which there
1589 is no language-level type. In which case it returns NULL, which
1594 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1595 if (type
== error_mark_node
)
1598 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1599 wrong answer, as it assumes that DECL_RTL already has the right alias
1600 info. Callers should not set DECL_RTL until after the call to
1601 set_mem_attributes. */
1602 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1604 memset (&attrs
, 0, sizeof (attrs
));
1606 /* Get the alias set from the expression or type (perhaps using a
1607 front-end routine) and use it. */
1608 attrs
.alias
= get_alias_set (t
);
1610 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1611 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1613 /* Default values from pre-existing memory attributes if present. */
1614 refattrs
= MEM_ATTRS (ref
);
1617 /* ??? Can this ever happen? Calling this routine on a MEM that
1618 already carries memory attributes should probably be invalid. */
1619 attrs
.expr
= refattrs
->expr
;
1620 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1621 attrs
.offset
= refattrs
->offset
;
1622 attrs
.size_known_p
= refattrs
->size_known_p
;
1623 attrs
.size
= refattrs
->size
;
1624 attrs
.align
= refattrs
->align
;
1627 /* Otherwise, default values from the mode of the MEM reference. */
1630 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1631 gcc_assert (!defattrs
->expr
);
1632 gcc_assert (!defattrs
->offset_known_p
);
1634 /* Respect mode size. */
1635 attrs
.size_known_p
= defattrs
->size_known_p
;
1636 attrs
.size
= defattrs
->size
;
1637 /* ??? Is this really necessary? We probably should always get
1638 the size from the type below. */
1640 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1641 if T is an object, always compute the object alignment below. */
1643 attrs
.align
= defattrs
->align
;
1645 attrs
.align
= BITS_PER_UNIT
;
1646 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1647 e.g. if the type carries an alignment attribute. Should we be
1648 able to simply always use TYPE_ALIGN? */
1651 /* We can set the alignment from the type if we are making an object,
1652 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1653 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1654 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1656 /* If the size is known, we can set that. */
1657 tree new_size
= TYPE_SIZE_UNIT (type
);
1659 /* The address-space is that of the type. */
1660 as
= TYPE_ADDR_SPACE (type
);
1662 /* If T is not a type, we may be able to deduce some more information about
1668 if (TREE_THIS_VOLATILE (t
))
1669 MEM_VOLATILE_P (ref
) = 1;
1671 /* Now remove any conversions: they don't change what the underlying
1672 object is. Likewise for SAVE_EXPR. */
1673 while (CONVERT_EXPR_P (t
)
1674 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1675 || TREE_CODE (t
) == SAVE_EXPR
)
1676 t
= TREE_OPERAND (t
, 0);
1678 /* Note whether this expression can trap. */
1679 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1681 base
= get_base_address (t
);
1685 && TREE_READONLY (base
)
1686 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1687 && !TREE_THIS_VOLATILE (base
))
1688 MEM_READONLY_P (ref
) = 1;
1690 /* Mark static const strings readonly as well. */
1691 if (TREE_CODE (base
) == STRING_CST
1692 && TREE_READONLY (base
)
1693 && TREE_STATIC (base
))
1694 MEM_READONLY_P (ref
) = 1;
1696 /* Address-space information is on the base object. */
1697 if (TREE_CODE (base
) == MEM_REF
1698 || TREE_CODE (base
) == TARGET_MEM_REF
)
1699 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1702 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1705 /* If this expression uses it's parent's alias set, mark it such
1706 that we won't change it. */
1707 if (component_uses_parent_alias_set (t
))
1708 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1710 /* If this is a decl, set the attributes of the MEM from it. */
1714 attrs
.offset_known_p
= true;
1716 apply_bitpos
= bitpos
;
1717 new_size
= DECL_SIZE_UNIT (t
);
1720 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1721 else if (CONSTANT_CLASS_P (t
))
1724 /* If this is a field reference, record it. */
1725 else if (TREE_CODE (t
) == COMPONENT_REF
)
1728 attrs
.offset_known_p
= true;
1730 apply_bitpos
= bitpos
;
1731 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1732 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1735 /* If this is an array reference, look for an outer field reference. */
1736 else if (TREE_CODE (t
) == ARRAY_REF
)
1738 tree off_tree
= size_zero_node
;
1739 /* We can't modify t, because we use it at the end of the
1745 tree index
= TREE_OPERAND (t2
, 1);
1746 tree low_bound
= array_ref_low_bound (t2
);
1747 tree unit_size
= array_ref_element_size (t2
);
1749 /* We assume all arrays have sizes that are a multiple of a byte.
1750 First subtract the lower bound, if any, in the type of the
1751 index, then convert to sizetype and multiply by the size of
1752 the array element. */
1753 if (! integer_zerop (low_bound
))
1754 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1757 off_tree
= size_binop (PLUS_EXPR
,
1758 size_binop (MULT_EXPR
,
1759 fold_convert (sizetype
,
1763 t2
= TREE_OPERAND (t2
, 0);
1765 while (TREE_CODE (t2
) == ARRAY_REF
);
1768 || TREE_CODE (t2
) == COMPONENT_REF
)
1771 attrs
.offset_known_p
= false;
1772 if (host_integerp (off_tree
, 1))
1774 attrs
.offset_known_p
= true;
1775 attrs
.offset
= tree_low_cst (off_tree
, 1);
1776 apply_bitpos
= bitpos
;
1779 /* Else do not record a MEM_EXPR. */
1782 /* If this is an indirect reference, record it. */
1783 else if (TREE_CODE (t
) == MEM_REF
1784 || TREE_CODE (t
) == TARGET_MEM_REF
)
1787 attrs
.offset_known_p
= true;
1789 apply_bitpos
= bitpos
;
1792 /* Compute the alignment. */
1793 unsigned int obj_align
;
1794 unsigned HOST_WIDE_INT obj_bitpos
;
1795 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
1796 obj_bitpos
= (obj_bitpos
- bitpos
) & (obj_align
- 1);
1797 if (obj_bitpos
!= 0)
1798 obj_align
= (obj_bitpos
& -obj_bitpos
);
1799 attrs
.align
= MAX (attrs
.align
, obj_align
);
1802 if (host_integerp (new_size
, 1))
1804 attrs
.size_known_p
= true;
1805 attrs
.size
= tree_low_cst (new_size
, 1);
1808 /* If we modified OFFSET based on T, then subtract the outstanding
1809 bit position offset. Similarly, increase the size of the accessed
1810 object to contain the negative offset. */
1813 gcc_assert (attrs
.offset_known_p
);
1814 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1815 if (attrs
.size_known_p
)
1816 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1819 /* Now set the attributes we computed above. */
1820 attrs
.addrspace
= as
;
1821 set_mem_attrs (ref
, &attrs
);
1825 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1827 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1830 /* Set the alias set of MEM to SET. */
1833 set_mem_alias_set (rtx mem
, alias_set_type set
)
1835 struct mem_attrs attrs
;
1837 /* If the new and old alias sets don't conflict, something is wrong. */
1838 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1839 attrs
= *get_mem_attrs (mem
);
1841 set_mem_attrs (mem
, &attrs
);
1844 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1847 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1849 struct mem_attrs attrs
;
1851 attrs
= *get_mem_attrs (mem
);
1852 attrs
.addrspace
= addrspace
;
1853 set_mem_attrs (mem
, &attrs
);
1856 /* Set the alignment of MEM to ALIGN bits. */
1859 set_mem_align (rtx mem
, unsigned int align
)
1861 struct mem_attrs attrs
;
1863 attrs
= *get_mem_attrs (mem
);
1864 attrs
.align
= align
;
1865 set_mem_attrs (mem
, &attrs
);
1868 /* Set the expr for MEM to EXPR. */
1871 set_mem_expr (rtx mem
, tree expr
)
1873 struct mem_attrs attrs
;
1875 attrs
= *get_mem_attrs (mem
);
1877 set_mem_attrs (mem
, &attrs
);
1880 /* Set the offset of MEM to OFFSET. */
1883 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
1885 struct mem_attrs attrs
;
1887 attrs
= *get_mem_attrs (mem
);
1888 attrs
.offset_known_p
= true;
1889 attrs
.offset
= offset
;
1890 set_mem_attrs (mem
, &attrs
);
1893 /* Clear the offset of MEM. */
1896 clear_mem_offset (rtx mem
)
1898 struct mem_attrs attrs
;
1900 attrs
= *get_mem_attrs (mem
);
1901 attrs
.offset_known_p
= false;
1902 set_mem_attrs (mem
, &attrs
);
1905 /* Set the size of MEM to SIZE. */
1908 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
1910 struct mem_attrs attrs
;
1912 attrs
= *get_mem_attrs (mem
);
1913 attrs
.size_known_p
= true;
1915 set_mem_attrs (mem
, &attrs
);
1918 /* Clear the size of MEM. */
1921 clear_mem_size (rtx mem
)
1923 struct mem_attrs attrs
;
1925 attrs
= *get_mem_attrs (mem
);
1926 attrs
.size_known_p
= false;
1927 set_mem_attrs (mem
, &attrs
);
1930 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1931 and its address changed to ADDR. (VOIDmode means don't change the mode.
1932 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1933 returned memory location is required to be valid. The memory
1934 attributes are not changed. */
1937 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1942 gcc_assert (MEM_P (memref
));
1943 as
= MEM_ADDR_SPACE (memref
);
1944 if (mode
== VOIDmode
)
1945 mode
= GET_MODE (memref
);
1947 addr
= XEXP (memref
, 0);
1948 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1949 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
1954 if (reload_in_progress
|| reload_completed
)
1955 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
1957 addr
= memory_address_addr_space (mode
, addr
, as
);
1960 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1963 new_rtx
= gen_rtx_MEM (mode
, addr
);
1964 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1968 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1969 way we are changing MEMREF, so we only preserve the alias set. */
1972 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1974 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1);
1975 enum machine_mode mmode
= GET_MODE (new_rtx
);
1976 struct mem_attrs attrs
, *defattrs
;
1978 attrs
= *get_mem_attrs (memref
);
1979 defattrs
= mode_mem_attrs
[(int) mmode
];
1980 attrs
.expr
= NULL_TREE
;
1981 attrs
.offset_known_p
= false;
1982 attrs
.size_known_p
= defattrs
->size_known_p
;
1983 attrs
.size
= defattrs
->size
;
1984 attrs
.align
= defattrs
->align
;
1986 /* If there are no changes, just return the original memory reference. */
1987 if (new_rtx
== memref
)
1989 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
1992 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1993 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1996 set_mem_attrs (new_rtx
, &attrs
);
2000 /* Return a memory reference like MEMREF, but with its mode changed
2001 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2002 nonzero, the memory address is forced to be valid.
2003 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2004 and the caller is responsible for adjusting MEMREF base register.
2005 If ADJUST_OBJECT is zero, the underlying object associated with the
2006 memory reference is left unchanged and the caller is responsible for
2007 dealing with it. Otherwise, if the new memory reference is outside
2008 the underlying object, even partially, then the object is dropped.
