2016-07-28 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / df-core.c
blobcc18a137996edfdeaad1c6db5e9a1c0cd39c5602
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999-2016 Free Software Foundation, Inc.
3 Originally contributed by Michael P. Hayes
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 OVERVIEW:
27 The files in this collection (df*.c,df.h) provide a general framework
28 for solving dataflow problems. The global dataflow is performed using
29 a good implementation of iterative dataflow analysis.
31 The file df-problems.c provides problem instance for the most common
32 dataflow problems: reaching defs, upward exposed uses, live variables,
33 uninitialized variables, def-use chains, and use-def chains. However,
34 the interface allows other dataflow problems to be defined as well.
36 Dataflow analysis is available in most of the rtl backend (the parts
37 between pass_df_initialize and pass_df_finish). It is quite likely
38 that these boundaries will be expanded in the future. The only
39 requirement is that there be a correct control flow graph.
41 There are three variations of the live variable problem that are
42 available whenever dataflow is available. The LR problem finds the
43 areas that can reach a use of a variable, the UR problems finds the
44 areas that can be reached from a definition of a variable. The LIVE
45 problem finds the intersection of these two areas.
47 There are several optional problems. These can be enabled when they
48 are needed and disabled when they are not needed.
50 Dataflow problems are generally solved in three layers. The bottom
51 layer is called scanning where a data structure is built for each rtl
52 insn that describes the set of defs and uses of that insn. Scanning
53 is generally kept up to date, i.e. as the insns changes, the scanned
54 version of that insn changes also. There are various mechanisms for
55 making this happen and are described in the INCREMENTAL SCANNING
56 section.
58 In the middle layer, basic blocks are scanned to produce transfer
59 functions which describe the effects of that block on the global
60 dataflow solution. The transfer functions are only rebuilt if the
61 some instruction within the block has changed.
63 The top layer is the dataflow solution itself. The dataflow solution
64 is computed by using an efficient iterative solver and the transfer
65 functions. The dataflow solution must be recomputed whenever the
66 control changes or if one of the transfer function changes.
69 USAGE:
71 Here is an example of using the dataflow routines.
73 df_[chain,live,note,rd]_add_problem (flags);
75 df_set_blocks (blocks);
77 df_analyze ();
79 df_dump (stderr);
81 df_finish_pass (false);
83 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 instance to struct df_problem, to the set of problems solved in this
85 instance of df. All calls to add a problem for a given instance of df
86 must occur before the first call to DF_ANALYZE.
88 Problems can be dependent on other problems. For instance, solving
89 def-use or use-def chains is dependent on solving reaching
90 definitions. As long as these dependencies are listed in the problem
91 definition, the order of adding the problems is not material.
92 Otherwise, the problems will be solved in the order of calls to
93 df_add_problem. Note that it is not necessary to have a problem. In
94 that case, df will just be used to do the scanning.
98 DF_SET_BLOCKS is an optional call used to define a region of the
99 function on which the analysis will be performed. The normal case is
100 to analyze the entire function and no call to df_set_blocks is made.
101 DF_SET_BLOCKS only effects the blocks that are effected when computing
102 the transfer functions and final solution. The insn level information
103 is always kept up to date.
105 When a subset is given, the analysis behaves as if the function only
106 contains those blocks and any edges that occur directly between the
107 blocks in the set. Care should be taken to call df_set_blocks right
108 before the call to analyze in order to eliminate the possibility that
109 optimizations that reorder blocks invalidate the bitvector.
111 DF_ANALYZE causes all of the defined problems to be (re)solved. When
112 DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 contain the computer information. The DF_*_BB_INFO macros can be used
114 to access these bitvectors. All deferred rescannings are down before
115 the transfer functions are recomputed.
117 DF_DUMP can then be called to dump the information produce to some
118 file. This calls DF_DUMP_START, to print the information that is not
119 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 for each block to print the basic specific information. These parts
121 can all be called separately as part of a larger dump function.
124 DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 optional problems. It also causes any insns whose scanning has been
126 deferred to be rescanned as well as clears all of the changeable flags.
127 Setting the pass manager TODO_df_finish flag causes this function to
128 be run. However, the pass manager will call df_finish_pass AFTER the
129 pass dumping has been done, so if you want to see the results of the
130 optional problems in the pass dumps, use the TODO flag rather than
131 calling the function yourself.
133 INCREMENTAL SCANNING
135 There are four ways of doing the incremental scanning:
137 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
146 upon even after changes have been made to the instructions. This
147 technique is contra indicated in several cases:
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
172 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
178 This is the technique of choice if either 1a, 1b, or 1c are issues
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
183 This mode is also used by a few passes that still rely on note_uses,
184 note_stores and rtx iterators instead of using the DF data. This
185 can be said to fall under case 1c.
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190 be rescanned.
192 3) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
199 4) Do it yourself - In this mechanism, the pass updates the insns
200 itself using the low level df primitives. Currently no pass does
201 this, but it has the advantage that it is quite efficient given
202 that the pass generally has exact knowledge of what it is changing.
204 DATA STRUCTURES
206 Scanning produces a `struct df_ref' data structure (ref) is allocated
207 for every register reference (def or use) and this records the insn
208 and bb the ref is found within. The refs are linked together in
209 chains of uses and defs for each insn and for each register. Each ref
210 also has a chain field that links all the use refs for a def or all
211 the def refs for a use. This is used to create use-def or def-use
212 chains.
214 Different optimizations have different needs. Ultimately, only
215 register allocation and schedulers should be using the bitmaps
216 produced for the live register and uninitialized register problems.
217 The rest of the backend should be upgraded to using and maintaining
218 the linked information such as def use or use def chains.
221 PHILOSOPHY:
223 While incremental bitmaps are not worthwhile to maintain, incremental
224 chains may be perfectly reasonable. The fastest way to build chains
225 from scratch or after significant modifications is to build reaching
226 definitions (RD) and build the chains from this.
228 However, general algorithms for maintaining use-def or def-use chains
229 are not practical. The amount of work to recompute the chain any
230 chain after an arbitrary change is large. However, with a modest
231 amount of work it is generally possible to have the application that
232 uses the chains keep them up to date. The high level knowledge of
233 what is really happening is essential to crafting efficient
234 incremental algorithms.
236 As for the bit vector problems, there is no interface to give a set of
237 blocks over with to resolve the iteration. In general, restarting a
238 dataflow iteration is difficult and expensive. Again, the best way to
239 keep the dataflow information up to data (if this is really what is
240 needed) it to formulate a problem specific solution.
242 There are fine grained calls for creating and deleting references from
243 instructions in df-scan.c. However, these are not currently connected
244 to the engine that resolves the dataflow equations.
247 DATA STRUCTURES:
249 The basic object is a DF_REF (reference) and this may either be a
250 DEF (definition) or a USE of a register.
252 These are linked into a variety of lists; namely reg-def, reg-use,
253 insn-def, insn-use, def-use, and use-def lists. For example, the
254 reg-def lists contain all the locations that define a given register
255 while the insn-use lists contain all the locations that use a
256 register.
258 Note that the reg-def and reg-use chains are generally short for
259 pseudos and long for the hard registers.
261 ACCESSING INSNS:
263 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
267 2) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
279 3) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
287 ACCESSING REFS:
289 There are 4 ways to obtain access to refs:
291 1) References are divided into two categories, REAL and ARTIFICIAL.
293 REAL refs are associated with instructions.
295 ARTIFICIAL refs are associated with basic blocks. The heads of
296 these lists can be accessed by calling df_get_artificial_defs or
297 df_get_artificial_uses for the particular basic block.
299 Artificial defs and uses occur both at the beginning and ends of blocks.
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
314 Artificial defs occur at the end of the entry block. These arise
315 from registers that are live at entry to the function.
317 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324 treated like uses. If it is not set they are ignored.
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
336 3) If def-use or use-def chains are built, these can be traversed to
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
341 4) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
349 df_analyze or df_reorganize_defs or df_reorganize_uses.
