PR c++/8333
[official-gcc.git] / gcc / explow.c
blob97435a703b985983c8f2b3057f0f661dfd93b9eb
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "optabs.h"
33 #include "hard-reg-set.h"
34 #include "insn-config.h"
35 #include "ggc.h"
36 #include "recog.h"
37 #include "langhooks.h"
39 static rtx break_out_memory_refs PARAMS ((rtx));
40 static void emit_stack_probe PARAMS ((rtx));
43 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
45 HOST_WIDE_INT
46 trunc_int_for_mode (c, mode)
47 HOST_WIDE_INT c;
48 enum machine_mode mode;
50 int width = GET_MODE_BITSIZE (mode);
52 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
53 if (mode == BImode)
54 return c & 1 ? STORE_FLAG_VALUE : 0;
56 /* Sign-extend for the requested mode. */
58 if (width < HOST_BITS_PER_WIDE_INT)
60 HOST_WIDE_INT sign = 1;
61 sign <<= width - 1;
62 c &= (sign << 1) - 1;
63 c ^= sign;
64 c -= sign;
67 return c;
70 /* Return an rtx for the sum of X and the integer C.
72 This function should be used via the `plus_constant' macro. */
74 rtx
75 plus_constant_wide (x, c)
76 rtx x;
77 HOST_WIDE_INT c;
79 RTX_CODE code;
80 rtx y;
81 enum machine_mode mode;
82 rtx tem;
83 int all_constant = 0;
85 if (c == 0)
86 return x;
88 restart:
90 code = GET_CODE (x);
91 mode = GET_MODE (x);
92 y = x;
94 switch (code)
96 case CONST_INT:
97 return GEN_INT (INTVAL (x) + c);
99 case CONST_DOUBLE:
101 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
102 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
103 unsigned HOST_WIDE_INT l2 = c;
104 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
105 unsigned HOST_WIDE_INT lv;
106 HOST_WIDE_INT hv;
108 add_double (l1, h1, l2, h2, &lv, &hv);
110 return immed_double_const (lv, hv, VOIDmode);
113 case MEM:
114 /* If this is a reference to the constant pool, try replacing it with
115 a reference to a new constant. If the resulting address isn't
116 valid, don't return it because we have no way to validize it. */
117 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
118 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 = force_const_mem (GET_MODE (x),
122 plus_constant (get_pool_constant (XEXP (x, 0)),
123 c));
124 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
125 return tem;
127 break;
129 case CONST:
130 /* If adding to something entirely constant, set a flag
131 so that we can add a CONST around the result. */
132 x = XEXP (x, 0);
133 all_constant = 1;
134 goto restart;
136 case SYMBOL_REF:
137 case LABEL_REF:
138 all_constant = 1;
139 break;
141 case PLUS:
142 /* The interesting case is adding the integer to a sum.
143 Look for constant term in the sum and combine
144 with C. For an integer constant term, we make a combined
145 integer. For a constant term that is not an explicit integer,
146 we cannot really combine, but group them together anyway.
148 Restart or use a recursive call in case the remaining operand is
149 something that we handle specially, such as a SYMBOL_REF.
151 We may not immediately return from the recursive call here, lest
152 all_constant gets lost. */
154 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
156 c += INTVAL (XEXP (x, 1));
158 if (GET_MODE (x) != VOIDmode)
159 c = trunc_int_for_mode (c, GET_MODE (x));
161 x = XEXP (x, 0);
162 goto restart;
164 else if (CONSTANT_P (XEXP (x, 1)))
166 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
167 c = 0;
169 else if (find_constant_term_loc (&y))
171 /* We need to be careful since X may be shared and we can't
172 modify it in place. */
173 rtx copy = copy_rtx (x);
174 rtx *const_loc = find_constant_term_loc (&copy);
176 *const_loc = plus_constant (*const_loc, c);
177 x = copy;
178 c = 0;
180 break;
182 default:
183 break;
186 if (c != 0)
187 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
189 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
190 return x;
191 else if (all_constant)
192 return gen_rtx_CONST (mode, x);
193 else
194 return x;
197 /* If X is a sum, return a new sum like X but lacking any constant terms.
198 Add all the removed constant terms into *CONSTPTR.
199 X itself is not altered. The result != X if and only if
200 it is not isomorphic to X. */
203 eliminate_constant_term (x, constptr)
204 rtx x;
205 rtx *constptr;
207 rtx x0, x1;
208 rtx tem;
210 if (GET_CODE (x) != PLUS)
211 return x;
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 return x;
238 /* Returns the insn that next references REG after INSN, or 0
239 if REG is clobbered before next referenced or we cannot find
240 an insn that references REG in a straight-line piece of code. */
243 find_next_ref (reg, insn)
244 rtx reg;
245 rtx insn;
247 rtx next;
249 for (insn = NEXT_INSN (insn); insn; insn = next)
251 next = NEXT_INSN (insn);
252 if (GET_CODE (insn) == NOTE)
253 continue;
254 if (GET_CODE (insn) == CODE_LABEL
255 || GET_CODE (insn) == BARRIER)
256 return 0;
257 if (GET_CODE (insn) == INSN
258 || GET_CODE (insn) == JUMP_INSN
259 || GET_CODE (insn) == CALL_INSN)
261 if (reg_set_p (reg, insn))
262 return 0;
263 if (reg_mentioned_p (reg, PATTERN (insn)))
264 return insn;
265 if (GET_CODE (insn) == JUMP_INSN)
267 if (any_uncondjump_p (insn))
268 next = JUMP_LABEL (insn);
269 else
270 return 0;
272 if (GET_CODE (insn) == CALL_INSN
273 && REGNO (reg) < FIRST_PSEUDO_REGISTER
274 && call_used_regs[REGNO (reg)])
275 return 0;
277 else
278 abort ();
280 return 0;
283 /* Return an rtx for the size in bytes of the value of EXP. */
286 expr_size (exp)
287 tree exp;
289 tree size = (*lang_hooks.expr_size) (exp);
291 if (TREE_CODE (size) != INTEGER_CST
292 && contains_placeholder_p (size))
293 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
295 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
298 /* Return a wide integer for the size in bytes of the value of EXP, or -1
299 if the size can vary or is larger than an integer. */
301 HOST_WIDE_INT
302 int_expr_size (exp)
303 tree exp;
305 tree t = (*lang_hooks.expr_size) (exp);
307 if (t == 0
308 || TREE_CODE (t) != INTEGER_CST
309 || TREE_OVERFLOW (t)
310 || TREE_INT_CST_HIGH (t) != 0
311 /* If the result would appear negative, it's too big to represent. */
312 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
313 return -1;
315 return TREE_INT_CST_LOW (t);
318 /* Return a copy of X in which all memory references
319 and all constants that involve symbol refs
320 have been replaced with new temporary registers.