2009 SIZE, if nonzero, is the size of an access in cases where MODE
2010 has no inherent size. */
2013 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
2014 int validate
, int adjust_address
, int adjust_object
,
2017 rtx addr
= XEXP (memref
, 0);
2019 enum machine_mode address_mode
;
2021 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
2022 unsigned HOST_WIDE_INT max_align
;
2023 #ifdef POINTERS_EXTEND_UNSIGNED
2024 enum machine_mode pointer_mode
2025 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2028 /* VOIDmode means no mode change for change_address_1. */
2029 if (mode
== VOIDmode
)
2030 mode
= GET_MODE (memref
);
2032 /* Take the size of non-BLKmode accesses from the mode. */
2033 defattrs
= mode_mem_attrs
[(int) mode
];
2034 if (defattrs
->size_known_p
)
2035 size
= defattrs
->size
;
2037 /* If there are no changes, just return the original memory reference. */
2038 if (mode
== GET_MODE (memref
) && !offset
2039 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2040 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2044 /* ??? Prefer to create garbage instead of creating shared rtl.
2045 This may happen even if offset is nonzero -- consider
2046 (plus (plus reg reg) const_int) -- so do this always. */
2047 addr
= copy_rtx (addr
);
2049 /* Convert a possibly large offset to a signed value within the
2050 range of the target address space. */
2051 address_mode
= get_address_mode (memref
);
2052 pbits
= GET_MODE_BITSIZE (address_mode
);
2053 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2055 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2056 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2062 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2063 object, we can merge it into the LO_SUM. */
2064 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2066 && (unsigned HOST_WIDE_INT
) offset
2067 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2068 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2069 plus_constant (address_mode
,
2070 XEXP (addr
, 1), offset
));
2071 #ifdef POINTERS_EXTEND_UNSIGNED
2072 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2073 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2074 the fact that pointers are not allowed to overflow. */
2075 else if (POINTERS_EXTEND_UNSIGNED
> 0
2076 && GET_CODE (addr
) == ZERO_EXTEND
2077 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2078 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2079 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2080 plus_constant (pointer_mode
,
2081 XEXP (addr
, 0), offset
));
2084 addr
= plus_constant (address_mode
, addr
, offset
);
2087 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2089 /* If the address is a REG, change_address_1 rightfully returns memref,
2090 but this would destroy memref's MEM_ATTRS. */
2091 if (new_rtx
== memref
&& offset
!= 0)
2092 new_rtx
= copy_rtx (new_rtx
);
2094 /* Conservatively drop the object if we don't know where we start from. */
2095 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2097 attrs
.expr
= NULL_TREE
;
2101 /* Compute the new values of the memory attributes due to this adjustment.
2102 We add the offsets and update the alignment. */
2103 if (attrs
.offset_known_p
)
2105 attrs
.offset
+= offset
;
2107 /* Drop the object if the new left end is not within its bounds. */
2108 if (adjust_object
&& attrs
.offset
< 0)
2110 attrs
.expr
= NULL_TREE
;
2115 /* Compute the new alignment by taking the MIN of the alignment and the
2116 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2120 max_align
= (offset
& -offset
) * BITS_PER_UNIT
;
2121 attrs
.align
= MIN (attrs
.align
, max_align
);
2126 /* Drop the object if the new right end is not within its bounds. */
2127 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2129 attrs
.expr
= NULL_TREE
;
2132 attrs
.size_known_p
= true;
2135 else if (attrs
.size_known_p
)
2137 gcc_assert (!adjust_object
);
2138 attrs
.size
-= offset
;
2139 /* ??? The store_by_pieces machinery generates negative sizes,
2140 so don't assert for that here. */
2143 set_mem_attrs (new_rtx
, &attrs
);
2148 /* Return a memory reference like MEMREF, but with its mode changed
2149 to MODE and its address changed to ADDR, which is assumed to be
2150 MEMREF offset by OFFSET bytes. If VALIDATE is
2151 nonzero, the memory address is forced to be valid. */
2154 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2155 HOST_WIDE_INT offset
, int validate
)
2157 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2158 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2161 /* Return a memory reference like MEMREF, but whose address is changed by
2162 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2163 known to be in OFFSET (possibly 1). */
2166 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2168 rtx new_rtx
, addr
= XEXP (memref
, 0);
2169 enum machine_mode address_mode
;
2170 struct mem_attrs attrs
, *defattrs
;
2172 attrs
= *get_mem_attrs (memref
);
2173 address_mode
= get_address_mode (memref
);
2174 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2176 /* At this point we don't know _why_ the address is invalid. It
2177 could have secondary memory references, multiplies or anything.
2179 However, if we did go and rearrange things, we can wind up not
2180 being able to recognize the magic around pic_offset_table_rtx.
2181 This stuff is fragile, and is yet another example of why it is
2182 bad to expose PIC machinery too early. */
2183 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2185 && GET_CODE (addr
) == PLUS
2186 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2188 addr
= force_reg (GET_MODE (addr
), addr
);
2189 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2192 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2193 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2195 /* If there are no changes, just return the original memory reference. */
2196 if (new_rtx
== memref
)
2199 /* Update the alignment to reflect the offset. Reset the offset, which
2201 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2202 attrs
.offset_known_p
= false;
2203 attrs
.size_known_p
= defattrs
->size_known_p
;
2204 attrs
.size
= defattrs
->size
;
2205 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2206 set_mem_attrs (new_rtx
, &attrs
);
2210 /* Return a memory reference like MEMREF, but with its address changed to
2211 ADDR. The caller is asserting that the actual piece of memory pointed
2212 to is the same, just the form of the address is being changed, such as
2213 by putting something into a register. */
2216 replace_equiv_address (rtx memref
, rtx addr
)
2218 /* change_address_1 copies the memory attribute structure without change
2219 and that's exactly what we want here. */
2220 update_temp_slot_address (XEXP (memref
, 0), addr
);
2221 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2224 /* Likewise, but the reference is not required to be valid. */
2227 replace_equiv_address_nv (rtx memref
, rtx addr
)
2229 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2232 /* Return a memory reference like MEMREF, but with its mode widened to
2233 MODE and offset by OFFSET. This would be used by targets that e.g.
2234 cannot issue QImode memory operations and have to use SImode memory
2235 operations plus masking logic. */
2238 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2240 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2241 struct mem_attrs attrs
;
2242 unsigned int size
= GET_MODE_SIZE (mode
);
2244 /* If there are no changes, just return the original memory reference. */
2245 if (new_rtx
== memref
)
2248 attrs
= *get_mem_attrs (new_rtx
);
2250 /* If we don't know what offset we were at within the expression, then
2251 we can't know if we've overstepped the bounds. */
2252 if (! attrs
.offset_known_p
)
2253 attrs
.expr
= NULL_TREE
;
2257 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2259 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2260 tree offset
= component_ref_field_offset (attrs
.expr
);
2262 if (! DECL_SIZE_UNIT (field
))
2264 attrs
.expr
= NULL_TREE
;
2268 /* Is the field at least as large as the access? If so, ok,
2269 otherwise strip back to the containing structure. */
2270 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2271 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2272 && attrs
.offset
>= 0)
2275 if (! host_integerp (offset
, 1))
2277 attrs
.expr
= NULL_TREE
;
2281 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2282 attrs
.offset
+= tree_low_cst (offset
, 1);
2283 attrs
.offset
+= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2286 /* Similarly for the decl. */
2287 else if (DECL_P (attrs
.expr
)
2288 && DECL_SIZE_UNIT (attrs
.expr
)
2289 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2290 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2291 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2295 /* The widened memory access overflows the expression, which means
2296 that it could alias another expression. Zap it. */
2297 attrs
.expr
= NULL_TREE
;
2303 attrs
.offset_known_p
= false;
2305 /* The widened memory may alias other stuff, so zap the alias set. */
2306 /* ??? Maybe use get_alias_set on any remaining expression. */
2308 attrs
.size_known_p
= true;
2310 set_mem_attrs (new_rtx
, &attrs
);
2314 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2315 static GTY(()) tree spill_slot_decl
;
2318 get_spill_slot_decl (bool force_build_p
)
2320 tree d
= spill_slot_decl
;
2322 struct mem_attrs attrs
;
2324 if (d
|| !force_build_p
)
2327 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2328 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2329 DECL_ARTIFICIAL (d
) = 1;
2330 DECL_IGNORED_P (d
) = 1;
2332 spill_slot_decl
= d
;
2334 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2335 MEM_NOTRAP_P (rd
) = 1;
2336 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2337 attrs
.alias
= new_alias_set ();
2339 set_mem_attrs (rd
, &attrs
);
2340 SET_DECL_RTL (d
, rd
);
2345 /* Given MEM, a result from assign_stack_local, fill in the memory
2346 attributes as appropriate for a register allocator spill slot.
2347 These slots are not aliasable by other memory. We arrange for
2348 them all to use a single MEM_EXPR, so that the aliasing code can
2349 work properly in the case of shared spill slots. */
2352 set_mem_attrs_for_spill (rtx mem
)
2354 struct mem_attrs attrs
;
2357 attrs
= *get_mem_attrs (mem
);
2358 attrs
.expr
= get_spill_slot_decl (true);
2359 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2360 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2362 /* We expect the incoming memory to be of the form:
2363 (mem:MODE (plus (reg sfp) (const_int offset)))
2364 with perhaps the plus missing for offset = 0. */
2365 addr
= XEXP (mem
, 0);
2366 attrs
.offset_known_p
= true;
2368 if (GET_CODE (addr
) == PLUS
2369 && CONST_INT_P (XEXP (addr
, 1)))
2370 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2372 set_mem_attrs (mem
, &attrs
);
2373 MEM_NOTRAP_P (mem
) = 1;
2376 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2379 gen_label_rtx (void)
2381 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2382 NULL
, label_num
++, NULL
);
2385 /* For procedure integration. */
2387 /* Install new pointers to the first and last insns in the chain.
2388 Also, set cur_insn_uid to one higher than the last in use.
2389 Used for an inline-procedure after copying the insn chain. */
2392 set_new_first_and_last_insn (rtx first
, rtx last
)
2396 set_first_insn (first
);
2397 set_last_insn (last
);
2400 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2402 int debug_count
= 0;
2404 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2405 cur_debug_insn_uid
= 0;
2407 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2408 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2409 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2412 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2413 if (DEBUG_INSN_P (insn
))
2418 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2420 cur_debug_insn_uid
++;
2423 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2424 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2429 /* Go through all the RTL insn bodies and copy any invalid shared
2430 structure. This routine should only be called once. */
2433 unshare_all_rtl_1 (rtx insn
)
2435 /* Unshare just about everything else. */
2436 unshare_all_rtl_in_chain (insn
);
2438 /* Make sure the addresses of stack slots found outside the insn chain
2439 (such as, in DECL_RTL of a variable) are not shared
2440 with the insn chain.
