1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
33 #include "hard-reg-set.h"
34 #include "insn-config.h"
37 #include "langhooks.h"
39 static rtx break_out_memory_refs
PARAMS ((rtx
));
40 static void emit_stack_probe
PARAMS ((rtx
));
43 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
46 trunc_int_for_mode (c
, mode
)
48 enum machine_mode mode
;
50 int width
= GET_MODE_BITSIZE (mode
);
52 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
54 return c
& 1 ? STORE_FLAG_VALUE
: 0;
56 /* Sign-extend for the requested mode. */
58 if (width
< HOST_BITS_PER_WIDE_INT
)
60 HOST_WIDE_INT sign
= 1;
70 /* Return an rtx for the sum of X and the integer C.
72 This function should be used via the `plus_constant' macro. */
75 plus_constant_wide (x
, c
)
81 enum machine_mode mode
;
97 return GEN_INT (INTVAL (x
) + c
);
101 unsigned HOST_WIDE_INT l1
= CONST_DOUBLE_LOW (x
);
102 HOST_WIDE_INT h1
= CONST_DOUBLE_HIGH (x
);
103 unsigned HOST_WIDE_INT l2
= c
;
104 HOST_WIDE_INT h2
= c
< 0 ? ~0 : 0;
105 unsigned HOST_WIDE_INT lv
;
108 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
110 return immed_double_const (lv
, hv
, VOIDmode
);
114 /* If this is a reference to the constant pool, try replacing it with
115 a reference to a new constant. If the resulting address isn't
116 valid, don't return it because we have no way to validize it. */
117 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
118 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
121 = force_const_mem (GET_MODE (x
),
122 plus_constant (get_pool_constant (XEXP (x
, 0)),
124 if (memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
130 /* If adding to something entirely constant, set a flag
131 so that we can add a CONST around the result. */
142 /* The interesting case is adding the integer to a sum.
143 Look for constant term in the sum and combine
144 with C. For an integer constant term, we make a combined
145 integer. For a constant term that is not an explicit integer,
146 we cannot really combine, but group them together anyway.
148 Restart or use a recursive call in case the remaining operand is
149 something that we handle specially, such as a SYMBOL_REF.
151 We may not immediately return from the recursive call here, lest
152 all_constant gets lost. */
154 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
156 c
+= INTVAL (XEXP (x
, 1));
158 if (GET_MODE (x
) != VOIDmode
)
159 c
= trunc_int_for_mode (c
, GET_MODE (x
));
164 else if (CONSTANT_P (XEXP (x
, 1)))
166 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), plus_constant (XEXP (x
, 1), c
));
169 else if (find_constant_term_loc (&y
))
171 /* We need to be careful since X may be shared and we can't
172 modify it in place. */
173 rtx copy
= copy_rtx (x
);
174 rtx
*const_loc
= find_constant_term_loc (©
);
176 *const_loc
= plus_constant (*const_loc
, c
);
187 x
= gen_rtx_PLUS (mode
, x
, GEN_INT (c
));
189 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
191 else if (all_constant
)
192 return gen_rtx_CONST (mode
, x
);
197 /* If X is a sum, return a new sum like X but lacking any constant terms.
198 Add all the removed constant terms into *CONSTPTR.
199 X itself is not altered. The result != X if and only if
200 it is not isomorphic to X. */
203 eliminate_constant_term (x
, constptr
)
210 if (GET_CODE (x
) != PLUS
)
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
215 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
217 && GET_CODE (tem
) == CONST_INT
)
220 return eliminate_constant_term (XEXP (x
, 0), constptr
);
224 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
225 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
226 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
227 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
229 && GET_CODE (tem
) == CONST_INT
)
232 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
238 /* Returns the insn that next references REG after INSN, or 0
239 if REG is clobbered before next referenced or we cannot find
240 an insn that references REG in a straight-line piece of code. */
243 find_next_ref (reg
, insn
)
249 for (insn
= NEXT_INSN (insn
); insn
; insn
= next
)
251 next
= NEXT_INSN (insn
);
252 if (GET_CODE (insn
) == NOTE
)
254 if (GET_CODE (insn
) == CODE_LABEL
255 || GET_CODE (insn
) == BARRIER
)
257 if (GET_CODE (insn
) == INSN
258 || GET_CODE (insn
) == JUMP_INSN
259 || GET_CODE (insn
) == CALL_INSN
)
261 if (reg_set_p (reg
, insn
))
263 if (reg_mentioned_p (reg
, PATTERN (insn
)))
265 if (GET_CODE (insn
) == JUMP_INSN
)
267 if (any_uncondjump_p (insn
))
268 next
= JUMP_LABEL (insn
);
272 if (GET_CODE (insn
) == CALL_INSN
273 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
274 && call_used_regs
[REGNO (reg
)])
283 /* Return an rtx for the size in bytes of the value of EXP. */
289 tree size
= (*lang_hooks
.expr_size
) (exp
);
291 if (TREE_CODE (size
) != INTEGER_CST
292 && contains_placeholder_p (size
))
293 size
= build (WITH_RECORD_EXPR
, sizetype
, size
, exp
);
295 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), 0);
298 /* Return a wide integer for the size in bytes of the value of EXP, or -1
299 if the size can vary or is larger than an integer. */
305 tree t
= (*lang_hooks
.expr_size
) (exp
);
308 || TREE_CODE (t
) != INTEGER_CST
310 || TREE_INT_CST_HIGH (t
) != 0
311 /* If the result would appear negative, it's too big to represent. */
312 || (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0)
315 return TREE_INT_CST_LOW (t
);
318 /* Return a copy of X in which all memory references
319 and all constants that involve symbol refs
320 have been replaced with new temporary registers.