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
355 NOTES:
357 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 both a use and a def. These are both marked read/write to show that they
359 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 will generate a use of reg 42 followed by a def of reg 42 (both marked
361 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 even though reg 41 is decremented before it is used for the memory
364 address in this second example.
366 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 for which the number of word_mode units covered by the outer mode is
368 smaller than that covered by the inner mode, invokes a read-modify-write
369 operation. We generate both a use and a def and again mark them
370 read/write.
372 Paradoxical subreg writes do not leave a trace of the old content, so they
373 are write-only operations.
377 #include "config.h"
378 #include "system.h"
379 #include "coretypes.h"
380 #include "backend.h"
381 #include "rtl.h"
382 #include "df.h"
383 #include "emit-rtl.h"
384 #include "cfganal.h"
385 #include "tree-pass.h"
386 #include "cfgloop.h"
388 static void *df_get_bb_info (struct dataflow *, unsigned int);
389 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
390 static void df_clear_bb_info (struct dataflow *, unsigned int);
391 #ifdef DF_DEBUG_CFG
392 static void df_set_clean_cfg (void);
393 #endif
395 /* The obstack on which regsets are allocated. */
396 struct bitmap_obstack reg_obstack;
398 /* An obstack for bitmap not related to specific dataflow problems.
399 This obstack should e.g. be used for bitmaps with a short life time
400 such as temporary bitmaps. */
402 bitmap_obstack df_bitmap_obstack;
405 /*----------------------------------------------------------------------------
406 Functions to create, destroy and manipulate an instance of df.
407 ----------------------------------------------------------------------------*/
409 struct df_d *df;
411 /* Add PROBLEM (and any dependent problems) to the DF instance. */
413 void
414 df_add_problem (const struct df_problem *problem)
416 struct dataflow *dflow;
417 int i;
419 /* First try to add the dependent problem. */
420 if (problem->dependent_problem)
421 df_add_problem (problem->dependent_problem);
423 /* Check to see if this problem has already been defined. If it
424 has, just return that instance, if not, add it to the end of the
425 vector. */
426 dflow = df->problems_by_index[problem->id];
427 if (dflow)
428 return;
430 /* Make a new one and add it to the end. */
431 dflow = XCNEW (struct dataflow);
432 dflow->problem = problem;
433 dflow->computed = false;
434 dflow->solutions_dirty = true;
435 df->problems_by_index[dflow->problem->id] = dflow;
437 /* Keep the defined problems ordered by index. This solves the
438 problem that RI will use the information from UREC if UREC has
439 been defined, or from LIVE if LIVE is defined and otherwise LR.
440 However for this to work, the computation of RI must be pushed
441 after which ever of those problems is defined, but we do not
442 require any of those except for LR to have actually been
443 defined. */
444 df->num_problems_defined++;
445 for (i = df->num_problems_defined - 2; i >= 0; i--)
447 if (problem->id < df->problems_in_order[i]->problem->id)
448 df->problems_in_order[i+1] = df->problems_in_order[i];
449 else
451 df->problems_in_order[i+1] = dflow;
452 return;
455 df->problems_in_order[0] = dflow;
459 /* Set the MASK flags in the DFLOW problem. The old flags are
460 returned. If a flag is not allowed to be changed this will fail if
461 checking is enabled. */
463 df_set_flags (int changeable_flags)
465 int old_flags = df->changeable_flags;
466 df->changeable_flags |= changeable_flags;
467 return old_flags;
471 /* Clear the MASK flags in the DFLOW problem. The old flags are
472 returned. If a flag is not allowed to be changed this will fail if
473 checking is enabled. */
475 df_clear_flags (int changeable_flags)
477 int old_flags = df->changeable_flags;
478 df->changeable_flags &= ~changeable_flags;
479 return old_flags;
483 /* Set the blocks that are to be considered for analysis. If this is
484 not called or is called with null, the entire function in
485 analyzed. */
487 void
488 df_set_blocks (bitmap blocks)
490 if (blocks)
492 if (dump_file)
493 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
494 if (df->blocks_to_analyze)
496 /* This block is called to change the focus from one subset
497 to another. */
498 int p;
499 bitmap_head diff;
500 bitmap_initialize (&diff, &df_bitmap_obstack);
501 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
502 for (p = 0; p < df->num_problems_defined; p++)
504 struct dataflow *dflow = df->problems_in_order[p];
505 if (dflow->optional_p && dflow->problem->reset_fun)
506 dflow->problem->reset_fun (df->blocks_to_analyze);
507 else if (dflow->problem->free_blocks_on_set_blocks)
509 bitmap_iterator bi;
510 unsigned int bb_index;
512 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
514 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
515 if (bb)
517 void *bb_info = df_get_bb_info (dflow, bb_index);
518 dflow->problem->free_bb_fun (bb, bb_info);
519 df_clear_bb_info (dflow, bb_index);
525 bitmap_clear (&diff);
527 else
529 /* This block of code is executed to change the focus from
530 the entire function to a subset. */
531 bitmap_head blocks_to_reset;
532 bool initialized = false;
533 int p;
534 for (p = 0; p < df->num_problems_defined; p++)
536 struct dataflow *dflow = df->problems_in_order[p];
537 if (dflow->optional_p && dflow->problem->reset_fun)
539 if (!initialized)
541 basic_block bb;
542 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
543 FOR_ALL_BB_FN (bb, cfun)
545 bitmap_set_bit (&blocks_to_reset, bb->index);
548 dflow->problem->reset_fun (&blocks_to_reset);
551 if (initialized)
552 bitmap_clear (&blocks_to_reset);
554 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
556 bitmap_copy (df->blocks_to_analyze, blocks);
557 df->analyze_subset = true;
559 else
561 /* This block is executed to reset the focus to the entire
562 function. */
563 if (dump_file)
564 fprintf (dump_file, "clearing blocks_to_analyze\n");
565 if (df->blocks_to_analyze)
567 BITMAP_FREE (df->blocks_to_analyze);
568 df->blocks_to_analyze = NULL;
570 df->analyze_subset = false;
573 /* Setting the blocks causes the refs to be unorganized since only
574 the refs in the blocks are seen. */
575 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
576 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
577 df_mark_solutions_dirty ();
581 /* Delete a DFLOW problem (and any problems that depend on this
582 problem). */
584 void
585 df_remove_problem (struct dataflow *dflow)
587 const struct df_problem *problem;
588 int i;
590 if (!dflow)
591 return;
593 problem = dflow->problem;
594 gcc_assert (problem->remove_problem_fun);
596 /* Delete any problems that depended on this problem first. */
597 for (i = 0; i < df->num_problems_defined; i++)
598 if (df->problems_in_order[i]->problem->dependent_problem == problem)
599 df_remove_problem (df->problems_in_order[i]);
601 /* Now remove this problem. */
602 for (i = 0; i < df->num_problems_defined; i++)
603 if (df->problems_in_order[i] == dflow)
605 int j;
606 for (j = i + 1; j < df->num_problems_defined; j++)
607 df->problems_in_order[j-1] = df->problems_in_order[j];
608 df->problems_in_order[j-1] = NULL;
609 df->num_problems_defined--;
610 break;
613 (problem->remove_problem_fun) ();
614 df->problems_by_index[problem->id] = NULL;
618 /* Remove all of the problems that are not permanent. Scanning, LR
619 and (at -O2 or higher) LIVE are permanent, the rest are removable.
