* config/i386/i386-protos.h (ix86_use_pseudo_pic_reg): New.
[official-gcc.git] / gcc / config / i386 / i386.h
blob5d1e5e0cff8858e0cb1c223f56ee5a46d3430d53
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
25 /* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
40 /* Redefines for option macros. */
42 #define TARGET_64BIT TARGET_ISA_64BIT
43 #define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
44 #define TARGET_MMX TARGET_ISA_MMX
45 #define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
46 #define TARGET_3DNOW TARGET_ISA_3DNOW
47 #define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
48 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
49 #define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
50 #define TARGET_SSE TARGET_ISA_SSE
51 #define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
52 #define TARGET_SSE2 TARGET_ISA_SSE2
53 #define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
54 #define TARGET_SSE3 TARGET_ISA_SSE3
55 #define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
56 #define TARGET_SSSE3 TARGET_ISA_SSSE3
57 #define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
58 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1
59 #define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
60 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2
61 #define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
62 #define TARGET_AVX TARGET_ISA_AVX
63 #define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
64 #define TARGET_AVX2 TARGET_ISA_AVX2
65 #define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
66 #define TARGET_AVX512F TARGET_ISA_AVX512F
67 #define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68 #define TARGET_AVX512PF TARGET_ISA_AVX512PF
69 #define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70 #define TARGET_AVX512ER TARGET_ISA_AVX512ER
71 #define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72 #define TARGET_AVX512CD TARGET_ISA_AVX512CD
73 #define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
74 #define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75 #define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
76 #define TARGET_AVX512BW TARGET_ISA_AVX512BW
77 #define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
78 #define TARGET_AVX512VL TARGET_ISA_AVX512VL
79 #define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
80 #define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81 #define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
82 #define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83 #define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
84 #define TARGET_FMA TARGET_ISA_FMA
85 #define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
86 #define TARGET_SSE4A TARGET_ISA_SSE4A
87 #define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
88 #define TARGET_FMA4 TARGET_ISA_FMA4
89 #define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90 #define TARGET_XOP TARGET_ISA_XOP
91 #define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
92 #define TARGET_LWP TARGET_ISA_LWP
93 #define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
94 #define TARGET_ROUND TARGET_ISA_ROUND
95 #define TARGET_ABM TARGET_ISA_ABM
96 #define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
97 #define TARGET_BMI TARGET_ISA_BMI
98 #define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
99 #define TARGET_BMI2 TARGET_ISA_BMI2
100 #define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
101 #define TARGET_LZCNT TARGET_ISA_LZCNT
102 #define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
103 #define TARGET_TBM TARGET_ISA_TBM
104 #define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
105 #define TARGET_POPCNT TARGET_ISA_POPCNT
106 #define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
107 #define TARGET_SAHF TARGET_ISA_SAHF
108 #define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
109 #define TARGET_MOVBE TARGET_ISA_MOVBE
110 #define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
111 #define TARGET_CRC32 TARGET_ISA_CRC32
112 #define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
113 #define TARGET_AES TARGET_ISA_AES
114 #define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
115 #define TARGET_SHA TARGET_ISA_SHA
116 #define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
117 #define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
118 #define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
119 #define TARGET_XSAVEC TARGET_ISA_XSAVEC
120 #define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
121 #define TARGET_XSAVES TARGET_ISA_XSAVES
122 #define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
123 #define TARGET_PCLMUL TARGET_ISA_PCLMUL
124 #define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
125 #define TARGET_CMPXCHG16B TARGET_ISA_CX16
126 #define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
127 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
128 #define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
129 #define TARGET_RDRND TARGET_ISA_RDRND
130 #define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
131 #define TARGET_F16C TARGET_ISA_F16C
132 #define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
133 #define TARGET_RTM TARGET_ISA_RTM
134 #define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
135 #define TARGET_HLE TARGET_ISA_HLE
136 #define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
137 #define TARGET_RDSEED TARGET_ISA_RDSEED
138 #define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
139 #define TARGET_PRFCHW TARGET_ISA_PRFCHW
140 #define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
141 #define TARGET_ADX TARGET_ISA_ADX
142 #define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
143 #define TARGET_FXSR TARGET_ISA_FXSR
144 #define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
145 #define TARGET_XSAVE TARGET_ISA_XSAVE
146 #define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
147 #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
148 #define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
149 #define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
150 #define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
151 #define TARGET_MPX TARGET_ISA_MPX
152 #define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
153 #define TARGET_PCOMMIT TARGET_ISA_PCOMMIT
154 #define TARGET_PCOMMIT_P(x) TARGET_ISA_PCOMMIT_P(x)
155 #define TARGET_CLWB TARGET_ISA_CLWB
156 #define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
158 #define TARGET_LP64 TARGET_ABI_64
159 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
160 #define TARGET_X32 TARGET_ABI_X32
161 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
162 #define TARGET_16BIT TARGET_CODE16
163 #define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
165 /* SSE4.1 defines round instructions */
166 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
167 #define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
169 #include "config/vxworks-dummy.h"
171 #include "config/i386/i386-opts.h"
173 #define MAX_STRINGOP_ALGS 4
175 /* Specify what algorithm to use for stringops on known size.
176 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
177 known at compile time or estimated via feedback, the SIZE array
178 is walked in order until MAX is greater then the estimate (or -1
179 means infinity). Corresponding ALG is used then.
180 When NOALIGN is true the code guaranting the alignment of the memory
181 block is skipped.
183 For example initializer:
184 {{256, loop}, {-1, rep_prefix_4_byte}}
185 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
186 be used otherwise. */
187 struct stringop_algs
189 const enum stringop_alg unknown_size;
190 const struct stringop_strategy {
191 const int max;
192 const enum stringop_alg alg;
193 int noalign;
194 } size [MAX_STRINGOP_ALGS];
197 /* Define the specific costs for a given cpu */
199 struct processor_costs {
200 const int add; /* cost of an add instruction */
201 const int lea; /* cost of a lea instruction */
202 const int shift_var; /* variable shift costs */
203 const int shift_const; /* constant shift costs */
204 const int mult_init[5]; /* cost of starting a multiply
205 in QImode, HImode, SImode, DImode, TImode*/
206 const int mult_bit; /* cost of multiply per each bit set */
207 const int divide[5]; /* cost of a divide/mod
208 in QImode, HImode, SImode, DImode, TImode*/
209 int movsx; /* The cost of movsx operation. */
210 int movzx; /* The cost of movzx operation. */
211 const int large_insn; /* insns larger than this cost more */
212 const int move_ratio; /* The threshold of number of scalar
213 memory-to-memory move insns. */
214 const int movzbl_load; /* cost of loading using movzbl */
215 const int int_load[3]; /* cost of loading integer registers
216 in QImode, HImode and SImode relative
217 to reg-reg move (2). */
218 const int int_store[3]; /* cost of storing integer register
219 in QImode, HImode and SImode */
220 const int fp_move; /* cost of reg,reg fld/fst */
221 const int fp_load[3]; /* cost of loading FP register
222 in SFmode, DFmode and XFmode */
223 const int fp_store[3]; /* cost of storing FP register
224 in SFmode, DFmode and XFmode */
225 const int mmx_move; /* cost of moving MMX register. */
226 const int mmx_load[2]; /* cost of loading MMX register
227 in SImode and DImode */
228 const int mmx_store[2]; /* cost of storing MMX register
229 in SImode and DImode */
230 const int sse_move; /* cost of moving SSE register. */
231 const int sse_load[3]; /* cost of loading SSE register
232 in SImode, DImode and TImode*/
233 const int sse_store[3]; /* cost of storing SSE register
234 in SImode, DImode and TImode*/
235 const int mmxsse_to_integer; /* cost of moving mmxsse register to
236 integer and vice versa. */
237 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
238 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
239 const int prefetch_block; /* bytes moved to cache for prefetch. */
240 const int simultaneous_prefetches; /* number of parallel prefetch
241 operations. */
242 const int branch_cost; /* Default value for BRANCH_COST. */
243 const int fadd; /* cost of FADD and FSUB instructions. */
244 const int fmul; /* cost of FMUL instruction. */
245 const int fdiv; /* cost of FDIV instruction. */
246 const int fabs; /* cost of FABS instruction. */
247 const int fchs; /* cost of FCHS instruction. */
248 const int fsqrt; /* cost of FSQRT instruction. */
249 /* Specify what algorithm
250 to use for stringops on unknown size. */
251 struct stringop_algs *memcpy, *memset;
252 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
253 load and store. */
254 const int scalar_load_cost; /* Cost of scalar load. */
255 const int scalar_store_cost; /* Cost of scalar store. */
256 const int vec_stmt_cost; /* Cost of any vector operation, excluding
257 load, store, vector-to-scalar and
258 scalar-to-vector operation. */
259 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
260 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
261 const int vec_align_load_cost; /* Cost of aligned vector load. */
262 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
263 const int vec_store_cost; /* Cost of vector store. */
264 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
265 cost model. */
266 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
267 vectorizer cost model. */
270 extern const struct processor_costs *ix86_cost;
271 extern const struct processor_costs ix86_size_cost;
273 #define ix86_cur_cost() \
274 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
276 /* Macros used in the machine description to test the flags. */
278 /* configure can arrange to change it. */
280 #ifndef TARGET_CPU_DEFAULT
281 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
282 #endif
284 #ifndef TARGET_FPMATH_DEFAULT
285 #define TARGET_FPMATH_DEFAULT \
286 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
287 #endif
289 #ifndef TARGET_FPMATH_DEFAULT_P
290 #define TARGET_FPMATH_DEFAULT_P(x) \
291 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
292 #endif
294 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
295 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
297 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
298 compile-time constant. */
299 #ifdef IN_LIBGCC2
300 #undef TARGET_64BIT
301 #ifdef __x86_64__
302 #define TARGET_64BIT 1
303 #else
304 #define TARGET_64BIT 0
305 #endif
306 #else
307 #ifndef TARGET_BI_ARCH
308 #undef TARGET_64BIT
309 #undef TARGET_64BIT_P
310 #if TARGET_64BIT_DEFAULT
311 #define TARGET_64BIT 1
312 #define TARGET_64BIT_P(x) 1
313 #else
314 #define TARGET_64BIT 0
315 #define TARGET_64BIT_P(x) 0
316 #endif
317 #endif
318 #endif
320 #define HAS_LONG_COND_BRANCH 1
321 #define HAS_LONG_UNCOND_BRANCH 1
323 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
324 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
325 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
326 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
327 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
328 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
329 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
330 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
331 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
332 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
333 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
334 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
335 #define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
336 #define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
337 #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
338 #define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
