Only allow allow rotations by a constant amount.
[official-gcc.git] / gcc / reload1.c
blobf6daf4899e21e7cc0f5b5e2a9599d7e1babeda97
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "insn-flags.h"
32 #include "insn-codes.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "regs.h"
37 #include "basic-block.h"
38 #include "reload.h"
39 #include "recog.h"
40 #include "output.h"
41 #include "cselib.h"
42 #include "real.h"
43 #include "toplev.h"
45 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
46 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
47 #endif
49 /* This file contains the reload pass of the compiler, which is
50 run after register allocation has been done. It checks that
51 each insn is valid (operands required to be in registers really
52 are in registers of the proper class) and fixes up invalid ones
53 by copying values temporarily into registers for the insns
54 that need them.
56 The results of register allocation are described by the vector
57 reg_renumber; the insns still contain pseudo regs, but reg_renumber
58 can be used to find which hard reg, if any, a pseudo reg is in.
60 The technique we always use is to free up a few hard regs that are
61 called ``reload regs'', and for each place where a pseudo reg
62 must be in a hard reg, copy it temporarily into one of the reload regs.
64 Reload regs are allocated locally for every instruction that needs
65 reloads. When there are pseudos which are allocated to a register that
66 has been chosen as a reload reg, such pseudos must be ``spilled''.
67 This means that they go to other hard regs, or to stack slots if no other
68 available hard regs can be found. Spilling can invalidate more
69 insns, requiring additional need for reloads, so we must keep checking
70 until the process stabilizes.
72 For machines with different classes of registers, we must keep track
73 of the register class needed for each reload, and make sure that
74 we allocate enough reload registers of each class.
76 The file reload.c contains the code that checks one insn for
77 validity and reports the reloads that it needs. This file
78 is in charge of scanning the entire rtl code, accumulating the
79 reload needs, spilling, assigning reload registers to use for
80 fixing up each insn, and generating the new insns to copy values
81 into the reload registers. */
83 #ifndef REGISTER_MOVE_COST
84 #define REGISTER_MOVE_COST(x, y) 2
85 #endif
87 #ifndef LOCAL_REGNO
88 #define LOCAL_REGNO(REGNO) 0
89 #endif
91 /* During reload_as_needed, element N contains a REG rtx for the hard reg
92 into which reg N has been reloaded (perhaps for a previous insn). */
93 static rtx *reg_last_reload_reg;
95 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
96 for an output reload that stores into reg N. */
97 static char *reg_has_output_reload;
99 /* Indicates which hard regs are reload-registers for an output reload
100 in the current insn. */
101 static HARD_REG_SET reg_is_output_reload;
103 /* Element N is the constant value to which pseudo reg N is equivalent,
104 or zero if pseudo reg N is not equivalent to a constant.
105 find_reloads looks at this in order to replace pseudo reg N
106 with the constant it stands for. */
107 rtx *reg_equiv_constant;
109 /* Element N is a memory location to which pseudo reg N is equivalent,
110 prior to any register elimination (such as frame pointer to stack
111 pointer). Depending on whether or not it is a valid address, this value
112 is transferred to either reg_equiv_address or reg_equiv_mem. */
113 rtx *reg_equiv_memory_loc;
115 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
116 This is used when the address is not valid as a memory address
117 (because its displacement is too big for the machine.) */
118 rtx *reg_equiv_address;
120 /* Element N is the memory slot to which pseudo reg N is equivalent,
121 or zero if pseudo reg N is not equivalent to a memory slot. */
122 rtx *reg_equiv_mem;
124 /* Widest width in which each pseudo reg is referred to (via subreg). */
125 static unsigned int *reg_max_ref_width;
127 /* Element N is the list of insns that initialized reg N from its equivalent
128 constant or memory slot. */
129 static rtx *reg_equiv_init;
131 /* Vector to remember old contents of reg_renumber before spilling. */
132 static short *reg_old_renumber;
134 /* During reload_as_needed, element N contains the last pseudo regno reloaded
135 into hard register N. If that pseudo reg occupied more than one register,
136 reg_reloaded_contents points to that pseudo for each spill register in
137 use; all of these must remain set for an inheritance to occur. */
138 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
140 /* During reload_as_needed, element N contains the insn for which
141 hard register N was last used. Its contents are significant only
142 when reg_reloaded_valid is set for this register. */
143 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
145 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
146 static HARD_REG_SET reg_reloaded_valid;
147 /* Indicate if the register was dead at the end of the reload.
148 This is only valid if reg_reloaded_contents is set and valid. */
149 static HARD_REG_SET reg_reloaded_dead;
151 /* Number of spill-regs so far; number of valid elements of spill_regs. */
152 static int n_spills;
154 /* In parallel with spill_regs, contains REG rtx's for those regs.
155 Holds the last rtx used for any given reg, or 0 if it has never
156 been used for spilling yet. This rtx is reused, provided it has
157 the proper mode. */
158 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
160 /* In parallel with spill_regs, contains nonzero for a spill reg
161 that was stored after the last time it was used.
162 The precise value is the insn generated to do the store. */
163 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
165 /* This is the register that was stored with spill_reg_store. This is a
166 copy of reload_out / reload_out_reg when the value was stored; if
167 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
168 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
170 /* This table is the inverse mapping of spill_regs:
171 indexed by hard reg number,
172 it contains the position of that reg in spill_regs,
173 or -1 for something that is not in spill_regs.
175 ?!? This is no longer accurate. */
176 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
178 /* This reg set indicates registers that can't be used as spill registers for
179 the currently processed insn. These are the hard registers which are live
180 during the insn, but not allocated to pseudos, as well as fixed
181 registers. */
182 static HARD_REG_SET bad_spill_regs;
184 /* These are the hard registers that can't be used as spill register for any
185 insn. This includes registers used for user variables and registers that
186 we can't eliminate. A register that appears in this set also can't be used
187 to retry register allocation. */
188 static HARD_REG_SET bad_spill_regs_global;
190 /* Describes order of use of registers for reloading
191 of spilled pseudo-registers. `n_spills' is the number of
192 elements that are actually valid; new ones are added at the end.
194 Both spill_regs and spill_reg_order are used on two occasions:
195 once during find_reload_regs, where they keep track of the spill registers
196 for a single insn, but also during reload_as_needed where they show all
197 the registers ever used by reload. For the latter case, the information
198 is calculated during finish_spills. */
199 static short spill_regs[FIRST_PSEUDO_REGISTER];
201 /* This vector of reg sets indicates, for each pseudo, which hard registers
202 may not be used for retrying global allocation because the register was
203 formerly spilled from one of them. If we allowed reallocating a pseudo to
204 a register that it was already allocated to, reload might not
205 terminate. */
206 static HARD_REG_SET *pseudo_previous_regs;
208 /* This vector of reg sets indicates, for each pseudo, which hard
209 registers may not be used for retrying global allocation because they
210 are used as spill registers during one of the insns in which the
211 pseudo is live. */
212 static HARD_REG_SET *pseudo_forbidden_regs;
214 /* All hard regs that have been used as spill registers for any insn are
215 marked in this set. */
216 static HARD_REG_SET used_spill_regs;
218 /* Index of last register assigned as a spill register. We allocate in
219 a round-robin fashion. */
220 static int last_spill_reg;
222 /* Nonzero if indirect addressing is supported on the machine; this means
223 that spilling (REG n) does not require reloading it into a register in
224 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
225 value indicates the level of indirect addressing supported, e.g., two
226 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
227 a hard register. */
228 static char spill_indirect_levels;
230 /* Nonzero if indirect addressing is supported when the innermost MEM is
231 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
232 which these are valid is the same as spill_indirect_levels, above. */
233 char indirect_symref_ok;
235 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
236 char double_reg_address_ok;
238 /* Record the stack slot for each spilled hard register. */
239 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
241 /* Width allocated so far for that stack slot. */
242 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
244 /* Record which pseudos needed to be spilled. */
245 static regset_head spilled_pseudos;
247 /* Used for communication between order_regs_for_reload and count_pseudo.
248 Used to avoid counting one pseudo twice. */
249 static regset_head pseudos_counted;
251 /* First uid used by insns created by reload in this function.
252 Used in find_equiv_reg. */
253 int reload_first_uid;
255 /* Flag set by local-alloc or global-alloc if anything is live in
256 a call-clobbered reg across calls. */
257 int caller_save_needed;
259 /* Set to 1 while reload_as_needed is operating.
260 Required by some machines to handle any generated moves differently. */
261 int reload_in_progress = 0;
263 /* These arrays record the insn_code of insns that may be needed to
264 perform input and output reloads of special objects. They provide a
265 place to pass a scratch register. */
266 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
267 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
269 /* This obstack is used for allocation of rtl during register elimination.
270 The allocated storage can be freed once find_reloads has processed the
271 insn. */
272 struct obstack reload_obstack;
274 /* Points to the beginning of the reload_obstack. All insn_chain structures
275 are allocated first. */
276 char *reload_startobj;
278 /* The point after all insn_chain structures. Used to quickly deallocate
279 memory allocated in copy_reloads during calculate_needs_all_insns. */
280 char *reload_firstobj;
282 /* This points before all local rtl generated by register elimination.
283 Used to quickly free all memory after processing one insn. */
284 static char *reload_insn_firstobj;
286 #define obstack_chunk_alloc xmalloc
287 #define obstack_chunk_free free
289 /* List of insn_chain instructions, one for every insn that reload needs to
290 examine. */
291 struct insn_chain *reload_insn_chain;
293 #ifdef TREE_CODE
294 extern tree current_function_decl;
295 #else
296 extern union tree_node *current_function_decl;
297 #endif
299 /* List of all insns needing reloads. */
300 static struct insn_chain *insns_need_reload;
302 /* This structure is used to record information about register eliminations.
303 Each array entry describes one possible way of eliminating a register
304 in favor of another. If there is more than one way of eliminating a
305 particular register, the most preferred should be specified first. */
307 struct elim_table
309 int from; /* Register number to be eliminated. */
310 int to; /* Register number used as replacement. */
311 int initial_offset; /* Initial difference between values. */
312 int can_eliminate; /* Non-zero if this elimination can be done. */
313 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
314 insns made by reload. */
315 int offset; /* Current offset between the two regs. */
316 int previous_offset; /* Offset at end of previous insn. */
317 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
318 rtx from_rtx; /* REG rtx for the register to be eliminated.
319 We cannot simply compare the number since
320 we might then spuriously replace a hard
321 register corresponding to a pseudo
322 assigned to the reg to be eliminated. */
323 rtx to_rtx; /* REG rtx for the replacement. */
326 static struct elim_table *reg_eliminate = 0;
328 /* This is an intermediate structure to initialize the table. It has
329 exactly the members provided by ELIMINABLE_REGS. */
330 static struct elim_table_1
332 int from;
333 int to;
334 } reg_eliminate_1[] =
336 /* If a set of eliminable registers was specified, define the table from it.
337 Otherwise, default to the normal case of the frame pointer being
338 replaced by the stack pointer. */
340 #ifdef ELIMINABLE_REGS
341 ELIMINABLE_REGS;
342 #else
343 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
344 #endif
346 #define NUM_ELIMINABLE_REGS (sizeof reg_eliminate_1/sizeof reg_eliminate_1[0])
348 /* Record the number of pending eliminations that have an offset not equal
349 to their initial offset. If non-zero, we use a new copy of each
350 replacement result in any insns encountered. */
351 int num_not_at_initial_offset;
353 /* Count the number of registers that we may be able to eliminate. */
354 static int num_eliminable;
355 /* And the number of registers that are equivalent to a constant that
356 can be eliminated to frame_pointer / arg_pointer + constant. */
357 static int num_eliminable_invariants;
359 /* For each label, we record the offset of each elimination. If we reach
360 a label by more than one path and an offset differs, we cannot do the
361 elimination. This information is indexed by the number of the label.
362 The first table is an array of flags that records whether we have yet
363 encountered a label and the second table is an array of arrays, one
364 entry in the latter array for each elimination. */
366 static char *offsets_known_at;
367 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
369 /* Number of labels in the current function. */
371 static int num_labels;
373 static void maybe_fix_stack_asms PARAMS ((void));
374 static void copy_reloads PARAMS ((struct insn_chain *));
375 static void calculate_needs_all_insns PARAMS ((int));
376 static int find_reg PARAMS ((struct insn_chain *, int,
377 FILE *));
378 static void find_reload_regs PARAMS ((struct insn_chain *, FILE *));
379 static void select_reload_regs PARAMS ((FILE *));
380 static void delete_caller_save_insns PARAMS ((void));
382 static void spill_failure PARAMS ((rtx, enum reg_class));
383 static void count_spilled_pseudo PARAMS ((int, int, int));
384 static void delete_dead_insn PARAMS ((rtx));
385 static void alter_reg PARAMS ((int, int));
386 static void set_label_offsets PARAMS ((rtx, rtx, int));
387 static void check_eliminable_occurrences PARAMS ((rtx));
388 static void elimination_effects PARAMS ((rtx, enum machine_mode));
389 static int eliminate_regs_in_insn PARAMS ((rtx, int));
390 static void update_eliminable_offsets PARAMS ((void));
391 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
392 static void set_initial_elim_offsets PARAMS ((void));
393 static void verify_initial_elim_offsets PARAMS ((void));
394 static void set_initial_label_offsets PARAMS ((void));
395 static void set_offsets_for_label PARAMS ((rtx));
396 static void init_elim_table PARAMS ((void));
397 static void update_eliminables PARAMS ((HARD_REG_SET *));
398 static void spill_hard_reg PARAMS ((unsigned int, FILE *, int));
399 static int finish_spills PARAMS ((int, FILE *));
400 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
401 static void scan_paradoxical_subregs PARAMS ((rtx));
402 static void count_pseudo PARAMS ((int));
403 static void order_regs_for_reload PARAMS ((struct insn_chain *));
404 static void reload_as_needed PARAMS ((int));
405 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
406 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
407 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
408 enum reload_type,
409 enum machine_mode));
410 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
411 enum reload_type,
412 enum machine_mode));
413 static int reload_reg_free_p PARAMS ((unsigned int, int,
414 enum reload_type));
415 static int reload_reg_free_for_value_p PARAMS ((int, int, enum reload_type,
416 rtx, rtx, int, int));
417 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
418 enum reload_type));
419 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
420 int));
421 static void failed_reload PARAMS ((rtx, int));
422 static int set_reload_reg PARAMS ((int, int));
423 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
424 static void choose_reload_regs PARAMS ((struct insn_chain *));
425 static void merge_assigned_reloads PARAMS ((rtx));
426 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
427 struct reload *, rtx, int));
428 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
429 struct reload *, int));
430 static void do_input_reload PARAMS ((struct insn_chain *,
431 struct reload *, int));
432 static void do_output_reload PARAMS ((struct insn_chain *,
433 struct reload *, int));
434 static void emit_reload_insns PARAMS ((struct insn_chain *));
435 static void delete_output_reload PARAMS ((rtx, int, int));
436 static void delete_address_reloads PARAMS ((rtx, rtx));
437 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
438 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
439 static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
440 static void reload_cse_regs_1 PARAMS ((rtx));
441 static int reload_cse_noop_set_p PARAMS ((rtx));
442 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
443 static int reload_cse_simplify_operands PARAMS ((rtx));
444 static void reload_combine PARAMS ((void));
445 static void reload_combine_note_use PARAMS ((rtx *, rtx));
446 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
447 static void reload_cse_move2add PARAMS ((rtx));
448 static void move2add_note_store PARAMS ((rtx, rtx, void *));
449 #ifdef AUTO_INC_DEC
450 static void add_auto_inc_notes PARAMS ((rtx, rtx));
451 #endif
452 static rtx gen_mode_int PARAMS ((enum machine_mode,
453 HOST_WIDE_INT));
454 static void failed_reload PARAMS ((rtx, int));
455 static int set_reload_reg PARAMS ((int, int));
456 static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
457 static void reload_cse_simplify PARAMS ((rtx));
458 extern void dump_needs PARAMS ((struct insn_chain *, FILE *));
460 /* Initialize the reload pass once per compilation. */
462 void
463 init_reload ()
465 register int i;
467 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
468 Set spill_indirect_levels to the number of levels such addressing is
469 permitted, zero if it is not permitted at all. */
471 register rtx tem
472 = gen_rtx_MEM (Pmode,
473 gen_rtx_PLUS (Pmode,
474 gen_rtx_REG (Pmode,
475 LAST_VIRTUAL_REGISTER + 1),
476 GEN_INT (4)));
477 spill_indirect_levels = 0;
479 while (memory_address_p (QImode, tem))
481 spill_indirect_levels++;
482 tem = gen_rtx_MEM (Pmode, tem);
485 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
487 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
488 indirect_symref_ok = memory_address_p (QImode, tem);
490 /* See if reg+reg is a valid (and offsettable) address. */
492 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
494 tem = gen_rtx_PLUS (Pmode,
495 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
496 gen_rtx_REG (Pmode, i));
498 /* This way, we make sure that reg+reg is an offsettable address. */
499 tem = plus_constant (tem, 4);
501 if (memory_address_p (QImode, tem))
503 double_reg_address_ok = 1;
504 break;
508 /* Initialize obstack for our rtl allocation. */
509 gcc_obstack_init (&reload_obstack);
510 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
512 INIT_REG_SET (&spilled_pseudos);
513 INIT_REG_SET (&pseudos_counted);
516 /* List of insn chains that are currently unused. */
517 static struct insn_chain *unused_insn_chains = 0;
519 /* Allocate an empty insn_chain structure. */
520 struct insn_chain *
521 new_insn_chain ()
523 struct insn_chain *c;
525 if (unused_insn_chains == 0)
527 c = (struct insn_chain *)
528 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
529 INIT_REG_SET (&c->live_throughout);
530 INIT_REG_SET (&c->dead_or_set);
532 else
534 c = unused_insn_chains;
535 unused_insn_chains = c->next;
537 c->is_caller_save_insn = 0;
538 c->need_operand_change = 0;
539 c->need_reload = 0;
540 c->need_elim = 0;
541 return c;
544 /* Small utility function to set all regs in hard reg set TO which are
545 allocated to pseudos in regset FROM. */
547 void
548 compute_use_by_pseudos (to, from)
549 HARD_REG_SET *to;
550 regset from;
552 unsigned int regno;
554 EXECUTE_IF_SET_IN_REG_SET
555 (from, FIRST_PSEUDO_REGISTER, regno,
557 int r = reg_renumber[regno];
558 int nregs;
560 if (r < 0)
562 /* reload_combine uses the information from
563 BASIC_BLOCK->global_live_at_start, which might still
564 contain registers that have not actually been allocated
565 since they have an equivalence. */
566 if (! reload_completed)
567 abort ();
569 else
571 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
572 while (nregs-- > 0)
573 SET_HARD_REG_BIT (*to, r + nregs);
578 /* Global variables used by reload and its subroutines. */
580 /* Set during calculate_needs if an insn needs register elimination. */
581 static int something_needs_elimination;
582 /* Set during calculate_needs if an insn needs an operand changed. */
583 int something_needs_operands_changed;
585 /* Nonzero means we couldn't get enough spill regs. */
586 static int failure;
588 /* Main entry point for the reload pass.
590 FIRST is the first insn of the function being compiled.
592 GLOBAL nonzero means we were called from global_alloc
593 and should attempt to reallocate any pseudoregs that we
594 displace from hard regs we will use for reloads.
595 If GLOBAL is zero, we do not have enough information to do that,
596 so any pseudo reg that is spilled must go to the stack.
598 DUMPFILE is the global-reg debugging dump file stream, or 0.
599 If it is nonzero, messages are written to it to describe
600 which registers are seized as reload regs, which pseudo regs
601 are spilled from them, and where the pseudo regs are reallocated to.
603 Return value is nonzero if reload failed
604 and we must not do any more for this function. */
607 reload (first, global, dumpfile)
608 rtx first;
609 int global;
610 FILE *dumpfile;
612 register int i;
613 register rtx insn;
614 register struct elim_table *ep;
616 /* The two pointers used to track the true location of the memory used
617 for label offsets. */
618 char *real_known_ptr = NULL_PTR;
619 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
621 /* Make sure even insns with volatile mem refs are recognizable. */
622 init_recog ();
624 failure = 0;
626 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
628 /* Make sure that the last insn in the chain
629 is not something that needs reloading. */
630 emit_note (NULL_PTR, NOTE_INSN_DELETED);
632 /* Enable find_equiv_reg to distinguish insns made by reload. */
633 reload_first_uid = get_max_uid ();
635 #ifdef SECONDARY_MEMORY_NEEDED
636 /* Initialize the secondary memory table. */
637 clear_secondary_mem ();
638 #endif
640 /* We don't have a stack slot for any spill reg yet. */
641 bzero ((char *) spill_stack_slot, sizeof spill_stack_slot);
642 bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width);
644 /* Initialize the save area information for caller-save, in case some
645 are needed. */
646 init_save_areas ();
648 /* Compute which hard registers are now in use
649 as homes for pseudo registers.
650 This is done here rather than (eg) in global_alloc
651 because this point is reached even if not optimizing. */
652 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
653 mark_home_live (i);
655 /* A function that receives a nonlocal goto must save all call-saved
656 registers. */
657 if (current_function_has_nonlocal_label)
658 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
659 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
660 regs_ever_live[i] = 1;
662 /* Find all the pseudo registers that didn't get hard regs
663 but do have known equivalent constants or memory slots.
664 These include parameters (known equivalent to parameter slots)
665 and cse'd or loop-moved constant memory addresses.
667 Record constant equivalents in reg_equiv_constant
668 so they will be substituted by find_reloads.
669 Record memory equivalents in reg_mem_equiv so they can
670 be substituted eventually by altering the REG-rtx's. */
672 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
673 reg_equiv_memory_loc = (rtx *) xcalloc (max_regno, sizeof (rtx));
674 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
675 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
676 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
677 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
678 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
679 bcopy ((PTR) reg_renumber, (PTR) reg_old_renumber, max_regno * sizeof (short));
680 pseudo_forbidden_regs
681 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
682 pseudo_previous_regs
683 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
685 CLEAR_HARD_REG_SET (bad_spill_regs_global);
687 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
688 Also find all paradoxical subregs and find largest such for each pseudo.
689 On machines with small register classes, record hard registers that
690 are used for user variables. These can never be used for spills.
691 Also look for a "constant" NOTE_INSN_SETJMP. This means that all
692 caller-saved registers must be marked live. */
694 num_eliminable_invariants = 0;
695 for (insn = first; insn; insn = NEXT_INSN (insn))
697 rtx set = single_set (insn);
699 if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
700 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
701 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
702 if (! call_used_regs[i])
703 regs_ever_live[i] = 1;
705 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
707 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
708 if (note
709 #ifdef LEGITIMATE_PIC_OPERAND_P
710 && (! function_invariant_p (XEXP (note, 0))
711 || ! flag_pic
712 || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
713 #endif
716 rtx x = XEXP (note, 0);
717 i = REGNO (SET_DEST (set));
718 if (i > LAST_VIRTUAL_REGISTER)
720 if (GET_CODE (x) == MEM)
722 /* If the operand is a PLUS, the MEM may be shared,
723 so make sure we have an unshared copy here. */
724 if (GET_CODE (XEXP (x, 0)) == PLUS)
725 x = copy_rtx (x);
727 reg_equiv_memory_loc[i] = x;
729 else if (function_invariant_p (x))
731 if (GET_CODE (x) == PLUS)
733 /* This is PLUS of frame pointer and a constant,
734 and might be shared. Unshare it. */
735 reg_equiv_constant[i] = copy_rtx (x);
736 num_eliminable_invariants++;
738 else if (x == frame_pointer_rtx
739 || x == arg_pointer_rtx)
741 reg_equiv_constant[i] = x;
742 num_eliminable_invariants++;
744 else if (LEGITIMATE_CONSTANT_P (x))
745 reg_equiv_constant[i] = x;
746 else
747 reg_equiv_memory_loc[i]
748 = force_const_mem (GET_MODE (SET_DEST (set)), x);
750 else
751 continue;
753 /* If this register is being made equivalent to a MEM
754 and the MEM is not SET_SRC, the equivalencing insn
755 is one with the MEM as a SET_DEST and it occurs later.
756 So don't mark this insn now. */
757 if (GET_CODE (x) != MEM
758 || rtx_equal_p (SET_SRC (set), x))
759 reg_equiv_init[i]
760 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
765 /* If this insn is setting a MEM from a register equivalent to it,
766 this is the equivalencing insn. */
767 else if (set && GET_CODE (SET_DEST (set)) == MEM
768 && GET_CODE (SET_SRC (set)) == REG
769 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
770 && rtx_equal_p (SET_DEST (set),
771 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
772 reg_equiv_init[REGNO (SET_SRC (set))]
773 = gen_rtx_INSN_LIST (VOIDmode, insn,
774 reg_equiv_init[REGNO (SET_SRC (set))]);
776 if (INSN_P (insn))
777 scan_paradoxical_subregs (PATTERN (insn));
780 init_elim_table ();
782 num_labels = max_label_num () - get_first_label_num ();
784 /* Allocate the tables used to store offset information at labels. */
785 /* We used to use alloca here, but the size of what it would try to
786 allocate would occasionally cause it to exceed the stack limit and
787 cause a core dump. */
788 real_known_ptr = xmalloc (num_labels);
789 real_at_ptr
790 = (int (*)[NUM_ELIMINABLE_REGS])
791 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
793 offsets_known_at = real_known_ptr - get_first_label_num ();
794 offsets_at
795 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
797 /* Alter each pseudo-reg rtx to contain its hard reg number.
798 Assign stack slots to the pseudos that lack hard regs or equivalents.
799 Do not touch virtual registers. */
801 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
802 alter_reg (i, -1);
804 /* If we have some registers we think can be eliminated, scan all insns to
805 see if there is an insn that sets one of these registers to something
806 other than itself plus a constant. If so, the register cannot be
807 eliminated. Doing this scan here eliminates an extra pass through the
808 main reload loop in the most common case where register elimination
809 cannot be done. */
810 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
811 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
812 || GET_CODE (insn) == CALL_INSN)
813 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
815 maybe_fix_stack_asms ();
817 insns_need_reload = 0;
818 something_needs_elimination = 0;
820 /* Initialize to -1, which means take the first spill register. */
821 last_spill_reg = -1;
823 /* Spill any hard regs that we know we can't eliminate. */
824 CLEAR_HARD_REG_SET (used_spill_regs);
825 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
826 if (! ep->can_eliminate)
827 spill_hard_reg (ep->from, dumpfile, 1);
829 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
830 if (frame_pointer_needed)
831 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, dumpfile, 1);
832 #endif
833 finish_spills (global, dumpfile);
835 /* From now on, we may need to generate moves differently. We may also
836 allow modifications of insns which cause them to not be recognized.
837 Any such modifications will be cleaned up during reload itself. */
838 reload_in_progress = 1;
840 /* This loop scans the entire function each go-round
841 and repeats until one repetition spills no additional hard regs. */
842 for (;;)
844 int something_changed;
845 int did_spill;
847 HOST_WIDE_INT starting_frame_size;
849 /* Round size of stack frame to stack_alignment_needed. This must be done
850 here because the stack size may be a part of the offset computation
851 for register elimination, and there might have been new stack slots
852 created in the last iteration of this loop. */
853 if (cfun->stack_alignment_needed)
854 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
856 starting_frame_size = get_frame_size ();
858 set_initial_elim_offsets ();
859 set_initial_label_offsets ();
861 /* For each pseudo register that has an equivalent location defined,
862 try to eliminate any eliminable registers (such as the frame pointer)
863 assuming initial offsets for the replacement register, which
864 is the normal case.
866 If the resulting location is directly addressable, substitute
867 the MEM we just got directly for the old REG.
869 If it is not addressable but is a constant or the sum of a hard reg
870 and constant, it is probably not addressable because the constant is
871 out of range, in that case record the address; we will generate
872 hairy code to compute the address in a register each time it is
873 needed. Similarly if it is a hard register, but one that is not
874 valid as an address register.
876 If the location is not addressable, but does not have one of the
877 above forms, assign a stack slot. We have to do this to avoid the
878 potential of producing lots of reloads if, e.g., a location involves
879 a pseudo that didn't get a hard register and has an equivalent memory
880 location that also involves a pseudo that didn't get a hard register.
882 Perhaps at some point we will improve reload_when_needed handling
883 so this problem goes away. But that's very hairy. */
885 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
886 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
888 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
890 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
891 XEXP (x, 0)))
892 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
893 else if (CONSTANT_P (XEXP (x, 0))
894 || (GET_CODE (XEXP (x, 0)) == REG
895 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
896 || (GET_CODE (XEXP (x, 0)) == PLUS
897 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
898 && (REGNO (XEXP (XEXP (x, 0), 0))
899 < FIRST_PSEUDO_REGISTER)
900 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
901 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
902 else
904 /* Make a new stack slot. Then indicate that something
905 changed so we go back and recompute offsets for
906 eliminable registers because the allocation of memory
907 below might change some offset. reg_equiv_{mem,address}
908 will be set up for this pseudo on the next pass around
909 the loop. */
910 reg_equiv_memory_loc[i] = 0;
911 reg_equiv_init[i] = 0;
912 alter_reg (i, -1);
916 if (caller_save_needed)
917 setup_save_areas ();
919 /* If we allocated another stack slot, redo elimination bookkeeping. */
920 if (starting_frame_size != get_frame_size ())
921 continue;
923 if (caller_save_needed)
925 save_call_clobbered_regs ();
926 /* That might have allocated new insn_chain structures. */
927 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
930 calculate_needs_all_insns (global);
932 CLEAR_REG_SET (&spilled_pseudos);
933 did_spill = 0;
935 something_changed = 0;
937 /* If we allocated any new memory locations, make another pass
938 since it might have changed elimination offsets. */
939 if (starting_frame_size != get_frame_size ())
940 something_changed = 1;
943 HARD_REG_SET to_spill;
944 CLEAR_HARD_REG_SET (to_spill);
945 update_eliminables (&to_spill);
946 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
947 if (TEST_HARD_REG_BIT (to_spill, i))
949 spill_hard_reg (i, dumpfile, 1);
950 did_spill = 1;
952 /* Regardless of the state of spills, if we previously had
953 a register that we thought we could eliminate, but no can
954 not eliminate, we must run another pass.
956 Consider pseudos which have an entry in reg_equiv_* which
957 reference an eliminable register. We must make another pass
958 to update reg_equiv_* so that we do not substitute in the
959 old value from when we thought the elimination could be
960 performed. */
961 something_changed = 1;
965 select_reload_regs (dumpfile);
966 if (failure)
967 goto failed;
969 if (insns_need_reload != 0 || did_spill)
970 something_changed |= finish_spills (global, dumpfile);
972 if (! something_changed)
973 break;
975 if (caller_save_needed)
976 delete_caller_save_insns ();
978 obstack_free (&reload_obstack, reload_firstobj);
981 /* If global-alloc was run, notify it of any register eliminations we have
982 done. */
983 if (global)
984 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
985 if (ep->can_eliminate)
986 mark_elimination (ep->from, ep->to);
988 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
989 If that insn didn't set the register (i.e., it copied the register to
990 memory), just delete that insn instead of the equivalencing insn plus
991 anything now dead. If we call delete_dead_insn on that insn, we may
992 delete the insn that actually sets the register if the register dies
993 there and that is incorrect. */
995 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
997 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
999 rtx list;
1000 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1002 rtx equiv_insn = XEXP (list, 0);
1003 if (GET_CODE (equiv_insn) == NOTE)
1004 continue;
1005 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1006 delete_dead_insn (equiv_insn);
1007 else
1009 PUT_CODE (equiv_insn, NOTE);
1010 NOTE_SOURCE_FILE (equiv_insn) = 0;
1011 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1017 /* Use the reload registers where necessary
1018 by generating move instructions to move the must-be-register
1019 values into or out of the reload registers. */
1021 if (insns_need_reload != 0 || something_needs_elimination
1022 || something_needs_operands_changed)
1024 int old_frame_size = get_frame_size ();
1026 reload_as_needed (global);
1028 if (old_frame_size != get_frame_size ())
1029 abort ();
1031 if (num_eliminable)
1032 verify_initial_elim_offsets ();
1035 /* If we were able to eliminate the frame pointer, show that it is no
1036 longer live at the start of any basic block. If it ls live by
1037 virtue of being in a pseudo, that pseudo will be marked live
1038 and hence the frame pointer will be known to be live via that
1039 pseudo. */
1041 if (! frame_pointer_needed)
1042 for (i = 0; i < n_basic_blocks; i++)
1043 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
1044 HARD_FRAME_POINTER_REGNUM);
1046 /* Come here (with failure set nonzero) if we can't get enough spill regs
1047 and we decide not to abort about it. */
1048 failed:
1050 CLEAR_REG_SET (&spilled_pseudos);
1051 reload_in_progress = 0;
1053 /* Now eliminate all pseudo regs by modifying them into
1054 their equivalent memory references.
1055 The REG-rtx's for the pseudos are modified in place,
1056 so all insns that used to refer to them now refer to memory.
