re PR libstdc++/27199 (ptrdiff_t and size_t outside of namespace std)
[official-gcc.git] / libstdc++-v3 / include / ext / bitmap_allocator.h
blob42109b468912167ab4b800fb5138c53dcc2eaad5
1 // Bitmap Allocator. -*- C++ -*-
3 // Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
30 /** @file ext/bitmap_allocator.h
31 * This file is a GNU extension to the Standard C++ Library.
34 #ifndef _BITMAP_ALLOCATOR_H
35 #define _BITMAP_ALLOCATOR_H 1
37 // For std::size_t, and ptrdiff_t.
38 #include <cstddef>
40 // For __throw_bad_alloc().
41 #include <bits/functexcept.h>
43 // For std::pair.
44 #include <utility>
46 // For greater_equal, and less_equal.
47 #include <functional>
49 // For operator new.
50 #include <new>
52 // For __gthread_mutex_t, __gthread_mutex_lock and __gthread_mutex_unlock.
53 #include <bits/gthr.h>
55 // Define this to enable error checking withing the allocator
56 // itself(to debug the allocator itself).
57 //#define _BALLOC_SANITY_CHECK
59 /** @brief The constant in the expression below is the alignment
60 * required in bytes.
62 #define _BALLOC_ALIGN_BYTES 8
64 #if defined _BALLOC_SANITY_CHECK
65 #include <cassert>
66 #define _BALLOC_ASSERT(_EXPR) assert(_EXPR)
67 #else
68 #define _BALLOC_ASSERT(_EXPR)
69 #endif
72 _GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
74 using std::size_t;
75 using std::ptrdiff_t;
77 #if defined __GTHREADS
78 namespace
80 /** @brief If true, then the application being compiled will be
81 * using threads, so use mutexes as a synchronization primitive,
82 * else do no use any synchronization primitives.
84 bool const __threads_enabled = __gthread_active_p();
86 #endif
88 #if defined __GTHREADS
89 /** @class _Mutex bitmap_allocator.h bitmap_allocator.h
91 * @brief _Mutex is an OO-Wrapper for __gthread_mutex_t.
93 * It does not allow you to copy or assign an already initialized
94 * mutex. This is used merely as a convenience for the locking
95 * classes.
97 class _Mutex
99 __gthread_mutex_t _M_mut;
101 // Prevent Copying and assignment.
102 _Mutex(_Mutex const&);
103 _Mutex& operator=(_Mutex const&);
105 public:
106 _Mutex()
108 if (__threads_enabled)
110 #if !defined __GTHREAD_MUTEX_INIT
111 __GTHREAD_MUTEX_INIT_FUNCTION(&_M_mut);
112 #else
113 __gthread_mutex_t __mtemp = __GTHREAD_MUTEX_INIT;
114 _M_mut = __mtemp;
115 #endif
119 ~_Mutex()
121 // Gthreads does not define a Mutex Destruction Function.
124 __gthread_mutex_t*
125 _M_get() { return &_M_mut; }
128 /** @class _Lock bitmap_allocator.h bitmap_allocator.h
130 * @brief _Lock is a simple manual locking class which allows you to
131 * manually lock and unlock a mutex associated with the lock.
133 * There is no automatic locking or unlocking happening without the
134 * programmer's explicit instructions. This class unlocks the mutex
135 * ONLY if it has not been locked. However, this check does not
136 * apply for locking, and wayward use may cause dead-locks.
138 class _Lock
140 _Mutex* _M_pmt;
141 bool _M_locked;
143 // Prevent Copying and assignment.
144 _Lock(_Lock const&);
145 _Lock& operator=(_Lock const&);
147 public:
148 _Lock(_Mutex* __mptr)
149 : _M_pmt(__mptr), _M_locked(false)
152 void
153 _M_lock()
155 if (__threads_enabled)
157 _M_locked = true;
158 __gthread_mutex_lock(_M_pmt->_M_get());
162 void
163 _M_unlock()
165 if (__threads_enabled)
167 if (__builtin_expect(_M_locked, true))
169 __gthread_mutex_unlock(_M_pmt->_M_get());
170 _M_locked = false;
175 ~_Lock() { }
178 /** @class _Auto_Lock bitmap_allocator.h bitmap_allocator.h
180 * @brief _Auto_Lock locks the associated mutex on construction, and
181 * unlocks on destruction.
183 * There are no checks performed, and this class follows the RAII
184 * principle.
186 class _Auto_Lock
188 _Mutex* _M_pmt;
189 // Prevent Copying and assignment.