339 #define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
340 #define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
341 #define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
342 #define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
343 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
344 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
345 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
346 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
347 #define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
348 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
349 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
351 /* Feature tests against the various tunings. */
352 enum ix86_tune_indices {
353 #undef DEF_TUNE
354 #define DEF_TUNE(tune, name, selector) tune,
355 #include "x86-tune.def"
356 #undef DEF_TUNE
357 X86_TUNE_LAST
360 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
362 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
363 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
364 #define TARGET_ZERO_EXTEND_WITH_AND \
365 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
366 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
367 #define TARGET_BRANCH_PREDICTION_HINTS \
368 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
369 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
370 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
371 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
372 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
373 #define TARGET_PARTIAL_FLAG_REG_STALL \
374 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
375 #define TARGET_LCP_STALL \
376 ix86_tune_features[X86_TUNE_LCP_STALL]
377 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
378 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
379 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
380 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
381 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
382 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
383 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
384 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
385 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
386 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
387 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
388 #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
389 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
390 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
391 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
392 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
393 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
394 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
395 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
396 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
397 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
398 #define TARGET_INTEGER_DFMODE_MOVES \
399 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
400 #define TARGET_PARTIAL_REG_DEPENDENCY \
401 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
402 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
403 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
404 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
405 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
406 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
407 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
408 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
409 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
410 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
411 #define TARGET_SSE_TYPELESS_STORES \
412 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
413 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
414 #define TARGET_MEMORY_MISMATCH_STALL \
415 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
416 #define TARGET_PROLOGUE_USING_MOVE \
417 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
418 #define TARGET_EPILOGUE_USING_MOVE \
419 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
420 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
421 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
422 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
423 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
424 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
425 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
426 #define TARGET_INTER_UNIT_CONVERSIONS \
427 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
428 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
429 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
430 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
431 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
432 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
433 #define TARGET_PAD_SHORT_FUNCTION \
434 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
435 #define TARGET_EXT_80387_CONSTANTS \
436 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
437 #define TARGET_AVOID_VECTOR_DECODE \
438 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
439 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
440 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
441 #define TARGET_SLOW_IMUL_IMM32_MEM \
442 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
443 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
444 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
445 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
446 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
447 #define TARGET_USE_VECTOR_FP_CONVERTS \
448 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
449 #define TARGET_USE_VECTOR_CONVERTS \
450 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
451 #define TARGET_SLOW_PSHUFB \
452 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
453 #define TARGET_VECTOR_PARALLEL_EXECUTION \
454 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
455 #define TARGET_FUSE_CMP_AND_BRANCH_32 \
456 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
457 #define TARGET_FUSE_CMP_AND_BRANCH_64 \
458 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
459 #define TARGET_FUSE_CMP_AND_BRANCH \
460 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
461 : TARGET_FUSE_CMP_AND_BRANCH_32)
462 #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
463 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
464 #define TARGET_FUSE_ALU_AND_BRANCH \
465 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
466 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
467 #define TARGET_AVOID_LEA_FOR_ADDR \
468 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
469 #define TARGET_VECTORIZE_DOUBLE \
470 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
471 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
472 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
473 #define TARGET_AVX128_OPTIMAL \
474 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
475 #define TARGET_REASSOC_INT_TO_PARALLEL \
476 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
477 #define TARGET_REASSOC_FP_TO_PARALLEL \
478 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
479 #define TARGET_GENERAL_REGS_SSE_SPILL \
480 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
481 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
482 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
483 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
484 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
485 #define TARGET_ADJUST_UNROLL \
486 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
487 #define TARGET_AVOID_FALSE_DEP_FOR_BMI \
488 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
490 /* Feature tests against the various architecture variations. */
491 enum ix86_arch_indices {
492 X86_ARCH_CMOV,
493 X86_ARCH_CMPXCHG,
494 X86_ARCH_CMPXCHG8B,
495 X86_ARCH_XADD,
496 X86_ARCH_BSWAP,
498 X86_ARCH_LAST
501 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
503 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
504 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
505 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
506 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
507 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
509 /* For sane SSE instruction set generation we need fcomi instruction.
510 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
511 expands to a sequence that includes conditional move. */
512 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
514 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
516 extern unsigned char x86_prefetch_sse;
517 #define TARGET_PREFETCH_SSE x86_prefetch_sse
519 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
521 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
522 #define TARGET_MIX_SSE_I387 \
523 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
525 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
526 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
527 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
528 #define TARGET_SUN_TLS 0
530 #ifndef TARGET_64BIT_DEFAULT
531 #define TARGET_64BIT_DEFAULT 0
532 #endif
533 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
534 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
535 #endif
537 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
538 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
540 /* Fence to use after loop using storent. */
542 extern tree x86_mfence;
543 #define FENCE_FOLLOWING_MOVNT x86_mfence
545 /* Once GDB has been enhanced to deal with functions without frame
546 pointers, we can change this to allow for elimination of
547 the frame pointer in leaf functions. */
548 #define TARGET_DEFAULT 0
550 /* Extra bits to force. */
551 #define TARGET_SUBTARGET_DEFAULT 0
552 #define TARGET_SUBTARGET_ISA_DEFAULT 0
554 /* Extra bits to force on w/ 32-bit mode. */
555 #define TARGET_SUBTARGET32_DEFAULT 0
556 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
558 /* Extra bits to force on w/ 64-bit mode. */
559 #define TARGET_SUBTARGET64_DEFAULT 0
560 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
562 /* Replace MACH-O, ifdefs by in-line tests, where possible.
563 (a) Macros defined in config/i386/darwin.h */
564 #define TARGET_MACHO 0
565 #define TARGET_MACHO_BRANCH_ISLANDS 0
566 #define MACHOPIC_ATT_STUB 0
567 /* (b) Macros defined in config/darwin.h */
568 #define MACHO_DYNAMIC_NO_PIC_P 0
569 #define MACHOPIC_INDIRECT 0
570 #define MACHOPIC_PURE 0
572 /* For the RDOS */
573 #define TARGET_RDOS 0
575 /* For the Windows 64-bit ABI. */
576 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
578 /* For the Windows 32-bit ABI. */
579 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
581 /* This is re-defined by cygming.h. */
582 #define TARGET_SEH 0
584 /* This is re-defined by cygming.h. */
585 #define TARGET_PECOFF 0
587 /* The default abi used by target. */
588 #define DEFAULT_ABI SYSV_ABI
590 /* The default TLS segment register used by target. */
591 #define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
593 /* Subtargets may reset this to 1 in order to enable 96-bit long double
594 with the rounding mode forced to 53 bits. */
595 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
597 /* -march=native handling only makes sense with compiler running on
598 an x86 or x86_64 chip. If changing this condition, also change
599 the condition in driver-i386.c. */
600 #if defined(__i386__) || defined(__x86_64__)
601 /* In driver-i386.c. */
602 extern const char *host_detect_local_cpu (int argc, const char **argv);
603 #define EXTRA_SPEC_FUNCTIONS \
604 { "local_cpu_detect", host_detect_local_cpu },
605 #define HAVE_LOCAL_CPU_DETECT
606 #endif
608 #if TARGET_64BIT_DEFAULT
609 #define OPT_ARCH64 "!m32"
610 #define OPT_ARCH32 "m32"
611 #else
612 #define OPT_ARCH64 "m64|mx32"
613 #define OPT_ARCH32 "m64|mx32:;"
614 #endif
616 /* Support for configure-time defaults of some command line options.
617 The order here is important so that -march doesn't squash the
618 tune or cpu values. */
619 #define OPTION_DEFAULT_SPECS \
620 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
621 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
622 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
623 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
624 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
625 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
626 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
627 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
628 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
630 /* Specs for the compiler proper */
632 #ifndef CC1_CPU_SPEC
633 #define CC1_CPU_SPEC_1 ""
635 #ifndef HAVE_LOCAL_CPU_DETECT
636 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
637 #else
638 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
639 "%{march=native:%>march=native %:local_cpu_detect(arch) \
640 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
641 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
642 #endif
643 #endif
645 /* Target CPU builtins. */
646 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
648 /* Target Pragmas. */
649 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
651 #ifndef CC1_SPEC
652 #define CC1_SPEC "%(cc1_cpu) "
653 #endif
655 /* This macro defines names of additional specifications to put in the
656 specs that can be used in various specifications like CC1_SPEC. Its
657 definition is an initializer with a subgrouping for each command option.
659 Each subgrouping contains a string constant, that defines the
660 specification name, and a string constant that used by the GCC driver
661 program.
