1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
26 #include "coretypes.h"
34 /* The floating point model used internally is not exactly IEEE 754
35 compliant, and close to the description in the ISO C99 standard,
36 section 5.2.4.2.2 Characteristics of floating types.
40 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
44 b = base or radix, here always 2
46 p = precision (the number of base-b digits in the significand)
47 f_k = the digits of the significand.
49 We differ from typical IEEE 754 encodings in that the entire
50 significand is fractional. Normalized significands are in the
53 A requirement of the model is that P be larger than the largest
54 supported target floating-point type by at least 2 bits. This gives
55 us proper rounding when we truncate to the target type. In addition,
56 E must be large enough to hold the smallest supported denormal number
59 Both of these requirements are easily satisfied. The largest target
60 significand is 113 bits; we store at least 160. The smallest
61 denormal number fits in 17 exponent bits; we store 27.
63 Note that the decimal string conversion routines are sensitive to
64 rounding errors. Since the raw arithmetic routines do not themselves
65 have guard digits or rounding, the computation of 10**exp can
66 accumulate more than a few digits of error. The previous incarnation
67 of real.c successfully used a 144-bit fraction; given the current
68 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits.
70 Target floating point models that use base 16 instead of base 2
71 (i.e. IBM 370), are handled during round_for_format, in which we
72 canonicalize the exponent to be a multiple of 4 (log2(16)), and
73 adjust the significand to match. */
76 /* Used to classify two numbers simultaneously. */
77 #define CLASS2(A, B) ((A) << 2 | (B))
79 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
80 #error "Some constant folding done by hand to avoid shift count warnings"
83 static void get_zero (REAL_VALUE_TYPE
*, int);
84 static void get_canonical_qnan (REAL_VALUE_TYPE
*, int);
85 static void get_canonical_snan (REAL_VALUE_TYPE
*, int);
86 static void get_inf (REAL_VALUE_TYPE
*, int);
87 static bool sticky_rshift_significand (REAL_VALUE_TYPE
*,
88 const REAL_VALUE_TYPE
*, unsigned int);
89 static void rshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
91 static void lshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
93 static void lshift_significand_1 (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
94 static bool add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*,
95 const REAL_VALUE_TYPE
*);
96 static bool sub_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
97 const REAL_VALUE_TYPE
*, int);
98 static void neg_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
99 static int cmp_significands (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
100 static int cmp_significand_0 (const REAL_VALUE_TYPE
*);
101 static void set_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
102 static void clear_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
103 static bool test_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
104 static void clear_significand_below (REAL_VALUE_TYPE
*, unsigned int);
105 static bool div_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
106 const REAL_VALUE_TYPE
*);
107 static void normalize (REAL_VALUE_TYPE
*);
109 static bool do_add (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
110 const REAL_VALUE_TYPE
*, int);
111 static bool do_multiply (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
112 const REAL_VALUE_TYPE
*);
113 static bool do_divide (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
114 const REAL_VALUE_TYPE
*);
115 static int do_compare (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*, int);
116 static void do_fix_trunc (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
118 static unsigned long rtd_divmod (REAL_VALUE_TYPE
*, REAL_VALUE_TYPE
*);
120 static const REAL_VALUE_TYPE
* ten_to_ptwo (int);
121 static const REAL_VALUE_TYPE
* ten_to_mptwo (int);
122 static const REAL_VALUE_TYPE
* real_digit (int);
123 static void times_pten (REAL_VALUE_TYPE
*, int);
125 static void round_for_format (const struct real_format
*, REAL_VALUE_TYPE
*);
127 /* Initialize R with a positive zero. */
130 get_zero (REAL_VALUE_TYPE
*r
, int sign
)
132 memset (r
, 0, sizeof (*r
));
136 /* Initialize R with the canonical quiet NaN. */
139 get_canonical_qnan (REAL_VALUE_TYPE
*r
, int sign
)
141 memset (r
, 0, sizeof (*r
));
148 get_canonical_snan (REAL_VALUE_TYPE
*r
, int sign
)
150 memset (r
, 0, sizeof (*r
));
158 get_inf (REAL_VALUE_TYPE
*r
, int sign
)
160 memset (r
, 0, sizeof (*r
));
166 /* Right-shift the significand of A by N bits; put the result in the
167 significand of R. If any one bits are shifted out, return true. */
170 sticky_rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
173 unsigned long sticky
= 0;
174 unsigned int i
, ofs
= 0;
176 if (n
>= HOST_BITS_PER_LONG
)
178 for (i
= 0, ofs
= n
/ HOST_BITS_PER_LONG
; i
< ofs
; ++i
)
180 n
&= HOST_BITS_PER_LONG
- 1;
185 sticky
|= a
->sig
[ofs
] & (((unsigned long)1 << n
) - 1);
186 for (i
= 0; i
< SIGSZ
; ++i
)
189 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
190 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
191 << (HOST_BITS_PER_LONG
- n
)));
196 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
197 r
->sig
[i
] = a
->sig
[ofs
+ i
];
198 for (; i
< SIGSZ
; ++i
)
205 /* Right-shift the significand of A by N bits; put the result in the
209 rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
212 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
214 n
&= HOST_BITS_PER_LONG
- 1;
217 for (i
= 0; i
< SIGSZ
; ++i
)
220 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
221 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
222 << (HOST_BITS_PER_LONG
- n
)));
227 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
228 r
->sig
[i
] = a
->sig
[ofs
+ i
];
229 for (; i
< SIGSZ
; ++i
)
234 /* Left-shift the significand of A by N bits; put the result in the
238 lshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
241 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
243 n
&= HOST_BITS_PER_LONG
- 1;
246 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
247 r
->sig
[SIGSZ
-1-i
] = a
->sig
[SIGSZ
-1-i
-ofs
];
248 for (; i
< SIGSZ
; ++i
)
249 r
->sig
[SIGSZ
-1-i
] = 0;
252 for (i
= 0; i
< SIGSZ
; ++i
)
255 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
]) << n
)
256 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
-1])
257 >> (HOST_BITS_PER_LONG
- n
)));
261 /* Likewise, but N is specialized to 1. */
264 lshift_significand_1 (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
268 for (i
= SIGSZ
- 1; i
> 0; --i
)
269 r
->sig
[i
] = (a
->sig
[i
] << 1) | (a
->sig
[i
-1] >> (HOST_BITS_PER_LONG
- 1));
270 r
->sig
[0] = a
->sig
[0] << 1;
273 /* Add the significands of A and B, placing the result in R. Return
274 true if there was carry out of the most significant word. */
277 add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
278 const REAL_VALUE_TYPE
*b
)
283 for (i
= 0; i
< SIGSZ
; ++i
)
285 unsigned long ai
= a
->sig
[i
];
286 unsigned long ri
= ai
+ b
->sig
[i
];
302 /* Subtract the significands of A and B, placing the result in R. CARRY is
303 true if there's a borrow incoming to the least significant word.
304 Return true if there was borrow out of the most significant word. */
307 sub_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
308 const REAL_VALUE_TYPE
*b
, int carry
)
312 for (i
= 0; i
< SIGSZ
; ++i
)
314 unsigned long ai
= a
->sig
[i
];
315 unsigned long ri
= ai
- b
->sig
[i
];
331 /* Negate the significand A, placing the result in R. */
334 neg_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
339 for (i
= 0; i
< SIGSZ
; ++i
)
341 unsigned long ri
, ai
= a
->sig
[i
];
360 /* Compare significands. Return tri-state vs zero. */
363 cmp_significands (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
367 for (i
= SIGSZ
- 1; i
>= 0; --i
)
369 unsigned long ai
= a
->sig
[i
];
370 unsigned long bi
= b
->sig
[i
];
381 /* Return true if A is nonzero. */
384 cmp_significand_0 (const REAL_VALUE_TYPE
*a
)
388 for (i
= SIGSZ
- 1; i
>= 0; --i
)
395 /* Set bit N of the significand of R. */
398 set_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
400 r
->sig
[n
/ HOST_BITS_PER_LONG
]
401 |= (unsigned long)1 << (n
% HOST_BITS_PER_LONG
);
404 /* Clear bit N of the significand of R. */
407 clear_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
409 r
->sig
[n
/ HOST_BITS_PER_LONG
]
410 &= ~((unsigned long)1 << (n
% HOST_BITS_PER_LONG
));
413 /* Test bit N of the significand of R. */
416 test_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
418 /* ??? Compiler bug here if we return this expression directly.
419 The conversion to bool strips the "&1" and we wind up testing
420 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
421 int t
= (r
->sig
[n
/ HOST_BITS_PER_LONG
] >> (n
% HOST_BITS_PER_LONG
)) & 1;
425 /* Clear bits 0..N-1 of the significand of R. */
428 clear_significand_below (REAL_VALUE_TYPE
*r
, unsigned int n
)
430 int i
, w
= n
/ HOST_BITS_PER_LONG
;
432 for (i
= 0; i
< w
; ++i
)
435 r
->sig
[w
] &= ~(((unsigned long)1 << (n
% HOST_BITS_PER_LONG
)) - 1);
438 /* Divide the significands of A and B, placing the result in R. Return
439 true if the division was inexact. */
442 div_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
443 const REAL_VALUE_TYPE
*b
)
446 int i
, bit
= SIGNIFICAND_BITS
- 1;
447 unsigned long msb
, inexact
;
450 memset (r
->sig
, 0, sizeof (r
->sig
));
456 msb
= u
.sig
[SIGSZ
-1] & SIG_MSB
;
457 lshift_significand_1 (&u
, &u
);
459 if (msb
|| cmp_significands (&u
, b
) >= 0)
461 sub_significands (&u
, &u
, b
, 0);
462 set_significand_bit (r
, bit
);
467 for (i
= 0, inexact
= 0; i
< SIGSZ
; i
++)
473 /* Adjust the exponent and significand of R such that the most
474 significant bit is set. We underflow to zero and overflow to
475 infinity here, without denormals. (The intermediate representation
476 exponent is large enough to handle target denormals normalized.) */
479 normalize (REAL_VALUE_TYPE
*r
)
487 /* Find the first word that is nonzero. */
488 for (i
= SIGSZ
- 1; i
>= 0; i
--)
490 shift
+= HOST_BITS_PER_LONG
;
494 /* Zero significand flushes to zero. */
502 /* Find the first bit that is nonzero. */
504 if (r
->sig
[i
] & ((unsigned long)1 << (HOST_BITS_PER_LONG
- 1 - j
)))
510 exp
= REAL_EXP (r
) - shift
;
512 get_inf (r
, r
->sign
);
513 else if (exp
< -MAX_EXP
)
514 get_zero (r
, r
->sign
);
517 SET_REAL_EXP (r
, exp
);
518 lshift_significand (r
, r
, shift
);
523 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
524 result may be inexact due to a loss of precision. */
527 do_add (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
528 const REAL_VALUE_TYPE
*b
, int subtract_p
)
532 bool inexact
= false;
534 /* Determine if we need to add or subtract. */
536 subtract_p
= (sign
^ b
->sign
) ^ subtract_p
;
538 switch (CLASS2 (a
->cl
, b
->cl
))
540 case CLASS2 (rvc_zero
, rvc_zero
):
541 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
542 get_zero (r
, sign
& !subtract_p
);
545 case CLASS2 (rvc_zero
, rvc_normal
):
546 case CLASS2 (rvc_zero
, rvc_inf
):
547 case CLASS2 (rvc_zero
, rvc_nan
):
549 case CLASS2 (rvc_normal
, rvc_nan
):
550 case CLASS2 (rvc_inf
, rvc_nan
):
551 case CLASS2 (rvc_nan
, rvc_nan
):
552 /* ANY + NaN = NaN. */
553 case CLASS2 (rvc_normal
, rvc_inf
):
556 r
->sign
= sign
^ subtract_p
;
559 case CLASS2 (rvc_normal
, rvc_zero
):
560 case CLASS2 (rvc_inf
, rvc_zero
):
561 case CLASS2 (rvc_nan
, rvc_zero
):
563 case CLASS2 (rvc_nan
, rvc_normal
):
564 case CLASS2 (rvc_nan
, rvc_inf
):
565 /* NaN + ANY = NaN. */
566 case CLASS2 (rvc_inf
, rvc_normal
):
571 case CLASS2 (rvc_inf
, rvc_inf
):
573 /* Inf - Inf = NaN. */
574 get_canonical_qnan (r
, 0);
576 /* Inf + Inf = Inf. */
580 case CLASS2 (rvc_normal
, rvc_normal
):
587 /* Swap the arguments such that A has the larger exponent. */
588 dexp
= REAL_EXP (a
) - REAL_EXP (b
);
591 const REAL_VALUE_TYPE
*t
;
598 /* If the exponents are not identical, we need to shift the
599 significand of B down. */
602 /* If the exponents are too far apart, the significands
603 do not overlap, which makes the subtraction a noop. */
604 if (dexp
>= SIGNIFICAND_BITS
)
611 inexact
|= sticky_rshift_significand (&t
, b
, dexp
);
617 if (sub_significands (r
, a
, b
, inexact
))
619 /* We got a borrow out of the subtraction. That means that
620 A and B had the same exponent, and B had the larger
621 significand. We need to swap the sign and negate the
624 neg_significand (r
, r
);
629 if (add_significands (r
, a
, b
))
631 /* We got carry out of the addition. This means we need to
632 shift the significand back down one bit and increase the
634 inexact
|= sticky_rshift_significand (r
, r
, 1);
635 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
646 SET_REAL_EXP (r
, exp
);
647 /* Zero out the remaining fields. */
652 /* Re-normalize the result. */
655 /* Special case: if the subtraction results in zero, the result
657 if (r
->cl
== rvc_zero
)
660 r
->sig
[0] |= inexact
;
665 /* Calculate R = A * B. Return true if the result may be inexact. */
668 do_multiply (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
669 const REAL_VALUE_TYPE
*b
)
671 REAL_VALUE_TYPE u
, t
, *rr
;
672 unsigned int i
, j
, k
;
673 int sign
= a
->sign
^ b
->sign
;
674 bool inexact
= false;
676 switch (CLASS2 (a
->cl
, b
->cl
))
678 case CLASS2 (rvc_zero
, rvc_zero
):
679 case CLASS2 (rvc_zero
, rvc_normal
):
680 case CLASS2 (rvc_normal
, rvc_zero
):
681 /* +-0 * ANY = 0 with appropriate sign. */
685 case CLASS2 (rvc_zero
, rvc_nan
):
686 case CLASS2 (rvc_normal
, rvc_nan
):
687 case CLASS2 (rvc_inf
, rvc_nan
):
688 case CLASS2 (rvc_nan
, rvc_nan
):
689 /* ANY * NaN = NaN. */
694 case CLASS2 (rvc_nan
, rvc_zero
):
695 case CLASS2 (rvc_nan
, rvc_normal
):
696 case CLASS2 (rvc_nan
, rvc_inf
):
697 /* NaN * ANY = NaN. */
702 case CLASS2 (rvc_zero
, rvc_inf
):
703 case CLASS2 (rvc_inf
, rvc_zero
):
705 get_canonical_qnan (r
, sign
);
708 case CLASS2 (rvc_inf
, rvc_inf
):
709 case CLASS2 (rvc_normal
, rvc_inf
):
710 case CLASS2 (rvc_inf
, rvc_normal
):
711 /* Inf * Inf = Inf, R * Inf = Inf */
715 case CLASS2 (rvc_normal
, rvc_normal
):
722 if (r
== a
|| r
== b
)
728 /* Collect all the partial products. Since we don't have sure access
729 to a widening multiply, we split each long into two half-words.