321 Also emit code to load the memory locations and constants
322 into those registers.
324 If X contains no such constants or memory references,
325 X itself (not a copy) is returned.
327 If a constant is found in the address that is not a legitimate constant
328 in an insn, it is left alone in the hope that it might be valid in the
329 address.
331 X may contain no arithmetic except addition, subtraction and multiplication.
332 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
334 static rtx
335 break_out_memory_refs (x)
336 rtx x;
338 if (GET_CODE (x) == MEM
339 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
340 && GET_MODE (x) != VOIDmode))
341 x = force_reg (GET_MODE (x), x);
342 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
343 || GET_CODE (x) == MULT)
345 rtx op0 = break_out_memory_refs (XEXP (x, 0));
346 rtx op1 = break_out_memory_refs (XEXP (x, 1));
348 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
349 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
352 return x;
355 #ifdef POINTERS_EXTEND_UNSIGNED
357 /* Given X, a memory address in ptr_mode, convert it to an address
358 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
359 the fact that pointers are not allowed to overflow by commuting arithmetic
360 operations over conversions so that address arithmetic insns can be
361 used. */
364 convert_memory_address (to_mode, x)
365 enum machine_mode to_mode;
366 rtx x;
368 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
369 rtx temp;
371 /* Here we handle some special cases. If none of them apply, fall through
372 to the default case. */
373 switch (GET_CODE (x))
375 case CONST_INT:
376 case CONST_DOUBLE:
377 return x;
379 case SUBREG:
380 if (POINTERS_EXTEND_UNSIGNED >= 0
381 && (SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
382 && GET_MODE (SUBREG_REG (x)) == to_mode)
383 return SUBREG_REG (x);
384 break;
386 case LABEL_REF:
387 if (POINTERS_EXTEND_UNSIGNED >= 0)
389 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
390 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
391 return temp;
393 break;
395 case SYMBOL_REF:
396 if (POINTERS_EXTEND_UNSIGNED >= 0)
398 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
399 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
400 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
401 STRING_POOL_ADDRESS_P (temp) = STRING_POOL_ADDRESS_P (x);
402 return temp;
404 break;
406 case CONST:
407 if (POINTERS_EXTEND_UNSIGNED >= 0)
408 return gen_rtx_CONST (to_mode,
409 convert_memory_address (to_mode, XEXP (x, 0)));
410 break;
412 case PLUS:
413 case MULT:
414 /* For addition the second operand is a small constant, we can safely
415 permute the conversion and addition operation. We can always safely
416 permute them if we are making the address narrower. In addition,
417 always permute the operations if this is a constant. */
418 if (POINTERS_EXTEND_UNSIGNED >= 0
419 && (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
420 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
421 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
422 || CONSTANT_P (XEXP (x, 0))))))
423 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
424 convert_memory_address (to_mode, XEXP (x, 0)),
425 convert_memory_address (to_mode, XEXP (x, 1)));
426 break;
428 default:
429 break;
432 return convert_modes (to_mode, from_mode,
433 x, POINTERS_EXTEND_UNSIGNED);
435 #endif
437 /* Given a memory address or facsimile X, construct a new address,
438 currently equivalent, that is stable: future stores won't change it.
440 X must be composed of constants, register and memory references
441 combined with addition, subtraction and multiplication:
442 in other words, just what you can get from expand_expr if sum_ok is 1.
444 Works by making copies of all regs and memory locations used
445 by X and combining them the same way X does.
446 You could also stabilize the reference to this address
447 by copying the address to a register with copy_to_reg;
448 but then you wouldn't get indexed addressing in the reference. */
451 copy_all_regs (x)
452 rtx x;
454 if (GET_CODE (x) == REG)
456 if (REGNO (x) != FRAME_POINTER_REGNUM
457 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
458 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
459 #endif
461 x = copy_to_reg (x);
463 else if (GET_CODE (x) == MEM)
464 x = copy_to_reg (x);
465 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
466 || GET_CODE (x) == MULT)
468 rtx op0 = copy_all_regs (XEXP (x, 0));
469 rtx op1 = copy_all_regs (XEXP (x, 1));
470 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
471 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
473 return x;
476 /* Return something equivalent to X but valid as a memory address
477 for something of mode MODE. When X is not itself valid, this
478 works by copying X or subexpressions of it into registers. */
481 memory_address (mode, x)
482 enum machine_mode mode;
483 rtx x;
485 rtx oldx = x;
487 if (GET_CODE (x) == ADDRESSOF)
488 return x;
490 #ifdef POINTERS_EXTEND_UNSIGNED
491 if (GET_MODE (x) != Pmode)
492 x = convert_memory_address (Pmode, x);
493 #endif
495 /* By passing constant addresses thru registers
496 we get a chance to cse them. */
497 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
498 x = force_reg (Pmode, x);
500 /* Accept a QUEUED that refers to a REG
501 even though that isn't a valid address.