620 Also clear all of the changeable_flags. */
622 void
623 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
625 int i;
627 #ifdef ENABLE_DF_CHECKING
628 int saved_flags;
629 #endif
631 if (!df)
632 return;
634 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
635 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
637 #ifdef ENABLE_DF_CHECKING
638 saved_flags = df->changeable_flags;
639 #endif
641 /* We iterate over problems by index as each problem removed will
642 lead to problems_in_order to be reordered. */
643 for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
645 struct dataflow *dflow = df->problems_by_index[i];
647 if (dflow && dflow->optional_p)
648 df_remove_problem (dflow);
651 /* Clear all of the flags. */
652 df->changeable_flags = 0;
653 df_process_deferred_rescans ();
655 /* Set the focus back to the whole function. */
656 if (df->blocks_to_analyze)
658 BITMAP_FREE (df->blocks_to_analyze);
659 df->blocks_to_analyze = NULL;
660 df_mark_solutions_dirty ();
661 df->analyze_subset = false;
664 #ifdef ENABLE_DF_CHECKING
665 /* Verification will fail in DF_NO_INSN_RESCAN. */
666 if (!(saved_flags & DF_NO_INSN_RESCAN))
668 df_lr_verify_transfer_functions ();
669 if (df_live)
670 df_live_verify_transfer_functions ();
673 #ifdef DF_DEBUG_CFG
674 df_set_clean_cfg ();
675 #endif
676 #endif
678 if (flag_checking && verify)
679 df->changeable_flags |= DF_VERIFY_SCHEDULED;
683 /* Set up the dataflow instance for the entire back end. */
685 static unsigned int
686 rest_of_handle_df_initialize (void)
688 gcc_assert (!df);
689 df = XCNEW (struct df_d);
690 df->changeable_flags = 0;
692 bitmap_obstack_initialize (&df_bitmap_obstack);
694 /* Set this to a conservative value. Stack_ptr_mod will compute it
695 correctly later. */
696 crtl->sp_is_unchanging = 0;
698 df_scan_add_problem ();
699 df_scan_alloc (NULL);
701 /* These three problems are permanent. */
702 df_lr_add_problem ();
703 if (optimize > 1)
704 df_live_add_problem ();
706 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
707 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
708 df->n_blocks = post_order_compute (df->postorder, true, true);
709 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
710 gcc_assert (df->n_blocks == df->n_blocks_inverted);
712 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
714 df_hard_reg_init ();
715 /* After reload, some ports add certain bits to regs_ever_live so
716 this cannot be reset. */
717 df_compute_regs_ever_live (true);
718 df_scan_blocks ();
719 df_compute_regs_ever_live (false);
720 return 0;
724 namespace {
726 const pass_data pass_data_df_initialize_opt =
728 RTL_PASS, /* type */
729 "dfinit", /* name */
730 OPTGROUP_NONE, /* optinfo_flags */
731 TV_DF_SCAN, /* tv_id */
732 0, /* properties_required */
733 0, /* properties_provided */
734 0, /* properties_destroyed */
735 0, /* todo_flags_start */
736 0, /* todo_flags_finish */
739 class pass_df_initialize_opt : public rtl_opt_pass
741 public:
742 pass_df_initialize_opt (gcc::context *ctxt)
743 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
746 /* opt_pass methods: */
747 virtual bool gate (function *) { return optimize > 0; }
748 virtual unsigned int execute (function *)
750 return rest_of_handle_df_initialize ();
753 }; // class pass_df_initialize_opt
755 } // anon namespace
757 rtl_opt_pass *
758 make_pass_df_initialize_opt (gcc::context *ctxt)
760 return new pass_df_initialize_opt (ctxt);
764 namespace {
766 const pass_data pass_data_df_initialize_no_opt =
768 RTL_PASS, /* type */
769 "no-opt dfinit", /* name */
770 OPTGROUP_NONE, /* optinfo_flags */
771 TV_DF_SCAN, /* tv_id */
772 0, /* properties_required */
773 0, /* properties_provided */
774 0, /* properties_destroyed */
775 0, /* todo_flags_start */
776 0, /* todo_flags_finish */
779 class pass_df_initialize_no_opt : public rtl_opt_pass
781 public:
782 pass_df_initialize_no_opt (gcc::context *ctxt)
783 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
786 /* opt_pass methods: */
787 virtual bool gate (function *) { return optimize == 0; }
788 virtual unsigned int execute (function *)
790 return rest_of_handle_df_initialize ();
793 }; // class pass_df_initialize_no_opt
795 } // anon namespace
797 rtl_opt_pass *
798 make_pass_df_initialize_no_opt (gcc::context *ctxt)
800 return new pass_df_initialize_no_opt (ctxt);
804 /* Free all the dataflow info and the DF structure. This should be
805 called from the df_finish macro which also NULLs the parm. */
807 static unsigned int
808 rest_of_handle_df_finish (void)
810 int i;
812 gcc_assert (df);
814 for (i = 0; i < df->num_problems_defined; i++)
816 struct dataflow *dflow = df->problems_in_order[i];
817 dflow->problem->free_fun ();
820 free (df->postorder);
821 free (df->postorder_inverted);
822 free (df->hard_regs_live_count);
823 free (df);
824 df = NULL;
826 bitmap_obstack_release (&df_bitmap_obstack);
827 return 0;
831 namespace {
833 const pass_data pass_data_df_finish =
835 RTL_PASS, /* type */
836 "dfinish", /* name */
837 OPTGROUP_NONE, /* optinfo_flags */
838 TV_NONE, /* tv_id */
839 0, /* properties_required */
840 0, /* properties_provided */
841 0, /* properties_destroyed */
842 0, /* todo_flags_start */
843 0, /* todo_flags_finish */
846 class pass_df_finish : public rtl_opt_pass
848 public:
849 pass_df_finish (gcc::context *ctxt)
850 : rtl_opt_pass (pass_data_df_finish, ctxt)
853 /* opt_pass methods: */
854 virtual unsigned int execute (function *)
856 return rest_of_handle_df_finish ();
859 }; // class pass_df_finish
861 } // anon namespace
863 rtl_opt_pass *
864 make_pass_df_finish (gcc::context *ctxt)
866 return new pass_df_finish (ctxt);
873 /*----------------------------------------------------------------------------
874 The general data flow analysis engine.
875 ----------------------------------------------------------------------------*/
877 /* Return time BB when it was visited for last time. */
878 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
880 /* Helper function for df_worklist_dataflow.
881 Propagate the dataflow forward.
882 Given a BB_INDEX, do the dataflow propagation
883 and set bits on for successors in PENDING
884 if the out set of the dataflow has changed.
886 AGE specify time when BB was visited last time.
887 AGE of 0 means we are visiting for first time and need to
888 compute transfer function to initialize datastructures.
889 Otherwise we re-do transfer function only if something change
890 while computing confluence functions.
891 We need to compute confluence only of basic block that are younger
892 then last visit of the BB.
894 Return true if BB info has changed. This is always the case
895 in the first visit. */
897 static bool
898 df_worklist_propagate_forward (struct dataflow *dataflow,
899 unsigned bb_index,
900 unsigned *bbindex_to_postorder,
901 bitmap pending,
902 sbitmap considered,
903 ptrdiff_t age)
905 edge e;
906 edge_iterator ei;
907 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
908 bool changed = !age;
910 /* Calculate <conf_op> of incoming edges. */
911 if (EDGE_COUNT (bb->preds) > 0)
912 FOR_EACH_EDGE (e, ei, bb->preds)
914 if (age <= BB_LAST_CHANGE_AGE (e->src)
915 && bitmap_bit_p (considered, e->src->index))
916 changed |= dataflow->problem->con_fun_n (e);
918 else if (dataflow->problem->con_fun_0)
919 dataflow->problem->con_fun_0 (bb);
921 if (changed
922 && dataflow->problem->trans_fun (bb_index))
924 /* The out set of this block has changed.
925 Propagate to the outgoing blocks. */
926 FOR_EACH_EDGE (e, ei, bb->succs)
928 unsigned ob_index = e->dest->index;
930 if (bitmap_bit_p (considered, ob_index))
931 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
933 return true;
935 return false;
939 /* Helper function for df_worklist_dataflow.