190 _Auto_Lock(_Auto_Lock const&);
191 _Auto_Lock& operator=(_Auto_Lock const&);
193 void
194 _M_lock()
196 if (__threads_enabled)
197 __gthread_mutex_lock(_M_pmt->_M_get());
200 void
201 _M_unlock()
203 if (__threads_enabled)
204 __gthread_mutex_unlock(_M_pmt->_M_get());
207 public:
208 _Auto_Lock(_Mutex* __mptr) : _M_pmt(__mptr)
209 { this->_M_lock(); }
211 ~_Auto_Lock() { this->_M_unlock(); }
213 #endif
215 namespace balloc
217 /** @class __mini_vector bitmap_allocator.h bitmap_allocator.h
219 * @brief __mini_vector<> is a stripped down version of the
220 * full-fledged std::vector<>.
222 * It is to be used only for built-in types or PODs. Notable
223 * differences are:
225 * @detail
226 * 1. Not all accessor functions are present.
227 * 2. Used ONLY for PODs.
228 * 3. No Allocator template argument. Uses ::operator new() to get
229 * memory, and ::operator delete() to free it.
230 * Caveat: The dtor does NOT free the memory allocated, so this a
231 * memory-leaking vector!
233 template<typename _Tp>
234 class __mini_vector
236 __mini_vector(const __mini_vector&);
237 __mini_vector& operator=(const __mini_vector&);
239 public:
240 typedef _Tp value_type;
241 typedef _Tp* pointer;
242 typedef _Tp& reference;
243 typedef const _Tp& const_reference;
244 typedef size_t size_type;
245 typedef ptrdiff_t difference_type;
246 typedef pointer iterator;
248 private:
249 pointer _M_start;
250 pointer _M_finish;
251 pointer _M_end_of_storage;
253 size_type
254 _M_space_left() const throw()
255 { return _M_end_of_storage - _M_finish; }
257 pointer
258 allocate(size_type __n)
259 { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
261 void
262 deallocate(pointer __p, size_type)
263 { ::operator delete(__p); }
265 public:
266 // Members used: size(), push_back(), pop_back(),
267 // insert(iterator, const_reference), erase(iterator),
268 // begin(), end(), back(), operator[].
270 __mini_vector() : _M_start(0), _M_finish(0),
271 _M_end_of_storage(0)
274 #if 0
275 ~__mini_vector()
277 if (this->_M_start)
279 this->deallocate(this->_M_start, this->_M_end_of_storage
280 - this->_M_start);
283 #endif
285 size_type
286 size() const throw()
287 { return _M_finish - _M_start; }
289 iterator
290 begin() const throw()
291 { return this->_M_start; }
293 iterator
294 end() const throw()
295 { return this->_M_finish; }
297 reference
298 back() const throw()
299 { return *(this->end() - 1); }
301 reference
302 operator[](const size_type __pos) const throw()
303 { return this->_M_start[__pos]; }
305 void
306 insert(iterator __pos, const_reference __x);
308 void
309 push_back(const_reference __x)
311 if (this->_M_space_left())
313 *this->end() = __x;
314 ++this->_M_finish;
316 else
317 this->insert(this->end(), __x);
320 void
321 pop_back() throw()
322 { --this->_M_finish; }
324 void
325 erase(iterator __pos) throw();
327 void
328 clear() throw()
329 { this->_M_finish = this->_M_start; }
332 // Out of line function definitions.