1058 For a reg that has a reg_equiv_address, all those insns
1059 were changed by reloading so that no insns refer to it any longer;
1060 but the DECL_RTL of a variable decl may refer to it,
1061 and if so this causes the debugging info to mention the variable. */
1063 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1065 rtx addr = 0;
1066 int in_struct = 0;
1067 int is_scalar = 0;
1068 int is_readonly = 0;
1070 if (reg_equiv_memory_loc[i])
1072 in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
1073 is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
1074 is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
1077 if (reg_equiv_mem[i])
1078 addr = XEXP (reg_equiv_mem[i], 0);
1080 if (reg_equiv_address[i])
1081 addr = reg_equiv_address[i];
1083 if (addr)
1085 if (reg_renumber[i] < 0)
1087 rtx reg = regno_reg_rtx[i];
1088 PUT_CODE (reg, MEM);
1089 XEXP (reg, 0) = addr;
1090 REG_USERVAR_P (reg) = 0;
1091 RTX_UNCHANGING_P (reg) = is_readonly;
1092 MEM_IN_STRUCT_P (reg) = in_struct;
1093 MEM_SCALAR_P (reg) = is_scalar;
1094 /* We have no alias information about this newly created
1095 MEM. */
1096 MEM_ALIAS_SET (reg) = 0;
1098 else if (reg_equiv_mem[i])
1099 XEXP (reg_equiv_mem[i], 0) = addr;
1103 /* We must set reload_completed now since the cleanup_subreg_operands call
1104 below will re-recognize each insn and reload may have generated insns
1105 which are only valid during and after reload. */
1106 reload_completed = 1;
1108 /* Make a pass over all the insns and delete all USEs which we inserted
1109 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1110 notes. Delete all CLOBBER insns that don't refer to the return value
1111 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1112 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1113 and regenerate REG_INC notes that may have been moved around. */
1115 for (insn = first; insn; insn = NEXT_INSN (insn))
1116 if (INSN_P (insn))
1118 rtx *pnote;
1120 if ((GET_CODE (PATTERN (insn)) == USE
1121 && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1122 || (GET_CODE (PATTERN (insn)) == CLOBBER
1123 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1124 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1126 PUT_CODE (insn, NOTE);
1127 NOTE_SOURCE_FILE (insn) = 0;
1128 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1129 continue;
1132 pnote = &REG_NOTES (insn);
1133 while (*pnote != 0)
1135 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1136 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1137 || REG_NOTE_KIND (*pnote) == REG_INC
1138 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1139 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1140 *pnote = XEXP (*pnote, 1);
1141 else
1142 pnote = &XEXP (*pnote, 1);
1145 #ifdef AUTO_INC_DEC
1146 add_auto_inc_notes (insn, PATTERN (insn));
1147 #endif
1149 /* And simplify (subreg (reg)) if it appears as an operand. */
1150 cleanup_subreg_operands (insn);
1153 /* If we are doing stack checking, give a warning if this function's
1154 frame size is larger than we expect. */
1155 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1157 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1158 static int verbose_warned = 0;
1160 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1161 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1162 size += UNITS_PER_WORD;
1164 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1166 warning ("frame size too large for reliable stack checking");
1167 if (! verbose_warned)
1169 warning ("try reducing the number of local variables");
1170 verbose_warned = 1;
1175 /* Indicate that we no longer have known memory locations or constants. */
1176 if (reg_equiv_constant)
1177 free (reg_equiv_constant);
1178 reg_equiv_constant = 0;
1179 if (reg_equiv_memory_loc)
1180 free (reg_equiv_memory_loc);
1181 reg_equiv_memory_loc = 0;
1183 if (real_known_ptr)
1184 free (real_known_ptr);
1185 if (real_at_ptr)
1186 free (real_at_ptr);
1188 free (reg_equiv_mem);
1189 free (reg_equiv_init);
1190 free (reg_equiv_address);
1191 free (reg_max_ref_width);
1192 free (reg_old_renumber);
1193 free (pseudo_previous_regs);
1194 free (pseudo_forbidden_regs);
1196 CLEAR_HARD_REG_SET (used_spill_regs);
1197 for (i = 0; i < n_spills; i++)
1198 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1200 /* Free all the insn_chain structures at once. */
1201 obstack_free (&reload_obstack, reload_startobj);
1202 unused_insn_chains = 0;
1204 return failure;
1207 /* Yet another special case. Unfortunately, reg-stack forces people to
1208 write incorrect clobbers in asm statements. These clobbers must not
1209 cause the register to appear in bad_spill_regs, otherwise we'll call
1210 fatal_insn later. We clear the corresponding regnos in the live
1211 register sets to avoid this.
1212 The whole thing is rather sick, I'm afraid. */
1214 static void
1215 maybe_fix_stack_asms ()
1217 #ifdef STACK_REGS
1218 const char *constraints[MAX_RECOG_OPERANDS];
1219 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1220 struct insn_chain *chain;
1222 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1224 int i, noperands;
1225 HARD_REG_SET clobbered, allowed;
1226 rtx pat;
1228 if (! INSN_P (chain->insn)
1229 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1230 continue;
1231 pat = PATTERN (chain->insn);
1232 if (GET_CODE (pat) != PARALLEL)
1233 continue;
1235 CLEAR_HARD_REG_SET (clobbered);
1236 CLEAR_HARD_REG_SET (allowed);
1238 /* First, make a mask of all stack regs that are clobbered. */
1239 for (i = 0; i < XVECLEN (pat, 0); i++)
1241 rtx t = XVECEXP (pat, 0, i);
1242 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1243 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1246 /* Get the operand values and constraints out of the insn. */
1247 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1248 constraints, operand_mode);
1250 /* For every operand, see what registers are allowed. */
1251 for (i = 0; i < noperands; i++)
1253 const char *p = constraints[i];
1254 /* For every alternative, we compute the class of registers allowed
1255 for reloading in CLS, and merge its contents into the reg set
1256 ALLOWED. */
1257 int cls = (int) NO_REGS;
1259 for (;;)
1261 char c = *p++;
1263 if (c == '\0' || c == ',' || c == '#')
1265 /* End of one alternative - mark the regs in the current
1266 class, and reset the class. */
1267 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1268 cls = NO_REGS;
1269 if (c == '#')
1270 do {
1271 c = *p++;
1272 } while (c != '\0' && c != ',');
1273 if (c == '\0')
1274 break;
1275 continue;
1278 switch (c)
1280 case '=': case '+': case '*': case '%': case '?': case '!':
1281 case '0': case '1': case '2': case '3': case '4': case 'm':
1282 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1283 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1284 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1285 case 'P':
1286 #ifdef EXTRA_CONSTRAINT
1287 case 'Q': case 'R': case 'S': case 'T': case 'U':
1288 #endif
1289 break;
1291 case 'p':
1292 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1293 break;
1295 case 'g':
1296 case 'r':
1297 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1298 break;
1300 default:
1301 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
1306 /* Those of the registers which are clobbered, but allowed by the
1307 constraints, must be usable as reload registers. So clear them
1308 out of the life information. */
1309 AND_HARD_REG_SET (allowed, clobbered);
1310 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1311 if (TEST_HARD_REG_BIT (allowed, i))
1313 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1314 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1318 #endif
1321 /* Copy the global variables n_reloads and rld into the corresponding elts
1322 of CHAIN. */
1323 static void
1324 copy_reloads (chain)
1325 struct insn_chain *chain;
1327 chain->n_reloads = n_reloads;
1328 chain->rld
1329 = (struct reload *) obstack_alloc (&reload_obstack,
1330 n_reloads * sizeof (struct reload));
1331 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1332 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1335 /* Walk the chain of insns, and determine for each whether it needs reloads
1336 and/or eliminations. Build the corresponding insns_need_reload list, and
1337 set something_needs_elimination as appropriate. */
1338 static void
1339 calculate_needs_all_insns (global)
1340 int global;
1342 struct insn_chain **pprev_reload = &insns_need_reload;
1343 struct insn_chain *chain;
1345 something_needs_elimination = 0;
1347 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1348 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1350 rtx insn = chain->insn;
1352 /* Clear out the shortcuts. */
1353 chain->n_reloads = 0;
1354 chain->need_elim = 0;
1355 chain->need_reload = 0;
1356 chain->need_operand_change = 0;
1358 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1359 include REG_LABEL), we need to see what effects this has on the
1360 known offsets at labels. */
1362 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1363 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1364 set_label_offsets (insn, insn, 0);
1366 if (INSN_P (insn))
1368 rtx old_body = PATTERN (insn);
1369 int old_code = INSN_CODE (insn);
1370 rtx old_notes = REG_NOTES (insn);
1371 int did_elimination = 0;
1372 int operands_changed = 0;
1373 rtx set = single_set (insn);
1375 /* Skip insns that only set an equivalence. */
1376 if (set && GET_CODE (SET_DEST (set)) == REG
1377 && reg_renumber[REGNO (SET_DEST (set))] < 0
1378 && reg_equiv_constant[REGNO (SET_DEST (set))])
1379 continue;
1381 /* If needed, eliminate any eliminable registers. */
1382 if (num_eliminable || num_eliminable_invariants)
1383 did_elimination = eliminate_regs_in_insn (insn, 0);
1385 /* Analyze the instruction. */
1386 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1387 global, spill_reg_order);
1389 /* If a no-op set needs more than one reload, this is likely
1390 to be something that needs input address reloads. We
1391 can't get rid of this cleanly later, and it is of no use
1392 anyway, so discard it now.
1393 We only do this when expensive_optimizations is enabled,
1394 since this complements reload inheritance / output
1395 reload deletion, and it can make debugging harder. */
1396 if (flag_expensive_optimizations && n_reloads > 1)
1398 rtx set = single_set (insn);
1399 if (set
1400 && SET_SRC (set) == SET_DEST (set)
1401 && GET_CODE (SET_SRC (set)) == REG
1402 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1404 PUT_CODE (insn, NOTE);
1405 NOTE_SOURCE_FILE (insn) = 0;
1406 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1407 continue;
1410 if (num_eliminable)
1411 update_eliminable_offsets ();
1413 /* Remember for later shortcuts which insns had any reloads or
1414 register eliminations. */
1415 chain->need_elim = did_elimination;
1416 chain->need_reload = n_reloads > 0;
1417 chain->need_operand_change = operands_changed;
1419 /* Discard any register replacements done. */
1420 if (did_elimination)
1422 obstack_free (&reload_obstack, reload_insn_firstobj);
1423 PATTERN (insn) = old_body;
1424 INSN_CODE (insn) = old_code;
1425 REG_NOTES (insn) = old_notes;
1426 something_needs_elimination = 1;
1429 something_needs_operands_changed |= operands_changed;
1431 if (n_reloads != 0)
1433 copy_reloads (chain);
1434 *pprev_reload = chain;
1435 pprev_reload = &chain->next_need_reload;
1439 *pprev_reload = 0;
1442 /* Comparison function for qsort to decide which of two reloads
1443 should be handled first. *P1 and *P2 are the reload numbers. */
1445 static int
1446 reload_reg_class_lower (r1p, r2p)
1447 const PTR r1p;
1448 const PTR r2p;
1450 register int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1451 register int t;
1453 /* Consider required reloads before optional ones. */
1454 t = rld[r1].optional - rld[r2].optional;
1455 if (t != 0)
1456 return t;
1458 /* Count all solitary classes before non-solitary ones. */
1459 t = ((reg_class_size[(int) rld[r2].class] == 1)
1460 - (reg_class_size[(int) rld[r1].class] == 1));
1461 if (t != 0)
1462 return t;
1464 /* Aside from solitaires, consider all multi-reg groups first. */
1465 t = rld[r2].nregs - rld[r1].nregs;
1466 if (t != 0)
1467 return t;
1469 /* Consider reloads in order of increasing reg-class number. */
1470 t = (int) rld[r1].class - (int) rld[r2].class;
1471 if (t != 0)
1472 return t;
1474 /* If reloads are equally urgent, sort by reload number,
1475 so that the results of qsort leave nothing to chance. */
1476 return r1 - r2;
1479 /* The cost of spilling each hard reg. */
1480 static int spill_cost[FIRST_PSEUDO_REGISTER];
1482 /* When spilling multiple hard registers, we use SPILL_COST for the first
1483 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1484 only the first hard reg for a multi-reg pseudo. */
1485 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1487 /* Update the spill cost arrays, considering that pseudo REG is live. */
1489 static void
1490 count_pseudo (reg)
1491 int reg;
1493 int n_refs = REG_N_REFS (reg);
1494 int r = reg_renumber[reg];
1495 int nregs;
1497 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1498 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1499 return;
1501 SET_REGNO_REG_SET (&pseudos_counted, reg);
1503 if (r < 0)
1504 abort ();
1506 spill_add_cost[r] += n_refs;
1508 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1509 while (nregs-- > 0)
1510 spill_cost[r + nregs] += n_refs;
1513 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1514 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1516 static void
1517 order_regs_for_reload (chain)
1518 struct insn_chain *chain;
1520 int i;
1521 HARD_REG_SET used_by_pseudos;
1522 HARD_REG_SET used_by_pseudos2;
1524 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1526 memset (spill_cost, 0, sizeof spill_cost);
1527 memset (spill_add_cost, 0, sizeof spill_add_cost);
1529 /* Count number of uses of each hard reg by pseudo regs allocated to it
1530 and then order them by decreasing use. First exclude hard registers
1531 that are live in or across this insn. */
1533 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1534 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1535 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1536 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1538 /* Now find out which pseudos are allocated to it, and update
1539 hard_reg_n_uses. */
1540 CLEAR_REG_SET (&pseudos_counted);
1542 EXECUTE_IF_SET_IN_REG_SET
1543 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1545 count_pseudo (i);
1547 EXECUTE_IF_SET_IN_REG_SET
1548 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1550 count_pseudo (i);
1552 CLEAR_REG_SET (&pseudos_counted);
1555 /* Vector of reload-numbers showing the order in which the reloads should
1556 be processed. */
1557 static short reload_order[MAX_RELOADS];
1559 /* This is used to keep track of the spill regs used in one insn. */
1560 static HARD_REG_SET used_spill_regs_local;
1562 /* We decided to spill hard register SPILLED, which has a size of
1563 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1564 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1565 update SPILL_COST/SPILL_ADD_COST. */
1567 static void
1568 count_spilled_pseudo (spilled, spilled_nregs, reg)
1569 int spilled, spilled_nregs, reg;
1571 int r = reg_renumber[reg];
1572 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1574 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1575 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1576 return;
1578 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1580 spill_add_cost[r] -= REG_N_REFS (reg);
1581 while (nregs-- > 0)
1582 spill_cost[r + nregs] -= REG_N_REFS (reg);
1585 /* Find reload register to use for reload number ORDER. */
1587 static int
1588 find_reg (chain, order, dumpfile)
1589 struct insn_chain *chain;
1590 int order;
1591 FILE *dumpfile;
1593 int rnum = reload_order[order];
1594 struct reload *rl = rld + rnum;
1595 int best_cost = INT_MAX;
1596 int best_reg = -1;
1597 unsigned int i, j;
1598 int k;
1599 HARD_REG_SET not_usable;
1600 HARD_REG_SET used_by_other_reload;
1602 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1603 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1604 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1606 CLEAR_HARD_REG_SET (used_by_other_reload);
1607 for (k = 0; k < order; k++)
1609 int other = reload_order[k];
1611 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1612 for (j = 0; j < rld[other].nregs; j++)
1613 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1616 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1618 unsigned int regno = i;
1620 if (! TEST_HARD_REG_BIT (not_usable, regno)
1621 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1622 && HARD_REGNO_MODE_OK (regno, rl->mode))
1624 int this_cost = spill_cost[regno];
1625 int ok = 1;
1626 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1628 for (j = 1; j < this_nregs; j++)
1630 this_cost += spill_add_cost[regno + j];
1631 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1632 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1633 ok = 0;
1635 if (! ok)
1636 continue;
1637 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1638 this_cost--;
1639 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1640 this_cost--;
1641 if (this_cost < best_cost
1642 /* Among registers with equal cost, prefer caller-saved ones, or
1643 use REG_ALLOC_ORDER if it is defined. */
1644 || (this_cost == best_cost
1645 #ifdef REG_ALLOC_ORDER
1646 && (inv_reg_alloc_order[regno]
1647 < inv_reg_alloc_order[best_reg])
1648 #else
1649 && call_used_regs[regno]
1650 && ! call_used_regs[best_reg]
1651 #endif
1654 best_reg = regno;
1655 best_cost = this_cost;
1659 if (best_reg == -1)
1660 return 0;
1662 if (dumpfile)
1663 fprintf (dumpfile, "Using reg %d for reload %d\n", best_reg, rnum);
1665 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1666 rl->regno = best_reg;
1668 EXECUTE_IF_SET_IN_REG_SET
1669 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1671 count_spilled_pseudo (best_reg, rl->nregs, j);
1674 EXECUTE_IF_SET_IN_REG_SET
1675 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1677 count_spilled_pseudo (best_reg, rl->nregs, j);
1680 for (i = 0; i < rl->nregs; i++)
1682 if (spill_cost[best_reg + i] != 0
1683 || spill_add_cost[best_reg + i] != 0)
1684 abort ();
1685 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1687 return 1;
1690 /* Find more reload regs to satisfy the remaining need of an insn, which
1691 is given by CHAIN.
1692 Do it by ascending class number, since otherwise a reg
1693 might be spilled for a big class and might fail to count
1694 for a smaller class even though it belongs to that class. */
1696 static void
1697 find_reload_regs (chain, dumpfile)
1698 struct insn_chain *chain;
1699 FILE *dumpfile;
1701 int i;
1703 /* In order to be certain of getting the registers we need,
1704 we must sort the reloads into order of increasing register class.
1705 Then our grabbing of reload registers will parallel the process
1706 that provided the reload registers. */
1707 for (i = 0; i < chain->n_reloads; i++)
1709 /* Show whether this reload already has a hard reg. */
1710 if (chain->rld[i].reg_rtx)
1712 int regno = REGNO (chain->rld[i].reg_rtx);
1713 chain->rld[i].regno = regno;
1714 chain->rld[i].nregs
1715 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1717 else
1718 chain->rld[i].regno = -1;
1719 reload_order[i] = i;
1722 n_reloads = chain->n_reloads;
1723 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1725 CLEAR_HARD_REG_SET (used_spill_regs_local);
1727 if (dumpfile)
1728 fprintf (dumpfile, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1730 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1732 /* Compute the order of preference for hard registers to spill. */
1734 order_regs_for_reload (chain);
1736 for (i = 0; i < n_reloads; i++)
1738 int r = reload_order[i];
1740 /* Ignore reloads that got marked inoperative. */
1741 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1742 && ! rld[r].optional
1743 && rld[r].regno == -1)
1744 if (! find_reg (chain, i, dumpfile))
1746 spill_failure (chain->insn, rld[r].class);
1747 failure = 1;
1748 return;
1752 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1753 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1755 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1758 static void
1759 select_reload_regs (dumpfile)
1760 FILE *dumpfile;
1762 struct insn_chain *chain;
1764 /* Try to satisfy the needs for each insn. */
1765 for (chain = insns_need_reload; chain != 0;
1766 chain = chain->next_need_reload)
1767 find_reload_regs (chain, dumpfile);
1770 /* Delete all insns that were inserted by emit_caller_save_insns during
1771 this iteration. */
1772 static void
1773 delete_caller_save_insns ()
1775 struct insn_chain *c = reload_insn_chain;
1777 while (c != 0)
1779 while (c != 0 && c->is_caller_save_insn)
1781 struct insn_chain *next = c->next;
1782 rtx insn = c->insn;
1784 if (insn == BLOCK_HEAD (c->block))
1785 BLOCK_HEAD (c->block) = NEXT_INSN (insn);
1786 if (insn == BLOCK_END (c->block))
1787 BLOCK_END (c->block) = PREV_INSN (insn);
1788 if (c == reload_insn_chain)
1789 reload_insn_chain = next;
1791 if (NEXT_INSN (insn) != 0)
1792 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1793 if (PREV_INSN (insn) != 0)
1794 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1796 if (next)
1797 next->prev = c->prev;
1798 if (c->prev)
1799 c->prev->next = next;
1800 c->next = unused_insn_chains;
1801 unused_insn_chains = c;
1802 c = next;
1804 if (c != 0)
1805 c = c->next;
1809 /* Handle the failure to find a register to spill.
1810 INSN should be one of the insns which needed this particular spill reg. */
1812 static void
1813 spill_failure (insn, class)
1814 rtx insn;
1815 enum reg_class class;
1817 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1818 if (asm_noperands (PATTERN (insn)) >= 0)
1819 error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
1820 reg_class_names[class]);
1821 else
1823 error ("Unable to find a register to spill in class `%s'.",
1824 reg_class_names[class]);
1825 fatal_insn ("This is the insn:", insn);
1829 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1830 data that is dead in INSN. */
1832 static void
1833 delete_dead_insn (insn)
1834 rtx insn;
1836 rtx prev = prev_real_insn (insn);
1837 rtx prev_dest;
1839 /* If the previous insn sets a register that dies in our insn, delete it
1840 too. */
1841 if (prev && GET_CODE (PATTERN (prev)) == SET
1842 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1843 && reg_mentioned_p (prev_dest, PATTERN (insn))
1844 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1845 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1846 delete_dead_insn (prev);
1848 PUT_CODE (insn, NOTE);
1849 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1850 NOTE_SOURCE_FILE (insn) = 0;
1853 /* Modify the home of pseudo-reg I.
1854 The new home is present in reg_renumber[I].
1856 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1857 or it may be -1, meaning there is none or it is not relevant.
1858 This is used so that all pseudos spilled from a given hard reg
1859 can share one stack slot. */
1861 static void
1862 alter_reg (i, from_reg)
1863 register int i;
1864 int from_reg;
1866 /* When outputting an inline function, this can happen
1867 for a reg that isn't actually used. */
1868 if (regno_reg_rtx[i] == 0)
1869 return;
1871 /* If the reg got changed to a MEM at rtl-generation time,
1872 ignore it. */
1873 if (GET_CODE (regno_reg_rtx[i]) != REG)
1874 return;
1876 /* Modify the reg-rtx to contain the new hard reg
1877 number or else to contain its pseudo reg number. */
1878 REGNO (regno_reg_rtx[i])
1879 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1881 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1882 allocate a stack slot for it. */
1884 if (reg_renumber[i] < 0
1885 && REG_N_REFS (i) > 0
1886 && reg_equiv_constant[i] == 0
1887 && reg_equiv_memory_loc[i] == 0)
1889 register rtx x;
1890 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1891 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1892 int adjust = 0;
1894 /* Each pseudo reg has an inherent size which comes from its own mode,
1895 and a total size which provides room for paradoxical subregs
1896 which refer to the pseudo reg in wider modes.
1898 We can use a slot already allocated if it provides both
1899 enough inherent space and enough total space.
1900 Otherwise, we allocate a new slot, making sure that it has no less
1901 inherent space, and no less total space, then the previous slot. */
1902 if (from_reg == -1)
1904 /* No known place to spill from => no slot to reuse. */
1905 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1906 inherent_size == total_size ? 0 : -1);
1907 if (BYTES_BIG_ENDIAN)
1908 /* Cancel the big-endian correction done in assign_stack_local.
1909 Get the address of the beginning of the slot.
1910 This is so we can do a big-endian correction unconditionally
1911 below. */
1912 adjust = inherent_size - total_size;
1914 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1916 /* Nothing can alias this slot except this pseudo. */
1917 MEM_ALIAS_SET (x) = new_alias_set ();
1920 /* Reuse a stack slot if possible. */
1921 else if (spill_stack_slot[from_reg] != 0
1922 && spill_stack_slot_width[from_reg] >= total_size
1923 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1924 >= inherent_size))
1925 x = spill_stack_slot[from_reg];
1927 /* Allocate a bigger slot. */
1928 else
1930 /* Compute maximum size needed, both for inherent size
1931 and for total size. */
1932 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1933 rtx stack_slot;
1935 if (spill_stack_slot[from_reg])
1937 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1938 > inherent_size)
1939 mode = GET_MODE (spill_stack_slot[from_reg]);
1940 if (spill_stack_slot_width[from_reg] > total_size)
1941 total_size = spill_stack_slot_width[from_reg];
1944 /* Make a slot with that size. */
1945 x = assign_stack_local (mode, total_size,
1946 inherent_size == total_size ? 0 : -1);
1947 stack_slot = x;
1949 /* All pseudos mapped to this slot can alias each other. */
1950 if (spill_stack_slot[from_reg])
1951 MEM_ALIAS_SET (x) = MEM_ALIAS_SET (spill_stack_slot[from_reg]);
1952 else
1953 MEM_ALIAS_SET (x) = new_alias_set ();
1955 if (BYTES_BIG_ENDIAN)
1957 /* Cancel the big-endian correction done in assign_stack_local.
1958 Get the address of the beginning of the slot.
1959 This is so we can do a big-endian correction unconditionally
1960 below. */
1961 adjust = GET_MODE_SIZE (mode) - total_size;
1962 if (adjust)
1963 stack_slot = gen_rtx_MEM (mode_for_size (total_size
1964 * BITS_PER_UNIT,
1965 MODE_INT, 1),
1966 plus_constant (XEXP (x, 0), adjust));
1969 spill_stack_slot[from_reg] = stack_slot;
1970 spill_stack_slot_width[from_reg] = total_size;
1973 /* On a big endian machine, the "address" of the slot
1974 is the address of the low part that fits its inherent mode. */
1975 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
1976 adjust += (total_size - inherent_size);
1978 /* If we have any adjustment to make, or if the stack slot is the
1979 wrong mode, make a new stack slot. */
1980 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
1982 rtx new = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]),
1983 plus_constant (XEXP (x, 0), adjust));
1985 MEM_COPY_ATTRIBUTES (new, x);
1986 x = new;
1989 /* Save the stack slot for later. */
1990 reg_equiv_memory_loc[i] = x;
1994 /* Mark the slots in regs_ever_live for the hard regs
1995 used by pseudo-reg number REGNO. */
1997 void
1998 mark_home_live (regno)
1999 int regno;
2001 register int i, lim;
2003 i = reg_renumber[regno];
2004 if (i < 0)
2005 return;
2006 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2007 while (i < lim)
2008 regs_ever_live[i++] = 1;
2011 /* This function handles the tracking of elimination offsets around branches.
2013 X is a piece of RTL being scanned.
2015 INSN is the insn that it came from, if any.
2017 INITIAL_P is non-zero if we are to set the offset to be the initial
2018 offset and zero if we are setting the offset of the label to be the
2019 current offset. */
2021 static void
2022 set_label_offsets (x, insn, initial_p)
2023 rtx x;
2024 rtx insn;
2025 int initial_p;
2027 enum rtx_code code = GET_CODE (x);
2028 rtx tem;
2029 unsigned int i;
2030 struct elim_table *p;
2032 switch (code)
2034 case LABEL_REF:
2035 if (LABEL_REF_NONLOCAL_P (x))
2036 return;
2038 x = XEXP (x, 0);
2040 /* ... fall through ... */
2042 case CODE_LABEL:
2043 /* If we know nothing about this label, set the desired offsets. Note
2044 that this sets the offset at a label to be the offset before a label
2045 if we don't know anything about the label. This is not correct for
2046 the label after a BARRIER, but is the best guess we can make. If
2047 we guessed wrong, we will suppress an elimination that might have
2048 been possible had we been able to guess correctly. */
2050 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2052 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2053 offsets_at[CODE_LABEL_NUMBER (x)][i]
2054 = (initial_p ? reg_eliminate[i].initial_offset
2055 : reg_eliminate[i].offset);
2056 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2059 /* Otherwise, if this is the definition of a label and it is
2060 preceded by a BARRIER, set our offsets to the known offset of
2061 that label. */
2063 else if (x == insn
2064 && (tem = prev_nonnote_insn (insn)) != 0
2065 && GET_CODE (tem) == BARRIER)
2066 set_offsets_for_label (insn);
2067 else
2068 /* If neither of the above cases is true, compare each offset
2069 with those previously recorded and suppress any eliminations
2070 where the offsets disagree. */
2072 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2073 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2074 != (initial_p ? reg_eliminate[i].initial_offset
2075 : reg_eliminate[i].offset))
2076 reg_eliminate[i].can_eliminate = 0;
2078 return;
2080 case JUMP_INSN:
2081 set_label_offsets (PATTERN (insn), insn, initial_p);
2083 /* ... fall through ... */
2085 case INSN:
2086 case CALL_INSN:
2087 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2088 and hence must have all eliminations at their initial offsets. */
2089 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2090 if (REG_NOTE_KIND (tem) == REG_LABEL)
2091 set_label_offsets (XEXP (tem, 0), insn, 1);
2092 return;
2094 case ADDR_VEC:
2095 case ADDR_DIFF_VEC:
2096 /* Each of the labels in the address vector must be at their initial
2097 offsets. We want the first field for ADDR_VEC and the second
2098 field for ADDR_DIFF_VEC. */
2100 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2101 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2102 insn, initial_p);
2103 return;
2105 case SET:
2106 /* We only care about setting PC. If the source is not RETURN,
2107 IF_THEN_ELSE, or a label, disable any eliminations not at
2108 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2109 isn't one of those possibilities. For branches to a label,
2110 call ourselves recursively.
2112 Note that this can disable elimination unnecessarily when we have
2113 a non-local goto since it will look like a non-constant jump to
2114 someplace in the current function. This isn't a significant
2115 problem since such jumps will normally be when all elimination
2116 pairs are back to their initial offsets. */
2118 if (SET_DEST (x) != pc_rtx)
2119 return;
2121 switch (GET_CODE (SET_SRC (x)))
2123 case PC:
2124 case RETURN:
2125 return;
2127 case LABEL_REF:
2128 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2129 return;
2131 case IF_THEN_ELSE:
2132 tem = XEXP (SET_SRC (x), 1);
2133 if (GET_CODE (tem) == LABEL_REF)
2134 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2135 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2136 break;
2138 tem = XEXP (SET_SRC (x), 2);
2139 if (GET_CODE (tem) == LABEL_REF)
2140 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2141 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2142 break;
2143 return;
2145 default:
2146 break;
2149 /* If we reach here, all eliminations must be at their initial
2150 offset because we are doing a jump to a variable address. */
2151 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2152 if (p->offset != p->initial_offset)
2153 p->can_eliminate = 0;
2154 break;
2156 default:
2157 break;
2161 /* Scan X and replace any eliminable registers (such as fp) with a
2162 replacement (such as sp), plus an offset.
2164 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2165 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2166 MEM, we are allowed to replace a sum of a register and the constant zero
2167 with the register, which we cannot do outside a MEM. In addition, we need
2168 to record the fact that a register is referenced outside a MEM.
2170 If INSN is an insn, it is the insn containing X. If we replace a REG
2171 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2172 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2173 the REG is being modified.
2175 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2176 That's used when we eliminate in expressions stored in notes.
2177 This means, do not set ref_outside_mem even if the reference
2178 is outside of MEMs.
2180 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2181 replacements done assuming all offsets are at their initial values. If
2182 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2183 encounter, return the actual location so that find_reloads will do
2184 the proper thing. */
2187 eliminate_regs (x, mem_mode, insn)
2188 rtx x;
2189 enum machine_mode mem_mode;
2190 rtx insn;
2192 enum rtx_code code = GET_CODE (x);
2193 struct elim_table *ep;
2194 int regno;
2195 rtx new;
2196 int i, j;
2197 const char *fmt;
2198 int copied = 0;
2200 if (! current_function_decl)
2201 return x;
2203 switch (code)
2205 case CONST_INT:
2206 case CONST_DOUBLE:
2207 case CONST:
2208 case SYMBOL_REF:
2209 case CODE_LABEL:
2210 case PC:
2211 case CC0:
2212 case ASM_INPUT:
2213 case ADDR_VEC:
2214 case ADDR_DIFF_VEC:
2215 case RETURN:
2216 return x;
2218 case ADDRESSOF:
2219 /* This is only for the benefit of the debugging backends, which call
2220 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2221 removed after CSE. */
2222 new = eliminate_regs (XEXP (x, 0), 0, insn);
2223 if (GET_CODE (new) == MEM)
2224 return XEXP (new, 0);
2225 return x;
2227 case REG:
2228 regno = REGNO (x);
2230 /* First handle the case where we encounter a bare register that
2231 is eliminable. Replace it with a PLUS. */
2232 if (regno < FIRST_PSEUDO_REGISTER)
2234 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2235 ep++)
2236 if (ep->from_rtx == x && ep->can_eliminate)
2237 return plus_constant (ep->to_rtx, ep->previous_offset);
2240 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2241 && reg_equiv_constant[regno]
2242 && ! CONSTANT_P (reg_equiv_constant[regno]))
2243 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2244 mem_mode, insn);
2245 return x;
2247 /* You might think handling MINUS in a manner similar to PLUS is a
2248 good idea. It is not. It has been tried multiple times and every
2249 time the change has had to have been reverted.
2251 Other parts of reload know a PLUS is special (gen_reload for example)
2252 and require special code to handle code a reloaded PLUS operand.
2254 Also consider backends where the flags register is clobbered by a
2255 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2256 lea instruction comes to mind). If we try to reload a MINUS, we
2257 may kill the flags register that was holding a useful value.
2259 So, please before trying to handle MINUS, consider reload as a
2260 whole instead of this little section as well as the backend issues. */
2261 case PLUS:
2262 /* If this is the sum of an eliminable register and a constant, rework
2263 the sum. */
2264 if (GET_CODE (XEXP (x, 0)) == REG
2265 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2266 && CONSTANT_P (XEXP (x, 1)))
2268 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2269 ep++)
2270 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2272 /* The only time we want to replace a PLUS with a REG (this
2273 occurs when the constant operand of the PLUS is the negative
2274 of the offset) is when we are inside a MEM. We won't want
2275 to do so at other times because that would change the
2276 structure of the insn in a way that reload can't handle.