940 Propagate the dataflow backward. */
942 static bool
943 df_worklist_propagate_backward (struct dataflow *dataflow,
944 unsigned bb_index,
945 unsigned *bbindex_to_postorder,
946 bitmap pending,
947 sbitmap considered,
948 ptrdiff_t age)
950 edge e;
951 edge_iterator ei;
952 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
953 bool changed = !age;
955 /* Calculate <conf_op> of incoming edges. */
956 if (EDGE_COUNT (bb->succs) > 0)
957 FOR_EACH_EDGE (e, ei, bb->succs)
959 if (age <= BB_LAST_CHANGE_AGE (e->dest)
960 && bitmap_bit_p (considered, e->dest->index))
961 changed |= dataflow->problem->con_fun_n (e);
963 else if (dataflow->problem->con_fun_0)
964 dataflow->problem->con_fun_0 (bb);
966 if (changed
967 && dataflow->problem->trans_fun (bb_index))
969 /* The out set of this block has changed.
970 Propagate to the outgoing blocks. */
971 FOR_EACH_EDGE (e, ei, bb->preds)
973 unsigned ob_index = e->src->index;
975 if (bitmap_bit_p (considered, ob_index))
976 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
978 return true;
980 return false;
983 /* Main dataflow solver loop.
985 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
986 need to visit.
987 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
988 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
989 PENDING will be freed.
991 The worklists are bitmaps indexed by postorder positions.
993 The function implements standard algorithm for dataflow solving with two
994 worklists (we are processing WORKLIST and storing new BBs to visit in
995 PENDING).
997 As an optimization we maintain ages when BB was changed (stored in bb->aux)
998 and when it was last visited (stored in last_visit_age). This avoids need
999 to re-do confluence function for edges to basic blocks whose source
1000 did not change since destination was visited last time. */
1002 static void
1003 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1004 bitmap pending,
1005 sbitmap considered,
1006 int *blocks_in_postorder,
1007 unsigned *bbindex_to_postorder,
1008 int n_blocks)
1010 enum df_flow_dir dir = dataflow->problem->dir;
1011 int dcount = 0;
1012 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
1013 int age = 0;
1014 bool changed;
1015 vec<int> last_visit_age = vNULL;
1016 int prev_age;
1017 basic_block bb;
1018 int i;
1020 last_visit_age.safe_grow_cleared (n_blocks);
1022 /* Double-queueing. Worklist is for the current iteration,
1023 and pending is for the next. */
1024 while (!bitmap_empty_p (pending))
1026 bitmap_iterator bi;
1027 unsigned int index;
1029 std::swap (pending, worklist);
1031 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1033 unsigned bb_index;
1034 dcount++;
1036 bitmap_clear_bit (pending, index);
1037 bb_index = blocks_in_postorder[index];
1038 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1039 prev_age = last_visit_age[index];
1040 if (dir == DF_FORWARD)
1041 changed = df_worklist_propagate_forward (dataflow, bb_index,
1042 bbindex_to_postorder,
1043 pending, considered,
1044 prev_age);
1045 else
1046 changed = df_worklist_propagate_backward (dataflow, bb_index,
1047 bbindex_to_postorder,
1048 pending, considered,
1049 prev_age);
1050 last_visit_age[index] = ++age;
1051 if (changed)
1052 bb->aux = (void *)(ptrdiff_t)age;
1054 bitmap_clear (worklist);
1056 for (i = 0; i < n_blocks; i++)
1057 BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
1059 BITMAP_FREE (worklist);
1060 BITMAP_FREE (pending);
1061 last_visit_age.release ();
1063 /* Dump statistics. */
1064 if (dump_file)
1065 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1066 "n_basic_blocks %d n_edges %d"
1067 " count %d (%5.2g)\n",
1068 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
1069 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
1072 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1073 with "n"-th bit representing the n-th block in the reverse-postorder order.
1074 The solver is a double-queue algorithm similar to the "double stack" solver
1075 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1076 The only significant difference is that the worklist in this implementation
1077 is always sorted in RPO of the CFG visiting direction. */
1079 void
1080 df_worklist_dataflow (struct dataflow *dataflow,
1081 bitmap blocks_to_consider,
1082 int *blocks_in_postorder,
1083 int n_blocks)
1085 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1086 bitmap_iterator bi;
1087 unsigned int *bbindex_to_postorder;
1088 int i;
1089 unsigned int index;
1090 enum df_flow_dir dir = dataflow->problem->dir;
1092 gcc_assert (dir != DF_NONE);
1094 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1095 bbindex_to_postorder = XNEWVEC (unsigned int,
1096 last_basic_block_for_fn (cfun));
1098 /* Initialize the array to an out-of-bound value. */
1099 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1100 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
1102 /* Initialize the considered map. */
1103 auto_sbitmap considered (last_basic_block_for_fn (cfun));
1104 bitmap_clear (considered);
1105 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1107 bitmap_set_bit (considered, index);
1110 /* Initialize the mapping of block index to postorder. */
1111 for (i = 0; i < n_blocks; i++)
1113 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1114 /* Add all blocks to the worklist. */
1115 bitmap_set_bit (pending, i);
1118 /* Initialize the problem. */
1119 if (dataflow->problem->init_fun)
1120 dataflow->problem->init_fun (blocks_to_consider);
1122 /* Solve it. */
1123 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1124 blocks_in_postorder,
1125 bbindex_to_postorder,
1126 n_blocks);
1127 free (bbindex_to_postorder);
1131 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1132 the order of the remaining entries. Returns the length of the resulting
1133 list. */
1135 static unsigned
1136 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1138 unsigned act, last;
1140 for (act = 0, last = 0; act < len; act++)
1141 if (bitmap_bit_p (blocks, list[act]))
1142 list[last++] = list[act];
1144 return last;
1148 /* Execute dataflow analysis on a single dataflow problem.
1150 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1151 examined or will be computed. For calls from DF_ANALYZE, this is
1152 the set of blocks that has been passed to DF_SET_BLOCKS.