321 Also emit code to load the memory locations and constants
322 into those registers.
324 If X contains no such constants or memory references,
325 X itself (not a copy) is returned.
327 If a constant is found in the address that is not a legitimate constant
328 in an insn, it is left alone in the hope that it might be valid in the
331 X may contain no arithmetic except addition, subtraction and multiplication.
332 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
335 break_out_memory_refs (x
)
338 if (GET_CODE (x
) == MEM
339 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
340 && GET_MODE (x
) != VOIDmode
))
341 x
= force_reg (GET_MODE (x
), x
);
342 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
343 || GET_CODE (x
) == MULT
)
345 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
346 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
348 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
349 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
355 #ifdef POINTERS_EXTEND_UNSIGNED
357 /* Given X, a memory address in ptr_mode, convert it to an address
358 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
359 the fact that pointers are not allowed to overflow by commuting arithmetic
360 operations over conversions so that address arithmetic insns can be
364 convert_memory_address (to_mode
, x
)
365 enum machine_mode to_mode
;
368 enum machine_mode from_mode
= to_mode
== ptr_mode
? Pmode
: ptr_mode
;
371 /* Here we handle some special cases. If none of them apply, fall through
372 to the default case. */
373 switch (GET_CODE (x
))
380 if (POINTERS_EXTEND_UNSIGNED
>= 0
381 && (SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
382 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
383 return SUBREG_REG (x
);
387 if (POINTERS_EXTEND_UNSIGNED
>= 0)
389 temp
= gen_rtx_LABEL_REF (to_mode
, XEXP (x
, 0));
390 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
396 if (POINTERS_EXTEND_UNSIGNED
>= 0)
398 temp
= gen_rtx_SYMBOL_REF (to_mode
, XSTR (x
, 0));
399 SYMBOL_REF_FLAG (temp
) = SYMBOL_REF_FLAG (x
);
400 CONSTANT_POOL_ADDRESS_P (temp
) = CONSTANT_POOL_ADDRESS_P (x
);
401 STRING_POOL_ADDRESS_P (temp
) = STRING_POOL_ADDRESS_P (x
);
407 if (POINTERS_EXTEND_UNSIGNED
>= 0)
408 return gen_rtx_CONST (to_mode
,
409 convert_memory_address (to_mode
, XEXP (x
, 0)));
414 /* For addition the second operand is a small constant, we can safely
415 permute the conversion and addition operation. We can always safely
416 permute them if we are making the address narrower. In addition,
417 always permute the operations if this is a constant. */
418 if (POINTERS_EXTEND_UNSIGNED
>= 0
419 && (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
420 || (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
421 && (INTVAL (XEXP (x
, 1)) + 20000 < 40000
422 || CONSTANT_P (XEXP (x
, 0))))))
423 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
424 convert_memory_address (to_mode
, XEXP (x
, 0)),
425 convert_memory_address (to_mode
, XEXP (x
, 1)));
432 return convert_modes (to_mode
, from_mode
,
433 x
, POINTERS_EXTEND_UNSIGNED
);
437 /* Given a memory address or facsimile X, construct a new address,
438 currently equivalent, that is stable: future stores won't change it.
440 X must be composed of constants, register and memory references
441 combined with addition, subtraction and multiplication:
442 in other words, just what you can get from expand_expr if sum_ok is 1.
444 Works by making copies of all regs and memory locations used
445 by X and combining them the same way X does.
446 You could also stabilize the reference to this address
447 by copying the address to a register with copy_to_reg;
448 but then you wouldn't get indexed addressing in the reference. */
454 if (GET_CODE (x
) == REG
)
456 if (REGNO (x
) != FRAME_POINTER_REGNUM
457 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
458 && REGNO (x
) != HARD_FRAME_POINTER_REGNUM
463 else if (GET_CODE (x
) == MEM
)
465 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
466 || GET_CODE (x
) == MULT
)
468 rtx op0
= copy_all_regs (XEXP (x
, 0));
469 rtx op1
= copy_all_regs (XEXP (x
, 1));
470 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
471 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
476 /* Return something equivalent to X but valid as a memory address
477 for something of mode MODE. When X is not itself valid, this
478 works by copying X or subexpressions of it into registers. */
481 memory_address (mode
, x
)
482 enum machine_mode mode
;
487 if (GET_CODE (x
) == ADDRESSOF
)
490 #ifdef POINTERS_EXTEND_UNSIGNED
491 if (GET_MODE (x
) != Pmode
)
492 x
= convert_memory_address (Pmode
, x
);
495 /* By passing constant addresses thru registers
496 we get a chance to cse them. */
497 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
498 x
= force_reg (Pmode
, x
);
500 /* Accept a QUEUED that refers to a REG
501 even though that isn't a valid address.
502 On attempting to put this in an insn we will call protect_from_queue
503 which will turn it into a REG, which is valid. */
504 else if (GET_CODE (x
) == QUEUED
505 && GET_CODE (QUEUED_VAR (x
)) == REG
)
508 /* We get better cse by rejecting indirect addressing at this stage.