2277 We special-case the commonest situation in
2278 eliminate_regs_in_insn, so just replace a PLUS with a
2279 PLUS here, unless inside a MEM. */
2280 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2281 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2282 return ep->to_rtx;
2283 else
2284 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2285 plus_constant (XEXP (x, 1),
2286 ep->previous_offset));
2289 /* If the register is not eliminable, we are done since the other
2290 operand is a constant. */
2291 return x;
2294 /* If this is part of an address, we want to bring any constant to the
2295 outermost PLUS. We will do this by doing register replacement in
2296 our operands and seeing if a constant shows up in one of them.
2298 Note that there is no risk of modifying the structure of the insn,
2299 since we only get called for its operands, thus we are either
2300 modifying the address inside a MEM, or something like an address
2301 operand of a load-address insn. */
2304 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2305 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2307 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2309 /* If one side is a PLUS and the other side is a pseudo that
2310 didn't get a hard register but has a reg_equiv_constant,
2311 we must replace the constant here since it may no longer
2312 be in the position of any operand. */
2313 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2314 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2315 && reg_renumber[REGNO (new1)] < 0
2316 && reg_equiv_constant != 0
2317 && reg_equiv_constant[REGNO (new1)] != 0)
2318 new1 = reg_equiv_constant[REGNO (new1)];
2319 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2320 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2321 && reg_renumber[REGNO (new0)] < 0
2322 && reg_equiv_constant[REGNO (new0)] != 0)
2323 new0 = reg_equiv_constant[REGNO (new0)];
2325 new = form_sum (new0, new1);
2327 /* As above, if we are not inside a MEM we do not want to
2328 turn a PLUS into something else. We might try to do so here
2329 for an addition of 0 if we aren't optimizing. */
2330 if (! mem_mode && GET_CODE (new) != PLUS)
2331 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2332 else
2333 return new;
2336 return x;
2338 case MULT:
2339 /* If this is the product of an eliminable register and a
2340 constant, apply the distribute law and move the constant out
2341 so that we have (plus (mult ..) ..). This is needed in order
2342 to keep load-address insns valid. This case is pathological.
2343 We ignore the possibility of overflow here. */
2344 if (GET_CODE (XEXP (x, 0)) == REG
2345 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2346 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2347 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2348 ep++)
2349 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2351 if (! mem_mode
2352 /* Refs inside notes don't count for this purpose. */
2353 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2354 || GET_CODE (insn) == INSN_LIST)))
2355 ep->ref_outside_mem = 1;
2357 return
2358 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2359 ep->previous_offset * INTVAL (XEXP (x, 1)));
2362 /* ... fall through ... */
2364 case CALL:
2365 case COMPARE:
2366 /* See comments before PLUS about handling MINUS. */
2367 case MINUS:
2368 case DIV: case UDIV:
2369 case MOD: case UMOD:
2370 case AND: case IOR: case XOR:
2371 case ROTATERT: case ROTATE:
2372 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2373 case NE: case EQ:
2374 case GE: case GT: case GEU: case GTU:
2375 case LE: case LT: case LEU: case LTU:
2377 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2378 rtx new1
2379 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2381 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2382 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2384 return x;
2386 case EXPR_LIST:
2387 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2388 if (XEXP (x, 0))
2390 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2391 if (new != XEXP (x, 0))
2393 /* If this is a REG_DEAD note, it is not valid anymore.
2394 Using the eliminated version could result in creating a
2395 REG_DEAD note for the stack or frame pointer. */
2396 if (GET_MODE (x) == REG_DEAD)
2397 return (XEXP (x, 1)
2398 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2399 : NULL_RTX);
2401 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2405 /* ... fall through ... */
2407 case INSN_LIST:
2408 /* Now do eliminations in the rest of the chain. If this was
2409 an EXPR_LIST, this might result in allocating more memory than is
2410 strictly needed, but it simplifies the code. */
2411 if (XEXP (x, 1))
2413 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2414 if (new != XEXP (x, 1))
2415 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2417 return x;
2419 case PRE_INC:
2420 case POST_INC:
2421 case PRE_DEC:
2422 case POST_DEC:
2423 case STRICT_LOW_PART:
2424 case NEG: case NOT:
2425 case SIGN_EXTEND: case ZERO_EXTEND:
2426 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2427 case FLOAT: case FIX:
2428 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2429 case ABS:
2430 case SQRT:
2431 case FFS:
2432 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2433 if (new != XEXP (x, 0))
2434 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2435 return x;
2437 case SUBREG:
2438 /* Similar to above processing, but preserve SUBREG_WORD.
2439 Convert (subreg (mem)) to (mem) if not paradoxical.
2440 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2441 pseudo didn't get a hard reg, we must replace this with the
2442 eliminated version of the memory location because push_reloads
2443 may do the replacement in certain circumstances. */
2444 if (GET_CODE (SUBREG_REG (x)) == REG
2445 && (GET_MODE_SIZE (GET_MODE (x))
2446 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2447 && reg_equiv_memory_loc != 0
2448 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2450 new = SUBREG_REG (x);
2452 else
2453 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2455 if (new != XEXP (x, 0))
2457 int x_size = GET_MODE_SIZE (GET_MODE (x));
2458 int new_size = GET_MODE_SIZE (GET_MODE (new));
2460 if (GET_CODE (new) == MEM
2461 && ((x_size < new_size
2462 #ifdef WORD_REGISTER_OPERATIONS
2463 /* On these machines, combine can create rtl of the form
2464 (set (subreg:m1 (reg:m2 R) 0) ...)
2465 where m1 < m2, and expects something interesting to
2466 happen to the entire word. Moreover, it will use the
2467 (reg:m2 R) later, expecting all bits to be preserved.
2468 So if the number of words is the same, preserve the
2469 subreg so that push_reloads can see it. */
2470 && ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD)
2471 #endif
2473 || (x_size == new_size))
2476 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2477 enum machine_mode mode = GET_MODE (x);
2479 if (BYTES_BIG_ENDIAN)
2480 offset += (MIN (UNITS_PER_WORD,
2481 GET_MODE_SIZE (GET_MODE (new)))
2482 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2484 PUT_MODE (new, mode);
2485 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2486 return new;
2488 else
2489 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_WORD (x));
2492 return x;
2494 case MEM:
2495 /* This is only for the benefit of the debugging backends, which call
2496 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2497 removed after CSE. */
2498 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2499 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2501 /* Our only special processing is to pass the mode of the MEM to our
2502 recursive call and copy the flags. While we are here, handle this
2503 case more efficiently. */
2504 new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
2505 if (new != XEXP (x, 0))
2507 new = gen_rtx_MEM (GET_MODE (x), new);
2508 MEM_COPY_ATTRIBUTES (new, x);
2509 return new;
2511 else
2512 return x;
2514 case USE:
2515 case CLOBBER:
2516 case ASM_OPERANDS:
2517 case SET:
2518 abort ();
2520 default:
2521 break;
2524 /* Process each of our operands recursively. If any have changed, make a
2525 copy of the rtx. */
2526 fmt = GET_RTX_FORMAT (code);
2527 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2529 if (*fmt == 'e')
2531 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2532 if (new != XEXP (x, i) && ! copied)
2534 rtx new_x = rtx_alloc (code);
2535 bcopy ((char *) x, (char *) new_x,
2536 (sizeof (*new_x) - sizeof (new_x->fld)
2537 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2538 x = new_x;
2539 copied = 1;
2541 XEXP (x, i) = new;
2543 else if (*fmt == 'E')
2545 int copied_vec = 0;
2546 for (j = 0; j < XVECLEN (x, i); j++)
2548 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2549 if (new != XVECEXP (x, i, j) && ! copied_vec)
2551 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2552 XVEC (x, i)->elem);
2553 if (! copied)
2555 rtx new_x = rtx_alloc (code);
2556 bcopy ((char *) x, (char *) new_x,
2557 (sizeof (*new_x) - sizeof (new_x->fld)
2558 + (sizeof (new_x->fld[0])
2559 * GET_RTX_LENGTH (code))));
2560 x = new_x;
2561 copied = 1;
2563 XVEC (x, i) = new_v;
2564 copied_vec = 1;
2566 XVECEXP (x, i, j) = new;
2571 return x;
2574 /* Scan rtx X for modifications of elimination target registers. Update
2575 the table of eliminables to reflect the changed state. MEM_MODE is
2576 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2578 static void
2579 elimination_effects (x, mem_mode)
2580 rtx x;
2581 enum machine_mode mem_mode;
2584 enum rtx_code code = GET_CODE (x);
2585 struct elim_table *ep;
2586 int regno;
2587 int i, j;
2588 const char *fmt;
2590 switch (code)
2592 case CONST_INT:
2593 case CONST_DOUBLE:
2594 case CONST:
2595 case SYMBOL_REF:
2596 case CODE_LABEL:
2597 case PC:
2598 case CC0:
2599 case ASM_INPUT:
2600 case ADDR_VEC:
2601 case ADDR_DIFF_VEC:
2602 case RETURN:
2603 return;
2605 case ADDRESSOF:
2606 abort ();
2608 case REG:
2609 regno = REGNO (x);
2611 /* First handle the case where we encounter a bare register that
2612 is eliminable. Replace it with a PLUS. */
2613 if (regno < FIRST_PSEUDO_REGISTER)
2615 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2616 ep++)
2617 if (ep->from_rtx == x && ep->can_eliminate)
2619 if (! mem_mode)
2620 ep->ref_outside_mem = 1;
2621 return;
2625 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2626 && reg_equiv_constant[regno]
2627 && ! CONSTANT_P (reg_equiv_constant[regno]))
2628 elimination_effects (reg_equiv_constant[regno], mem_mode);
2629 return;
2631 case PRE_INC:
2632 case POST_INC:
2633 case PRE_DEC:
2634 case POST_DEC:
2635 case POST_MODIFY:
2636 case PRE_MODIFY:
2637 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2638 if (ep->to_rtx == XEXP (x, 0))
2640 int size = GET_MODE_SIZE (mem_mode);
2642 /* If more bytes than MEM_MODE are pushed, account for them. */
2643 #ifdef PUSH_ROUNDING
2644 if (ep->to_rtx == stack_pointer_rtx)
2645 size = PUSH_ROUNDING (size);
2646 #endif
2647 if (code == PRE_DEC || code == POST_DEC)
2648 ep->offset += size;
2649 else if (code == PRE_INC || code == POST_INC)
2650 ep->offset -= size;
2651 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2652 && GET_CODE (XEXP (x, 1)) == PLUS
2653 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2654 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2655 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2658 /* These two aren't unary operators. */
2659 if (code == POST_MODIFY || code == PRE_MODIFY)
2660 break;
2662 /* Fall through to generic unary operation case. */
2663 case STRICT_LOW_PART:
2664 case NEG: case NOT:
2665 case SIGN_EXTEND: case ZERO_EXTEND:
2666 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2667 case FLOAT: case FIX:
2668 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2669 case ABS:
2670 case SQRT:
2671 case FFS:
2672 elimination_effects (XEXP (x, 0), mem_mode);
2673 return;
2675 case SUBREG:
2676 if (GET_CODE (SUBREG_REG (x)) == REG
2677 && (GET_MODE_SIZE (GET_MODE (x))
2678 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2679 && reg_equiv_memory_loc != 0
2680 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2681 return;
2683 elimination_effects (SUBREG_REG (x), mem_mode);
2684 return;
2686 case USE:
2687 /* If using a register that is the source of an eliminate we still
2688 think can be performed, note it cannot be performed since we don't
2689 know how this register is used. */
2690 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2691 if (ep->from_rtx == XEXP (x, 0))
2692 ep->can_eliminate = 0;
2694 elimination_effects (XEXP (x, 0), mem_mode);
2695 return;
2697 case CLOBBER:
2698 /* If clobbering a register that is the replacement register for an
2699 elimination we still think can be performed, note that it cannot
2700 be performed. Otherwise, we need not be concerned about it. */
2701 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2702 if (ep->to_rtx == XEXP (x, 0))
2703 ep->can_eliminate = 0;
2705 elimination_effects (XEXP (x, 0), mem_mode);
2706 return;
2708 case SET:
2709 /* Check for setting a register that we know about. */
2710 if (GET_CODE (SET_DEST (x)) == REG)
2712 /* See if this is setting the replacement register for an
2713 elimination.
2715 If DEST is the hard frame pointer, we do nothing because we
2716 assume that all assignments to the frame pointer are for
2717 non-local gotos and are being done at a time when they are valid
2718 and do not disturb anything else. Some machines want to
2719 eliminate a fake argument pointer (or even a fake frame pointer)
2720 with either the real frame or the stack pointer. Assignments to
2721 the hard frame pointer must not prevent this elimination. */
2723 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2724 ep++)
2725 if (ep->to_rtx == SET_DEST (x)
2726 && SET_DEST (x) != hard_frame_pointer_rtx)
2728 /* If it is being incremented, adjust the offset. Otherwise,
2729 this elimination can't be done. */
2730 rtx src = SET_SRC (x);
2732 if (GET_CODE (src) == PLUS
2733 && XEXP (src, 0) == SET_DEST (x)
2734 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2735 ep->offset -= INTVAL (XEXP (src, 1));
2736 else
2737 ep->can_eliminate = 0;
2741 elimination_effects (SET_DEST (x), 0);
2742 elimination_effects (SET_SRC (x), 0);
2743 return;
2745 case MEM:
2746 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2747 abort ();
2749 /* Our only special processing is to pass the mode of the MEM to our
2750 recursive call. */
2751 elimination_effects (XEXP (x, 0), GET_MODE (x));
2752 return;
2754 default:
2755 break;
2758 fmt = GET_RTX_FORMAT (code);
2759 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2761 if (*fmt == 'e')
2762 elimination_effects (XEXP (x, i), mem_mode);
2763 else if (*fmt == 'E')
2764 for (j = 0; j < XVECLEN (x, i); j++)
2765 elimination_effects (XVECEXP (x, i, j), mem_mode);
2769 /* Descend through rtx X and verify that no references to eliminable registers
2770 remain. If any do remain, mark the involved register as not
2771 eliminable. */
2773 static void
2774 check_eliminable_occurrences (x)
2775 rtx x;
2777 const char *fmt;
2778 int i;
2779 enum rtx_code code;
2781 if (x == 0)
2782 return;
2784 code = GET_CODE (x);
2786 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2788 struct elim_table *ep;
2790 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2791 if (ep->from_rtx == x && ep->can_eliminate)
2792 ep->can_eliminate = 0;
2793 return;
2796 fmt = GET_RTX_FORMAT (code);
2797 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2799 if (*fmt == 'e')
2800 check_eliminable_occurrences (XEXP (x, i));
2801 else if (*fmt == 'E')
2803 int j;
2804 for (j = 0; j < XVECLEN (x, i); j++)
2805 check_eliminable_occurrences (XVECEXP (x, i, j));
2810 /* Scan INSN and eliminate all eliminable registers in it.
2812 If REPLACE is nonzero, do the replacement destructively. Also
2813 delete the insn as dead it if it is setting an eliminable register.
2815 If REPLACE is zero, do all our allocations in reload_obstack.
2817 If no eliminations were done and this insn doesn't require any elimination
2818 processing (these are not identical conditions: it might be updating sp,
2819 but not referencing fp; this needs to be seen during reload_as_needed so
2820 that the offset between fp and sp can be taken into consideration), zero
2821 is returned. Otherwise, 1 is returned. */
2823 static int
2824 eliminate_regs_in_insn (insn, replace)
2825 rtx insn;
2826 int replace;
2828 int icode = recog_memoized (insn);
2829 rtx old_body = PATTERN (insn);
2830 int insn_is_asm = asm_noperands (old_body) >= 0;
2831 rtx old_set = single_set (insn);
2832 rtx new_body;
2833 int val = 0;
2834 int i, any_changes;
2835 rtx substed_operand[MAX_RECOG_OPERANDS];
2836 rtx orig_operand[MAX_RECOG_OPERANDS];
2837 struct elim_table *ep;
2839 if (! insn_is_asm && icode < 0)
2841 if (GET_CODE (PATTERN (insn)) == USE
2842 || GET_CODE (PATTERN (insn)) == CLOBBER
2843 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2844 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2845 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2846 return 0;
2847 abort ();
2850 if (! replace)
2851 push_obstacks (&reload_obstack, &reload_obstack);
2853 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2854 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2856 /* Check for setting an eliminable register. */
2857 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2858 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2860 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2861 /* If this is setting the frame pointer register to the
2862 hardware frame pointer register and this is an elimination
2863 that will be done (tested above), this insn is really
2864 adjusting the frame pointer downward to compensate for
2865 the adjustment done before a nonlocal goto. */
2866 if (ep->from == FRAME_POINTER_REGNUM
2867 && ep->to == HARD_FRAME_POINTER_REGNUM)
2869 rtx src = SET_SRC (old_set);
2870 int offset = 0, ok = 0;
2871 rtx prev_insn, prev_set;
2873 if (src == ep->to_rtx)
2874 offset = 0, ok = 1;
2875 else if (GET_CODE (src) == PLUS
2876 && GET_CODE (XEXP (src, 0)) == CONST_INT
2877 && XEXP (src, 1) == ep->to_rtx)
2878 offset = INTVAL (XEXP (src, 0)), ok = 1;
2879 else if (GET_CODE (src) == PLUS
2880 && GET_CODE (XEXP (src, 1)) == CONST_INT
2881 && XEXP (src, 0) == ep->to_rtx)
2882 offset = INTVAL (XEXP (src, 1)), ok = 1;
2883 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
2884 && (prev_set = single_set (prev_insn)) != 0
2885 && rtx_equal_p (SET_DEST (prev_set), src))
2887 src = SET_SRC (prev_set);
2888 if (src == ep->to_rtx)
2889 offset = 0, ok = 1;
2890 else if (GET_CODE (src) == PLUS
2891 && GET_CODE (XEXP (src, 0)) == CONST_INT
2892 && XEXP (src, 1) == ep->to_rtx)
2893 offset = INTVAL (XEXP (src, 0)), ok = 1;
2894 else if (GET_CODE (src) == PLUS
2895 && GET_CODE (XEXP (src, 1)) == CONST_INT
2896 && XEXP (src, 0) == ep->to_rtx)
2897 offset = INTVAL (XEXP (src, 1)), ok = 1;
2900 if (ok)
2902 if (replace)
2904 rtx src
2905 = plus_constant (ep->to_rtx, offset - ep->offset);
2907 /* First see if this insn remains valid when we
2908 make the change. If not, keep the INSN_CODE
2909 the same and let reload fit it up. */
2910 validate_change (insn, &SET_SRC (old_set), src, 1);
2911 validate_change (insn, &SET_DEST (old_set),
2912 ep->to_rtx, 1);
2913 if (! apply_change_group ())
2915 SET_SRC (old_set) = src;
2916 SET_DEST (old_set) = ep->to_rtx;
2920 val = 1;
2921 goto done;
2924 #endif
2926 /* In this case this insn isn't serving a useful purpose. We
2927 will delete it in reload_as_needed once we know that this
2928 elimination is, in fact, being done.
2930 If REPLACE isn't set, we can't delete this insn, but needn't
2931 process it since it won't be used unless something changes. */
2932 if (replace)
2934 delete_dead_insn (insn);
2935 return 1;
2937 val = 1;
2938 goto done;
2942 /* We allow one special case which happens to work on all machines we
2943 currently support: a single set with the source being a PLUS of an
2944 eliminable register and a constant. */
2945 if (old_set
2946 && GET_CODE (SET_SRC (old_set)) == PLUS
2947 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
2948 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
2949 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
2951 rtx reg = XEXP (SET_SRC (old_set), 0);
2952 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
2954 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2955 if (ep->from_rtx == reg && ep->can_eliminate)
2957 offset += ep->offset;
2959 if (offset == 0)
2961 /* We assume here that we don't need a PARALLEL of
2962 any CLOBBERs for this assignment. There's not
2963 much we can do if we do need it. */
2964 PATTERN (insn) = gen_rtx_SET (VOIDmode,
2965 SET_DEST (old_set),
2966 ep->to_rtx);
2967 INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
2968 if (INSN_CODE (insn) < 0)
2969 abort ();
2971 else
2973 new_body = old_body;
2974 if (! replace)
2976 new_body = copy_insn (old_body);
2977 if (REG_NOTES (insn))
2978 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2980 PATTERN (insn) = new_body;
2981 old_set = single_set (insn);
2983 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
2984 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
2986 val = 1;
2987 /* This can't have an effect on elimination offsets, so skip right
2988 to the end. */
2989 goto done;
2993 /* Determine the effects of this insn on elimination offsets. */
2994 elimination_effects (old_body, 0);
2996 /* Eliminate all eliminable registers occurring in operands that
2997 can be handled by reload. */
2998 extract_insn (insn);
2999 any_changes = 0;
3000 for (i = 0; i < recog_data.n_operands; i++)
3002 orig_operand[i] = recog_data.operand[i];
3003 substed_operand[i] = recog_data.operand[i];
3005 /* For an asm statement, every operand is eliminable. */
3006 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3008 /* Check for setting a register that we know about. */
3009 if (recog_data.operand_type[i] != OP_IN
3010 && GET_CODE (orig_operand[i]) == REG)
3012 /* If we are assigning to a register that can be eliminated, it
3013 must be as part of a PARALLEL, since the code above handles
3014 single SETs. We must indicate that we can no longer
3015 eliminate this reg. */
3016 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3017 ep++)
3018 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3019 ep->can_eliminate = 0;
3022 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3023 replace ? insn : NULL_RTX);
3024 if (substed_operand[i] != orig_operand[i])
3025 val = any_changes = 1;
3026 /* Terminate the search in check_eliminable_occurrences at
3027 this point. */
3028 *recog_data.operand_loc[i] = 0;
3030 /* If an output operand changed from a REG to a MEM and INSN is an
3031 insn, write a CLOBBER insn. */
3032 if (recog_data.operand_type[i] != OP_IN
3033 && GET_CODE (orig_operand[i]) == REG
3034 && GET_CODE (substed_operand[i]) == MEM
3035 && replace)
3036 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3037 insn);
3041 for (i = 0; i < recog_data.n_dups; i++)
3042 *recog_data.dup_loc[i]
3043 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3045 /* If any eliminable remain, they aren't eliminable anymore. */
3046 check_eliminable_occurrences (old_body);
3048 /* Substitute the operands; the new values are in the substed_operand
3049 array. */
3050 for (i = 0; i < recog_data.n_operands; i++)
3051 *recog_data.operand_loc[i] = substed_operand[i];
3052 for (i = 0; i < recog_data.n_dups; i++)
3053 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3055 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3056 re-recognize the insn. We do this in case we had a simple addition
3057 but now can do this as a load-address. This saves an insn in this
3058 common case.
3059 If re-recognition fails, the old insn code number will still be used,
3060 and some register operands may have changed into PLUS expressions.
3061 These will be handled by find_reloads by loading them into a register
3062 again. */
3064 if (val)
3066 /* If we aren't replacing things permanently and we changed something,
3067 make another copy to ensure that all the RTL is new. Otherwise
3068 things can go wrong if find_reload swaps commutative operands
3069 and one is inside RTL that has been copied while the other is not. */
3070 new_body = old_body;
3071 if (! replace)
3073 new_body = copy_insn (old_body);
3074 if (REG_NOTES (insn))
3075 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3077 PATTERN (insn) = new_body;
3079 /* If we had a move insn but now we don't, rerecognize it. This will
3080 cause spurious re-recognition if the old move had a PARALLEL since
3081 the new one still will, but we can't call single_set without
3082 having put NEW_BODY into the insn and the re-recognition won't
3083 hurt in this rare case. */
3084 /* ??? Why this huge if statement - why don't we just rerecognize the
3085 thing always? */
3086 if (! insn_is_asm
3087 && old_set != 0
3088 && ((GET_CODE (SET_SRC (old_set)) == REG
3089 && (GET_CODE (new_body) != SET
3090 || GET_CODE (SET_SRC (new_body)) != REG))
3091 /* If this was a load from or store to memory, compare
3092 the MEM in recog_data.operand to the one in the insn.
3093 If they are not equal, then rerecognize the insn. */
3094 || (old_set != 0
3095 && ((GET_CODE (SET_SRC (old_set)) == MEM
3096 && SET_SRC (old_set) != recog_data.operand[1])
3097 || (GET_CODE (SET_DEST (old_set)) == MEM
3098 && SET_DEST (old_set) != recog_data.operand[0])))
3099 /* If this was an add insn before, rerecognize. */
3100 || GET_CODE (SET_SRC (old_set)) == PLUS))
3102 int new_icode = recog (PATTERN (insn), insn, 0);
3103 if (new_icode < 0)
3104 INSN_CODE (insn) = icode;
3108 /* Restore the old body. If there were any changes to it, we made a copy
3109 of it while the changes were still in place, so we'll correctly return
3110 a modified insn below. */
3111 if (! replace)
3113 /* Restore the old body. */
3114 for (i = 0; i < recog_data.n_operands; i++)
3115 *recog_data.operand_loc[i] = orig_operand[i];
3116 for (i = 0; i < recog_data.n_dups; i++)
3117 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3120 /* Update all elimination pairs to reflect the status after the current
3121 insn. The changes we make were determined by the earlier call to
3122 elimination_effects.
3124 We also detect a cases where register elimination cannot be done,
3125 namely, if a register would be both changed and referenced outside a MEM
3126 in the resulting insn since such an insn is often undefined and, even if
3127 not, we cannot know what meaning will be given to it. Note that it is
3128 valid to have a register used in an address in an insn that changes it
3129 (presumably with a pre- or post-increment or decrement).
3131 If anything changes, return nonzero. */
3133 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3135 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3136 ep->can_eliminate = 0;
3138 ep->ref_outside_mem = 0;
3140 if (ep->previous_offset != ep->offset)
3141 val = 1;
3144 done:
3145 /* If we changed something, perform elimination in REG_NOTES. This is
3146 needed even when REPLACE is zero because a REG_DEAD note might refer
3147 to a register that we eliminate and could cause a different number
3148 of spill registers to be needed in the final reload pass than in
3149 the pre-passes. */
3150 if (val && REG_NOTES (insn) != 0)
3151 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3153 if (! replace)
3154 pop_obstacks ();
3156 return val;
3159 /* Loop through all elimination pairs.
3160 Recalculate the number not at initial offset.
3162 Compute the maximum offset (minimum offset if the stack does not
3163 grow downward) for each elimination pair. */
3165 static void
3166 update_eliminable_offsets ()
3168 struct elim_table *ep;
3170 num_not_at_initial_offset = 0;
3171 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3173 ep->previous_offset = ep->offset;
3174 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3175 num_not_at_initial_offset++;
3179 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3180 replacement we currently believe is valid, mark it as not eliminable if X
3181 modifies DEST in any way other than by adding a constant integer to it.
3183 If DEST is the frame pointer, we do nothing because we assume that
3184 all assignments to the hard frame pointer are nonlocal gotos and are being
3185 done at a time when they are valid and do not disturb anything else.
3186 Some machines want to eliminate a fake argument pointer with either the
3187 frame or stack pointer. Assignments to the hard frame pointer must not
3188 prevent this elimination.
3190 Called via note_stores from reload before starting its passes to scan
3191 the insns of the function. */
3193 static void
3194 mark_not_eliminable (dest, x, data)
3195 rtx dest;
3196 rtx x;
3197 void *data ATTRIBUTE_UNUSED;
3199 register unsigned int i;
3201 /* A SUBREG of a hard register here is just changing its mode. We should
3202 not see a SUBREG of an eliminable hard register, but check just in
3203 case. */
3204 if (GET_CODE (dest) == SUBREG)
3205 dest = SUBREG_REG (dest);
3207 if (dest == hard_frame_pointer_rtx)
3208 return;
3210 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3211 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3212 && (GET_CODE (x) != SET
3213 || GET_CODE (SET_SRC (x)) != PLUS
3214 || XEXP (SET_SRC (x), 0) != dest
3215 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3217 reg_eliminate[i].can_eliminate_previous
3218 = reg_eliminate[i].can_eliminate = 0;
3219 num_eliminable--;
3223 /* Verify that the initial elimination offsets did not change since the
3224 last call to set_initial_elim_offsets. This is used to catch cases
3225 where something illegal happened during reload_as_needed that could
3226 cause incorrect code to be generated if we did not check for it. */
3228 static void
3229 verify_initial_elim_offsets ()
3231 int t;
3233 #ifdef ELIMINABLE_REGS
3234 struct elim_table *ep;
3236 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3238 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3239 if (t != ep->initial_offset)
3240 abort ();
3242 #else
3243 INITIAL_FRAME_POINTER_OFFSET (t);
3244 if (t != reg_eliminate[0].initial_offset)
3245 abort ();
3246 #endif
3249 /* Reset all offsets on eliminable registers to their initial values. */
3251 static void
3252 set_initial_elim_offsets ()
3254 struct elim_table *ep = reg_eliminate;
3256 #ifdef ELIMINABLE_REGS
3257 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3259 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3260 ep->previous_offset = ep->offset = ep->initial_offset;
3262 #else
3263 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3264 ep->previous_offset = ep->offset = ep->initial_offset;
3265 #endif
3267 num_not_at_initial_offset = 0;
3270 /* Initialize the known label offsets.
3271 Set a known offset for each forced label to be at the initial offset
3272 of each elimination. We do this because we assume that all
3273 computed jumps occur from a location where each elimination is
3274 at its initial offset.
3275 For all other labels, show that we don't know the offsets. */
3277 static void
3278 set_initial_label_offsets ()
3280 rtx x;
3281 bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels);
3283 for (x = forced_labels; x; x = XEXP (x, 1))
3284 if (XEXP (x, 0))
3285 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3288 /* Set all elimination offsets to the known values for the code label given
3289 by INSN. */
3291 static void
3292 set_offsets_for_label (insn)
3293 rtx insn;
3295 unsigned int i;
3296 int label_nr = CODE_LABEL_NUMBER (insn);
3297 struct elim_table *ep;
3299 num_not_at_initial_offset = 0;
3300 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3302 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3303 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3304 num_not_at_initial_offset++;
3308 /* See if anything that happened changes which eliminations are valid.
3309 For example, on the Sparc, whether or not the frame pointer can
3310 be eliminated can depend on what registers have been used. We need
3311 not check some conditions again (such as flag_omit_frame_pointer)
3312 since they can't have changed. */
3314 static void
3315 update_eliminables (pset)
3316 HARD_REG_SET *pset;
3318 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3319 int previous_frame_pointer_needed = frame_pointer_needed;
3320 #endif
3321 struct elim_table *ep;
3323 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3324 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3325 #ifdef ELIMINABLE_REGS
3326 || ! CAN_ELIMINATE (ep->from, ep->to)
3327 #endif
3329 ep->can_eliminate = 0;
3331 /* Look for the case where we have discovered that we can't replace
3332 register A with register B and that means that we will now be
3333 trying to replace register A with register C. This means we can
3334 no longer replace register C with register B and we need to disable
3335 such an elimination, if it exists. This occurs often with A == ap,
3336 B == sp, and C == fp. */
3338 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3340 struct elim_table *op;
3341 register int new_to = -1;
3343 if (! ep->can_eliminate && ep->can_eliminate_previous)
3345 /* Find the current elimination for ep->from, if there is a
3346 new one. */
3347 for (op = reg_eliminate;
3348 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3349 if (op->from == ep->from && op->can_eliminate)
3351 new_to = op->to;
3352 break;
3355 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3356 disable it. */
3357 for (op = reg_eliminate;
3358 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3359 if (op->from == new_to && op->to == ep->to)
3360 op->can_eliminate = 0;
3364 /* See if any registers that we thought we could eliminate the previous
3365 time are no longer eliminable. If so, something has changed and we
3366 must spill the register. Also, recompute the number of eliminable
3367 registers and see if the frame pointer is needed; it is if there is
3368 no elimination of the frame pointer that we can perform. */
3370 frame_pointer_needed = 1;
3371 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3373 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3374 && ep->to != HARD_FRAME_POINTER_REGNUM)
3375 frame_pointer_needed = 0;
3377 if (! ep->can_eliminate && ep->can_eliminate_previous)
3379 ep->can_eliminate_previous = 0;
3380 SET_HARD_REG_BIT (*pset, ep->from);
3381 num_eliminable--;
3385 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3386 /* If we didn't need a frame pointer last time, but we do now, spill
3387 the hard frame pointer. */
3388 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3389 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3390 #endif
3393 /* Initialize the table of registers to eliminate. */
3395 static void
3396 init_elim_table ()
3398 struct elim_table *ep;
3399 #ifdef ELIMINABLE_REGS
3400 struct elim_table_1 *ep1;
3401 #endif
3403 if (!reg_eliminate)
3404 reg_eliminate = (struct elim_table *)
3405 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3407 /* Does this function require a frame pointer? */
3409 frame_pointer_needed = (! flag_omit_frame_pointer
3410 #ifdef EXIT_IGNORE_STACK
3411 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3412 and restore sp for alloca. So we can't eliminate
3413 the frame pointer in that case. At some point,
3414 we should improve this by emitting the
3415 sp-adjusting insns for this case. */
3416 || (current_function_calls_alloca
3417 && EXIT_IGNORE_STACK)
3418 #endif
3419 || FRAME_POINTER_REQUIRED);
3421 num_eliminable = 0;
3423 #ifdef ELIMINABLE_REGS
3424 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3425 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3427 ep->from = ep1->from;
3428 ep->to = ep1->to;
3429 ep->can_eliminate = ep->can_eliminate_previous
3430 = (CAN_ELIMINATE (ep->from, ep->to)
3431 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3433 #else
3434 reg_eliminate[0].from = reg_eliminate_1[0].from;
3435 reg_eliminate[0].to = reg_eliminate_1[0].to;
3436 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3437 = ! frame_pointer_needed;
3438 #endif
3440 /* Count the number of eliminable registers and build the FROM and TO
3441 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3442 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3443 We depend on this. */
3444 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3446 num_eliminable += ep->can_eliminate;
3447 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3448 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3452 /* Kick all pseudos out of hard register REGNO.