1155 void
1156 df_analyze_problem (struct dataflow *dflow,
1157 bitmap blocks_to_consider,
1158 int *postorder, int n_blocks)
1160 timevar_push (dflow->problem->tv_id);
1162 /* (Re)Allocate the datastructures necessary to solve the problem. */
1163 if (dflow->problem->alloc_fun)
1164 dflow->problem->alloc_fun (blocks_to_consider);
1166 #ifdef ENABLE_DF_CHECKING
1167 if (dflow->problem->verify_start_fun)
1168 dflow->problem->verify_start_fun ();
1169 #endif
1171 /* Set up the problem and compute the local information. */
1172 if (dflow->problem->local_compute_fun)
1173 dflow->problem->local_compute_fun (blocks_to_consider);
1175 /* Solve the equations. */
1176 if (dflow->problem->dataflow_fun)
1177 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1178 postorder, n_blocks);
1180 /* Massage the solution. */
1181 if (dflow->problem->finalize_fun)
1182 dflow->problem->finalize_fun (blocks_to_consider);
1184 #ifdef ENABLE_DF_CHECKING
1185 if (dflow->problem->verify_end_fun)
1186 dflow->problem->verify_end_fun ();
1187 #endif
1189 timevar_pop (dflow->problem->tv_id);
1191 dflow->computed = true;
1195 /* Analyze dataflow info. */
1197 static void
1198 df_analyze_1 (void)
1200 int i;
1202 /* These should be the same. */
1203 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1205 /* We need to do this before the df_verify_all because this is
1206 not kept incrementally up to date. */
1207 df_compute_regs_ever_live (false);
1208 df_process_deferred_rescans ();
1210 if (dump_file)
1211 fprintf (dump_file, "df_analyze called\n");
1213 #ifndef ENABLE_DF_CHECKING
1214 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1215 #endif
1216 df_verify ();
1218 /* Skip over the DF_SCAN problem. */
1219 for (i = 1; i < df->num_problems_defined; i++)
1221 struct dataflow *dflow = df->problems_in_order[i];
1222 if (dflow->solutions_dirty)
1224 if (dflow->problem->dir == DF_FORWARD)
1225 df_analyze_problem (dflow,
1226 df->blocks_to_analyze,
1227 df->postorder_inverted,
1228 df->n_blocks_inverted);
1229 else
1230 df_analyze_problem (dflow,
1231 df->blocks_to_analyze,
1232 df->postorder,
1233 df->n_blocks);
1237 if (!df->analyze_subset)
1239 BITMAP_FREE (df->blocks_to_analyze);
1240 df->blocks_to_analyze = NULL;
1243 #ifdef DF_DEBUG_CFG
1244 df_set_clean_cfg ();
1245 #endif
1248 /* Analyze dataflow info. */
1250 void
1251 df_analyze (void)
1253 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1254 int i;
1256 free (df->postorder);
1257 free (df->postorder_inverted);
1258 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
1259 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
1260 df->n_blocks = post_order_compute (df->postorder, true, true);
1261 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1263 for (i = 0; i < df->n_blocks; i++)
1264 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1266 if (flag_checking)
1268 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1269 the ENTRY block. */
1270 for (i = 0; i < df->n_blocks_inverted; i++)
1271 gcc_assert (bitmap_bit_p (current_all_blocks,
1272 df->postorder_inverted[i]));
1275 /* Make sure that we have pruned any unreachable blocks from these
1276 sets. */
1277 if (df->analyze_subset)
1279 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1280 df->n_blocks = df_prune_to_subcfg (df->postorder,
1281 df->n_blocks, df->blocks_to_analyze);
1282 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1283 df->n_blocks_inverted,
1284 df->blocks_to_analyze);
1285 BITMAP_FREE (current_all_blocks);
1287 else
1289 df->blocks_to_analyze = current_all_blocks;
1290 current_all_blocks = NULL;
1293 df_analyze_1 ();
1296 /* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1297 Returns the number of blocks which is always loop->num_nodes. */
1299 static int
1300 loop_post_order_compute (int *post_order, struct loop *loop)
1302 edge_iterator *stack;
1303 int sp;
1304 int post_order_num = 0;
1305 bitmap visited;
1307 /* Allocate stack for back-tracking up CFG. */
1308 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1309 sp = 0;
1311 /* Allocate bitmap to track nodes that have been visited. */
1312 visited = BITMAP_ALLOC (NULL);
1314 /* Push the first edge on to the stack. */
1315 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1317 while (sp)
1319 edge_iterator ei;
1320 basic_block src;
1321 basic_block dest;
1323 /* Look at the edge on the top of the stack. */
1324 ei = stack[sp - 1];
1325 src = ei_edge (ei)->src;
1326 dest = ei_edge (ei)->dest;
1328 /* Check if the edge destination has been visited yet and mark it
1329 if not so. */
1330 if (flow_bb_inside_loop_p (loop, dest)
1331 && bitmap_set_bit (visited, dest->index))
1333 if (EDGE_COUNT (dest->succs) > 0)
1334 /* Since the DEST node has been visited for the first
1335 time, check its successors. */
1336 stack[sp++] = ei_start (dest->succs);
1337 else
1338 post_order[post_order_num++] = dest->index;
1340 else
1342 if (ei_one_before_end_p (ei)
1343 && src != loop_preheader_edge (loop)->src)
1344 post_order[post_order_num++] = src->index;
1346 if (!ei_one_before_end_p (ei))
1347 ei_next (&stack[sp - 1]);
1348 else
1349 sp--;
1353 free (stack);
1354 BITMAP_FREE (visited);
1356 return post_order_num;
1359 /* Compute the reverse top sort order of the inverted sub-CFG specified
1360 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1362 static int
1363 loop_inverted_post_order_compute (int *post_order, struct loop *loop)
1365 basic_block bb;
1366 edge_iterator *stack;
1367 int sp;
1368 int post_order_num = 0;
1369 bitmap visited;
1371 /* Allocate stack for back-tracking up CFG. */
1372 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1373 sp = 0;
1375 /* Allocate bitmap to track nodes that have been visited. */
1376 visited = BITMAP_ALLOC (NULL);
1378 /* Put all latches into the initial work list. In theory we'd want
1379 to start from loop exits but then we'd have the special case of
1380 endless loops. It doesn't really matter for DF iteration order and
1381 handling latches last is probably even better. */
1382 stack[sp++] = ei_start (loop->header->preds);
1383 bitmap_set_bit (visited, loop->header->index);
1385 /* The inverted traversal loop. */
1386 while (sp)
1388 edge_iterator ei;
1389 basic_block pred;
1391 /* Look at the edge on the top of the stack. */
1392 ei = stack[sp - 1];
1393 bb = ei_edge (ei)->dest;
1394 pred = ei_edge (ei)->src;
1396 /* Check if the predecessor has been visited yet and mark it
1397 if not so. */
1398 if (flow_bb_inside_loop_p (loop, pred)
1399 && bitmap_set_bit (visited, pred->index))
1401 if (EDGE_COUNT (pred->preds) > 0)
1402 /* Since the predecessor node has been visited for the first
1403 time, check its predecessors. */
1404 stack[sp++] = ei_start (pred->preds);
1405 else
1406 post_order[post_order_num++] = pred->index;
1408 else
1410 if (flow_bb_inside_loop_p (loop, bb)
1411 && ei_one_before_end_p (ei))
1412 post_order[post_order_num++] = bb->index;
1414 if (!ei_one_before_end_p (ei))
1415 ei_next (&stack[sp - 1]);
1416 else
1417 sp--;
1421 free (stack);
1422 BITMAP_FREE (visited);
1423 return post_order_num;
1427 /* Analyze dataflow info for the basic blocks contained in LOOP. */
1429 void
1430 df_analyze_loop (struct loop *loop)
1432 free (df->postorder);
1433 free (df->postorder_inverted);
1435 df->postorder = XNEWVEC (int, loop->num_nodes);
1436 df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1437 df->n_blocks = loop_post_order_compute (df->postorder, loop);
1438 df->n_blocks_inverted
1439 = loop_inverted_post_order_compute (df->postorder_inverted, loop);
1440 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1441 gcc_assert ((unsigned) df->n_blocks_inverted == loop->num_nodes);
1443 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1444 for (int i = 0; i < df->n_blocks; ++i)
1445 bitmap_set_bit (blocks, df->postorder[i]);
1446 df_set_blocks (blocks);
1447 BITMAP_FREE (blocks);
1449 df_analyze_1 ();
1453 /* Return the number of basic blocks from the last call to df_analyze. */
1456 df_get_n_blocks (enum df_flow_dir dir)
1458 gcc_assert (dir != DF_NONE);
1460 if (dir == DF_FORWARD)
1462 gcc_assert (df->postorder_inverted);
1463 return df->n_blocks_inverted;
1466 gcc_assert (df->postorder);
1467 return df->n_blocks;
1471 /* Return a pointer to the array of basic blocks in the reverse postorder.