502 On attempting to put this in an insn we will call protect_from_queue
503 which will turn it into a REG, which is valid. */
504 else if (GET_CODE (x) == QUEUED
505 && GET_CODE (QUEUED_VAR (x)) == REG)
508 /* We get better cse by rejecting indirect addressing at this stage.
509 Let the combiner create indirect addresses where appropriate.
510 For now, generate the code so that the subexpressions useful to share
511 are visible. But not if cse won't be done! */
512 else
514 if (! cse_not_expected && GET_CODE (x) != REG)
515 x = break_out_memory_refs (x);
517 /* At this point, any valid address is accepted. */
518 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
520 /* If it was valid before but breaking out memory refs invalidated it,
521 use it the old way. */
522 if (memory_address_p (mode, oldx))
523 goto win2;
525 /* Perform machine-dependent transformations on X
526 in certain cases. This is not necessary since the code
527 below can handle all possible cases, but machine-dependent
528 transformations can make better code. */
529 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
531 /* PLUS and MULT can appear in special ways
532 as the result of attempts to make an address usable for indexing.
533 Usually they are dealt with by calling force_operand, below.
534 But a sum containing constant terms is special
535 if removing them makes the sum a valid address:
536 then we generate that address in a register
537 and index off of it. We do this because it often makes
538 shorter code, and because the addresses thus generated
539 in registers often become common subexpressions. */
540 if (GET_CODE (x) == PLUS)
542 rtx constant_term = const0_rtx;
543 rtx y = eliminate_constant_term (x, &constant_term);
544 if (constant_term == const0_rtx
545 || ! memory_address_p (mode, y))
546 x = force_operand (x, NULL_RTX);
547 else
549 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
550 if (! memory_address_p (mode, y))
551 x = force_operand (x, NULL_RTX);
552 else
553 x = y;
557 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
558 x = force_operand (x, NULL_RTX);
560 /* If we have a register that's an invalid address,
561 it must be a hard reg of the wrong class. Copy it to a pseudo. */
562 else if (GET_CODE (x) == REG)
563 x = copy_to_reg (x);
565 /* Last resort: copy the value to a register, since
566 the register is a valid address. */
567 else
568 x = force_reg (Pmode, x);
570 goto done;
572 win2:
573 x = oldx;
574 win:
575 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
576 /* Don't copy an addr via a reg if it is one of our stack slots. */
577 && ! (GET_CODE (x) == PLUS
578 && (XEXP (x, 0) == virtual_stack_vars_rtx
579 || XEXP (x, 0) == virtual_incoming_args_rtx)))
581 if (general_operand (x, Pmode))
582 x = force_reg (Pmode, x);
583 else
584 x = force_operand (x, NULL_RTX);
588 done:
590 /* If we didn't change the address, we are done. Otherwise, mark
591 a reg as a pointer if we have REG or REG + CONST_INT. */
592 if (oldx == x)
593 return x;
594 else if (GET_CODE (x) == REG)
595 mark_reg_pointer (x, BITS_PER_UNIT);
596 else if (GET_CODE (x) == PLUS
597 && GET_CODE (XEXP (x, 0)) == REG
598 && GET_CODE (XEXP (x, 1)) == CONST_INT)
599 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
601 /* OLDX may have been the address on a temporary. Update the address
602 to indicate that X is now used. */
603 update_temp_slot_address (oldx, x);
605 return x;
608 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
611 memory_address_noforce (mode, x)
612 enum machine_mode mode;
613 rtx x;
615 int ambient_force_addr = flag_force_addr;
616 rtx val;
618 flag_force_addr = 0;
619 val = memory_address (mode, x);
620 flag_force_addr = ambient_force_addr;
621 return val;
624 /* Convert a mem ref into one with a valid memory address.
625 Pass through anything else unchanged. */
628 validize_mem (ref)
629 rtx ref;
631 if (GET_CODE (ref) != MEM)
632 return ref;
633 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
634 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
635 return ref;
637 /* Don't alter REF itself, since that is probably a stack slot. */
638 return replace_equiv_address (ref, XEXP (ref, 0));
641 /* Given REF, either a MEM or a REG, and T, either the type of X or
642 the expression corresponding to REF, set RTX_UNCHANGING_P if
643 appropriate. */
645 void
646 maybe_set_unchanging (ref, t)
647 rtx ref;
648 tree t;
650 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
651 initialization is only executed once, or whose initializer always
652 has the same value. Currently we simplify this to PARM_DECLs in the
653 first case, and decls with TREE_CONSTANT initializers in the second. */
654 if ((TREE_READONLY (t) && DECL_P (t)
655 && (TREE_CODE (t) == PARM_DECL
656 || DECL_INITIAL (t) == NULL_TREE
657 || TREE_CONSTANT (DECL_INITIAL (t))))
658 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
659 RTX_UNCHANGING_P (ref) = 1;
662 /* Return a modified copy of X with its memory address copied
663 into a temporary register to protect it from side effects.