3453 If DUMPFILE is nonzero, log actions taken on that file.
3455 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3456 because we found we can't eliminate some register. In the case, no pseudos
3457 are allowed to be in the register, even if they are only in a block that
3458 doesn't require spill registers, unlike the case when we are spilling this
3459 hard reg to produce another spill register.
3461 Return nonzero if any pseudos needed to be kicked out. */
3463 static void
3464 spill_hard_reg (regno, dumpfile, cant_eliminate)
3465 unsigned int regno;
3466 FILE *dumpfile ATTRIBUTE_UNUSED;
3467 int cant_eliminate;
3469 register int i;
3471 if (cant_eliminate)
3473 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3474 regs_ever_live[regno] = 1;
3477 /* Spill every pseudo reg that was allocated to this reg
3478 or to something that overlaps this reg. */
3480 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3481 if (reg_renumber[i] >= 0
3482 && (unsigned int) reg_renumber[i] <= regno
3483 && ((unsigned int) reg_renumber[i]
3484 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3485 PSEUDO_REGNO_MODE (i))
3486 > regno))
3487 SET_REGNO_REG_SET (&spilled_pseudos, i);
3490 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3491 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3493 static void
3494 ior_hard_reg_set (set1, set2)
3495 HARD_REG_SET *set1, *set2;
3497 IOR_HARD_REG_SET (*set1, *set2);
3500 /* After find_reload_regs has been run for all insn that need reloads,
3501 and/or spill_hard_regs was called, this function is used to actually
3502 spill pseudo registers and try to reallocate them. It also sets up the
3503 spill_regs array for use by choose_reload_regs. */
3505 static int
3506 finish_spills (global, dumpfile)
3507 int global;
3508 FILE *dumpfile;
3510 struct insn_chain *chain;
3511 int something_changed = 0;
3512 int i;
3514 /* Build the spill_regs array for the function. */
3515 /* If there are some registers still to eliminate and one of the spill regs
3516 wasn't ever used before, additional stack space may have to be
3517 allocated to store this register. Thus, we may have changed the offset
3518 between the stack and frame pointers, so mark that something has changed.
3520 One might think that we need only set VAL to 1 if this is a call-used
3521 register. However, the set of registers that must be saved by the
3522 prologue is not identical to the call-used set. For example, the
3523 register used by the call insn for the return PC is a call-used register,
3524 but must be saved by the prologue. */
3526 n_spills = 0;
3527 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3528 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3530 spill_reg_order[i] = n_spills;
3531 spill_regs[n_spills++] = i;
3532 if (num_eliminable && ! regs_ever_live[i])
3533 something_changed = 1;
3534 regs_ever_live[i] = 1;
3536 else
3537 spill_reg_order[i] = -1;
3539 EXECUTE_IF_SET_IN_REG_SET
3540 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3542 /* Record the current hard register the pseudo is allocated to in
3543 pseudo_previous_regs so we avoid reallocating it to the same
3544 hard reg in a later pass. */
3545 if (reg_renumber[i] < 0)
3546 abort ();
3548 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3549 /* Mark it as no longer having a hard register home. */
3550 reg_renumber[i] = -1;
3551 /* We will need to scan everything again. */
3552 something_changed = 1;
3555 /* Retry global register allocation if possible. */
3556 if (global)
3558 bzero ((char *) pseudo_forbidden_regs, max_regno * sizeof (HARD_REG_SET));
3559 /* For every insn that needs reloads, set the registers used as spill
3560 regs in pseudo_forbidden_regs for every pseudo live across the
3561 insn. */
3562 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3564 EXECUTE_IF_SET_IN_REG_SET
3565 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3567 ior_hard_reg_set (pseudo_forbidden_regs + i,
3568 &chain->used_spill_regs);
3570 EXECUTE_IF_SET_IN_REG_SET
3571 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3573 ior_hard_reg_set (pseudo_forbidden_regs + i,
3574 &chain->used_spill_regs);
3578 /* Retry allocating the spilled pseudos. For each reg, merge the
3579 various reg sets that indicate which hard regs can't be used,
3580 and call retry_global_alloc.
3581 We change spill_pseudos here to only contain pseudos that did not
3582 get a new hard register. */
3583 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3584 if (reg_old_renumber[i] != reg_renumber[i])
3586 HARD_REG_SET forbidden;
3587 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3588 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3589 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3590 retry_global_alloc (i, forbidden);
3591 if (reg_renumber[i] >= 0)
3592 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3596 /* Fix up the register information in the insn chain.
3597 This involves deleting those of the spilled pseudos which did not get
3598 a new hard register home from the live_{before,after} sets. */
3599 for (chain = reload_insn_chain; chain; chain = chain->next)
3601 HARD_REG_SET used_by_pseudos;
3602 HARD_REG_SET used_by_pseudos2;
3604 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3605 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3607 /* Mark any unallocated hard regs as available for spills. That
3608 makes inheritance work somewhat better. */
3609 if (chain->need_reload)
3611 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3612 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3613 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3615 /* Save the old value for the sanity test below. */
3616 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3618 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3619 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3620 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3621 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3623 /* Make sure we only enlarge the set. */
3624 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3625 abort ();
3626 ok:;
3630 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3631 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3633 int regno = reg_renumber[i];
3634 if (reg_old_renumber[i] == regno)
3635 continue;
3637 alter_reg (i, reg_old_renumber[i]);
3638 reg_old_renumber[i] = regno;
3639 if (dumpfile)
3641 if (regno == -1)
3642 fprintf (dumpfile, " Register %d now on stack.\n\n", i);
3643 else
3644 fprintf (dumpfile, " Register %d now in %d.\n\n",
3645 i, reg_renumber[i]);
3649 return something_changed;
3652 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3653 Also mark any hard registers used to store user variables as
3654 forbidden from being used for spill registers. */
3656 static void
3657 scan_paradoxical_subregs (x)
3658 register rtx x;
3660 register int i;
3661 register const char *fmt;
3662 register enum rtx_code code = GET_CODE (x);
3664 switch (code)
3666 case REG:
3667 #if 0
3668 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3669 && REG_USERVAR_P (x))
3670 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3671 #endif
3672 return;
3674 case CONST_INT:
3675 case CONST:
3676 case SYMBOL_REF:
3677 case LABEL_REF:
3678 case CONST_DOUBLE:
3679 case CC0:
3680 case PC:
3681 case USE:
3682 case CLOBBER:
3683 return;
3685 case SUBREG:
3686 if (GET_CODE (SUBREG_REG (x)) == REG
3687 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3688 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3689 = GET_MODE_SIZE (GET_MODE (x));
3690 return;
3692 default:
3693 break;
3696 fmt = GET_RTX_FORMAT (code);
3697 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3699 if (fmt[i] == 'e')
3700 scan_paradoxical_subregs (XEXP (x, i));
3701 else if (fmt[i] == 'E')
3703 register int j;
3704 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3705 scan_paradoxical_subregs (XVECEXP (x, i, j));
3710 /* Reload pseudo-registers into hard regs around each insn as needed.
3711 Additional register load insns are output before the insn that needs it
3712 and perhaps store insns after insns that modify the reloaded pseudo reg.
3714 reg_last_reload_reg and reg_reloaded_contents keep track of
3715 which registers are already available in reload registers.
3716 We update these for the reloads that we perform,
3717 as the insns are scanned. */
3719 static void
3720 reload_as_needed (live_known)
3721 int live_known;
3723 struct insn_chain *chain;
3724 #if defined (AUTO_INC_DEC)
3725 register int i;
3726 #endif
3727 rtx x;
3729 bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx);
3730 bzero ((char *) spill_reg_store, sizeof spill_reg_store);
3731 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3732 reg_has_output_reload = (char *) xmalloc (max_regno);
3733 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3735 set_initial_elim_offsets ();
3737 for (chain = reload_insn_chain; chain; chain = chain->next)
3739 rtx prev;
3740 rtx insn = chain->insn;
3741 rtx old_next = NEXT_INSN (insn);
3743 /* If we pass a label, copy the offsets from the label information
3744 into the current offsets of each elimination. */
3745 if (GET_CODE (insn) == CODE_LABEL)
3746 set_offsets_for_label (insn);
3748 else if (INSN_P (insn))
3750 rtx oldpat = PATTERN (insn);
3752 /* If this is a USE and CLOBBER of a MEM, ensure that any
3753 references to eliminable registers have been removed. */
3755 if ((GET_CODE (PATTERN (insn)) == USE
3756 || GET_CODE (PATTERN (insn)) == CLOBBER)
3757 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3758 XEXP (XEXP (PATTERN (insn), 0), 0)
3759 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3760 GET_MODE (XEXP (PATTERN (insn), 0)),
3761 NULL_RTX);
3763 /* If we need to do register elimination processing, do so.
3764 This might delete the insn, in which case we are done. */
3765 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3767 eliminate_regs_in_insn (insn, 1);
3768 if (GET_CODE (insn) == NOTE)
3770 update_eliminable_offsets ();
3771 continue;
3775 /* If need_elim is nonzero but need_reload is zero, one might think
3776 that we could simply set n_reloads to 0. However, find_reloads
3777 could have done some manipulation of the insn (such as swapping
3778 commutative operands), and these manipulations are lost during
3779 the first pass for every insn that needs register elimination.
3780 So the actions of find_reloads must be redone here. */
3782 if (! chain->need_elim && ! chain->need_reload
3783 && ! chain->need_operand_change)
3784 n_reloads = 0;
3785 /* First find the pseudo regs that must be reloaded for this insn.
3786 This info is returned in the tables reload_... (see reload.h).
3787 Also modify the body of INSN by substituting RELOAD
3788 rtx's for those pseudo regs. */
3789 else
3791 bzero (reg_has_output_reload, max_regno);
3792 CLEAR_HARD_REG_SET (reg_is_output_reload);
3794 find_reloads (insn, 1, spill_indirect_levels, live_known,
3795 spill_reg_order);
3798 if (num_eliminable && chain->need_elim)
3799 update_eliminable_offsets ();
3801 if (n_reloads > 0)
3803 rtx next = NEXT_INSN (insn);
3804 rtx p;
3806 prev = PREV_INSN (insn);
3808 /* Now compute which reload regs to reload them into. Perhaps
3809 reusing reload regs from previous insns, or else output
3810 load insns to reload them. Maybe output store insns too.
3811 Record the choices of reload reg in reload_reg_rtx. */
3812 choose_reload_regs (chain);
3814 /* Merge any reloads that we didn't combine for fear of
3815 increasing the number of spill registers needed but now
3816 discover can be safely merged. */
3817 if (SMALL_REGISTER_CLASSES)
3818 merge_assigned_reloads (insn);
3820 /* Generate the insns to reload operands into or out of
3821 their reload regs. */
3822 emit_reload_insns (chain);
3824 /* Substitute the chosen reload regs from reload_reg_rtx
3825 into the insn's body (or perhaps into the bodies of other
3826 load and store insn that we just made for reloading
3827 and that we moved the structure into). */
3828 subst_reloads ();
3830 /* If this was an ASM, make sure that all the reload insns
3831 we have generated are valid. If not, give an error
3832 and delete them. */
3834 if (asm_noperands (PATTERN (insn)) >= 0)
3835 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3836 if (p != insn && INSN_P (p)
3837 && (recog_memoized (p) < 0
3838 || (extract_insn (p), ! constrain_operands (1))))
3840 error_for_asm (insn,
3841 "`asm' operand requires impossible reload");
3842 PUT_CODE (p, NOTE);
3843 NOTE_SOURCE_FILE (p) = 0;
3844 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
3847 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3848 is no longer validly lying around to save a future reload.
3849 Note that this does not detect pseudos that were reloaded
3850 for this insn in order to be stored in
3851 (obeying register constraints). That is correct; such reload
3852 registers ARE still valid. */
3853 note_stores (oldpat, forget_old_reloads_1, NULL);
3855 /* There may have been CLOBBER insns placed after INSN. So scan
3856 between INSN and NEXT and use them to forget old reloads. */
3857 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3858 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3859 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3861 #ifdef AUTO_INC_DEC
3862 /* Likewise for regs altered by auto-increment in this insn.
3863 REG_INC notes have been changed by reloading:
3864 find_reloads_address_1 records substitutions for them,
3865 which have been performed by subst_reloads above. */
3866 for (i = n_reloads - 1; i >= 0; i--)
3868 rtx in_reg = rld[i].in_reg;
3869 if (in_reg)
3871 enum rtx_code code = GET_CODE (in_reg);
3872 /* PRE_INC / PRE_DEC will have the reload register ending up
3873 with the same value as the stack slot, but that doesn't
3874 hold true for POST_INC / POST_DEC. Either we have to
3875 convert the memory access to a true POST_INC / POST_DEC,
3876 or we can't use the reload register for inheritance. */
3877 if ((code == POST_INC || code == POST_DEC)
3878 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3879 REGNO (rld[i].reg_rtx))
3880 /* Make sure it is the inc/dec pseudo, and not
3881 some other (e.g. output operand) pseudo. */
3882 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3883 == REGNO (XEXP (in_reg, 0))))
3886 rtx reload_reg = rld[i].reg_rtx;
3887 enum machine_mode mode = GET_MODE (reload_reg);
3888 int n = 0;
3889 rtx p;
3891 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3893 /* We really want to ignore REG_INC notes here, so
3894 use PATTERN (p) as argument to reg_set_p . */
3895 if (reg_set_p (reload_reg, PATTERN (p)))
3896 break;
3897 n = count_occurrences (PATTERN (p), reload_reg, 0);
3898 if (! n)
3899 continue;
3900 if (n == 1)
3902 n = validate_replace_rtx (reload_reg,
3903 gen_rtx (code, mode,
3904 reload_reg),
3907 /* We must also verify that the constraints
3908 are met after the replacement. */
3909 extract_insn (p);
3910 if (n)
3911 n = constrain_operands (1);
3912 else
3913 break;
3915 /* If the constraints were not met, then
3916 undo the replacement. */
3917 if (!n)
3919 validate_replace_rtx (gen_rtx (code, mode,
3920 reload_reg),
3921 reload_reg, p);
3922 break;
3926 break;
3928 if (n == 1)
3930 REG_NOTES (p)
3931 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3932 REG_NOTES (p));
3933 /* Mark this as having an output reload so that the
3934 REG_INC processing code below won't invalidate
3935 the reload for inheritance. */
3936 SET_HARD_REG_BIT (reg_is_output_reload,
3937 REGNO (reload_reg));
3938 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3940 else
3941 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
3942 NULL);
3944 else if ((code == PRE_INC || code == PRE_DEC)
3945 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3946 REGNO (rld[i].reg_rtx))
3947 /* Make sure it is the inc/dec pseudo, and not
3948 some other (e.g. output operand) pseudo. */
3949 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3950 == REGNO (XEXP (in_reg, 0))))
3952 SET_HARD_REG_BIT (reg_is_output_reload,
3953 REGNO (rld[i].reg_rtx));
3954 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3958 /* If a pseudo that got a hard register is auto-incremented,
3959 we must purge records of copying it into pseudos without
3960 hard registers. */
3961 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
3962 if (REG_NOTE_KIND (x) == REG_INC)
3964 /* See if this pseudo reg was reloaded in this insn.
3965 If so, its last-reload info is still valid
3966 because it is based on this insn's reload. */
3967 for (i = 0; i < n_reloads; i++)
3968 if (rld[i].out == XEXP (x, 0))
3969 break;
3971 if (i == n_reloads)
3972 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
3974 #endif
3976 /* A reload reg's contents are unknown after a label. */
3977 if (GET_CODE (insn) == CODE_LABEL)
3978 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3980 /* Don't assume a reload reg is still good after a call insn
3981 if it is a call-used reg. */
3982 else if (GET_CODE (insn) == CALL_INSN)
3983 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
3986 /* Clean up. */
3987 free (reg_last_reload_reg);
3988 free (reg_has_output_reload);
3991 /* Discard all record of any value reloaded from X,
3992 or reloaded in X from someplace else;
3993 unless X is an output reload reg of the current insn.
3995 X may be a hard reg (the reload reg)
3996 or it may be a pseudo reg that was reloaded from. */
3998 static void
3999 forget_old_reloads_1 (x, ignored, data)
4000 rtx x;
4001 rtx ignored ATTRIBUTE_UNUSED;
4002 void *data ATTRIBUTE_UNUSED;
4004 unsigned int regno;
4005 unsigned int nr;
4006 int offset = 0;
4008 /* note_stores does give us subregs of hard regs. */
4009 while (GET_CODE (x) == SUBREG)
4011 offset += SUBREG_WORD (x);
4012 x = SUBREG_REG (x);
4015 if (GET_CODE (x) != REG)
4016 return;
4018 regno = REGNO (x) + offset;
4020 if (regno >= FIRST_PSEUDO_REGISTER)
4021 nr = 1;
4022 else
4024 unsigned int i;
4026 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4027 /* Storing into a spilled-reg invalidates its contents.
4028 This can happen if a block-local pseudo is allocated to that reg
4029 and it wasn't spilled because this block's total need is 0.
4030 Then some insn might have an optional reload and use this reg. */
4031 for (i = 0; i < nr; i++)
4032 /* But don't do this if the reg actually serves as an output
4033 reload reg in the current instruction. */
4034 if (n_reloads == 0
4035 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4036 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4039 /* Since value of X has changed,
4040 forget any value previously copied from it. */
4042 while (nr-- > 0)
4043 /* But don't forget a copy if this is the output reload
4044 that establishes the copy's validity. */
4045 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4046 reg_last_reload_reg[regno + nr] = 0;
4049 /* The following HARD_REG_SETs indicate when each hard register is
4050 used for a reload of various parts of the current insn. */
4052 /* If reg is unavailable for all reloads. */
4053 static HARD_REG_SET reload_reg_unavailable;
4054 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4055 static HARD_REG_SET reload_reg_used;
4056 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4057 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4058 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4059 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4060 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4061 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4062 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4063 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4064 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4065 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4066 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4067 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4068 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4069 static HARD_REG_SET reload_reg_used_in_op_addr;
4070 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4071 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4072 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4073 static HARD_REG_SET reload_reg_used_in_insn;
4074 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4075 static HARD_REG_SET reload_reg_used_in_other_addr;
4077 /* If reg is in use as a reload reg for any sort of reload. */
4078 static HARD_REG_SET reload_reg_used_at_all;
4080 /* If reg is use as an inherited reload. We just mark the first register
4081 in the group. */
4082 static HARD_REG_SET reload_reg_used_for_inherit;
4084 /* Records which hard regs are used in any way, either as explicit use or
4085 by being allocated to a pseudo during any point of the current insn. */
4086 static HARD_REG_SET reg_used_in_insn;
4088 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4089 TYPE. MODE is used to indicate how many consecutive regs are
4090 actually used. */
4092 static void
4093 mark_reload_reg_in_use (regno, opnum, type, mode)
4094 unsigned int regno;
4095 int opnum;
4096 enum reload_type type;
4097 enum machine_mode mode;
4099 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4100 unsigned int i;
4102 for (i = regno; i < nregs + regno; i++)
4104 switch (type)
4106 case RELOAD_OTHER:
4107 SET_HARD_REG_BIT (reload_reg_used, i);
4108 break;
4110 case RELOAD_FOR_INPUT_ADDRESS:
4111 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4112 break;
4114 case RELOAD_FOR_INPADDR_ADDRESS:
4115 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4116 break;
4118 case RELOAD_FOR_OUTPUT_ADDRESS:
4119 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4120 break;
4122 case RELOAD_FOR_OUTADDR_ADDRESS:
4123 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4124 break;
4126 case RELOAD_FOR_OPERAND_ADDRESS:
4127 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4128 break;
4130 case RELOAD_FOR_OPADDR_ADDR:
4131 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4132 break;
4134 case RELOAD_FOR_OTHER_ADDRESS:
4135 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4136 break;
4138 case RELOAD_FOR_INPUT:
4139 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4140 break;
4142 case RELOAD_FOR_OUTPUT:
4143 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4144 break;
4146 case RELOAD_FOR_INSN:
4147 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4148 break;
4151 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4155 /* Similarly, but show REGNO is no longer in use for a reload. */
4157 static void
4158 clear_reload_reg_in_use (regno, opnum, type, mode)
4159 unsigned int regno;
4160 int opnum;
4161 enum reload_type type;
4162 enum machine_mode mode;
4164 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4165 unsigned int start_regno, end_regno, r;
4166 int i;
4167 /* A complication is that for some reload types, inheritance might
4168 allow multiple reloads of the same types to share a reload register.
4169 We set check_opnum if we have to check only reloads with the same
4170 operand number, and check_any if we have to check all reloads. */
4171 int check_opnum = 0;
4172 int check_any = 0;
4173 HARD_REG_SET *used_in_set;
4175 switch (type)
4177 case RELOAD_OTHER:
4178 used_in_set = &reload_reg_used;
4179 break;
4181 case RELOAD_FOR_INPUT_ADDRESS:
4182 used_in_set = &reload_reg_used_in_input_addr[opnum];
4183 break;
4185 case RELOAD_FOR_INPADDR_ADDRESS:
4186 check_opnum = 1;
4187 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4188 break;
4190 case RELOAD_FOR_OUTPUT_ADDRESS:
4191 used_in_set = &reload_reg_used_in_output_addr[opnum];
4192 break;
4194 case RELOAD_FOR_OUTADDR_ADDRESS:
4195 check_opnum = 1;
4196 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4197 break;
4199 case RELOAD_FOR_OPERAND_ADDRESS:
4200 used_in_set = &reload_reg_used_in_op_addr;
4201 break;
4203 case RELOAD_FOR_OPADDR_ADDR:
4204 check_any = 1;
4205 used_in_set = &reload_reg_used_in_op_addr_reload;
4206 break;
4208 case RELOAD_FOR_OTHER_ADDRESS:
4209 used_in_set = &reload_reg_used_in_other_addr;
4210 check_any = 1;
4211 break;
4213 case RELOAD_FOR_INPUT:
4214 used_in_set = &reload_reg_used_in_input[opnum];
4215 break;
4217 case RELOAD_FOR_OUTPUT:
4218 used_in_set = &reload_reg_used_in_output[opnum];
4219 break;
4221 case RELOAD_FOR_INSN:
4222 used_in_set = &reload_reg_used_in_insn;
4223 break;
4224 default:
4225 abort ();
4227 /* We resolve conflicts with remaining reloads of the same type by
4228 excluding the intervals of of reload registers by them from the
4229 interval of freed reload registers. Since we only keep track of
4230 one set of interval bounds, we might have to exclude somewhat
4231 more then what would be necessary if we used a HARD_REG_SET here.
4232 But this should only happen very infrequently, so there should
4233 be no reason to worry about it. */
4235 start_regno = regno;
4236 end_regno = regno + nregs;
4237 if (check_opnum || check_any)
4239 for (i = n_reloads - 1; i >= 0; i--)
4241 if (rld[i].when_needed == type
4242 && (check_any || rld[i].opnum == opnum)
4243 && rld[i].reg_rtx)
4245 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4246 unsigned int conflict_end
4247 = (conflict_start
4248 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4250 /* If there is an overlap with the first to-be-freed register,
4251 adjust the interval start. */
4252 if (conflict_start <= start_regno && conflict_end > start_regno)
4253 start_regno = conflict_end;
4254 /* Otherwise, if there is a conflict with one of the other
4255 to-be-freed registers, adjust the interval end. */
4256 if (conflict_start > start_regno && conflict_start < end_regno)
4257 end_regno = conflict_start;
4262 for (r = start_regno; r < end_regno; r++)
4263 CLEAR_HARD_REG_BIT (*used_in_set, r);
4266 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4267 specified by OPNUM and TYPE. */
4269 static int
4270 reload_reg_free_p (regno, opnum, type)
4271 unsigned int regno;
4272 int opnum;
4273 enum reload_type type;
4275 int i;
4277 /* In use for a RELOAD_OTHER means it's not available for anything. */
4278 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4279 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4280 return 0;
4282 switch (type)
4284 case RELOAD_OTHER:
4285 /* In use for anything means we can't use it for RELOAD_OTHER. */
4286 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4287 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4288 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4289 return 0;
4291 for (i = 0; i < reload_n_operands; i++)
4292 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4293 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4294 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4295 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4296 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4297 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4298 return 0;
4300 return 1;
4302 case RELOAD_FOR_INPUT:
4303 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4304 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4305 return 0;
4307 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4308 return 0;
4310 /* If it is used for some other input, can't use it. */
4311 for (i = 0; i < reload_n_operands; i++)
4312 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4313 return 0;
4315 /* If it is used in a later operand's address, can't use it. */
4316 for (i = opnum + 1; i < reload_n_operands; i++)
4317 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4318 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4319 return 0;
4321 return 1;
4323 case RELOAD_FOR_INPUT_ADDRESS:
4324 /* Can't use a register if it is used for an input address for this
4325 operand or used as an input in an earlier one. */
4326 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4327 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4328 return 0;
4330 for (i = 0; i < opnum; i++)
4331 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4332 return 0;
4334 return 1;
4336 case RELOAD_FOR_INPADDR_ADDRESS:
4337 /* Can't use a register if it is used for an input address
4338 for this operand or used as an input in an earlier
4339 one. */
4340 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4341 return 0;
4343 for (i = 0; i < opnum; i++)
4344 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4345 return 0;
4347 return 1;
4349 case RELOAD_FOR_OUTPUT_ADDRESS:
4350 /* Can't use a register if it is used for an output address for this
4351 operand or used as an output in this or a later operand. */
4352 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4353 return 0;
4355 for (i = opnum; i < reload_n_operands; i++)
4356 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4357 return 0;
4359 return 1;
4361 case RELOAD_FOR_OUTADDR_ADDRESS:
4362 /* Can't use a register if it is used for an output address
4363 for this operand or used as an output in this or a
4364 later operand. */
4365 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4366 return 0;
4368 for (i = opnum; i < reload_n_operands; i++)
4369 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4370 return 0;
4372 return 1;
4374 case RELOAD_FOR_OPERAND_ADDRESS:
4375 for (i = 0; i < reload_n_operands; i++)
4376 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4377 return 0;
4379 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4380 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4382 case RELOAD_FOR_OPADDR_ADDR:
4383 for (i = 0; i < reload_n_operands; i++)
4384 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4385 return 0;
4387 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4389 case RELOAD_FOR_OUTPUT:
4390 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4391 outputs, or an operand address for this or an earlier output. */
4392 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4393 return 0;
4395 for (i = 0; i < reload_n_operands; i++)
4396 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4397 return 0;
4399 for (i = 0; i <= opnum; i++)
4400 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4401 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4402 return 0;
4404 return 1;
4406 case RELOAD_FOR_INSN:
4407 for (i = 0; i < reload_n_operands; i++)
4408 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4409 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4410 return 0;
4412 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4413 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4415 case RELOAD_FOR_OTHER_ADDRESS:
4416 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4418 abort ();
4421 /* Return 1 if the value in reload reg REGNO, as used by a reload
4422 needed for the part of the insn specified by OPNUM and TYPE,
4423 is still available in REGNO at the end of the insn.
4425 We can assume that the reload reg was already tested for availability
4426 at the time it is needed, and we should not check this again,
4427 in case the reg has already been marked in use. */
4429 static int
4430 reload_reg_reaches_end_p (regno, opnum, type)
4431 unsigned int regno;
4432 int opnum;
4433 enum reload_type type;
4435 int i;
4437 switch (type)
4439 case RELOAD_OTHER:
4440 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4441 its value must reach the end. */
4442 return 1;
4444 /* If this use is for part of the insn,
4445 its value reaches if no subsequent part uses the same register.
4446 Just like the above function, don't try to do this with lots
4447 of fallthroughs. */
4449 case RELOAD_FOR_OTHER_ADDRESS:
4450 /* Here we check for everything else, since these don't conflict
4451 with anything else and everything comes later. */
4453 for (i = 0; i < reload_n_operands; i++)
4454 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4455 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4456 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4457 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4458 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4459 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4460 return 0;
4462 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4463 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4464 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4466 case RELOAD_FOR_INPUT_ADDRESS:
4467 case RELOAD_FOR_INPADDR_ADDRESS:
4468 /* Similar, except that we check only for this and subsequent inputs
4469 and the address of only subsequent inputs and we do not need
4470 to check for RELOAD_OTHER objects since they are known not to
4471 conflict. */
4473 for (i = opnum; i < reload_n_operands; i++)
4474 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4475 return 0;
4477 for (i = opnum + 1; i < reload_n_operands; i++)
4478 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4479 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4480 return 0;
4482 for (i = 0; i < reload_n_operands; i++)
4483 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4484 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4485 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4486 return 0;
4488 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4489 return 0;
4491 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4492 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
4494 case RELOAD_FOR_INPUT:
4495 /* Similar to input address, except we start at the next operand for
4496 both input and input address and we do not check for
4497 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4498 would conflict. */
4500 for (i = opnum + 1; i < reload_n_operands; i++)
4501 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4502 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4503 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4504 return 0;
4506 /* ... fall through ... */
4508 case RELOAD_FOR_OPERAND_ADDRESS:
4509 /* Check outputs and their addresses. */
4511 for (i = 0; i < reload_n_operands; i++)
4512 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4513 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4514 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4515 return 0;
4517 return 1;
4519 case RELOAD_FOR_OPADDR_ADDR:
4520 for (i = 0; i < reload_n_operands; i++)
4521 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4522 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4523 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4524 return 0;
4526 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4527 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
4529 case RELOAD_FOR_INSN:
4530 /* These conflict with other outputs with RELOAD_OTHER. So
4531 we need only check for output addresses. */
4533 opnum = -1;
4535 /* ... fall through ... */
4537 case RELOAD_FOR_OUTPUT:
4538 case RELOAD_FOR_OUTPUT_ADDRESS:
4539 case RELOAD_FOR_OUTADDR_ADDRESS:
4540 /* We already know these can't conflict with a later output. So the
4541 only thing to check are later output addresses. */
4542 for (i = opnum + 1; i < reload_n_operands; i++)
4543 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4544 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4545 return 0;
4547 return 1;
4550 abort ();
4553 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4554 Return 0 otherwise.
4556 This function uses the same algorithm as reload_reg_free_p above. */
4559 reloads_conflict (r1, r2)
4560 int r1, r2;
4562 enum reload_type r1_type = rld[r1].when_needed;
4563 enum reload_type r2_type = rld[r2].when_needed;
4564 int r1_opnum = rld[r1].opnum;
4565 int r2_opnum = rld[r2].opnum;
4567 /* RELOAD_OTHER conflicts with everything. */
4568 if (r2_type == RELOAD_OTHER)
4569 return 1;
4571 /* Otherwise, check conflicts differently for each type. */
4573 switch (r1_type)
4575 case RELOAD_FOR_INPUT:
4576 return (r2_type == RELOAD_FOR_INSN
4577 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4578 || r2_type == RELOAD_FOR_OPADDR_ADDR
4579 || r2_type == RELOAD_FOR_INPUT
4580 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4581 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4582 && r2_opnum > r1_opnum));
4584 case RELOAD_FOR_INPUT_ADDRESS:
4585 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4586 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4588 case RELOAD_FOR_INPADDR_ADDRESS:
4589 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4590 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4592 case RELOAD_FOR_OUTPUT_ADDRESS:
4593 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4594 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4596 case RELOAD_FOR_OUTADDR_ADDRESS:
4597 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4598 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4600 case RELOAD_FOR_OPERAND_ADDRESS:
4601 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4602 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4604 case RELOAD_FOR_OPADDR_ADDR:
4605 return (r2_type == RELOAD_FOR_INPUT
4606 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4608 case RELOAD_FOR_OUTPUT:
4609 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4610 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4611 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4612 && r2_opnum <= r1_opnum));
4614 case RELOAD_FOR_INSN:
4615 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4616 || r2_type == RELOAD_FOR_INSN
4617 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4619 case RELOAD_FOR_OTHER_ADDRESS:
4620 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4622 case RELOAD_OTHER:
4623 return 1;
4625 default:
4626 abort ();
4630 /* Indexed by reload number, 1 if incoming value
4631 inherited from previous insns. */
4632 char reload_inherited[MAX_RELOADS];
4634 /* For an inherited reload, this is the insn the reload was inherited from,
4635 if we know it. Otherwise, this is 0. */
4636 rtx reload_inheritance_insn[MAX_RELOADS];
4638 /* If non-zero, this is a place to get the value of the reload,
4639 rather than using reload_in. */
4640 rtx reload_override_in[MAX_RELOADS];
4642 /* For each reload, the hard register number of the register used,
4643 or -1 if we did not need a register for this reload. */
4644 int reload_spill_index[MAX_RELOADS];
4646 /* Return 1 if the value in reload reg REGNO, as used by a reload
4647 needed for the part of the insn specified by OPNUM and TYPE,
4648 may be used to load VALUE into it.
4650 Other read-only reloads with the same value do not conflict
4651 unless OUT is non-zero and these other reloads have to live while
4652 output reloads live.
4653 If OUT is CONST0_RTX, this is a special case: it means that the
4654 test should not be for using register REGNO as reload register, but
4655 for copying from register REGNO into the reload register.
4657 RELOADNUM is the number of the reload we want to load this value for;
4658 a reload does not conflict with itself.
4660 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4661 reloads that load an address for the very reload we are considering.