509 Let the combiner create indirect addresses where appropriate.
510 For now, generate the code so that the subexpressions useful to share
511 are visible. But not if cse won't be done! */
514 if (! cse_not_expected
&& GET_CODE (x
) != REG
)
515 x
= break_out_memory_refs (x
);
517 /* At this point, any valid address is accepted. */
518 GO_IF_LEGITIMATE_ADDRESS (mode
, x
, win
);
520 /* If it was valid before but breaking out memory refs invalidated it,
521 use it the old way. */
522 if (memory_address_p (mode
, oldx
))
525 /* Perform machine-dependent transformations on X
526 in certain cases. This is not necessary since the code
527 below can handle all possible cases, but machine-dependent
528 transformations can make better code. */
529 LEGITIMIZE_ADDRESS (x
, oldx
, mode
, win
);
531 /* PLUS and MULT can appear in special ways
532 as the result of attempts to make an address usable for indexing.
533 Usually they are dealt with by calling force_operand, below.
534 But a sum containing constant terms is special
535 if removing them makes the sum a valid address:
536 then we generate that address in a register
537 and index off of it. We do this because it often makes
538 shorter code, and because the addresses thus generated
539 in registers often become common subexpressions. */
540 if (GET_CODE (x
) == PLUS
)
542 rtx constant_term
= const0_rtx
;
543 rtx y
= eliminate_constant_term (x
, &constant_term
);
544 if (constant_term
== const0_rtx
545 || ! memory_address_p (mode
, y
))
546 x
= force_operand (x
, NULL_RTX
);
549 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
550 if (! memory_address_p (mode
, y
))
551 x
= force_operand (x
, NULL_RTX
);
557 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
558 x
= force_operand (x
, NULL_RTX
);
560 /* If we have a register that's an invalid address,
561 it must be a hard reg of the wrong class. Copy it to a pseudo. */
562 else if (GET_CODE (x
) == REG
)
565 /* Last resort: copy the value to a register, since
566 the register is a valid address. */
568 x
= force_reg (Pmode
, x
);
575 if (flag_force_addr
&& ! cse_not_expected
&& GET_CODE (x
) != REG
576 /* Don't copy an addr via a reg if it is one of our stack slots. */
577 && ! (GET_CODE (x
) == PLUS
578 && (XEXP (x
, 0) == virtual_stack_vars_rtx
579 || XEXP (x
, 0) == virtual_incoming_args_rtx
)))
581 if (general_operand (x
, Pmode
))
582 x
= force_reg (Pmode
, x
);
584 x
= force_operand (x
, NULL_RTX
);
590 /* If we didn't change the address, we are done. Otherwise, mark
591 a reg as a pointer if we have REG or REG + CONST_INT. */
594 else if (GET_CODE (x
) == REG
)
595 mark_reg_pointer (x
, BITS_PER_UNIT
);
596 else if (GET_CODE (x
) == PLUS
597 && GET_CODE (XEXP (x
, 0)) == REG
598 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
599 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
601 /* OLDX may have been the address on a temporary. Update the address
602 to indicate that X is now used. */
603 update_temp_slot_address (oldx
, x
);
608 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
611 memory_address_noforce (mode
, x
)
612 enum machine_mode mode
;
615 int ambient_force_addr
= flag_force_addr
;
619 val
= memory_address (mode
, x
);
620 flag_force_addr
= ambient_force_addr
;
624 /* Convert a mem ref into one with a valid memory address.
625 Pass through anything else unchanged. */
631 if (GET_CODE (ref
) != MEM
)
633 if (! (flag_force_addr
&& CONSTANT_ADDRESS_P (XEXP (ref
, 0)))
634 && memory_address_p (GET_MODE (ref
), XEXP (ref
, 0)))
637 /* Don't alter REF itself, since that is probably a stack slot. */
638 return replace_equiv_address (ref
, XEXP (ref
, 0));
641 /* Given REF, either a MEM or a REG, and T, either the type of X or
642 the expression corresponding to REF, set RTX_UNCHANGING_P if
646 maybe_set_unchanging (ref
, t
)
650 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
651 initialization is only executed once, or whose initializer always
652 has the same value. Currently we simplify this to PARM_DECLs in the
653 first case, and decls with TREE_CONSTANT initializers in the second. */
654 if ((TREE_READONLY (t
) && DECL_P (t
)
655 && (TREE_CODE (t
) == PARM_DECL
656 || DECL_INITIAL (t
) == NULL_TREE
657 || TREE_CONSTANT (DECL_INITIAL (t
))))
658 || TREE_CODE_CLASS (TREE_CODE (t
)) == 'c')
659 RTX_UNCHANGING_P (ref
) = 1;
662 /* Return a modified copy of X with its memory address copied
663 into a temporary register to protect it from side effects.