731 Consider the long-hand form of a four half-word multiplication:
741 We construct partial products of the widened half-word products
742 that are known to not overlap, e.g. DF+DH. Each such partial
743 product is given its proper exponent, which allows us to sum them
744 and obtain the finished product. */
746 for (i
= 0; i
< SIGSZ
* 2; ++i
)
748 unsigned long ai
= a
->sig
[i
/ 2];
750 ai
>>= HOST_BITS_PER_LONG
/ 2;
752 ai
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
757 for (j
= 0; j
< 2; ++j
)
759 int exp
= (REAL_EXP (a
) - (2*SIGSZ
-1-i
)*(HOST_BITS_PER_LONG
/2)
760 + (REAL_EXP (b
) - (1-j
)*(HOST_BITS_PER_LONG
/2)));
769 /* Would underflow to zero, which we shouldn't bother adding. */
774 memset (&u
, 0, sizeof (u
));
776 SET_REAL_EXP (&u
, exp
);
778 for (k
= j
; k
< SIGSZ
* 2; k
+= 2)
780 unsigned long bi
= b
->sig
[k
/ 2];
782 bi
>>= HOST_BITS_PER_LONG
/ 2;
784 bi
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
786 u
.sig
[k
/ 2] = ai
* bi
;
790 inexact
|= do_add (rr
, rr
, &u
, 0);
801 /* Calculate R = A / B. Return true if the result may be inexact. */
804 do_divide (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
805 const REAL_VALUE_TYPE
*b
)
807 int exp
, sign
= a
->sign
^ b
->sign
;
808 REAL_VALUE_TYPE t
, *rr
;
811 switch (CLASS2 (a
->cl
, b
->cl
))
813 case CLASS2 (rvc_zero
, rvc_zero
):
815 case CLASS2 (rvc_inf
, rvc_inf
):
816 /* Inf / Inf = NaN. */
817 get_canonical_qnan (r
, sign
);
820 case CLASS2 (rvc_zero
, rvc_normal
):
821 case CLASS2 (rvc_zero
, rvc_inf
):
823 case CLASS2 (rvc_normal
, rvc_inf
):
828 case CLASS2 (rvc_normal
, rvc_zero
):
830 case CLASS2 (rvc_inf
, rvc_zero
):
835 case CLASS2 (rvc_zero
, rvc_nan
):
836 case CLASS2 (rvc_normal
, rvc_nan
):
837 case CLASS2 (rvc_inf
, rvc_nan
):
838 case CLASS2 (rvc_nan
, rvc_nan
):
839 /* ANY / NaN = NaN. */
844 case CLASS2 (rvc_nan
, rvc_zero
):
845 case CLASS2 (rvc_nan
, rvc_normal
):
846 case CLASS2 (rvc_nan
, rvc_inf
):
847 /* NaN / ANY = NaN. */
852 case CLASS2 (rvc_inf
, rvc_normal
):
857 case CLASS2 (rvc_normal
, rvc_normal
):
864 if (r
== a
|| r
== b
)
869 /* Make sure all fields in the result are initialized. */
874 exp
= REAL_EXP (a
) - REAL_EXP (b
) + 1;
885 SET_REAL_EXP (rr
, exp
);
887 inexact
= div_significands (rr
, a
, b
);
889 /* Re-normalize the result. */
891 rr
->sig
[0] |= inexact
;
899 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
900 one of the two operands is a NaN. */
903 do_compare (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
,
908 switch (CLASS2 (a
->cl
, b
->cl
))
910 case CLASS2 (rvc_zero
, rvc_zero
):
911 /* Sign of zero doesn't matter for compares. */
914 case CLASS2 (rvc_inf
, rvc_zero
):
915 case CLASS2 (rvc_inf
, rvc_normal
):
916 case CLASS2 (rvc_normal
, rvc_zero
):
917 return (a
->sign
? -1 : 1);
919 case CLASS2 (rvc_inf
, rvc_inf
):
920 return -a
->sign
- -b
->sign
;
922 case CLASS2 (rvc_zero
, rvc_normal
):
923 case CLASS2 (rvc_zero
, rvc_inf
):
924 case CLASS2 (rvc_normal
, rvc_inf
):
925 return (b
->sign
? 1 : -1);
927 case CLASS2 (rvc_zero
, rvc_nan
):
928 case CLASS2 (rvc_normal
, rvc_nan
):
929 case CLASS2 (rvc_inf
, rvc_nan
):
930 case CLASS2 (rvc_nan
, rvc_nan
):
931 case CLASS2 (rvc_nan
, rvc_zero
):
932 case CLASS2 (rvc_nan
, rvc_normal
):
933 case CLASS2 (rvc_nan
, rvc_inf
):
936 case CLASS2 (rvc_normal
, rvc_normal
):
943 if (a
->sign
!= b
->sign
)
944 return -a
->sign
- -b
->sign
;
946 if (a
->decimal
|| b
->decimal
)
947 return decimal_do_compare (a
, b
, nan_result
);
949 if (REAL_EXP (a
) > REAL_EXP (b
))
951 else if (REAL_EXP (a
) < REAL_EXP (b
))
954 ret
= cmp_significands (a
, b
);
956 return (a
->sign
? -ret
: ret
);
959 /* Return A truncated to an integral value toward zero. */
962 do_fix_trunc (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
976 decimal_do_fix_trunc (r
, a
);
979 if (REAL_EXP (r
) <= 0)
980 get_zero (r
, r
->sign
);
981 else if (REAL_EXP (r
) < SIGNIFICAND_BITS
)
982 clear_significand_below (r
, SIGNIFICAND_BITS
- REAL_EXP (r
));
990 /* Perform the binary or unary operation described by CODE.
991 For a unary operation, leave OP1 NULL. This function returns
992 true if the result may be inexact due to loss of precision. */
995 real_arithmetic (REAL_VALUE_TYPE
*r
, int icode
, const REAL_VALUE_TYPE
*op0
,
996 const REAL_VALUE_TYPE
*op1
)
998 enum tree_code code
= icode
;
1000 if (op0
->decimal
|| (op1
&& op1
->decimal
))
1001 return decimal_real_arithmetic (r
, icode
, op0
, op1
);
1006 return do_add (r
, op0
, op1
, 0);
1009 return do_add (r
, op0
, op1
, 1);
1012 return do_multiply (r
, op0
, op1
);
1015 return do_divide (r
, op0
, op1
);
1018 if (op1
->cl
== rvc_nan
)
1020 else if (do_compare (op0
, op1
, -1) < 0)
1027 if (op1
->cl
== rvc_nan
)
1029 else if (do_compare (op0
, op1
, 1) < 0)
1045 case FIX_TRUNC_EXPR
:
1046 do_fix_trunc (r
, op0
);
1055 /* Legacy. Similar, but return the result directly. */
1058 real_arithmetic2 (int icode
, const REAL_VALUE_TYPE
*op0
,
1059 const REAL_VALUE_TYPE
*op1
)
1062 real_arithmetic (&r
, icode
, op0
, op1
);
1067 real_compare (int icode
, const REAL_VALUE_TYPE
*op0
,
1068 const REAL_VALUE_TYPE
*op1
)
1070 enum tree_code code
= icode
;
1075 return do_compare (op0
, op1
, 1) < 0;
1077 return do_compare (op0
, op1
, 1) <= 0;
1079 return do_compare (op0
, op1
, -1) > 0;
1081 return do_compare (op0
, op1
, -1) >= 0;
1083 return do_compare (op0
, op1
, -1) == 0;
1085 return do_compare (op0
, op1
, -1) != 0;
1086 case UNORDERED_EXPR
:
1087 return op0
->cl
== rvc_nan
|| op1
->cl
== rvc_nan
;
1089 return op0
->cl
!= rvc_nan
&& op1
->cl
!= rvc_nan
;
1091 return do_compare (op0
, op1
, -1) < 0;
1093 return do_compare (op0
, op1
, -1) <= 0;
1095 return do_compare (op0
, op1
, 1) > 0;
1097 return do_compare (op0
, op1
, 1) >= 0;
1099 return do_compare (op0
, op1
, 0) == 0;
1101 return do_compare (op0
, op1
, 0) != 0;
1108 /* Return floor log2(R). */
1111 real_exponent (const REAL_VALUE_TYPE
*r
)
1119 return (unsigned int)-1 >> 1;
1121 return REAL_EXP (r
);
1127 /* R = OP0 * 2**EXP. */
1130 real_ldexp (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*op0
, int exp
)
1141 exp
+= REAL_EXP (op0
);
1143 get_inf (r
, r
->sign
);
1144 else if (exp
< -MAX_EXP
)
1145 get_zero (r
, r
->sign
);
1147 SET_REAL_EXP (r
, exp
);
1155 /* Determine whether a floating-point value X is infinite. */
1158 real_isinf (const REAL_VALUE_TYPE
*r
)
1160 return (r
->cl
== rvc_inf
);
1163 /* Determine whether a floating-point value X is a NaN. */
1166 real_isnan (const REAL_VALUE_TYPE
*r
)
1168 return (r
->cl
== rvc_nan
);
1171 /* Determine whether a floating-point value X is negative. */
1174 real_isneg (const REAL_VALUE_TYPE
*r
)
1179 /* Determine whether a floating-point value X is minus zero. */
1182 real_isnegzero (const REAL_VALUE_TYPE
*r
)
1184 return r
->sign
&& r
->cl
== rvc_zero
;
1187 /* Compare two floating-point objects for bitwise identity. */
1190 real_identical (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
1196 if (a
->sign
!= b
->sign
)
1206 if (a
->decimal
!= b
->decimal
)
1208 if (REAL_EXP (a
) != REAL_EXP (b
))
1213 if (a
->signalling
!= b
->signalling
)
1215 /* The significand is ignored for canonical NaNs. */
1216 if (a
->canonical
|| b
->canonical
)
1217 return a
->canonical
== b
->canonical
;
1224 for (i
= 0; i
< SIGSZ
; ++i
)
1225 if (a