4663 The caller has to make sure that there is no conflict with the return
4664 register. */
4665 static int
4666 reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
4667 ignore_address_reloads)
4668 int regno;
4669 int opnum;
4670 enum reload_type type;
4671 rtx value, out;
4672 int reloadnum;
4673 int ignore_address_reloads;
4675 int time1;
4676 /* Set if we see an input reload that must not share its reload register
4677 with any new earlyclobber, but might otherwise share the reload
4678 register with an output or input-output reload. */
4679 int check_earlyclobber = 0;
4680 int i;
4681 int copy = 0;
4683 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4684 return 0;
4686 if (out == const0_rtx)
4688 copy = 1;
4689 out = NULL_RTX;
4692 /* We use some pseudo 'time' value to check if the lifetimes of the
4693 new register use would overlap with the one of a previous reload
4694 that is not read-only or uses a different value.
4695 The 'time' used doesn't have to be linear in any shape or form, just
4696 monotonic.
4697 Some reload types use different 'buckets' for each operand.
4698 So there are MAX_RECOG_OPERANDS different time values for each
4699 such reload type.
4700 We compute TIME1 as the time when the register for the prospective
4701 new reload ceases to be live, and TIME2 for each existing
4702 reload as the time when that the reload register of that reload
4703 becomes live.
4704 Where there is little to be gained by exact lifetime calculations,
4705 we just make conservative assumptions, i.e. a longer lifetime;
4706 this is done in the 'default:' cases. */
4707 switch (type)
4709 case RELOAD_FOR_OTHER_ADDRESS:
4710 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4711 time1 = copy ? 0 : 1;
4712 break;
4713 case RELOAD_OTHER:
4714 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4715 break;
4716 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4717 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4718 respectively, to the time values for these, we get distinct time
4719 values. To get distinct time values for each operand, we have to
4720 multiply opnum by at least three. We round that up to four because
4721 multiply by four is often cheaper. */
4722 case RELOAD_FOR_INPADDR_ADDRESS:
4723 time1 = opnum * 4 + 2;
4724 break;
4725 case RELOAD_FOR_INPUT_ADDRESS:
4726 time1 = opnum * 4 + 3;
4727 break;
4728 case RELOAD_FOR_INPUT:
4729 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4730 executes (inclusive). */
4731 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4732 break;
4733 case RELOAD_FOR_OPADDR_ADDR:
4734 /* opnum * 4 + 4
4735 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4736 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4737 break;
4738 case RELOAD_FOR_OPERAND_ADDRESS:
4739 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4740 is executed. */
4741 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4742 break;
4743 case RELOAD_FOR_OUTADDR_ADDRESS:
4744 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4745 break;
4746 case RELOAD_FOR_OUTPUT_ADDRESS:
4747 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4748 break;
4749 default:
4750 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4753 for (i = 0; i < n_reloads; i++)
4755 rtx reg = rld[i].reg_rtx;
4756 if (reg && GET_CODE (reg) == REG
4757 && ((unsigned) regno - true_regnum (reg)
4758 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
4759 && i != reloadnum)
4761 if (! rld[i].in || ! rtx_equal_p (rld[i].in, value)
4762 || rld[i].out || out)
4764 int time2;
4765 switch (rld[i].when_needed)
4767 case RELOAD_FOR_OTHER_ADDRESS:
4768 time2 = 0;
4769 break;
4770 case RELOAD_FOR_INPADDR_ADDRESS:
4771 /* find_reloads makes sure that a
4772 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4773 by at most one - the first -
4774 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4775 address reload is inherited, the address address reload
4776 goes away, so we can ignore this conflict. */
4777 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4778 && ignore_address_reloads
4779 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4780 Then the address address is still needed to store
4781 back the new address. */
4782 && ! rld[reloadnum].out)
4783 continue;
4784 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4785 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4786 reloads go away. */
4787 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4788 && ignore_address_reloads
4789 /* Unless we are reloading an auto_inc expression. */
4790 && ! rld[reloadnum].out)
4791 continue;
4792 time2 = rld[i].opnum * 4 + 2;
4793 break;
4794 case RELOAD_FOR_INPUT_ADDRESS:
4795 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4796 && ignore_address_reloads
4797 && ! rld[reloadnum].out)
4798 continue;
4799 time2 = rld[i].opnum * 4 + 3;
4800 break;
4801 case RELOAD_FOR_INPUT:
4802 time2 = rld[i].opnum * 4 + 4;
4803 check_earlyclobber = 1;
4804 break;
4805 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4806 == MAX_RECOG_OPERAND * 4 */
4807 case RELOAD_FOR_OPADDR_ADDR:
4808 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4809 && ignore_address_reloads
4810 && ! rld[reloadnum].out)
4811 continue;
4812 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4813 break;
4814 case RELOAD_FOR_OPERAND_ADDRESS:
4815 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4816 check_earlyclobber = 1;
4817 break;
4818 case RELOAD_FOR_INSN:
4819 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4820 break;
4821 case RELOAD_FOR_OUTPUT:
4822 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4823 instruction is executed. */
4824 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4825 break;
4826 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4827 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4828 value. */
4829 case RELOAD_FOR_OUTADDR_ADDRESS:
4830 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4831 && ignore_address_reloads
4832 && ! rld[reloadnum].out)
4833 continue;
4834 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4835 break;
4836 case RELOAD_FOR_OUTPUT_ADDRESS:
4837 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4838 break;
4839 case RELOAD_OTHER:
4840 /* If there is no conflict in the input part, handle this
4841 like an output reload. */
4842 if (! rld[i].in || rtx_equal_p (rld[i].in, value))
4844 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4845 /* Earlyclobbered outputs must conflict with inputs. */
4846 if (earlyclobber_operand_p (rld[i].out))
4847 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4849 break;
4851 time2 = 1;
4852 /* RELOAD_OTHER might be live beyond instruction execution,
4853 but this is not obvious when we set time2 = 1. So check
4854 here if there might be a problem with the new reload
4855 clobbering the register used by the RELOAD_OTHER. */
4856 if (out)
4857 return 0;
4858 break;
4859 default:
4860 return 0;
4862 if ((time1 >= time2
4863 && (! rld[i].in || rld[i].out
4864 || ! rtx_equal_p (rld[i].in, value)))
4865 || (out && rld[reloadnum].out_reg
4866 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4867 return 0;
4872 /* Earlyclobbered outputs must conflict with inputs. */
4873 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4874 return 0;
4876 return 1;
4879 /* Give an error message saying we failed to find a reload for INSN,
4880 and clear out reload R. */
4881 static void
4882 failed_reload (insn, r)
4883 rtx insn;
4884 int r;
4886 if (asm_noperands (PATTERN (insn)) < 0)
4887 /* It's the compiler's fault. */
4888 fatal_insn ("Could not find a spill register", insn);
4890 /* It's the user's fault; the operand's mode and constraint
4891 don't match. Disable this reload so we don't crash in final. */
4892 error_for_asm (insn,
4893 "`asm' operand constraint incompatible with operand size");
4894 rld[r].in = 0;
4895 rld[r].out = 0;
4896 rld[r].reg_rtx = 0;
4897 rld[r].optional = 1;
4898 rld[r].secondary_p = 1;
4901 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
4902 for reload R. If it's valid, get an rtx for it. Return nonzero if
4903 successful. */
4904 static int
4905 set_reload_reg (i, r)
4906 int i, r;
4908 int regno;
4909 rtx reg = spill_reg_rtx[i];
4911 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
4912 spill_reg_rtx[i] = reg
4913 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
4915 regno = true_regnum (reg);
4917 /* Detect when the reload reg can't hold the reload mode.
4918 This used to be one `if', but Sequent compiler can't handle that. */
4919 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
4921 enum machine_mode test_mode = VOIDmode;
4922 if (rld[r].in)
4923 test_mode = GET_MODE (rld[r].in);
4924 /* If rld[r].in has VOIDmode, it means we will load it
4925 in whatever mode the reload reg has: to wit, rld[r].mode.
4926 We have already tested that for validity. */
4927 /* Aside from that, we need to test that the expressions
4928 to reload from or into have modes which are valid for this
4929 reload register. Otherwise the reload insns would be invalid. */
4930 if (! (rld[r].in != 0 && test_mode != VOIDmode
4931 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
4932 if (! (rld[r].out != 0
4933 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
4935 /* The reg is OK. */
4936 last_spill_reg = i;
4938 /* Mark as in use for this insn the reload regs we use
4939 for this. */
4940 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
4941 rld[r].when_needed, rld[r].mode);
4943 rld[r].reg_rtx = reg;
4944 reload_spill_index[r] = spill_regs[i];
4945 return 1;
4948 return 0;
4951 /* Find a spill register to use as a reload register for reload R.
4952 LAST_RELOAD is non-zero if this is the last reload for the insn being
4953 processed.
4955 Set rld[R].reg_rtx to the register allocated.
4957 We return 1 if successful, or 0 if we couldn't find a spill reg and
4958 we didn't change anything. */
4960 static int
4961 allocate_reload_reg (chain, r, last_reload)
4962 struct insn_chain *chain ATTRIBUTE_UNUSED;
4963 int r;
4964 int last_reload;
4966 int i, pass, count;
4968 /* If we put this reload ahead, thinking it is a group,
4969 then insist on finding a group. Otherwise we can grab a
4970 reg that some other reload needs.
4971 (That can happen when we have a 68000 DATA_OR_FP_REG
4972 which is a group of data regs or one fp reg.)
4973 We need not be so restrictive if there are no more reloads
4974 for this insn.
4976 ??? Really it would be nicer to have smarter handling
4977 for that kind of reg class, where a problem like this is normal.
4978 Perhaps those classes should be avoided for reloading
4979 by use of more alternatives. */
4981 int force_group = rld[r].nregs > 1 && ! last_reload;
4983 /* If we want a single register and haven't yet found one,
4984 take any reg in the right class and not in use.
4985 If we want a consecutive group, here is where we look for it.
4987 We use two passes so we can first look for reload regs to
4988 reuse, which are already in use for other reloads in this insn,
4989 and only then use additional registers.
4990 I think that maximizing reuse is needed to make sure we don't
4991 run out of reload regs. Suppose we have three reloads, and
4992 reloads A and B can share regs. These need two regs.
4993 Suppose A and B are given different regs.
4994 That leaves none for C. */
4995 for (pass = 0; pass < 2; pass++)
4997 /* I is the index in spill_regs.
4998 We advance it round-robin between insns to use all spill regs
4999 equally, so that inherited reloads have a chance
5000 of leapfrogging each other. */
5002 i = last_spill_reg;
5004 for (count = 0; count < n_spills; count++)
5006 int class = (int) rld[r].class;
5007 int regnum;
5009 i++;
5010 if (i >= n_spills)
5011 i -= n_spills;
5012 regnum = spill_regs[i];
5014 if ((reload_reg_free_p (regnum, rld[r].opnum,
5015 rld[r].when_needed)
5016 || (rld[r].in
5017 /* We check reload_reg_used to make sure we
5018 don't clobber the return register. */
5019 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5020 && reload_reg_free_for_value_p (regnum,
5021 rld[r].opnum,
5022 rld[r].when_needed,
5023 rld[r].in,
5024 rld[r].out, r, 1)))
5025 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5026 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5027 /* Look first for regs to share, then for unshared. But
5028 don't share regs used for inherited reloads; they are
5029 the ones we want to preserve. */
5030 && (pass
5031 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5032 regnum)
5033 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5034 regnum))))
5036 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5037 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5038 (on 68000) got us two FP regs. If NR is 1,
5039 we would reject both of them. */
5040 if (force_group)
5041 nr = rld[r].nregs;
5042 /* If we need only one reg, we have already won. */
5043 if (nr == 1)
5045 /* But reject a single reg if we demand a group. */
5046 if (force_group)
5047 continue;
5048 break;
5050 /* Otherwise check that as many consecutive regs as we need
5051 are available here. */
5052 while (nr > 1)
5054 int regno = regnum + nr - 1;
5055 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5056 && spill_reg_order[regno] >= 0
5057 && reload_reg_free_p (regno, rld[r].opnum,
5058 rld[r].when_needed)))
5059 break;
5060 nr--;
5062 if (nr == 1)
5063 break;
5067 /* If we found something on pass 1, omit pass 2. */
5068 if (count < n_spills)
5069 break;
5072 /* We should have found a spill register by now. */
5073 if (count >= n_spills)
5074 return 0;
5076 /* I is the index in SPILL_REG_RTX of the reload register we are to
5077 allocate. Get an rtx for it and find its register number. */
5079 return set_reload_reg (i, r);
5082 /* Initialize all the tables needed to allocate reload registers.
5083 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5084 is the array we use to restore the reg_rtx field for every reload. */
5086 static void
5087 choose_reload_regs_init (chain, save_reload_reg_rtx)
5088 struct insn_chain *chain;
5089 rtx *save_reload_reg_rtx;
5091 int i;
5093 for (i = 0; i < n_reloads; i++)
5094 rld[i].reg_rtx = save_reload_reg_rtx[i];
5096 bzero (reload_inherited, MAX_RELOADS);
5097 bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
5098 bzero ((char *) reload_override_in, MAX_RELOADS * sizeof (rtx));
5100 CLEAR_HARD_REG_SET (reload_reg_used);
5101 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5102 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5103 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5104 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5105 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5107 CLEAR_HARD_REG_SET (reg_used_in_insn);
5109 HARD_REG_SET tmp;
5110 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5111 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5112 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5113 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5114 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5115 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5118 for (i = 0; i < reload_n_operands; i++)
5120 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5121 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5122 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5123 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5124 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5125 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5128 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5130 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5132 for (i = 0; i < n_reloads; i++)
5133 /* If we have already decided to use a certain register,
5134 don't use it in another way. */
5135 if (rld[i].reg_rtx)
5136 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5137 rld[i].when_needed, rld[i].mode);
5140 /* Assign hard reg targets for the pseudo-registers we must reload
5141 into hard regs for this insn.
5142 Also output the instructions to copy them in and out of the hard regs.
5144 For machines with register classes, we are responsible for
5145 finding a reload reg in the proper class. */
5147 static void
5148 choose_reload_regs (chain)
5149 struct insn_chain *chain;
5151 rtx insn = chain->insn;
5152 register int i, j;
5153 unsigned int max_group_size = 1;
5154 enum reg_class group_class = NO_REGS;
5155 int pass, win, inheritance;
5157 rtx save_reload_reg_rtx[MAX_RELOADS];
5159 /* In order to be certain of getting the registers we need,
5160 we must sort the reloads into order of increasing register class.
5161 Then our grabbing of reload registers will parallel the process
5162 that provided the reload registers.
5164 Also note whether any of the reloads wants a consecutive group of regs.
5165 If so, record the maximum size of the group desired and what
5166 register class contains all the groups needed by this insn. */
5168 for (j = 0; j < n_reloads; j++)
5170 reload_order[j] = j;
5171 reload_spill_index[j] = -1;
5173 if (rld[j].nregs > 1)
5175 max_group_size = MAX (rld[j].nregs, max_group_size);
5176 group_class
5177 = reg_class_superunion[(int) rld[j].class][(int)group_class];
5180 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5183 if (n_reloads > 1)
5184 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5186 /* If -O, try first with inheritance, then turning it off.
5187 If not -O, don't do inheritance.
5188 Using inheritance when not optimizing leads to paradoxes
5189 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5190 because one side of the comparison might be inherited. */
5191 win = 0;
5192 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5194 choose_reload_regs_init (chain, save_reload_reg_rtx);
5196 /* Process the reloads in order of preference just found.
5197 Beyond this point, subregs can be found in reload_reg_rtx.
5199 This used to look for an existing reloaded home for all of the
5200 reloads, and only then perform any new reloads. But that could lose
5201 if the reloads were done out of reg-class order because a later
5202 reload with a looser constraint might have an old home in a register
5203 needed by an earlier reload with a tighter constraint.
5205 To solve this, we make two passes over the reloads, in the order
5206 described above. In the first pass we try to inherit a reload
5207 from a previous insn. If there is a later reload that needs a
5208 class that is a proper subset of the class being processed, we must
5209 also allocate a spill register during the first pass.
5211 Then make a second pass over the reloads to allocate any reloads
5212 that haven't been given registers yet. */
5214 for (j = 0; j < n_reloads; j++)
5216 register int r = reload_order[j];
5217 rtx search_equiv = NULL_RTX;
5219 /* Ignore reloads that got marked inoperative. */
5220 if (rld[r].out == 0 && rld[r].in == 0
5221 && ! rld[r].secondary_p)
5222 continue;
5224 /* If find_reloads chose to use reload_in or reload_out as a reload
5225 register, we don't need to chose one. Otherwise, try even if it
5226 found one since we might save an insn if we find the value lying
5227 around.
5228 Try also when reload_in is a pseudo without a hard reg. */
5229 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5230 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5231 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5232 && GET_CODE (rld[r].in) != MEM
5233 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5234 continue;
5236 #if 0 /* No longer needed for correct operation.
5237 It might give better code, or might not; worth an experiment? */
5238 /* If this is an optional reload, we can't inherit from earlier insns
5239 until we are sure that any non-optional reloads have been allocated.
5240 The following code takes advantage of the fact that optional reloads
5241 are at the end of reload_order. */
5242 if (rld[r].optional != 0)
5243 for (i = 0; i < j; i++)
5244 if ((rld[reload_order[i]].out != 0
5245 || rld[reload_order[i]].in != 0
5246 || rld[reload_order[i]].secondary_p)
5247 && ! rld[reload_order[i]].optional
5248 && rld[reload_order[i]].reg_rtx == 0)
5249 allocate_reload_reg (chain, reload_order[i], 0);
5250 #endif
5252 /* First see if this pseudo is already available as reloaded
5253 for a previous insn. We cannot try to inherit for reloads
5254 that are smaller than the maximum number of registers needed
5255 for groups unless the register we would allocate cannot be used
5256 for the groups.
5258 We could check here to see if this is a secondary reload for
5259 an object that is already in a register of the desired class.
5260 This would avoid the need for the secondary reload register.
5261 But this is complex because we can't easily determine what
5262 objects might want to be loaded via this reload. So let a
5263 register be allocated here. In `emit_reload_insns' we suppress
5264 one of the loads in the case described above. */
5266 if (inheritance)
5268 int word = 0;
5269 register int regno = -1;
5270 enum machine_mode mode = VOIDmode;
5272 if (rld[r].in == 0)
5274 else if (GET_CODE (rld[r].in) == REG)
5276 regno = REGNO (rld[r].in);
5277 mode = GET_MODE (rld[r].in);
5279 else if (GET_CODE (rld[r].in_reg) == REG)
5281 regno = REGNO (rld[r].in_reg);
5282 mode = GET_MODE (rld[r].in_reg);
5284 else if (GET_CODE (rld[r].in_reg) == SUBREG
5285 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5287 word = SUBREG_WORD (rld[r].in_reg);
5288 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5289 if (regno < FIRST_PSEUDO_REGISTER)
5290 regno += word;
5291 mode = GET_MODE (rld[r].in_reg);
5293 #ifdef AUTO_INC_DEC
5294 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5295 || GET_CODE (rld[r].in_reg) == PRE_DEC
5296 || GET_CODE (rld[r].in_reg) == POST_INC
5297 || GET_CODE (rld[r].in_reg) == POST_DEC)
5298 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5300 regno = REGNO (XEXP (rld[r].in_reg, 0));
5301 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5302 rld[r].out = rld[r].in;
5304 #endif
5305 #if 0
5306 /* This won't work, since REGNO can be a pseudo reg number.
5307 Also, it takes much more hair to keep track of all the things
5308 that can invalidate an inherited reload of part of a pseudoreg. */
5309 else if (GET_CODE (rld[r].in) == SUBREG
5310 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5311 regno = REGNO (SUBREG_REG (rld[r].in)) + SUBREG_WORD (rld[r].in);
5312 #endif
5314 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5316 enum reg_class class = rld[r].class, last_class;
5317 rtx last_reg = reg_last_reload_reg[regno];
5318 enum machine_mode need_mode;
5320 i = REGNO (last_reg) + word;
5321 last_class = REGNO_REG_CLASS (i);
5323 need_mode = smallest_mode_for_size ((word+1) * UNITS_PER_WORD,
5324 GET_MODE_CLASS (mode));
5326 if (
5327 #ifdef CLASS_CANNOT_CHANGE_MODE
5328 (TEST_HARD_REG_BIT
5329 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
5330 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
5331 need_mode)
5332 : (GET_MODE_SIZE (GET_MODE (last_reg))
5333 >= GET_MODE_SIZE (need_mode)))
5334 #else
5335 (GET_MODE_SIZE (GET_MODE (last_reg))
5336 >= GET_MODE_SIZE (need_mode))
5337 #endif
5338 && reg_reloaded_contents[i] == regno
5339 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5340 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5341 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5342 /* Even if we can't use this register as a reload
5343 register, we might use it for reload_override_in,
5344 if copying it to the desired class is cheap
5345 enough. */
5346 || ((REGISTER_MOVE_COST (last_class, class)
5347 < MEMORY_MOVE_COST (mode, class, 1))
5348 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5349 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5350 last_reg)
5351 == NO_REGS)
5352 #endif
5353 #ifdef SECONDARY_MEMORY_NEEDED
5354 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5355 mode)
5356 #endif
5359 && (rld[r].nregs == max_group_size
5360 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5362 && reload_reg_free_for_value_p (i, rld[r].opnum,
5363 rld[r].when_needed,
5364 rld[r].in,
5365 const0_rtx, r, 1))
5367 /* If a group is needed, verify that all the subsequent
5368 registers still have their values intact. */
5369 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5370 int k;
5372 for (k = 1; k < nr; k++)
5373 if (reg_reloaded_contents[i + k] != regno
5374 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5375 break;
5377 if (k == nr)
5379 int i1;
5381 last_reg = (GET_MODE (last_reg) == mode
5382 ? last_reg : gen_rtx_REG (mode, i));
5384 /* We found a register that contains the
5385 value we need. If this register is the
5386 same as an `earlyclobber' operand of the
5387 current insn, just mark it as a place to
5388 reload from since we can't use it as the
5389 reload register itself. */
5391 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5392 if (reg_overlap_mentioned_for_reload_p
5393 (reg_last_reload_reg[regno],
5394 reload_earlyclobbers[i1]))
5395 break;
5397 if (i1 != n_earlyclobbers
5398 || ! (reload_reg_free_for_value_p
5399 (i, rld[r].opnum, rld[r].when_needed,
5400 rld[r].in, rld[r].out, r, 1))
5401 /* Don't use it if we'd clobber a pseudo reg. */
5402 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5403 && rld[r].out
5404 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5405 /* Don't clobber the frame pointer. */
5406 || (i == HARD_FRAME_POINTER_REGNUM
5407 && rld[r].out)
5408 /* Don't really use the inherited spill reg
5409 if we need it wider than we've got it. */
5410 || (GET_MODE_SIZE (rld[r].mode)
5411 > GET_MODE_SIZE (mode))
5412 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5415 /* If find_reloads chose reload_out as reload
5416 register, stay with it - that leaves the
5417 inherited register for subsequent reloads. */
5418 || (rld[r].out && rld[r].reg_rtx
5419 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5421 reload_override_in[r] = last_reg;
5422 reload_inheritance_insn[r]
5423 = reg_reloaded_insn[i];
5425 else
5427 int k;
5428 /* We can use this as a reload reg. */
5429 /* Mark the register as in use for this part of
5430 the insn. */
5431 mark_reload_reg_in_use (i,
5432 rld[r].opnum,
5433 rld[r].when_needed,
5434 rld[r].mode);
5435 rld[r].reg_rtx = last_reg;
5436 reload_inherited[r] = 1;
5437 reload_inheritance_insn[r]
5438 = reg_reloaded_insn[i];
5439 reload_spill_index[r] = i;
5440 for (k = 0; k < nr; k++)
5441 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5442 i + k);
5449 /* Here's another way to see if the value is already lying around. */
5450 if (inheritance
5451 && rld[r].in != 0
5452 && ! reload_inherited[r]
5453 && rld[r].out == 0
5454 && (CONSTANT_P (rld[r].in)
5455 || GET_CODE (rld[r].in) == PLUS
5456 || GET_CODE (rld[r].in) == REG
5457 || GET_CODE (rld[r].in) == MEM)
5458 && (rld[r].nregs == max_group_size
5459 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5460 search_equiv = rld[r].in;
5461 /* If this is an output reload from a simple move insn, look
5462 if an equivalence for the input is available. */
5463 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5465 rtx set = single_set (insn);
5467 if (set
5468 && rtx_equal_p (rld[r].out, SET_DEST (set))
5469 && CONSTANT_P (SET_SRC (set)))
5470 search_equiv = SET_SRC (set);
5473 if (search_equiv)
5475 register rtx equiv
5476 = find_equiv_reg (search_equiv, insn, rld[r].class,
5477 -1, NULL_PTR, 0, rld[r].mode);
5478 int regno = 0;
5480 if (equiv != 0)
5482 if (GET_CODE (equiv) == REG)
5483 regno = REGNO (equiv);
5484 else if (GET_CODE (equiv) == SUBREG)
5486 /* This must be a SUBREG of a hard register.
5487 Make a new REG since this might be used in an
5488 address and not all machines support SUBREGs
5489 there. */
5490 regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv);
5491 equiv = gen_rtx_REG (rld[r].mode, regno);
5493 else
5494 abort ();
5497 /* If we found a spill reg, reject it unless it is free
5498 and of the desired class. */
5499 if (equiv != 0
5500 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5501 && ! reload_reg_free_for_value_p (regno, rld[r].opnum,
5502 rld[r].when_needed,
5503 rld[r].in,
5504 rld[r].out, r, 1))
5505 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5506 regno)))
5507 equiv = 0;
5509 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5510 equiv = 0;
5512 /* We found a register that contains the value we need.
5513 If this register is the same as an `earlyclobber' operand
5514 of the current insn, just mark it as a place to reload from
5515 since we can't use it as the reload register itself. */
5517 if (equiv != 0)
5518 for (i = 0; i < n_earlyclobbers; i++)
5519 if (reg_overlap_mentioned_for_reload_p (equiv,
5520 reload_earlyclobbers[i]))
5522 reload_override_in[r] = equiv;
5523 equiv = 0;
5524 break;
5527 /* If the equiv register we have found is explicitly clobbered
5528 in the current insn, it depends on the reload type if we
5529 can use it, use it for reload_override_in, or not at all.
5530 In particular, we then can't use EQUIV for a
5531 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5533 if (equiv != 0 && regno_clobbered_p (regno, insn))
5535 switch (rld[r].when_needed)
5537 case RELOAD_FOR_OTHER_ADDRESS:
5538 case RELOAD_FOR_INPADDR_ADDRESS:
5539 case RELOAD_FOR_INPUT_ADDRESS:
5540 case RELOAD_FOR_OPADDR_ADDR:
5541 break;
5542 case RELOAD_OTHER:
5543 case RELOAD_FOR_INPUT:
5544 case RELOAD_FOR_OPERAND_ADDRESS:
5545 reload_override_in[r] = equiv;
5546 /* Fall through. */
5547 default:
5548 equiv = 0;
5549 break;
5553 /* If we found an equivalent reg, say no code need be generated
5554 to load it, and use it as our reload reg. */
5555 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
5557 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5558 int k;
5559 rld[r].reg_rtx = equiv;
5560 reload_inherited[r] = 1;
5562 /* If reg_reloaded_valid is not set for this register,
5563 there might be a stale spill_reg_store lying around.
5564 We must clear it, since otherwise emit_reload_insns
5565 might delete the store. */
5566 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5567 spill_reg_store[regno] = NULL_RTX;
5568 /* If any of the hard registers in EQUIV are spill
5569 registers, mark them as in use for this insn. */
5570 for (k = 0; k < nr; k++)
5572 i = spill_reg_order[regno + k];
5573 if (i >= 0)
5575 mark_reload_reg_in_use (regno, rld[r].opnum,
5576 rld[r].when_needed,
5577 rld[r].mode);
5578 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5579 regno + k);
5585 /* If we found a register to use already, or if this is an optional
5586 reload, we are done. */
5587 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5588 continue;
5590 #if 0
5591 /* No longer needed for correct operation. Might or might
5592 not give better code on the average. Want to experiment? */
5594 /* See if there is a later reload that has a class different from our
5595 class that intersects our class or that requires less register
5596 than our reload. If so, we must allocate a register to this
5597 reload now, since that reload might inherit a previous reload
5598 and take the only available register in our class. Don't do this
5599 for optional reloads since they will force all previous reloads
5600 to be allocated. Also don't do this for reloads that have been
5601 turned off. */
5603 for (i = j + 1; i < n_reloads; i++)
5605 int s = reload_order[i];
5607 if ((rld[s].in == 0 && rld[s].out == 0
5608 && ! rld[s].secondary_p)
5609 || rld[s].optional)
5610 continue;
5612 if ((rld[s].class != rld[r].class
5613 && reg_classes_intersect_p (rld[r].class,
5614 rld[s].class))
5615 || rld[s].nregs < rld[r].nregs)
5616 break;
5619 if (i == n_reloads)
5620 continue;
5622 allocate_reload_reg (chain, r, j == n_reloads - 1);
5623 #endif
5626 /* Now allocate reload registers for anything non-optional that
5627 didn't get one yet. */
5628 for (j = 0; j < n_reloads; j++)
5630 register int r = reload_order[j];
5632 /* Ignore reloads that got marked inoperative. */
5633 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5634 continue;
5636 /* Skip reloads that already have a register allocated or are
5637 optional. */
5638 if (rld[r].reg_rtx != 0 || rld[r].optional)
5639 continue;
5641 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5642 break;
5645 /* If that loop got all the way, we have won. */
5646 if (j == n_reloads)
5648 win = 1;
5649 break;
5652 /* Loop around and try without any inheritance. */
5655 if (! win)
5657 /* First undo everything done by the failed attempt
5658 to allocate with inheritance. */
5659 choose_reload_regs_init (chain, save_reload_reg_rtx);
5661 /* Some sanity tests to verify that the reloads found in the first
5662 pass are identical to the ones we have now. */
5663 if (chain->n_reloads != n_reloads)
5664 abort ();
5666 for (i = 0; i < n_reloads; i++)
5668 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5669 continue;
5670 if (chain->rld[i].when_needed != rld[i].when_needed)
5671 abort ();
5672 for (j = 0; j < n_spills; j++)
5673 if (spill_regs[j] == chain->rld[i].regno)
5674 if (! set_reload_reg (j, i))
5675 failed_reload (chain->insn, i);
5679 /* If we thought we could inherit a reload, because it seemed that
5680 nothing else wanted the same reload register earlier in the insn,
5681 verify that assumption, now that all reloads have been assigned.
5682 Likewise for reloads where reload_override_in has been set. */
5684 /* If doing expensive optimizations, do one preliminary pass that doesn't
5685 cancel any inheritance, but removes reloads that have been needed only
5686 for reloads that we know can be inherited. */
5687 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5689 for (j = 0; j < n_reloads; j++)
5691 register int r = reload_order[j];
5692 rtx check_reg;
5693 if (reload_inherited[r] && rld[r].reg_rtx)
5694 check_reg = rld[r].reg_rtx;
5695 else if (reload_override_in[r]
5696 && (GET_CODE (reload_override_in[r]) == REG
5697 || GET_CODE (reload_override_in[r]) == SUBREG))
5698 check_reg = reload_override_in[r];
5699 else
5700 continue;
5701 if (! reload_reg_free_for_value_p (true_regnum (check_reg),
5702 rld[r].opnum,
5703 rld[r].when_needed,
5704 rld[r].in,
5705 (reload_inherited[r]
5706 ? rld[r].out : const0_rtx),
5707 r, 1))
5709 if (pass)
5710 continue;
5711 reload_inherited[r] = 0;
5712 reload_override_in[r] = 0;
5714 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5715 reload_override_in, then we do not need its related
5716 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5717 likewise for other reload types.
5718 We handle this by removing a reload when its only replacement
5719 is mentioned in reload_in of the reload we are going to inherit.
5720 A special case are auto_inc expressions; even if the input is
5721 inherited, we still need the address for the output. We can
5722 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5723 If we suceeded removing some reload and we are doing a preliminary
5724 pass just to remove such reloads, make another pass, since the
5725 removal of one reload might allow us to inherit another one. */
5726 else if (rld[r].in
5727 && rld[r].out != rld[r].in
5728 && remove_address_replacements (rld[r].in) && pass)
5729 pass = 2;
5733 /* Now that reload_override_in is known valid,
5734 actually override reload_in. */
5735 for (j = 0; j < n_reloads; j++)
5736 if (reload_override_in[j])
5737 rld[j].in = reload_override_in[j];
5739 /* If this reload won't be done because it has been cancelled or is
5740 optional and not inherited, clear reload_reg_rtx so other
5741 routines (such as subst_reloads) don't get confused. */
5742 for (j = 0; j < n_reloads; j++)
5743 if (rld[j].reg_rtx != 0
5744 && ((rld[j].optional && ! reload_inherited[j])
5745 || (rld[j].in == 0 && rld[j].out == 0
5746 && ! rld[j].secondary_p)))
5748 int regno = true_regnum (rld[j].reg_rtx);
5750 if (spill_reg_order[regno] >= 0)
5751 clear_reload_reg_in_use (regno, rld[j].opnum,
5752 rld[j].when_needed, rld[j].mode);
5753 rld[j].reg_rtx = 0;
5754 reload_spill_index[j] = -1;
5757 /* Record which pseudos and which spill regs have output reloads. */
5758 for (j = 0; j < n_reloads; j++)
5760 register int r = reload_order[j];
5762 i = reload_spill_index[r];
5764 /* I is nonneg if this reload uses a register.