2442 This special care is necessary when the stack slot MEM does not
2443 actually appear in the insn chain. If it does appear, its address
2444 is unshared from all else at that point. */
2445 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2448 /* Go through all the RTL insn bodies and copy any invalid shared
2449 structure, again. This is a fairly expensive thing to do so it
2450 should be done sparingly. */
2453 unshare_all_rtl_again (rtx insn
)
2458 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2461 reset_used_flags (PATTERN (p
));
2462 reset_used_flags (REG_NOTES (p
));
2464 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2467 /* Make sure that virtual stack slots are not shared. */
2468 set_used_decls (DECL_INITIAL (cfun
->decl
));
2470 /* Make sure that virtual parameters are not shared. */
2471 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2472 set_used_flags (DECL_RTL (decl
));
2474 reset_used_flags (stack_slot_list
);
2476 unshare_all_rtl_1 (insn
);
2480 unshare_all_rtl (void)
2482 unshare_all_rtl_1 (get_insns ());
2487 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2488 Recursively does the same for subexpressions. */
2491 verify_rtx_sharing (rtx orig
, rtx insn
)
2496 const char *format_ptr
;
2501 code
= GET_CODE (x
);
2503 /* These types may be freely shared. */
2519 /* SCRATCH must be shared because they represent distinct values. */
2522 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2523 clobbers or clobbers of hard registers that originated as pseudos.
2524 This is needed to allow safe register renaming. */
2525 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2526 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2531 if (shared_const_p (orig
))
2536 /* A MEM is allowed to be shared if its address is constant. */
2537 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2538 || reload_completed
|| reload_in_progress
)
2547 /* This rtx may not be shared. If it has already been seen,
2548 replace it with a copy of itself. */
2549 #ifdef ENABLE_CHECKING
2550 if (RTX_FLAG (x
, used
))
2552 error ("invalid rtl sharing found in the insn");
2554 error ("shared rtx");
2556 internal_error ("internal consistency failure");
2559 gcc_assert (!RTX_FLAG (x
, used
));
2561 RTX_FLAG (x
, used
) = 1;
2563 /* Now scan the subexpressions recursively. */
2565 format_ptr
= GET_RTX_FORMAT (code
);
2567 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2569 switch (*format_ptr
++)
2572 verify_rtx_sharing (XEXP (x
, i
), insn
);
2576 if (XVEC (x
, i
) != NULL
)
2579 int len
= XVECLEN (x
, i
);
2581 for (j
= 0; j
< len
; j
++)
2583 /* We allow sharing of ASM_OPERANDS inside single
2585 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2586 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2588 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2590 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2599 /* Reset used-flags for INSN. */
2602 reset_insn_used_flags (rtx insn
)
2604 gcc_assert (INSN_P (insn
));
2605 reset_used_flags (PATTERN (insn
));
2606 reset_used_flags (REG_NOTES (insn
));
2608 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2611 /* Go through all the RTL insn bodies and clear all the USED bits. */
2614 reset_all_used_flags (void)
2618 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2621 rtx pat
= PATTERN (p
);
2622 if (GET_CODE (pat
) != SEQUENCE
)
2623 reset_insn_used_flags (p
);
2626 gcc_assert (REG_NOTES (p
) == NULL
);
2627 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2628 reset_insn_used_flags (XVECEXP (pat
, 0, i
));
2633 /* Verify sharing in INSN. */
2636 verify_insn_sharing (rtx insn
)
2638 gcc_assert (INSN_P (insn
));
2639 reset_used_flags (PATTERN (insn
));
2640 reset_used_flags (REG_NOTES (insn
));
2642 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2645 /* Go through all the RTL insn bodies and check that there is no unexpected
2646 sharing in between the subexpressions. */
2649 verify_rtl_sharing (void)
2653 timevar_push (TV_VERIFY_RTL_SHARING
);
2655 reset_all_used_flags ();
2657 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2660 rtx pat
= PATTERN (p
);
2661 if (GET_CODE (pat
) != SEQUENCE
)
2662 verify_insn_sharing (p
);
2664 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2665 verify_insn_sharing (XVECEXP (pat
, 0, i
));
2668 reset_all_used_flags ();
2670 timevar_pop (TV_VERIFY_RTL_SHARING
);
2673 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2674 Assumes the mark bits are cleared at entry. */
2677 unshare_all_rtl_in_chain (rtx insn
)
2679 for (; insn
; insn
= NEXT_INSN (insn
))
2682 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2683 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2685 CALL_INSN_FUNCTION_USAGE (insn
)
2686 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2690 /* Go through all virtual stack slots of a function and mark them as
2691 shared. We never replace the DECL_RTLs themselves with a copy,
2692 but expressions mentioned into a DECL_RTL cannot be shared with
2693 expressions in the instruction stream.
2695 Note that reload may convert pseudo registers into memories in-place.
2696 Pseudo registers are always shared, but MEMs never are. Thus if we
2697 reset the used flags on MEMs in the instruction stream, we must set
2698 them again on MEMs that appear in DECL_RTLs. */
2701 set_used_decls (tree blk
)
2706 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2707 if (DECL_RTL_SET_P (t
))
2708 set_used_flags (DECL_RTL (t
));
2710 /* Now process sub-blocks. */
2711 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2715 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2716 Recursively does the same for subexpressions. Uses
2717 copy_rtx_if_shared_1 to reduce stack space. */
2720 copy_rtx_if_shared (rtx orig
)
2722 copy_rtx_if_shared_1 (&orig
);
2726 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2727 use. Recursively does the same for subexpressions. */
2730 copy_rtx_if_shared_1 (rtx
*orig1
)
2736 const char *format_ptr
;
2740 /* Repeat is used to turn tail-recursion into iteration. */
2747 code
= GET_CODE (x
);
2749 /* These types may be freely shared. */
2765 /* SCRATCH must be shared because they represent distinct values. */
2768 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2769 clobbers or clobbers of hard registers that originated as pseudos.
2770 This is needed to allow safe register renaming. */
2771 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2772 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2777 if (shared_const_p (x
))
2787 /* The chain of insns is not being copied. */
2794 /* This rtx may not be shared. If it has already been seen,
2795 replace it with a copy of itself. */
2797 if (RTX_FLAG (x
, used
))
2799 x
= shallow_copy_rtx (x
);
2802 RTX_FLAG (x
, used
) = 1;
2804 /* Now scan the subexpressions recursively.
2805 We can store any replaced subexpressions directly into X
2806 since we know X is not shared! Any vectors in X
2807 must be copied if X was copied. */
2809 format_ptr
= GET_RTX_FORMAT (code
);
2810 length
= GET_RTX_LENGTH (code
);
2813 for (i
= 0; i
< length
; i
++)
2815 switch (*format_ptr
++)
2819 copy_rtx_if_shared_1 (last_ptr
);
2820 last_ptr
= &XEXP (x
, i
);
2824 if (XVEC (x
, i
) != NULL
)
2827 int len
= XVECLEN (x
, i
);
2829 /* Copy the vector iff I copied the rtx and the length
2831 if (copied
&& len
> 0)
2832 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2834 /* Call recursively on all inside the vector. */
2835 for (j
= 0; j
< len
; j
++)
2838 copy_rtx_if_shared_1 (last_ptr
);
2839 last_ptr
= &XVECEXP (x
, i
, j
);
2854 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2857 mark_used_flags (rtx x
, int flag
)
2861 const char *format_ptr
;
2864 /* Repeat is used to turn tail-recursion into iteration. */
2869 code
= GET_CODE (x
);
2871 /* These types may be freely shared so we needn't do any resetting
2895 /* The chain of insns is not being copied. */
2902 RTX_FLAG (x
, used
) = flag
;
2904 format_ptr
= GET_RTX_FORMAT (code
);
2905 length
= GET_RTX_LENGTH (code
);
2907 for (i
= 0; i
< length
; i
++)
2909 switch (*format_ptr
++)
2917 mark_used_flags (XEXP (x
, i
), flag
);
2921 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2922 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
2928 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2929 to look for shared sub-parts. */
2932 reset_used_flags (rtx x
)
2934 mark_used_flags (x
, 0);
2937 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2938 to look for shared sub-parts. */
2941 set_used_flags (rtx x
)
2943 mark_used_flags (x
, 1);
2946 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2947 Return X or the rtx for the pseudo reg the value of X was copied into.
2948 OTHER must be valid as a SET_DEST. */
2951 make_safe_from (rtx x
, rtx other
)
2954 switch (GET_CODE (other
))
2957 other
= SUBREG_REG (other
);
2959 case STRICT_LOW_PART
:
2962 other
= XEXP (other
, 0);
2971 && GET_CODE (x
) != SUBREG
)
2973 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2974 || reg_mentioned_p (other
, x
))))
2976 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2977 emit_move_insn (temp
, x
);
2983 /* Emission of insns (adding them to the doubly-linked list). */
2985 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2988 get_last_insn_anywhere (void)
2990 struct sequence_stack
*stack
;
2991 if (get_last_insn ())
2992 return get_last_insn ();
2993 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2994 if (stack
->last
!= 0)
2999 /* Return the first nonnote insn emitted in current sequence or current
3000 function. This routine looks inside SEQUENCEs. */
3003 get_first_nonnote_insn (void)
3005 rtx insn
= get_insns ();
3010 for (insn
= next_insn (insn
);
3011 insn
&& NOTE_P (insn
);
3012 insn
= next_insn (insn
))
3016 if (NONJUMP_INSN_P (insn
)
3017 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3018 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3025 /* Return the last nonnote insn emitted in current sequence or current
3026 function. This routine looks inside SEQUENCEs. */
3029 get_last_nonnote_insn (void)
3031 rtx insn
= get_last_insn ();
3036 for (insn
= previous_insn (insn
);
3037 insn
&& NOTE_P (insn
);
3038 insn
= previous_insn (insn
))
3042 if (NONJUMP_INSN_P (insn
)
3043 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3044 insn
= XVECEXP (PATTERN (insn
), 0,
3045 XVECLEN (PATTERN (insn
), 0) - 1);
3052 /* Return the number of actual (non-debug) insns emitted in this
3056 get_max_insn_count (void)
3058 int n
= cur_insn_uid
;
3060 /* The table size must be stable across -g, to avoid codegen
3061 differences due to debug insns, and not be affected by
3062 -fmin-insn-uid, to avoid excessive table size and to simplify
3063 debugging of -fcompare-debug failures. */
3064 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3065 n
-= cur_debug_insn_uid
;
3067 n
-= MIN_NONDEBUG_INSN_UID
;
3073 /* Return the next insn. If it is a SEQUENCE, return the first insn
3077 next_insn (rtx insn
)
3081 insn
= NEXT_INSN (insn
);
3082 if (insn
&& NONJUMP_INSN_P (insn
)
3083 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3084 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3090 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3094 previous_insn (rtx insn
)
3098 insn
= PREV_INSN (insn
);
3099 if (insn
&& NONJUMP_INSN_P (insn
)
3100 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3101 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3107 /* Return the next insn after INSN that is not a NOTE. This routine does not
3108 look inside SEQUENCEs. */
3111 next_nonnote_insn (rtx insn
)
3115 insn
= NEXT_INSN (insn
);
3116 if (insn
== 0 || !NOTE_P (insn
))
3123 /* Return the next insn after INSN that is not a NOTE, but stop the
3124 search before we enter another basic block. This routine does not
3125 look inside SEQUENCEs. */
3128 next_nonnote_insn_bb (rtx insn
)
3132 insn
= NEXT_INSN (insn
);
3133 if (insn
== 0 || !NOTE_P (insn
))
3135 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3142 /* Return the previous insn before INSN that is not a NOTE. This routine does
3143 not look inside SEQUENCEs. */
3146 prev_nonnote_insn (rtx insn
)
3150 insn
= PREV_INSN (insn
);
3151 if (insn
== 0 || !NOTE_P (insn
))
3158 /* Return the previous insn before INSN that is not a NOTE, but stop
3159 the search before we enter another basic block. This routine does
3160 not look inside SEQUENCEs. */
3163 prev_nonnote_insn_bb (rtx insn
)
3167 insn
= PREV_INSN (insn
);
3168 if (insn
== 0 || !NOTE_P (insn
))
3170 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3177 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3178 routine does not look inside SEQUENCEs. */
3181 next_nondebug_insn (rtx insn
)
3185 insn
= NEXT_INSN (insn
);
3186 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3193 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3194 This routine does not look inside SEQUENCEs. */
3197 prev_nondebug_insn (rtx insn
)
3201 insn
= PREV_INSN (insn
);
3202 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3209 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3210 This routine does not look inside SEQUENCEs. */
3213 next_nonnote_nondebug_insn (rtx insn
)
3217 insn
= NEXT_INSN (insn
);
3218 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3225 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3226 This routine does not look inside SEQUENCEs. */
3229 prev_nonnote_nondebug_insn (rtx insn
)
3233 insn
= PREV_INSN (insn
);
3234 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3241 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3242 or 0, if there is none. This routine does not look inside
3246 next_real_insn (rtx insn
)
3250 insn
= NEXT_INSN (insn
);
3251 if (insn
== 0 || INSN_P (insn
))
3258 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3259 or 0, if there is none. This routine does not look inside
3263 prev_real_insn (rtx insn
)
3267 insn
= PREV_INSN (insn
);
3268 if (insn
== 0 || INSN_P (insn
))
3275 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3276 This routine does not look inside SEQUENCEs. */
3279 last_call_insn (void)
3283 for (insn
= get_last_insn ();
3284 insn
&& !CALL_P (insn
);
3285 insn
= PREV_INSN (insn
))
3291 /* Find the next insn after INSN that really does something. This routine
3292 does not look inside SEQUENCEs. After reload this also skips over
3293 standalone USE and CLOBBER insn. */
3296 active_insn_p (const_rtx insn
)
3298 return (CALL_P (insn
) || JUMP_P (insn
)
3299 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3300 || (NONJUMP_INSN_P (insn
)
3301 && (! reload_completed
3302 || (GET_CODE (PATTERN (insn
)) != USE
3303 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3307 next_active_insn (rtx insn
)
3311 insn
= NEXT_INSN (insn
);
3312 if (insn
== 0 || active_insn_p (insn
))
3319 /* Find the last insn before INSN that really does something. This routine
3320 does not look inside SEQUENCEs. After reload this also skips over
3321 standalone USE and CLOBBER insn. */
3324 prev_active_insn (rtx insn
)
3328 insn
= PREV_INSN (insn
);
3329 if (insn
== 0 || active_insn_p (insn
))
3337 /* Return the next insn that uses CC0 after INSN, which is assumed to
3338 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3339 applied to the result of this function should yield INSN).