664 If X is not a MEM, it is returned unchanged (and not copied).
665 Perhaps even if it is a MEM, if there is no need to change it. */
668 stabilize (x)
669 rtx x;
672 if (GET_CODE (x) != MEM
673 || ! rtx_unstable_p (XEXP (x, 0)))
674 return x;
676 return
677 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
680 /* Copy the value or contents of X to a new temp reg and return that reg. */
683 copy_to_reg (x)
684 rtx x;
686 rtx temp = gen_reg_rtx (GET_MODE (x));
688 /* If not an operand, must be an address with PLUS and MULT so
689 do the computation. */
690 if (! general_operand (x, VOIDmode))
691 x = force_operand (x, temp);
693 if (x != temp)
694 emit_move_insn (temp, x);
696 return temp;
699 /* Like copy_to_reg but always give the new register mode Pmode
700 in case X is a constant. */
703 copy_addr_to_reg (x)
704 rtx x;
706 return copy_to_mode_reg (Pmode, x);
709 /* Like copy_to_reg but always give the new register mode MODE
710 in case X is a constant. */
713 copy_to_mode_reg (mode, x)
714 enum machine_mode mode;
715 rtx x;
717 rtx temp = gen_reg_rtx (mode);
719 /* If not an operand, must be an address with PLUS and MULT so
720 do the computation. */
721 if (! general_operand (x, VOIDmode))
722 x = force_operand (x, temp);
724 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
725 abort ();
726 if (x != temp)
727 emit_move_insn (temp, x);
728 return temp;
731 /* Load X into a register if it is not already one.
732 Use mode MODE for the register.
733 X should be valid for mode MODE, but it may be a constant which
734 is valid for all integer modes; that's why caller must specify MODE.
736 The caller must not alter the value in the register we return,
737 since we mark it as a "constant" register. */
740 force_reg (mode, x)
741 enum machine_mode mode;
742 rtx x;
744 rtx temp, insn, set;
746 if (GET_CODE (x) == REG)
747 return x;
749 if (general_operand (x, mode))
751 temp = gen_reg_rtx (mode);
752 insn = emit_move_insn (temp, x);
754 else
756 temp = force_operand (x, NULL_RTX);
757 if (GET_CODE (temp) == REG)
758 insn = get_last_insn ();
759 else
761 rtx temp2 = gen_reg_rtx (mode);
762 insn = emit_move_insn (temp2, temp);
763 temp = temp2;
767 /* Let optimizers know that TEMP's value never changes
768 and that X can be substituted for it. Don't get confused
769 if INSN set something else (such as a SUBREG of TEMP). */
770 if (CONSTANT_P (x)
771 && (set = single_set (insn)) != 0
772 && SET_DEST (set) == temp)
773 set_unique_reg_note (insn, REG_EQUAL, x);
775 return temp;
778 /* If X is a memory ref, copy its contents to a new temp reg and return
779 that reg. Otherwise, return X. */
782 force_not_mem (x)
783 rtx x;
785 rtx temp;
787 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
788 return x;
790 temp = gen_reg_rtx (GET_MODE (x));
791 emit_move_insn (temp, x);
792 return temp;
795 /* Copy X to TARGET (if it's nonzero and a reg)
796 or to a new temp reg and return that reg.
797 MODE is the mode to use for X in case it is a constant. */
800 copy_to_suggested_reg (x, target, mode)
801 rtx x, target;
802 enum machine_mode mode;
804 rtx temp;
806 if (target && GET_CODE (target) == REG)
807 temp = target;
808 else
809 temp = gen_reg_rtx (mode);
811 emit_move_insn (temp, x);
812 return temp;
815 /* Return the mode to use to store a scalar of TYPE and MODE.
816 PUNSIGNEDP points to the signedness of the type and may be adjusted
817 to show what signedness to use on extension operations.
819 FOR_CALL is non-zero if this call is promoting args for a call. */
821 enum machine_mode
822 promote_mode (type, mode, punsignedp, for_call)
823 tree type;
824 enum machine_mode mode;
825 int *punsignedp;
826 int for_call ATTRIBUTE_UNUSED;
828 enum tree_code code = TREE_CODE (type);
829 int unsignedp = *punsignedp;
831 #ifdef PROMOTE_FOR_CALL_ONLY
832 if (! for_call)
833 return mode;
834 #endif
836 switch (code)
838 #ifdef PROMOTE_MODE
839 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
840 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
841 PROMOTE_MODE (mode, unsignedp, type);
842 break;
843 #endif
845 #ifdef POINTERS_EXTEND_UNSIGNED
846 case REFERENCE_TYPE:
847 case POINTER_TYPE:
848 mode = Pmode;
849 unsignedp = POINTERS_EXTEND_UNSIGNED;
850 break;
851 #endif
853 default:
854 break;
857 *punsignedp = unsignedp;
858 return mode;
861 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
862 This pops when ADJUST is positive. ADJUST need not be constant. */
864 void
865 adjust_stack (adjust)
866 rtx adjust;
868 rtx temp;
869 adjust = protect_from_queue (adjust, 0);
871 if (adjust == const0_rtx)
872 return;
874 /* We expect all variable sized adjustments to be multiple of
875 PREFERRED_STACK_BOUNDARY. */
876 if (GET_CODE (adjust) == CONST_INT)
877 stack_pointer_delta -= INTVAL (adjust);
879 temp = expand_binop (Pmode,
880 #ifdef STACK_GROWS_DOWNWARD
881 add_optab,
882 #else
883 sub_optab,
884 #endif
885 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
886 OPTAB_LIB_WIDEN);
888 if (temp != stack_pointer_rtx)
889 emit_move_insn (stack_pointer_rtx, temp);
892 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
893 This pushes when ADJUST is positive. ADJUST need not be constant. */
895 void
896 anti_adjust_stack (adjust)
897 rtx adjust;
899 rtx temp;
900 adjust = protect_from_queue (adjust, 0);
902 if (adjust == const0_rtx)
903 return;
905 /* We expect all variable sized adjustments to be multiple of
906 PREFERRED_STACK_BOUNDARY. */
907 if (GET_CODE (adjust) == CONST_INT)
908 stack_pointer_delta += INTVAL (adjust);
910 temp = expand_binop (Pmode,
911 #ifdef STACK_GROWS_DOWNWARD
912 sub_optab,
913 #else
914 add_optab,
915 #endif
916 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
917 OPTAB_LIB_WIDEN);
919 if (temp != stack_pointer_rtx)
920 emit_move_insn (stack_pointer_rtx, temp);
923 /* Round the size of a block to be pushed up to the boundary required
924 by this machine. SIZE is the desired size, which need not be constant. */
927 round_push (size)
928 rtx size;
930 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
931 if (align == 1)
932 return size;
933 if (GET_CODE (size) == CONST_INT)
935 int new = (INTVAL (size) + align - 1) / align * align;
936 if (INTVAL (size) != new)
937 size = GEN_INT (new);
939 else
941 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
942 but we know it can't. So add ourselves and then do
943 TRUNC_DIV_EXPR. */
944 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
945 NULL_RTX, 1, OPTAB_LIB_WIDEN);
946 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
947 NULL_RTX, 1);
948 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
950 return size;
953 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
954 to a previously-created save area. If no save area has been allocated,
955 this function will allocate one. If a save area is specified, it
956 must be of the proper mode.