1472 Depending on the direction of the dataflow problem,
1473 it returns either the usual reverse postorder array
1474 or the reverse postorder of inverted traversal. */
1475 int *
1476 df_get_postorder (enum df_flow_dir dir)
1478 gcc_assert (dir != DF_NONE);
1480 if (dir == DF_FORWARD)
1482 gcc_assert (df->postorder_inverted);
1483 return df->postorder_inverted;
1485 gcc_assert (df->postorder);
1486 return df->postorder;
1489 static struct df_problem user_problem;
1490 static struct dataflow user_dflow;
1492 /* Interface for calling iterative dataflow with user defined
1493 confluence and transfer functions. All that is necessary is to
1494 supply DIR, a direction, CONF_FUN_0, a confluence function for
1495 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1496 confluence function, TRANS_FUN, the basic block transfer function,
1497 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1498 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1500 void
1501 df_simple_dataflow (enum df_flow_dir dir,
1502 df_init_function init_fun,
1503 df_confluence_function_0 con_fun_0,
1504 df_confluence_function_n con_fun_n,
1505 df_transfer_function trans_fun,
1506 bitmap blocks, int * postorder, int n_blocks)
1508 memset (&user_problem, 0, sizeof (struct df_problem));
1509 user_problem.dir = dir;
1510 user_problem.init_fun = init_fun;
1511 user_problem.con_fun_0 = con_fun_0;
1512 user_problem.con_fun_n = con_fun_n;
1513 user_problem.trans_fun = trans_fun;
1514 user_dflow.problem = &user_problem;
1515 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1520 /*----------------------------------------------------------------------------
1521 Functions to support limited incremental change.
1522 ----------------------------------------------------------------------------*/
1525 /* Get basic block info. */
1527 static void *
1528 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1530 if (dflow->block_info == NULL)
1531 return NULL;
1532 if (index >= dflow->block_info_size)
1533 return NULL;
1534 return (void *)((char *)dflow->block_info
1535 + index * dflow->problem->block_info_elt_size);
1539 /* Set basic block info. */
1541 static void
1542 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1543 void *bb_info)
1545 gcc_assert (dflow->block_info);
1546 memcpy ((char *)dflow->block_info
1547 + index * dflow->problem->block_info_elt_size,
1548 bb_info, dflow->problem->block_info_elt_size);
1552 /* Clear basic block info. */
1554 static void
1555 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1557 gcc_assert (dflow->block_info);
1558 gcc_assert (dflow->block_info_size > index);
1559 memset ((char *)dflow->block_info
1560 + index * dflow->problem->block_info_elt_size,
1561 0, dflow->problem->block_info_elt_size);
1565 /* Mark the solutions as being out of date. */
1567 void
1568 df_mark_solutions_dirty (void)
1570 if (df)
1572 int p;
1573 for (p = 1; p < df->num_problems_defined; p++)
1574 df->problems_in_order[p]->solutions_dirty = true;
1579 /* Return true if BB needs it's transfer functions recomputed. */
1581 bool
1582 df_get_bb_dirty (basic_block bb)
1584 return bitmap_bit_p ((df_live
1585 ? df_live : df_lr)->out_of_date_transfer_functions,
1586 bb->index);
1590 /* Mark BB as needing it's transfer functions as being out of
1591 date. */
1593 void
1594 df_set_bb_dirty (basic_block bb)
1596 bb->flags |= BB_MODIFIED;
1597 if (df)
1599 int p;
1600 for (p = 1; p < df->num_problems_defined; p++)
1602 struct dataflow *dflow = df->problems_in_order[p];
1603 if (dflow->out_of_date_transfer_functions)
1604 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1606 df_mark_solutions_dirty ();
1611 /* Grow the bb_info array. */
1613 void
1614 df_grow_bb_info (struct dataflow *dflow)
1616 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
1617 if (dflow->block_info_size < new_size)
1619 new_size += new_size / 4;
1620 dflow->block_info
1621 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1622 new_size
1623 * dflow->problem->block_info_elt_size);
1624 memset ((char *)dflow->block_info
1625 + dflow->block_info_size
1626 * dflow->problem->block_info_elt_size,
1628 (new_size - dflow->block_info_size)
1629 * dflow->problem->block_info_elt_size);
1630 dflow->block_info_size = new_size;
1635 /* Clear the dirty bits. This is called from places that delete
1636 blocks. */
1637 static void
1638 df_clear_bb_dirty (basic_block bb)
1640 int p;
1641 for (p = 1; p < df->num_problems_defined; p++)
1643 struct dataflow *dflow = df->problems_in_order[p];
1644 if (dflow->out_of_date_transfer_functions)
1645 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1649 /* Called from the rtl_compact_blocks to reorganize the problems basic
1650 block info. */
1652 void
1653 df_compact_blocks (void)
1655 int i, p;
1656 basic_block bb;
1657 void *problem_temps;
1658 bitmap_head tmp;
1660 bitmap_initialize (&tmp, &df_bitmap_obstack);
1661 for (p = 0; p < df->num_problems_defined; p++)
1663 struct dataflow *dflow = df->problems_in_order[p];
1665 /* Need to reorganize the out_of_date_transfer_functions for the
1666 dflow problem. */
1667 if (dflow->out_of_date_transfer_functions)
1669 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
1670 bitmap_clear (dflow->out_of_date_transfer_functions);
1671 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1672 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1673 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1674 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1676 i = NUM_FIXED_BLOCKS;
1677 FOR_EACH_BB_FN (bb, cfun)
1679 if (bitmap_bit_p (&tmp, bb->index))
1680 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1681 i++;
1685 /* Now shuffle the block info for the problem. */
1686 if (dflow->problem->free_bb_fun)
1688 int size = (last_basic_block_for_fn (cfun)
1689 * dflow->problem->block_info_elt_size);
1690 problem_temps = XNEWVAR (char, size);
1691 df_grow_bb_info (dflow);
1692 memcpy (problem_temps, dflow->block_info, size);
1694 /* Copy the bb info from the problem tmps to the proper
1695 place in the block_info vector. Null out the copied
1696 item. The entry and exit blocks never move. */
1697 i = NUM_FIXED_BLOCKS;
1698 FOR_EACH_BB_FN (bb, cfun)
1700 df_set_bb_info (dflow, i,
1701 (char *)problem_temps
1702 + bb->index * dflow->problem->block_info_elt_size);
1703 i++;
1705 memset ((char *)dflow->block_info
1706 + i * dflow->problem->block_info_elt_size, 0,
1707 (last_basic_block_for_fn (cfun) - i)
1708 * dflow->problem->block_info_elt_size);
1709 free (problem_temps);
1713 /* Shuffle the bits in the basic_block indexed arrays. */
1715 if (df->blocks_to_analyze)
1717 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1718 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1719 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1720 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1721 bitmap_copy (&tmp, df->blocks_to_analyze);
1722 bitmap_clear (df->blocks_to_analyze);
1723 i = NUM_FIXED_BLOCKS;
1724 FOR_EACH_BB_FN (bb, cfun)
1726 if (bitmap_bit_p (&tmp, bb->index))
1727 bitmap_set_bit (df->blocks_to_analyze, i);
1728 i++;
1732 bitmap_clear (&tmp);
1734 i = NUM_FIXED_BLOCKS;
1735 FOR_EACH_BB_FN (bb, cfun)
1737 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
1738 bb->index = i;
1739 i++;
1742 gcc_assert (i == n_basic_blocks_for_fn (cfun));
1744 for (; i < last_basic_block_for_fn (cfun); i++)
1745 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
1747 #ifdef DF_DEBUG_CFG
1748 if (!df_lr->solutions_dirty)
1749 df_set_clean_cfg ();
1750 #endif
1754 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1755 block. There is no excuse for people to do this kind of thing. */
1757 void
1758 df_bb_replace (int old_index, basic_block new_block)
1760 int new_block_index = new_block->index;
1761 int p;
1763 if (dump_file)
1764 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1766 gcc_assert (df);
1767 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
1769 for (p = 0; p < df->num_problems_defined; p++)
1771 struct dataflow *dflow = df->problems_in_order[p];
1772 if (dflow->block_info)
1774 df_grow_bb_info (dflow);
1775 df_set_bb_info (dflow, old_index,
1776 df_get_bb_info (dflow, new_block_index));
1780 df_clear_bb_dirty (new_block);
1781 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
1782 new_block->index = old_index;
1783 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
1784 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
1788 /* Free all of the per basic block dataflow from all of the problems.