333 template<typename _Tp>
334 void __mini_vector<_Tp>::
335 insert(iterator __pos, const_reference __x)
337 if (this->_M_space_left())
339 size_type __to_move = this->_M_finish - __pos;
340 iterator __dest = this->end();
341 iterator __src = this->end() - 1;
343 ++this->_M_finish;
344 while (__to_move)
346 *__dest = *__src;
347 --__dest; --__src; --__to_move;
349 *__pos = __x;
351 else
353 size_type __new_size = this->size() ? this->size() * 2 : 1;
354 iterator __new_start = this->allocate(__new_size);
355 iterator __first = this->begin();
356 iterator __start = __new_start;
357 while (__first != __pos)
359 *__start = *__first;
360 ++__start; ++__first;
362 *__start = __x;
363 ++__start;
364 while (__first != this->end())
366 *__start = *__first;
367 ++__start; ++__first;
369 if (this->_M_start)
370 this->deallocate(this->_M_start, this->size());
372 this->_M_start = __new_start;
373 this->_M_finish = __start;
374 this->_M_end_of_storage = this->_M_start + __new_size;
378 template<typename _Tp>
379 void __mini_vector<_Tp>::
380 erase(iterator __pos) throw()
382 while (__pos + 1 != this->end())
384 *__pos = __pos[1];
385 ++__pos;
387 --this->_M_finish;
391 template<typename _Tp>
392 struct __mv_iter_traits
394 typedef typename _Tp::value_type value_type;
395 typedef typename _Tp::difference_type difference_type;
398 template<typename _Tp>
399 struct __mv_iter_traits<_Tp*>
401 typedef _Tp value_type;
402 typedef ptrdiff_t difference_type;
405 enum
407 bits_per_byte = 8,
408 bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
411 template<typename _ForwardIterator, typename _Tp, typename _Compare>
412 _ForwardIterator
413 __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
414 const _Tp& __val, _Compare __comp)
416 typedef typename __mv_iter_traits<_ForwardIterator>::value_type
417 _ValueType;
418 typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
419 _DistanceType;
421 _DistanceType __len = __last - __first;
422 _DistanceType __half;
423 _ForwardIterator __middle;
425 while (__len > 0)
427 __half = __len >> 1;
428 __middle = __first;
429 __middle += __half;
430 if (__comp(*__middle, __val))
432 __first = __middle;
433 ++__first;
434 __len = __len - __half - 1;
436 else
437 __len = __half;
439 return __first;
442 template<typename _InputIterator, typename _Predicate>
443 inline _InputIterator
444 __find_if(_InputIterator __first, _InputIterator __last, _Predicate __p)
446 while (__first != __last && !__p(*__first))
447 ++__first;
448 return __first;
451 /** @brief The number of Blocks pointed to by the address pair
452 * passed to the function.
454 template<typename _AddrPair>
455 inline size_t
456 __num_blocks(_AddrPair __ap)
457 { return (__ap.second - __ap.first) + 1; }
459 /** @brief The number of Bit-maps pointed to by the address pair
460 * passed to the function.
462 template<typename _AddrPair>
463 inline size_t
464 __num_bitmaps(_AddrPair __ap)
465 { return __num_blocks(__ap) / size_t(bits_per_block); }
467 // _Tp should be a pointer type.
468 template<typename _Tp>
469 class _Inclusive_between
470 : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
472 typedef _Tp pointer;
473 pointer _M_ptr_value;
474 typedef typename std::pair<_Tp, _Tp> _Block_pair;
476 public:
477 _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
480 bool
481 operator()(_Block_pair __bp) const throw()
483 if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
484 && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
485 return true;
486 else
487 return false;
491 // Used to pass a Functor to functions by reference.
492 template<typename _Functor>
493 class _Functor_Ref
494 : public std::unary_function<typename _Functor::argument_type,
495 typename _Functor::result_type>
497 _Functor& _M_fref;
499 public:
500 typedef typename _Functor::argument_type argument_type;
501 typedef typename _Functor::result_type result_type;
503 _Functor_Ref(_Functor& __fref) : _M_fref(__fref)
506 result_type
507 operator()(argument_type __arg)
508 { return _M_fref(__arg); }
511 /** @class _Ffit_finder bitmap_allocator.h bitmap_allocator.h
513 * @brief The class which acts as a predicate for applying the
514 * first-fit memory allocation policy for the bitmap allocator.
516 // _Tp should be a pointer type, and _Alloc is the Allocator for
517 // the vector.
518 template<typename _Tp>
519 class _Ffit_finder
520 : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
522 typedef typename std::pair<_Tp, _Tp> _Block_pair;
523 typedef typename balloc::__mini_vector<_Block_pair> _BPVector;
524 typedef typename _BPVector::difference_type _Counter_type;
526 size_t* _M_pbitmap;
527 _Counter_type _M_data_offset;
529 public:
530 _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
533 bool
534 operator()(_Block_pair __bp) throw()
536 // Set the _rover to the last physical location bitmap,
537 // which is the bitmap which belongs to the first free
538 // block. Thus, the bitmaps are in exact reverse order of
539 // the actual memory layout. So, we count down the bimaps,
540 // which is the same as moving up the memory.
542 // If the used count stored at the start of the Bit Map headers
543 // is equal to the number of Objects that the current Block can
544 // store, then there is definitely no space for another single
545 // object, so just return false.