->sig
[i
] != b
->sig
[i
])
1231 /* Try to change R into its exact multiplicative inverse in machine
1232 mode MODE. Return true if successful. */
1235 exact_real_inverse (enum machine_mode mode
, REAL_VALUE_TYPE
*r
)
1237 const REAL_VALUE_TYPE
*one
= real_digit (1);
1241 if (r
->cl
!= rvc_normal
)
1244 /* Check for a power of two: all significand bits zero except the MSB. */
1245 for (i
= 0; i
< SIGSZ
-1; ++i
)
1248 if (r
->sig
[SIGSZ
-1] != SIG_MSB
)
1251 /* Find the inverse and truncate to the required mode. */
1252 do_divide (&u
, one
, r
);
1253 real_convert (&u
, mode
, &u
);
1255 /* The rounding may have overflowed. */
1256 if (u
.cl
!= rvc_normal
)
1258 for (i
= 0; i
< SIGSZ
-1; ++i
)
1261 if (u
.sig
[SIGSZ
-1] != SIG_MSB
)
1268 /* Render R as an integer. */
1271 real_to_integer (const REAL_VALUE_TYPE
*r
)
1273 unsigned HOST_WIDE_INT i
;
1284 i
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1291 return decimal_real_to_integer (r
);
1293 if (REAL_EXP (r
) <= 0)
1295 /* Only force overflow for unsigned overflow. Signed overflow is
1296 undefined, so it doesn't matter what we return, and some callers
1297 expect to be able to use this routine for both signed and
1298 unsigned conversions. */
1299 if (REAL_EXP (r
) > HOST_BITS_PER_WIDE_INT
)
1302 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1303 i
= r
->sig
[SIGSZ
-1];
1306 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2 * HOST_BITS_PER_LONG
);
1307 i
= r
->sig
[SIGSZ
-1];
1308 i
= i
<< (HOST_BITS_PER_LONG
- 1) << 1;
1309 i
|= r
->sig
[SIGSZ
-2];
1312 i
>>= HOST_BITS_PER_WIDE_INT
- REAL_EXP (r
);
1323 /* Likewise, but to an integer pair, HI+LOW. */
1326 real_to_integer2 (HOST_WIDE_INT
*plow
, HOST_WIDE_INT
*phigh
,
1327 const REAL_VALUE_TYPE
*r
)
1330 HOST_WIDE_INT low
, high
;
1343 high
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1356 decimal_real_to_integer2 (plow
, phigh
, r
);
1363 /* Only force overflow for unsigned overflow. Signed overflow is
1364 undefined, so it doesn't matter what we return, and some callers
1365 expect to be able to use this routine for both signed and
1366 unsigned conversions. */
1367 if (exp
> 2*HOST_BITS_PER_WIDE_INT
)
1370 rshift_significand (&t
, r
, 2*HOST_BITS_PER_WIDE_INT
- exp
);
1371 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1373 high
= t
.sig
[SIGSZ
-1];
1374 low
= t
.sig
[SIGSZ
-2];
1378 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2*HOST_BITS_PER_LONG
);
1379 high
= t
.sig
[SIGSZ
-1];
1380 high
= high
<< (HOST_BITS_PER_LONG
- 1) << 1;
1381 high
|= t
.sig
[SIGSZ
-2];
1383 low
= t
.sig
[SIGSZ
-3];
1384 low
= low
<< (HOST_BITS_PER_LONG
- 1) << 1;
1385 low
|= t
.sig
[SIGSZ
-4];
1393 low
= -low
, high
= ~high
;
1405 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1406 of NUM / DEN. Return the quotient and place the remainder in NUM.
1407 It is expected that NUM / DEN are close enough that the quotient is
1410 static unsigned long
1411 rtd_divmod (REAL_VALUE_TYPE
*num
, REAL_VALUE_TYPE
*den
)
1413 unsigned long q
, msb
;
1414 int expn
= REAL_EXP (num
), expd
= REAL_EXP (den
);
1423 msb
= num
->sig
[SIGSZ
-1] & SIG_MSB
;
1425 lshift_significand_1 (num
, num
);
1427 if (msb
|| cmp_significands (num
, den
) >= 0)
1429 sub_significands (num
, num
, den
, 0);
1433 while (--expn
>= expd
);
1435 SET_REAL_EXP (num
, expd
);
1441 /* Render R as a decimal floating point constant. Emit DIGITS significant
1442 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1443 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1446 #define M_LOG10_2 0.30102999566398119521
1449 real_to_decimal (char *str
, const REAL_VALUE_TYPE
*r_orig
, size_t buf_size
,
1450 size_t digits
, int crop_trailing_zeros
)
1452 const REAL_VALUE_TYPE
*one
, *ten
;
1453 REAL_VALUE_TYPE r
, pten
, u
, v
;
1454 int dec_exp
, cmp_one
, digit
;
1456 char *p
, *first
, *last
;
1463 strcpy (str
, (r
.sign
? "-0.0" : "0.0"));
1468 strcpy (str
, (r
.sign
? "-Inf" : "+Inf"));
1471 /* ??? Print the significand as well, if not canonical? */
1472 strcpy (str
, (r
.sign
? "-NaN" : "+NaN"));
1480 decimal_real_to_decimal (str
, &r
, buf_size
, digits
, crop_trailing_zeros
);
1484 /* Bound the number of digits printed by the size of the representation. */
1485 max_digits
= SIGNIFICAND_BITS
* M_LOG10_2
;
1486 if (digits
== 0 || digits
> max_digits
)
1487 digits
= max_digits
;
1489 /* Estimate the decimal exponent, and compute the length of the string it
1490 will print as. Be conservative and add one to account for possible
1491 overflow or rounding error. */
1492 dec_exp
= REAL_EXP (&r
) * M_LOG10_2
;
1493 for (max_digits
= 1; dec_exp
; max_digits
++)
1496 /* Bound the number of digits printed by the size of the output buffer. */
1497 max_digits
= buf_size
- 1 - 1 - 2 - max_digits
- 1;
1498 gcc_assert (max_digits
<= buf_size
);
1499 if (digits
> max_digits
)
1500 digits
= max_digits
;
1502 one
= real_digit (1);
1503 ten
= ten_to_ptwo (0);
1511 cmp_one
= do_compare (&r
, one
, 0);
1516 /* Number is greater than one. Convert significand to an integer
1517 and strip trailing decimal zeros. */
1520 SET_REAL_EXP (&u
, SIGNIFICAND_BITS
- 1);
1522 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1523 m
= floor_log2 (max_digits
);
1525 /* Iterate over the bits of the possible powers of 10 that might
1526 be present in U and eliminate them. That is, if we find that
1527 10**2**M divides U evenly, keep the division and increase
1533 do_divide (&t
, &u
, ten_to_ptwo (m
));
1534 do_fix_trunc (&v
, &t
);
1535 if (cmp_significands (&v
, &t
) == 0)
1543 /* Revert the scaling to integer that we performed earlier. */
1544 SET_REAL_EXP (&u
, REAL_EXP (&u
) + REAL_EXP (&r
)
1545 - (SIGNIFICAND_BITS
- 1));
1548 /* Find power of 10. Do this by dividing out 10**2**M when
1549 this is larger than the current remainder. Fill PTEN with
1550 the power of 10 that we compute. */
1551 if (REAL_EXP (&r
) > 0)
1553 m
= floor_log2 ((int)(REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1556 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1557 if (do_compare (&u
, ptentwo
, 0) >= 0)
1559 do_divide (&u
, &u
, ptentwo
);
1560 do_multiply (&pten
, &pten
, ptentwo
);
1567 /* We managed to divide off enough tens in the above reduction
1568 loop that we've now got a negative exponent. Fall into the
1569 less-than-one code to compute the proper value for PTEN. */
1576 /* Number is less than one. Pad significand with leading
1582 /* Stop if we'd shift bits off the bottom. */
1586 do_multiply (&u
, &v
, ten
);
1588 /* Stop if we're now >= 1. */
1589 if (REAL_EXP (&u
) > 0)
1597 /* Find power of 10. Do this by multiplying in P=10**2**M when
1598 the current remainder is smaller than 1/P. Fill PTEN with the
1599 power of 10 that we compute. */
1600 m
= floor_log2 ((int)(-REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1603 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1604 const REAL_VALUE_TYPE
*ptenmtwo
= ten_to_mptwo (m
);
1606 if (do_compare (&v
, ptenmtwo
, 0) <= 0)
1608 do_multiply (&v
, &v
, ptentwo
);
1609 do_multiply (&pten
, &pten
, ptentwo
);
1615 /* Invert the positive power of 10 that we've collected so far. */
1616 do_divide (&pten
, one
, &pten
);
1624 /* At this point, PTEN should contain the nearest power of 10 smaller
1625 than R, such that this division produces the first digit.