663 Do not define this macro if it does not need to do anything. */
665 #ifndef SUBTARGET_EXTRA_SPECS
666 #define SUBTARGET_EXTRA_SPECS
667 #endif
669 #define EXTRA_SPECS \
670 { "cc1_cpu", CC1_CPU_SPEC }, \
671 SUBTARGET_EXTRA_SPECS
674 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
675 FPU, assume that the fpcw is set to extended precision; when using
676 only SSE, rounding is correct; when using both SSE and the FPU,
677 the rounding precision is indeterminate, since either may be chosen
678 apparently at random. */
679 #define TARGET_FLT_EVAL_METHOD \
680 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
682 /* Whether to allow x87 floating-point arithmetic on MODE (one of
683 SFmode, DFmode and XFmode) in the current excess precision
684 configuration. */
685 #define X87_ENABLE_ARITH(MODE) \
686 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
688 /* Likewise, whether to allow direct conversions from integer mode
689 IMODE (HImode, SImode or DImode) to MODE. */
690 #define X87_ENABLE_FLOAT(MODE, IMODE) \
691 (flag_excess_precision == EXCESS_PRECISION_FAST \
692 || (MODE) == XFmode \
693 || ((MODE) == DFmode && (IMODE) == SImode) \
694 || (IMODE) == HImode)
696 /* target machine storage layout */
698 #define SHORT_TYPE_SIZE 16
699 #define INT_TYPE_SIZE 32
700 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
701 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
702 #define LONG_LONG_TYPE_SIZE 64
703 #define FLOAT_TYPE_SIZE 32
704 #define DOUBLE_TYPE_SIZE 64
705 #define LONG_DOUBLE_TYPE_SIZE \
706 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
708 #define WIDEST_HARDWARE_FP_SIZE 80
710 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
711 #define MAX_BITS_PER_WORD 64
712 #else
713 #define MAX_BITS_PER_WORD 32
714 #endif
716 /* Define this if most significant byte of a word is the lowest numbered. */
717 /* That is true on the 80386. */
719 #define BITS_BIG_ENDIAN 0
721 /* Define this if most significant byte of a word is the lowest numbered. */
722 /* That is not true on the 80386. */
723 #define BYTES_BIG_ENDIAN 0
725 /* Define this if most significant word of a multiword number is the lowest
726 numbered. */
727 /* Not true for 80386 */
728 #define WORDS_BIG_ENDIAN 0
730 /* Width of a word, in units (bytes). */
731 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
733 #ifndef IN_LIBGCC2
734 #define MIN_UNITS_PER_WORD 4
735 #endif
737 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
738 #define PARM_BOUNDARY BITS_PER_WORD
740 /* Boundary (in *bits*) on which stack pointer should be aligned. */
741 #define STACK_BOUNDARY \
742 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
744 /* Stack boundary of the main function guaranteed by OS. */
745 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
747 /* Minimum stack boundary. */
748 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
750 /* Boundary (in *bits*) on which the stack pointer prefers to be
751 aligned; the compiler cannot rely on having this alignment. */
752 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
754 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
755 both 32bit and 64bit, to support codes that need 128 bit stack
756 alignment for SSE instructions, but can't realign the stack. */
757 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
759 /* 1 if -mstackrealign should be turned on by default. It will
760 generate an alternate prologue and epilogue that realigns the
761 runtime stack if nessary. This supports mixing codes that keep a
762 4-byte aligned stack, as specified by i386 psABI, with codes that
763 need a 16-byte aligned stack, as required by SSE instructions. */
764 #define STACK_REALIGN_DEFAULT 0
766 /* Boundary (in *bits*) on which the incoming stack is aligned. */
767 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
769 /* According to Windows x64 software convention, the maximum stack allocatable
770 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
771 instructions allowed to adjust the stack pointer in the epilog, forcing the
772 use of frame pointer for frames larger than 2 GB. This theorical limit
773 is reduced by 256, an over-estimated upper bound for the stack use by the
774 prologue.
775 We define only one threshold for both the prolog and the epilog. When the
776 frame size is larger than this threshold, we allocate the area to save SSE
777 regs, then save them, and then allocate the remaining. There is no SEH
778 unwind info for this later allocation. */
779 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
781 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
782 mandatory for the 64-bit ABI, and may or may not be true for other
783 operating systems. */
784 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
786 /* Minimum allocation boundary for the code of a function. */
787 #define FUNCTION_BOUNDARY 8
789 /* C++ stores the virtual bit in the lowest bit of function pointers. */
790 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
792 /* Minimum size in bits of the largest boundary to which any
793 and all fundamental data types supported by the hardware
794 might need to be aligned. No data type wants to be aligned
795 rounder than this.
797 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
798 and Pentium Pro XFmode values at 128 bit boundaries. */
800 #define BIGGEST_ALIGNMENT \
801 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
803 /* Maximum stack alignment. */
804 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
806 /* Alignment value for attribute ((aligned)). It is a constant since
807 it is the part of the ABI. We shouldn't change it with -mavx. */
808 #define ATTRIBUTE_ALIGNED_VALUE 128
810 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
811 #define ALIGN_MODE_128(MODE) \
812 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
814 /* The published ABIs say that doubles should be aligned on word
815 boundaries, so lower the alignment for structure fields unless
816 -malign-double is set. */
818 /* ??? Blah -- this macro is used directly by libobjc. Since it
819 supports no vector modes, cut out the complexity and fall back
820 on BIGGEST_FIELD_ALIGNMENT. */
821 #ifdef IN_TARGET_LIBS
822 #ifdef __x86_64__
823 #define BIGGEST_FIELD_ALIGNMENT 128
824 #else
825 #define BIGGEST_FIELD_ALIGNMENT 32
826 #endif
827 #else
828 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
829 x86_field_alignment (FIELD, COMPUTED)
830 #endif
832 /* If defined, a C expression to compute the alignment given to a
833 constant that is being placed in memory. EXP is the constant
834 and ALIGN is the alignment that the object would ordinarily have.
835 The value of this macro is used instead of that alignment to align
836 the object.
838 If this macro is not defined, then ALIGN is used.
840 The typical use of this macro is to increase alignment for string
841 constants to be word aligned so that `strcpy' calls that copy
842 constants can be done inline. */
844 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
846 /* If defined, a C expression to compute the alignment for a static
847 variable. TYPE is the data type, and ALIGN is the alignment that
848 the object would ordinarily have. The value of this macro is used
849 instead of that alignment to align the object.
851 If this macro is not defined, then ALIGN is used.
853 One use of this macro is to increase alignment of medium-size
854 data to make it all fit in fewer cache lines. Another is to
855 cause character arrays to be word-aligned so that `strcpy' calls
856 that copy constants to character arrays can be done inline. */
858 #define DATA_ALIGNMENT(TYPE, ALIGN) \
859 ix86_data_alignment ((TYPE), (ALIGN), true)
861 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
862 some alignment increase, instead of optimization only purposes. E.g.
863 AMD x86-64 psABI says that variables with array type larger than 15 bytes
864 must be aligned to 16 byte boundaries.
866 If this macro is not defined, then ALIGN is used. */
868 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
869 ix86_data_alignment ((TYPE), (ALIGN), false)
871 /* If defined, a C expression to compute the alignment for a local
872 variable. TYPE is the data type, and ALIGN is the alignment that
873 the object would ordinarily have. The value of this macro is used
874 instead of that alignment to align the object.
876 If this macro is not defined, then ALIGN is used.
878 One use of this macro is to increase alignment of medium-size
879 data to make it all fit in fewer cache lines. */
881 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
882 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
884 /* If defined, a C expression to compute the alignment for stack slot.
885 TYPE is the data type, MODE is the widest mode available, and ALIGN
886 is the alignment that the slot would ordinarily have. The value of
887 this macro is used instead of that alignment to align the slot.
889 If this macro is not defined, then ALIGN is used when TYPE is NULL,
890 Otherwise, LOCAL_ALIGNMENT will be used.
892 One use of this macro is to set alignment of stack slot to the
893 maximum alignment of all possible modes which the slot may have. */
895 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
896 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
898 /* If defined, a C expression to compute the alignment for a local
899 variable DECL.
901 If this macro is not defined, then
902 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
904 One use of this macro is to increase alignment of medium-size
905 data to make it all fit in fewer cache lines. */
907 #define LOCAL_DECL_ALIGNMENT(DECL) \
908 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
910 /* If defined, a C expression to compute the minimum required alignment
911 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
912 MODE, assuming normal alignment ALIGN.
914 If this macro is not defined, then (ALIGN) will be used. */
916 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
917 ix86_minimum_alignment (EXP, MODE, ALIGN)
920 /* Set this nonzero if move instructions will actually fail to work
921 when given unaligned data. */
922 #define STRICT_ALIGNMENT 0
924 /* If bit field type is int, don't let it cross an int,
925 and give entire struct the alignment of an int. */
926 /* Required on the 386 since it doesn't have bit-field insns. */
927 #define PCC_BITFIELD_TYPE_MATTERS 1
929 /* Standard register usage. */
931 /* This processor has special stack-like registers. See reg-stack.c
932 for details. */
934 #define STACK_REGS
936 #define IS_STACK_MODE(MODE) \
937 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
938 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
939 || (MODE) == XFmode)
941 /* Number of actual hardware registers.
942 The hardware registers are assigned numbers for the compiler
943 from 0 to just below FIRST_PSEUDO_REGISTER.
944 All registers that the compiler knows about must be given numbers,
945 even those that are not normally considered general registers.
947 In the 80386 we give the 8 general purpose registers the numbers 0-7.
948 We number the floating point registers 8-15.
949 Note that registers 0-7 can be accessed as a short or int,
950 while only 0-3 may be used with byte `mov' instructions.
952 Reg 16 does not correspond to any hardware register, but instead
953 appears in the RTL as an argument pointer prior to reload, and is
954 eliminated during reloading in favor of either the stack or frame
955 pointer. */
957 #define FIRST_PSEUDO_REGISTER 81
959 /* Number of hardware registers that go into the DWARF-2 unwind info.
960 If not defined, equals FIRST_PSEUDO_REGISTER. */
962 #define DWARF_FRAME_REGISTERS 17
964 /* 1 for registers that have pervasive standard uses
965 and are not available for the register allocator.