664 If X is not a MEM, it is returned unchanged (and not copied).
665 Perhaps even if it is a MEM, if there is no need to change it. */
672 if (GET_CODE (x
) != MEM
673 || ! rtx_unstable_p (XEXP (x
, 0)))
677 replace_equiv_address (x
, force_reg (Pmode
, copy_all_regs (XEXP (x
, 0))));
680 /* Copy the value or contents of X to a new temp reg and return that reg. */
686 rtx temp
= gen_reg_rtx (GET_MODE (x
));
688 /* If not an operand, must be an address with PLUS and MULT so
689 do the computation. */
690 if (! general_operand (x
, VOIDmode
))
691 x
= force_operand (x
, temp
);
694 emit_move_insn (temp
, x
);
699 /* Like copy_to_reg but always give the new register mode Pmode
700 in case X is a constant. */
706 return copy_to_mode_reg (Pmode
, x
);
709 /* Like copy_to_reg but always give the new register mode MODE
710 in case X is a constant. */
713 copy_to_mode_reg (mode
, x
)
714 enum machine_mode mode
;
717 rtx temp
= gen_reg_rtx (mode
);
719 /* If not an operand, must be an address with PLUS and MULT so
720 do the computation. */
721 if (! general_operand (x
, VOIDmode
))
722 x
= force_operand (x
, temp
);
724 if (GET_MODE (x
) != mode
&& GET_MODE (x
) != VOIDmode
)
727 emit_move_insn (temp
, x
);
731 /* Load X into a register if it is not already one.
732 Use mode MODE for the register.
733 X should be valid for mode MODE, but it may be a constant which
734 is valid for all integer modes; that's why caller must specify MODE.
736 The caller must not alter the value in the register we return,
737 since we mark it as a "constant" register. */
741 enum machine_mode mode
;
746 if (GET_CODE (x
) == REG
)
749 if (general_operand (x
, mode
))
751 temp
= gen_reg_rtx (mode
);
752 insn
= emit_move_insn (temp
, x
);
756 temp
= force_operand (x
, NULL_RTX
);
757 if (GET_CODE (temp
) == REG
)
758 insn
= get_last_insn ();
761 rtx temp2
= gen_reg_rtx (mode
);
762 insn
= emit_move_insn (temp2
, temp
);
767 /* Let optimizers know that TEMP's value never changes
768 and that X can be substituted for it. Don't get confused
769 if INSN set something else (such as a SUBREG of TEMP). */
771 && (set
= single_set (insn
)) != 0
772 && SET_DEST (set
) == temp
)
773 set_unique_reg_note (insn
, REG_EQUAL
, x
);
778 /* If X is a memory ref, copy its contents to a new temp reg and return
779 that reg. Otherwise, return X. */
787 if (GET_CODE (x
) != MEM
|| GET_MODE (x
) == BLKmode
)
790 temp
= gen_reg_rtx (GET_MODE (x
));
791 emit_move_insn (temp
, x
);
795 /* Copy X to TARGET (if it's nonzero and a reg)
796 or to a new temp reg and return that reg.
797 MODE is the mode to use for X in case it is a constant. */
800 copy_to_suggested_reg (x
, target
, mode
)
802 enum machine_mode mode
;
806 if (target
&& GET_CODE (target
) == REG
)
809 temp
= gen_reg_rtx (mode
);
811 emit_move_insn (temp
, x
);
815 /* Return the mode to use to store a scalar of TYPE and MODE.
816 PUNSIGNEDP points to the signedness of the type and may be adjusted
817 to show what signedness to use on extension operations.
819 FOR_CALL is non-zero if this call is promoting args for a call. */
822 promote_mode (type
, mode
, punsignedp
, for_call
)
824 enum machine_mode mode
;
826 int for_call ATTRIBUTE_UNUSED
;
828 enum tree_code code
= TREE_CODE (type
);
829 int unsignedp
= *punsignedp
;
831 #ifdef PROMOTE_FOR_CALL_ONLY
839 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
840 case CHAR_TYPE
: case REAL_TYPE
: case OFFSET_TYPE
:
841 PROMOTE_MODE (mode
, unsignedp
, type
);
845 #ifdef POINTERS_EXTEND_UNSIGNED
849 unsignedp
= POINTERS_EXTEND_UNSIGNED
;
857 *punsignedp
= unsignedp
;
861 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
862 This pops when ADJUST is positive. ADJUST need not be constant. */
865 adjust_stack (adjust
)
869 adjust
= protect_from_queue (adjust
, 0);
871 if (adjust
== const0_rtx
)
874 /* We expect all variable sized adjustments to be multiple of
875 PREFERRED_STACK_BOUNDARY. */
876 if (GET_CODE (adjust
) == CONST_INT
)
877 stack_pointer_delta
-= INTVAL (adjust
);
879 temp
= expand_binop (Pmode
,
880 #ifdef STACK_GROWS_DOWNWARD
885 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
888 if (temp
!= stack_pointer_rtx
)
889 emit_move_insn (stack_pointer_rtx
, temp
);
892 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
893 This pushes when ADJUST is positive. ADJUST need not be constant. */
896 anti_adjust_stack (adjust
)
900 adjust
= protect_from_queue (adjust
, 0);
902 if (adjust
== const0_rtx
)
905 /* We expect all variable sized adjustments to be multiple of
906 PREFERRED_STACK_BOUNDARY. */
907 if (GET_CODE (adjust
) == CONST_INT
)
908 stack_pointer_delta
+= INTVAL (adjust
);
910 temp
= expand_binop (Pmode
,
911 #ifdef STACK_GROWS_DOWNWARD
916 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
919 if (temp
!= stack_pointer_rtx
)
920 emit_move_insn (stack_pointer_rtx
, temp
);
923 /* Round the size of a block to be pushed up to the boundary required
924 by this machine. SIZE is the desired size, which need not be constant. */
930 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
933 if (GET_CODE (size
) == CONST_INT
)
935 int new = (INTVAL (size
) + align
- 1) / align
* align
;
936 if (INTVAL (size
) != new)
937 size
= GEN_INT (new);
941 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
942 but we know it can't. So add ourselves and then do
944 size
= expand_binop (Pmode
, add_optab
, size
, GEN_INT (align
- 1),
945 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
946 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, GEN_INT (align
),
948 size
= expand_mult (Pmode
, size
, GEN_INT (align
), NULL_RTX
, 1);
953 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
954 to a previously-created save area. If no save area has been allocated,
955 this function will allocate one. If a save area is specified, it
956 must be of the proper mode.