5765 If rld[r].reg_rtx is 0, this is an optional reload
5766 that we opted to ignore. */
5767 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5768 && rld[r].reg_rtx != 0)
5770 register int nregno = REGNO (rld[r].out_reg);
5771 int nr = 1;
5773 if (nregno < FIRST_PSEUDO_REGISTER)
5774 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5776 while (--nr >= 0)
5777 reg_has_output_reload[nregno + nr] = 1;
5779 if (i >= 0)
5781 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5782 while (--nr >= 0)
5783 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5786 if (rld[r].when_needed != RELOAD_OTHER
5787 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5788 && rld[r].when_needed != RELOAD_FOR_INSN)
5789 abort ();
5794 /* Deallocate the reload register for reload R. This is called from
5795 remove_address_replacements. */
5797 void
5798 deallocate_reload_reg (r)
5799 int r;
5801 int regno;
5803 if (! rld[r].reg_rtx)
5804 return;
5805 regno = true_regnum (rld[r].reg_rtx);
5806 rld[r].reg_rtx = 0;
5807 if (spill_reg_order[regno] >= 0)
5808 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5809 rld[r].mode);
5810 reload_spill_index[r] = -1;
5813 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
5814 reloads of the same item for fear that we might not have enough reload
5815 registers. However, normally they will get the same reload register
5816 and hence actually need not be loaded twice.
5818 Here we check for the most common case of this phenomenon: when we have
5819 a number of reloads for the same object, each of which were allocated
5820 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5821 reload, and is not modified in the insn itself. If we find such,
5822 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5823 This will not increase the number of spill registers needed and will
5824 prevent redundant code. */
5826 static void
5827 merge_assigned_reloads (insn)
5828 rtx insn;
5830 int i, j;
5832 /* Scan all the reloads looking for ones that only load values and
5833 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5834 assigned and not modified by INSN. */
5836 for (i = 0; i < n_reloads; i++)
5838 int conflicting_input = 0;
5839 int max_input_address_opnum = -1;
5840 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
5842 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
5843 || rld[i].out != 0 || rld[i].reg_rtx == 0
5844 || reg_set_p (rld[i].reg_rtx, insn))
5845 continue;
5847 /* Look at all other reloads. Ensure that the only use of this
5848 reload_reg_rtx is in a reload that just loads the same value
5849 as we do. Note that any secondary reloads must be of the identical
5850 class since the values, modes, and result registers are the
5851 same, so we need not do anything with any secondary reloads. */
5853 for (j = 0; j < n_reloads; j++)
5855 if (i == j || rld[j].reg_rtx == 0
5856 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
5857 rld[i].reg_rtx))
5858 continue;
5860 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5861 && rld[j].opnum > max_input_address_opnum)
5862 max_input_address_opnum = rld[j].opnum;
5864 /* If the reload regs aren't exactly the same (e.g, different modes)
5865 or if the values are different, we can't merge this reload.
5866 But if it is an input reload, we might still merge
5867 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
5869 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5870 || rld[j].out != 0 || rld[j].in == 0
5871 || ! rtx_equal_p (rld[i].in, rld[j].in))
5873 if (rld[j].when_needed != RELOAD_FOR_INPUT
5874 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
5875 || rld[i].opnum > rld[j].opnum)
5876 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
5877 break;
5878 conflicting_input = 1;
5879 if (min_conflicting_input_opnum > rld[j].opnum)
5880 min_conflicting_input_opnum = rld[j].opnum;
5884 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
5885 we, in fact, found any matching reloads. */
5887 if (j == n_reloads
5888 && max_input_address_opnum <= min_conflicting_input_opnum)
5890 for (j = 0; j < n_reloads; j++)
5891 if (i != j && rld[j].reg_rtx != 0
5892 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5893 && (! conflicting_input
5894 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5895 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
5897 rld[i].when_needed = RELOAD_OTHER;
5898 rld[j].in = 0;
5899 reload_spill_index[j] = -1;
5900 transfer_replacements (i, j);
5903 /* If this is now RELOAD_OTHER, look for any reloads that load
5904 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
5905 if they were for inputs, RELOAD_OTHER for outputs. Note that
5906 this test is equivalent to looking for reloads for this operand
5907 number. */
5909 if (rld[i].when_needed == RELOAD_OTHER)
5910 for (j = 0; j < n_reloads; j++)
5911 if (rld[j].in != 0
5912 && rld[i].when_needed != RELOAD_OTHER
5913 && reg_overlap_mentioned_for_reload_p (rld[j].in,
5914 rld[i].in))
5915 rld[j].when_needed
5916 = ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
5917 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
5918 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
5923 /* These arrays are filled by emit_reload_insns and its subroutines. */
5924 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
5925 static rtx other_input_address_reload_insns = 0;
5926 static rtx other_input_reload_insns = 0;
5927 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
5928 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
5929 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
5930 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
5931 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
5932 static rtx operand_reload_insns = 0;
5933 static rtx other_operand_reload_insns = 0;
5934 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
5936 /* Values to be put in spill_reg_store are put here first. */
5937 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
5938 static HARD_REG_SET reg_reloaded_died;
5940 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
5941 has the number J. OLD contains the value to be used as input. */
5943 static void
5944 emit_input_reload_insns (chain, rl, old, j)
5945 struct insn_chain *chain;
5946 struct reload *rl;
5947 rtx old;
5948 int j;
5950 rtx insn = chain->insn;
5951 register rtx reloadreg = rl->reg_rtx;
5952 rtx oldequiv_reg = 0;
5953 rtx oldequiv = 0;
5954 int special = 0;
5955 enum machine_mode mode;
5956 rtx *where;
5958 /* Determine the mode to reload in.
5959 This is very tricky because we have three to choose from.
5960 There is the mode the insn operand wants (rl->inmode).
5961 There is the mode of the reload register RELOADREG.
5962 There is the intrinsic mode of the operand, which we could find
5963 by stripping some SUBREGs.
5964 It turns out that RELOADREG's mode is irrelevant:
5965 we can change that arbitrarily.
5967 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
5968 then the reload reg may not support QImode moves, so use SImode.
5969 If foo is in memory due to spilling a pseudo reg, this is safe,
5970 because the QImode value is in the least significant part of a
5971 slot big enough for a SImode. If foo is some other sort of
5972 memory reference, then it is impossible to reload this case,
5973 so previous passes had better make sure this never happens.
5975 Then consider a one-word union which has SImode and one of its
5976 members is a float, being fetched as (SUBREG:SF union:SI).
5977 We must fetch that as SFmode because we could be loading into
5978 a float-only register. In this case OLD's mode is correct.
5980 Consider an immediate integer: it has VOIDmode. Here we need
5981 to get a mode from something else.
5983 In some cases, there is a fourth mode, the operand's
5984 containing mode. If the insn specifies a containing mode for
5985 this operand, it overrides all others.
5987 I am not sure whether the algorithm here is always right,
5988 but it does the right things in those cases. */
5990 mode = GET_MODE (old);
5991 if (mode == VOIDmode)
5992 mode = rl->inmode;
5994 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5995 /* If we need a secondary register for this operation, see if
5996 the value is already in a register in that class. Don't
5997 do this if the secondary register will be used as a scratch
5998 register. */
6000 if (rl->secondary_in_reload >= 0
6001 && rl->secondary_in_icode == CODE_FOR_nothing
6002 && optimize)
6003 oldequiv
6004 = find_equiv_reg (old, insn,
6005 rld[rl->secondary_in_reload].class,
6006 -1, NULL_PTR, 0, mode);
6007 #endif
6009 /* If reloading from memory, see if there is a register
6010 that already holds the same value. If so, reload from there.
6011 We can pass 0 as the reload_reg_p argument because
6012 any other reload has either already been emitted,
6013 in which case find_equiv_reg will see the reload-insn,
6014 or has yet to be emitted, in which case it doesn't matter
6015 because we will use this equiv reg right away. */
6017 if (oldequiv == 0 && optimize
6018 && (GET_CODE (old) == MEM
6019 || (GET_CODE (old) == REG
6020 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6021 && reg_renumber[REGNO (old)] < 0)))
6022 oldequiv = find_equiv_reg (old, insn, ALL_REGS,
6023 -1, NULL_PTR, 0, mode);
6025 if (oldequiv)
6027 unsigned int regno = true_regnum (oldequiv);
6029 /* Don't use OLDEQUIV if any other reload changes it at an
6030 earlier stage of this insn or at this stage. */
6031 if (! reload_reg_free_for_value_p (regno, rl->opnum,
6032 rl->when_needed,
6033 rl->in, const0_rtx, j,
6035 oldequiv = 0;
6037 /* If it is no cheaper to copy from OLDEQUIV into the
6038 reload register than it would be to move from memory,
6039 don't use it. Likewise, if we need a secondary register
6040 or memory. */
6042 if (oldequiv != 0
6043 && ((REGNO_REG_CLASS (regno) != rl->class
6044 && (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
6045 rl->class)
6046 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6047 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6048 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6049 mode, oldequiv)
6050 != NO_REGS)
6051 #endif
6052 #ifdef SECONDARY_MEMORY_NEEDED
6053 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6054 rl->class,
6055 mode)
6056 #endif
6058 oldequiv = 0;
6061 /* delete_output_reload is only invoked properly if old contains
6062 the original pseudo register. Since this is replaced with a
6063 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6064 find the pseudo in RELOAD_IN_REG. */
6065 if (oldequiv == 0
6066 && reload_override_in[j]
6067 && GET_CODE (rl->in_reg) == REG)
6069 oldequiv = old;
6070 old = rl->in_reg;
6072 if (oldequiv == 0)
6073 oldequiv = old;
6074 else if (GET_CODE (oldequiv) == REG)
6075 oldequiv_reg = oldequiv;
6076 else if (GET_CODE (oldequiv) == SUBREG)
6077 oldequiv_reg = SUBREG_REG (oldequiv);
6079 /* If we are reloading from a register that was recently stored in
6080 with an output-reload, see if we can prove there was
6081 actually no need to store the old value in it. */
6083 if (optimize && GET_CODE (oldequiv) == REG
6084 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6085 && spill_reg_store[REGNO (oldequiv)]
6086 && GET_CODE (old) == REG
6087 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6088 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6089 rl->out_reg)))
6090 delete_output_reload (insn, j, REGNO (oldequiv));
6092 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6093 then load RELOADREG from OLDEQUIV. Note that we cannot use
6094 gen_lowpart_common since it can do the wrong thing when
6095 RELOADREG has a multi-word mode. Note that RELOADREG
6096 must always be a REG here. */
6098 if (GET_MODE (reloadreg) != mode)
6099 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6100 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6101 oldequiv = SUBREG_REG (oldequiv);
6102 if (GET_MODE (oldequiv) != VOIDmode
6103 && mode != GET_MODE (oldequiv))
6104 oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0);
6106 /* Switch to the right place to emit the reload insns. */
6107 switch (rl->when_needed)
6109 case RELOAD_OTHER:
6110 where = &other_input_reload_insns;
6111 break;
6112 case RELOAD_FOR_INPUT:
6113 where = &input_reload_insns[rl->opnum];
6114 break;
6115 case RELOAD_FOR_INPUT_ADDRESS:
6116 where = &input_address_reload_insns[rl->opnum];
6117 break;
6118 case RELOAD_FOR_INPADDR_ADDRESS:
6119 where = &inpaddr_address_reload_insns[rl->opnum];
6120 break;
6121 case RELOAD_FOR_OUTPUT_ADDRESS:
6122 where = &output_address_reload_insns[rl->opnum];
6123 break;
6124 case RELOAD_FOR_OUTADDR_ADDRESS:
6125 where = &outaddr_address_reload_insns[rl->opnum];
6126 break;
6127 case RELOAD_FOR_OPERAND_ADDRESS:
6128 where = &operand_reload_insns;
6129 break;
6130 case RELOAD_FOR_OPADDR_ADDR:
6131 where = &other_operand_reload_insns;
6132 break;
6133 case RELOAD_FOR_OTHER_ADDRESS:
6134 where = &other_input_address_reload_insns;
6135 break;
6136 default:
6137 abort ();
6140 push_to_sequence (*where);
6142 /* Auto-increment addresses must be reloaded in a special way. */
6143 if (rl->out && ! rl->out_reg)
6145 /* We are not going to bother supporting the case where a
6146 incremented register can't be copied directly from
6147 OLDEQUIV since this seems highly unlikely. */
6148 if (rl->secondary_in_reload >= 0)
6149 abort ();
6151 if (reload_inherited[j])
6152 oldequiv = reloadreg;
6154 old = XEXP (rl->in_reg, 0);
6156 if (optimize && GET_CODE (oldequiv) == REG
6157 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6158 && spill_reg_store[REGNO (oldequiv)]
6159 && GET_CODE (old) == REG
6160 && (dead_or_set_p (insn,
6161 spill_reg_stored_to[REGNO (oldequiv)])
6162 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6163 old)))
6164 delete_output_reload (insn, j, REGNO (oldequiv));
6166 /* Prevent normal processing of this reload. */
6167 special = 1;
6168 /* Output a special code sequence for this case. */
6169 new_spill_reg_store[REGNO (reloadreg)]
6170 = inc_for_reload (reloadreg, oldequiv, rl->out,
6171 rl->inc);
6174 /* If we are reloading a pseudo-register that was set by the previous
6175 insn, see if we can get rid of that pseudo-register entirely
6176 by redirecting the previous insn into our reload register. */
6178 else if (optimize && GET_CODE (old) == REG
6179 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6180 && dead_or_set_p (insn, old)
6181 /* This is unsafe if some other reload
6182 uses the same reg first. */
6183 && reload_reg_free_for_value_p (REGNO (reloadreg),
6184 rl->opnum,
6185 rl->when_needed,
6186 old, rl->out,
6187 j, 0))
6189 rtx temp = PREV_INSN (insn);
6190 while (temp && GET_CODE (temp) == NOTE)
6191 temp = PREV_INSN (temp);
6192 if (temp
6193 && GET_CODE (temp) == INSN
6194 && GET_CODE (PATTERN (temp)) == SET
6195 && SET_DEST (PATTERN (temp)) == old
6196 /* Make sure we can access insn_operand_constraint. */
6197 && asm_noperands (PATTERN (temp)) < 0
6198 /* This is unsafe if prev insn rejects our reload reg. */
6199 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6200 reloadreg)
6201 /* This is unsafe if operand occurs more than once in current
6202 insn. Perhaps some occurrences aren't reloaded. */
6203 && count_occurrences (PATTERN (insn), old, 0) == 1
6204 /* Don't risk splitting a matching pair of operands. */
6205 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6207 /* Store into the reload register instead of the pseudo. */
6208 SET_DEST (PATTERN (temp)) = reloadreg;
6210 /* If the previous insn is an output reload, the source is
6211 a reload register, and its spill_reg_store entry will
6212 contain the previous destination. This is now
6213 invalid. */
6214 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6215 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6217 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6218 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6221 /* If these are the only uses of the pseudo reg,
6222 pretend for GDB it lives in the reload reg we used. */
6223 if (REG_N_DEATHS (REGNO (old)) == 1
6224 && REG_N_SETS (REGNO (old)) == 1)
6226 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6227 alter_reg (REGNO (old), -1);
6229 special = 1;
6233 /* We can't do that, so output an insn to load RELOADREG. */
6235 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6236 /* If we have a secondary reload, pick up the secondary register
6237 and icode, if any. If OLDEQUIV and OLD are different or
6238 if this is an in-out reload, recompute whether or not we
6239 still need a secondary register and what the icode should
6240 be. If we still need a secondary register and the class or
6241 icode is different, go back to reloading from OLD if using
6242 OLDEQUIV means that we got the wrong type of register. We
6243 cannot have different class or icode due to an in-out reload
6244 because we don't make such reloads when both the input and
6245 output need secondary reload registers. */
6247 if (! special && rl->secondary_in_reload >= 0)
6249 rtx second_reload_reg = 0;
6250 int secondary_reload = rl->secondary_in_reload;
6251 rtx real_oldequiv = oldequiv;
6252 rtx real_old = old;
6253 rtx tmp;
6254 enum insn_code icode;
6256 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6257 and similarly for OLD.
6258 See comments in get_secondary_reload in reload.c. */
6259 /* If it is a pseudo that cannot be replaced with its
6260 equivalent MEM, we must fall back to reload_in, which
6261 will have all the necessary substitutions registered.
6262 Likewise for a pseudo that can't be replaced with its
6263 equivalent constant.
6265 Take extra care for subregs of such pseudos. Note that
6266 we cannot use reg_equiv_mem in this case because it is
6267 not in the right mode. */
6269 tmp = oldequiv;
6270 if (GET_CODE (tmp) == SUBREG)
6271 tmp = SUBREG_REG (tmp);
6272 if (GET_CODE (tmp) == REG
6273 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6274 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6275 || reg_equiv_constant[REGNO (tmp)] != 0))
6277 if (! reg_equiv_mem[REGNO (tmp)]
6278 || num_not_at_initial_offset
6279 || GET_CODE (oldequiv) == SUBREG)
6280 real_oldequiv = rl->in;
6281 else
6282 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6285 tmp = old;
6286 if (GET_CODE (tmp) == SUBREG)
6287 tmp = SUBREG_REG (tmp);
6288 if (GET_CODE (tmp) == REG
6289 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6290 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6291 || reg_equiv_constant[REGNO (tmp)] != 0))
6293 if (! reg_equiv_mem[REGNO (tmp)]
6294 || num_not_at_initial_offset
6295 || GET_CODE (old) == SUBREG)
6296 real_old = rl->in;
6297 else
6298 real_old = reg_equiv_mem[REGNO (tmp)];
6301 second_reload_reg = rld[secondary_reload].reg_rtx;
6302 icode = rl->secondary_in_icode;
6304 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6305 || (rl->in != 0 && rl->out != 0))
6307 enum reg_class new_class
6308 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6309 mode, real_oldequiv);
6311 if (new_class == NO_REGS)
6312 second_reload_reg = 0;
6313 else
6315 enum insn_code new_icode;
6316 enum machine_mode new_mode;
6318 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6319 REGNO (second_reload_reg)))
6320 oldequiv = old, real_oldequiv = real_old;
6321 else
6323 new_icode = reload_in_optab[(int) mode];
6324 if (new_icode != CODE_FOR_nothing
6325 && ((insn_data[(int) new_icode].operand[0].predicate
6326 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6327 (reloadreg, mode)))
6328 || (insn_data[(int) new_icode].operand[1].predicate
6329 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6330 (real_oldequiv, mode)))))
6331 new_icode = CODE_FOR_nothing;
6333 if (new_icode == CODE_FOR_nothing)
6334 new_mode = mode;
6335 else
6336 new_mode = insn_data[(int) new_icode].operand[2].mode;
6338 if (GET_MODE (second_reload_reg) != new_mode)
6340 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6341 new_mode))
6342 oldequiv = old, real_oldequiv = real_old;
6343 else
6344 second_reload_reg
6345 = gen_rtx_REG (new_mode,
6346 REGNO (second_reload_reg));
6352 /* If we still need a secondary reload register, check
6353 to see if it is being used as a scratch or intermediate
6354 register and generate code appropriately. If we need
6355 a scratch register, use REAL_OLDEQUIV since the form of
6356 the insn may depend on the actual address if it is
6357 a MEM. */
6359 if (second_reload_reg)
6361 if (icode != CODE_FOR_nothing)
6363 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6364 second_reload_reg));
6365 special = 1;
6367 else
6369 /* See if we need a scratch register to load the
6370 intermediate register (a tertiary reload). */
6371 enum insn_code tertiary_icode
6372 = rld[secondary_reload].secondary_in_icode;
6374 if (tertiary_icode != CODE_FOR_nothing)
6376 rtx third_reload_reg
6377 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6379 emit_insn ((GEN_FCN (tertiary_icode)
6380 (second_reload_reg, real_oldequiv,
6381 third_reload_reg)));
6383 else
6384 gen_reload (second_reload_reg, real_oldequiv,
6385 rl->opnum,
6386 rl->when_needed);
6388 oldequiv = second_reload_reg;
6392 #endif
6394 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6396 rtx real_oldequiv = oldequiv;
6398 if ((GET_CODE (oldequiv) == REG
6399 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6400 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6401 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6402 || (GET_CODE (oldequiv) == SUBREG
6403 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6404 && (REGNO (SUBREG_REG (oldequiv))
6405 >= FIRST_PSEUDO_REGISTER)
6406 && ((reg_equiv_memory_loc
6407 [REGNO (SUBREG_REG (oldequiv))] != 0)
6408 || (reg_equiv_constant
6409 [REGNO (SUBREG_REG (oldequiv))] != 0))))
6410 real_oldequiv = rl->in;
6411 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6412 rl->when_needed);
6415 /* End this sequence. */
6416 *where = get_insns ();
6417 end_sequence ();
6419 /* Update reload_override_in so that delete_address_reloads_1
6420 can see the actual register usage. */
6421 if (oldequiv_reg)
6422 reload_override_in[j] = oldequiv;
6425 /* Generate insns to for the output reload RL, which is for the insn described
6426 by CHAIN and has the number J. */
6427 static void
6428 emit_output_reload_insns (chain, rl, j)
6429 struct insn_chain *chain;
6430 struct reload *rl;
6431 int j;
6433 rtx reloadreg = rl->reg_rtx;
6434 rtx insn = chain->insn;
6435 int special = 0;
6436 rtx old = rl->out;
6437 enum machine_mode mode = GET_MODE (old);
6438 rtx p;
6440 if (rl->when_needed == RELOAD_OTHER)
6441 start_sequence ();
6442 else
6443 push_to_sequence (output_reload_insns[rl->opnum]);
6445 /* Determine the mode to reload in.
6446 See comments above (for input reloading). */
6448 if (mode == VOIDmode)
6450 /* VOIDmode should never happen for an output. */
6451 if (asm_noperands (PATTERN (insn)) < 0)
6452 /* It's the compiler's fault. */
6453 fatal_insn ("VOIDmode on an output", insn);
6454 error_for_asm (insn, "output operand is constant in `asm'");
6455 /* Prevent crash--use something we know is valid. */
6456 mode = word_mode;
6457 old = gen_rtx_REG (mode, REGNO (reloadreg));
6460 if (GET_MODE (reloadreg) != mode)
6461 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6463 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6465 /* If we need two reload regs, set RELOADREG to the intermediate
6466 one, since it will be stored into OLD. We might need a secondary
6467 register only for an input reload, so check again here. */
6469 if (rl->secondary_out_reload >= 0)
6471 rtx real_old = old;
6473 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6474 && reg_equiv_mem[REGNO (old)] != 0)
6475 real_old = reg_equiv_mem[REGNO (old)];
6477 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6478 mode, real_old)
6479 != NO_REGS))
6481 rtx second_reloadreg = reloadreg;
6482 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6484 /* See if RELOADREG is to be used as a scratch register
6485 or as an intermediate register. */
6486 if (rl->secondary_out_icode != CODE_FOR_nothing)
6488 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6489 (real_old, second_reloadreg, reloadreg)));
6490 special = 1;
6492 else
6494 /* See if we need both a scratch and intermediate reload
6495 register. */
6497 int secondary_reload = rl->secondary_out_reload;
6498 enum insn_code tertiary_icode
6499 = rld[secondary_reload].secondary_out_icode;
6501 if (GET_MODE (reloadreg) != mode)
6502 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6504 if (tertiary_icode != CODE_FOR_nothing)
6506 rtx third_reloadreg
6507 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6508 rtx tem;
6510 /* Copy primary reload reg to secondary reload reg.
6511 (Note that these have been swapped above, then
6512 secondary reload reg to OLD using our insn. */
6514 /* If REAL_OLD is a paradoxical SUBREG, remove it
6515 and try to put the opposite SUBREG on
6516 RELOADREG. */
6517 if (GET_CODE (real_old) == SUBREG
6518 && (GET_MODE_SIZE (GET_MODE (real_old))
6519 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6520 && 0 != (tem = gen_lowpart_common
6521 (GET_MODE (SUBREG_REG (real_old)),
6522 reloadreg)))
6523 real_old = SUBREG_REG (real_old), reloadreg = tem;
6525 gen_reload (reloadreg, second_reloadreg,
6526 rl->opnum, rl->when_needed);
6527 emit_insn ((GEN_FCN (tertiary_icode)
6528 (real_old, reloadreg, third_reloadreg)));
6529 special = 1;
6532 else
6533 /* Copy between the reload regs here and then to
6534 OUT later. */
6536 gen_reload (reloadreg, second_reloadreg,
6537 rl->opnum, rl->when_needed);
6541 #endif
6543 /* Output the last reload insn. */
6544 if (! special)
6546 rtx set;
6548 /* Don't output the last reload if OLD is not the dest of
6549 INSN and is in the src and is clobbered by INSN. */
6550 if (! flag_expensive_optimizations
6551 || GET_CODE (old) != REG
6552 || !(set = single_set (insn))
6553 || rtx_equal_p (old, SET_DEST (set))
6554 || !reg_mentioned_p (old, SET_SRC (set))
6555 || !regno_clobbered_p (REGNO (old), insn))
6556 gen_reload (old, reloadreg, rl->opnum,
6557 rl->when_needed);
6560 /* Look at all insns we emitted, just to be safe. */
6561 for (p = get_insns (); p; p = NEXT_INSN (p))
6562 if (INSN_P (p))
6564 rtx pat = PATTERN (p);
6566 /* If this output reload doesn't come from a spill reg,
6567 clear any memory of reloaded copies of the pseudo reg.
6568 If this output reload comes from a spill reg,
6569 reg_has_output_reload will make this do nothing. */
6570 note_stores (pat, forget_old_reloads_1, NULL);
6572 if (reg_mentioned_p (rl->reg_rtx, pat))
6574 rtx set = single_set (insn);
6575 if (reload_spill_index[j] < 0
6576 && set
6577 && SET_SRC (set) == rl->reg_rtx)
6579 int src = REGNO (SET_SRC (set));
6581 reload_spill_index[j] = src;
6582 SET_HARD_REG_BIT (reg_is_output_reload, src);
6583 if (find_regno_note (insn, REG_DEAD, src))
6584 SET_HARD_REG_BIT (reg_reloaded_died, src);
6586 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6588 int s = rl->secondary_out_reload;
6589 set = single_set (p);
6590 /* If this reload copies only to the secondary reload
6591 register, the secondary reload does the actual
6592 store. */
6593 if (s >= 0 && set == NULL_RTX)
6594 /* We can't tell what function the secondary reload
6595 has and where the actual store to the pseudo is
6596 made; leave new_spill_reg_store alone. */
6598 else if (s >= 0
6599 && SET_SRC (set) == rl->reg_rtx
6600 && SET_DEST (set) == rld[s].reg_rtx)
6602 /* Usually the next instruction will be the
6603 secondary reload insn; if we can confirm
6604 that it is, setting new_spill_reg_store to
6605 that insn will allow an extra optimization. */
6606 rtx s_reg = rld[s].reg_rtx;
6607 rtx next = NEXT_INSN (p);
6608 rld[s].out = rl->out;
6609 rld[s].out_reg = rl->out_reg;
6610 set = single_set (next);
6611 if (set && SET_SRC (set) == s_reg
6612 && ! new_spill_reg_store[REGNO (s_reg)])
6614 SET_HARD_REG_BIT (reg_is_output_reload,
6615 REGNO (s_reg));
6616 new_spill_reg_store[REGNO (s_reg)] = next;
6619 else
6620 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6625 if (rl->when_needed == RELOAD_OTHER)
6627 emit_insns (other_output_reload_insns[rl->opnum]);
6628 other_output_reload_insns[rl->opnum] = get_insns ();
6630 else
6631 output_reload_insns[rl->opnum] = get_insns ();
6633 end_sequence ();
6636 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6637 and has the number J. */
6638 static void
6639 do_input_reload (chain, rl, j)
6640 struct insn_chain *chain;
6641 struct reload *rl;
6642 int j;
6644 int expect_occurrences = 1;
6645 rtx insn = chain->insn;
6646 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6647 ? rl->in_reg : rl->in);
6649 if (old != 0
6650 /* AUTO_INC reloads need to be handled even if inherited. We got an
6651 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6652 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6653 && ! rtx_equal_p (rl->reg_rtx, old)
6654 && rl->reg_rtx != 0)
6655 emit_input_reload_insns (chain, rld + j, old, j);
6657 /* When inheriting a wider reload, we have a MEM in rl->in,
6658 e.g. inheriting a SImode output reload for
6659 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6660 if (optimize && reload_inherited[j] && rl->in
6661 && GET_CODE (rl->in) == MEM
6662 && GET_CODE (rl->in_reg) == MEM
6663 && reload_spill_index[j] >= 0
6664 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6666 expect_occurrences
6667 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
6668 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6671 /* If we are reloading a register that was recently stored in with an
6672 output-reload, see if we can prove there was
6673 actually no need to store the old value in it. */
6675 if (optimize
6676 && (reload_inherited[j] || reload_override_in[j])
6677 && rl->reg_rtx
6678 && GET_CODE (rl->reg_rtx) == REG
6679 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6680 #if 0
6681 /* There doesn't seem to be any reason to restrict this to pseudos
6682 and doing so loses in the case where we are copying from a
6683 register of the wrong class. */
6684 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6685 >= FIRST_PSEUDO_REGISTER)
6686 #endif
6687 /* The insn might have already some references to stackslots
6688 replaced by MEMs, while reload_out_reg still names the
6689 original pseudo. */
6690 && (dead_or_set_p (insn,
6691 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6692 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6693 rl->out_reg)))
6694 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6697 /* Do output reloading for reload RL, which is for the insn described by
6698 CHAIN and has the number J.
6699 ??? At some point we need to support handling output reloads of
6700 JUMP_INSNs or insns that set cc0. */
6701 static void
6702 do_output_reload (chain, rl, j)
6703 struct insn_chain *chain;
6704 struct reload *rl;
6705 int j;
6707 rtx note, old;
6708 rtx insn = chain->insn;
6709 /* If this is an output reload that stores something that is
6710 not loaded in this same reload, see if we can eliminate a previous
6711 store. */
6712 rtx pseudo = rl->out_reg;
6714 if (pseudo
6715 && GET_CODE (pseudo) == REG
6716 && ! rtx_equal_p (rl->in_reg, pseudo)
6717 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6718 && reg_last_reload_reg[REGNO (pseudo)])
6720 int pseudo_no = REGNO (pseudo);
6721 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6723 /* We don't need to test full validity of last_regno for
6724 inherit here; we only want to know if the store actually
6725 matches the pseudo. */
6726 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6727 && reg_reloaded_contents[last_regno] == pseudo_no
6728 && spill_reg_store[last_regno]
6729 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6730 delete_output_reload (insn, j, last_regno);
6733 old = rl->out_reg;
6734 if (old == 0
6735 || rl->reg_rtx == old
6736 || rl->reg_rtx == 0)
6737 return;
6739 /* An output operand that dies right away does need a reload,
6740 but need not be copied from it. Show the new location in the
6741 REG_UNUSED note. */
6742 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6743 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6745 XEXP (note, 0) = rl->reg_rtx;
6746 return;
6748 /* Likewise for a SUBREG of an operand that dies. */
6749 else if (GET_CODE (old) == SUBREG
6750 && GET_CODE (SUBREG_REG (old)) == REG
6751 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6752 SUBREG_REG (old))))
6754 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6755 rl->reg_rtx);
6756 return;
6758 else if (GET_CODE (old) == SCRATCH)
6759 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6760 but we don't want to make an output reload. */
6761 return;
6763 /* If is a JUMP_INSN, we can't support output reloads yet. */
6764 if (GET_CODE (insn) == JUMP_INSN)
6765 abort ();
6767 emit_output_reload_insns (chain, rld + j, j);
6770 /* Output insns to reload values in and out of the chosen reload regs. */
6772 static void
6773 emit_reload_insns (chain)
6774 struct insn_chain *chain;
6776 rtx insn = chain->insn;
6778 register int j;
6779 rtx following_insn = NEXT_INSN (insn);
6780 rtx before_insn = PREV_INSN (insn);
6782 CLEAR_HARD_REG_SET (reg_reloaded_died);
6784 for (j = 0; j < reload_n_operands; j++)
6785 input_reload_insns[j] = input_address_reload_insns[j]
6786 = inpaddr_address_reload_insns[j]
6787 = output_reload_insns[j] = output_address_reload_insns[j]
6788 = outaddr_address_reload_insns[j]
6789 = other_output_reload_insns[j] = 0;
6790 other_input_address_reload_insns = 0;
6791 other_input_reload_insns = 0;
6792 operand_reload_insns = 0;
6793 other_operand_reload_insns = 0;
6795 /* Now output the instructions to copy the data into and out of the
6796 reload registers. Do these in the order that the reloads were reported,
6797 since reloads of base and index registers precede reloads of operands
6798 and the operands may need the base and index registers reloaded. */
6800 for (j = 0; j < n_reloads; j++)
6802 if (rld[j].reg_rtx
6803 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6804 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6806 do_input_reload (chain, rld + j, j);
6807 do_output_reload (chain, rld + j, j);
6810 /* Now write all the insns we made for reloads in the order expected by
6811 the allocation functions. Prior to the insn being reloaded, we write
6812 the following reloads:
6814 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6816 RELOAD_OTHER reloads.
6818 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6819 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6820 RELOAD_FOR_INPUT reload for the operand.