966 On the 80386, the stack pointer is such, as is the arg pointer.
968 REX registers are disabled for 32bit targets in
969 TARGET_CONDITIONAL_REGISTER_USAGE. */
971 #define FIXED_REGISTERS \
972 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
973 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
974 /*arg,flags,fpsr,fpcr,frame*/ \
975 1, 1, 1, 1, 1, \
976 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
977 0, 0, 0, 0, 0, 0, 0, 0, \
978 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
979 0, 0, 0, 0, 0, 0, 0, 0, \
980 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
981 0, 0, 0, 0, 0, 0, 0, 0, \
982 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
983 0, 0, 0, 0, 0, 0, 0, 0, \
984 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
985 0, 0, 0, 0, 0, 0, 0, 0, \
986 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
987 0, 0, 0, 0, 0, 0, 0, 0, \
988 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
989 0, 0, 0, 0, 0, 0, 0, 0, \
990 /* b0, b1, b2, b3*/ \
991 0, 0, 0, 0 }
993 /* 1 for registers not available across function calls.
994 These must include the FIXED_REGISTERS and also any
995 registers that can be used without being saved.
996 The latter must include the registers where values are returned
997 and the register where structure-value addresses are passed.
998 Aside from that, you can include as many other registers as you like.
1000 Value is set to 1 if the register is call used unconditionally.
1001 Bit one is set if the register is call used on TARGET_32BIT ABI.
1002 Bit two is set if the register is call used on TARGET_64BIT ABI.
1003 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1005 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1007 #define CALL_USED_REGISTERS \
1008 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
1009 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1010 /*arg,flags,fpsr,fpcr,frame*/ \
1011 1, 1, 1, 1, 1, \
1012 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1013 1, 1, 1, 1, 1, 1, 6, 6, \
1014 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
1015 1, 1, 1, 1, 1, 1, 1, 1, \
1016 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
1017 1, 1, 1, 1, 2, 2, 2, 2, \
1018 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1019 6, 6, 6, 6, 6, 6, 6, 6, \
1020 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1021 6, 6, 6, 6, 6, 6, 6, 6, \
1022 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
1023 6, 6, 6, 6, 6, 6, 6, 6, \
1024 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
1025 1, 1, 1, 1, 1, 1, 1, 1, \
1026 /* b0, b1, b2, b3*/ \
1027 1, 1, 1, 1 }
1029 /* Order in which to allocate registers. Each register must be
1030 listed once, even those in FIXED_REGISTERS. List frame pointer
1031 late and fixed registers last. Note that, in general, we prefer
1032 registers listed in CALL_USED_REGISTERS, keeping the others
1033 available for storage of persistent values.
1035 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
1036 so this is just empty initializer for array. */
1038 #define REG_ALLOC_ORDER \
1039 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1040 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1041 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1042 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
1043 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1044 78, 79, 80 }
1046 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1047 to be rearranged based on a particular function. When using sse math,
1048 we want to allocate SSE before x87 registers and vice versa. */
1050 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1053 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1055 /* Return number of consecutive hard regs needed starting at reg REGNO
1056 to hold something of mode MODE.
1057 This is ordinarily the length in words of a value of mode MODE
1058 but can be less for certain modes in special long registers.
1060 Actually there are no two word move instructions for consecutive
1061 registers. And only registers 0-3 may have mov byte instructions
1062 applied to them. */
1064 #define HARD_REGNO_NREGS(REGNO, MODE) \
1065 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1066 || MASK_REGNO_P (REGNO) || BND_REGNO_P (REGNO) \
1067 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1068 : ((MODE) == XFmode \
1069 ? (TARGET_64BIT ? 2 : 3) \
1070 : (MODE) == XCmode \
1071 ? (TARGET_64BIT ? 4 : 6) \
1072 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1074 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1075 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1076 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1077 ? 0 \
1078 : ((MODE) == XFmode || (MODE) == XCmode)) \
1079 : 0)
1081 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1083 #define VALID_AVX256_REG_MODE(MODE) \
1084 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1085 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1086 || (MODE) == V4DFmode)
1088 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1089 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1091 #define VALID_AVX512F_SCALAR_MODE(MODE) \
1092 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1093 || (MODE) == SFmode)
1095 #define VALID_AVX512F_REG_MODE(MODE) \
1096 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1097 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1098 || (MODE) == V4TImode)
1100 #define VALID_AVX512VL_128_REG_MODE(MODE) \
1101 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1102 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
1104 #define VALID_SSE2_REG_MODE(MODE) \
1105 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1106 || (MODE) == V2DImode || (MODE) == DFmode)
1108 #define VALID_SSE_REG_MODE(MODE) \
1109 ((MODE) == V1TImode || (MODE) == TImode \
1110 || (MODE) == V4SFmode || (MODE) == V4SImode \
1111 || (MODE) == SFmode || (MODE) == TFmode)
1113 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1114 ((MODE) == V2SFmode || (MODE) == SFmode)
1116 #define VALID_MMX_REG_MODE(MODE) \
1117 ((MODE == V1DImode) || (MODE) == DImode \
1118 || (MODE) == V2SImode || (MODE) == SImode \
1119 || (MODE) == V4HImode || (MODE) == V8QImode)
1121 #define VALID_BND_REG_MODE(MODE) \
1122 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1124 #define VALID_DFP_MODE_P(MODE) \
1125 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1127 #define VALID_FP_MODE_P(MODE) \
1128 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1129 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1131 #define VALID_INT_MODE_P(MODE) \
1132 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1133 || (MODE) == DImode \
1134 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1135 || (MODE) == CDImode \
1136 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1137 || (MODE) == TFmode || (MODE) == TCmode)))
1139 /* Return true for modes passed in SSE registers. */
1140 #define SSE_REG_MODE_P(MODE) \
1141 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1142 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1143 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1144 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1145 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1146 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1147 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1148 || (MODE) == V16SFmode)
1150 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1152 #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1154 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1156 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1157 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1159 /* Value is 1 if it is a good idea to tie two pseudo registers
1160 when one has mode MODE1 and one has mode MODE2.
1161 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1162 for any hard reg, then this must be 0 for correct output. */
1164 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1166 /* It is possible to write patterns to move flags; but until someone
1167 does it, */
1168 #define AVOID_CCMODE_COPIES
1170 /* Specify the modes required to caller save a given hard regno.
1171 We do this on i386 to prevent flags from being saved at all.
1173 Kill any attempts to combine saving of modes. */
1175 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1176 (CC_REGNO_P (REGNO) ? VOIDmode \
1177 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1178 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1179 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1180 || MASK_REGNO_P (REGNO)) ? SImode \
1181 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1182 || MASK_REGNO_P (REGNO)) ? SImode \
1183 : (MODE))
1185 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1186 need to check the current ABI here), and with AVX enabled Win64 only
1187 guarantees that the low 16 bytes are saved. */
1188 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1189 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1191 /* Specify the registers used for certain standard purposes.
1192 The values of these macros are register numbers. */
1194 /* on the 386 the pc register is %eip, and is not usable as a general
1195 register. The ordinary mov instructions won't work */
1196 /* #define PC_REGNUM */
1198 /* Register to use for pushing function arguments. */
1199 #define STACK_POINTER_REGNUM 7
1201 /* Base register for access to local variables of the function. */
1202 #define HARD_FRAME_POINTER_REGNUM 6
1204 /* Base register for access to local variables of the function. */
1205 #define FRAME_POINTER_REGNUM 20
1207 /* First floating point reg */
1208 #define FIRST_FLOAT_REG 8
1210 /* First & last stack-like regs */
1211 #define FIRST_STACK_REG FIRST_FLOAT_REG
1212 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1214 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1215 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1217 #define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
1218 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1220 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
1221 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1223 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
1224 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1226 #define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1227 #define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1229 #define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1230 #define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1232 #define FIRST_BND_REG (LAST_MASK_REG + 1) /*77*/
1233 #define LAST_BND_REG (FIRST_BND_REG + 3) /*80*/
1235 /* Override this in other tm.h files to cope with various OS lossage
1236 requiring a frame pointer. */
1237 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1238 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1239 #endif
1241 /* Make sure we can access arbitrary call frames. */
1242 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1244 /* Base register for access to arguments of the function. */
1245 #define ARG_POINTER_REGNUM 16
1247 /* Register to hold the addressing base for position independent
1248 code access to data items. We don't use PIC pointer for 64bit
1249 mode. Define the regnum to dummy value to prevent gcc from
1250 pessimizing code dealing with EBX.
1252 To avoid clobbering a call-saved register unnecessarily, we renumber
1253 the pic register when possible. The change is visible after the
1254 prologue has been emitted. */
1256 #define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
1258 #define PIC_OFFSET_TABLE_REGNUM \
1259 (ix86_use_pseudo_pic_reg () \
1260 ? (pic_offset_table_rtx \
1261 ? INVALID_REGNUM \
1262 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1263 : INVALID_REGNUM)
1265 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1267 /* This is overridden by <cygwin.h>. */
1268 #define MS_AGGREGATE_RETURN 0
1270 #define KEEP_AGGREGATE_RETURN_POINTER 0
1272 /* Define the classes of registers for register constraints in the
1273 machine description. Also define ranges of constants.
1275 One of the classes must always be named ALL_REGS and include all hard regs.
1276 If there is more than one class, another class must be named NO_REGS
1277 and contain no registers.
1279 The name GENERAL_REGS must be the name of a class (or an alias for
1280 another name such as ALL_REGS). This is the class of registers
1281 that is allowed by "g" or "r" in a register constraint.
1282 Also, registers outside this class are allocated only when
1283 instructions express preferences for them.
1285 The classes must be numbered in nondecreasing order; that is,
1286 a larger-numbered class must never be contained completely
1287 in a smaller-numbered class.
1289 For any two classes, it is very desirable that there be another
1290 class that represents their union.
1292 It might seem that class BREG is unnecessary, since no useful 386
1293 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1294 and the "b" register constraint is useful in asms for syscalls.