958 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
959 are emitted at the current position. */
962 emit_stack_save (save_level
, psave
, after
)
963 enum save_level save_level
;
968 /* The default is that we use a move insn and save in a Pmode object. */
969 rtx (*fcn
) PARAMS ((rtx
, rtx
)) = gen_move_insn
;
970 enum machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
972 /* See if this machine has anything special to do for this kind of save. */
975 #ifdef HAVE_save_stack_block
977 if (HAVE_save_stack_block
)
978 fcn
= gen_save_stack_block
;
981 #ifdef HAVE_save_stack_function
983 if (HAVE_save_stack_function
)
984 fcn
= gen_save_stack_function
;
987 #ifdef HAVE_save_stack_nonlocal
989 if (HAVE_save_stack_nonlocal
)
990 fcn
= gen_save_stack_nonlocal
;
997 /* If there is no save area and we have to allocate one, do so. Otherwise
998 verify the save area is the proper mode. */
1002 if (mode
!= VOIDmode
)
1004 if (save_level
== SAVE_NONLOCAL
)
1005 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
1007 *psave
= sa
= gen_reg_rtx (mode
);
1012 if (mode
== VOIDmode
|| GET_MODE (sa
) != mode
)
1021 /* We must validize inside the sequence, to ensure that any instructions
1022 created by the validize call also get moved to the right place. */
1024 sa
= validize_mem (sa
);
1025 emit_insn (fcn (sa
, stack_pointer_rtx
));
1026 seq
= gen_sequence ();
1028 emit_insn_after (seq
, after
);
1033 sa
= validize_mem (sa
);
1034 emit_insn (fcn (sa
, stack_pointer_rtx
));
1038 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1039 area made by emit_stack_save. If it is zero, we have nothing to do.
1041 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1042 current position. */
1045 emit_stack_restore (save_level
, sa
, after
)
1046 enum save_level save_level
;
1050 /* The default is that we use a move insn. */
1051 rtx (*fcn
) PARAMS ((rtx
, rtx
)) = gen_move_insn
;
1053 /* See if this machine has anything special to do for this kind of save. */
1056 #ifdef HAVE_restore_stack_block
1058 if (HAVE_restore_stack_block
)
1059 fcn
= gen_restore_stack_block
;
1062 #ifdef HAVE_restore_stack_function
1064 if (HAVE_restore_stack_function
)
1065 fcn
= gen_restore_stack_function
;
1068 #ifdef HAVE_restore_stack_nonlocal
1070 if (HAVE_restore_stack_nonlocal
)
1071 fcn
= gen_restore_stack_nonlocal
;
1079 sa
= validize_mem (sa
);
1086 emit_insn (fcn (stack_pointer_rtx
, sa
));
1087 seq
= gen_sequence ();
1089 emit_insn_after (seq
, after
);
1092 emit_insn (fcn (stack_pointer_rtx
, sa
));
1095 #ifdef SETJMP_VIA_SAVE_AREA
1096 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1097 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1098 platforms, the dynamic stack space used can corrupt the original
1099 frame, thus causing a crash if a longjmp unwinds to it. */
1102 optimize_save_area_alloca (insns
)
1107 for (insn
= insns
; insn
; insn
= NEXT_INSN(insn
))
1111 if (GET_CODE (insn
) != INSN
)
1114 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1116 if (REG_NOTE_KIND (note
) != REG_SAVE_AREA
)
1119 if (!current_function_calls_setjmp
)
1121 rtx pat
= PATTERN (insn
);
1123 /* If we do not see the note in a pattern matching
1124 these precise characteristics, we did something
1125 entirely wrong in allocate_dynamic_stack_space.
1127 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1128 was defined on a machine where stacks grow towards higher
1131 Right now only supported port with stack that grow upward
1132 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1133 if (GET_CODE (pat
) != SET
1134 || SET_DEST (pat
) != stack_pointer_rtx
1135 || GET_CODE (SET_SRC (pat
)) != MINUS
1136 || XEXP (SET_SRC (pat
), 0) != stack_pointer_rtx
)
1139 /* This will now be transformed into a (set REG REG)
1140 so we can just blow away all the other notes. */
1141 XEXP (SET_SRC (pat
), 1) = XEXP (note
, 0);
1142 REG_NOTES (insn
) = NULL_RTX
;
1146 /* setjmp was called, we must remove the REG_SAVE_AREA
1147 note so that later passes do not get confused by its
1149 if (note
== REG_NOTES (insn
))
1151 REG_NOTES (insn
) = XEXP (note
, 1);
1157 for (srch
= REG_NOTES (insn
); srch
; srch
= XEXP (srch
, 1))
1158 if (XEXP (srch
, 1) == note
)
1161 if (srch
== NULL_RTX
)
1164 XEXP (srch
, 1) = XEXP (note
, 1);
1167 /* Once we've seen the note of interest, we need not look at
1168 the rest of them. */
1173 #endif /* SETJMP_VIA_SAVE_AREA */
1175 /* Return an rtx representing the address of an area of memory dynamically
1176 pushed on the stack. This region of memory is always aligned to
1177 a multiple of BIGGEST_ALIGNMENT.