546 _Counter_type __diff =
547 __gnu_cxx::balloc::__num_bitmaps(__bp);
549 if (*(reinterpret_cast<size_t*>
550 (__bp.first) - (__diff + 1))
551 == __gnu_cxx::balloc::__num_blocks(__bp))
552 return false;
554 size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
556 for (_Counter_type __i = 0; __i < __diff; ++__i)
558 _M_data_offset = __i;
559 if (*__rover)
561 _M_pbitmap = __rover;
562 return true;
564 --__rover;
566 return false;
570 size_t*
571 _M_get() const throw()
572 { return _M_pbitmap; }
574 _Counter_type
575 _M_offset() const throw()
576 { return _M_data_offset * size_t(bits_per_block); }
580 /** @class _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
582 * @brief The bitmap counter which acts as the bitmap
583 * manipulator, and manages the bit-manipulation functions and
584 * the searching and identification functions on the bit-map.
586 // _Tp should be a pointer type.
587 template<typename _Tp>
588 class _Bitmap_counter
590 typedef typename balloc::__mini_vector<typename std::pair<_Tp, _Tp> >
591 _BPVector;
592 typedef typename _BPVector::size_type _Index_type;
593 typedef _Tp pointer;
595 _BPVector& _M_vbp;
596 size_t* _M_curr_bmap;
597 size_t* _M_last_bmap_in_block;
598 _Index_type _M_curr_index;
600 public:
601 // Use the 2nd parameter with care. Make sure that such an
602 // entry exists in the vector before passing that particular
603 // index to this ctor.
604 _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
605 { this->_M_reset(__index); }
607 void
608 _M_reset(long __index = -1) throw()
610 if (__index == -1)
612 _M_curr_bmap = 0;
613 _M_curr_index = static_cast<_Index_type>(-1);
614 return;
617 _M_curr_index = __index;
618 _M_curr_bmap = reinterpret_cast<size_t*>
619 (_M_vbp[_M_curr_index].first) - 1;
621 _BALLOC_ASSERT(__index <= (long)_M_vbp.size() - 1);
623 _M_last_bmap_in_block = _M_curr_bmap
624 - ((_M_vbp[_M_curr_index].second
625 - _M_vbp[_M_curr_index].first + 1)
626 / size_t(bits_per_block) - 1);
629 // Dangerous Function! Use with extreme care. Pass to this
630 // function ONLY those values that are known to be correct,
631 // otherwise this will mess up big time.
632 void
633 _M_set_internal_bitmap(size_t* __new_internal_marker) throw()
634 { _M_curr_bmap = __new_internal_marker; }
636 bool
637 _M_finished() const throw()
638 { return(_M_curr_bmap == 0); }
640 _Bitmap_counter&
641 operator++() throw()
643 if (_M_curr_bmap == _M_last_bmap_in_block)
645 if (++_M_curr_index == _M_vbp.size())
646 _M_curr_bmap = 0;
647 else
648 this->_M_reset(_M_curr_index);
650 else
651 --_M_curr_bmap;
652 return *this;
655 size_t*
656 _M_get() const throw()
657 { return _M_curr_bmap; }
659 pointer
660 _M_base() const throw()
661 { return _M_vbp[_M_curr_index].first; }
663 _Index_type
664 _M_offset() const throw()
666 return size_t(bits_per_block)
667 * ((reinterpret_cast<size_t*>(this->_M_base())
668 - _M_curr_bmap) - 1);
671 _Index_type
672 _M_where() const throw()
673 { return _M_curr_index; }
676 /** @brief Mark a memory address as allocated by re-setting the
677 * corresponding bit in the bit-map.
679 inline void
680 __bit_allocate(size_t* __pbmap, size_t __pos) throw()
682 size_t __mask = 1 << __pos;
683 __mask = ~__mask;
684 *__pbmap &= __mask;
687 /** @brief Mark a memory address as free by setting the
688 * corresponding bit in the bit-map.
690 inline void
691 __bit_free(size_t* __pbmap, size_t __pos) throw()
693 size_t __mask = 1 << __pos;
694 *__pbmap |= __mask;
696 } // namespace balloc
698 /** @brief Generic Version of the bsf instruction.
700 inline size_t
701 _Bit_scan_forward(size_t __num)
702 { return static_cast<size_t>(__builtin_ctzl(__num)); }
704 /** @class free_list bitmap_allocator.h bitmap_allocator.h
706 * @brief The free list class for managing chunks of memory to be
707 * given to and returned by the bitmap_allocator.