3341 Normally, this is simply the next insn. However, if a REG_CC_USER note
3342 is present, it contains the insn that uses CC0.
3344 Return 0 if we can't find the insn. */
3347 next_cc0_user (rtx insn
)
3349 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3352 return XEXP (note
, 0);
3354 insn
= next_nonnote_insn (insn
);
3355 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3356 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3358 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3364 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3365 note, it is the previous insn. */
3368 prev_cc0_setter (rtx insn
)
3370 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3373 return XEXP (note
, 0);
3375 insn
= prev_nonnote_insn (insn
);
3376 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3383 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3386 find_auto_inc (rtx
*xp
, void *data
)
3389 rtx reg
= (rtx
) data
;
3391 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3394 switch (GET_CODE (x
))
3402 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3413 /* Increment the label uses for all labels present in rtx. */
3416 mark_label_nuses (rtx x
)
3422 code
= GET_CODE (x
);
3423 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3424 LABEL_NUSES (XEXP (x
, 0))++;
3426 fmt
= GET_RTX_FORMAT (code
);
3427 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3430 mark_label_nuses (XEXP (x
, i
));
3431 else if (fmt
[i
] == 'E')
3432 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3433 mark_label_nuses (XVECEXP (x
, i
, j
));
3438 /* Try splitting insns that can be split for better scheduling.
3439 PAT is the pattern which might split.
3440 TRIAL is the insn providing PAT.
3441 LAST is nonzero if we should return the last insn of the sequence produced.
3443 If this routine succeeds in splitting, it returns the first or last
3444 replacement insn depending on the value of LAST. Otherwise, it
3445 returns TRIAL. If the insn to be returned can be split, it will be. */
3448 try_split (rtx pat
, rtx trial
, int last
)
3450 rtx before
= PREV_INSN (trial
);
3451 rtx after
= NEXT_INSN (trial
);
3452 int has_barrier
= 0;
3455 rtx insn_last
, insn
;
3458 /* We're not good at redistributing frame information. */
3459 if (RTX_FRAME_RELATED_P (trial
))
3462 if (any_condjump_p (trial
)
3463 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3464 split_branch_probability
= INTVAL (XEXP (note
, 0));
3465 probability
= split_branch_probability
;
3467 seq
= split_insns (pat
, trial
);
3469 split_branch_probability
= -1;
3471 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3472 We may need to handle this specially. */
3473 if (after
&& BARRIER_P (after
))
3476 after
= NEXT_INSN (after
);
3482 /* Avoid infinite loop if any insn of the result matches
3483 the original pattern. */
3487 if (INSN_P (insn_last
)
3488 && rtx_equal_p (PATTERN (insn_last
), pat
))
3490 if (!NEXT_INSN (insn_last
))
3492 insn_last
= NEXT_INSN (insn_last
);
3495 /* We will be adding the new sequence to the function. The splitters
3496 may have introduced invalid RTL sharing, so unshare the sequence now. */
3497 unshare_all_rtl_in_chain (seq
);
3500 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3504 mark_jump_label (PATTERN (insn
), insn
, 0);
3506 if (probability
!= -1
3507 && any_condjump_p (insn
)
3508 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3510 /* We can preserve the REG_BR_PROB notes only if exactly
3511 one jump is created, otherwise the machine description
3512 is responsible for this step using
3513 split_branch_probability variable. */
3514 gcc_assert (njumps
== 1);
3515 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3520 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3521 in SEQ and copy any additional information across. */
3524 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3529 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3530 target may have explicitly specified. */
3531 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3534 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3536 /* If the old call was a sibling call, the new one must
3538 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3540 /* If the new call is the last instruction in the sequence,
3541 it will effectively replace the old call in-situ. Otherwise
3542 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3543 so that it comes immediately after the new call. */
3544 if (NEXT_INSN (insn
))
3545 for (next
= NEXT_INSN (trial
);
3546 next
&& NOTE_P (next
);
3547 next
= NEXT_INSN (next
))
3548 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3551 add_insn_after (next
, insn
, NULL
);
3557 /* Copy notes, particularly those related to the CFG. */
3558 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3560 switch (REG_NOTE_KIND (note
))
3563 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3569 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3572 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3576 case REG_NON_LOCAL_GOTO
:
3577 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3580 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3586 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3588 rtx reg
= XEXP (note
, 0);
3589 if (!FIND_REG_INC_NOTE (insn
, reg
)
3590 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3591 add_reg_note (insn
, REG_INC
, reg
);
3597 fixup_args_size_notes (NULL_RTX
, insn_last
, INTVAL (XEXP (note
, 0)));
3605 /* If there are LABELS inside the split insns increment the
3606 usage count so we don't delete the label. */
3610 while (insn
!= NULL_RTX
)
3612 /* JUMP_P insns have already been "marked" above. */
3613 if (NONJUMP_INSN_P (insn
))
3614 mark_label_nuses (PATTERN (insn
));
3616 insn
= PREV_INSN (insn
);
3620 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3622 delete_insn (trial
);
3624 emit_barrier_after (tem
);
3626 /* Recursively call try_split for each new insn created; by the
3627 time control returns here that insn will be fully split, so
3628 set LAST and continue from the insn after the one returned.
3629 We can't use next_active_insn here since AFTER may be a note.
3630 Ignore deleted insns, which can be occur if not optimizing. */
3631 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3632 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3633 tem
= try_split (PATTERN (tem
), tem
, 1);
3635 /* Return either the first or the last insn, depending on which was
3638 ? (after
? PREV_INSN (after
) : get_last_insn ())
3639 : NEXT_INSN (before
);
3642 /* Make and return an INSN rtx, initializing all its slots.
3643 Store PATTERN in the pattern slots. */
3646 make_insn_raw (rtx pattern
)
3650 insn
= rtx_alloc (INSN
);
3652 INSN_UID (insn
) = cur_insn_uid
++;
3653 PATTERN (insn
) = pattern
;
3654 INSN_CODE (insn
) = -1;
3655 REG_NOTES (insn
) = NULL
;
3656 INSN_LOCATION (insn
) = curr_insn_location ();
3657 BLOCK_FOR_INSN (insn
) = NULL
;
3659 #ifdef ENABLE_RTL_CHECKING
3662 && (returnjump_p (insn
)
3663 || (GET_CODE (insn
) == SET
3664 && SET_DEST (insn
) == pc_rtx
)))
3666 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3674 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3677 make_debug_insn_raw (rtx pattern
)
3681 insn
= rtx_alloc (DEBUG_INSN
);
3682 INSN_UID (insn
) = cur_debug_insn_uid
++;
3683 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3684 INSN_UID (insn
) = cur_insn_uid
++;
3686 PATTERN (insn
) = pattern
;
3687 INSN_CODE (insn
) = -1;
3688 REG_NOTES (insn
) = NULL
;
3689 INSN_LOCATION (insn
) = curr_insn_location ();
3690 BLOCK_FOR_INSN (insn
) = NULL
;
3695 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3698 make_jump_insn_raw (rtx pattern
)
3702 insn
= rtx_alloc (JUMP_INSN
);
3703 INSN_UID (insn
) = cur_insn_uid
++;
3705 PATTERN (insn
) = pattern
;
3706 INSN_CODE (insn
) = -1;
3707 REG_NOTES (insn
) = NULL
;
3708 JUMP_LABEL (insn
) = NULL
;
3709 INSN_LOCATION (insn
) = curr_insn_location ();
3710 BLOCK_FOR_INSN (insn
) = NULL
;
3715 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3718 make_call_insn_raw (rtx pattern
)
3722 insn
= rtx_alloc (CALL_INSN
);
3723 INSN_UID (insn
) = cur_insn_uid
++;
3725 PATTERN (insn
) = pattern
;
3726 INSN_CODE (insn
) = -1;
3727 REG_NOTES (insn
) = NULL
;
3728 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3729 INSN_LOCATION (insn
) = curr_insn_location ();
3730 BLOCK_FOR_INSN (insn
) = NULL
;
3735 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3738 make_note_raw (enum insn_note subtype
)
3740 /* Some notes are never created this way at all. These notes are
3741 only created by patching out insns. */
3742 gcc_assert (subtype
!= NOTE_INSN_DELETED_LABEL
3743 && subtype
!= NOTE_INSN_DELETED_DEBUG_LABEL
);
3745 rtx note
= rtx_alloc (NOTE
);
3746 INSN_UID (note
) = cur_insn_uid
++;
3747 NOTE_KIND (note
) = subtype
;
3748 BLOCK_FOR_INSN (note
) = NULL
;
3749 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
3753 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3754 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3755 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3758 link_insn_into_chain (rtx insn
, rtx prev
, rtx next
)
3760 PREV_INSN (insn
) = prev
;
3761 NEXT_INSN (insn
) = next
;
3764 NEXT_INSN (prev
) = insn
;
3765 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3767 rtx sequence
= PATTERN (prev
);
3768 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3773 PREV_INSN (next
) = insn
;
3774 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3775 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3778 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3780 rtx sequence
= PATTERN (insn
);
3781 PREV_INSN (XVECEXP (sequence
, 0, 0)) = prev
;
3782 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3786 /* Add INSN to the end of the doubly-linked list.