1627 Using a divide-step primitive that returns the complete integral
1628 remainder avoids the rounding error that would be produced if
1629 we were to use do_divide here and then simply multiply by 10 for
1630 each subsequent digit. */
1632 digit
= rtd_divmod (&r
, &pten
);
1634 /* Be prepared for error in that division via underflow ... */
1635 if (digit
== 0 && cmp_significand_0 (&r
))
1637 /* Multiply by 10 and try again. */
1638 do_multiply (&r
, &r
, ten
);
1639 digit
= rtd_divmod (&r
, &pten
);
1641 gcc_assert (digit
!= 0);
1644 /* ... or overflow. */
1654 gcc_assert (digit
<= 10);
1658 /* Generate subsequent digits. */
1659 while (--digits
> 0)
1661 do_multiply (&r
, &r
, ten
);
1662 digit
= rtd_divmod (&r
, &pten
);
1667 /* Generate one more digit with which to do rounding. */
1668 do_multiply (&r
, &r
, ten
);
1669 digit
= rtd_divmod (&r
, &pten
);
1671 /* Round the result. */
1674 /* Round to nearest. If R is nonzero there are additional
1675 nonzero digits to be extracted. */
1676 if (cmp_significand_0 (&r
))
1678 /* Round to even. */
1679 else if ((p
[-1] - '0') & 1)
1696 /* Carry out of the first digit. This means we had all 9's and
1697 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1705 /* Insert the decimal point. */
1706 first
[0] = first
[1];
1709 /* If requested, drop trailing zeros. Never crop past "1.0". */
1710 if (crop_trailing_zeros
)
1711 while (last
> first
+ 3 && last
[-1] == '0')
1714 /* Append the exponent. */
1715 sprintf (last
, "e%+d", dec_exp
);
1718 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1719 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1720 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1721 strip trailing zeros. */
1724 real_to_hexadecimal (char *str
, const REAL_VALUE_TYPE
*r
, size_t buf_size
,
1725 size_t digits
, int crop_trailing_zeros
)
1727 int i
, j
, exp
= REAL_EXP (r
);
1740 strcpy (str
, (r
->sign
? "-Inf" : "+Inf"));
1743 /* ??? Print the significand as well, if not canonical? */
1744 strcpy (str
, (r
->sign
? "-NaN" : "+NaN"));
1752 /* Hexadecimal format for decimal floats is not interesting. */
1753 strcpy (str
, "N/A");
1758 digits
= SIGNIFICAND_BITS
/ 4;
1760 /* Bound the number of digits printed by the size of the output buffer. */
1762 sprintf (exp_buf
, "p%+d", exp
);
1763 max_digits
= buf_size
- strlen (exp_buf
) - r
->sign
- 4 - 1;
1764 gcc_assert (max_digits
<= buf_size
);
1765 if (digits
> max_digits
)
1766 digits
= max_digits
;
1777 for (i
= SIGSZ
- 1; i
>= 0; --i
)
1778 for (j
= HOST_BITS_PER_LONG
- 4; j
>= 0; j
-= 4)
1780 *p
++ = "0123456789abcdef"[(r
->sig
[i
] >> j
) & 15];
1786 if (crop_trailing_zeros
)
1787 while (p
> first
+ 1 && p
[-1] == '0')
1790 sprintf (p
, "p%+d", exp
);
1793 /* Initialize R from a decimal or hexadecimal string. The string is
1794 assumed to have been syntax checked already. */
1797 real_from_string (REAL_VALUE_TYPE
*r
, const char *str
)
1809 else if (*str
== '+')
1812 if (str
[0] == '0' && (str
[1] == 'x' || str
[1] == 'X'))
1814 /* Hexadecimal floating point. */
1815 int pos
= SIGNIFICAND_BITS
- 4, d
;
1823 d
= hex_value (*str
);
1828 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1829 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1833 /* Ensure correct rounding by setting last bit if there is
1834 a subsequent nonzero digit. */
1842 if (pos
== SIGNIFICAND_BITS
- 4)
1849 d
= hex_value (*str
);
1854 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1855 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1859 /* Ensure correct rounding by setting last bit if there is
1860 a subsequent nonzero digit. */
1866 /* If the mantissa is zero, ignore the exponent. */
1867 if (!cmp_significand_0 (r
))
1870 if (*str
== 'p' || *str
== 'P')
1872 bool exp_neg
= false;
1880 else if (*str
== '+')
1884 while (ISDIGIT (*str
))
1890 /* Overflowed the exponent. */
1905 SET_REAL_EXP (r
, exp
);
1911 /* Decimal floating point. */
1912 const REAL_VALUE_TYPE
*ten
= ten_to_ptwo (0);
1917 while (ISDIGIT (*str
))
1920 do_multiply (r
, r
, ten
);
1922 do_add (r
, r
, real_digit (d
), 0);
1927 if (r
->cl
== rvc_zero
)
1932 while (ISDIGIT (*str
))
1935 do_multiply (r
, r
, ten
);
1937 do_add (r
, r
, real_digit (d
), 0);
1942 /* If the mantissa is zero, ignore the exponent. */
1943 if (r
->cl
== rvc_zero
)
1946 if (*str
== 'e' || *str
== 'E')
1948 bool exp_neg
= false;
1956 else if (*str
== '+')
1960 while (ISDIGIT (*str
))
1966 /* Overflowed the exponent. */
1980 times_pten (r
, exp
);
1995 /* Legacy. Similar, but return the result directly. */
1998 real_from_string2 (const char *s
, enum machine_mode mode
)
2002 real_from_string (&r
, s
);
2003 if (mode
!= VOIDmode
)
2004 real_convert (&r
, mode
, &r
);
2009 /* Initialize R from string S and desired MODE. */
2012 real_from_string3 (REAL_VALUE_TYPE
*r
, const char *s
, enum machine_mode mode
)
2014 if (DECIMAL_FLOAT_MODE_P (mode
))
2015 decimal_real_from_string (r
, s
);
2017 real_from_string (r
, s
);
2019 if (mode
!= VOIDmode
)
2020 real_convert (r
, mode
, r
);
2023 /* Initialize R from the integer pair HIGH+LOW. */
2026 real_from_integer (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2027 unsigned HOST_WIDE_INT low
, HOST_WIDE_INT high
,
2030 if (low
== 0 && high
== 0)
2034 memset (r
, 0, sizeof (*r
));
2036 r
->sign
= high
< 0 && !unsigned_p
;
2037 SET_REAL_EXP (r
, 2 * HOST_BITS_PER_WIDE_INT
);
2048 if (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
)
2050 r
->sig
[SIGSZ
-1] = high
;
2051 r
->sig
[SIGSZ
-2] = low
;
2055 gcc_assert (HOST_BITS_PER_LONG
*2 == HOST_BITS_PER_WIDE_INT
);
2056 r
->sig
[SIGSZ
-1] = high
>> (HOST_BITS_PER_LONG
- 1) >> 1;
2057 r
->sig
[SIGSZ
-2] = high
;
2058 r
->sig
[SIGSZ
-3] = low
>> (HOST_BITS_PER_LONG
- 1) >> 1;
2059 r
->sig
[SIGSZ
-4] = low
;
2065 if (mode
!= VOIDmode
)
2066 real_convert (r
, mode
, r
);
2069 /* Returns 10**2**N. */
2071 static const REAL_VALUE_TYPE
*
2074 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2076 gcc_assert (n
>= 0);
2077 gcc_assert (n
< EXP_BITS
);
2079 if (tens
[n
].cl
== rvc_zero
)
2081 if (n
< (HOST_BITS_PER_WIDE_INT
== 64 ? 5 : 4))
2083 HOST_WIDE_INT t
= 10;
2086 for (i
= 0; i
< n
; ++i
)
2089 real_from_integer (&tens
[n
], VOIDmode
, t
, 0, 1);
2093 const REAL_VALUE_TYPE
*t
= ten_to_ptwo (n
- 1);
2094 do_multiply (&tens
[n
], t
, t
);
2101 /* Returns 10**(-2**N). */
2103 static const REAL_VALUE_TYPE
*
2104 ten_to_mptwo (int n
)
2106 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2108 gcc_assert (n
>= 0);
2109 gcc_assert (n
< EXP_BITS
);
2111 if (tens
[n
].cl
== rvc_zero
)
2112 do_divide (&tens
[n
], real_digit (1), ten_to_ptwo (n
));
2119 static const REAL_VALUE_TYPE
*
2122 static REAL_VALUE_TYPE num
[10];
2124 gcc_assert (n
>= 0);
2125 gcc_assert (n
<= 9);
2127 if (n
> 0 && num
[n
].cl
== rvc_zero
)
2128 real_from_integer (&num
[n
], VOIDmode
, n
, 0, 1);
2133 /* Multiply R by 10**EXP. */
2136 times_pten (REAL_VALUE_TYPE
*r
, int exp
)
2138 REAL_VALUE_TYPE pten
, *rr
;
2139 bool negative
= (exp
< 0);
2145 pten
= *real_digit (1);
2151 for (i
= 0; exp
> 0; ++i
, exp
>>= 1)
2153 do_multiply (rr
, rr
, ten_to_ptwo (i
));
2156 do_divide (r
, r
, &pten
);
2159 /* Fills R with +Inf. */
2162 real_inf (REAL_VALUE_TYPE
*r
)
2167 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2168 we force a QNaN, else we force an SNaN. The string, if not empty,
2169 is parsed as a number and placed in the significand. Return true
2170 if the string was successfully parsed. */
2173 real_nan (REAL_VALUE_TYPE
*r
, const char *str
, int quiet
,
2174 enum machine_mode mode
)
2176 const struct real_format
*fmt
;
2178 fmt
= REAL_MODE_FORMAT (mode
);
2184 get_canonical_qnan (r
, 0);
2186 get_canonical_snan (r
, 0);
2192 memset (r
, 0, sizeof (*r
));
2195 /* Parse akin to strtol into the significand of R. */
2197 while (ISSPACE (*str
))
2201 else if (*str
== '+')
2206 if (*str
== 'x' || *str
== 'X')
2215 while ((d
= hex_value (*str
)) < base
)
2222 lshift_significand (r
, r
, 3);
2225 lshift_significand (r
, r
, 4);
2228 lshift_significand_1 (&u
, r
);
2229 lshift_significand (r
, r
, 3);
2230 add_significands (r
, r
, &u
);
2238 add_significands (r
, r
, &u
);
2243 /* Must have consumed the entire string for success. */
2247 /* Shift the significand into place such that the bits
2248 are in the most significant bits for the format. */
2249 lshift_significand (r
, r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2251 /* Our MSB is always unset for NaNs. */
2252 r
->sig
[SIGSZ
-1] &= ~SIG_MSB
;
2254 /* Force quiet or signalling NaN. */
2255 r
->signalling
= !quiet
;
2261 /* Fills R with the largest finite value representable in mode MODE.
2262 If SIGN is nonzero, R is set to the most negative finite value. */
2265 real_maxval (REAL_VALUE_TYPE
*r
, int sign
, enum machine_mode mode
)
2267 const struct real_format
*fmt
;
2270 fmt
= REAL_MODE_FORMAT (mode
);
2272 memset (r
, 0, sizeof (*r
));
2275 decimal_real_maxval (r
, sign
, mode
);
2280 SET_REAL_EXP (r
, fmt
->emax
* fmt
->log2_b
);
2282 np2
= SIGNIFICAND_BITS
- fmt
->p
* fmt
->log2_b
;
2283 memset (r
->sig
, -1, SIGSZ
* sizeof (unsigned long));
2284 clear_significand_below (r
, np2
);
2288 /* Fills R with 2**N. */
2291 real_2expN (REAL_VALUE_TYPE
*r
, int n
)
2293 memset (r
, 0, sizeof (*r
));
2298 else if (n
< -MAX_EXP
)
2303 SET_REAL_EXP (r
, n
);
2304 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2310 round_for_format (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
)
2313 unsigned long sticky
;
2321 decimal_round_for_format (fmt
, r
);
2324 /* FIXME. We can come here via fp_easy_constant
2325 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2326 investigated whether this convert needs to be here, or
2327 something else is missing. */
2328 decimal_real_convert (r
, DFmode
, r
);
2331 p2
= fmt
->p
* fmt
->log2_b
;
2332 emin2m1
= (fmt
->emin
- 1) * fmt
->log2_b
;
2333 emax2
= fmt
->emax
* fmt
->log2_b
;
2335 np2
= SIGNIFICAND_BITS
- p2
;
2339 get_zero (r
, r
->sign
);
2341 if (!fmt
->has_signed_zero
)
2346 get_inf (r
, r
->sign
);
2351 clear_significand_below (r
, np2
);
2361 /* If we're not base2, normalize the exponent to a multiple of
2363 if (fmt
->log2_b
!= 1)
2367 gcc_assert (fmt
->b
!= 10);
2368 shift
= REAL_EXP (r
) & (fmt
->log2_b
- 1);
2371 shift
= fmt
->log2_b
- shift
;
2372 r
->sig
[0] |= sticky_rshift_significand (r
, r
, shift
);
2373 SET_REAL_EXP (r
, REAL_EXP (r
) + shift
);
2377 /* Check the range of the exponent. If we're out of range,
2378 either underflow or overflow. */
2379 if (REAL_EXP (r
) > emax2
)
2381 else if (REAL_EXP (r
) <= emin2m1
)
2385 if (!fmt
->has_denorm
)
2387 /* Don't underflow completely until we've had a chance to round. */
2388 if (REAL_EXP (r
) < emin2m1
)
2393 diff
= emin2m1
- REAL_EXP (r
) + 1;
2397 /* De-normalize the significand. */
2398 r
->sig
[0] |= sticky_rshift_significand (r
, r
, diff
);
2399 SET_REAL_EXP (r
, REAL_EXP (r
) + diff
);
2403 /* There are P2 true significand bits, followed by one guard bit,
2404 followed by one sticky bit, followed by stuff. Fold nonzero
2405 stuff into the sticky bit. */
2408 for (i
= 0, w
= (np2
- 1) / HOST_BITS_PER_LONG
; i
< w
; ++i
)
2409 sticky
|= r
->sig
[i
];
2411 r
->sig
[w
] & (((unsigned long)1 << ((np2
- 1) % HOST_BITS_PER_LONG
)) - 1);
2413 guard
= test_significand_bit (r
, np2
- 1);
2414 lsb
= test_significand_bit (r
, np2
);
2416 /* Round to even. */
2417 if (guard
&& (sticky
|| lsb
))
2421 set_significand_bit (&u
, np2
);
2423 if (add_significands (r
, r
, &u
))
2425 /* Overflow. Means the significand had been all ones, and
2426 is now all zeros. Need to increase the exponent, and
2427 possibly re-normalize it. */
2428 SET_REAL_EXP (r
, REAL_EXP (r
) + 1);
2429 if (REAL_EXP (r
) > emax2
)
2431 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2433 if (fmt
->log2_b
!= 1)
2435 int shift
= REAL_EXP (r
) & (fmt
->log2_b
- 1);
2438 shift
= fmt
->log2_b
- shift
;
2439 rshift_significand (r
, r
, shift
);
2440 SET_REAL_EXP (r
, REAL_EXP (r
) + shift
);
2441 if (REAL_EXP (r
) > emax2
)
2448 /* Catch underflow that we deferred until after rounding. */
2449 if (REAL_EXP (r
) <= emin2m1
)
2452 /* Clear out trailing garbage. */
2453 clear_significand_below (r
, np2
);
2456 /* Extend or truncate to a new mode. */
2459 real_convert (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2460 const REAL_VALUE_TYPE
*a
)
2462 const struct real_format
*fmt
;
2464 fmt
= REAL_MODE_FORMAT (mode
);
2469 if (a
->decimal
|| fmt
->b
== 10)
2470 decimal_real_convert (r
, mode
, a
);
2472 round_for_format (fmt
, r
);
2474 /* round_for_format de-normalizes denormals. Undo just that part. */
2475 if (r
->cl
== rvc_normal
)
2479 /* Legacy. Likewise, except return the struct directly. */
2482 real_value_truncate (enum machine_mode mode
, REAL_VALUE_TYPE a
)
2485 real_convert (&r
, mode
, &a
);
2489 /* Return true if truncating to MODE is exact. */
2492 exact_real_truncate (enum machine_mode mode
, const REAL_VALUE_TYPE
*a
)
2494 const struct real_format
*fmt
;
2498 fmt
= REAL_MODE_FORMAT (mode
);
2501 /* Don't allow conversion to denormals. */
2502 emin2m1
= (fmt
->emin
- 1) * fmt
->log2_b
;
2503 if (REAL_EXP (a
) <= emin2m1
)
2506 /* After conversion to the new mode, the value must be identical. */
2507 real_convert (&t
, mode
, a
);
2508 return real_identical (&t
, a
);
2511 /* Write R to the given target format. Place the words of the result
2512 in target word order in BUF. There are always 32 bits in each
2513 long, no matter the size of the host long.