6822 RELOAD_FOR_OPADDR_ADDRS reloads.
6824 RELOAD_FOR_OPERAND_ADDRESS reloads.
6826 After the insn being reloaded, we write the following:
6828 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
6829 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
6830 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
6831 reloads for the operand. The RELOAD_OTHER output reloads are
6832 output in descending order by reload number. */
6834 emit_insns_before (other_input_address_reload_insns, insn);
6835 emit_insns_before (other_input_reload_insns, insn);
6837 for (j = 0; j < reload_n_operands; j++)
6839 emit_insns_before (inpaddr_address_reload_insns[j], insn);
6840 emit_insns_before (input_address_reload_insns[j], insn);
6841 emit_insns_before (input_reload_insns[j], insn);
6844 emit_insns_before (other_operand_reload_insns, insn);
6845 emit_insns_before (operand_reload_insns, insn);
6847 for (j = 0; j < reload_n_operands; j++)
6849 emit_insns_before (outaddr_address_reload_insns[j], following_insn);
6850 emit_insns_before (output_address_reload_insns[j], following_insn);
6851 emit_insns_before (output_reload_insns[j], following_insn);
6852 emit_insns_before (other_output_reload_insns[j], following_insn);
6855 /* Keep basic block info up to date. */
6856 if (n_basic_blocks)
6858 if (BLOCK_HEAD (chain->block) == insn)
6859 BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
6860 if (BLOCK_END (chain->block) == insn)
6861 BLOCK_END (chain->block) = PREV_INSN (following_insn);
6864 /* For all the spill regs newly reloaded in this instruction,
6865 record what they were reloaded from, so subsequent instructions
6866 can inherit the reloads.
6868 Update spill_reg_store for the reloads of this insn.
6869 Copy the elements that were updated in the loop above. */
6871 for (j = 0; j < n_reloads; j++)
6873 register int r = reload_order[j];
6874 register int i = reload_spill_index[r];
6876 /* If this is a non-inherited input reload from a pseudo, we must
6877 clear any memory of a previous store to the same pseudo. Only do
6878 something if there will not be an output reload for the pseudo
6879 being reloaded. */
6880 if (rld[r].in_reg != 0
6881 && ! (reload_inherited[r] || reload_override_in[r]))
6883 rtx reg = rld[r].in_reg;
6885 if (GET_CODE (reg) == SUBREG)
6886 reg = SUBREG_REG (reg);
6888 if (GET_CODE (reg) == REG
6889 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
6890 && ! reg_has_output_reload[REGNO (reg)])
6892 int nregno = REGNO (reg);
6894 if (reg_last_reload_reg[nregno])
6896 int last_regno = REGNO (reg_last_reload_reg[nregno]);
6898 if (reg_reloaded_contents[last_regno] == nregno)
6899 spill_reg_store[last_regno] = 0;
6904 /* I is nonneg if this reload used a register.
6905 If rld[r].reg_rtx is 0, this is an optional reload
6906 that we opted to ignore. */
6908 if (i >= 0 && rld[r].reg_rtx != 0)
6910 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
6911 int k;
6912 int part_reaches_end = 0;
6913 int all_reaches_end = 1;
6915 /* For a multi register reload, we need to check if all or part
6916 of the value lives to the end. */
6917 for (k = 0; k < nr; k++)
6919 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
6920 rld[r].when_needed))
6921 part_reaches_end = 1;
6922 else
6923 all_reaches_end = 0;
6926 /* Ignore reloads that don't reach the end of the insn in
6927 entirety. */
6928 if (all_reaches_end)
6930 /* First, clear out memory of what used to be in this spill reg.
6931 If consecutive registers are used, clear them all. */
6933 for (k = 0; k < nr; k++)
6934 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
6936 /* Maybe the spill reg contains a copy of reload_out. */
6937 if (rld[r].out != 0
6938 && (GET_CODE (rld[r].out) == REG
6939 #ifdef AUTO_INC_DEC
6940 || ! rld[r].out_reg
6941 #endif
6942 || GET_CODE (rld[r].out_reg) == REG))
6944 rtx out = (GET_CODE (rld[r].out) == REG
6945 ? rld[r].out
6946 : rld[r].out_reg
6947 ? rld[r].out_reg
6948 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
6949 register int nregno = REGNO (out);
6950 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
6951 : HARD_REGNO_NREGS (nregno,
6952 GET_MODE (rld[r].reg_rtx)));
6954 spill_reg_store[i] = new_spill_reg_store[i];
6955 spill_reg_stored_to[i] = out;
6956 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
6958 /* If NREGNO is a hard register, it may occupy more than
6959 one register. If it does, say what is in the
6960 rest of the registers assuming that both registers
6961 agree on how many words the object takes. If not,
6962 invalidate the subsequent registers. */
6964 if (nregno < FIRST_PSEUDO_REGISTER)
6965 for (k = 1; k < nnr; k++)
6966 reg_last_reload_reg[nregno + k]
6967 = (nr == nnr
6968 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
6969 REGNO (rld[r].reg_rtx) + k)
6970 : 0);
6972 /* Now do the inverse operation. */
6973 for (k = 0; k < nr; k++)
6975 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
6976 reg_reloaded_contents[i + k]
6977 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
6978 ? nregno
6979 : nregno + k);
6980 reg_reloaded_insn[i + k] = insn;
6981 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
6985 /* Maybe the spill reg contains a copy of reload_in. Only do
6986 something if there will not be an output reload for
6987 the register being reloaded. */
6988 else if (rld[r].out_reg == 0
6989 && rld[r].in != 0
6990 && ((GET_CODE (rld[r].in) == REG
6991 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
6992 && ! reg_has_output_reload[REGNO (rld[r].in)])
6993 || (GET_CODE (rld[r].in_reg) == REG
6994 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
6995 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
6997 register int nregno;
6998 int nnr;
7000 if (GET_CODE (rld[r].in) == REG
7001 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7002 nregno = REGNO (rld[r].in);
7003 else if (GET_CODE (rld[r].in_reg) == REG)
7004 nregno = REGNO (rld[r].in_reg);
7005 else
7006 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7008 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7009 : HARD_REGNO_NREGS (nregno,
7010 GET_MODE (rld[r].reg_rtx)));
7012 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7014 if (nregno < FIRST_PSEUDO_REGISTER)
7015 for (k = 1; k < nnr; k++)
7016 reg_last_reload_reg[nregno + k]
7017 = (nr == nnr
7018 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7019 REGNO (rld[r].reg_rtx) + k)
7020 : 0);
7022 /* Unless we inherited this reload, show we haven't
7023 recently done a store.
7024 Previous stores of inherited auto_inc expressions
7025 also have to be discarded. */
7026 if (! reload_inherited[r]
7027 || (rld[r].out && ! rld[r].out_reg))
7028 spill_reg_store[i] = 0;
7030 for (k = 0; k < nr; k++)
7032 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7033 reg_reloaded_contents[i + k]
7034 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7035 ? nregno
7036 : nregno + k);
7037 reg_reloaded_insn[i + k] = insn;
7038 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7043 /* However, if part of the reload reaches the end, then we must
7044 invalidate the old info for the part that survives to the end. */
7045 else if (part_reaches_end)
7047 for (k = 0; k < nr; k++)
7048 if (reload_reg_reaches_end_p (i + k,
7049 rld[r].opnum,
7050 rld[r].when_needed))
7051 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7055 /* The following if-statement was #if 0'd in 1.34 (or before...).
7056 It's reenabled in 1.35 because supposedly nothing else
7057 deals with this problem. */
7059 /* If a register gets output-reloaded from a non-spill register,
7060 that invalidates any previous reloaded copy of it.
7061 But forget_old_reloads_1 won't get to see it, because
7062 it thinks only about the original insn. So invalidate it here. */
7063 if (i < 0 && rld[r].out != 0
7064 && (GET_CODE (rld[r].out) == REG
7065 || (GET_CODE (rld[r].out) == MEM
7066 && GET_CODE (rld[r].out_reg) == REG)))
7068 rtx out = (GET_CODE (rld[r].out) == REG
7069 ? rld[r].out : rld[r].out_reg);
7070 register int nregno = REGNO (out);
7071 if (nregno >= FIRST_PSEUDO_REGISTER)
7073 rtx src_reg, store_insn = NULL_RTX;
7075 reg_last_reload_reg[nregno] = 0;
7077 /* If we can find a hard register that is stored, record
7078 the storing insn so that we may delete this insn with
7079 delete_output_reload. */
7080 src_reg = rld[r].reg_rtx;
7082 /* If this is an optional reload, try to find the source reg
7083 from an input reload. */
7084 if (! src_reg)
7086 rtx set = single_set (insn);
7087 if (set && SET_DEST (set) == rld[r].out)
7089 int k;
7091 src_reg = SET_SRC (set);
7092 store_insn = insn;
7093 for (k = 0; k < n_reloads; k++)
7095 if (rld[k].in == src_reg)
7097 src_reg = rld[k].reg_rtx;
7098 break;
7103 else
7104 store_insn = new_spill_reg_store[REGNO (src_reg)];
7105 if (src_reg && GET_CODE (src_reg) == REG
7106 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7108 int src_regno = REGNO (src_reg);
7109 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7110 /* The place where to find a death note varies with
7111 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7112 necessarily checked exactly in the code that moves
7113 notes, so just check both locations. */
7114 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7115 if (! note)
7116 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7117 while (nr-- > 0)
7119 spill_reg_store[src_regno + nr] = store_insn;
7120 spill_reg_stored_to[src_regno + nr] = out;
7121 reg_reloaded_contents[src_regno + nr] = nregno;
7122 reg_reloaded_insn[src_regno + nr] = store_insn;
7123 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7124 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7125 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7126 if (note)
7127 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7128 else
7129 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7131 reg_last_reload_reg[nregno] = src_reg;
7134 else
7136 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7138 while (num_regs-- > 0)
7139 reg_last_reload_reg[nregno + num_regs] = 0;
7143 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7146 /* Emit code to perform a reload from IN (which may be a reload register) to
7147 OUT (which may also be a reload register). IN or OUT is from operand
7148 OPNUM with reload type TYPE.
7150 Returns first insn emitted. */
7153 gen_reload (out, in, opnum, type)
7154 rtx out;
7155 rtx in;
7156 int opnum;
7157 enum reload_type type;
7159 rtx last = get_last_insn ();
7160 rtx tem;
7162 /* If IN is a paradoxical SUBREG, remove it and try to put the
7163 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7164 if (GET_CODE (in) == SUBREG
7165 && (GET_MODE_SIZE (GET_MODE (in))
7166 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7167 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7168 in = SUBREG_REG (in), out = tem;
7169 else if (GET_CODE (out) == SUBREG
7170 && (GET_MODE_SIZE (GET_MODE (out))
7171 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7172 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7173 out = SUBREG_REG (out), in = tem;
7175 /* How to do this reload can get quite tricky. Normally, we are being
7176 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7177 register that didn't get a hard register. In that case we can just
7178 call emit_move_insn.
7180 We can also be asked to reload a PLUS that adds a register or a MEM to
7181 another register, constant or MEM. This can occur during frame pointer
7182 elimination and while reloading addresses. This case is handled by
7183 trying to emit a single insn to perform the add. If it is not valid,
7184 we use a two insn sequence.
7186 Finally, we could be called to handle an 'o' constraint by putting
7187 an address into a register. In that case, we first try to do this
7188 with a named pattern of "reload_load_address". If no such pattern
7189 exists, we just emit a SET insn and hope for the best (it will normally
7190 be valid on machines that use 'o').
7192 This entire process is made complex because reload will never
7193 process the insns we generate here and so we must ensure that
7194 they will fit their constraints and also by the fact that parts of
7195 IN might be being reloaded separately and replaced with spill registers.
7196 Because of this, we are, in some sense, just guessing the right approach
7197 here. The one listed above seems to work.
7199 ??? At some point, this whole thing needs to be rethought. */
7201 if (GET_CODE (in) == PLUS
7202 && (GET_CODE (XEXP (in, 0)) == REG
7203 || GET_CODE (XEXP (in, 0)) == SUBREG
7204 || GET_CODE (XEXP (in, 0)) == MEM)
7205 && (GET_CODE (XEXP (in, 1)) == REG
7206 || GET_CODE (XEXP (in, 1)) == SUBREG
7207 || CONSTANT_P (XEXP (in, 1))
7208 || GET_CODE (XEXP (in, 1)) == MEM))
7210 /* We need to compute the sum of a register or a MEM and another
7211 register, constant, or MEM, and put it into the reload
7212 register. The best possible way of doing this is if the machine
7213 has a three-operand ADD insn that accepts the required operands.
7215 The simplest approach is to try to generate such an insn and see if it
7216 is recognized and matches its constraints. If so, it can be used.
7218 It might be better not to actually emit the insn unless it is valid,
7219 but we need to pass the insn as an operand to `recog' and
7220 `extract_insn' and it is simpler to emit and then delete the insn if
7221 not valid than to dummy things up. */
7223 rtx op0, op1, tem, insn;
7224 int code;
7226 op0 = find_replacement (&XEXP (in, 0));
7227 op1 = find_replacement (&XEXP (in, 1));
7229 /* Since constraint checking is strict, commutativity won't be
7230 checked, so we need to do that here to avoid spurious failure
7231 if the add instruction is two-address and the second operand
7232 of the add is the same as the reload reg, which is frequently
7233 the case. If the insn would be A = B + A, rearrange it so
7234 it will be A = A + B as constrain_operands expects. */
7236 if (GET_CODE (XEXP (in, 1)) == REG
7237 && REGNO (out) == REGNO (XEXP (in, 1)))
7238 tem = op0, op0 = op1, op1 = tem;
7240 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7241 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7243 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7244 code = recog_memoized (insn);
7246 if (code >= 0)
7248 extract_insn (insn);
7249 /* We want constrain operands to treat this insn strictly in
7250 its validity determination, i.e., the way it would after reload
7251 has completed. */
7252 if (constrain_operands (1))
7253 return insn;
7256 delete_insns_since (last);
7258 /* If that failed, we must use a conservative two-insn sequence.
7260 Use a move to copy one operand into the reload register. Prefer
7261 to reload a constant, MEM or pseudo since the move patterns can
7262 handle an arbitrary operand. If OP1 is not a constant, MEM or
7263 pseudo and OP1 is not a valid operand for an add instruction, then
7264 reload OP1.
7266 After reloading one of the operands into the reload register, add
7267 the reload register to the output register.
7269 If there is another way to do this for a specific machine, a
7270 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7271 we emit below. */
7273 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7275 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7276 || (GET_CODE (op1) == REG
7277 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7278 || (code != CODE_FOR_nothing
7279 && ! ((*insn_data[code].operand[2].predicate)
7280 (op1, insn_data[code].operand[2].mode))))
7281 tem = op0, op0 = op1, op1 = tem;
7283 gen_reload (out, op0, opnum, type);
7285 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7286 This fixes a problem on the 32K where the stack pointer cannot
7287 be used as an operand of an add insn. */
7289 if (rtx_equal_p (op0, op1))
7290 op1 = out;
7292 insn = emit_insn (gen_add2_insn (out, op1));
7294 /* If that failed, copy the address register to the reload register.
7295 Then add the constant to the reload register. */
7297 code = recog_memoized (insn);
7299 if (code >= 0)
7301 extract_insn (insn);
7302 /* We want constrain operands to treat this insn strictly in
7303 its validity determination, i.e., the way it would after reload
7304 has completed. */
7305 if (constrain_operands (1))
7307 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7308 REG_NOTES (insn)
7309 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7310 return insn;
7314 delete_insns_since (last);
7316 gen_reload (out, op1, opnum, type);
7317 insn = emit_insn (gen_add2_insn (out, op0));
7318 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7321 #ifdef SECONDARY_MEMORY_NEEDED
7322 /* If we need a memory location to do the move, do it that way. */
7323 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
7324 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
7325 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
7326 REGNO_REG_CLASS (REGNO (out)),
7327 GET_MODE (out)))
7329 /* Get the memory to use and rewrite both registers to its mode. */
7330 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7332 if (GET_MODE (loc) != GET_MODE (out))
7333 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7335 if (GET_MODE (loc) != GET_MODE (in))
7336 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7338 gen_reload (loc, in, opnum, type);
7339 gen_reload (out, loc, opnum, type);
7341 #endif
7343 /* If IN is a simple operand, use gen_move_insn. */
7344 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7345 emit_insn (gen_move_insn (out, in));
7347 #ifdef HAVE_reload_load_address
7348 else if (HAVE_reload_load_address)
7349 emit_insn (gen_reload_load_address (out, in));
7350 #endif
7352 /* Otherwise, just write (set OUT IN) and hope for the best. */
7353 else
7354 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7356 /* Return the first insn emitted.
7357 We can not just return get_last_insn, because there may have
7358 been multiple instructions emitted. Also note that gen_move_insn may
7359 emit more than one insn itself, so we can not assume that there is one
7360 insn emitted per emit_insn_before call. */
7362 return last ? NEXT_INSN (last) : get_insns ();
7365 /* Delete a previously made output-reload
7366 whose result we now believe is not needed.
7367 First we double-check.
7369 INSN is the insn now being processed.
7370 LAST_RELOAD_REG is the hard register number for which we want to delete
7371 the last output reload.
7372 J is the reload-number that originally used REG. The caller has made
7373 certain that reload J doesn't use REG any longer for input. */
7375 static void
7376 delete_output_reload (insn, j, last_reload_reg)
7377 rtx insn;
7378 int j;
7379 int last_reload_reg;
7381 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7382 rtx reg = spill_reg_stored_to[last_reload_reg];
7383 int k;
7384 int n_occurrences;
7385 int n_inherited = 0;
7386 register rtx i1;
7387 rtx substed;
7389 /* Get the raw pseudo-register referred to. */
7391 while (GET_CODE (reg) == SUBREG)
7392 reg = SUBREG_REG (reg);
7393 substed = reg_equiv_memory_loc[REGNO (reg)];
7395 /* This is unsafe if the operand occurs more often in the current
7396 insn than it is inherited. */
7397 for (k = n_reloads - 1; k >= 0; k--)
7399 rtx reg2 = rld[k].in;
7400 if (! reg2)
7401 continue;
7402 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7403 reg2 = rld[k].in_reg;
7404 #ifdef AUTO_INC_DEC
7405 if (rld[k].out && ! rld[k].out_reg)
7406 reg2 = XEXP (rld[k].in_reg, 0);
7407 #endif
7408 while (GET_CODE (reg2) == SUBREG)
7409 reg2 = SUBREG_REG (reg2);
7410 if (rtx_equal_p (reg2, reg))
7412 if (reload_inherited[k] || reload_override_in[k] || k == j)
7414 n_inherited++;
7415 reg2 = rld[k].out_reg;
7416 if (! reg2)
7417 continue;
7418 while (GET_CODE (reg2) == SUBREG)
7419 reg2 = XEXP (reg2, 0);
7420 if (rtx_equal_p (reg2, reg))
7421 n_inherited++;
7423 else
7424 return;
7427 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7428 if (substed)
7429 n_occurrences += count_occurrences (PATTERN (insn), substed, 0);
7430 if (n_occurrences > n_inherited)
7431 return;
7433 /* If the pseudo-reg we are reloading is no longer referenced
7434 anywhere between the store into it and here,
7435 and no jumps or labels intervene, then the value can get
7436 here through the reload reg alone.
7437 Otherwise, give up--return. */
7438 for (i1 = NEXT_INSN (output_reload_insn);
7439 i1 != insn; i1 = NEXT_INSN (i1))
7441 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7442 return;
7443 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7444 && reg_mentioned_p (reg, PATTERN (i1)))
7446 /* If this is USE in front of INSN, we only have to check that
7447 there are no more references than accounted for by inheritance. */
7448 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7450 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7451 i1 = NEXT_INSN (i1);
7453 if (n_occurrences <= n_inherited && i1 == insn)
7454 break;
7455 return;
7459 /* The caller has already checked that REG dies or is set in INSN.
7460 It has also checked that we are optimizing, and thus some inaccurancies
7461 in the debugging information are acceptable.
7462 So we could just delete output_reload_insn.
7463 But in some cases we can improve the debugging information without
7464 sacrificing optimization - maybe even improving the code:
7465 See if the pseudo reg has been completely replaced
7466 with reload regs. If so, delete the store insn
7467 and forget we had a stack slot for the pseudo. */
7468 if (rld[j].out != rld[j].in
7469 && REG_N_DEATHS (REGNO (reg)) == 1
7470 && REG_N_SETS (REGNO (reg)) == 1
7471 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7472 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7474 rtx i2;
7476 /* We know that it was used only between here
7477 and the beginning of the current basic block.
7478 (We also know that the last use before INSN was
7479 the output reload we are thinking of deleting, but never mind that.)
7480 Search that range; see if any ref remains. */
7481 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7483 rtx set = single_set (i2);
7485 /* Uses which just store in the pseudo don't count,
7486 since if they are the only uses, they are dead. */
7487 if (set != 0 && SET_DEST (set) == reg)
7488 continue;
7489 if (GET_CODE (i2) == CODE_LABEL
7490 || GET_CODE (i2) == JUMP_INSN)
7491 break;
7492 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7493 && reg_mentioned_p (reg, PATTERN (i2)))
7495 /* Some other ref remains; just delete the output reload we
7496 know to be dead. */
7497 delete_address_reloads (output_reload_insn, insn);
7498 PUT_CODE (output_reload_insn, NOTE);
7499 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7500 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7501 return;
7505 /* Delete the now-dead stores into this pseudo. */
7506 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7508 rtx set = single_set (i2);
7510 if (set != 0 && SET_DEST (set) == reg)
7512 delete_address_reloads (i2, insn);
7513 /* This might be a basic block head,
7514 thus don't use delete_insn. */
7515 PUT_CODE (i2, NOTE);
7516 NOTE_SOURCE_FILE (i2) = 0;
7517 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
7519 if (GET_CODE (i2) == CODE_LABEL
7520 || GET_CODE (i2) == JUMP_INSN)
7521 break;
7524 /* For the debugging info,
7525 say the pseudo lives in this reload reg. */
7526 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7527 alter_reg (REGNO (reg), -1);
7529 delete_address_reloads (output_reload_insn, insn);
7530 PUT_CODE (output_reload_insn, NOTE);
7531 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7532 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7536 /* We are going to delete DEAD_INSN. Recursively delete loads of
7537 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7538 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7539 static void
7540 delete_address_reloads (dead_insn, current_insn)
7541 rtx dead_insn, current_insn;
7543 rtx set = single_set (dead_insn);
7544 rtx set2, dst, prev, next;
7545 if (set)
7547 rtx dst = SET_DEST (set);
7548 if (GET_CODE (dst) == MEM)
7549 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7551 /* If we deleted the store from a reloaded post_{in,de}c expression,
7552 we can delete the matching adds. */
7553 prev = PREV_INSN (dead_insn);
7554 next = NEXT_INSN (dead_insn);
7555 if (! prev || ! next)
7556 return;
7557 set = single_set (next);
7558 set2 = single_set (prev);
7559 if (! set || ! set2
7560 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7561 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7562 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7563 return;
7564 dst = SET_DEST (set);
7565 if (! rtx_equal_p (dst, SET_DEST (set2))
7566 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7567 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7568 || (INTVAL (XEXP (SET_SRC (set), 1))
7569 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7570 return;
7571 delete_insn (prev);
7572 delete_insn (next);
7575 /* Subfunction of delete_address_reloads: process registers found in X. */
7576 static void
7577 delete_address_reloads_1 (dead_insn, x, current_insn)
7578 rtx dead_insn, x, current_insn;
7580 rtx prev, set, dst, i2;
7581 int i, j;
7582 enum rtx_code code = GET_CODE (x);
7584 if (code != REG)
7586 const char *fmt = GET_RTX_FORMAT (code);
7587 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7589 if (fmt[i] == 'e')
7590 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7591 else if (fmt[i] == 'E')
7593 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7594 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7595 current_insn);
7598 return;
7601 if (spill_reg_order[REGNO (x)] < 0)
7602 return;
7604 /* Scan backwards for the insn that sets x. This might be a way back due
7605 to inheritance. */
7606 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7608 code = GET_CODE (prev);
7609 if (code == CODE_LABEL || code == JUMP_INSN)
7610 return;
7611 if (GET_RTX_CLASS (code) != 'i')
7612 continue;
7613 if (reg_set_p (x, PATTERN (prev)))
7614 break;
7615 if (reg_referenced_p (x, PATTERN (prev)))
7616 return;
7618 if (! prev || INSN_UID (prev) < reload_first_uid)
7619 return;
7620 /* Check that PREV only sets the reload register. */
7621 set = single_set (prev);
7622 if (! set)
7623 return;
7624 dst = SET_DEST (set);
7625 if (GET_CODE (dst) != REG
7626 || ! rtx_equal_p (dst, x))
7627 return;
7628 if (! reg_set_p (dst, PATTERN (dead_insn)))
7630 /* Check if DST was used in a later insn -
7631 it might have been inherited. */
7632 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7634 if (GET_CODE (i2) == CODE_LABEL)
7635 break;
7636 if (! INSN_P (i2))
7637 continue;
7638 if (reg_referenced_p (dst, PATTERN (i2)))
7640 /* If there is a reference to the register in the current insn,
7641 it might be loaded in a non-inherited reload. If no other
7642 reload uses it, that means the register is set before
7643 referenced. */
7644 if (i2 == current_insn)
7646 for (j = n_reloads - 1; j >= 0; j--)
7647 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7648 || reload_override_in[j] == dst)
7649 return;
7650 for (j = n_reloads - 1; j >= 0; j--)
7651 if (rld[j].in && rld[j].reg_rtx == dst)
7652 break;
7653 if (j >= 0)
7654 break;
7656 return;
7658 if (GET_CODE (i2) == JUMP_INSN)
7659 break;
7660 /* If DST is still live at CURRENT_INSN, check if it is used for
7661 any reload. Note that even if CURRENT_INSN sets DST, we still
7662 have to check the reloads. */
7663 if (i2 == current_insn)
7665 for (j = n_reloads - 1; j >= 0; j--)
7666 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7667 || reload_override_in[j] == dst)
7668 return;
7669 /* ??? We can't finish the loop here, because dst might be
7670 allocated to a pseudo in this block if no reload in this
7671 block needs any of the clsses containing DST - see
7672 spill_hard_reg. There is no easy way to tell this, so we
7673 have to scan till the end of the basic block. */
7675 if (reg_set_p (dst, PATTERN (i2)))
7676 break;
7679 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7680 reg_reloaded_contents[REGNO (dst)] = -1;
7681 /* Can't use delete_insn here because PREV might be a basic block head. */
7682 PUT_CODE (prev, NOTE);
7683 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
7684 NOTE_SOURCE_FILE (prev) = 0;
7687 /* Output reload-insns to reload VALUE into RELOADREG.
7688 VALUE is an autoincrement or autodecrement RTX whose operand
7689 is a register or memory location;
7690 so reloading involves incrementing that location.
7691 IN is either identical to VALUE, or some cheaper place to reload from.
7693 INC_AMOUNT is the number to increment or decrement by (always positive).
7694 This cannot be deduced from VALUE.
7696 Return the instruction that stores into RELOADREG. */
7698 static rtx
7699 inc_for_reload (reloadreg, in, value, inc_amount)
7700 rtx reloadreg;
7701 rtx in, value;
7702 int inc_amount;
7704 /* REG or MEM to be copied and incremented. */
7705 rtx incloc = XEXP (value, 0);
7706 /* Nonzero if increment after copying. */
7707 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7708 rtx last;
7709 rtx inc;
7710 rtx add_insn;
7711 int code;
7712 rtx store;
7713 rtx real_in = in == value ? XEXP (in, 0) : in;
7715 /* No hard register is equivalent to this register after
7716 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7717 we could inc/dec that register as well (maybe even using it for
7718 the source), but I'm not sure it's worth worrying about. */
7719 if (GET_CODE (incloc) == REG)
7720 reg_last_reload_reg[REGNO (incloc)] = 0;
7722 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7723 inc_amount = -inc_amount;
7725 inc = GEN_INT (inc_amount);
7727 /* If this is post-increment, first copy the location to the reload reg. */
7728 if (post && real_in != reloadreg)
7729 emit_insn (gen_move_insn (reloadreg, real_in));
7731 if (in == value)
7733 /* See if we can directly increment INCLOC. Use a method similar to
7734 that in gen_reload. */
7736 last = get_last_insn ();
7737 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7738 gen_rtx_PLUS (GET_MODE (incloc),
7739 incloc, inc)));
7741 code = recog_memoized (add_insn);
7742 if (code >= 0)
7744 extract_insn (add_insn);
7745 if (constrain_operands (1))
7747 /* If this is a pre-increment and we have incremented the value
7748 where it lives, copy the incremented value to RELOADREG to
7749 be used as an address. */
7751 if (! post)
7752 emit_insn (gen_move_insn (reloadreg, incloc));
7754 return add_insn;
7757 delete_insns_since (last);
7760 /* If couldn't do the increment directly, must increment in RELOADREG.
7761 The way we do this depends on whether this is pre- or post-increment.
7762 For pre-increment, copy INCLOC to the reload register, increment it
7763 there, then save back. */
7765 if (! post)
7767 if (in != reloadreg)
7768 emit_insn (gen_move_insn (reloadreg, real_in));
7769 emit_insn (gen_add2_insn (reloadreg, inc));
7770 store = emit_insn (gen_move_insn (incloc, reloadreg));
7772 else
7774 /* Postincrement.
7775 Because this might be a jump insn or a compare, and because RELOADREG
7776 may not be available after the insn in an input reload, we must do
7777 the incrementation before the insn being reloaded for.
7779 We have already copied IN to RELOADREG. Increment the copy in
7780 RELOADREG, save that back, then decrement RELOADREG so it has
7781 the original value. */
7783 emit_insn (gen_add2_insn (reloadreg, inc));
7784 store = emit_insn (gen_move_insn (incloc, reloadreg));
7785 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7788 return store;
7791 /* Return 1 if we are certain that the constraint-string STRING allows
7792 the hard register REG. Return 0 if we can't be sure of this. */
7794 static int
7795 constraint_accepts_reg_p (string, reg)
7796 const char *string;
7797 rtx reg;
7799 int value = 0;
7800 int regno = true_regnum (reg);
7801 int c;
7803 /* Initialize for first alternative. */
7804 value = 0;
7805 /* Check that each alternative contains `g' or `r'. */
7806 while (1)
7807 switch (c = *string++)
7809 case 0:
7810 /* If an alternative lacks `g' or `r', we lose. */
7811 return value;
7812 case ',':
7813 /* If an alternative lacks `g' or `r', we lose. */
7814 if (value == 0)
7815 return 0;
7816 /* Initialize for next alternative. */
7817 value = 0;
7818 break;
7819 case 'g':
7820 case 'r':
7821 /* Any general reg wins for this alternative. */
7822 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
7823 value = 1;
7824 break;
7825 default:
7826 /* Any reg in specified class wins for this alternative. */
7828 enum reg_class class = REG_CLASS_FROM_LETTER (c);
7830 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
7831 value = 1;
7836 /* INSN is a no-op; delete it.
7837 If this sets the return value of the function, we must keep a USE around,
7838 in case this is in a different basic block than the final USE. Otherwise,
7839 we could loose important register lifeness information on
7840 SMALL_REGISTER_CLASSES machines, where return registers might be used as
7841 spills: subsequent passes assume that spill registers are dead at the end
7842 of a basic block.
7843 VALUE must be the return value in such a case, NULL otherwise. */
7844 static void
7845 reload_cse_delete_noop_set (insn, value)
7846 rtx insn, value;
7848 if (value)
7850 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
7851 INSN_CODE (insn) = -1;
7852 REG_NOTES (insn) = NULL_RTX;
7854 else
7856 PUT_CODE (insn, NOTE);
7857 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7858 NOTE_SOURCE_FILE (insn) = 0;
7862 /* See whether a single set SET is a noop. */
7863 static int
7864 reload_cse_noop_set_p (set)
7865 rtx set;
7867 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
7870 /* Try to simplify INSN. */
7871 static void
7872 reload_cse_simplify (insn)
7873 rtx insn;
7875 rtx body = PATTERN (insn);
7877 if (GET_CODE (body) == SET)
7879 int count = 0;
7880 if (reload_cse_noop_set_p (body))
7882 rtx value = SET_DEST (body);
7883 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
7884 value = 0;
7885 reload_cse_delete_noop_set (insn, value);
7886 return;
7889 /* It's not a no-op, but we can try to simplify it. */
7890 count += reload_cse_simplify_set (body, insn);
7892 if (count > 0)
7893 apply_change_group ();
7894 else
7895 reload_cse_simplify_operands (insn);
7897 else if (GET_CODE (body) == PARALLEL)
7899 int i;
7900 int count = 0;
7901 rtx value = NULL_RTX;
7903 /* If every action in a PARALLEL is a noop, we can delete
7904 the entire PARALLEL. */
7905 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
7907 rtx part = XVECEXP (body, 0, i);
7908 if (GET_CODE (part) == SET)
7910 if (! reload_cse_noop_set_p (part))
7911 break;
7912 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
7914 if (value)
7915 break;
7916 value = SET_DEST (part);
7919 else if (GET_CODE (part) != CLOBBER)
7920 break;
7923 if (i < 0)
7925 reload_cse_delete_noop_set (insn, value);
7926 /* We're done with this insn. */
7927 return;
7930 /* It's not a no-op, but we can try to simplify it. */
7931 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
7932 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
7933 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
7935 if (count > 0)
7936 apply_change_group ();
7937 else
7938 reload_cse_simplify_operands (insn);
7942 /* Do a very simple CSE pass over the hard registers.
7944 This function detects no-op moves where we happened to assign two
7945 different pseudo-registers to the same hard register, and then
7946 copied one to the other. Reload will generate a useless
7947 instruction copying a register to itself.