1179 Any required stack pointer alignment is preserved.
1181 SIZE is an rtx representing the size of the area.
1182 TARGET is a place in which the address can be placed.
1184 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1187 allocate_dynamic_stack_space (size
, target
, known_align
)
1192 #ifdef SETJMP_VIA_SAVE_AREA
1193 rtx setjmpless_size
= NULL_RTX
;
1196 /* If we're asking for zero bytes, it doesn't matter what we point
1197 to since we can't dereference it. But return a reasonable
1199 if (size
== const0_rtx
)
1200 return virtual_stack_dynamic_rtx
;
1202 /* Otherwise, show we're calling alloca or equivalent. */
1203 current_function_calls_alloca
= 1;
1205 /* Ensure the size is in the proper mode. */
1206 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1207 size
= convert_to_mode (Pmode
, size
, 1);
1209 /* We can't attempt to minimize alignment necessary, because we don't
1210 know the final value of preferred_stack_boundary yet while executing
1212 cfun
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1214 /* We will need to ensure that the address we return is aligned to
1215 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1216 always know its final value at this point in the compilation (it
1217 might depend on the size of the outgoing parameter lists, for
1218 example), so we must align the value to be returned in that case.
1219 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1220 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1221 We must also do an alignment operation on the returned value if
1222 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1224 If we have to align, we must leave space in SIZE for the hole
1225 that might result from the alignment operation. */
1227 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1228 #define MUST_ALIGN 1
1230 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1235 = force_operand (plus_constant (size
,
1236 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1239 #ifdef SETJMP_VIA_SAVE_AREA
1240 /* If setjmp restores regs from a save area in the stack frame,
1241 avoid clobbering the reg save area. Note that the offset of
1242 virtual_incoming_args_rtx includes the preallocated stack args space.
1243 It would be no problem to clobber that, but it's on the wrong side
1244 of the old save area. */
1247 = expand_binop (Pmode
, sub_optab
, virtual_stack_dynamic_rtx
,
1248 stack_pointer_rtx
, NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1250 if (!current_function_calls_setjmp
)
1252 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
1254 /* See optimize_save_area_alloca to understand what is being
1257 /* ??? Code below assumes that the save area needs maximal
1258 alignment. This constraint may be too strong. */
1259 if (PREFERRED_STACK_BOUNDARY
!= BIGGEST_ALIGNMENT
)
1262 if (GET_CODE (size
) == CONST_INT
)
1264 HOST_WIDE_INT
new = INTVAL (size
) / align
* align
;
1266 if (INTVAL (size
) != new)
1267 setjmpless_size
= GEN_INT (new);
1269 setjmpless_size
= size
;
1273 /* Since we know overflow is not possible, we avoid using
1274 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1275 setjmpless_size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
,
1276 GEN_INT (align
), NULL_RTX
, 1);
1277 setjmpless_size
= expand_mult (Pmode
, setjmpless_size
,
1278 GEN_INT (align
), NULL_RTX
, 1);
1280 /* Our optimization works based upon being able to perform a simple
1281 transformation of this RTL into a (set REG REG) so make sure things
1282 did in fact end up in a REG. */
1283 if (!register_operand (setjmpless_size
, Pmode
))
1284 setjmpless_size
= force_reg (Pmode
, setjmpless_size
);
1287 size
= expand_binop (Pmode
, add_optab
, size
, dynamic_offset
,
1288 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1290 #endif /* SETJMP_VIA_SAVE_AREA */
1292 /* Round the size to a multiple of the required stack alignment.
1293 Since the stack if presumed to be rounded before this allocation,
1294 this will maintain the required alignment.