958 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
959 are emitted at the current position. */
961 void
962 emit_stack_save (save_level, psave, after)
963 enum save_level save_level;
964 rtx *psave;
965 rtx after;
967 rtx sa = *psave;
968 /* The default is that we use a move insn and save in a Pmode object. */
969 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
970 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
972 /* See if this machine has anything special to do for this kind of save. */
973 switch (save_level)
975 #ifdef HAVE_save_stack_block
976 case SAVE_BLOCK:
977 if (HAVE_save_stack_block)
978 fcn = gen_save_stack_block;
979 break;
980 #endif
981 #ifdef HAVE_save_stack_function
982 case SAVE_FUNCTION:
983 if (HAVE_save_stack_function)
984 fcn = gen_save_stack_function;
985 break;
986 #endif
987 #ifdef HAVE_save_stack_nonlocal
988 case SAVE_NONLOCAL:
989 if (HAVE_save_stack_nonlocal)
990 fcn = gen_save_stack_nonlocal;
991 break;
992 #endif
993 default:
994 break;
997 /* If there is no save area and we have to allocate one, do so. Otherwise
998 verify the save area is the proper mode. */
1000 if (sa == 0)
1002 if (mode != VOIDmode)
1004 if (save_level == SAVE_NONLOCAL)
1005 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1006 else
1007 *psave = sa = gen_reg_rtx (mode);
1010 else
1012 if (mode == VOIDmode || GET_MODE (sa) != mode)
1013 abort ();
1016 if (after)
1018 rtx seq;
1020 start_sequence ();
1021 /* We must validize inside the sequence, to ensure that any instructions
1022 created by the validize call also get moved to the right place. */
1023 if (sa != 0)
1024 sa = validize_mem (sa);
1025 emit_insn (fcn (sa, stack_pointer_rtx));
1026 seq = gen_sequence ();
1027 end_sequence ();
1028 emit_insn_after (seq, after);
1030 else
1032 if (sa != 0)
1033 sa = validize_mem (sa);
1034 emit_insn (fcn (sa, stack_pointer_rtx));
1038 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1039 area made by emit_stack_save. If it is zero, we have nothing to do.
1041 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1042 current position. */
1044 void
1045 emit_stack_restore (save_level, sa, after)
1046 enum save_level save_level;
1047 rtx after;
1048 rtx sa;
1050 /* The default is that we use a move insn. */
1051 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1053 /* See if this machine has anything special to do for this kind of save. */
1054 switch (save_level)
1056 #ifdef HAVE_restore_stack_block
1057 case SAVE_BLOCK:
1058 if (HAVE_restore_stack_block)
1059 fcn = gen_restore_stack_block;
1060 break;
1061 #endif
1062 #ifdef HAVE_restore_stack_function
1063 case SAVE_FUNCTION:
1064 if (HAVE_restore_stack_function)
1065 fcn = gen_restore_stack_function;
1066 break;
1067 #endif
1068 #ifdef HAVE_restore_stack_nonlocal
1069 case SAVE_NONLOCAL:
1070 if (HAVE_restore_stack_nonlocal)
1071 fcn = gen_restore_stack_nonlocal;
1072 break;
1073 #endif
1074 default:
1075 break;
1078 if (sa != 0)
1079 sa = validize_mem (sa);
1081 if (after)
1083 rtx seq;
1085 start_sequence ();
1086 emit_insn (fcn (stack_pointer_rtx, sa));
1087 seq = gen_sequence ();
1088 end_sequence ();
1089 emit_insn_after (seq, after);
1091 else
1092 emit_insn (fcn (stack_pointer_rtx, sa));
1095 #ifdef SETJMP_VIA_SAVE_AREA
1096 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1097 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1098 platforms, the dynamic stack space used can corrupt the original
1099 frame, thus causing a crash if a longjmp unwinds to it. */
1101 void
1102 optimize_save_area_alloca (insns)
1103 rtx insns;
1105 rtx insn;
1107 for (insn = insns; insn; insn = NEXT_INSN(insn))
1109 rtx note;
1111 if (GET_CODE (insn) != INSN)
1112 continue;
1114 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1116 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1117 continue;
1119 if (!current_function_calls_setjmp)
1121 rtx pat = PATTERN (insn);
1123 /* If we do not see the note in a pattern matching
1124 these precise characteristics, we did something
1125 entirely wrong in allocate_dynamic_stack_space.
1127 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1128 was defined on a machine where stacks grow towards higher
1129 addresses.
1131 Right now only supported port with stack that grow upward
1132 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1133 if (GET_CODE (pat) != SET
1134 || SET_DEST (pat) != stack_pointer_rtx
1135 || GET_CODE (SET_SRC (pat)) != MINUS
1136 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1137 abort ();
1139 /* This will now be transformed into a (set REG REG)
1140 so we can just blow away all the other notes. */
1141 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1142 REG_NOTES (insn) = NULL_RTX;
1144 else
1146 /* setjmp was called, we must remove the REG_SAVE_AREA
1147 note so that later passes do not get confused by its
1148 presence. */
1149 if (note == REG_NOTES (insn))
1151 REG_NOTES (insn) = XEXP (note, 1);
1153 else
1155 rtx srch;
1157 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1158 if (XEXP (srch, 1) == note)
1159 break;
1161 if (srch == NULL_RTX)
1162 abort ();
1164 XEXP (srch, 1) = XEXP (note, 1);
1167 /* Once we've seen the note of interest, we need not look at
1168 the rest of them. */
1169 break;
1173 #endif /* SETJMP_VIA_SAVE_AREA */
1175 /* Return an rtx representing the address of an area of memory dynamically
1176 pushed on the stack. This region of memory is always aligned to
1177 a multiple of BIGGEST_ALIGNMENT.
1179 Any required stack pointer alignment is preserved.
1181 SIZE is an rtx representing the size of the area.
1182 TARGET is a place in which the address can be placed.
1184 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1187 allocate_dynamic_stack_space (size, target, known_align)
1188 rtx size;
1189 rtx target;
1190 int known_align;
1192 #ifdef SETJMP_VIA_SAVE_AREA
1193 rtx setjmpless_size = NULL_RTX;
1194 #endif
1196 /* If we're asking for zero bytes, it doesn't matter what we point
1197 to since we can't dereference it. But return a reasonable
1198 address anyway. */
1199 if (size == const0_rtx)
1200 return virtual_stack_dynamic_rtx;
1202 /* Otherwise, show we're calling alloca or equivalent. */
1203 current_function_calls_alloca = 1;
1205 /* Ensure the size is in the proper mode. */
1206 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1207 size = convert_to_mode (Pmode, size, 1);
1209 /* We can't attempt to minimize alignment necessary, because we don't
1210 know the final value of preferred_stack_boundary yet while executing
1211 this code. */
1212 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1214 /* We will need to ensure that the address we return is aligned to
1215 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1216 always know its final value at this point in the compilation (it
1217 might depend on the size of the outgoing parameter lists, for
1218 example), so we must align the value to be returned in that case.
1219 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1220 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1221 We must also do an alignment operation on the returned value if
1222 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1224 If we have to align, we must leave space in SIZE for the hole
1225 that might result from the alignment operation. */
1227 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1228 #define MUST_ALIGN 1
1229 #else
1230 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1231 #endif
1233 if (MUST_ALIGN)
1234 size
1235 = force_operand (plus_constant (size,
1236 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1237 NULL_RTX);
1239 #ifdef SETJMP_VIA_SAVE_AREA
1240 /* If setjmp restores regs from a save area in the stack frame,
1241 avoid clobbering the reg save area. Note that the offset of
1242 virtual_incoming_args_rtx includes the preallocated stack args space.
1243 It would be no problem to clobber that, but it's on the wrong side
1244 of the old save area. */
1246 rtx dynamic_offset
1247 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1248 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1250 if (!current_function_calls_setjmp)
1252 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1254 /* See optimize_save_area_alloca to understand what is being
1255 set up here. */
1257 /* ??? Code below assumes that the save area needs maximal
1258 alignment. This constraint may be too strong. */
1259 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1260 abort ();
1262 if (GET_CODE (size) == CONST_INT)
1264 HOST_WIDE_INT new = INTVAL (size) / align * align;
1266 if (INTVAL (size) != new)
1267 setjmpless_size = GEN_INT (new);
1268 else
1269 setjmpless_size = size;
1271 else
1273 /* Since we know overflow is not possible, we avoid using
1274 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1275 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1276 GEN_INT (align), NULL_RTX, 1);
1277 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1278 GEN_INT (align), NULL_RTX, 1);
1280 /* Our optimization works based upon being able to perform a simple
1281 transformation of this RTL into a (set REG REG) so make sure things
1282 did in fact end up in a REG. */
1283 if (!register_operand (setjmpless_size, Pmode))
1284 setjmpless_size = force_reg (Pmode, setjmpless_size);
1287 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1288 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1290 #endif /* SETJMP_VIA_SAVE_AREA */
1292 /* Round the size to a multiple of the required stack alignment.
1293 Since the stack if presumed to be rounded before this allocation,
1294 this will maintain the required alignment.