2515 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2518 real_to_target_fmt (long *buf
, const REAL_VALUE_TYPE
*r_orig
,
2519 const struct real_format
*fmt
)
2525 round_for_format (fmt
, &r
);
2529 (*fmt
->encode
) (fmt
, buf
, &r
);
2534 /* Similar, but look up the format from MODE. */
2537 real_to_target (long *buf
, const REAL_VALUE_TYPE
*r
, enum machine_mode mode
)
2539 const struct real_format
*fmt
;
2541 fmt
= REAL_MODE_FORMAT (mode
);
2544 return real_to_target_fmt (buf
, r
, fmt
);
2547 /* Read R from the given target format. Read the words of the result
2548 in target word order in BUF. There are always 32 bits in each
2549 long, no matter the size of the host long. */
2552 real_from_target_fmt (REAL_VALUE_TYPE
*r
, const long *buf
,
2553 const struct real_format
*fmt
)
2555 (*fmt
->decode
) (fmt
, r
, buf
);
2558 /* Similar, but look up the format from MODE. */
2561 real_from_target (REAL_VALUE_TYPE
*r
, const long *buf
, enum machine_mode mode
)
2563 const struct real_format
*fmt
;
2565 fmt
= REAL_MODE_FORMAT (mode
);
2568 (*fmt
->decode
) (fmt
, r
, buf
);
2571 /* Return the number of bits of the largest binary value that the
2572 significand of MODE will hold. */
2573 /* ??? Legacy. Should get access to real_format directly. */
2576 significand_size (enum machine_mode mode
)
2578 const struct real_format
*fmt
;
2580 fmt
= REAL_MODE_FORMAT (mode
);
2586 /* Return the size in bits of the largest binary value that can be
2587 held by the decimal coefficient for this mode. This is one more
2588 than the number of bits required to hold the largest coefficient
2590 double log2_10
= 3.3219281;
2591 return fmt
->p
* log2_10
;
2593 return fmt
->p
* fmt
->log2_b
;
2596 /* Return a hash value for the given real value. */
2597 /* ??? The "unsigned int" return value is intended to be hashval_t,
2598 but I didn't want to pull hashtab.h into real.h. */
2601 real_hash (const REAL_VALUE_TYPE
*r
)
2606 h
= r
->cl
| (r
->sign
<< 2);
2614 h
|= REAL_EXP (r
) << 3;
2619 h
^= (unsigned int)-1;
2628 if (sizeof(unsigned long) > sizeof(unsigned int))
2629 for (i
= 0; i
< SIGSZ
; ++i
)
2631 unsigned long s
= r
->sig
[i
];
2632 h
^= s
^ (s
>> (HOST_BITS_PER_LONG
/ 2));
2635 for (i
= 0; i
< SIGSZ
; ++i
)
2641 /* IEEE single-precision format. */
2643 static void encode_ieee_single (const struct real_format
*fmt
,
2644 long *, const REAL_VALUE_TYPE
*);
2645 static void decode_ieee_single (const struct real_format
*,
2646 REAL_VALUE_TYPE
*, const long *);
2649 encode_ieee_single (const struct real_format
*fmt
, long *buf
,
2650 const REAL_VALUE_TYPE
*r
)
2652 unsigned long image
, sig
, exp
;
2653 unsigned long sign
= r
->sign
;
2654 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2657 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
2668 image
|= 0x7fffffff;
2676 if (r
->signalling
== fmt
->qnan_msb_set
)
2680 /* We overload qnan_msb_set here: it's only clear for
2681 mips_ieee_single, which wants all mantissa bits but the
2682 quiet/signalling one set in canonical NaNs (at least
2684 if (r
->canonical
&& !fmt
->qnan_msb_set
)
2685 sig
|= (1 << 22) - 1;
2693 image
|= 0x7fffffff;
2697 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2698 whereas the intermediate representation is 0.F x 2**exp.
2699 Which means we're off by one. */
2703 exp
= REAL_EXP (r
) + 127 - 1;
2716 decode_ieee_single (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2719 unsigned long image
= buf
[0] & 0xffffffff;
2720 bool sign
= (image
>> 31) & 1;
2721 int exp
= (image
>> 23) & 0xff;
2723 memset (r
, 0, sizeof (*r
));
2724 image
<<= HOST_BITS_PER_LONG
- 24;
2729 if (image
&& fmt
->has_denorm
)
2733 SET_REAL_EXP (r
, -126);
2734 r
->sig
[SIGSZ
-1] = image
<< 1;
2737 else if (fmt
->has_signed_zero
)
2740 else if (exp
== 255 && (fmt
->has_nans
|| fmt
->has_inf
))
2746 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
2747 ^ fmt
->qnan_msb_set
);
2748 r
->sig
[SIGSZ
-1] = image
;
2760 SET_REAL_EXP (r
, exp
- 127 + 1);
2761 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
2765 const struct real_format ieee_single_format
=
2784 const struct real_format mips_single_format
=
2804 /* IEEE double-precision format. */
2806 static void encode_ieee_double (const struct real_format
*fmt
,
2807 long *, const REAL_VALUE_TYPE
*);
2808 static void decode_ieee_double (const struct real_format
*,
2809 REAL_VALUE_TYPE
*, const long *);
2812 encode_ieee_double (const struct real_format
*fmt
, long *buf
,
2813 const REAL_VALUE_TYPE
*r
)
2815 unsigned long image_lo
, image_hi
, sig_lo
, sig_hi
, exp
;
2816 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2818 image_hi
= r
->sign
<< 31;
2821 if (HOST_BITS_PER_LONG
== 64)
2823 sig_hi
= r
->sig
[SIGSZ
-1];
2824 sig_lo
= (sig_hi
>> (64 - 53)) & 0xffffffff;
2825 sig_hi
= (sig_hi
>> (64 - 53 + 1) >> 31) & 0xfffff;
2829 sig_hi
= r
->sig
[SIGSZ
-1];
2830 sig_lo
= r
->sig
[SIGSZ
-2];
2831 sig_lo
= (sig_hi
<< 21) | (sig_lo
>> 11);
2832 sig_hi
= (sig_hi
>> 11) & 0xfffff;
2842 image_hi
|= 2047 << 20;
2845 image_hi
|= 0x7fffffff;
2846 image_lo
= 0xffffffff;
2854 sig_hi
= sig_lo
= 0;
2855 if (r
->signalling
== fmt
->qnan_msb_set
)
2856 sig_hi
&= ~(1 << 19);
2859 /* We overload qnan_msb_set here: it's only clear for
2860 mips_ieee_single, which wants all mantissa bits but the
2861 quiet/signalling one set in canonical NaNs (at least
2863 if (r
->canonical
&& !fmt
->qnan_msb_set
)
2865 sig_hi
|= (1 << 19) - 1;
2866 sig_lo
= 0xffffffff;
2868 else if (sig_hi
== 0 && sig_lo
== 0)
2871 image_hi
|= 2047 << 20;
2877 image_hi
|= 0x7fffffff;
2878 image_lo
= 0xffffffff;
2883 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2884 whereas the intermediate representation is 0.F x 2**exp.
2885 Which means we're off by one. */
2889 exp
= REAL_EXP (r
) + 1023 - 1;
2890 image_hi
|= exp
<< 20;
2899 if (FLOAT_WORDS_BIG_ENDIAN
)
2900 buf
[0] = image_hi
, buf
[1] = image_lo
;
2902 buf
[0] = image_lo
, buf
[1] = image_hi
;
2906 decode_ieee_double (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2909 unsigned long image_hi
, image_lo
;
2913 if (FLOAT_WORDS_BIG_ENDIAN
)
2914 image_hi
= buf
[0], image_lo
= buf
[1];
2916 image_lo
= buf
[0], image_hi
= buf
[1];
2917 image_lo
&= 0xffffffff;
2918 image_hi
&= 0xffffffff;
2920 sign
= (image_hi
>> 31) & 1;
2921 exp
= (image_hi
>> 20) & 0x7ff;
2923 memset (r
, 0, sizeof (*r
));
2925 image_hi
<<= 32 - 21;
2926 image_hi
|= image_lo
>> 21;
2927 image_hi
&= 0x7fffffff;
2928 image_lo
<<= 32 - 21;
2932 if ((image_hi
|| image_lo
) && fmt
->has_denorm
)
2936 SET_REAL_EXP (r
, -1022);
2937 if (HOST_BITS_PER_LONG
== 32)
2939 image_hi
= (image_hi
<< 1) | (image_lo
>> 31);
2941 r
->sig
[SIGSZ
-1] = image_hi
;
2942 r
->sig
[SIGSZ
-2] = image_lo
;
2946 image_hi
= (image_hi
<< 31 << 2) | (image_lo
<< 1);
2947 r
->sig
[SIGSZ
-1] = image_hi
;
2951 else if (fmt
->has_signed_zero
)
2954 else if (exp
== 2047 && (fmt
->has_nans
|| fmt
->has_inf
))
2956 if (image_hi
|| image_lo
)
2960 r
->signalling
= ((image_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
2961 if (HOST_BITS_PER_LONG
== 32)
2963 r
->sig
[SIGSZ
-1] = image_hi
;
2964 r
->sig
[SIGSZ
-2] = image_lo
;
2967 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
;
2979 SET_REAL_EXP (r
, exp
- 1023 + 1);
2980 if (HOST_BITS_PER_LONG
== 32)
2982 r
->sig
[SIGSZ
-1] = image_hi
| SIG_MSB
;
2983 r
->sig
[SIGSZ
-2] = image_lo
;
2986 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
| SIG_MSB
;
2990 const struct real_format ieee_double_format
=
3009 const struct real_format mips_double_format
=
3029 /* IEEE extended real format. This comes in three flavors: Intel's as
3030 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3031 12- and 16-byte images may be big- or little endian; Motorola's is
3032 always big endian. */
3034 /* Helper subroutine which converts from the internal format to the
3035 12-byte little-endian Intel format. Functions below adjust this
3036 for the other possible formats. */
3038 encode_ieee_extended (const struct real_format
*fmt
, long *buf
,
3039 const REAL_VALUE_TYPE
*r
)
3041 unsigned long image_hi
, sig_hi
, sig_lo
;
3042 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3044 image_hi
= r
->sign
<< 15;
3045 sig_hi
= sig_lo
= 0;
3057 /* Intel requires the explicit integer bit to be set, otherwise
3058 it considers the value a "pseudo-infinity". Motorola docs
3059 say it doesn't care. */
3060 sig_hi
= 0x80000000;
3065 sig_lo
= sig_hi
= 0xffffffff;
3073 if (HOST_BITS_PER_LONG
== 32)
3075 sig_hi
= r
->sig
[SIGSZ
-1];
3076 sig_lo
= r
->sig
[SIGSZ
-2];
3080 sig_lo
= r
->sig
[SIGSZ
-1];
3081 sig_hi
= sig_lo
>> 31 >> 1;
3082 sig_lo
&= 0xffffffff;
3084 if (r
->signalling
== fmt
->qnan_msb_set
)
3085 sig_hi
&= ~(1 << 30);
3088 if ((sig_hi
& 0x7fffffff) == 0 && sig_lo
== 0)
3091 /* Intel requires the explicit integer bit to be set, otherwise
3092 it considers the value a "pseudo-nan". Motorola docs say it
3094 sig_hi
|= 0x80000000;
3099 sig_lo
= sig_hi
= 0xffffffff;
3105 int exp
= REAL_EXP (r
);
3107 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3108 whereas the intermediate representation is 0.F x 2**exp.
3109 Which means we're off by one.
3111 Except for Motorola, which consider exp=0 and explicit
3112 integer bit set to continue to be normalized. In theory
3113 this discrepancy has been taken care of by the difference
3114 in fmt->emin in round_for_format. */
3121 gcc_assert (exp
>= 0);
3125 if (HOST_BITS_PER_LONG
== 32)
3127 sig_hi
= r
->sig
[SIGSZ
-1];
3128 sig_lo
= r
->sig
[SIGSZ
-2];
3132 sig_lo
= r
->sig
[SIGSZ
-1];
3133 sig_hi
= sig_lo
>> 31 >> 1;
3134 sig_lo
&= 0xffffffff;
3143 buf
[0] = sig_lo
, buf
[1] = sig_hi
, buf
[2] = image_hi
;
3146 /* Convert from the internal format to the 12-byte Motorola format
3147 for an IEEE extended real. */
3149 encode_ieee_extended_motorola (const struct real_format
*fmt
, long *buf
,
3150 const REAL_VALUE_TYPE
*r
)
3153 encode_ieee_extended (fmt
, intermed
, r
);
3155 /* Motorola chips are assumed always to be big-endian. Also, the
3156 padding in a Motorola extended real goes between the exponent and
3157 the mantissa. At this point the mantissa is entirely within
3158 elements 0 and 1 of intermed, and the exponent entirely within
3159 element 2, so all we have to do is swap the order around, and
3160 shift element 2 left 16 bits. */
3161 buf
[0] = intermed
[2] << 16;
3162 buf
[1] = intermed
[1];
3163 buf
[2] = intermed
[0];
3166 /* Convert from the internal format to the 12-byte Intel format for
3167 an IEEE extended real. */
3169 encode_ieee_extended_intel_96 (const struct real_format
*fmt
, long *buf
,
3170 const REAL_VALUE_TYPE
*r
)
3172 if (FLOAT_WORDS_BIG_ENDIAN
)
3174 /* All the padding in an Intel-format extended real goes at the high
3175 end, which in this case is after the mantissa, not the exponent.
3176 Therefore we must shift everything down 16 bits. */
3178 encode_ieee_extended (fmt
, intermed
, r
);
3179 buf
[0] = ((intermed
[2] << 16) | ((unsigned long)(intermed
[1] & 0xFFFF0000) >> 16));
3180 buf
[1] = ((intermed
[1] << 16) | ((unsigned long)(intermed
[0] & 0xFFFF0000) >> 16));
3181 buf
[2] = (intermed
[0] << 16);
3184 /* encode_ieee_extended produces what we want directly. */
3185 encode_ieee_extended (fmt
, buf
, r
);
3188 /* Convert from the internal format to the 16-byte Intel format for
3189 an IEEE extended real. */
3191 encode_ieee_extended_intel_128 (const struct real_format
*fmt
, long *buf
,
3192 const REAL_VALUE_TYPE
*r
)
3194 /* All the padding in an Intel-format extended real goes at the high end. */
3195 encode_ieee_extended_intel_96 (fmt
, buf
, r
);
3199 /* As above, we have a helper function which converts from 12-byte
3200 little-endian Intel format to internal format. Functions below
3201 adjust for the other possible formats. */
3203 decode_ieee_extended (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3206 unsigned long image_hi
, sig_hi
, sig_lo
;
3210 sig_lo
= buf
[0], sig_hi
= buf
[1], image_hi
= buf
[2];
3211 sig_lo
&= 0xffffffff;
3212 sig_hi
&= 0xffffffff;
3213 image_hi
&= 0xffffffff;
3215 sign
= (image_hi
>> 15) & 1;
3216 exp
= image_hi
& 0x7fff;
3218 memset (r
, 0, sizeof (*r
));
3222 if ((sig_hi
|| sig_lo
) && fmt
->has_denorm
)
3227 /* When the IEEE format contains a hidden bit, we know that
3228 it's zero at this point, and so shift up the significand
3229 and decrease the exponent to match. In this case, Motorola
3230 defines the explicit integer bit to be valid, so we don't
3231 know whether the msb is set or not. */
3232 SET_REAL_EXP (r
, fmt
->emin
);
3233 if (HOST_BITS_PER_LONG
== 32)
3235 r
->sig
[SIGSZ
-1] = sig_hi
;
3236 r
->sig
[SIGSZ
-2] = sig_lo
;
3239 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3243 else if (fmt
->has_signed_zero
)
3246 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3248 /* See above re "pseudo-infinities" and "pseudo-nans".
3249 Short summary is that the MSB will likely always be
3250 set, and that we don't care about it. */
3251 sig_hi
&= 0x7fffffff;
3253 if (sig_hi
|| sig_lo
)
3257 r
->signalling
= ((sig_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3258 if (HOST_BITS_PER_LONG
== 32)
3260 r
->sig
[SIGSZ
-1] = sig_hi
;
3261 r
->sig
[SIGSZ
-2] = sig_lo
;
3264 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3276 SET_REAL_EXP (r
, exp
- 16383 + 1);
3277 if (HOST_BITS_PER_LONG
== 32)
3279 r
->sig
[SIGSZ
-1] = sig_hi
;
3280 r
->sig
[SIGSZ
-2] = sig_lo
;
3283 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3287 /* Convert from the internal format to the 12-byte Motorola format
3288 for an IEEE extended real. */
3290 decode_ieee_extended_motorola (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3295 /* Motorola chips are assumed always to be big-endian. Also, the
3296 padding in a Motorola extended real goes between the exponent and
3297 the mantissa; remove it. */
3298 intermed
[0] = buf
[2];
3299 intermed
[1] = buf
[1];
3300 intermed
[2] = (unsigned long)buf
[0] >> 16;
3302 decode_ieee_extended (fmt
, r
, intermed
);
3305 /* Convert from the internal format to the 12-byte Intel format for
3306 an IEEE extended real. */
3308 decode_ieee_extended_intel_96 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3311 if (FLOAT_WORDS_BIG_ENDIAN
)
3313 /* All the padding in an Intel-format extended real goes at the high
3314 end, which in this case is after the mantissa, not the exponent.
3315 Therefore we must shift everything up 16 bits. */
3318 intermed
[0] = (((unsigned long)buf
[2] >> 16) | (buf
[1] << 16));
3319 intermed
[1] = (((unsigned long)buf
[1] >> 16) | (buf
[0] << 16));
3320 intermed
[2] = ((unsigned long)buf
[0] >> 16);
3322 decode_ieee_extended (fmt
, r
, intermed
);
3325 /* decode_ieee_extended produces what we want directly. */
3326 decode_ieee_extended (fmt
, r
, buf
);
3329 /* Convert from the internal format to the 16-byte Intel format for
3330 an IEEE extended real. */
3332 decode_ieee_extended_intel_128 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3335 /* All the padding in an Intel-format extended real goes at the high end. */
3336 decode_ieee_extended_intel_96 (fmt
, r
, buf
);
3339 const struct real_format ieee_extended_motorola_format
=
3341 encode_ieee_extended_motorola
,
3342 decode_ieee_extended_motorola
,
3358 const struct real_format ieee_extended_intel_96_format
=
3360 encode_ieee_extended_intel_96
,
3361 decode_ieee_extended_intel_96
,
3377 const struct real_format ieee_extended_intel_128_format
=
3379 encode_ieee_extended_intel_128
,
3380 decode_ieee_extended_intel_128
,
3396 /* The following caters to i386 systems that set the rounding precision
3397 to 53 bits instead of 64, e.g. FreeBSD. */
3398 const struct real_format ieee_extended_intel_96_round_53_format
=
3400 encode_ieee_extended_intel_96
,
3401 decode_ieee_extended_intel_96
,
3417 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3418 numbers whose sum is equal to the extended precision value. The number
3419 with greater magnitude is first. This format has the same magnitude
3420 range as an IEEE double precision value, but effectively 106 bits of
3421 significand precision. Infinity and NaN are represented by their IEEE
3422 double precision value stored in the first number, the second number is
3423 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3425 static void encode_ibm_extended (const struct real_format
*fmt
,
3426 long *, const REAL_VALUE_TYPE
*);
3427 static void decode_ibm_extended (const struct real_format
*,
3428 REAL_VALUE_TYPE
*, const long *);
3431 encode_ibm_extended (const struct real_format
*fmt
, long *buf
,
3432 const REAL_VALUE_TYPE
*r
)
3434 REAL_VALUE_TYPE u
, normr
, v
;
3435 const struct real_format
*base_fmt
;
3437 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3439 /* Renormlize R before doing any arithmetic on it. */
3441 if (normr
.cl
== rvc_normal
)
3444 /* u = IEEE double precision portion of significand. */
3446 round_for_format (base_fmt
, &u
);
3447 encode_ieee_double (base_fmt
, &buf
[0], &u
);
3449 if (u
.cl
== rvc_normal
)
3451 do_add (&v
, &normr
, &u
, 1);
3452 /* Call round_for_format since we might need to denormalize. */
3453 round_for_format (base_fmt
, &v
);
3454 encode_ieee_double (base_fmt
, &buf
[2], &v
);
3458 /* Inf, NaN, 0 are all representable as doubles, so the
3459 least-significant part can be 0.0. */
3466 decode_ibm_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
, REAL_VALUE_TYPE
*r
,
3469 REAL_VALUE_TYPE u
, v
;
3470 const struct real_format
*base_fmt
;
3472 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3473 decode_ieee_double (base_fmt
, &u
, &buf
[0]);
3475 if (u
.cl
!= rvc_zero
&& u
.cl
!= rvc_inf
&& u
.cl
!= rvc_nan
)
3477 decode_ieee_double (base_fmt
, &v
, &buf
[2]);
3478 do_add (r
, &u
, &v
, 0);
3484 const struct real_format ibm_extended_format
=
3486 encode_ibm_extended
,
3487 decode_ibm_extended
,
3503 const struct real_format mips_extended_format
=
3505 encode_ibm_extended
,
3506 decode_ibm_extended
,
3523 /* IEEE quad precision format. */
3525 static void encode_ieee_quad (const struct real_format
*fmt
,
3526 long *, const REAL_VALUE_TYPE
*);
3527 static void decode_ieee_quad (const struct real_format
*,
3528 REAL_VALUE_TYPE
*, const long *);
3531 encode_ieee_quad (const struct real_format
*fmt
, long *buf
,
3532 const REAL_VALUE_TYPE
*r
)
3534 unsigned long image3
, image2
, image1
, image0
, exp
;
3535 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3538 image3
= r
->sign
<< 31;
3543 rshift_significand (&u
, r
, SIGNIFICAND_BITS
- 113);
3552 image3
|= 32767 << 16;
3555 image3
|= 0x7fffffff;
3556 image2
= 0xffffffff;
3557 image1
= 0xffffffff;
3558 image0
= 0xffffffff;
3565 image3
|= 32767 << 16;
3569 /* Don't use bits from the significand. The
3570 initialization above is right. */
3572 else if (HOST_BITS_PER_LONG
== 32)
3577 image3
|= u
.sig
[3] & 0xffff;
3582 image1
= image0
>> 31 >> 1;
3584 image3
|= (image2
>> 31 >> 1) & 0xffff;
3585 image0
&= 0xffffffff;
3586 image2
&= 0xffffffff;
3588 if (r
->signalling
== fmt
->qnan_msb_set
)
3592 /* We overload qnan_msb_set here: it's only clear for
3593 mips_ieee_single, which wants all mantissa bits but the
3594 quiet/signalling one set in canonical NaNs (at least
3596 if (r
->canonical
&& !fmt
->qnan_msb_set
)
3599 image2
= image1
= image0
= 0xffffffff;
3601 else if (((image3
& 0xffff) | image2
| image1
| image0
) == 0)
3606 image3
|= 0x7fffffff;
3607 image2
= 0xffffffff;
3608 image1
= 0xffffffff;
3609 image0
= 0xffffffff;
3614 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3615 whereas the intermediate representation is 0.F x 2**exp.
3616 Which means we're off by one. */
3620 exp
= REAL_EXP (r
) + 16383 - 1;
3621 image3
|= exp
<< 16;
3623 if (HOST_BITS_PER_LONG
== 32)
3628 image3
|= u
.sig
[3] & 0xffff;
3633 image1
= image0
>> 31 >> 1;
3635 image3
|= (image2
>> 31 >> 1) & 0xffff;
3636 image0
&= 0xffffffff;
3637 image2
&= 0xffffffff;
3645 if (FLOAT_WORDS_BIG_ENDIAN
)
3662 decode_ieee_quad (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3665 unsigned long image3
, image2
, image1
, image0
;
3669 if (FLOAT_WORDS_BIG_ENDIAN
)
3683 image0
&= 0xffffffff;
3684 image1
&= 0xffffffff;
3685 image2
&= 0xffffffff;
3687 sign
= (image3
>> 31) & 1;
3688 exp
= (image3
>> 16) & 0x7fff;
3691 memset (r
, 0, sizeof (*r
));
3695 if ((image3
| image2
| image1
| image0
) && fmt
->has_denorm
)
3700 SET_REAL_EXP (r
, -16382 + (SIGNIFICAND_BITS
- 112));
3701 if (HOST_BITS_PER_LONG
== 32)
3710 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3711 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3716 else if (fmt
->has_signed_zero
)
3719 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3721 if (image3
| image2
| image1
| image0
)
3725 r
->signalling
= ((image3
>> 15) & 1) ^ fmt
->qnan_msb_set
;
3727 if (HOST_BITS_PER_LONG
== 32)
3736 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3737 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3739 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3751 SET_REAL_EXP (r
, exp
- 16383 + 1);
3753 if (HOST_BITS_PER_LONG
== 32)
3762 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3763 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3765 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3766 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3770 const struct real_format ieee_quad_format
=
3789 const struct real_format mips_quad_format
=
3808 /* Descriptions of VAX floating point formats can be found beginning at
3810 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3812 The thing to remember is that they're almost IEEE, except for word
3813 order, exponent bias, and the lack of infinities, nans, and denormals.
3815 We don't implement the H_floating format here, simply because neither
3816 the VAX or Alpha ports use it. */
3818 static void encode_vax_f (const struct real_format
*fmt
,
3819 long *, const REAL_VALUE_TYPE
*);
3820 static void decode_vax_f (const struct real_format
*,
3821 REAL_VALUE_TYPE
*, const long *);
3822 static void encode_vax_d (const struct real_format
*fmt
,
3823 long *, const REAL_VALUE_TYPE
*);
3824 static void decode_vax_d (const struct real_format
*,
3825 REAL_VALUE_TYPE
*, const long *);
3826 static void encode_vax_g (const struct real_format
*fmt
,
3827 long *, const REAL_VALUE_TYPE
*);
3828 static void decode_vax_g (const struct real_format
*,
3829 REAL_VALUE_TYPE
*, const long *);
3832 encode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3833 const REAL_VALUE_TYPE
*r
)
3835 unsigned long sign
, exp
, sig
, image
;
3837 sign
= r
->sign
<< 15;
3847 image
= 0xffff7fff | sign
;
3851 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
3852 exp
= REAL_EXP (r
) + 128;
3854 image
= (sig
<< 16) & 0xffff0000;
3868 decode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3869 REAL_VALUE_TYPE
*r
, const long *buf
)
3871 unsigned long image
= buf
[0] & 0xffffffff;
3872 int exp
= (image
>> 7) & 0xff;
3874 memset (r
, 0, sizeof (*r
));
3879 r
->sign
= (image
>> 15) & 1;
3880 SET_REAL_EXP (r
, exp
- 128);
3882 image
= ((image
& 0x7f) << 16) | ((image
>> 16) & 0xffff);
3883 r
->sig
[SIGSZ
-1] = (image
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
3888 encode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3889 const REAL_VALUE_TYPE
*r
)
3891 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
3896 image0
= image1
= 0;
3901 image0
= 0xffff7fff | sign
;
3902 image1
= 0xffffffff;
3906 /* Extract the significand into straight hi:lo. */
3907 if (HOST_BITS_PER_LONG
== 64)
3909 image0
= r
->sig
[SIGSZ
-1];
3910 image1
= (image0
>> (64 - 56)) & 0xffffffff;
3911 image0
= (image0
>> (64 - 56 + 1) >> 31) & 0x7fffff;
3915 image0
= r
->sig
[SIGSZ
-1];
3916 image1
= r
->sig
[SIGSZ
-2];
3917 image1
= (image0
<< 24) | (image1
>> 8);
3918 image0
= (image0
>> 8) & 0xffffff;
3921 /* Rearrange the half-words of the significand to match the
3923 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff007f;
3924 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
3926 /* Add the sign and exponent. */
3928 image0
|= (REAL_EXP (r
) + 128) << 7;
3935 if (FLOAT_WORDS_BIG_ENDIAN
)
3936 buf
[0] = image1
, buf
[1] = image0
;
3938 buf
[0] = image0
, buf
[1] = image1
;
3942 decode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3943 REAL_VALUE_TYPE
*r
, const long *buf
)
3945 unsigned long image0
, image1
;
3948 if (FLOAT_WORDS_BIG_ENDIAN
)
3949 image1
= buf
[0], image0
= buf
[1];
3951 image0
= buf
[0], image1
= buf
[1];
3952 image0
&= 0xffffffff;
3953 image1
&= 0xffffffff;
3955 exp
= (image0
>> 7) & 0xff;
3957 memset (r
, 0, sizeof (*r
));
3962 r
->sign
= (image0
>> 15) & 1;
3963 SET_REAL_EXP (r
, exp
- 128);
3965 /* Rearrange the half-words of the external format into
3966 proper ascending order. */
3967 image0
= ((image0
& 0x7f) << 16) | ((image0
>> 16) & 0xffff);
3968 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
3970 if (HOST_BITS_PER_LONG
== 64)
3972 image0
= (image0
<< 31 << 1) | image1
;
3975 r
->sig
[SIGSZ
-1] = image0
;
3979 r
->sig
[SIGSZ
-1] = image0
;
3980 r
->sig
[SIGSZ
-2] = image1
;
3981 lshift_significand (r
, r
, 2*HOST_BITS_PER_LONG
- 56);
3982 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3988 encode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3989 const REAL_VALUE_TYPE
*r
)
3991 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
3996 image0
= image1
= 0;
4001 image0
= 0xffff7fff | sign
;
4002 image1
= 0xffffffff;
4006 /* Extract the significand into straight hi:lo. */
4007 if (HOST_BITS_PER_LONG
== 64)
4009 image0
= r
->sig
[SIGSZ
-1];
4010 image1
= (image0
>> (64 - 53)) & 0xffffffff;
4011 image0
= (image0
>> (64 - 53 + 1) >> 31) & 0xfffff;
4015 image0
= r
->sig
[SIGSZ
-1];
4016 image1
= r
->sig
[SIGSZ
-2];
4017 image1
= (image0
<< 21) | (image1
>> 11);
4018 image0
= (image0
>> 11) & 0xfffff;
4021 /* Rearrange the half-words of the significand to match the
4023 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff000f;
4024 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
4026 /* Add the sign and exponent. */
4028 image0
|= (REAL_EXP (r
) + 1024) << 4;
4035 if (FLOAT_WORDS_BIG_ENDIAN
)
4036 buf
[0] = image1
, buf
[1] = image0
;
4038 buf
[0] = image0
, buf
[1] = image1
;
4042 decode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4043 REAL_VALUE_TYPE
*r
, const long *buf
)
4045 unsigned long image0
, image1
;
4048 if (FLOAT_WORDS_BIG_ENDIAN
)
4049 image1
= buf
[0], image0
= buf
[1];
4051 image0
= buf
[0], image1
= buf
[1];
4052 image0
&= 0xffffffff;
4053 image1
&= 0xffffffff;
4055 exp
= (image0
>> 4) & 0x7ff;
4057 memset (r
, 0, sizeof (*r
));
4062 r
->sign
= (image0
>> 15) & 1;
4063 SET_REAL_EXP (r
, exp
- 1024);
4065 /* Rearrange the half-words of the external format into
4066 proper ascending order. */
4067 image0
= ((image0
& 0xf) << 16) | ((image0
>> 16) & 0xffff);
4068 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
4070 if (HOST_BITS_PER_LONG
== 64)
4072 image0
= (image0
<< 31 << 1) | image1
;
4075 r
->sig
[SIGSZ
-1] = image0
;
4079 r
->sig
[SIGSZ
-1] = image0
;
4080 r
->sig
[SIGSZ
-2] = image1
;
4081 lshift_significand (r
, r
, 64 - 53);
4082 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4087 const struct real_format vax_f_format
=
4106 const struct real_format vax_d_format
=
4125 const struct real_format vax_g_format
=
4144 /* A good reference for these can be found in chapter 9 of
4145 "ESA/390 Principles of Operation", IBM document number SA22-7201-01.
4146 An on-line version can be found here:
4148 http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DZ9AR001/9.1?DT=19930923083613
4151 static void encode_i370_single (const struct real_format
*fmt
,
4152 long *, const REAL_VALUE_TYPE
*);
4153 static void decode_i370_single (const struct real_format
*,
4154 REAL_VALUE_TYPE
*, const long *);
4155 static void encode_i370_double (const struct real_format
*fmt
,
4156 long *, const REAL_VALUE_TYPE
*);
4157 static void decode_i370_double (const struct real_format
*,
4158 REAL_VALUE_TYPE
*, const long *);
4161 encode_i370_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4162 long *buf
, const REAL_VALUE_TYPE
*r
)
4164 unsigned long sign
, exp
, sig
, image
;
4166 sign
= r
->sign
<< 31;
4176 image
= 0x7fffffff | sign
;
4180 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0xffffff;
4181 exp
= ((REAL_EXP (r
) / 4) + 64) << 24;
4182 image
= sign
| exp
| sig
;
4193 decode_i370_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4194 REAL_VALUE_TYPE
*r
, const long *buf
)
4196 unsigned long sign
, sig
, image
= buf
[0];
4199 sign
= (image
>> 31) & 1;
4200 exp
= (image
>> 24) & 0x7f;
4201 sig
= image
& 0xffffff;
4203 memset (r
, 0, sizeof (*r
));
4209 SET_REAL_EXP (r
, (exp
- 64) * 4);
4210 r
->sig
[SIGSZ
-1] = sig
<< (HOST_BITS_PER_LONG
- 24);
4216 encode_i370_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4217 long *buf
, const REAL_VALUE_TYPE
*r
)
4219 unsigned long sign
, exp
, image_hi
, image_lo
;
4221 sign
= r
->sign
<< 31;
4226 image_hi
= image_lo
= 0;
4231 image_hi
= 0x7fffffff | sign
;
4232 image_lo
= 0xffffffff;
4236 if (HOST_BITS_PER_LONG
== 64)
4238 image_hi
= r
->sig
[SIGSZ
-1];
4239 image_lo
= (image_hi
>> (64 - 56)) & 0xffffffff;
4240 image_hi
= (image_hi
>> (64 - 56 + 1) >> 31) & 0xffffff;
4244 image_hi
= r
->sig
[SIGSZ
-1];
4245 image_lo
= r
->sig
[SIGSZ
-2];
4246 image_lo
= (image_lo
>> 8) | (image_hi
<< 24);
4250 exp
= ((REAL_EXP (r
) / 4) + 64) << 24;
4251 image_hi
|= sign
| exp
;
4258 if (FLOAT_WORDS_BIG_ENDIAN
)
4259 buf
[0] = image_hi
, buf
[1] = image_lo
;
4261 buf
[0] = image_lo
, buf
[1] = image_hi
;
4265 decode_i370_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4266 REAL_VALUE_TYPE
*r
, const long *buf
)
4268 unsigned long sign
, image_hi
, image_lo
;
4271 if (FLOAT_WORDS_BIG_ENDIAN
)
4272 image_hi
= buf
[0], image_lo
= buf
[1];
4274 image_lo
= buf
[0], image_hi
= buf
[1];
4276 sign
= (image_hi
>> 31) & 1;
4277 exp
= (image_hi
>> 24) & 0x7f;
4278 image_hi
&= 0xffffff;
4279 image_lo
&= 0xffffffff;
4281 memset (r
, 0, sizeof (*r
));
4283 if (exp
|| image_hi
|| image_lo
)
4287 SET_REAL_EXP (r
, (exp
- 64) * 4 + (SIGNIFICAND_BITS
- 56));
4289 if (HOST_BITS_PER_LONG
== 32)
4291 r
->sig
[0] = image_lo
;
4292 r
->sig
[1] = image_hi
;
4295 r
->sig
[0] = image_lo
| (image_hi
<< 31 << 1);
4301 const struct real_format i370_single_format
=
4315 false, /* ??? The encoding does allow for "unnormals". */
4316 false, /* ??? The encoding does allow for "unnormals". */
4320 const struct real_format i370_double_format
=
4334 false, /* ??? The encoding does allow for "unnormals". */
4335 false, /* ??? The encoding does allow for "unnormals". */
4339 /* Encode real R into a single precision DFP value in BUF. */
4341 encode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4342 long *buf ATTRIBUTE_UNUSED
,
4343 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4345 encode_decimal32 (fmt
, buf
, r
);
4348 /* Decode a single precision DFP value in BUF into a real R. */
4350 decode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4351 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4352 const long *buf ATTRIBUTE_UNUSED
)
4354 decode_decimal32 (fmt
, r
, buf
);
4357 /* Encode real R into a double precision DFP value in BUF. */
4359 encode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4360 long *buf ATTRIBUTE_UNUSED
,
4361 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4363 encode_decimal64 (fmt
, buf
, r
);
4366 /* Decode a double precision DFP value in BUF into a real R. */
4368 decode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4369 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4370 const long *buf ATTRIBUTE_UNUSED
)
4372 decode_decimal64 (fmt
, r
, buf
);
4375 /* Encode real R into a quad precision DFP value in BUF. */
4377 encode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4378 long *buf ATTRIBUTE_UNUSED
,
4379 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4381 encode_decimal128 (fmt
, buf
, r
);
4384 /* Decode a quad precision DFP value in BUF into a real R. */
4386 decode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4387 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4388 const long *buf ATTRIBUTE_UNUSED
)
4390 decode_decimal128 (fmt
, r
, buf
);
4393 /* Single precision decimal floating point (IEEE 754R). */
4394 const struct real_format decimal_single_format
=
4396 encode_decimal_single
,
4397 decode_decimal_single
,
4413 /* Double precision decimal floating point (IEEE 754R). */
4414 const struct real_format decimal_double_format
=
4416 encode_decimal_double
,
4417 decode_decimal_double
,
4433 /* Quad precision decimal floating point (IEEE 754R). */
4434 const struct real_format decimal_quad_format
=
4436 encode_decimal_quad
,
4437 decode_decimal_quad
,
4453 /* The "twos-complement" c4x format is officially defined as
4457 This is rather misleading. One must remember that F is signed.
4458 A better description would be
4460 x = -1**s * ((s + 1 + .f) * 2**e
4462 So if we have a (4 bit) fraction of .1000 with a sign bit of 1,
4463 that's -1 * (1+1+(-.5)) == -1.5. I think.