1296 If the stack grows downward, we could save an insn by subtracting
1297 SIZE from the stack pointer and then aligning the stack pointer.
1298 The problem with this is that the stack pointer may be unaligned
1299 between the execution of the subtraction and alignment insns and
1300 some machines do not allow this. Even on those that do, some
1301 signal handlers malfunction if a signal should occur between those
1302 insns. Since this is an extremely rare event, we have no reliable
1303 way of knowing which systems have this problem. So we avoid even
1304 momentarily mis-aligning the stack. */
1306 /* If we added a variable amount to SIZE,
1307 we can no longer assume it is aligned. */
1308 #if !defined (SETJMP_VIA_SAVE_AREA)
1309 if (MUST_ALIGN
|| known_align
% PREFERRED_STACK_BOUNDARY
!= 0)
1311 size
= round_push (size
);
1313 do_pending_stack_adjust ();
1315 /* We ought to be called always on the toplevel and stack ought to be aligned
1317 if (stack_pointer_delta
% (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
))
1320 /* If needed, check that we have the required amount of stack. Take into
1321 account what has already been checked. */
1322 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
1323 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE
+ STACK_CHECK_PROTECT
, size
);
1325 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1326 if (target
== 0 || GET_CODE (target
) != REG
1327 || REGNO (target
) < FIRST_PSEUDO_REGISTER
1328 || GET_MODE (target
) != Pmode
)
1329 target
= gen_reg_rtx (Pmode
);
1331 mark_reg_pointer (target
, known_align
);
1333 /* Perform the required allocation from the stack. Some systems do
1334 this differently than simply incrementing/decrementing from the
1335 stack pointer, such as acquiring the space by calling malloc(). */
1336 #ifdef HAVE_allocate_stack
1337 if (HAVE_allocate_stack
)
1339 enum machine_mode mode
= STACK_SIZE_MODE
;
1340 insn_operand_predicate_fn pred
;
1342 /* We don't have to check against the predicate for operand 0 since
1343 TARGET is known to be a pseudo of the proper mode, which must
1344 be valid for the operand. For operand 1, convert to the
1345 proper mode and validate. */
1346 if (mode
== VOIDmode
)
1347 mode
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].mode
;
1349 pred
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].predicate
;
1350 if (pred
&& ! ((*pred
) (size
, mode
)))
1351 size
= copy_to_mode_reg (mode
, size
);
1353 emit_insn (gen_allocate_stack (target
, size
));
1358 #ifndef STACK_GROWS_DOWNWARD
1359 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1362 /* Check stack bounds if necessary. */
1363 if (current_function_limit_stack
)
1366 rtx space_available
= gen_label_rtx ();
1367 #ifdef STACK_GROWS_DOWNWARD
1368 available
= expand_binop (Pmode
, sub_optab
,
1369 stack_pointer_rtx
, stack_limit_rtx
,
1370 NULL_RTX
, 1, OPTAB_WIDEN
);
1372 available
= expand_binop (Pmode
, sub_optab
,
1373 stack_limit_rtx
, stack_pointer_rtx
,
1374 NULL_RTX
, 1, OPTAB_WIDEN
);
1376 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1380 emit_insn (gen_trap ());
1383 error ("stack limits not supported on this target");
1385 emit_label (space_available
);
1388 anti_adjust_stack (size
);
1389 #ifdef SETJMP_VIA_SAVE_AREA
1390 if (setjmpless_size
!= NULL_RTX
)
1392 rtx note_target
= get_last_insn ();
1394 REG_NOTES (note_target
)
1395 = gen_rtx_EXPR_LIST (REG_SAVE_AREA
, setjmpless_size
,
1396 REG_NOTES (note_target
));
1398 #endif /* SETJMP_VIA_SAVE_AREA */
1400 #ifdef STACK_GROWS_DOWNWARD
1401 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1407 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1408 but we know it can't. So add ourselves and then do
1410 target
= expand_binop (Pmode
, add_optab
, target
,
1411 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1412 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1413 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1414 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1416 target
= expand_mult (Pmode
, target
,
1417 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1421 /* Some systems require a particular insn to refer to the stack
1422 to make the pages exist. */
1425 emit_insn (gen_probe ());
1428 /* Record the new stack level for nonlocal gotos. */
1429 if (nonlocal_goto_handler_slots
!= 0)
1430 emit_stack_save (SAVE_NONLOCAL
, &nonlocal_goto_stack_level
, NULL_RTX
);
1435 /* A front end may want to override GCC's stack checking by providing a
1436 run-time routine to call to check the stack, so provide a mechanism for
1437 calling that routine. */
1439 static rtx stack_check_libfunc
;
1442 set_stack_check_libfunc (libfunc
)
1445 stack_check_libfunc
= libfunc
;
1446 ggc_add_rtx_root (&stack_check_libfunc
, 1);
1449 /* Emit one stack probe at ADDRESS, an address within the stack. */
1452 emit_stack_probe (address
)
1455 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1457 MEM_VOLATILE_P (memref
) = 1;
1459 if (STACK_CHECK_PROBE_LOAD
)
1460 emit_move_insn (gen_reg_rtx (word_mode
), memref
);
1462 emit_move_insn (memref
, const0_rtx
);
1465 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1466 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1467 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1468 subtract from the stack. If SIZE is constant, this is done