7949 This function also detects cases where we load a value from memory
7950 into two different registers, and (if memory is more expensive than
7951 registers) changes it to simply copy the first register into the
7952 second register.
7954 Another optimization is performed that scans the operands of each
7955 instruction to see whether the value is already available in a
7956 hard register. It then replaces the operand with the hard register
7957 if possible, much like an optional reload would. */
7959 static void
7960 reload_cse_regs_1 (first)
7961 rtx first;
7963 rtx insn;
7965 cselib_init ();
7966 init_alias_analysis ();
7968 for (insn = first; insn; insn = NEXT_INSN (insn))
7970 if (INSN_P (insn))
7971 reload_cse_simplify (insn);
7973 cselib_process_insn (insn);
7976 /* Clean up. */
7977 end_alias_analysis ();
7978 cselib_finish ();
7981 /* Call cse / combine like post-reload optimization phases.
7982 FIRST is the first instruction. */
7983 void
7984 reload_cse_regs (first)
7985 rtx first;
7987 reload_cse_regs_1 (first);
7988 reload_combine ();
7989 reload_cse_move2add (first);
7990 if (flag_expensive_optimizations)
7991 reload_cse_regs_1 (first);
7994 /* Try to simplify a single SET instruction. SET is the set pattern.
7995 INSN is the instruction it came from.
7996 This function only handles one case: if we set a register to a value
7997 which is not a register, we try to find that value in some other register
7998 and change the set into a register copy. */
8000 static int
8001 reload_cse_simplify_set (set, insn)
8002 rtx set;
8003 rtx insn;
8005 int did_change = 0;
8006 int dreg;
8007 rtx src;
8008 enum reg_class dclass;
8009 int old_cost;
8010 cselib_val *val;
8011 struct elt_loc_list *l;
8013 dreg = true_regnum (SET_DEST (set));
8014 if (dreg < 0)
8015 return 0;
8017 src = SET_SRC (set);
8018 if (side_effects_p (src) || true_regnum (src) >= 0)
8019 return 0;
8021 dclass = REGNO_REG_CLASS (dreg);
8023 /* If memory loads are cheaper than register copies, don't change them. */
8024 if (GET_CODE (src) == MEM)
8025 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8026 else if (CONSTANT_P (src))
8027 old_cost = rtx_cost (src, SET);
8028 else if (GET_CODE (src) == REG)
8029 old_cost = REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (src)), dclass);
8030 else
8031 /* ??? */
8032 old_cost = rtx_cost (src, SET);
8034 val = cselib_lookup (src, VOIDmode, 0);
8035 if (! val)
8036 return 0;
8037 for (l = val->locs; l; l = l->next)
8039 int this_cost;
8040 if (CONSTANT_P (l->loc) && ! references_value_p (l->loc, 0))
8041 this_cost = rtx_cost (l->loc, SET);
8042 else if (GET_CODE (l->loc) == REG)
8043 this_cost = REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (l->loc)),
8044 dclass);
8045 else
8046 continue;
8047 /* If equal costs, prefer registers over anything else. That tends to
8048 lead to smaller instructions on some machines. */
8049 if ((this_cost < old_cost
8050 || (this_cost == old_cost
8051 && GET_CODE (l->loc) == REG
8052 && GET_CODE (SET_SRC (set)) != REG))
8053 && validate_change (insn, &SET_SRC (set), copy_rtx (l->loc), 1))
8054 old_cost = this_cost, did_change = 1;
8057 return did_change;
8060 /* Try to replace operands in INSN with equivalent values that are already
8061 in registers. This can be viewed as optional reloading.
8063 For each non-register operand in the insn, see if any hard regs are
8064 known to be equivalent to that operand. Record the alternatives which
8065 can accept these hard registers. Among all alternatives, select the
8066 ones which are better or equal to the one currently matching, where
8067 "better" is in terms of '?' and '!' constraints. Among the remaining
8068 alternatives, select the one which replaces most operands with
8069 hard registers. */
8071 static int
8072 reload_cse_simplify_operands (insn)
8073 rtx insn;
8075 int i, j;
8077 /* For each operand, all registers that are equivalent to it. */
8078 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8080 const char *constraints[MAX_RECOG_OPERANDS];
8082 /* Vector recording how bad an alternative is. */
8083 int *alternative_reject;
8084 /* Vector recording how many registers can be introduced by choosing
8085 this alternative. */
8086 int *alternative_nregs;
8087 /* Array of vectors recording, for each operand and each alternative,
8088 which hard register to substitute, or -1 if the operand should be
8089 left as it is. */
8090 int *op_alt_regno[MAX_RECOG_OPERANDS];
8091 /* Array of alternatives, sorted in order of decreasing desirability. */
8092 int *alternative_order;
8093 rtx reg = gen_rtx_REG (VOIDmode, -1);
8095 extract_insn (insn);
8097 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8098 return 0;
8100 /* Figure out which alternative currently matches. */
8101 if (! constrain_operands (1))
8102 fatal_insn_not_found (insn);
8104 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8105 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8106 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8107 bzero ((char *)alternative_reject, recog_data.n_alternatives * sizeof (int));
8108 bzero ((char *)alternative_nregs, recog_data.n_alternatives * sizeof (int));
8110 /* For each operand, find out which regs are equivalent. */
8111 for (i = 0; i < recog_data.n_operands; i++)
8113 cselib_val *v;
8114 struct elt_loc_list *l;
8116 CLEAR_HARD_REG_SET (equiv_regs[i]);
8118 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8119 right, so avoid the problem here. */
8120 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL)
8121 continue;
8123 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8124 if (! v)
8125 continue;
8127 for (l = v->locs; l; l = l->next)
8128 if (GET_CODE (l->loc) == REG)
8129 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8132 for (i = 0; i < recog_data.n_operands; i++)
8134 enum machine_mode mode;
8135 int regno;
8136 const char *p;
8138 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8139 for (j = 0; j < recog_data.n_alternatives; j++)
8140 op_alt_regno[i][j] = -1;
8142 p = constraints[i] = recog_data.constraints[i];
8143 mode = recog_data.operand_mode[i];
8145 /* Add the reject values for each alternative given by the constraints
8146 for this operand. */
8147 j = 0;
8148 while (*p != '\0')
8150 char c = *p++;
8151 if (c == ',')
8152 j++;
8153 else if (c == '?')
8154 alternative_reject[j] += 3;
8155 else if (c == '!')
8156 alternative_reject[j] += 300;
8159 /* We won't change operands which are already registers. We
8160 also don't want to modify output operands. */
8161 regno = true_regnum (recog_data.operand[i]);
8162 if (regno >= 0
8163 || constraints[i][0] == '='
8164 || constraints[i][0] == '+')
8165 continue;
8167 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8169 int class = (int) NO_REGS;
8171 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8172 continue;
8174 REGNO (reg) = regno;
8175 PUT_MODE (reg, mode);
8177 /* We found a register equal to this operand. Now look for all
8178 alternatives that can accept this register and have not been
8179 assigned a register they can use yet. */
8180 j = 0;
8181 p = constraints[i];
8182 for (;;)
8184 char c = *p++;
8186 switch (c)
8188 case '=': case '+': case '?':
8189 case '#': case '&': case '!':
8190 case '*': case '%':
8191 case '0': case '1': case '2': case '3': case '4':
8192 case '5': case '6': case '7': case '8': case '9':
8193 case 'm': case '<': case '>': case 'V': case 'o':
8194 case 'E': case 'F': case 'G': case 'H':
8195 case 's': case 'i': case 'n':
8196 case 'I': case 'J': case 'K': case 'L':
8197 case 'M': case 'N': case 'O': case 'P':
8198 #ifdef EXTRA_CONSTRAINT
8199 case 'Q': case 'R': case 'S': case 'T': case 'U':
8200 #endif
8201 case 'p': case 'X':
8202 /* These don't say anything we care about. */
8203 break;
8205 case 'g': case 'r':
8206 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8207 break;
8209 default:
8210 class
8211 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
8212 break;
8214 case ',': case '\0':
8215 /* See if REGNO fits this alternative, and set it up as the
8216 replacement register if we don't have one for this
8217 alternative yet and the operand being replaced is not
8218 a cheap CONST_INT. */
8219 if (op_alt_regno[i][j] == -1
8220 && reg_fits_class_p (reg, class, 0, mode)
8221 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8222 || (rtx_cost (recog_data.operand[i], SET)
8223 > rtx_cost (reg, SET))))
8225 alternative_nregs[j]++;
8226 op_alt_regno[i][j] = regno;
8228 j++;
8229 break;
8232 if (c == '\0')
8233 break;
8238 /* Record all alternatives which are better or equal to the currently
8239 matching one in the alternative_order array. */
8240 for (i = j = 0; i < recog_data.n_alternatives; i++)
8241 if (alternative_reject[i] <= alternative_reject[which_alternative])
8242 alternative_order[j++] = i;
8243 recog_data.n_alternatives = j;
8245 /* Sort it. Given a small number of alternatives, a dumb algorithm
8246 won't hurt too much. */
8247 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8249 int best = i;
8250 int best_reject = alternative_reject[alternative_order[i]];
8251 int best_nregs = alternative_nregs[alternative_order[i]];
8252 int tmp;
8254 for (j = i + 1; j < recog_data.n_alternatives; j++)
8256 int this_reject = alternative_reject[alternative_order[j]];
8257 int this_nregs = alternative_nregs[alternative_order[j]];
8259 if (this_reject < best_reject
8260 || (this_reject == best_reject && this_nregs < best_nregs))
8262 best = j;
8263 best_reject = this_reject;
8264 best_nregs = this_nregs;
8268 tmp = alternative_order[best];
8269 alternative_order[best] = alternative_order[i];
8270 alternative_order[i] = tmp;
8273 /* Substitute the operands as determined by op_alt_regno for the best
8274 alternative. */
8275 j = alternative_order[0];
8277 for (i = 0; i < recog_data.n_operands; i++)
8279 enum machine_mode mode = recog_data.operand_mode[i];
8280 if (op_alt_regno[i][j] == -1)
8281 continue;
8283 validate_change (insn, recog_data.operand_loc[i],
8284 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8287 for (i = recog_data.n_dups - 1; i >= 0; i--)
8289 int op = recog_data.dup_num[i];
8290 enum machine_mode mode = recog_data.operand_mode[op];
8292 if (op_alt_regno[op][j] == -1)
8293 continue;
8295 validate_change (insn, recog_data.dup_loc[i],
8296 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8299 return apply_change_group ();
8302 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8303 addressing now.
8304 This code might also be useful when reload gave up on reg+reg addresssing
8305 because of clashes between the return register and INDEX_REG_CLASS. */
8307 /* The maximum number of uses of a register we can keep track of to
8308 replace them with reg+reg addressing. */
8309 #define RELOAD_COMBINE_MAX_USES 6
8311 /* INSN is the insn where a register has ben used, and USEP points to the
8312 location of the register within the rtl. */
8313 struct reg_use { rtx insn, *usep; };
8315 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8316 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8317 indicates where it becomes live again.
8318 Otherwise, USE_INDEX is the index of the last encountered use of the
8319 register (which is first among these we have seen since we scan backwards),
8320 OFFSET contains the constant offset that is added to the register in
8321 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8322 last, of these uses.
8323 STORE_RUID is always meaningful if we only want to use a value in a
8324 register in a different place: it denotes the next insn in the insn
8325 stream (i.e. the last ecountered) that sets or clobbers the register. */
8326 static struct
8328 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8329 int use_index;
8330 rtx offset;
8331 int store_ruid;
8332 int use_ruid;
8333 } reg_state[FIRST_PSEUDO_REGISTER];
8335 /* Reverse linear uid. This is increased in reload_combine while scanning
8336 the instructions from last to first. It is used to set last_label_ruid
8337 and the store_ruid / use_ruid fields in reg_state. */
8338 static int reload_combine_ruid;
8340 #define LABEL_LIVE(LABEL) \
8341 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8343 static void
8344 reload_combine ()
8346 rtx insn, set;
8347 int first_index_reg = 1, last_index_reg = 0;
8348 int i;
8349 unsigned int r;
8350 int last_label_ruid;
8351 int min_labelno, n_labels;
8352 HARD_REG_SET ever_live_at_start, *label_live;
8354 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8355 reload has already used it where appropriate, so there is no use in
8356 trying to generate it now. */
8357 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8358 return;
8360 /* To avoid wasting too much time later searching for an index register,
8361 determine the minimum and maximum index register numbers. */
8362 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8363 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8365 if (! first_index_reg)
8366 first_index_reg = r;
8368 last_index_reg = r;
8371 /* If no index register is available, we can quit now. */
8372 if (first_index_reg > last_index_reg)
8373 return;
8375 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8376 information is a bit fuzzy immediately after reload, but it's
8377 still good enough to determine which registers are live at a jump
8378 destination. */
8379 min_labelno = get_first_label_num ();
8380 n_labels = max_label_num () - min_labelno;
8381 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8382 CLEAR_HARD_REG_SET (ever_live_at_start);
8384 for (i = n_basic_blocks - 1; i >= 0; i--)
8386 insn = BLOCK_HEAD (i);
8387 if (GET_CODE (insn) == CODE_LABEL)
8389 HARD_REG_SET live;
8391 REG_SET_TO_HARD_REG_SET (live,
8392 BASIC_BLOCK (i)->global_live_at_start);
8393 compute_use_by_pseudos (&live,
8394 BASIC_BLOCK (i)->global_live_at_start);
8395 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8396 IOR_HARD_REG_SET (ever_live_at_start, live);
8400 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8401 last_label_ruid = reload_combine_ruid = 0;
8402 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8404 reg_state[r].store_ruid = reload_combine_ruid;
8405 if (fixed_regs[r])
8406 reg_state[r].use_index = -1;
8407 else
8408 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8411 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8413 rtx note;
8415 /* We cannot do our optimization across labels. Invalidating all the use
8416 information we have would be costly, so we just note where the label
8417 is and then later disable any optimization that would cross it. */
8418 if (GET_CODE (insn) == CODE_LABEL)
8419 last_label_ruid = reload_combine_ruid;
8420 else if (GET_CODE (insn) == BARRIER)
8421 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8422 if (! fixed_regs[r])
8423 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8425 if (! INSN_P (insn))
8426 continue;
8428 reload_combine_ruid++;
8430 /* Look for (set (REGX) (CONST_INT))
8431 (set (REGX) (PLUS (REGX) (REGY)))
8433 ... (MEM (REGX)) ...
8434 and convert it to
8435 (set (REGZ) (CONST_INT))
8437 ... (MEM (PLUS (REGZ) (REGY)))... .
8439 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8440 and that we know all uses of REGX before it dies. */
8441 set = single_set (insn);
8442 if (set != NULL_RTX
8443 && GET_CODE (SET_DEST (set)) == REG
8444 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8445 GET_MODE (SET_DEST (set)))
8446 == 1)
8447 && GET_CODE (SET_SRC (set)) == PLUS
8448 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8449 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8450 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8452 rtx reg = SET_DEST (set);
8453 rtx plus = SET_SRC (set);
8454 rtx base = XEXP (plus, 1);
8455 rtx prev = prev_nonnote_insn (insn);
8456 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8457 unsigned int regno = REGNO (reg);
8458 rtx const_reg = NULL_RTX;
8459 rtx reg_sum = NULL_RTX;
8461 /* Now, we need an index register.
8462 We'll set index_reg to this index register, const_reg to the
8463 register that is to be loaded with the constant
8464 (denoted as REGZ in the substitution illustration above),
8465 and reg_sum to the register-register that we want to use to
8466 substitute uses of REG (typically in MEMs) with.
8467 First check REG and BASE for being index registers;
8468 we can use them even if they are not dead. */
8469 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8470 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8471 REGNO (base)))
8473 const_reg = reg;
8474 reg_sum = plus;
8476 else
8478 /* Otherwise, look for a free index register. Since we have
8479 checked above that neiter REG nor BASE are index registers,
8480 if we find anything at all, it will be different from these
8481 two registers. */
8482 for (i = first_index_reg; i <= last_index_reg; i++)
8484 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8486 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8487 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8488 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8490 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8492 const_reg = index_reg;
8493 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8494 break;
8499 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8500 (REGY), i.e. BASE, is not clobbered before the last use we'll
8501 create. */
8502 if (prev_set != 0
8503 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8504 && rtx_equal_p (SET_DEST (prev_set), reg)
8505 && reg_state[regno].use_index >= 0
8506 && (reg_state[REGNO (base)].store_ruid
8507 <= reg_state[regno].use_ruid)
8508 && reg_sum != 0)
8510 int i;
8512 /* Change destination register and, if necessary, the
8513 constant value in PREV, the constant loading instruction. */
8514 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8515 if (reg_state[regno].offset != const0_rtx)
8516 validate_change (prev,
8517 &SET_SRC (prev_set),
8518 GEN_INT (INTVAL (SET_SRC (prev_set))
8519 + INTVAL (reg_state[regno].offset)),
8522 /* Now for every use of REG that we have recorded, replace REG
8523 with REG_SUM. */
8524 for (i = reg_state[regno].use_index;
8525 i < RELOAD_COMBINE_MAX_USES; i++)
8526 validate_change (reg_state[regno].reg_use[i].insn,
8527 reg_state[regno].reg_use[i].usep,
8528 reg_sum, 1);
8530 if (apply_change_group ())
8532 rtx *np;
8534 /* Delete the reg-reg addition. */
8535 PUT_CODE (insn, NOTE);
8536 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8537 NOTE_SOURCE_FILE (insn) = 0;
8539 if (reg_state[regno].offset != const0_rtx)
8540 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8541 are now invalid. */
8542 for (np = &REG_NOTES (prev); *np;)
8544 if (REG_NOTE_KIND (*np) == REG_EQUAL
8545 || REG_NOTE_KIND (*np) == REG_EQUIV)
8546 *np = XEXP (*np, 1);
8547 else
8548 np = &XEXP (*np, 1);
8551 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8552 reg_state[REGNO (const_reg)].store_ruid
8553 = reload_combine_ruid;
8554 continue;
8559 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8561 if (GET_CODE (insn) == CALL_INSN)
8563 rtx link;
8565 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8566 if (call_used_regs[r])
8568 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8569 reg_state[r].store_ruid = reload_combine_ruid;
8572 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8573 link = XEXP (link, 1))
8574 if (GET_CODE (XEXP (XEXP (link, 0), 0)) == REG)
8576 unsigned int regno = REGNO (XEXP (XEXP (link, 0), 0));
8578 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8580 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8581 reg_state[regno].store_ruid = reload_combine_ruid;
8583 else
8584 reg_state[regno].use_index = -1;
8588 else if (GET_CODE (insn) == JUMP_INSN
8589 && GET_CODE (PATTERN (insn)) != RETURN)
8591 /* Non-spill registers might be used at the call destination in
8592 some unknown fashion, so we have to mark the unknown use. */
8593 HARD_REG_SET *live;
8595 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8596 && JUMP_LABEL (insn))
8597 live = &LABEL_LIVE (JUMP_LABEL (insn));
8598 else
8599 live = &ever_live_at_start;
8601 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8602 if (TEST_HARD_REG_BIT (*live, i))
8603 reg_state[i].use_index = -1;
8606 reload_combine_note_use (&PATTERN (insn), insn);
8607 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8609 if (REG_NOTE_KIND (note) == REG_INC
8610 && GET_CODE (XEXP (note, 0)) == REG)
8612 int regno = REGNO (XEXP (note, 0));
8614 reg_state[regno].store_ruid = reload_combine_ruid;
8615 reg_state[regno].use_index = -1;
8620 free (label_live);
8623 /* Check if DST is a register or a subreg of a register; if it is,
8624 update reg_state[regno].store_ruid and reg_state[regno].use_index
8625 accordingly. Called via note_stores from reload_combine. */
8627 static void
8628 reload_combine_note_store (dst, set, data)
8629 rtx dst, set;
8630 void *data ATTRIBUTE_UNUSED;
8632 int regno = 0;
8633 int i;
8634 enum machine_mode mode = GET_MODE (dst);
8636 if (GET_CODE (dst) == SUBREG)
8638 regno = SUBREG_WORD (dst);
8639 dst = SUBREG_REG (dst);
8641 if (GET_CODE (dst) != REG)
8642 return;
8643 regno += REGNO (dst);
8645 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8646 careful with registers / register parts that are not full words.
8648 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8649 if (GET_CODE (set) != SET
8650 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8651 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8652 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8654 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8656 reg_state[i].use_index = -1;
8657 reg_state[i].store_ruid = reload_combine_ruid;
8660 else
8662 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8664 reg_state[i].store_ruid = reload_combine_ruid;
8665 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8670 /* XP points to a piece of rtl that has to be checked for any uses of
8671 registers.
8672 *XP is the pattern of INSN, or a part of it.
8673 Called from reload_combine, and recursively by itself. */
8674 static void
8675 reload_combine_note_use (xp, insn)
8676 rtx *xp, insn;
8678 rtx x = *xp;
8679 enum rtx_code code = x->code;
8680 const char *fmt;
8681 int i, j;
8682 rtx offset = const0_rtx; /* For the REG case below. */
8684 switch (code)
8686 case SET:
8687 if (GET_CODE (SET_DEST (x)) == REG)
8689 reload_combine_note_use (&SET_SRC (x), insn);
8690 return;
8692 break;
8694 case USE:
8695 /* If this is the USE of a return value, we can't change it. */
8696 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8698 /* Mark the return register as used in an unknown fashion. */
8699 rtx reg = XEXP (x, 0);
8700 int regno = REGNO (reg);
8701 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8703 while (--nregs >= 0)
8704 reg_state[regno + nregs].use_index = -1;
8705 return;
8707 break;
8709 case CLOBBER:
8710 if (GET_CODE (SET_DEST (x)) == REG)
8711 return;
8712 break;
8714 case PLUS:
8715 /* We are interested in (plus (reg) (const_int)) . */
8716 if (GET_CODE (XEXP (x, 0)) != REG
8717 || GET_CODE (XEXP (x, 1)) != CONST_INT)
8718 break;
8719 offset = XEXP (x, 1);
8720 x = XEXP (x, 0);
8721 /* Fall through. */
8722 case REG:
8724 int regno = REGNO (x);
8725 int use_index;
8726 int nregs;
8728 /* Some spurious USEs of pseudo registers might remain.
8729 Just ignore them. */
8730 if (regno >= FIRST_PSEUDO_REGISTER)
8731 return;
8733 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8735 /* We can't substitute into multi-hard-reg uses. */
8736 if (nregs > 1)
8738 while (--nregs >= 0)
8739 reg_state[regno + nregs].use_index = -1;
8740 return;
8743 /* If this register is already used in some unknown fashion, we
8744 can't do anything.
8745 If we decrement the index from zero to -1, we can't store more
8746 uses, so this register becomes used in an unknown fashion. */
8747 use_index = --reg_state[regno].use_index;
8748 if (use_index < 0)
8749 return;
8751 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
8753 /* We have found another use for a register that is already
8754 used later. Check if the offsets match; if not, mark the
8755 register as used in an unknown fashion. */
8756 if (! rtx_equal_p (offset, reg_state[regno].offset))
8758 reg_state[regno].use_index = -1;
8759 return;
8762 else
8764 /* This is the first use of this register we have seen since we
8765 marked it as dead. */
8766 reg_state[regno].offset = offset;
8767 reg_state[regno].use_ruid = reload_combine_ruid;
8769 reg_state[regno].reg_use[use_index].insn = insn;
8770 reg_state[regno].reg_use[use_index].usep = xp;
8771 return;
8774 default:
8775 break;
8778 /* Recursively process the components of X. */
8779 fmt = GET_RTX_FORMAT (code);
8780 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8782 if (fmt[i] == 'e')
8783 reload_combine_note_use (&XEXP (x, i), insn);
8784 else if (fmt[i] == 'E')
8786 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8787 reload_combine_note_use (&XVECEXP (x, i, j), insn);
8792 /* See if we can reduce the cost of a constant by replacing a move with
8793 an add. */
8794 /* We cannot do our optimization across labels. Invalidating all the
8795 information about register contents we have would be costly, so we
8796 use last_label_luid (local variable of reload_cse_move2add) to note
8797 where the label is and then later disable any optimization that would
8798 cross it.
8799 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
8800 reg_set_luid[n] is larger than last_label_luid[n] . */
8801 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
8803 /* reg_offset[n] has to be CONST_INT for it and reg_base_reg[n] /
8804 reg_mode[n] to be valid.
8805 If reg_offset[n] is a CONST_INT and reg_base_reg[n] is negative, register n
8806 has been set to reg_offset[n] in mode reg_mode[n] .
8807 If reg_offset[n] is a CONST_INT and reg_base_reg[n] is non-negative,
8808 register n has been set to the sum of reg_offset[n] and register
8809 reg_base_reg[n], calculated in mode reg_mode[n] . */
8810 static rtx reg_offset[FIRST_PSEUDO_REGISTER];
8811 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
8812 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
8814 /* move2add_luid is linearily increased while scanning the instructions
8815 from first to last. It is used to set reg_set_luid in
8816 reload_cse_move2add and move2add_note_store. */
8817 static int move2add_luid;
8819 /* Generate a CONST_INT and force it in the range of MODE. */
8821 static rtx
8822 gen_mode_int (mode, value)
8823 enum machine_mode mode;
8824 HOST_WIDE_INT value;
8826 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
8827 int width = GET_MODE_BITSIZE (mode);
8829 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
8830 sign extend it. */
8831 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8832 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
8833 cval |= (HOST_WIDE_INT) -1 << width;
8835 return GEN_INT (cval);
8838 static void
8839 reload_cse_move2add (first)
8840 rtx first;
8842 int i;
8843 rtx insn;
8844 int last_label_luid;
8846 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
8847 reg_set_luid[i] = 0;
8849 last_label_luid = 0;
8850 move2add_luid = 1;
8851 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
8853 rtx pat, note;
8855 if (GET_CODE (insn) == CODE_LABEL)
8856 last_label_luid = move2add_luid;
8857 if (! INSN_P (insn))
8858 continue;
8859 pat = PATTERN (insn);
8860 /* For simplicity, we only perform this optimization on
8861 straightforward SETs. */
8862 if (GET_CODE (pat) == SET
8863 && GET_CODE (SET_DEST (pat)) == REG)
8865 rtx reg = SET_DEST (pat);
8866 int regno = REGNO (reg);
8867 rtx src = SET_SRC (pat);
8869 /* Check if we have valid information on the contents of this
8870 register in the mode of REG. */
8871 /* ??? We don't know how zero / sign extension is handled, hence
8872 we can't go from a narrower to a wider mode. */
8873 if (reg_set_luid[regno] > last_label_luid
8874 && ((GET_MODE_SIZE (GET_MODE (reg))
8875 == GET_MODE_SIZE (reg_mode[regno]))
8876 || ((GET_MODE_SIZE (GET_MODE (reg))
8877 <= GET_MODE_SIZE (reg_mode[regno]))
8878 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (reg)),
8879 GET_MODE_BITSIZE (reg_mode[regno]))))
8880 && GET_CODE (reg_offset[regno]) == CONST_INT)
8882 /* Try to transform (set (REGX) (CONST_INT A))
8884 (set (REGX) (CONST_INT B))
8886 (set (REGX) (CONST_INT A))
8888 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8890 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
8892 int success = 0;
8893 rtx new_src
8894 = gen_mode_int (GET_MODE (reg),
8895 INTVAL (src) - INTVAL (reg_offset[regno]));
8896 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
8897 use (set (reg) (reg)) instead.
8898 We don't delete this insn, nor do we convert it into a
8899 note, to avoid losing register notes or the return
8900 value flag. jump2 already knowns how to get rid of
8901 no-op moves. */
8902 if (new_src == const0_rtx)
8903 success = validate_change (insn, &SET_SRC (pat), reg, 0);
8904 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
8905 && have_add2_insn (GET_MODE (reg)))
8906 success = validate_change (insn, &PATTERN (insn),
8907 gen_add2_insn (reg, new_src), 0);
8908 reg_set_luid[regno] = move2add_luid;
8909 reg_mode[regno] = GET_MODE (reg);
8910 reg_offset[regno] = src;
8911 continue;
8914 /* Try to transform (set (REGX) (REGY))
8915 (set (REGX) (PLUS (REGX) (CONST_INT A)))
8917 (set (REGX) (REGY))
8918 (set (REGX) (PLUS (REGX) (CONST_INT B)))
8920 (REGX) (REGY))
8921 (set (REGX) (PLUS (REGX) (CONST_INT A)))
8923 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8924 else if (GET_CODE (src) == REG
8925 && reg_base_reg[regno] == (int) REGNO (src)
8926 && reg_set_luid[regno] > reg_set_luid[REGNO (src)])
8928 rtx next = next_nonnote_insn (insn);
8929 rtx set = NULL_RTX;
8930 if (next)
8931 set = single_set (next);
8932 if (next
8933 && set
8934 && SET_DEST (set) == reg
8935 && GET_CODE (SET_SRC (set)) == PLUS
8936 && XEXP (SET_SRC (set), 0) == reg
8937 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
8939 rtx src3 = XEXP (SET_SRC (set), 1);
8940 rtx new_src
8941 = gen_mode_int (GET_MODE (reg),
8942 INTVAL (src3)
8943 - INTVAL (reg_offset[regno]));
8944 int success = 0;
8946 if (new_src == const0_rtx)
8947 /* See above why we create (set (reg) (reg)) here. */
8948 success
8949 = validate_change (next, &SET_SRC (set), reg, 0);
8950 else if ((rtx_cost (new_src, PLUS)
8951 < 2 + rtx_cost (src3, SET))
8952 && have_add2_insn (GET_MODE (reg)))
8953 success
8954 = validate_change (next, &PATTERN (next),
8955 gen_add2_insn (reg, new_src), 0);
8956 if (success)
8958 /* INSN might be the first insn in a basic block
8959 if the preceding insn is a conditional jump
8960 or a possible-throwing call. */
8961 PUT_CODE (insn, NOTE);
8962 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8963 NOTE_SOURCE_FILE (insn) = 0;
8965 insn = next;
8966 reg_set_luid[regno] = move2add_luid;
8967 reg_mode[regno] = GET_MODE (reg);
8968 reg_offset[regno] = src3;
8969 continue;
8975 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8977 if (REG_NOTE_KIND (note) == REG_INC
8978 && GET_CODE (XEXP (note, 0)) == REG)
8980 /* Indicate that this register has been recently written to,
8981 but the exact contents are not available. */
8982 int regno = REGNO (XEXP (note, 0));
8983 if (regno < FIRST_PSEUDO_REGISTER)
8985 reg_set_luid[regno] = move2add_luid;
8986 reg_offset[regno] = note;
8990 note_stores (PATTERN (insn), move2add_note_store, NULL);
8991 /* If this is a CALL_INSN, all call used registers are stored with
8992 unknown values. */
8993 if (GET_CODE (insn) == CALL_INSN)
8995 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
8997 if (call_used_regs[i])
8999 reg_set_luid[i] = move2add_luid;
9000 reg_offset[i] = insn; /* Invalidate contents. */
9007 /* SET is a SET or CLOBBER that sets DST.
9008 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9009 Called from reload_cse_move2add via note_stores. */
9011 static void
9012 move2add_note_store (dst, set, data)
9013 rtx dst, set;
9014 void *data ATTRIBUTE_UNUSED;
9016 unsigned int regno = 0;
9017 unsigned int i;
9018 enum machine_mode mode = GET_MODE (dst);
9020 if (GET_CODE (dst) == SUBREG)
9022 regno = SUBREG_WORD (dst);
9023 dst = SUBREG_REG (dst);
9026 if (GET_CODE (dst) != REG)
9027 return;
9029 regno += REGNO (dst);
9031 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9032 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9033 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9034 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9036 rtx src = SET_SRC (set);
9038 reg_mode[regno] = mode;
9039 switch (GET_CODE (src))
9041 case PLUS:
9043 rtx src0 = XEXP (src, 0);
9045 if (GET_CODE (src0) == REG)
9047 if (REGNO (src0) != regno
9048 || reg_offset[regno] != const0_rtx)
9050 reg_base_reg[regno] = REGNO (src0);
9051 reg_set_luid[regno] = move2add_luid;
9054 reg_offset[regno] = XEXP (src, 1);
9055 break;
9058 reg_set_luid[regno] = move2add_luid;
9059 reg_offset[regno] = set; /* Invalidate contents. */
9060 break;
9063 case REG:
9064 reg_base_reg[regno] = REGNO (SET_SRC (set));
9065 reg_offset[regno] = const0_rtx;
9066 reg_set_luid[regno] = move2add_luid;
9067 break;
9069 default:
9070 reg_base_reg[regno] = -1;
9071 reg_offset[regno] = SET_SRC (set);
9072 reg_set_luid[regno] = move2add_luid;
9073 break;
9076 else
9078 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9080 for (i = regno; i < endregno; i++)
9082 /* Indicate that this register has been recently written to,
9083 but the exact contents are not available. */
9084 reg_set_luid[i] = move2add_luid;
9085 reg_offset[i] = dst;
9090 #ifdef AUTO_INC_DEC
9091 static void
9092 add_auto_inc_notes (insn, x)
9093 rtx insn;
9094 rtx x;
9096 enum rtx_code code = GET_CODE (x);
9097 const char *fmt;
9098 int i, j;
9100 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9102 REG_NOTES (insn)
9103 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9104 return;
9107 /* Scan all the operand sub-expressions. */
9108 fmt = GET_RTX_FORMAT (code);
9109 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9111 if (fmt[i] == 'e')
9112 add_auto_inc_notes (insn, XEXP (x, i));
9113 else if (fmt[i] == 'E')
9114 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9115 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9118 #endif