709 class free_list
711 typedef size_t* value_type;
712 typedef balloc::__mini_vector<value_type> vector_type;
713 typedef vector_type::iterator iterator;
715 struct _LT_pointer_compare
717 bool
718 operator()(const size_t* __pui,
719 const size_t __cui) const throw()
720 { return *__pui < __cui; }
723 #if defined __GTHREADS
724 _Mutex*
725 _M_get_mutex()
727 static _Mutex _S_mutex;
728 return &_S_mutex;
730 #endif
732 vector_type&
733 _M_get_free_list()
735 static vector_type _S_free_list;
736 return _S_free_list;
739 /** @brief Performs validation of memory based on their size.
741 * @param __addr The pointer to the memory block to be
742 * validated.
744 * @detail Validates the memory block passed to this function and
745 * appropriately performs the action of managing the free list of
746 * blocks by adding this block to the free list or deleting this
747 * or larger blocks from the free list.
749 void
750 _M_validate(size_t* __addr) throw()
752 vector_type& __free_list = _M_get_free_list();
753 const vector_type::size_type __max_size = 64;
754 if (__free_list.size() >= __max_size)
756 // Ok, the threshold value has been reached. We determine
757 // which block to remove from the list of free blocks.
758 if (*__addr >= *__free_list.back())
760 // Ok, the new block is greater than or equal to the
761 // last block in the list of free blocks. We just free
762 // the new block.
763 ::operator delete(static_cast<void*>(__addr));
764 return;
766 else
768 // Deallocate the last block in the list of free lists,
769 // and insert the new one in it's correct position.
770 ::operator delete(static_cast<void*>(__free_list.back()));
771 __free_list.pop_back();
775 // Just add the block to the list of free lists unconditionally.
776 iterator __temp = __gnu_cxx::balloc::__lower_bound
777 (__free_list.begin(), __free_list.end(),
778 *__addr, _LT_pointer_compare());
780 // We may insert the new free list before _temp;
781 __free_list.insert(__temp, __addr);
784 /** @brief Decides whether the wastage of memory is acceptable for
785 * the current memory request and returns accordingly.
787 * @param __block_size The size of the block available in the free
788 * list.
790 * @param __required_size The required size of the memory block.
792 * @return true if the wastage incurred is acceptable, else returns
793 * false.
795 bool
796 _M_should_i_give(size_t __block_size,
797 size_t __required_size) throw()
799 const size_t __max_wastage_percentage = 36;
800 if (__block_size >= __required_size &&
801 (((__block_size - __required_size) * 100 / __block_size)
802 < __max_wastage_percentage))
803 return true;
804 else
805 return false;
808 public:
809 /** @brief This function returns the block of memory to the
810 * internal free list.
812 * @param __addr The pointer to the memory block that was given
813 * by a call to the _M_get function.
815 inline void
816 _M_insert(size_t* __addr) throw()
818 #if defined __GTHREADS
819 _Auto_Lock __bfl_lock(_M_get_mutex());
820 #endif
821 // Call _M_validate to decide what should be done with
822 // this particular free list.
823 this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
824 // See discussion as to why this is 1!
827 /** @brief This function gets a block of memory of the specified
828 * size from the free list.
830 * @param __sz The size in bytes of the memory required.
832 * @return A pointer to the new memory block of size at least
833 * equal to that requested.
835 size_t*
836 _M_get(size_t __sz) throw(std::bad_alloc);
838 /** @brief This function just clears the internal Free List, and
839 * gives back all the memory to the OS.
841 void
842 _M_clear();
846 // Forward declare the class.
847 template<typename _Tp>
848 class bitmap_allocator;
850 // Specialize for void:
851 template<>
852 class bitmap_allocator<void>
854 public:
855 typedef void* pointer;
856 typedef const void* const_pointer;
858 // Reference-to-void members are impossible.
859 typedef void value_type;
860 template<typename _Tp1>
861 struct rebind
863 typedef bitmap_allocator<_Tp1> other;
867 template<typename _Tp>
868 class bitmap_allocator : private free_list
870 public:
871 typedef size_t size_type;
872 typedef ptrdiff_t difference_type;
873 typedef _Tp* pointer;
874 typedef const _Tp* const_pointer;
875 typedef _Tp& reference;
876 typedef const _Tp& const_reference;
877 typedef _Tp value_type;
878 template<typename _Tp1>
879 struct rebind
881 typedef bitmap_allocator<_Tp1> other;
884 private:
885 template<size_t _BSize, size_t _AlignSize>
886 struct aligned_size
888 enum
890 modulus = _BSize % _AlignSize,
891 value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
895 struct _Alloc_block
897 char __M_unused[aligned_size<sizeof(value_type),
898 _BALLOC_ALIGN_BYTES>::value];
902 typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
904 typedef typename
905 balloc::__mini_vector<_Block_pair> _BPVector;
907 #if defined _BALLOC_SANITY_CHECK
908 // Complexity: O(lg(N)). Where, N is the number of block of size
909 // sizeof(value_type).