1789 This is typically called before a basic block is deleted and the
1790 problem will be reanalyzed. */
1792 void
1793 df_bb_delete (int bb_index)
1795 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1796 int i;
1798 if (!df)
1799 return;
1801 for (i = 0; i < df->num_problems_defined; i++)
1803 struct dataflow *dflow = df->problems_in_order[i];
1804 if (dflow->problem->free_bb_fun)
1806 void *bb_info = df_get_bb_info (dflow, bb_index);
1807 if (bb_info)
1809 dflow->problem->free_bb_fun (bb, bb_info);
1810 df_clear_bb_info (dflow, bb_index);
1814 df_clear_bb_dirty (bb);
1815 df_mark_solutions_dirty ();
1819 /* Verify that there is a place for everything and everything is in
1820 its place. This is too expensive to run after every pass in the
1821 mainline. However this is an excellent debugging tool if the
1822 dataflow information is not being updated properly. You can just
1823 sprinkle calls in until you find the place that is changing an
1824 underlying structure without calling the proper updating
1825 routine. */
1827 void
1828 df_verify (void)
1830 df_scan_verify ();
1831 #ifdef ENABLE_DF_CHECKING
1832 df_lr_verify_transfer_functions ();
1833 if (df_live)
1834 df_live_verify_transfer_functions ();
1835 #endif
1838 #ifdef DF_DEBUG_CFG
1840 /* Compute an array of ints that describes the cfg. This can be used
1841 to discover places where the cfg is modified by the appropriate
1842 calls have not been made to the keep df informed. The internals of
1843 this are unexciting, the key is that two instances of this can be
1844 compared to see if any changes have been made to the cfg. */
1846 static int *
1847 df_compute_cfg_image (void)
1849 basic_block bb;
1850 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
1851 int i;
1852 int * map;
1854 FOR_ALL_BB_FN (bb, cfun)
1856 size += EDGE_COUNT (bb->succs);
1859 map = XNEWVEC (int, size);
1860 map[0] = size;
1861 i = 1;
1862 FOR_ALL_BB_FN (bb, cfun)
1864 edge_iterator ei;
1865 edge e;
1867 map[i++] = bb->index;
1868 FOR_EACH_EDGE (e, ei, bb->succs)
1869 map[i++] = e->dest->index;
1870 map[i++] = -1;
1872 map[i] = -1;
1873 return map;
1876 static int *saved_cfg = NULL;
1879 /* This function compares the saved version of the cfg with the
1880 current cfg and aborts if the two are identical. The function
1881 silently returns if the cfg has been marked as dirty or the two are
1882 the same. */
1884 void
1885 df_check_cfg_clean (void)
1887 int *new_map;
1889 if (!df)
1890 return;
1892 if (df_lr->solutions_dirty)
1893 return;
1895 if (saved_cfg == NULL)
1896 return;
1898 new_map = df_compute_cfg_image ();
1899 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1900 free (new_map);
1904 /* This function builds a cfg fingerprint and squirrels it away in
1905 saved_cfg. */
1907 static void
1908 df_set_clean_cfg (void)
1910 free (saved_cfg);
1911 saved_cfg = df_compute_cfg_image ();
1914 #endif /* DF_DEBUG_CFG */
1915 /*----------------------------------------------------------------------------
1916 PUBLIC INTERFACES TO QUERY INFORMATION.
1917 ----------------------------------------------------------------------------*/
1920 /* Return first def of REGNO within BB. */
1922 df_ref
1923 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1925 rtx_insn *insn;
1926 df_ref def;
1928 FOR_BB_INSNS (bb, insn)
1930 if (!INSN_P (insn))
1931 continue;
1933 FOR_EACH_INSN_DEF (def, insn)
1934 if (DF_REF_REGNO (def) == regno)
1935 return def;
1937 return NULL;
1941 /* Return last def of REGNO within BB. */
1943 df_ref
1944 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1946 rtx_insn *insn;
1947 df_ref def;
1949 FOR_BB_INSNS_REVERSE (bb, insn)
1951 if (!INSN_P (insn))
1952 continue;
1954 FOR_EACH_INSN_DEF (def, insn)
1955 if (DF_REF_REGNO (def) == regno)
1956 return def;
1959 return NULL;
1962 /* Finds the reference corresponding to the definition of REG in INSN.
1963 DF is the dataflow object. */
1965 df_ref
1966 df_find_def (rtx_insn *insn, rtx reg)
1968 df_ref def;
1970 if (GET_CODE (reg) == SUBREG)
1971 reg = SUBREG_REG (reg);
1972 gcc_assert (REG_P (reg));
1974 FOR_EACH_INSN_DEF (def, insn)
1975 if (DF_REF_REGNO (def) == REGNO (reg))
1976 return def;
1978 return NULL;
1982 /* Return true if REG is defined in INSN, zero otherwise. */
1984 bool
1985 df_reg_defined (rtx_insn *insn, rtx reg)
1987 return df_find_def (insn, reg) != NULL;
1991 /* Finds the reference corresponding to the use of REG in INSN.
1992 DF is the dataflow object. */
1994 df_ref
1995 df_find_use (rtx_insn *insn, rtx reg)
1997 df_ref use;
1999 if (GET_CODE (reg) == SUBREG)
2000 reg = SUBREG_REG (reg);
2001 gcc_assert (REG_P (reg));
2003 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2004 FOR_EACH_INSN_INFO_USE (use, insn_info)
2005 if (DF_REF_REGNO (use) == REGNO (reg))
2006 return use;
2007 if (df->changeable_flags & DF_EQ_NOTES)
2008 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
2009 if (DF_REF_REGNO (use) == REGNO (reg))
2010 return use;
2011 return NULL;
2015 /* Return true if REG is referenced in INSN, zero otherwise. */
2017 bool
2018 df_reg_used (rtx_insn *insn, rtx reg)
2020 return df_find_use (insn, reg) != NULL;
2024 /*----------------------------------------------------------------------------
2025 Debugging and printing functions.
2026 ----------------------------------------------------------------------------*/
2028 /* Write information about registers and basic blocks into FILE.
2029 This is part of making a debugging dump. */
2031 void
2032 dump_regset (regset r, FILE *outf)
2034 unsigned i;
2035 reg_set_iterator rsi;
2037 if (r == NULL)
2039 fputs (" (nil)", outf);
2040 return;
2043 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2045 fprintf (outf, " %d", i);
2046 if (i < FIRST_PSEUDO_REGISTER)
2047 fprintf (outf, " [%s]",
2048 reg_names[i]);
2052 /* Print a human-readable representation of R on the standard error
2053 stream. This function is designed to be used from within the
2054 debugger. */
2055 extern void debug_regset (regset);
2056 DEBUG_FUNCTION void
2057 debug_regset (regset r)
2059 dump_regset (r, stderr);
2060 putc ('\n', stderr);
2063 /* Write information about registers and basic blocks into FILE.