1296 The flags, fpsr and fpcr registers are in no class. */
1298 enum reg_class
1300 NO_REGS,
1301 AREG, DREG, CREG, BREG, SIREG, DIREG,
1302 AD_REGS, /* %eax/%edx for DImode */
1303 Q_REGS, /* %eax %ebx %ecx %edx */
1304 NON_Q_REGS, /* %esi %edi %ebp %esp */
1305 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1306 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1307 CLOBBERED_REGS, /* call-clobbered integer registers */
1308 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1309 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1310 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1311 FLOAT_REGS,
1312 SSE_FIRST_REG,
1313 NO_REX_SSE_REGS,
1314 SSE_REGS,
1315 EVEX_SSE_REGS,
1316 BND_REGS,
1317 ALL_SSE_REGS,
1318 MMX_REGS,
1319 FP_TOP_SSE_REGS,
1320 FP_SECOND_SSE_REGS,
1321 FLOAT_SSE_REGS,
1322 FLOAT_INT_REGS,
1323 INT_SSE_REGS,
1324 FLOAT_INT_SSE_REGS,
1325 MASK_EVEX_REGS,
1326 MASK_REGS,
1327 ALL_REGS, LIM_REG_CLASSES
1330 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1332 #define INTEGER_CLASS_P(CLASS) \
1333 reg_class_subset_p ((CLASS), GENERAL_REGS)
1334 #define FLOAT_CLASS_P(CLASS) \
1335 reg_class_subset_p ((CLASS), FLOAT_REGS)
1336 #define SSE_CLASS_P(CLASS) \
1337 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1338 #define MMX_CLASS_P(CLASS) \
1339 ((CLASS) == MMX_REGS)
1340 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1341 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1342 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1343 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1344 #define MAYBE_SSE_CLASS_P(CLASS) \
1345 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1346 #define MAYBE_MMX_CLASS_P(CLASS) \
1347 reg_classes_intersect_p ((CLASS), MMX_REGS)
1348 #define MAYBE_MASK_CLASS_P(CLASS) \
1349 reg_classes_intersect_p ((CLASS), MASK_REGS)
1351 #define Q_CLASS_P(CLASS) \
1352 reg_class_subset_p ((CLASS), Q_REGS)
1354 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1355 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1357 /* Give names of register classes as strings for dump file. */
1359 #define REG_CLASS_NAMES \
1360 { "NO_REGS", \
1361 "AREG", "DREG", "CREG", "BREG", \
1362 "SIREG", "DIREG", \
1363 "AD_REGS", \
1364 "Q_REGS", "NON_Q_REGS", \
1365 "INDEX_REGS", \
1366 "LEGACY_REGS", \
1367 "CLOBBERED_REGS", \
1368 "GENERAL_REGS", \
1369 "FP_TOP_REG", "FP_SECOND_REG", \
1370 "FLOAT_REGS", \
1371 "SSE_FIRST_REG", \
1372 "NO_REX_SSE_REGS", \
1373 "SSE_REGS", \
1374 "EVEX_SSE_REGS", \
1375 "BND_REGS", \
1376 "ALL_SSE_REGS", \
1377 "MMX_REGS", \
1378 "FP_TOP_SSE_REGS", \
1379 "FP_SECOND_SSE_REGS", \
1380 "FLOAT_SSE_REGS", \
1381 "FLOAT_INT_REGS", \
1382 "INT_SSE_REGS", \
1383 "FLOAT_INT_SSE_REGS", \
1384 "MASK_EVEX_REGS", \
1385 "MASK_REGS", \
1386 "ALL_REGS" }
1388 /* Define which registers fit in which classes. This is an initializer
1389 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1391 Note that CLOBBERED_REGS are calculated by
1392 TARGET_CONDITIONAL_REGISTER_USAGE. */
1394 #define REG_CLASS_CONTENTS \
1395 { { 0x00, 0x0, 0x0 }, \
1396 { 0x01, 0x0, 0x0 }, /* AREG */ \
1397 { 0x02, 0x0, 0x0 }, /* DREG */ \
1398 { 0x04, 0x0, 0x0 }, /* CREG */ \
1399 { 0x08, 0x0, 0x0 }, /* BREG */ \
1400 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1401 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1402 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1403 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1404 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1405 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1406 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1407 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1408 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1409 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1410 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1411 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1412 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1413 { 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
1414 { 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1415 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1416 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1417 { 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1418 { 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1419 { 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1420 { 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1421 { 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1422 { 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1423 { 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1424 { 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1425 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1426 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
1427 { 0xffffffff,0xffffffff, 0x1fff } \
1430 /* The same information, inverted:
1431 Return the class number of the smallest class containing
1432 reg number REGNO. This could be a conditional expression
1433 or could index an array. */
1435 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1437 /* When this hook returns true for MODE, the compiler allows
1438 registers explicitly used in the rtl to be used as spill registers
1439 but prevents the compiler from extending the lifetime of these
1440 registers. */
1441 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1443 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1444 #define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
1446 #define GENERAL_REG_P(X) \
1447 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1448 #define GENERAL_REGNO_P(N) \
1449 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
1451 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1452 #define ANY_QI_REGNO_P(N) \
1453 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1455 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1456 #define REX_INT_REGNO_P(N) \
1457 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1459 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1460 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1462 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1463 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1465 #define X87_FLOAT_MODE_P(MODE) \
1466 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1468 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1469 #define SSE_REGNO_P(N) \
1470 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1471 || REX_SSE_REGNO_P (N) \
1472 || EXT_REX_SSE_REGNO_P (N))
1474 #define REX_SSE_REGNO_P(N) \
1475 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1477 #define EXT_REX_SSE_REGNO_P(N) \
1478 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1480 #define SSE_REGNO(N) \
1481 ((N) < 8 ? FIRST_SSE_REG + (N) \
1482 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1483 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1485 #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1486 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1487 #define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1489 #define SSE_FLOAT_MODE_P(MODE) \
1490 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1492 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1493 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1494 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1496 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1497 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1499 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
1501 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1502 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1504 #define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
1505 #define ANY_BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
1507 /* The class value for index registers, and the one for base regs. */
1509 #define INDEX_REG_CLASS INDEX_REGS
1510 #define BASE_REG_CLASS GENERAL_REGS
1512 /* Place additional restrictions on the register class to use when it
1513 is necessary to be able to hold a value of mode MODE in a reload
1514 register for which class CLASS would ordinarily be used.
1516 We avoid classes containing registers from multiple units due to
1517 the limitation in ix86_secondary_memory_needed. We limit these
1518 classes to their "natural mode" single unit register class, depending
1519 on the unit availability.
1521 Please note that reg_class_subset_p is not commutative, so these
1522 conditions mean "... if (CLASS) includes ALL registers from the
1523 register set." */
1525 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1526 (((MODE) == QImode && !TARGET_64BIT \
1527 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1528 : (((MODE) == SImode || (MODE) == DImode) \
1529 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1530 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1531 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1532 : (X87_FLOAT_MODE_P (MODE) \
1533 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1534 : (CLASS))
1536 /* If we are copying between general and FP registers, we need a memory
1537 location. The same is true for SSE and MMX registers. */
1538 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1539 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1541 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1542 There is no need to emit full 64 bit move on 64 bit targets
1543 for integral modes that can be moved using 32 bit move. */
1544 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1545 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1546 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1547 : MODE)
1549 /* Return a class of registers that cannot change FROM mode to TO mode. */
1551 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1552 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1554 /* Stack layout; function entry, exit and calling. */
1556 /* Define this if pushing a word on the stack
1557 makes the stack pointer a smaller address. */
1558 #define STACK_GROWS_DOWNWARD
1560 /* Define this to nonzero if the nominal address of the stack frame
1561 is at the high-address end of the local variables;
1562 that is, each additional local variable allocated
1563 goes at a more negative offset in the frame. */
1564 #define FRAME_GROWS_DOWNWARD 1
1566 /* Offset within stack frame to start allocating local variables at.
1567 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1568 first local allocated. Otherwise, it is the offset to the BEGINNING
1569 of the first local allocated. */
1570 #define STARTING_FRAME_OFFSET 0
1572 /* If we generate an insn to push BYTES bytes, this says how many the stack
1573 pointer really advances by. On 386, we have pushw instruction that
1574 decrements by exactly 2 no matter what the position was, there is no pushb.
1576 But as CIE data alignment factor on this arch is -4 for 32bit targets
1577 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1578 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1580 #define PUSH_ROUNDING(BYTES) \
1581 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1583 /* If defined, the maximum amount of space required for outgoing arguments
1584 will be computed and placed into the variable `crtl->outgoing_args_size'.
1585 No space will be pushed onto the stack for each call; instead, the
1586 function prologue should increase the stack frame size by this amount.
1588 In 32bit mode enabling argument accumulation results in about 5% code size
1589 growth becuase move instructions are less compact than push. In 64bit
1590 mode the difference is less drastic but visible.
1592 FIXME: Unlike earlier implementations, the size of unwind info seems to
1593 actually grow with accumulation. Is that because accumulated args
1594 unwind info became unnecesarily bloated?
1596 With the 64-bit MS ABI, we can generate correct code with or without
1597 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1598 generated without accumulated args is terrible.
1600 If stack probes are required, the space used for large function
1601 arguments on the stack must also be probed, so enable
1602 -maccumulate-outgoing-args so this happens in the prologue. */
1604 #define ACCUMULATE_OUTGOING_ARGS \
1605 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1606 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
1608 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1609 instructions to pass outgoing arguments. */
1611 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1613 /* We want the stack and args grow in opposite directions, even if
1614 PUSH_ARGS is 0. */
1615 #define PUSH_ARGS_REVERSED 1
1617 /* Offset of first parameter from the argument pointer register value. */
1618 #define FIRST_PARM_OFFSET(FNDECL) 0
1620 /* Define this macro if functions should assume that stack space has been
1621 allocated for arguments even when their values are passed in registers.
1623 The value of this macro is the size, in bytes, of the area reserved for
1624 arguments passed in registers for the function represented by FNDECL.