3787 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3792 rtx prev
= get_last_insn ();
3793 link_insn_into_chain (insn
, prev
, NULL
);
3794 if (NULL
== get_insns ())
3795 set_first_insn (insn
);
3796 set_last_insn (insn
);
3799 /* Add INSN into the doubly-linked list after insn AFTER. */
3802 add_insn_after_nobb (rtx insn
, rtx after
)
3804 rtx next
= NEXT_INSN (after
);
3806 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3808 link_insn_into_chain (insn
, after
, next
);
3812 if (get_last_insn () == after
)
3813 set_last_insn (insn
);
3816 struct sequence_stack
*stack
= seq_stack
;
3817 /* Scan all pending sequences too. */
3818 for (; stack
; stack
= stack
->next
)
3819 if (after
== stack
->last
)
3828 /* Add INSN into the doubly-linked list before insn BEFORE. */
3831 add_insn_before_nobb (rtx insn
, rtx before
)
3833 rtx prev
= PREV_INSN (before
);
3835 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3837 link_insn_into_chain (insn
, prev
, before
);
3841 if (get_insns () == before
)
3842 set_first_insn (insn
);
3845 struct sequence_stack
*stack
= seq_stack
;
3846 /* Scan all pending sequences too. */
3847 for (; stack
; stack
= stack
->next
)
3848 if (before
== stack
->first
)
3850 stack
->first
= insn
;
3859 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3860 If BB is NULL, an attempt is made to infer the bb from before.
3862 This and the next function should be the only functions called
3863 to insert an insn once delay slots have been filled since only
3864 they know how to update a SEQUENCE. */
3867 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3869 add_insn_after_nobb (insn
, after
);
3870 if (!BARRIER_P (after
)
3871 && !BARRIER_P (insn
)
3872 && (bb
= BLOCK_FOR_INSN (after
)))
3874 set_block_for_insn (insn
, bb
);
3876 df_insn_rescan (insn
);
3877 /* Should not happen as first in the BB is always
3878 either NOTE or LABEL. */
3879 if (BB_END (bb
) == after
3880 /* Avoid clobbering of structure when creating new BB. */
3881 && !BARRIER_P (insn
)
3882 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3887 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
3888 If BB is NULL, an attempt is made to infer the bb from before.
3890 This and the previous function should be the only functions called
3891 to insert an insn once delay slots have been filled since only
3892 they know how to update a SEQUENCE. */
3895 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3897 add_insn_before_nobb (insn
, before
);
3900 && !BARRIER_P (before
)
3901 && !BARRIER_P (insn
))
3902 bb
= BLOCK_FOR_INSN (before
);
3906 set_block_for_insn (insn
, bb
);
3908 df_insn_rescan (insn
);
3909 /* Should not happen as first in the BB is always either NOTE or
3911 gcc_assert (BB_HEAD (bb
) != insn
3912 /* Avoid clobbering of structure when creating new BB. */
3914 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3918 /* Replace insn with an deleted instruction note. */
3921 set_insn_deleted (rtx insn
)
3924 df_insn_delete (insn
);
3925 PUT_CODE (insn
, NOTE
);
3926 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3930 /* Unlink INSN from the insn chain.
3932 This function knows how to handle sequences.
3934 This function does not invalidate data flow information associated with
3935 INSN (i.e. does not call df_insn_delete). That makes this function
3936 usable for only disconnecting an insn from the chain, and re-emit it
3939 To later insert INSN elsewhere in the insn chain via add_insn and
3940 similar functions, PREV_INSN and NEXT_INSN must be nullified by
3941 the caller. Nullifying them here breaks many insn chain walks.
3943 To really delete an insn and related DF information, use delete_insn. */
3946 remove_insn (rtx insn
)
3948 rtx next
= NEXT_INSN (insn
);
3949 rtx prev
= PREV_INSN (insn
);
3954 NEXT_INSN (prev
) = next
;
3955 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3957 rtx sequence
= PATTERN (prev
);
3958 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3961 else if (get_insns () == insn
)
3964 PREV_INSN (next
) = NULL
;
3965 set_first_insn (next
);
3969 struct sequence_stack
*stack
= seq_stack
;
3970 /* Scan all pending sequences too. */
3971 for (; stack
; stack
= stack
->next
)
3972 if (insn
== stack
->first
)
3974 stack
->first
= next
;
3983 PREV_INSN (next
) = prev
;
3984 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3985 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3987 else if (get_last_insn () == insn
)
3988 set_last_insn (prev
);
3991 struct sequence_stack
*stack
= seq_stack
;
3992 /* Scan all pending sequences too. */
3993 for (; stack
; stack
= stack
->next
)
3994 if (insn
== stack
->last
)
4003 /* Fix up basic block boundaries, if necessary. */
4004 if (!BARRIER_P (insn
)
4005 && (bb
= BLOCK_FOR_INSN (insn
)))
4007 if (BB_HEAD (bb
) == insn
)
4009 /* Never ever delete the basic block note without deleting whole
4011 gcc_assert (!NOTE_P (insn
));
4012 BB_HEAD (bb
) = next
;
4014 if (BB_END (bb
) == insn
)
4019 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4022 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4024 gcc_assert (call_insn
&& CALL_P (call_insn
));
4026 /* Put the register usage information on the CALL. If there is already
4027 some usage information, put ours at the end. */
4028 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4032 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4033 link
= XEXP (link
, 1))
4036 XEXP (link
, 1) = call_fusage
;
4039 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4042 /* Delete all insns made since FROM.
4043 FROM becomes the new last instruction. */
4046 delete_insns_since (rtx from
)
4051 NEXT_INSN (from
) = 0;
4052 set_last_insn (from
);
4055 /* This function is deprecated, please use sequences instead.
4057 Move a consecutive bunch of insns to a different place in the chain.
4058 The insns to be moved are those between FROM and TO.
4059 They are moved to a new position after the insn AFTER.
4060 AFTER must not be FROM or TO or any insn in between.
4062 This function does not know about SEQUENCEs and hence should not be
4063 called after delay-slot filling has been done. */
4066 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
4068 #ifdef ENABLE_CHECKING
4070 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4071 gcc_assert (after
!= x
);
4072 gcc_assert (after
!= to
);
4075 /* Splice this bunch out of where it is now. */
4076 if (PREV_INSN (from
))
4077 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4079 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4080 if (get_last_insn () == to
)
4081 set_last_insn (PREV_INSN (from
));
4082 if (get_insns () == from
)
4083 set_first_insn (NEXT_INSN (to
));
4085 /* Make the new neighbors point to it and it to them. */
4086 if (NEXT_INSN (after
))
4087 PREV_INSN (NEXT_INSN (after
)) = to
;
4089 NEXT_INSN (to
) = NEXT_INSN (after
);
4090 PREV_INSN (from
) = after
;
4091 NEXT_INSN (after
) = from
;
4092 if (after
== get_last_insn())
4096 /* Same as function above, but take care to update BB boundaries. */
4098 reorder_insns (rtx from
, rtx to
, rtx after
)
4100 rtx prev
= PREV_INSN (from
);
4101 basic_block bb
, bb2
;
4103 reorder_insns_nobb (from
, to
, after
);
4105 if (!BARRIER_P (after
)
4106 && (bb
= BLOCK_FOR_INSN (after
)))
4109 df_set_bb_dirty (bb
);
4111 if (!BARRIER_P (from
)
4112 && (bb2
= BLOCK_FOR_INSN (from
)))
4114 if (BB_END (bb2
) == to
)
4115 BB_END (bb2
) = prev
;
4116 df_set_bb_dirty (bb2
);
4119 if (BB_END (bb
) == after
)
4122 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4124 df_insn_change_bb (x
, bb
);
4129 /* Emit insn(s) of given code and pattern
4130 at a specified place within the doubly-linked list.
4132 All of the emit_foo global entry points accept an object
4133 X which is either an insn list or a PATTERN of a single
4136 There are thus a few canonical ways to generate code and
4137 emit it at a specific place in the instruction stream. For
4138 example, consider the instruction named SPOT and the fact that
4139 we would like to emit some instructions before SPOT. We might
4143 ... emit the new instructions ...