4465 The constructions here are taken from Tables 5-1 and 5-2 of the
4466 TMS320C4x User's Guide wherein step-by-step instructions for
4467 conversion from IEEE are presented. That's close enough to our
4468 internal representation so as to make things easy.
4470 See http://www-s.ti.com/sc/psheets/spru063c/spru063c.pdf */
4472 static void encode_c4x_single (const struct real_format
*fmt
,
4473 long *, const REAL_VALUE_TYPE
*);
4474 static void decode_c4x_single (const struct real_format
*,
4475 REAL_VALUE_TYPE
*, const long *);
4476 static void encode_c4x_extended (const struct real_format
*fmt
,
4477 long *, const REAL_VALUE_TYPE
*);
4478 static void decode_c4x_extended (const struct real_format
*,
4479 REAL_VALUE_TYPE
*, const long *);
4482 encode_c4x_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4483 long *buf
, const REAL_VALUE_TYPE
*r
)
4485 unsigned long image
, exp
, sig
;
4497 sig
= 0x800000 - r
->sign
;
4501 exp
= REAL_EXP (r
) - 1;
4502 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
4517 image
= ((exp
& 0xff) << 24) | (sig
& 0xffffff);
4522 decode_c4x_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4523 REAL_VALUE_TYPE
*r
, const long *buf
)
4525 unsigned long image
= buf
[0];
4529 exp
= (((image
>> 24) & 0xff) ^ 0x80) - 0x80;
4530 sf
= ((image
& 0xffffff) ^ 0x800000) - 0x800000;
4532 memset (r
, 0, sizeof (*r
));
4538 sig
= sf
& 0x7fffff;
4547 sig
= (sig
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
4549 SET_REAL_EXP (r
, exp
+ 1);
4550 r
->sig
[SIGSZ
-1] = sig
;
4555 encode_c4x_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4556 long *buf
, const REAL_VALUE_TYPE
*r
)
4558 unsigned long exp
, sig
;
4570 sig
= 0x80000000 - r
->sign
;
4574 exp
= REAL_EXP (r
) - 1;
4576 sig
= r
->sig
[SIGSZ
-1];
4577 if (HOST_BITS_PER_LONG
== 64)
4578 sig
= sig
>> 1 >> 31;
4595 exp
= (exp
& 0xff) << 24;
4598 if (FLOAT_WORDS_BIG_ENDIAN
)
4599 buf
[0] = exp
, buf
[1] = sig
;
4601 buf
[0] = sig
, buf
[0] = exp
;
4605 decode_c4x_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4606 REAL_VALUE_TYPE
*r
, const long *buf
)
4611 if (FLOAT_WORDS_BIG_ENDIAN
)
4612 exp
= buf
[0], sf
= buf
[1];
4614 sf
= buf
[0], exp
= buf
[1];
4616 exp
= (((exp
>> 24) & 0xff) & 0x80) - 0x80;
4617 sf
= ((sf
& 0xffffffff) ^ 0x80000000) - 0x80000000;
4619 memset (r
, 0, sizeof (*r
));
4625 sig
= sf
& 0x7fffffff;
4634 if (HOST_BITS_PER_LONG
== 64)
4635 sig
= sig
<< 1 << 31;
4638 SET_REAL_EXP (r
, exp
+ 1);
4639 r
->sig
[SIGSZ
-1] = sig
;
4643 const struct real_format c4x_single_format
=
4662 const struct real_format c4x_extended_format
=
4664 encode_c4x_extended
,
4665 decode_c4x_extended
,
4682 /* A synthetic "format" for internal arithmetic. It's the size of the
4683 internal significand minus the two bits needed for proper rounding.
4684 The encode and decode routines exist only to satisfy our paranoia
4687 static void encode_internal (const struct real_format
*fmt
,
4688 long *, const REAL_VALUE_TYPE
*);
4689 static void decode_internal (const struct real_format
*,
4690 REAL_VALUE_TYPE
*, const long *);
4693 encode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4694 const REAL_VALUE_TYPE
*r
)
4696 memcpy (buf
, r
, sizeof (*r
));
4700 decode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4701 REAL_VALUE_TYPE
*r
, const long *buf
)
4703 memcpy (r
, buf
, sizeof (*r
));
4706 const struct real_format real_internal_format
=
4712 SIGNIFICAND_BITS
- 2,
4713 SIGNIFICAND_BITS
- 2,
4725 /* Calculate the square root of X in mode MODE, and store the result
4726 in R. Return TRUE if the operation does not raise an exception.
4727 For details see "High Precision Division and Square Root",
4728 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4729 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4732 real_sqrt (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4733 const REAL_VALUE_TYPE
*x
)
4735 static REAL_VALUE_TYPE halfthree
;
4736 static bool init
= false;
4737 REAL_VALUE_TYPE h
, t
, i
;
4740 /* sqrt(-0.0) is -0.0. */
4741 if (real_isnegzero (x
))
4747 /* Negative arguments return NaN. */
4750 get_canonical_qnan (r
, 0);
4754 /* Infinity and NaN return themselves. */
4755 if (real_isinf (x
) || real_isnan (x
))
4763 do_add (&halfthree
, &dconst1
, &dconsthalf
, 0);
4767 /* Initial guess for reciprocal sqrt, i. */
4768 exp
= real_exponent (x
);
4769 real_ldexp (&i
, &dconst1
, -exp
/2);
4771 /* Newton's iteration for reciprocal sqrt, i. */
4772 for (iter
= 0; iter
< 16; iter
++)
4774 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4775 do_multiply (&t
, x
, &i
);
4776 do_multiply (&h
, &t
, &i
);
4777 do_multiply (&t
, &h
, &dconsthalf
);
4778 do_add (&h
, &halfthree
, &t
, 1);
4779 do_multiply (&t
, &i
, &h
);
4781 /* Check for early convergence. */
4782 if (iter
>= 6 && real_identical (&i
, &t
))
4785 /* ??? Unroll loop to avoid copying. */
4789 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4790 do_multiply (&t
, x
, &i
);
4791 do_multiply (&h
, &t
, &i
);
4792 do_add (&i
, &dconst1
, &h
, 1);
4793 do_multiply (&h
, &t
, &i
);
4794 do_multiply (&i
, &dconsthalf
, &h
);
4795 do_add (&h
, &t
, &i
, 0);
4797 /* ??? We need a Tuckerman test to get the last bit. */
4799 real_convert (r
, mode
, &h
);
4803 /* Calculate X raised to the integer exponent N in mode MODE and store
4804 the result in R. Return true if the result may be inexact due to
4805 loss of precision. The algorithm is the classic "left-to-right binary
4806 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4807 Algorithms", "The Art of Computer Programming", Volume 2. */
4810 real_powi (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4811 const REAL_VALUE_TYPE
*x
, HOST_WIDE_INT n
)
4813 unsigned HOST_WIDE_INT bit
;
4815 bool inexact
= false;
4827 /* Don't worry about overflow, from now on n is unsigned. */
4835 bit
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
4836 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
++)
4840 inexact
|= do_multiply (&t
, &t
, &t
);
4842 inexact
|= do_multiply (&t
, &t
, x
);
4850 inexact
|= do_divide (&t
, &dconst1
, &t
);
4852 real_convert (r
, mode
, &t
);
4856 /* Round X to the nearest integer not larger in absolute value, i.e.
4857 towards zero, placing the result in R in mode MODE. */
4860 real_trunc (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4861 const REAL_VALUE_TYPE
*x
)
4863 do_fix_trunc (r
, x
);
4864 if (mode
!= VOIDmode
)
4865 real_convert (r
, mode
, r
);
4868 /* Round X to the largest integer not greater in value, i.e. round
4869 down, placing the result in R in mode MODE. */
4872 real_floor (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4873 const REAL_VALUE_TYPE
*x
)
4877 do_fix_trunc (&t
, x
);
4878 if (! real_identical (&t
, x
) && x
->sign
)
4879 do_add (&t
, &t
, &dconstm1
, 0);
4880 if (mode
!= VOIDmode
)
4881 real_convert (r
, mode
, &t
);
4886 /* Round X to the smallest integer not less then argument, i.e. round
4887 up, placing the result in R in mode MODE. */
4890 real_ceil (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4891 const REAL_VALUE_TYPE
*x
)
4895 do_fix_trunc (&t
, x
);
4896 if (! real_identical (&t
, x
) && ! x
->sign
)
4897 do_add (&t
, &t
, &dconst1
, 0);
4898 if (mode
!= VOIDmode
)
4899 real_convert (r
, mode
, &t
);
4904 /* Round X to the nearest integer, but round halfway cases away from
4908 real_round (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4909 const REAL_VALUE_TYPE
*x
)
4911 do_add (r
, x
, &dconsthalf
, x
->sign
);
4912 do_fix_trunc (r
, r
);
4913 if (mode
!= VOIDmode
)
4914 real_convert (r
, mode
, r
);
4917 /* Set the sign of R to the sign of X. */
4920 real_copysign (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*x
)
4925 /* Convert from REAL_VALUE_TYPE to MPFR. The caller is responsible
4926 for initializing and clearing the MPFR parameter. */
4929 mpfr_from_real (mpfr_ptr m
, const REAL_VALUE_TYPE
*r
)
4931 /* We use a string as an intermediate type. */
4935 real_to_hexadecimal (buf
, r
, sizeof (buf
), 0, 1);
4936 /* mpfr_set_str() parses hexadecimal floats from strings in the same
4937 format that GCC will output them. Nothing extra is needed. */
4938 ret
= mpfr_set_str (m
, buf
, 16, GMP_RNDN
);
4939 gcc_assert (ret
== 0);
4942 /* Convert from MPFR to REAL_VALUE_TYPE. */
4945 real_from_mpfr (REAL_VALUE_TYPE
*r
, mpfr_srcptr m
)
4947 /* We use a string as an intermediate type. */
4948 char buf
[128], *rstr
;
4951 rstr
= mpfr_get_str (NULL
, &exp
, 16, 0, m
, GMP_RNDN
);
4953 /* The additional 12 chars add space for the sprintf below. This
4954 leaves 6 digits for the exponent which is supposedly enough. */
4955 gcc_assert (rstr
!= NULL
&& strlen (rstr
) < sizeof (buf
) - 12);
4957 /* REAL_VALUE_ATOF expects the exponent for mantissa * 2**exp,
4958 mpfr_get_str returns the exponent for mantissa * 16**exp, adjust
4963 sprintf (buf
, "-0x.%sp%d", &rstr
[1], (int) exp
);
4965 sprintf (buf
, "0x.%sp%d", rstr
, (int) exp
);
4967 mpfr_free_str (rstr
);
4969 real_from_string (r
, buf
);
4972 /* Check whether the real constant value given is an integer. */
4975 real_isinteger (const REAL_VALUE_TYPE
*c
, enum machine_mode mode
)
4977 REAL_VALUE_TYPE cint
;
4979 real_trunc (&cint
, mode
, c
);
4980 return real_identical (c
, &cint
);