1626 This space can be allocated by the caller, or be a part of the
1627 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1628 which. */
1629 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1631 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1632 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1634 /* Define how to find the value returned by a library function
1635 assuming the value has mode MODE. */
1637 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1639 /* Define the size of the result block used for communication between
1640 untyped_call and untyped_return. The block contains a DImode value
1641 followed by the block used by fnsave and frstor. */
1643 #define APPLY_RESULT_SIZE (8+108)
1645 /* 1 if N is a possible register number for function argument passing. */
1646 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1648 /* Define a data type for recording info about an argument list
1649 during the scan of that argument list. This data type should
1650 hold all necessary information about the function itself
1651 and about the args processed so far, enough to enable macros
1652 such as FUNCTION_ARG to determine where the next arg should go. */
1654 typedef struct ix86_args {
1655 int words; /* # words passed so far */
1656 int nregs; /* # registers available for passing */
1657 int regno; /* next available register number */
1658 int fastcall; /* fastcall or thiscall calling convention
1659 is used */
1660 int sse_words; /* # sse words passed so far */
1661 int sse_nregs; /* # sse registers available for passing */
1662 int warn_avx512f; /* True when we want to warn
1663 about AVX512F ABI. */
1664 int warn_avx; /* True when we want to warn about AVX ABI. */
1665 int warn_sse; /* True when we want to warn about SSE ABI. */
1666 int warn_mmx; /* True when we want to warn about MMX ABI. */
1667 int sse_regno; /* next available sse register number */
1668 int mmx_words; /* # mmx words passed so far */
1669 int mmx_nregs; /* # mmx registers available for passing */
1670 int mmx_regno; /* next available mmx register number */
1671 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1672 int caller; /* true if it is caller. */
1673 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1674 SFmode/DFmode arguments should be passed
1675 in SSE registers. Otherwise 0. */
1676 int bnd_regno; /* next available bnd register number */
1677 int bnds_in_bt; /* number of bounds expected in BT. */
1678 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1679 int stdarg; /* Set to 1 if function is stdarg. */
1680 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1681 MS_ABI for ms abi. */
1682 } CUMULATIVE_ARGS;
1684 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1685 for a call to a function whose data type is FNTYPE.
1686 For a library call, FNTYPE is 0. */
1688 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1689 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1690 (N_NAMED_ARGS) != -1)
1692 /* Output assembler code to FILE to increment profiler label # LABELNO
1693 for profiling a function entry. */
1695 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1697 #define MCOUNT_NAME "_mcount"
1699 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1701 #define PROFILE_COUNT_REGISTER "edx"
1703 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1704 the stack pointer does not matter. The value is tested only in
1705 functions that have frame pointers.
1706 No definition is equivalent to always zero. */
1707 /* Note on the 386 it might be more efficient not to define this since
1708 we have to restore it ourselves from the frame pointer, in order to
1709 use pop */
1711 #define EXIT_IGNORE_STACK 1
1713 /* Output assembler code for a block containing the constant parts
1714 of a trampoline, leaving space for the variable parts. */
1716 /* On the 386, the trampoline contains two instructions:
1717 mov #STATIC,ecx
1718 jmp FUNCTION
1719 The trampoline is generated entirely at runtime. The operand of JMP
1720 is the address of FUNCTION relative to the instruction following the
1721 JMP (which is 5 bytes long). */
1723 /* Length in units of the trampoline for entering a nested function. */
1725 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1727 /* Definitions for register eliminations.
1729 This is an array of structures. Each structure initializes one pair
1730 of eliminable registers. The "from" register number is given first,
1731 followed by "to". Eliminations of the same "from" register are listed
1732 in order of preference.
1734 There are two registers that can always be eliminated on the i386.
1735 The frame pointer and the arg pointer can be replaced by either the
1736 hard frame pointer or to the stack pointer, depending upon the
1737 circumstances. The hard frame pointer is not used before reload and
1738 so it is not eligible for elimination. */
1740 #define ELIMINABLE_REGS \
1741 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1742 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1743 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1744 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1746 /* Define the offset between two registers, one to be eliminated, and the other
1747 its replacement, at the start of a routine. */
1749 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1750 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1752 /* Addressing modes, and classification of registers for them. */
1754 /* Macros to check register numbers against specific register classes. */
1756 /* These assume that REGNO is a hard or pseudo reg number.
1757 They give nonzero only if REGNO is a hard reg of the suitable class
1758 or a pseudo reg currently allocated to a suitable hard reg.
1759 Since they use reg_renumber, they are safe only once reg_renumber
1760 has been allocated, which happens in reginfo.c during register
1761 allocation. */
1763 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1764 ((REGNO) < STACK_POINTER_REGNUM \
1765 || REX_INT_REGNO_P (REGNO) \
1766 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1767 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1769 #define REGNO_OK_FOR_BASE_P(REGNO) \
1770 (GENERAL_REGNO_P (REGNO) \
1771 || (REGNO) == ARG_POINTER_REGNUM \
1772 || (REGNO) == FRAME_POINTER_REGNUM \
1773 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1775 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1776 and check its validity for a certain class.
1777 We have two alternate definitions for each of them.
1778 The usual definition accepts all pseudo regs; the other rejects
1779 them unless they have been allocated suitable hard regs.
1780 The symbol REG_OK_STRICT causes the latter definition to be used.
1782 Most source files want to accept pseudo regs in the hope that
1783 they will get allocated to the class that the insn wants them to be in.
1784 Source files for reload pass need to be strict.
1785 After reload, it makes no difference, since pseudo regs have
1786 been eliminated by then. */
1789 /* Non strict versions, pseudos are ok. */
1790 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1791 (REGNO (X) < STACK_POINTER_REGNUM \
1792 || REX_INT_REGNO_P (REGNO (X)) \
1793 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1795 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1796 (GENERAL_REGNO_P (REGNO (X)) \
1797 || REGNO (X) == ARG_POINTER_REGNUM \
1798 || REGNO (X) == FRAME_POINTER_REGNUM \
1799 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1801 /* Strict versions, hard registers only */
1802 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1803 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1805 #ifndef REG_OK_STRICT
1806 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1807 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1809 #else
1810 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1811 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1812 #endif
1814 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1815 that is a valid memory address for an instruction.
1816 The MODE argument is the machine mode for the MEM expression
1817 that wants to use this address.
1819 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1820 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1822 See legitimize_pic_address in i386.c for details as to what
1823 constitutes a legitimate address when -fpic is used. */
1825 #define MAX_REGS_PER_ADDRESS 2
1827 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1829 /* Try a machine-dependent way of reloading an illegitimate address
1830 operand. If we find one, push the reload and jump to WIN. This
1831 macro is used in only one place: `find_reloads_address' in reload.c. */
1833 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1834 do { \
1835 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1836 (int)(TYPE), (INDL))) \
1837 goto WIN; \
1838 } while (0)
1840 /* If defined, a C expression to determine the base term of address X.
1841 This macro is used in only one place: `find_base_term' in alias.c.
1843 It is always safe for this macro to not be defined. It exists so
1844 that alias analysis can understand machine-dependent addresses.
1846 The typical use of this macro is to handle addresses containing
1847 a label_ref or symbol_ref within an UNSPEC. */
1849 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1851 /* Nonzero if the constant value X is a legitimate general operand
1852 when generating PIC code. It is given that flag_pic is on and
1853 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1855 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1857 #define SYMBOLIC_CONST(X) \
1858 (GET_CODE (X) == SYMBOL_REF \
1859 || GET_CODE (X) == LABEL_REF \
1860 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1862 /* Max number of args passed in registers. If this is more than 3, we will
1863 have problems with ebx (register #4), since it is a caller save register and
1864 is also used as the pic register in ELF. So for now, don't allow more than
1865 3 registers to be passed in registers. */
1867 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1868 #define X86_64_REGPARM_MAX 6
1869 #define X86_64_MS_REGPARM_MAX 4
1871 #define X86_32_REGPARM_MAX 3
1873 #define REGPARM_MAX \
1874 (TARGET_64BIT \
1875 ? (TARGET_64BIT_MS_ABI \
1876 ? X86_64_MS_REGPARM_MAX \
1877 : X86_64_REGPARM_MAX) \
1878 : X86_32_REGPARM_MAX)
1880 #define X86_64_SSE_REGPARM_MAX 8
1881 #define X86_64_MS_SSE_REGPARM_MAX 4
1883 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1885 #define SSE_REGPARM_MAX \
1886 (TARGET_64BIT \
1887 ? (TARGET_64BIT_MS_ABI \
1888 ? X86_64_MS_SSE_REGPARM_MAX \
1889 : X86_64_SSE_REGPARM_MAX) \
1890 : X86_32_SSE_REGPARM_MAX)
1892 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1894 /* Specify the machine mode that this machine uses
1895 for the index in the tablejump instruction. */
1896 #define CASE_VECTOR_MODE \
1897 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1899 /* Define this as 1 if `char' should by default be signed; else as 0. */
1900 #define DEFAULT_SIGNED_CHAR 1
1902 /* Max number of bytes we can move from memory to memory
1903 in one reasonably fast instruction. */
1904 #define MOVE_MAX 16
1906 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1907 move efficiently, as opposed to MOVE_MAX which is the maximum
1908 number of bytes we can move with a single instruction. */
1909 #define MOVE_MAX_PIECES UNITS_PER_WORD
1911 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1912 move-instruction pairs, we will do a movmem or libcall instead.
1913 Increasing the value will always make code faster, but eventually
1914 incurs high cost in increased code size.
1916 If you don't define this, a reasonable default is used. */
1918 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1920 /* If a clear memory operation would take CLEAR_RATIO or more simple
1921 move-instruction sequences, we will do a clrmem or libcall instead. */
1923 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1925 /* Define if shifts truncate the shift count which implies one can
1926 omit a sign-extension or zero-extension of a shift count.