4144 insns_head = get_insns ();
4147 emit_insn_before (insns_head, SPOT);
4149 It used to be common to generate SEQUENCE rtl instead, but that
4150 is a relic of the past which no longer occurs. The reason is that
4151 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4152 generated would almost certainly die right after it was created. */
4155 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4156 rtx (*make_raw
) (rtx
))
4160 gcc_assert (before
);
4165 switch (GET_CODE (x
))
4177 rtx next
= NEXT_INSN (insn
);
4178 add_insn_before (insn
, before
, bb
);
4184 #ifdef ENABLE_RTL_CHECKING
4191 last
= (*make_raw
) (x
);
4192 add_insn_before (last
, before
, bb
);
4199 /* Make X be output before the instruction BEFORE. */
4202 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4204 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4207 /* Make an instruction with body X and code JUMP_INSN
4208 and output it before the instruction BEFORE. */
4211 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4213 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4214 make_jump_insn_raw
);
4217 /* Make an instruction with body X and code CALL_INSN
4218 and output it before the instruction BEFORE. */
4221 emit_call_insn_before_noloc (rtx x
, rtx before
)
4223 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4224 make_call_insn_raw
);
4227 /* Make an instruction with body X and code DEBUG_INSN
4228 and output it before the instruction BEFORE. */
4231 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4233 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4234 make_debug_insn_raw
);
4237 /* Make an insn of code BARRIER
4238 and output it before the insn BEFORE. */
4241 emit_barrier_before (rtx before
)
4243 rtx insn
= rtx_alloc (BARRIER
);
4245 INSN_UID (insn
) = cur_insn_uid
++;
4247 add_insn_before (insn
, before
, NULL
);
4251 /* Emit the label LABEL before the insn BEFORE. */
4254 emit_label_before (rtx label
, rtx before
)
4256 gcc_checking_assert (INSN_UID (label
) == 0);
4257 INSN_UID (label
) = cur_insn_uid
++;
4258 add_insn_before (label
, before
, NULL
);
4262 /* Helper for emit_insn_after, handles lists of instructions
4266 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4270 if (!bb
&& !BARRIER_P (after
))
4271 bb
= BLOCK_FOR_INSN (after
);
4275 df_set_bb_dirty (bb
);
4276 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4277 if (!BARRIER_P (last
))
4279 set_block_for_insn (last
, bb
);
4280 df_insn_rescan (last
);
4282 if (!BARRIER_P (last
))
4284 set_block_for_insn (last
, bb
);
4285 df_insn_rescan (last
);
4287 if (BB_END (bb
) == after
)
4291 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4294 after_after
= NEXT_INSN (after
);
4296 NEXT_INSN (after
) = first
;
4297 PREV_INSN (first
) = after
;
4298 NEXT_INSN (last
) = after_after
;
4300 PREV_INSN (after_after
) = last
;
4302 if (after
== get_last_insn())
4303 set_last_insn (last
);
4309 emit_pattern_after_noloc (rtx x
, rtx after
, basic_block bb
,
4310 rtx (*make_raw
)(rtx
))
4319 switch (GET_CODE (x
))
4328 last
= emit_insn_after_1 (x
, after
, bb
);
4331 #ifdef ENABLE_RTL_CHECKING
4338 last
= (*make_raw
) (x
);
4339 add_insn_after (last
, after
, bb
);
4346 /* Make X be output after the insn AFTER and set the BB of insn. If
4347 BB is NULL, an attempt is made to infer the BB from AFTER. */
4350 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4352 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4356 /* Make an insn of code JUMP_INSN with body X
4357 and output it after the insn AFTER. */
4360 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4362 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4365 /* Make an instruction with body X and code CALL_INSN
4366 and output it after the instruction AFTER. */
4369 emit_call_insn_after_noloc (rtx x
, rtx after
)
4371 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4374 /* Make an instruction with body X and code CALL_INSN
4375 and output it after the instruction AFTER. */
4378 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4380 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4383 /* Make an insn of code BARRIER
4384 and output it after the insn AFTER. */
4387 emit_barrier_after (rtx after
)
4389 rtx insn
= rtx_alloc (BARRIER
);
4391 INSN_UID (insn
) = cur_insn_uid
++;
4393 add_insn_after (insn
, after
, NULL
);
4397 /* Emit the label LABEL after the insn AFTER. */
4400 emit_label_after (rtx label
, rtx after
)
4402 gcc_checking_assert (INSN_UID (label
) == 0);
4403 INSN_UID (label
) = cur_insn_uid
++;
4404 add_insn_after (label
, after
, NULL
);
4408 /* Notes require a bit of special handling: Some notes need to have their
4409 BLOCK_FOR_INSN set, others should never have it set, and some should
4410 have it set or clear depending on the context. */
4412 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4413 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4414 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4417 note_outside_basic_block_p (enum insn_note subtype
, bool on_bb_boundary_p
)
4421 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4422 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
4425 /* Notes for var tracking and EH region markers can appear between or
4426 inside basic blocks. If the caller is emitting on the basic block
4427 boundary, do not set BLOCK_FOR_INSN on the new note. */
4428 case NOTE_INSN_VAR_LOCATION
:
4429 case NOTE_INSN_CALL_ARG_LOCATION
:
4430 case NOTE_INSN_EH_REGION_BEG
:
4431 case NOTE_INSN_EH_REGION_END
:
4432 return on_bb_boundary_p
;
4434 /* Otherwise, BLOCK_FOR_INSN must be set. */
4440 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4443 emit_note_after (enum insn_note subtype
, rtx after
)
4445 rtx note
= make_note_raw (subtype
);
4446 basic_block bb
= BARRIER_P (after
) ? NULL
: BLOCK_FOR_INSN (after
);
4447 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_END (bb
) == after
);
4449 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4450 add_insn_after_nobb (note
, after
);
4452 add_insn_after (note
, after
, bb
);
4456 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4459 emit_note_before (enum insn_note subtype
, rtx before
)
4461 rtx note
= make_note_raw (subtype
);
4462 basic_block bb
= BARRIER_P (before
) ? NULL
: BLOCK_FOR_INSN (before
);
4463 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_HEAD (bb
) == before
);
4465 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4466 add_insn_before_nobb (note
, before
);
4468 add_insn_before (note
, before
, bb
);
4472 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4473 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4476 emit_pattern_after_setloc (rtx pattern
, rtx after
, int loc
,
4477 rtx (*make_raw
) (rtx
))
4479 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4481 if (pattern
== NULL_RTX
|| !loc
)
4484 after
= NEXT_INSN (after
);
4487 if (active_insn_p (after
) && !INSN_LOCATION (after
))
4488 INSN_LOCATION (after
) = loc
;
4491 after
= NEXT_INSN (after
);
4496 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4497 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4501 emit_pattern_after (rtx pattern
, rtx after
, bool skip_debug_insns
,
4502 rtx (*make_raw
) (rtx
))
4506 if (skip_debug_insns
)
4507 while (DEBUG_INSN_P (prev
))
4508 prev
= PREV_INSN (prev
);
4511 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4514 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4517 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4519 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4521 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4524 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4526 emit_insn_after (rtx pattern
, rtx after
)
4528 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4531 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4533 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4535 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4538 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4540 emit_jump_insn_after (rtx pattern
, rtx after
)
4542 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4545 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4547 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4549 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4552 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4554 emit_call_insn_after (rtx pattern
, rtx after
)
4556 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4559 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4561 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4563 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4566 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4568 emit_debug_insn_after (rtx pattern
, rtx after
)
4570 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4573 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4574 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4575 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4579 emit_pattern_before_setloc (rtx pattern
, rtx before
, int loc
, bool insnp
,
4580 rtx (*make_raw
) (rtx
))
4582 rtx first
= PREV_INSN (before
);
4583 rtx last
= emit_pattern_before_noloc (pattern
, before
,
4584 insnp
? before
: NULL_RTX
,
4587 if (pattern
== NULL_RTX
|| !loc
)
4591 first
= get_insns ();
4593 first
= NEXT_INSN (first
);
4596 if (active_insn_p (first
) && !INSN_LOCATION (first
))
4597 INSN_LOCATION (first
) = loc
;
4600 first
= NEXT_INSN (first
);
4605 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4606 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4607 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4608 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4611 emit_pattern_before (rtx pattern
, rtx before
, bool skip_debug_insns
,
4612 bool insnp
, rtx (*make_raw
) (rtx
))
4616 if (skip_debug_insns
)
4617 while (DEBUG_INSN_P (next
))
4618 next
= PREV_INSN (next
);
4621 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4624 return emit_pattern_before_noloc (pattern
, before
,
4625 insnp
? before
: NULL_RTX
,
4629 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4631 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4633 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4637 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4639 emit_insn_before (rtx pattern
, rtx before
)
4641 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4644 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4646 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4648 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4649 make_jump_insn_raw
);
4652 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4654 emit_jump_insn_before (rtx pattern
, rtx before
)
4656 return emit_pattern_before (pattern
, before
, true, false,
4657 make_jump_insn_raw
);
4660 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4662 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4664 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4665 make_call_insn_raw
);
4668 /* Like emit_call_insn_before_noloc,
4669 but set insn_location according to BEFORE. */
4671 emit_call_insn_before (rtx pattern
, rtx before
)
4673 return emit_pattern_before (pattern
, before
, true, false,
4674 make_call_insn_raw
);
4677 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4679 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4681 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4682 make_debug_insn_raw
);
4685 /* Like emit_debug_insn_before_noloc,
4686 but set insn_location according to BEFORE. */
4688 emit_debug_insn_before (rtx pattern
, rtx before
)
4690 return emit_pattern_before (pattern
, before
, false, false,
4691 make_debug_insn_raw
);
4694 /* Take X and emit it at the end of the doubly-linked
4697 Returns the last insn emitted. */
4702 rtx last
= get_last_insn();
4708 switch (GET_CODE (x
))
4720 rtx next
= NEXT_INSN (insn
);
4727 #ifdef ENABLE_RTL_CHECKING
4728 case JUMP_TABLE_DATA
:
4735 last
= make_insn_raw (x
);
4743 /* Make an insn of code DEBUG_INSN with pattern X
4744 and add it to the end of the doubly-linked list. */
4747 emit_debug_insn (rtx x
)
4749 rtx last
= get_last_insn();
4755 switch (GET_CODE (x
))
4767 rtx next
= NEXT_INSN (insn
);
4774 #ifdef ENABLE_RTL_CHECKING
4775 case JUMP_TABLE_DATA
:
4782 last
= make_debug_insn_raw (x
);
4790 /* Make an insn of code JUMP_INSN with pattern X
4791 and add it to the end of the doubly-linked list. */
4794 emit_jump_insn (rtx x
)
4796 rtx last
= NULL_RTX
, insn
;
4798 switch (GET_CODE (x
))
4810 rtx next
= NEXT_INSN (insn
);
4817 #ifdef ENABLE_RTL_CHECKING
4818 case JUMP_TABLE_DATA
:
4825 last
= make_jump_insn_raw (x
);
4833 /* Make an insn of code CALL_INSN with pattern X
4834 and add it to the end of the doubly-linked list. */
4837 emit_call_insn (rtx x
)
4841 switch (GET_CODE (x
))
4850 insn
= emit_insn (x
);
4853 #ifdef ENABLE_RTL_CHECKING
4855 case JUMP_TABLE_DATA
:
4861 insn
= make_call_insn_raw (x
);
4869 /* Add the label LABEL to the end of the doubly-linked list. */
4872 emit_label (rtx label
)
4874 gcc_checking_assert (INSN_UID (label
) == 0);
4875 INSN_UID (label
) = cur_insn_uid
++;
4880 /* Make an insn of code JUMP_TABLE_DATA
4881 and add it to the end of the doubly-linked list. */
4884 emit_jump_table_data (rtx table
)
4886 rtx jump_table_data
= rtx_alloc (JUMP_TABLE_DATA
);
4887 INSN_UID (jump_table_data
) = cur_insn_uid
++;
4888 PATTERN (jump_table_data
) = table
;
4889 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
4890 add_insn (jump_table_data
);
4891 return jump_table_data
;
4894 /* Make an insn of code BARRIER
4895 and add it to the end of the doubly-linked list. */
4900 rtx barrier
= rtx_alloc (BARRIER
);
4901 INSN_UID (barrier
) = cur_insn_uid
++;
4906 /* Emit a copy of note ORIG. */
4909 emit_note_copy (rtx orig
)
4911 enum insn_note kind
= (enum insn_note
) NOTE_KIND (orig
);
4912 rtx note
= make_note_raw (kind
);
4913 NOTE_DATA (note
) = NOTE_DATA (orig
);
4918 /* Make an insn of code NOTE or type NOTE_NO
4919 and add it to the end of the doubly-linked list. */
4922 emit_note (enum insn_note kind
)
4924 rtx note
= make_note_raw (kind
);
4929 /* Emit a clobber of lvalue X. */
4932 emit_clobber (rtx x
)
4934 /* CONCATs should not appear in the insn stream. */
4935 if (GET_CODE (x
) == CONCAT
)
4937 emit_clobber (XEXP (x
, 0));
4938 return emit_clobber (XEXP (x
, 1));
4940 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4943 /* Return a sequence of insns to clobber lvalue X. */
4957 /* Emit a use of rvalue X. */
4962 /* CONCATs should not appear in the insn stream. */
4963 if (GET_CODE (x
) == CONCAT
)
4965 emit_use (XEXP (x
, 0));
4966 return emit_use (XEXP (x
, 1));
4968 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4971 /* Return a sequence of insns to use rvalue X. */
4985 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4986 note of this type already exists, remove it first. */
4989 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4991 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4997 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4998 has multiple sets (some callers assume single_set
4999 means the insn only has one set, when in fact it
5000 means the insn only has one * useful * set). */
5001 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
5007 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5008 It serves no useful purpose and breaks eliminate_regs. */
5009 if (GET_CODE (datum
) == ASM_OPERANDS
)
5014 XEXP (note
, 0) = datum
;
5015 df_notes_rescan (insn
);
5023 XEXP (note
, 0) = datum
;
5029 add_reg_note (insn
, kind
, datum
);
5035 df_notes_rescan (insn
);
5041 return REG_NOTES (insn
);
5044 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5046 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5048 rtx set
= single_set (insn
);
5050 if (set
&& SET_DEST (set
) == dst
)
5051 return set_unique_reg_note (insn
, kind
, datum
);
5055 /* Return an indication of which type of insn should have X as a body.
5056 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5058 static enum rtx_code
5059 classify_insn (rtx x
)
5063 if (GET_CODE (x
) == CALL
)
5065 if (ANY_RETURN_P (x
))
5067 if (GET_CODE (x
) == SET
)
5069 if (SET_DEST (x
) == pc_rtx
)
5071 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5076 if (GET_CODE (x
) == PARALLEL
)
5079 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5080 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5082 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5083 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5085 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5086 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5092 /* Emit the rtl pattern X as an appropriate kind of insn.
5093 If X is a label, it is simply added into the insn chain. */
5098 enum rtx_code code
= classify_insn (x
);
5103 return emit_label (x
);
5105 return emit_insn (x
);
5108 rtx insn
= emit_jump_insn (x
);
5109 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5110 return emit_barrier ();
5114 return emit_call_insn (x
);
5116 return emit_debug_insn (x
);
5122 /* Space for free sequence stack entries. */
5123 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5125 /* Begin emitting insns to a sequence. If this sequence will contain
5126 something that might cause the compiler to pop arguments to function
5127 calls (because those pops have previously been deferred; see
5128 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5129 before calling this function. That will ensure that the deferred
5130 pops are not accidentally emitted in the middle of this sequence. */
5133 start_sequence (void)
5135 struct sequence_stack
*tem
;
5137 if (free_sequence_stack
!= NULL
)
5139 tem
= free_sequence_stack
;
5140 free_sequence_stack
= tem
->next
;
5143 tem
= ggc_alloc_sequence_stack ();
5145 tem
->next
= seq_stack
;
5146 tem
->first
= get_insns ();
5147 tem
->last
= get_last_insn ();
5155 /* Set up the insn chain starting with FIRST as the current sequence,
5156 saving the previously current one. See the documentation for
5157 start_sequence for more information about how to use this function. */
5160 push_to_sequence (rtx first
)
5166 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5169 set_first_insn (first
);
5170 set_last_insn (last
);
5173 /* Like push_to_sequence, but take the last insn as an argument to avoid
5174 looping through the list. */
5177 push_to_sequence2 (rtx first
, rtx last
)
5181 set_first_insn (first
);
5182 set_last_insn (last
);
5185 /* Set up the outer-level insn chain
5186 as the current sequence, saving the previously current one. */
5189 push_topmost_sequence (void)
5191 struct sequence_stack
*stack
, *top
= NULL
;
5195 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5198 set_first_insn (top
->first
);
5199 set_last_insn (top
->last
);
5202 /* After emitting to the outer-level insn chain, update the outer-level
5203 insn chain, and restore the previous saved state. */
5206 pop_topmost_sequence (void)
5208 struct sequence_stack
*stack
, *top
= NULL
;
5210 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5213 top
->first
= get_insns ();
5214 top
->last
= get_last_insn ();
5219 /* After emitting to a sequence, restore previous saved state.
5221 To get the contents of the sequence just made, you must call
5222 `get_insns' *before* calling here.
5224 If the compiler might have deferred popping arguments while
5225 generating this sequence, and this sequence will not be immediately
5226 inserted into the instruction stream, use do_pending_stack_adjust
5227 before calling get_insns. That will ensure that the deferred
5228 pops are inserted into this sequence, and not into some random
5229 location in the instruction stream. See INHIBIT_DEFER_POP for more
5230 information about deferred popping of arguments. */
5235 struct sequence_stack
*tem
= seq_stack
;
5237 set_first_insn (tem
->first
);
5238 set_last_insn (tem
->last
);
5239 seq_stack
= tem
->next
;
5241 memset (tem
, 0, sizeof (*tem
));
5242 tem
->next
= free_sequence_stack
;
5243 free_sequence_stack
= tem
;
5246 /* Return 1 if currently emitting into a sequence. */
5249 in_sequence_p (void)
5251 return seq_stack
!= 0;
5254 /* Put the various virtual registers into REGNO_REG_RTX. */
5257 init_virtual_regs (void)
5259 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5260 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5261 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5262 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5263 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5264 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5265 = virtual_preferred_stack_boundary_rtx
;
5269 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5270 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5271 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5272 static int copy_insn_n_scratches
;
5274 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5275 copied an ASM_OPERANDS.
5276 In that case, it is the original input-operand vector. */
5277 static rtvec orig_asm_operands_vector
;
5279 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5280 copied an ASM_OPERANDS.
5281 In that case, it is the copied input-operand vector. */
5282 static rtvec copy_asm_operands_vector
;
5284 /* Likewise for the constraints vector. */
5285 static rtvec orig_asm_constraints_vector
;
5286 static rtvec copy_asm_constraints_vector
;
5288 /* Recursively create a new copy of an rtx for copy_insn.
5289 This function differs from copy_rtx in that it handles SCRATCHes and
5290 ASM_OPERANDs properly.
5291 Normally, this function is not used directly; use copy_insn as front end.
5292 However, you could first copy an insn pattern with copy_insn and then use
5293 this function afterwards to properly copy any REG_NOTEs containing
5297 copy_insn_1 (rtx orig
)
5302 const char *format_ptr
;
5307 code
= GET_CODE (orig
);
5322 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5323 clobbers or clobbers of hard registers that originated as pseudos.
5324 This is needed to allow safe register renaming. */
5325 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
5326 && ORIGINAL_REGNO (XEXP (orig
, 0)) == REGNO (XEXP (orig
, 0)))
5331 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5332 if (copy_insn_scratch_in
[i
] == orig
)
5333 return copy_insn_scratch_out
[i
];
5337 if (shared_const_p (orig
))
5341 /* A MEM with a constant address is not sharable. The problem is that
5342 the constant address may need to be reloaded. If the mem is shared,
5343 then reloading one copy of this mem will cause all copies to appear
5344 to have been reloaded. */
5350 /* Copy the various flags, fields, and other information. We assume
5351 that all fields need copying, and then clear the fields that should
5352 not be copied. That is the sensible default behavior, and forces
5353 us to explicitly document why we are *not* copying a flag. */
5354 copy
= shallow_copy_rtx (orig
);
5356 /* We do not copy the USED flag, which is used as a mark bit during
5357 walks over the RTL. */
5358 RTX_FLAG (copy
, used
) = 0;
5360 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5363 RTX_FLAG (copy
, jump
) = 0;
5364 RTX_FLAG (copy
, call
) = 0;
5365 RTX_FLAG (copy
, frame_related
) = 0;
5368 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5370 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5371 switch (*format_ptr
++)
5374 if (XEXP (orig
, i
) != NULL
)
5375 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5380 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5381 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5382 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5383 XVEC (copy
, i
) = copy_asm_operands_vector
;
5384 else if (XVEC (orig
, i
) != NULL
)
5386 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5387 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5388 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5399 /* These are left unchanged. */
5406 if (code
== SCRATCH
)
5408 i
= copy_insn_n_scratches
++;
5409 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5410 copy_insn_scratch_in
[i
] = orig
;
5411 copy_insn_scratch_out
[i
] = copy
;
5413 else if (code
== ASM_OPERANDS
)
5415 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5416 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5417 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5418 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5424 /* Create a new copy of an rtx.
5425 This function differs from copy_rtx in that it handles SCRATCHes and
5426 ASM_OPERANDs properly.
5427 INSN doesn't really have to be a full INSN; it could be just the
5430 copy_insn (rtx insn
)
5432 copy_insn_n_scratches
= 0;
5433 orig_asm_operands_vector
= 0;
5434 orig_asm_constraints_vector
= 0;
5435 copy_asm_operands_vector
= 0;
5436 copy_asm_constraints_vector
= 0;
5437 return copy_insn_1 (insn
);
5440 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5441 on that assumption that INSN itself remains in its original place. */
5444 copy_delay_slot_insn (rtx insn
)
5446 /* Copy INSN with its rtx_code, all its notes, location etc. */
5447 insn
= copy_rtx (insn
);
5448 INSN_UID (insn
) = cur_insn_uid
++;
5452 /* Initialize data structures and variables in this file
5453 before generating rtl for each function. */
5458 set_first_insn (NULL
);
5459 set_last_insn (NULL
);
5460 if (MIN_NONDEBUG_INSN_UID
)
5461 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5464 cur_debug_insn_uid
= 1;
5465 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5466 first_label_num
= label_num
;
5469 /* Init the tables that describe all the pseudo regs. */
5471 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5473 crtl
->emit
.regno_pointer_align
5474 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5476 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5478 /* Put copies of all the hard registers into regno_reg_rtx. */
5479 memcpy (regno_reg_rtx
,
5480 initial_regno_reg_rtx
,
5481 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5483 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5484 init_virtual_regs ();
5486 /* Indicate that the virtual registers and stack locations are
5488 REG_POINTER (stack_pointer_rtx
) = 1;
5489 REG_POINTER (frame_pointer_rtx
) = 1;
5490 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5491 REG_POINTER (arg_pointer_rtx
) = 1;
5493 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5494 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5495 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5496 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5497 REG_POINTER (virtual_cfa_rtx
) = 1;
5499 #ifdef STACK_BOUNDARY
5500 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5501 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5502 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5503 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5505 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5506 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5507 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5508 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5509 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5512 #ifdef INIT_EXPANDERS
5517 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5520 gen_const_vector (enum machine_mode mode
, int constant
)
5525 enum machine_mode inner
;
5527 units
= GET_MODE_NUNITS (mode
);
5528 inner
= GET_MODE_INNER (mode
);
5530 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5532 v
= rtvec_alloc (units
);
5534 /* We need to call this function after we set the scalar const_tiny_rtx
5536 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5538 for (i
= 0; i
< units
; ++i
)
5539 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5541 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5545 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5546 all elements are zero, and the one vector when all elements are one. */
5548 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5550 enum machine_mode inner
= GET_MODE_INNER (mode
);
5551 int nunits
= GET_MODE_NUNITS (mode
);
5555 /* Check to see if all of the elements have the same value. */
5556 x
= RTVEC_ELT (v
, nunits
- 1);
5557 for (i
= nunits
- 2; i
>= 0; i
--)
5558 if (RTVEC_ELT (v
, i
) != x
)
5561 /* If the values are all the same, check to see if we can use one of the
5562 standard constant vectors. */
5565 if (x
== CONST0_RTX (inner
))
5566 return CONST0_RTX (mode
);
5567 else if (x
== CONST1_RTX (inner
))
5568 return CONST1_RTX (mode
);
5569 else if (x
== CONSTM1_RTX (inner
))
5570 return CONSTM1_RTX (mode
);
5573 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5576 /* Initialise global register information required by all functions. */
5579 init_emit_regs (void)
5582 enum machine_mode mode
;
5585 /* Reset register attributes */
5586 htab_empty (reg_attrs_htab
);
5588 /* We need reg_raw_mode, so initialize the modes now. */
5589 init_reg_modes_target ();
5591 /* Assign register numbers to the globally defined register rtx. */
5592 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5593 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5594 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5595 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5596 virtual_incoming_args_rtx
=
5597 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5598 virtual_stack_vars_rtx
=
5599 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5600 virtual_stack_dynamic_rtx
=
5601 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5602 virtual_outgoing_args_rtx
=
5603 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5604 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5605 virtual_preferred_stack_boundary_rtx
=
5606 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5608 /* Initialize RTL for commonly used hard registers. These are
5609 copied into regno_reg_rtx as we begin to compile each function. */
5610 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5611 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5613 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5614 return_address_pointer_rtx
5615 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5618 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5619 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5621 pic_offset_table_rtx
= NULL_RTX
;
5623 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5625 mode
= (enum machine_mode
) i
;
5626 attrs
= ggc_alloc_cleared_mem_attrs ();
5627 attrs
->align
= BITS_PER_UNIT
;
5628 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5629 if (mode
!= BLKmode
)
5631 attrs
->size_known_p
= true;
5632 attrs
->size
= GET_MODE_SIZE (mode
);
5633 if (STRICT_ALIGNMENT
)
5634 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5636 mode_mem_attrs
[i
] = attrs
;
5640 /* Create some permanent unique rtl objects shared between all functions. */
5643 init_emit_once (void)
5646 enum machine_mode mode
;
5647 enum machine_mode double_mode
;
5649 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5651 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5652 const_int_htab_eq
, NULL
);
5654 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5655 const_double_htab_eq
, NULL
);
5657 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5658 const_fixed_htab_eq
, NULL
);
5660 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5661 mem_attrs_htab_eq
, NULL
);
5662 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5663 reg_attrs_htab_eq
, NULL
);
5665 /* Compute the word and byte modes. */
5667 byte_mode
= VOIDmode
;
5668 word_mode
= VOIDmode
;
5669 double_mode
= VOIDmode
;
5671 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5673 mode
= GET_MODE_WIDER_MODE (mode
))
5675 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5676 && byte_mode
== VOIDmode
)
5679 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5680 && word_mode
== VOIDmode
)
5684 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5686 mode
= GET_MODE_WIDER_MODE (mode
))
5688 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5689 && double_mode
== VOIDmode
)
5693 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5695 #ifdef INIT_EXPANDERS
5696 /* This is to initialize {init|mark|free}_machine_status before the first
5697 call to push_function_context_to. This is needed by the Chill front
5698 end which calls push_function_context_to before the first call to
5699 init_function_start. */
5703 /* Create the unique rtx's for certain rtx codes and operand values. */
5705 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5706 tries to use these variables. */
5707 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5708 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5709 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5711 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5712 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5713 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5715 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5717 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5718 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5719 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5724 dconsthalf
= dconst1
;
5725 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5727 for (i
= 0; i
< 3; i
++)
5729 const REAL_VALUE_TYPE
*const r
=
5730 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5732 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5734 mode
= GET_MODE_WIDER_MODE (mode
))
5735 const_tiny_rtx
[i
][(int) mode
] =
5736 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5738 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5740 mode
= GET_MODE_WIDER_MODE (mode
))
5741 const_tiny_rtx
[i
][(int) mode
] =
5742 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5744 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5746 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5748 mode
= GET_MODE_WIDER_MODE (mode
))
5749 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5751 for (mode
= MIN_MODE_PARTIAL_INT
;
5752 mode
<= MAX_MODE_PARTIAL_INT
;
5753 mode
= (enum machine_mode
)((int)(mode
) + 1))
5754 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5757 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5759 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5761 mode
= GET_MODE_WIDER_MODE (mode
))
5762 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5764 for (mode
= MIN_MODE_PARTIAL_INT
;
5765 mode
<= MAX_MODE_PARTIAL_INT
;
5766 mode
= (enum machine_mode
)((int)(mode
) + 1))
5767 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5769 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5771 mode
= GET_MODE_WIDER_MODE (mode
))
5773 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5774 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5777 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5779 mode
= GET_MODE_WIDER_MODE (mode
))
5781 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5782 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5785 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5787 mode
= GET_MODE_WIDER_MODE (mode
))
5789 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5790 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5791 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
5794 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5796 mode
= GET_MODE_WIDER_MODE (mode
))
5798 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5799 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5802 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5804 mode
= GET_MODE_WIDER_MODE (mode
))
5806 FCONST0(mode
).data
.high
= 0;
5807 FCONST0(mode
).data
.low
= 0;
5808 FCONST0(mode
).mode
= mode
;
5809 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5810 FCONST0 (mode
), mode
);
5813 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5815 mode
= GET_MODE_WIDER_MODE (mode
))
5817 FCONST0(mode
).data
.high
= 0;
5818 FCONST0(mode
).data
.low
= 0;
5819 FCONST0(mode
).mode
= mode
;
5820 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5821 FCONST0 (mode
), mode
);
5824 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5826 mode
= GET_MODE_WIDER_MODE (mode
))
5828 FCONST0(mode
).data
.high
= 0;
5829 FCONST0(mode
).data
.low
= 0;
5830 FCONST0(mode
).mode
= mode
;
5831 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5832 FCONST0 (mode
), mode
);
5834 /* We store the value 1. */
5835 FCONST1(mode
).data
.high
= 0;
5836 FCONST1(mode
).data
.low
= 0;
5837 FCONST1(mode
).mode
= mode
;
5839 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5840 HOST_BITS_PER_DOUBLE_INT
,
5841 SIGNED_FIXED_POINT_MODE_P (mode
));
5842 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5843 FCONST1 (mode
), mode
);
5846 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5848 mode
= GET_MODE_WIDER_MODE (mode
))
5850 FCONST0(mode
).data
.high
= 0;
5851 FCONST0(mode
).data
.low
= 0;
5852 FCONST0(mode
).mode
= mode
;
5853 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5854 FCONST0 (mode
), mode
);
5856 /* We store the value 1. */
5857 FCONST1(mode
).data
.high
= 0;
5858 FCONST1(mode
).data
.low
= 0;
5859 FCONST1(mode
).mode
= mode
;
5861 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5862 HOST_BITS_PER_DOUBLE_INT
,
5863 SIGNED_FIXED_POINT_MODE_P (mode
));
5864 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5865 FCONST1 (mode
), mode
);
5868 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5870 mode
= GET_MODE_WIDER_MODE (mode
))
5872 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5875 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5877 mode
= GET_MODE_WIDER_MODE (mode
))
5879 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5882 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5884 mode
= GET_MODE_WIDER_MODE (mode
))
5886 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5887 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5890 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5892 mode
= GET_MODE_WIDER_MODE (mode
))
5894 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5895 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5898 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5899 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5900 const_tiny_rtx
[0][i
] = const0_rtx
;
5902 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5903 if (STORE_FLAG_VALUE
== 1)
5904 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5906 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
5907 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
5908 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
5909 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
5912 /* Produce exact duplicate of insn INSN after AFTER.
5913 Care updating of libcall regions if present. */
5916 emit_copy_of_insn_after (rtx insn
, rtx after
)
5920 switch (GET_CODE (insn
))
5923 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5927 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5931 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
5935 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5936 if (CALL_INSN_FUNCTION_USAGE (insn
))
5937 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5938 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5939 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5940 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5941 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5942 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5943 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5950 /* Update LABEL_NUSES. */
5951 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5953 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
5955 /* If the old insn is frame related, then so is the new one. This is
5956 primarily needed for IA-64 unwind info which marks epilogue insns,
5957 which may be duplicated by the basic block reordering code. */
5958 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5960 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5961 will make them. REG_LABEL_TARGETs are created there too, but are
5962 supposed to be sticky, so we copy them. */
5963 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5964 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5966 if (GET_CODE (link
) == EXPR_LIST
)
5967 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5968 copy_insn_1 (XEXP (link
, 0)));
5970 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5973 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5977 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5979 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5981 if (hard_reg_clobbers
[mode
][regno
])
5982 return hard_reg_clobbers
[mode
][regno
];
5984 return (hard_reg_clobbers
[mode
][regno
] =
5985 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5988 location_t prologue_location
;
5989 location_t epilogue_location
;
5991 /* Hold current location information and last location information, so the
5992 datastructures are built lazily only when some instructions in given
5993 place are needed. */
5994 static location_t curr_location
;
5996 /* Allocate insn location datastructure. */
5998 insn_locations_init (void)
6000 prologue_location
= epilogue_location
= 0;
6001 curr_location
= UNKNOWN_LOCATION
;
6004 /* At the end of emit stage, clear current location. */
6006 insn_locations_finalize (void)
6008 epilogue_location
= curr_location
;
6009 curr_location
= UNKNOWN_LOCATION
;
6012 /* Set current location. */
6014 set_curr_insn_location (location_t location
)
6016 curr_location
= location
;
6019 /* Get current location. */
6021 curr_insn_location (void)
6023 return curr_location
;
6026 /* Return lexical scope block insn belongs to. */
6028 insn_scope (const_rtx insn
)
6030 return LOCATION_BLOCK (INSN_LOCATION (insn
));
6033 /* Return line number of the statement that produced this insn. */
6035 insn_line (const_rtx insn
)
6037 return LOCATION_LINE (INSN_LOCATION (insn
));
6040 /* Return source file of the statement that produced this insn. */
6042 insn_file (const_rtx insn
)
6044 return LOCATION_FILE (INSN_LOCATION (insn
));
6047 /* Return true if memory model MODEL requires a pre-operation (release-style)
6048 barrier or a post-operation (acquire-style) barrier. While not universal,
6049 this function matches behavior of several targets. */
6052 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6054 switch (model
& MEMMODEL_MASK
)
6056 case MEMMODEL_RELAXED
:
6057 case MEMMODEL_CONSUME
:
6059 case MEMMODEL_RELEASE
:
6061 case MEMMODEL_ACQUIRE
:
6063 case MEMMODEL_ACQ_REL
:
6064 case MEMMODEL_SEQ_CST
:
6071 #include "gt-emit-rtl.h"