910 void
911 _S_check_for_free_blocks() throw()
913 typedef typename
914 __gnu_cxx::balloc::_Ffit_finder<_Alloc_block*> _FFF;
915 _FFF __fff;
916 typedef typename _BPVector::iterator _BPiter;
917 _BPiter __bpi =
918 __gnu_cxx::balloc::__find_if
919 (_S_mem_blocks.begin(), _S_mem_blocks.end(),
920 __gnu_cxx::balloc::_Functor_Ref<_FFF>(__fff));
922 _BALLOC_ASSERT(__bpi == _S_mem_blocks.end());
924 #endif
926 /** @brief Responsible for exponentially growing the internal
927 * memory pool.
929 * @throw std::bad_alloc. If memory can not be allocated.
931 * @detail Complexity: O(1), but internally depends upon the
932 * complexity of the function free_list::_M_get. The part where
933 * the bitmap headers are written has complexity: O(X),where X
934 * is the number of blocks of size sizeof(value_type) within
935 * the newly acquired block. Having a tight bound.
937 void
938 _S_refill_pool() throw(std::bad_alloc)
940 #if defined _BALLOC_SANITY_CHECK
941 _S_check_for_free_blocks();
942 #endif
944 const size_t __num_bitmaps = (_S_block_size
945 / size_t(balloc::bits_per_block));
946 const size_t __size_to_allocate = sizeof(size_t)
947 + _S_block_size * sizeof(_Alloc_block)
948 + __num_bitmaps * sizeof(size_t);
950 size_t* __temp =
951 reinterpret_cast<size_t*>
952 (this->_M_get(__size_to_allocate));
953 *__temp = 0;
954 ++__temp;
956 // The Header information goes at the Beginning of the Block.
957 _Block_pair __bp =
958 std::make_pair(reinterpret_cast<_Alloc_block*>
959 (__temp + __num_bitmaps),
960 reinterpret_cast<_Alloc_block*>
961 (__temp + __num_bitmaps)
962 + _S_block_size - 1);
964 // Fill the Vector with this information.
965 _S_mem_blocks.push_back(__bp);
967 size_t __bit_mask = 0; // 0 Indicates all Allocated.
968 __bit_mask = ~__bit_mask; // 1 Indicates all Free.
970 for (size_t __i = 0; __i < __num_bitmaps; ++__i)
971 __temp[__i] = __bit_mask;
973 _S_block_size *= 2;
977 static _BPVector _S_mem_blocks;
978 static size_t _S_block_size;
979 static __gnu_cxx::balloc::
980 _Bitmap_counter<_Alloc_block*> _S_last_request;
981 static typename _BPVector::size_type _S_last_dealloc_index;
982 #if defined __GTHREADS
983 static _Mutex _S_mut;
984 #endif
986 public:
988 /** @brief Allocates memory for a single object of size
989 * sizeof(_Tp).
991 * @throw std::bad_alloc. If memory can not be allocated.
993 * @detail Complexity: Worst case complexity is O(N), but that
994 * is hardly ever hit. If and when this particular case is
995 * encountered, the next few cases are guaranteed to have a
996 * worst case complexity of O(1)! That's why this function
997 * performs very well on average. You can consider this
998 * function to have a complexity referred to commonly as:
999 * Amortized Constant time.
1001 pointer
1002 _M_allocate_single_object() throw(std::bad_alloc)
1004 #if defined __GTHREADS
1005 _Auto_Lock __bit_lock(&_S_mut);
1006 #endif
1008 // The algorithm is something like this: The last_request
1009 // variable points to the last accessed Bit Map. When such a
1010 // condition occurs, we try to find a free block in the
1011 // current bitmap, or succeeding bitmaps until the last bitmap
1012 // is reached. If no free block turns up, we resort to First
1013 // Fit method.
1015 // WARNING: Do not re-order the condition in the while
1016 // statement below, because it relies on C++'s short-circuit
1017 // evaluation. The return from _S_last_request->_M_get() will
1018 // NOT be dereference able if _S_last_request->_M_finished()
1019 // returns true. This would inevitably lead to a NULL pointer
1020 // dereference if tinkered with.