1296 If the stack grows downward, we could save an insn by subtracting
1297 SIZE from the stack pointer and then aligning the stack pointer.
1298 The problem with this is that the stack pointer may be unaligned
1299 between the execution of the subtraction and alignment insns and
1300 some machines do not allow this. Even on those that do, some
1301 signal handlers malfunction if a signal should occur between those
1302 insns. Since this is an extremely rare event, we have no reliable
1303 way of knowing which systems have this problem. So we avoid even
1304 momentarily mis-aligning the stack. */
1306 /* If we added a variable amount to SIZE,
1307 we can no longer assume it is aligned. */
1308 #if !defined (SETJMP_VIA_SAVE_AREA)
1309 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1310 #endif
1311 size = round_push (size);
1313 do_pending_stack_adjust ();
1315 /* We ought to be called always on the toplevel and stack ought to be aligned
1316 properly. */
1317 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1318 abort ();
1320 /* If needed, check that we have the required amount of stack. Take into
1321 account what has already been checked. */
1322 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1323 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1325 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1326 if (target == 0 || GET_CODE (target) != REG
1327 || REGNO (target) < FIRST_PSEUDO_REGISTER
1328 || GET_MODE (target) != Pmode)
1329 target = gen_reg_rtx (Pmode);
1331 mark_reg_pointer (target, known_align);
1333 /* Perform the required allocation from the stack. Some systems do
1334 this differently than simply incrementing/decrementing from the
1335 stack pointer, such as acquiring the space by calling malloc(). */
1336 #ifdef HAVE_allocate_stack
1337 if (HAVE_allocate_stack)
1339 enum machine_mode mode = STACK_SIZE_MODE;
1340 insn_operand_predicate_fn pred;
1342 /* We don't have to check against the predicate for operand 0 since
1343 TARGET is known to be a pseudo of the proper mode, which must
1344 be valid for the operand. For operand 1, convert to the
1345 proper mode and validate. */
1346 if (mode == VOIDmode)
1347 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1349 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1350 if (pred && ! ((*pred) (size, mode)))
1351 size = copy_to_mode_reg (mode, size);
1353 emit_insn (gen_allocate_stack (target, size));
1355 else
1356 #endif
1358 #ifndef STACK_GROWS_DOWNWARD
1359 emit_move_insn (target, virtual_stack_dynamic_rtx);
1360 #endif
1362 /* Check stack bounds if necessary. */
1363 if (current_function_limit_stack)
1365 rtx available;
1366 rtx space_available = gen_label_rtx ();
1367 #ifdef STACK_GROWS_DOWNWARD
1368 available = expand_binop (Pmode, sub_optab,
1369 stack_pointer_rtx, stack_limit_rtx,
1370 NULL_RTX, 1, OPTAB_WIDEN);
1371 #else
1372 available = expand_binop (Pmode, sub_optab,
1373 stack_limit_rtx, stack_pointer_rtx,
1374 NULL_RTX, 1, OPTAB_WIDEN);
1375 #endif
1376 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1377 space_available);
1378 #ifdef HAVE_trap
1379 if (HAVE_trap)
1380 emit_insn (gen_trap ());
1381 else
1382 #endif
1383 error ("stack limits not supported on this target");
1384 emit_barrier ();
1385 emit_label (space_available);
1388 anti_adjust_stack (size);
1389 #ifdef SETJMP_VIA_SAVE_AREA
1390 if (setjmpless_size != NULL_RTX)
1392 rtx note_target = get_last_insn ();
1394 REG_NOTES (note_target)
1395 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1396 REG_NOTES (note_target));
1398 #endif /* SETJMP_VIA_SAVE_AREA */
1400 #ifdef STACK_GROWS_DOWNWARD
1401 emit_move_insn (target, virtual_stack_dynamic_rtx);
1402 #endif
1405 if (MUST_ALIGN)
1407 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1408 but we know it can't. So add ourselves and then do
1409 TRUNC_DIV_EXPR. */
1410 target = expand_binop (Pmode, add_optab, target,
1411 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1412 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1413 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1414 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1415 NULL_RTX, 1);
1416 target = expand_mult (Pmode, target,
1417 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1418 NULL_RTX, 1);
1421 /* Some systems require a particular insn to refer to the stack
1422 to make the pages exist. */
1423 #ifdef HAVE_probe
1424 if (HAVE_probe)
1425 emit_insn (gen_probe ());
1426 #endif
1428 /* Record the new stack level for nonlocal gotos. */
1429 if (nonlocal_goto_handler_slots != 0)
1430 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1432 return target;
1435 /* A front end may want to override GCC's stack checking by providing a
1436 run-time routine to call to check the stack, so provide a mechanism for
1437 calling that routine. */
1439 static rtx stack_check_libfunc;
1441 void
1442 set_stack_check_libfunc (libfunc)
1443 rtx libfunc;
1445 stack_check_libfunc = libfunc;
1446 ggc_add_rtx_root (&stack_check_libfunc, 1);
1449 /* Emit one stack probe at ADDRESS, an address within the stack. */
1451 static void
1452 emit_stack_probe (address)
1453 rtx address;
1455 rtx memref = gen_rtx_MEM (word_mode, address);
1457 MEM_VOLATILE_P (memref) = 1;
1459 if (STACK_CHECK_PROBE_LOAD)
1460 emit_move_insn (gen_reg_rtx (word_mode), memref);
1461 else
1462 emit_move_insn (memref, const0_rtx);
1465 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1466 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1467 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1468 subtract from the stack. If SIZE is constant, this is done
1469 with a fixed number of probes. Otherwise, we must make a loop. */
1471 #ifdef STACK_GROWS_DOWNWARD
1472 #define STACK_GROW_OP MINUS
1473 #else
1474 #define STACK_GROW_OP PLUS
1475 #endif
1477 void
1478 probe_stack_range (first, size)
1479 HOST_WIDE_INT first;
1480 rtx size;
1482 /* First ensure SIZE is Pmode. */