2064 This is part of making a debugging dump. */
2066 void
2067 df_print_regset (FILE *file, bitmap r)
2069 unsigned int i;
2070 bitmap_iterator bi;
2072 if (r == NULL)
2073 fputs (" (nil)", file);
2074 else
2076 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2078 fprintf (file, " %d", i);
2079 if (i < FIRST_PSEUDO_REGISTER)
2080 fprintf (file, " [%s]", reg_names[i]);
2083 fprintf (file, "\n");
2087 /* Write information about registers and basic blocks into FILE. The
2088 bitmap is in the form used by df_byte_lr. This is part of making a
2089 debugging dump. */
2091 void
2092 df_print_word_regset (FILE *file, bitmap r)
2094 unsigned int max_reg = max_reg_num ();
2096 if (r == NULL)
2097 fputs (" (nil)", file);
2098 else
2100 unsigned int i;
2101 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
2103 bool found = (bitmap_bit_p (r, 2 * i)
2104 || bitmap_bit_p (r, 2 * i + 1));
2105 if (found)
2107 int word;
2108 const char * sep = "";
2109 fprintf (file, " %d", i);
2110 fprintf (file, "(");
2111 for (word = 0; word < 2; word++)
2112 if (bitmap_bit_p (r, 2 * i + word))
2114 fprintf (file, "%s%d", sep, word);
2115 sep = ", ";
2117 fprintf (file, ")");
2121 fprintf (file, "\n");
2125 /* Dump dataflow info. */
2127 void
2128 df_dump (FILE *file)
2130 basic_block bb;
2131 df_dump_start (file);
2133 FOR_ALL_BB_FN (bb, cfun)
2135 df_print_bb_index (bb, file);
2136 df_dump_top (bb, file);
2137 df_dump_bottom (bb, file);
2140 fprintf (file, "\n");
2144 /* Dump dataflow info for df->blocks_to_analyze. */
2146 void
2147 df_dump_region (FILE *file)
2149 if (df->blocks_to_analyze)
2151 bitmap_iterator bi;
2152 unsigned int bb_index;
2154 fprintf (file, "\n\nstarting region dump\n");
2155 df_dump_start (file);
2157 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
2159 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
2160 dump_bb (file, bb, 0, TDF_DETAILS);
2162 fprintf (file, "\n");
2164 else
2165 df_dump (file);
2169 /* Dump the introductory information for each problem defined. */
2171 void
2172 df_dump_start (FILE *file)
2174 int i;
2176 if (!df || !file)
2177 return;
2179 fprintf (file, "\n\n%s\n", current_function_name ());
2180 fprintf (file, "\nDataflow summary:\n");
2181 if (df->blocks_to_analyze)
2182 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2183 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2185 for (i = 0; i < df->num_problems_defined; i++)
2187 struct dataflow *dflow = df->problems_in_order[i];
2188 if (dflow->computed)
2190 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2191 if (fun)
2192 fun (file);
2198 /* Dump the top or bottom of the block information for BB. */
2199 static void
2200 df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2202 int i;
2204 if (!df || !file)
2205 return;
2207 for (i = 0; i < df->num_problems_defined; i++)
2209 struct dataflow *dflow = df->problems_in_order[i];
2210 if (dflow->computed)
2212 df_dump_bb_problem_function bbfun;
2214 if (top)
2215 bbfun = dflow->problem->dump_top_fun;
2216 else
2217 bbfun = dflow->problem->dump_bottom_fun;
2219 if (bbfun)
2220 bbfun (bb, file);
2225 /* Dump the top of the block information for BB. */
2227 void
2228 df_dump_top (basic_block bb, FILE *file)
2230 df_dump_bb_problem_data (bb, file, /*top=*/true);
2233 /* Dump the bottom of the block information for BB. */
2235 void
2236 df_dump_bottom (basic_block bb, FILE *file)
2238 df_dump_bb_problem_data (bb, file, /*top=*/false);
2242 /* Dump information about INSN just before or after dumping INSN itself. */
2243 static void
2244 df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
2246 int i;
2248 if (!df || !file)
2249 return;
2251 for (i = 0; i < df->num_problems_defined; i++)
2253 struct dataflow *dflow = df->problems_in_order[i];
2254 if (dflow->computed)
2256 df_dump_insn_problem_function insnfun;
2258 if (top)
2259 insnfun = dflow->problem->dump_insn_top_fun;
2260 else
2261 insnfun = dflow->problem->dump_insn_bottom_fun;
2263 if (insnfun)
2264 insnfun (insn, file);
2269 /* Dump information about INSN before dumping INSN itself. */
2271 void
2272 df_dump_insn_top (const rtx_insn *insn, FILE *file)
2274 df_dump_insn_problem_data (insn, file, /*top=*/true);
2277 /* Dump information about INSN after dumping INSN itself. */
2279 void
2280 df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
2282 df_dump_insn_problem_data (insn, file, /*top=*/false);
2286 static void
2287 df_ref_dump (df_ref ref, FILE *file)
2289 fprintf (file, "%c%d(%d)",
2290 DF_REF_REG_DEF_P (ref)
2291 ? 'd'
2292 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2293 DF_REF_ID (ref),
2294 DF_REF_REGNO (ref));
2297 void
2298 df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
2300 fprintf (file, "{ ");
2301 for (; ref; ref = DF_REF_NEXT_LOC (ref))
2303 df_ref_dump (ref, file);
2304 if (follow_chain)
2305 df_chain_dump (DF_REF_CHAIN (ref), file);
2307 fprintf (file, "}");
2311 /* Dump either a ref-def or reg-use chain. */
2313 void
2314 df_regs_chain_dump (df_ref ref, FILE *file)
2316 fprintf (file, "{ ");
2317 while (ref)
2319 df_ref_dump (ref, file);
2320 ref = DF_REF_NEXT_REG (ref);
2322 fprintf (file, "}");
2326 static void
2327 df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
2329 for (; mws; mws = DF_MWS_NEXT (mws))
2330 fprintf (file, "mw %c r[%d..%d]\n",
2331 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2332 mws->start_regno, mws->end_regno);
2336 static void
2337 df_insn_uid_debug (unsigned int uid,
2338 bool follow_chain, FILE *file)
2340 fprintf (file, "insn %d luid %d",
2341 uid, DF_INSN_UID_LUID (uid));
2343 if (DF_INSN_UID_DEFS (uid))
2345 fprintf (file, " defs ");
2346 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2349 if (DF_INSN_UID_USES (uid))
2351 fprintf (file, " uses ");
2352 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2355 if (DF_INSN_UID_EQ_USES (uid))
2357 fprintf (file, " eq uses ");
2358 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2361 if (DF_INSN_UID_MWS (uid))
2363 fprintf (file, " mws ");
2364 df_mws_dump (DF_INSN_UID_MWS (uid), file);
2366 fprintf (file, "\n");
2370 DEBUG_FUNCTION void
2371 df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
2373 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2376 DEBUG_FUNCTION void
2377 df_insn_debug_regno (rtx_insn *insn, FILE *file)
2379 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2381 fprintf (file, "insn %d bb %d luid %d defs ",
2382 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2383 DF_INSN_INFO_LUID (insn_info));
2384 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2386 fprintf (file, " uses ");
2387 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2389 fprintf (file, " eq_uses ");
2390 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2391 fprintf (file, "\n");
2394 DEBUG_FUNCTION void
2395 df_regno_debug (unsigned int regno, FILE *file)
2397 fprintf (file, "reg %d defs ", regno);
2398 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2399 fprintf (file, " uses ");
2400 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2401 fprintf (file, " eq_uses ");
2402 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2403 fprintf (file, "\n");
2407 DEBUG_FUNCTION void
2408 df_ref_debug (df_ref ref, FILE *file)
2410 fprintf (file, "%c%d ",
2411 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2412 DF_REF_ID (ref));
2413 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2414 DF_REF_REGNO (ref),
2415 DF_REF_BBNO (ref),
2416 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2417 DF_REF_FLAGS (ref),
2418 DF_REF_TYPE (ref));
2419 if (DF_REF_LOC (ref))
2421 if (flag_dump_noaddr)
2422 fprintf (file, "loc #(#) chain ");
2423 else
2424 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2425 (void *)*DF_REF_LOC (ref));
2427 else
2428 fprintf (file, "chain ");
2429 df_chain_dump (DF_REF_CHAIN (ref), file);
2430 fprintf (file, "\n");
2433 /* Functions for debugging from GDB. */
2435 DEBUG_FUNCTION void
2436 debug_df_insn (rtx_insn *insn)
2438 df_insn_debug (insn, true, stderr);
2439 debug_rtx (insn);
2443 DEBUG_FUNCTION void
2444 debug_df_reg (rtx reg)
2446 df_regno_debug (REGNO (reg), stderr);
2450 DEBUG_FUNCTION void
2451 debug_df_regno (unsigned int regno)
2453 df_regno_debug (regno, stderr);
2457 DEBUG_FUNCTION void
2458 debug_df_ref (df_ref ref)
2460 df_ref_debug (ref, stderr);
2464 DEBUG_FUNCTION void
2465 debug_df_defno (unsigned int defno)
2467 df_ref_debug (DF_DEFS_GET (defno), stderr);
2471 DEBUG_FUNCTION void
2472 debug_df_useno (unsigned int defno)
2474 df_ref_debug (DF_USES_GET (defno), stderr);
2478 DEBUG_FUNCTION void
2479 debug_df_chain (struct df_link *link)
2481 df_chain_dump (link, stderr);
2482 fputc ('\n', stderr);