1021 while (_S_last_request._M_finished() == false
1022 && (*(_S_last_request._M_get()) == 0))
1024 _S_last_request.operator++();
1027 if (__builtin_expect(_S_last_request._M_finished() == true, false))
1029 // Fall Back to First Fit algorithm.
1030 typedef typename
1031 __gnu_cxx::balloc::_Ffit_finder<_Alloc_block*> _FFF;
1032 _FFF __fff;
1033 typedef typename _BPVector::iterator _BPiter;
1034 _BPiter __bpi =
1035 __gnu_cxx::balloc::__find_if
1036 (_S_mem_blocks.begin(), _S_mem_blocks.end(),
1037 __gnu_cxx::balloc::_Functor_Ref<_FFF>(__fff));
1039 if (__bpi != _S_mem_blocks.end())
1041 // Search was successful. Ok, now mark the first bit from
1042 // the right as 0, meaning Allocated. This bit is obtained
1043 // by calling _M_get() on __fff.
1044 size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
1045 balloc::__bit_allocate(__fff._M_get(), __nz_bit);
1047 _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
1049 // Now, get the address of the bit we marked as allocated.
1050 pointer __ret = reinterpret_cast<pointer>
1051 (__bpi->first + __fff._M_offset() + __nz_bit);
1052 size_t* __puse_count =
1053 reinterpret_cast<size_t*>
1054 (__bpi->first)
1055 - (__gnu_cxx::balloc::__num_bitmaps(*__bpi) + 1);
1057 ++(*__puse_count);
1058 return __ret;
1060 else
1062 // Search was unsuccessful. We Add more memory to the
1063 // pool by calling _S_refill_pool().
1064 _S_refill_pool();
1066 // _M_Reset the _S_last_request structure to the first
1067 // free block's bit map.
1068 _S_last_request._M_reset(_S_mem_blocks.size() - 1);
1070 // Now, mark that bit as allocated.
1074 // _S_last_request holds a pointer to a valid bit map, that
1075 // points to a free block in memory.
1076 size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
1077 balloc::__bit_allocate(_S_last_request._M_get(), __nz_bit);
1079 pointer __ret = reinterpret_cast<pointer>
1080 (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
1082 size_t* __puse_count = reinterpret_cast<size_t*>
1083 (_S_mem_blocks[_S_last_request._M_where()].first)
1084 - (__gnu_cxx::balloc::
1085 __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
1087 ++(*__puse_count);
1088 return __ret;
1091 /** @brief Deallocates memory that belongs to a single object of
1092 * size sizeof(_Tp).
1094 * @detail Complexity: O(lg(N)), but the worst case is not hit
1095 * often! This is because containers usually deallocate memory
1096 * close to each other and this case is handled in O(1) time by
1097 * the deallocate function.
1099 void
1100 _M_deallocate_single_object(pointer __p) throw()
1102 #if defined __GTHREADS
1103 _Auto_Lock __bit_lock(&_S_mut);
1104 #endif
1105 _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
1107 typedef typename _BPVector::iterator _Iterator;
1108 typedef typename _BPVector::difference_type _Difference_type;
1110 _Difference_type __diff;
1111 long __displacement;
1113 _BALLOC_ASSERT(_S_last_dealloc_index >= 0);
1116 if (__gnu_cxx::balloc::_Inclusive_between<_Alloc_block*>
1117 (__real_p)
1118 (_S_mem_blocks[_S_last_dealloc_index]))
1120 _BALLOC_ASSERT(_S_last_dealloc_index <= _S_mem_blocks.size() - 1);
1122 // Initial Assumption was correct!
1123 __diff = _S_last_dealloc_index;
1124 __displacement = __real_p - _S_mem_blocks[__diff].first;
1126 else
1128 _Iterator _iter =
1129 __gnu_cxx::balloc::
1130 __find_if(_S_mem_blocks.begin(),
1131 _S_mem_blocks.end(),
1132 __gnu_cxx::balloc::
1133 _Inclusive_between<_Alloc_block*>(__real_p));
1135 _BALLOC_ASSERT(_iter != _S_mem_blocks.end());
1137 __diff = _iter - _S_mem_blocks.begin();
1138 __displacement = __real_p - _S_mem_blocks[__diff].first;
1139 _S_last_dealloc_index = __diff;
1142 // Get the position of the iterator that has been found.