1483 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1484 size = convert_to_mode (Pmode, size, 1);
1486 /* Next see if the front end has set up a function for us to call to
1487 check the stack. */
1488 if (stack_check_libfunc != 0)
1490 rtx addr = memory_address (QImode,
1491 gen_rtx (STACK_GROW_OP, Pmode,
1492 stack_pointer_rtx,
1493 plus_constant (size, first)));
1495 #ifdef POINTERS_EXTEND_UNSIGNED
1496 if (GET_MODE (addr) != ptr_mode)
1497 addr = convert_memory_address (ptr_mode, addr);
1498 #endif
1500 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1501 ptr_mode);
1504 /* Next see if we have an insn to check the stack. Use it if so. */
1505 #ifdef HAVE_check_stack
1506 else if (HAVE_check_stack)
1508 insn_operand_predicate_fn pred;
1509 rtx last_addr
1510 = force_operand (gen_rtx_STACK_GROW_OP (Pmode,
1511 stack_pointer_rtx,
1512 plus_constant (size, first)),
1513 NULL_RTX);
1515 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1516 if (pred && ! ((*pred) (last_addr, Pmode)))
1517 last_addr = copy_to_mode_reg (Pmode, last_addr);
1519 emit_insn (gen_check_stack (last_addr));
1521 #endif
1523 /* If we have to generate explicit probes, see if we have a constant
1524 small number of them to generate. If so, that's the easy case. */
1525 else if (GET_CODE (size) == CONST_INT
1526 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1528 HOST_WIDE_INT offset;
1530 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1531 for values of N from 1 until it exceeds LAST. If only one
1532 probe is needed, this will not generate any code. Then probe
1533 at LAST. */
1534 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1535 offset < INTVAL (size);
1536 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1537 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1538 stack_pointer_rtx,
1539 GEN_INT (offset)));
1541 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1542 stack_pointer_rtx,
1543 plus_constant (size, first)));
1546 /* In the variable case, do the same as above, but in a loop. We emit loop
1547 notes so that loop optimization can be done. */
1548 else
1550 rtx test_addr
1551 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1552 stack_pointer_rtx,
1553 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1554 NULL_RTX);
1555 rtx last_addr
1556 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1557 stack_pointer_rtx,
1558 plus_constant (size, first)),
1559 NULL_RTX);
1560 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1561 rtx loop_lab = gen_label_rtx ();
1562 rtx test_lab = gen_label_rtx ();
1563 rtx end_lab = gen_label_rtx ();
1564 rtx temp;
1566 if (GET_CODE (test_addr) != REG
1567 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1568 test_addr = force_reg (Pmode, test_addr);
1570 emit_note (NULL, NOTE_INSN_LOOP_BEG);
1571 emit_jump (test_lab);
1573 emit_label (loop_lab);
1574 emit_stack_probe (test_addr);
1576 emit_note (NULL, NOTE_INSN_LOOP_CONT);
1578 #ifdef STACK_GROWS_DOWNWARD
1579 #define CMP_OPCODE GTU
1580 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1581 1, OPTAB_WIDEN);
1582 #else
1583 #define CMP_OPCODE LTU
1584 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1585 1, OPTAB_WIDEN);
1586 #endif
1588 if (temp != test_addr)
1589 abort ();
1591 emit_label (test_lab);
1592 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1593 NULL_RTX, Pmode, 1, loop_lab);
1594 emit_jump (end_lab);
1595 emit_note (NULL, NOTE_INSN_LOOP_END);
1596 emit_label (end_lab);
1598 emit_stack_probe (last_addr);
1602 /* Return an rtx representing the register or memory location
1603 in which a scalar value of data type VALTYPE
1604 was returned by a function call to function FUNC.
1605 FUNC is a FUNCTION_DECL node if the precise function is known,
1606 otherwise 0.
1607 OUTGOING is 1 if on a machine with register windows this function
1608 should return the register in which the function will put its result
1609 and 0 otherwise. */
1612 hard_function_value (valtype, func, outgoing)
1613 tree valtype;
1614 tree func ATTRIBUTE_UNUSED;
1615 int outgoing ATTRIBUTE_UNUSED;
1617 rtx val;
1619 #ifdef FUNCTION_OUTGOING_VALUE
1620 if (outgoing)
1621 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1622 else
1623 #endif
1624 val = FUNCTION_VALUE (valtype, func);
1626 if (GET_CODE (val) == REG
1627 && GET_MODE (val) == BLKmode)
1629 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1630 enum machine_mode tmpmode;
1632 /* int_size_in_bytes can return -1. We don't need a check here
1633 since the value of bytes will be large enough that no mode
1634 will match and we will abort later in this function. */
1636 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1637 tmpmode != VOIDmode;
1638 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1640 /* Have we found a large enough mode? */
1641 if (GET_MODE_SIZE (tmpmode) >= bytes)
1642 break;
1645 /* No suitable mode found. */
1646 if (tmpmode == VOIDmode)
1647 abort ();
1649 PUT_MODE (val, tmpmode);
1651 return val;
1654 /* Return an rtx representing the register or memory location
1655 in which a scalar value of mode MODE was returned by a library call. */
1658 hard_libcall_value (mode)
1659 enum machine_mode mode;
1661 return LIBCALL_VALUE (mode);
1664 /* Look up the tree code for a given rtx code
1665 to provide the arithmetic operation for REAL_ARITHMETIC.
1666 The function returns an int because the caller may not know
1667 what `enum tree_code' means. */
1670 rtx_to_tree_code (code)
1671 enum rtx_code code;
1673 enum tree_code tcode;
1675 switch (code)
1677 case PLUS:
1678 tcode = PLUS_EXPR;
1679 break;
1680 case MINUS:
1681 tcode = MINUS_EXPR;
1682 break;
1683 case MULT:
1684 tcode = MULT_EXPR;
1685 break;
1686 case DIV:
1687 tcode = RDIV_EXPR;
1688 break;
1689 case SMIN:
1690 tcode = MIN_EXPR;
1691 break;
1692 case SMAX:
1693 tcode = MAX_EXPR;
1694 break;
1695 default:
1696 tcode = LAST_AND_UNUSED_TREE_CODE;
1697 break;
1699 return ((int) tcode);