1469 with a fixed number of probes. Otherwise, we must make a loop. */
1471 #ifdef STACK_GROWS_DOWNWARD
1472 #define STACK_GROW_OP MINUS
1474 #define STACK_GROW_OP PLUS
1478 probe_stack_range (first
, size
)
1479 HOST_WIDE_INT first
;
1482 /* First ensure SIZE is Pmode. */
1483 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1484 size
= convert_to_mode (Pmode
, size
, 1);
1486 /* Next see if the front end has set up a function for us to call to
1488 if (stack_check_libfunc
!= 0)
1490 rtx addr
= memory_address (QImode
,
1491 gen_rtx (STACK_GROW_OP
, Pmode
,
1493 plus_constant (size
, first
)));
1495 #ifdef POINTERS_EXTEND_UNSIGNED
1496 if (GET_MODE (addr
) != ptr_mode
)
1497 addr
= convert_memory_address (ptr_mode
, addr
);
1500 emit_library_call (stack_check_libfunc
, LCT_NORMAL
, VOIDmode
, 1, addr
,
1504 /* Next see if we have an insn to check the stack. Use it if so. */
1505 #ifdef HAVE_check_stack
1506 else if (HAVE_check_stack
)
1508 insn_operand_predicate_fn pred
;
1510 = force_operand (gen_rtx_STACK_GROW_OP (Pmode
,
1512 plus_constant (size
, first
)),
1515 pred
= insn_data
[(int) CODE_FOR_check_stack
].operand
[0].predicate
;
1516 if (pred
&& ! ((*pred
) (last_addr
, Pmode
)))
1517 last_addr
= copy_to_mode_reg (Pmode
, last_addr
);
1519 emit_insn (gen_check_stack (last_addr
));
1523 /* If we have to generate explicit probes, see if we have a constant
1524 small number of them to generate. If so, that's the easy case. */
1525 else if (GET_CODE (size
) == CONST_INT
1526 && INTVAL (size
) < 10 * STACK_CHECK_PROBE_INTERVAL
)
1528 HOST_WIDE_INT offset
;
1530 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1531 for values of N from 1 until it exceeds LAST. If only one
1532 probe is needed, this will not generate any code. Then probe
1534 for (offset
= first
+ STACK_CHECK_PROBE_INTERVAL
;
1535 offset
< INTVAL (size
);
1536 offset
= offset
+ STACK_CHECK_PROBE_INTERVAL
)
1537 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1541 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1543 plus_constant (size
, first
)));
1546 /* In the variable case, do the same as above, but in a loop. We emit loop
1547 notes so that loop optimization can be done. */
1551 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1553 GEN_INT (first
+ STACK_CHECK_PROBE_INTERVAL
)),
1556 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1558 plus_constant (size
, first
)),
1560 rtx incr
= GEN_INT (STACK_CHECK_PROBE_INTERVAL
);
1561 rtx loop_lab
= gen_label_rtx ();
1562 rtx test_lab
= gen_label_rtx ();
1563 rtx end_lab
= gen_label_rtx ();
1566 if (GET_CODE (test_addr
) != REG
1567 || REGNO (test_addr
) < FIRST_PSEUDO_REGISTER
)
1568 test_addr
= force_reg (Pmode
, test_addr
);
1570 emit_note (NULL
, NOTE_INSN_LOOP_BEG
);
1571 emit_jump (test_lab
);
1573 emit_label (loop_lab
);
1574 emit_stack_probe (test_addr
);
1576 emit_note (NULL
, NOTE_INSN_LOOP_CONT
);
1578 #ifdef STACK_GROWS_DOWNWARD
1579 #define CMP_OPCODE GTU
1580 temp
= expand_binop (Pmode
, sub_optab
, test_addr
, incr
, test_addr
,
1583 #define CMP_OPCODE LTU
1584 temp
= expand_binop (Pmode
, add_optab
, test_addr
, incr
, test_addr
,
1588 if (temp
!= test_addr
)
1591 emit_label (test_lab
);
1592 emit_cmp_and_jump_insns (test_addr
, last_addr
, CMP_OPCODE
,
1593 NULL_RTX
, Pmode
, 1, loop_lab
);
1594 emit_jump (end_lab
);
1595 emit_note (NULL
, NOTE_INSN_LOOP_END
);
1596 emit_label (end_lab
);
1598 emit_stack_probe (last_addr
);
1602 /* Return an rtx representing the register or memory location
1603 in which a scalar value of data type VALTYPE
1604 was returned by a function call to function FUNC.
1605 FUNC is a FUNCTION_DECL node if the precise function is known,
1607 OUTGOING is 1 if on a machine with register windows this function
1608 should return the register in which the function will put its result
1612 hard_function_value (valtype
, func
, outgoing
)
1614 tree func ATTRIBUTE_UNUSED
;
1615 int outgoing ATTRIBUTE_UNUSED
;
1619 #ifdef FUNCTION_OUTGOING_VALUE
1621 val
= FUNCTION_OUTGOING_VALUE (valtype
, func
);
1624 val
= FUNCTION_VALUE (valtype
, func
);
1626 if (GET_CODE (val
) == REG
1627 && GET_MODE (val
) == BLKmode
)
1629 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1630 enum machine_mode tmpmode
;
1632 /* int_size_in_bytes can return -1. We don't need a check here
1633 since the value of bytes will be large enough that no mode
1634 will match and we will abort later in this function. */
1636 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1637 tmpmode
!= VOIDmode
;
1638 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1640 /* Have we found a large enough mode? */
1641 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1645 /* No suitable mode found. */
1646 if (tmpmode
== VOIDmode
)
1649 PUT_MODE (val
, tmpmode
);
1654 /* Return an rtx representing the register or memory location
1655 in which a scalar value of mode MODE was returned by a library call. */
1658 hard_libcall_value (mode
)
1659 enum machine_mode mode
;
1661 return LIBCALL_VALUE (mode
);
1664 /* Look up the tree code for a given rtx code
1665 to provide the arithmetic operation for REAL_ARITHMETIC.
1666 The function returns an int because the caller may not know
1667 what `enum tree_code' means. */
1670 rtx_to_tree_code (code
)
1673 enum tree_code tcode
;
1696 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1699 return ((int) tcode
);