1143 const size_t __rotate = (__displacement
1144 % size_t(balloc::bits_per_block));
1145 size_t* __bitmapC =
1146 reinterpret_cast<size_t*>
1147 (_S_mem_blocks[__diff].first) - 1;
1148 __bitmapC -= (__displacement / size_t(balloc::bits_per_block));
1150 balloc::__bit_free(__bitmapC, __rotate);
1151 size_t* __puse_count = reinterpret_cast<size_t*>
1152 (_S_mem_blocks[__diff].first)
1153 - (__gnu_cxx::balloc::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
1155 _BALLOC_ASSERT(*__puse_count != 0);
1157 --(*__puse_count);
1159 if (__builtin_expect(*__puse_count == 0, false))
1161 _S_block_size /= 2;
1163 // We can safely remove this block.
1164 // _Block_pair __bp = _S_mem_blocks[__diff];
1165 this->_M_insert(__puse_count);
1166 _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
1168 // Reset the _S_last_request variable to reflect the
1169 // erased block. We do this to protect future requests
1170 // after the last block has been removed from a particular
1171 // memory Chunk, which in turn has been returned to the
1172 // free list, and hence had been erased from the vector,
1173 // so the size of the vector gets reduced by 1.
1174 if ((_Difference_type)_S_last_request._M_where() >= __diff--)
1175 _S_last_request._M_reset(__diff);
1177 // If the Index into the vector of the region of memory
1178 // that might hold the next address that will be passed to
1179 // deallocated may have been invalidated due to the above
1180 // erase procedure being called on the vector, hence we
1181 // try to restore this invariant too.
1182 if (_S_last_dealloc_index >= _S_mem_blocks.size())
1184 _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
1185 _BALLOC_ASSERT(_S_last_dealloc_index >= 0);
1190 public:
1191 bitmap_allocator() throw()
1194 bitmap_allocator(const bitmap_allocator&)
1197 template<typename _Tp1>
1198 bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
1201 ~bitmap_allocator() throw()
1204 pointer
1205 allocate(size_type __n)
1207 if (__builtin_expect(__n > this->max_size(), false))
1208 std::__throw_bad_alloc();
1210 if (__builtin_expect(__n == 1, true))
1211 return this->_M_allocate_single_object();
1212 else
1214 const size_type __b = __n * sizeof(value_type);
1215 return reinterpret_cast<pointer>(::operator new(__b));
1219 pointer
1220 allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1221 { return allocate(__n); }
1223 void
1224 deallocate(pointer __p, size_type __n) throw()
1226 if (__builtin_expect(__p != 0, true))
1228 if (__builtin_expect(__n == 1, true))
1229 this->_M_deallocate_single_object(__p);
1230 else
1231 ::operator delete(__p);
1235 pointer
1236 address(reference __r) const
1237 { return &__r; }
1239 const_pointer
1240 address(const_reference __r) const
1241 { return &__r; }
1243 size_type
1244 max_size() const throw()
1245 { return size_type(-1) / sizeof(value_type); }
1247 void
1248 construct(pointer __p, const_reference __data)
1249 { ::new(__p) value_type(__data); }
1251 void
1252 destroy(pointer __p)
1253 { __p->~value_type(); }
1256 template<typename _Tp1, typename _Tp2>
1257 bool
1258 operator==(const bitmap_allocator<_Tp1>&,
1259 const bitmap_allocator<_Tp2>&) throw()
1260 { return true; }
1262 template<typename _Tp1, typename _Tp2>
1263 bool
1264 operator!=(const bitmap_allocator<_Tp1>&,
1265 const bitmap_allocator<_Tp2>&) throw()
1266 { return false; }
1268 // Static member definitions.
1269 template<typename _Tp>
1270 typename bitmap_allocator<_Tp>::_BPVector
1271 bitmap_allocator<_Tp>::_S_mem_blocks;
1273 template<typename _Tp>
1274 size_t bitmap_allocator<_Tp>::_S_block_size =
1275 2 * size_t(balloc::bits_per_block);
1277 template<typename _Tp>
1278 typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type
1279 bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1281 template<typename _Tp>
1282 __gnu_cxx::balloc::_Bitmap_counter
1283 <typename bitmap_allocator<_Tp>::_Alloc_block*>
1284 bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1286 #if defined __GTHREADS
1287 template<typename _Tp>
1288 __gnu_cxx::_Mutex
1289 bitmap_allocator<_Tp>::_S_mut;
1290 #endif
1292 _GLIBCXX_END_NAMESPACE
1294 #endif
1296 // LocalWords: namespace GTHREADS bool const gthread endif Mutex mutex