1928 On i386, shifts do truncate the count. But bit test instructions
1929 take the modulo of the bit offset operand. */
1931 /* #define SHIFT_COUNT_TRUNCATED */
1933 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1934 is done just by pretending it is already truncated. */
1935 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1937 /* A macro to update M and UNSIGNEDP when an object whose type is
1938 TYPE and which has the specified mode and signedness is to be
1939 stored in a register. This macro is only called when TYPE is a
1940 scalar type.
1942 On i386 it is sometimes useful to promote HImode and QImode
1943 quantities to SImode. The choice depends on target type. */
1945 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1946 do { \
1947 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1948 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1949 (MODE) = SImode; \
1950 } while (0)
1952 /* Specify the machine mode that pointers have.
1953 After generation of rtl, the compiler makes no further distinction
1954 between pointers and any other objects of this machine mode. */
1955 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1957 /* Specify the machine mode that bounds have. */
1958 #define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1960 /* A C expression whose value is zero if pointers that need to be extended
1961 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1962 greater then zero if they are zero-extended and less then zero if the
1963 ptr_extend instruction should be used. */
1965 #define POINTERS_EXTEND_UNSIGNED 1
1967 /* A function address in a call instruction
1968 is a byte address (for indexing purposes)
1969 so give the MEM rtx a byte's mode. */
1970 #define FUNCTION_MODE QImode
1973 /* A C expression for the cost of a branch instruction. A value of 1
1974 is the default; other values are interpreted relative to that. */
1976 #define BRANCH_COST(speed_p, predictable_p) \
1977 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1979 /* An integer expression for the size in bits of the largest integer machine
1980 mode that should actually be used. We allow pairs of registers. */
1981 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1983 /* Define this macro as a C expression which is nonzero if accessing
1984 less than a word of memory (i.e. a `char' or a `short') is no
1985 faster than accessing a word of memory, i.e., if such access
1986 require more than one instruction or if there is no difference in
1987 cost between byte and (aligned) word loads.
1989 When this macro is not defined, the compiler will access a field by
1990 finding the smallest containing object; when it is defined, a
1991 fullword load will be used if alignment permits. Unless bytes
1992 accesses are faster than word accesses, using word accesses is
1993 preferable since it may eliminate subsequent memory access if
1994 subsequent accesses occur to other fields in the same word of the
1995 structure, but to different bytes. */
1997 #define SLOW_BYTE_ACCESS 0
1999 /* Nonzero if access to memory by shorts is slow and undesirable. */
2000 #define SLOW_SHORT_ACCESS 0
2002 /* Define this macro to be the value 1 if unaligned accesses have a
2003 cost many times greater than aligned accesses, for example if they
2004 are emulated in a trap handler.
2006 When this macro is nonzero, the compiler will act as if
2007 `STRICT_ALIGNMENT' were nonzero when generating code for block
2008 moves. This can cause significantly more instructions to be
2009 produced. Therefore, do not set this macro nonzero if unaligned
2010 accesses only add a cycle or two to the time for a memory access.
2012 If the value of this macro is always zero, it need not be defined. */
2014 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2016 /* Define this macro if it is as good or better to call a constant
2017 function address than to call an address kept in a register.
2019 Desirable on the 386 because a CALL with a constant address is
2020 faster than one with a register address. */
2022 #define NO_FUNCTION_CSE
2024 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2025 return the mode to be used for the comparison.
2027 For floating-point equality comparisons, CCFPEQmode should be used.
2028 VOIDmode should be used in all other cases.
2030 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2031 possible, to allow for more combinations. */
2033 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2035 /* Return nonzero if MODE implies a floating point inequality can be
2036 reversed. */
2038 #define REVERSIBLE_CC_MODE(MODE) 1
2040 /* A C expression whose value is reversed condition code of the CODE for
2041 comparison done in CC_MODE mode. */
2042 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2045 /* Control the assembler format that we output, to the extent
2046 this does not vary between assemblers. */
2048 /* How to refer to registers in assembler output.
2049 This sequence is indexed by compiler's hard-register-number (see above). */
2051 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2052 For non floating point regs, the following are the HImode names.
2054 For float regs, the stack top is sometimes referred to as "%st(0)"
2055 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2056 "y" code. */
2058 #define HI_REGISTER_NAMES \
2059 {"ax","dx","cx","bx","si","di","bp","sp", \
2060 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2061 "argp", "flags", "fpsr", "fpcr", "frame", \
2062 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2063 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
2064 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2065 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2066 "xmm16", "xmm17", "xmm18", "xmm19", \
2067 "xmm20", "xmm21", "xmm22", "xmm23", \
2068 "xmm24", "xmm25", "xmm26", "xmm27", \
2069 "xmm28", "xmm29", "xmm30", "xmm31", \
2070 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2071 "bnd0", "bnd1", "bnd2", "bnd3" }
2073 #define REGISTER_NAMES HI_REGISTER_NAMES
2075 /* Table of additional register names to use in user input. */
2077 #define ADDITIONAL_REGISTER_NAMES \
2078 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2079 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2080 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2081 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2082 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2083 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2084 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2085 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2086 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2087 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2088 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2089 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2090 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2091 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2092 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2093 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2094 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2095 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2096 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2097 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2098 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2099 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
2101 /* Note we are omitting these since currently I don't know how
2102 to get gcc to use these, since they want the same but different
2103 number as al, and ax.
2106 #define QI_REGISTER_NAMES \
2107 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2109 /* These parallel the array above, and can be used to access bits 8:15
2110 of regs 0 through 3. */
2112 #define QI_HIGH_REGISTER_NAMES \
2113 {"ah", "dh", "ch", "bh", }
2115 /* How to renumber registers for dbx and gdb. */
2117 #define DBX_REGISTER_NUMBER(N) \
2118 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2120 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2121 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2122 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2124 extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2126 /* Before the prologue, RA is at 0(%esp). */
2127 #define INCOMING_RETURN_ADDR_RTX \
2128 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2130 /* After the prologue, RA is at -4(AP) in the current frame. */
2131 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2132 ((COUNT) == 0 \
2133 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2134 -UNITS_PER_WORD)) \
2135 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
2137 /* PC is dbx register 8; let's use that column for RA. */
2138 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2140 /* Before the prologue, the top of the frame is at 4(%esp). */
2141 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2143 /* Describe how we implement __builtin_eh_return. */
2144 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2145 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
2148 /* Select a format to encode pointers in exception handling data. CODE
2149 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2150 true if the symbol may be affected by dynamic relocations.
2152 ??? All x86 object file formats are capable of representing this.
2153 After all, the relocation needed is the same as for the call insn.
2154 Whether or not a particular assembler allows us to enter such, I
2155 guess we'll have to see. */
2156 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2157 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2159 /* This is how to output an insn to push a register on the stack.
2160 It need not be very fast code. */
2162 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2163 do { \
2164 if (TARGET_64BIT) \
2165 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2166 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2167 else \
2168 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2169 } while (0)
2171 /* This is how to output an insn to pop a register from the stack.
2172 It need not be very fast code. */
2174 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2175 do { \
2176 if (TARGET_64BIT) \
2177 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2178 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2179 else \
2180 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2181 } while (0)
2183 /* This is how to output an element of a case-vector that is absolute. */
2185 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2186 ix86_output_addr_vec_elt ((FILE), (VALUE))
2188 /* This is how to output an element of a case-vector that is relative. */
2190 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2191 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2193 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2195 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2197 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2198 (PTR) += TARGET_AVX ? 1 : 2; \
2201 /* A C statement or statements which output an assembler instruction
2202 opcode to the stdio stream STREAM. The macro-operand PTR is a
2203 variable of type `char *' which points to the opcode name in
2204 its "internal" form--the form that is written in the machine
2205 description. */
2207 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2208 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2210 /* A C statement to output to the stdio stream FILE an assembler
2211 command to pad the location counter to a multiple of 1<<LOG
2212 bytes if it is within MAX_SKIP bytes. */
2214 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2215 #undef ASM_OUTPUT_MAX_SKIP_PAD
2216 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2217 if ((LOG) != 0) \
2219 if ((MAX_SKIP) == 0) \
2220 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2221 else \
2222 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2224 #endif
2226 /* Write the extra assembler code needed to declare a function
2227 properly. */
2229 #undef ASM_OUTPUT_FUNCTION_LABEL
2230 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2231 ix86_asm_output_function_label (FILE, NAME, DECL)
2233 /* Under some conditions we need jump tables in the text section,
2234 because the assembler cannot handle label differences between
2235 sections. This is the case for x86_64 on Mach-O for example. */
2237 #define JUMP_TABLES_IN_TEXT_SECTION \
2238 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2239 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2241 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2242 and switch back. For x86 we do this only to save a few bytes that
2243 would otherwise be unused in the text section. */
2244 #define CRT_MKSTR2(VAL) #VAL
2245 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2247 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2248 asm (SECTION_OP "\n\t" \
2249 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2250 TEXT_SECTION_ASM_OP);
2252 /* Default threshold for putting data in large sections
2253 with x86-64 medium memory model */
2254 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2256 /* Which processor to tune code generation for. These must be in sync
2257 with processor_target_table in i386.c. */
2259 enum processor_type
2261 PROCESSOR_GENERIC = 0,
2262 PROCESSOR_I386, /* 80386 */
2263 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2264 PROCESSOR_PENTIUM,
2265 PROCESSOR_PENTIUMPRO,
2266 PROCESSOR_PENTIUM4,
2267 PROCESSOR_NOCONA,
2268 PROCESSOR_CORE2,
2269 PROCESSOR_NEHALEM,
2270 PROCESSOR_SANDYBRIDGE,
2271 PROCESSOR_HASWELL,
2272 PROCESSOR_BONNELL,
2273 PROCESSOR_SILVERMONT,
2274 PROCESSOR_KNL,
2275 PROCESSOR_INTEL,
2276 PROCESSOR_GEODE,
2277 PROCESSOR_K6,
2278 PROCESSOR_ATHLON,
2279 PROCESSOR_K8,
2280 PROCESSOR_AMDFAM10,
2281 PROCESSOR_BDVER1,
2282 PROCESSOR_BDVER2,
2283 PROCESSOR_BDVER3,
2284 PROCESSOR_BDVER4,
2285 PROCESSOR_BTVER1,
2286 PROCESSOR_BTVER2,
2287 PROCESSOR_max
2290 extern enum processor_type ix86_tune;
2291 extern enum processor_type ix86_arch;
2293 /* Size of the RED_ZONE area. */
2294 #define RED_ZONE_SIZE 128
2295 /* Reserved area of the red zone for temporaries. */
2296 #define RED_ZONE_RESERVE 8
2298 extern unsigned int ix86_preferred_stack_boundary;
2299 extern unsigned int ix86_incoming_stack_boundary;
2301 /* Smallest class containing REGNO. */
2302 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2304 enum ix86_fpcmp_strategy {
2305 IX86_FPCMP_SAHF,
2306 IX86_FPCMP_COMI,
2307 IX86_FPCMP_ARITH
2310 /* To properly truncate FP values into integers, we need to set i387 control
2311 word. We can't emit proper mode switching code before reload, as spills
2312 generated by reload may truncate values incorrectly, but we still can avoid
2313 redundant computation of new control word by the mode switching pass.
2314 The fldcw instructions are still emitted redundantly, but this is probably
2315 not going to be noticeable problem, as most CPUs do have fast path for
2316 the sequence.
2318 The machinery is to emit simple truncation instructions and split them
2319 before reload to instructions having USEs of two memory locations that
2320 are filled by this code to old and new control word.
2322 Post-reload pass may be later used to eliminate the redundant fildcw if
2323 needed. */
2325 enum ix86_entity
2327 AVX_U128 = 0,
2328 I387_TRUNC,
2329 I387_FLOOR,
2330 I387_CEIL,
2331 I387_MASK_PM,
2332 MAX_386_ENTITIES
2335 enum ix86_stack_slot
2337 SLOT_TEMP = 0,
2338 SLOT_CW_STORED,
2339 SLOT_CW_TRUNC,
2340 SLOT_CW_FLOOR,
2341 SLOT_CW_CEIL,
2342 SLOT_CW_MASK_PM,
2343 MAX_386_STACK_LOCALS
2346 enum avx_u128_state
2348 AVX_U128_CLEAN,
2349 AVX_U128_DIRTY,
2350 AVX_U128_ANY
2353 /* Define this macro if the port needs extra instructions inserted
2354 for mode switching in an optimizing compilation. */
2356 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2357 ix86_optimize_mode_switching[(ENTITY)]
2359 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2360 initializer for an array of integers. Each initializer element N
2361 refers to an entity that needs mode switching, and specifies the
2362 number of different modes that might need to be set for this
2363 entity. The position of the initializer in the initializer -
2364 starting counting at zero - determines the integer that is used to
2365 refer to the mode-switched entity in question. */
2367 #define NUM_MODES_FOR_MODE_SWITCHING \
2368 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2371 /* Avoid renaming of stack registers, as doing so in combination with
2372 scheduling just increases amount of live registers at time and in
2373 the turn amount of fxch instructions needed.
2375 ??? Maybe Pentium chips benefits from renaming, someone can try....
2377 Don't rename evex to non-evex sse registers. */
2379 #define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2380 (EXT_REX_SSE_REGNO_P (SRC) == \
2381 EXT_REX_SSE_REGNO_P (TARGET)))
2384 #define FASTCALL_PREFIX '@'
2386 /* Machine specific frame tracking during prologue/epilogue generation. */
2388 #ifndef USED_FOR_TARGET
2389 struct GTY(()) machine_frame_state
2391 /* This pair tracks the currently active CFA as reg+offset. When reg
2392 is drap_reg, we don't bother trying to record here the real CFA when
2393 it might really be a DW_CFA_def_cfa_expression. */
2394 rtx cfa_reg;
2395 HOST_WIDE_INT cfa_offset;
2397 /* The current offset (canonically from the CFA) of ESP and EBP.
2398 When stack frame re-alignment is active, these may not be relative
2399 to the CFA. However, in all cases they are relative to the offsets
2400 of the saved registers stored in ix86_frame. */
2401 HOST_WIDE_INT sp_offset;
2402 HOST_WIDE_INT fp_offset;
2404 /* The size of the red-zone that may be assumed for the purposes of
2405 eliding register restore notes in the epilogue. This may be zero
2406 if no red-zone is in effect, or may be reduced from the real
2407 red-zone value by a maximum runtime stack re-alignment value. */
2408 int red_zone_offset;
2410 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2411 value within the frame. If false then the offset above should be
2412 ignored. Note that DRAP, if valid, *always* points to the CFA and
2413 thus has an offset of zero. */
2414 BOOL_BITFIELD sp_valid : 1;
2415 BOOL_BITFIELD fp_valid : 1;
2416 BOOL_BITFIELD drap_valid : 1;
2418 /* Indicate whether the local stack frame has been re-aligned. When
2419 set, the SP/FP offsets above are relative to the aligned frame
2420 and not the CFA. */
2421 BOOL_BITFIELD realigned : 1;
2424 /* Private to winnt.c. */
2425 struct seh_frame_state;
2427 struct GTY(()) machine_function {
2428 struct stack_local_entry *stack_locals;
2429 const char *some_ld_name;
2430 int varargs_gpr_size;
2431 int varargs_fpr_size;
2432 int optimize_mode_switching[MAX_386_ENTITIES];
2434 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2435 has been computed for. */
2436 int use_fast_prologue_epilogue_nregs;
2438 /* For -fsplit-stack support: A stack local which holds a pointer to
2439 the stack arguments for a function with a variable number of
2440 arguments. This is set at the start of the function and is used
2441 to initialize the overflow_arg_area field of the va_list
2442 structure. */
2443 rtx split_stack_varargs_pointer;
2445 /* This value is used for amd64 targets and specifies the current abi
2446 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2447 ENUM_BITFIELD(calling_abi) call_abi : 8;
2449 /* Nonzero if the function accesses a previous frame. */
2450 BOOL_BITFIELD accesses_prev_frame : 1;
2452 /* Nonzero if the function requires a CLD in the prologue. */
2453 BOOL_BITFIELD needs_cld : 1;
2455 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2456 expander to determine the style used. */
2457 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2459 /* If true, the current function needs the default PIC register, not
2460 an alternate register (on x86) and must not use the red zone (on
2461 x86_64), even if it's a leaf function. We don't want the
2462 function to be regarded as non-leaf because TLS calls need not
2463 affect register allocation. This flag is set when a TLS call
2464 instruction is expanded within a function, and never reset, even
2465 if all such instructions are optimized away. Use the
2466 ix86_current_function_calls_tls_descriptor macro for a better
2467 approximation. */
2468 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2470 /* If true, the current function has a STATIC_CHAIN is placed on the
2471 stack below the return address. */
2472 BOOL_BITFIELD static_chain_on_stack : 1;
2474 /* If true, it is safe to not save/restore DRAP register. */
2475 BOOL_BITFIELD no_drap_save_restore : 1;
2477 /* During prologue/epilogue generation, the current frame state.
2478 Otherwise, the frame state at the end of the prologue. */
2479 struct machine_frame_state fs;
2481 /* During SEH output, this is non-null. */
2482 struct seh_frame_state * GTY((skip(""))) seh;
2484 #endif
2486 #define ix86_stack_locals (cfun->machine->stack_locals)
2487 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2488 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2489 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2490 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2491 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2492 (cfun->machine->tls_descriptor_call_expanded_p)
2493 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2494 calls are optimized away, we try to detect cases in which it was
2495 optimized away. Since such instructions (use (reg REG_SP)), we can
2496 verify whether there's any such instruction live by testing that
2497 REG_SP is live. */
2498 #define ix86_current_function_calls_tls_descriptor \
2499 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2500 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2502 /* Control behavior of x86_file_start. */
2503 #define X86_FILE_START_VERSION_DIRECTIVE false
2504 #define X86_FILE_START_FLTUSED false
2506 /* Flag to mark data that is in the large address area. */
2507 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2508 #define SYMBOL_REF_FAR_ADDR_P(X) \
2509 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2511 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2512 have defined always, to avoid ifdefing. */
2513 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2514 #define SYMBOL_REF_DLLIMPORT_P(X) \
2515 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2517 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2518 #define SYMBOL_REF_DLLEXPORT_P(X) \
2519 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2521 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2522 #define SYMBOL_REF_STUBVAR_P(X) \
2523 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2525 extern void debug_ready_dispatch (void);
2526 extern void debug_dispatch_window (int);
2528 /* The value at zero is only defined for the BMI instructions
2529 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2530 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2531 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
2532 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2533 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
2536 /* Flags returned by ix86_get_callcvt (). */
2537 #define IX86_CALLCVT_CDECL 0x1
2538 #define IX86_CALLCVT_STDCALL 0x2
2539 #define IX86_CALLCVT_FASTCALL 0x4
2540 #define IX86_CALLCVT_THISCALL 0x8
2541 #define IX86_CALLCVT_REGPARM 0x10
2542 #define IX86_CALLCVT_SSEREGPARM 0x20
2544 #define IX86_BASE_CALLCVT(FLAGS) \
2545 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2546 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2548 #define RECIP_MASK_NONE 0x00
2549 #define RECIP_MASK_DIV 0x01
2550 #define RECIP_MASK_SQRT 0x02
2551 #define RECIP_MASK_VEC_DIV 0x04
2552 #define RECIP_MASK_VEC_SQRT 0x08
2553 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2554 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2555 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2557 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2558 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2559 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2560 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2562 #define IX86_HLE_ACQUIRE (1 << 16)
2563 #define IX86_HLE_RELEASE (1 << 17)
2565 /* For switching between functions with different target attributes. */
2566 #define SWITCHABLE_TARGET 1
2569 Local variables:
2570 version-control: t
2571 End: