Merged with mainline at revision 128810.
[official-gcc.git] / libstdc++-v3 / include / bits / stl_deque.h
bloba0553961a5bbd3c18ce15e4d63d90c795d8f9a61
1 // Deque implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
10 // any later version.
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 // USA.
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation. Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose. It is provided "as is" without express or implied warranty.
45 * Copyright (c) 1997
46 * Silicon Graphics Computer Systems, Inc.
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation. Silicon Graphics makes no
53 * representations about the suitability of this software for any
54 * purpose. It is provided "as is" without express or implied warranty.
57 /** @file stl_deque.h
58 * This is an internal header file, included by other library headers.
59 * You should not attempt to use it directly.
62 #ifndef _STL_DEQUE_H
63 #define _STL_DEQUE_H 1
65 #include <bits/concept_check.h>
66 #include <bits/stl_iterator_base_types.h>
67 #include <bits/stl_iterator_base_funcs.h>
69 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
71 /**
72 * @if maint
73 * @brief This function controls the size of memory nodes.
74 * @param size The size of an element.
75 * @return The number (not byte size) of elements per node.
77 * This function started off as a compiler kludge from SGI, but seems to
78 * be a useful wrapper around a repeated constant expression. The '512' is
79 * tuneable (and no other code needs to change), but no investigation has
80 * been done since inheriting the SGI code.
81 * @endif
83 inline size_t
84 __deque_buf_size(size_t __size)
85 { return __size < 512 ? size_t(512 / __size) : size_t(1); }
88 /**
89 * @brief A deque::iterator.
91 * Quite a bit of intelligence here. Much of the functionality of
92 * deque is actually passed off to this class. A deque holds two
93 * of these internally, marking its valid range. Access to
94 * elements is done as offsets of either of those two, relying on
95 * operator overloading in this class.
97 * @if maint
98 * All the functions are op overloads except for _M_set_node.
99 * @endif
101 template<typename _Tp, typename _Ref, typename _Ptr>
102 struct _Deque_iterator
104 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
105 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
107 static size_t _S_buffer_size()
108 { return __deque_buf_size(sizeof(_Tp)); }
110 typedef std::random_access_iterator_tag iterator_category;
111 typedef _Tp value_type;
112 typedef _Ptr pointer;
113 typedef _Ref reference;
114 typedef size_t size_type;
115 typedef ptrdiff_t difference_type;
116 typedef _Tp** _Map_pointer;
117 typedef _Deque_iterator _Self;
119 _Tp* _M_cur;
120 _Tp* _M_first;
121 _Tp* _M_last;
122 _Map_pointer _M_node;
124 _Deque_iterator(_Tp* __x, _Map_pointer __y)
125 : _M_cur(__x), _M_first(*__y),
126 _M_last(*__y + _S_buffer_size()), _M_node(__y) {}
128 _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
130 _Deque_iterator(const iterator& __x)
131 : _M_cur(__x._M_cur), _M_first(__x._M_first),
132 _M_last(__x._M_last), _M_node(__x._M_node) {}
134 reference
135 operator*() const
136 { return *_M_cur; }
138 pointer
139 operator->() const
140 { return _M_cur; }
142 _Self&
143 operator++()
145 ++_M_cur;
146 if (_M_cur == _M_last)
148 _M_set_node(_M_node + 1);
149 _M_cur = _M_first;
151 return *this;
154 _Self
155 operator++(int)
157 _Self __tmp = *this;
158 ++*this;
159 return __tmp;
162 _Self&
163 operator--()
165 if (_M_cur == _M_first)
167 _M_set_node(_M_node - 1);
168 _M_cur = _M_last;
170 --_M_cur;
171 return *this;
174 _Self
175 operator--(int)
177 _Self __tmp = *this;
178 --*this;
179 return __tmp;
182 _Self&
183 operator+=(difference_type __n)
185 const difference_type __offset = __n + (_M_cur - _M_first);
186 if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
187 _M_cur += __n;
188 else
190 const difference_type __node_offset =
191 __offset > 0 ? __offset / difference_type(_S_buffer_size())
192 : -difference_type((-__offset - 1)
193 / _S_buffer_size()) - 1;
194 _M_set_node(_M_node + __node_offset);
195 _M_cur = _M_first + (__offset - __node_offset
196 * difference_type(_S_buffer_size()));
198 return *this;
201 _Self
202 operator+(difference_type __n) const
204 _Self __tmp = *this;
205 return __tmp += __n;
208 _Self&
209 operator-=(difference_type __n)
210 { return *this += -__n; }
212 _Self
213 operator-(difference_type __n) const
215 _Self __tmp = *this;
216 return __tmp -= __n;
219 reference
220 operator[](difference_type __n) const
221 { return *(*this + __n); }
223 /** @if maint
224 * Prepares to traverse new_node. Sets everything except
225 * _M_cur, which should therefore be set by the caller
226 * immediately afterwards, based on _M_first and _M_last.
227 * @endif
229 void
230 _M_set_node(_Map_pointer __new_node)
232 _M_node = __new_node;
233 _M_first = *__new_node;
234 _M_last = _M_first + difference_type(_S_buffer_size());
238 // Note: we also provide overloads whose operands are of the same type in
239 // order to avoid ambiguous overload resolution when std::rel_ops operators
240 // are in scope (for additional details, see libstdc++/3628)
241 template<typename _Tp, typename _Ref, typename _Ptr>
242 inline bool
243 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
244 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
245 { return __x._M_cur == __y._M_cur; }
247 template<typename _Tp, typename _RefL, typename _PtrL,
248 typename _RefR, typename _PtrR>
249 inline bool
250 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
251 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
252 { return __x._M_cur == __y._M_cur; }
254 template<typename _Tp, typename _Ref, typename _Ptr>
255 inline bool
256 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
257 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
258 { return !(__x == __y); }
260 template<typename _Tp, typename _RefL, typename _PtrL,
261 typename _RefR, typename _PtrR>
262 inline bool
263 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
264 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
265 { return !(__x == __y); }
267 template<typename _Tp, typename _Ref, typename _Ptr>
268 inline bool
269 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
270 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
271 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
272 : (__x._M_node < __y._M_node); }
274 template<typename _Tp, typename _RefL, typename _PtrL,
275 typename _RefR, typename _PtrR>
276 inline bool
277 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
278 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
279 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
280 : (__x._M_node < __y._M_node); }
282 template<typename _Tp, typename _Ref, typename _Ptr>
283 inline bool
284 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
285 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
286 { return __y < __x; }
288 template<typename _Tp, typename _RefL, typename _PtrL,
289 typename _RefR, typename _PtrR>
290 inline bool
291 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
292 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
293 { return __y < __x; }
295 template<typename _Tp, typename _Ref, typename _Ptr>
296 inline bool
297 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
298 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
299 { return !(__y < __x); }
301 template<typename _Tp, typename _RefL, typename _PtrL,
302 typename _RefR, typename _PtrR>
303 inline bool
304 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
305 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
306 { return !(__y < __x); }
308 template<typename _Tp, typename _Ref, typename _Ptr>
309 inline bool
310 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
311 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
312 { return !(__x < __y); }
314 template<typename _Tp, typename _RefL, typename _PtrL,
315 typename _RefR, typename _PtrR>
316 inline bool
317 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
318 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
319 { return !(__x < __y); }
321 // _GLIBCXX_RESOLVE_LIB_DEFECTS
322 // According to the resolution of DR179 not only the various comparison
323 // operators but also operator- must accept mixed iterator/const_iterator
324 // parameters.
325 template<typename _Tp, typename _Ref, typename _Ptr>
326 inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
327 operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
328 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
330 return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
331 (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
332 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
333 + (__y._M_last - __y._M_cur);
336 template<typename _Tp, typename _RefL, typename _PtrL,
337 typename _RefR, typename _PtrR>
338 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
339 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
340 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
342 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
343 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
344 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
345 + (__y._M_last - __y._M_cur);
348 template<typename _Tp, typename _Ref, typename _Ptr>
349 inline _Deque_iterator<_Tp, _Ref, _Ptr>
350 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
351 { return __x + __n; }
353 template<typename _Tp>
354 void
355 fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>& __first,
356 const _Deque_iterator<_Tp, _Tp&, _Tp*>& __last, const _Tp& __value);
359 * @if maint
360 * Deque base class. This class provides the unified face for %deque's
361 * allocation. This class's constructor and destructor allocate and
362 * deallocate (but do not initialize) storage. This makes %exception
363 * safety easier.
365 * Nothing in this class ever constructs or destroys an actual Tp element.
366 * (Deque handles that itself.) Only/All memory management is performed
367 * here.
368 * @endif
370 template<typename _Tp, typename _Alloc>
371 class _Deque_base
373 public:
374 typedef _Alloc allocator_type;
376 allocator_type
377 get_allocator() const
378 { return allocator_type(_M_get_Tp_allocator()); }
380 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
381 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
383 _Deque_base(const allocator_type& __a, size_t __num_elements)
384 : _M_impl(__a)
385 { _M_initialize_map(__num_elements); }
387 _Deque_base(const allocator_type& __a)
388 : _M_impl(__a)
391 ~_Deque_base();
393 protected:
394 //This struct encapsulates the implementation of the std::deque
395 //standard container and at the same time makes use of the EBO
396 //for empty allocators.
397 typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
399 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
401 struct _Deque_impl
402 : public _Tp_alloc_type
404 _Tp** _M_map;
405 size_t _M_map_size;
406 iterator _M_start;
407 iterator _M_finish;
409 _Deque_impl(const _Tp_alloc_type& __a)
410 : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
411 _M_start(), _M_finish()
415 _Tp_alloc_type&
416 _M_get_Tp_allocator()
417 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
419 const _Tp_alloc_type&
420 _M_get_Tp_allocator() const
421 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
423 _Map_alloc_type
424 _M_get_map_allocator() const
425 { return _Map_alloc_type(_M_get_Tp_allocator()); }
427 _Tp*
428 _M_allocate_node()
430 return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
433 void
434 _M_deallocate_node(_Tp* __p)
436 _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
439 _Tp**
440 _M_allocate_map(size_t __n)
441 { return _M_get_map_allocator().allocate(__n); }
443 void
444 _M_deallocate_map(_Tp** __p, size_t __n)
445 { _M_get_map_allocator().deallocate(__p, __n); }
447 protected:
448 void _M_initialize_map(size_t);
449 void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
450 void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
451 enum { _S_initial_map_size = 8 };
453 _Deque_impl _M_impl;
456 template<typename _Tp, typename _Alloc>
457 _Deque_base<_Tp, _Alloc>::
458 ~_Deque_base()
460 if (this->_M_impl._M_map)
462 _M_destroy_nodes(this->_M_impl._M_start._M_node,
463 this->_M_impl._M_finish._M_node + 1);
464 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
469 * @if maint
470 * @brief Layout storage.
471 * @param num_elements The count of T's for which to allocate space
472 * at first.
473 * @return Nothing.
475 * The initial underlying memory layout is a bit complicated...
476 * @endif
478 template<typename _Tp, typename _Alloc>
479 void
480 _Deque_base<_Tp, _Alloc>::
481 _M_initialize_map(size_t __num_elements)
483 const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
484 + 1);
486 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
487 size_t(__num_nodes + 2));
488 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
490 // For "small" maps (needing less than _M_map_size nodes), allocation
491 // starts in the middle elements and grows outwards. So nstart may be
492 // the beginning of _M_map, but for small maps it may be as far in as
493 // _M_map+3.
495 _Tp** __nstart = (this->_M_impl._M_map
496 + (this->_M_impl._M_map_size - __num_nodes) / 2);
497 _Tp** __nfinish = __nstart + __num_nodes;
500 { _M_create_nodes(__nstart, __nfinish); }
501 catch(...)
503 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
504 this->_M_impl._M_map = 0;
505 this->_M_impl._M_map_size = 0;
506 __throw_exception_again;
509 this->_M_impl._M_start._M_set_node(__nstart);
510 this->_M_impl._M_finish._M_set_node(__nfinish - 1);
511 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
512 this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
513 + __num_elements
514 % __deque_buf_size(sizeof(_Tp)));
517 template<typename _Tp, typename _Alloc>
518 void
519 _Deque_base<_Tp, _Alloc>::
520 _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
522 _Tp** __cur;
525 for (__cur = __nstart; __cur < __nfinish; ++__cur)
526 *__cur = this->_M_allocate_node();
528 catch(...)
530 _M_destroy_nodes(__nstart, __cur);
531 __throw_exception_again;
535 template<typename _Tp, typename _Alloc>
536 void
537 _Deque_base<_Tp, _Alloc>::
538 _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
540 for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
541 _M_deallocate_node(*__n);
545 * @brief A standard container using fixed-size memory allocation and
546 * constant-time manipulation of elements at either end.
548 * @ingroup Containers
549 * @ingroup Sequences
551 * Meets the requirements of a <a href="tables.html#65">container</a>, a
552 * <a href="tables.html#66">reversible container</a>, and a
553 * <a href="tables.html#67">sequence</a>, including the
554 * <a href="tables.html#68">optional sequence requirements</a>.
556 * In previous HP/SGI versions of deque, there was an extra template
557 * parameter so users could control the node size. This extension turned
558 * out to violate the C++ standard (it can be detected using template
559 * template parameters), and it was removed.
561 * @if maint
562 * Here's how a deque<Tp> manages memory. Each deque has 4 members:
564 * - Tp** _M_map
565 * - size_t _M_map_size
566 * - iterator _M_start, _M_finish
568 * map_size is at least 8. %map is an array of map_size
569 * pointers-to-"nodes". (The name %map has nothing to do with the
570 * std::map class, and "nodes" should not be confused with
571 * std::list's usage of "node".)
573 * A "node" has no specific type name as such, but it is referred
574 * to as "node" in this file. It is a simple array-of-Tp. If Tp
575 * is very large, there will be one Tp element per node (i.e., an
576 * "array" of one). For non-huge Tp's, node size is inversely
577 * related to Tp size: the larger the Tp, the fewer Tp's will fit
578 * in a node. The goal here is to keep the total size of a node
579 * relatively small and constant over different Tp's, to improve
580 * allocator efficiency.
582 * Not every pointer in the %map array will point to a node. If
583 * the initial number of elements in the deque is small, the
584 * /middle/ %map pointers will be valid, and the ones at the edges
585 * will be unused. This same situation will arise as the %map
586 * grows: available %map pointers, if any, will be on the ends. As
587 * new nodes are created, only a subset of the %map's pointers need
588 * to be copied "outward".
590 * Class invariants:
591 * - For any nonsingular iterator i:
592 * - i.node points to a member of the %map array. (Yes, you read that
593 * correctly: i.node does not actually point to a node.) The member of
594 * the %map array is what actually points to the node.
595 * - i.first == *(i.node) (This points to the node (first Tp element).)
596 * - i.last == i.first + node_size
597 * - i.cur is a pointer in the range [i.first, i.last). NOTE:
598 * the implication of this is that i.cur is always a dereferenceable
599 * pointer, even if i is a past-the-end iterator.
600 * - Start and Finish are always nonsingular iterators. NOTE: this
601 * means that an empty deque must have one node, a deque with <N
602 * elements (where N is the node buffer size) must have one node, a
603 * deque with N through (2N-1) elements must have two nodes, etc.
604 * - For every node other than start.node and finish.node, every
605 * element in the node is an initialized object. If start.node ==
606 * finish.node, then [start.cur, finish.cur) are initialized
607 * objects, and the elements outside that range are uninitialized
608 * storage. Otherwise, [start.cur, start.last) and [finish.first,
609 * finish.cur) are initialized objects, and [start.first, start.cur)
610 * and [finish.cur, finish.last) are uninitialized storage.
611 * - [%map, %map + map_size) is a valid, non-empty range.
612 * - [start.node, finish.node] is a valid range contained within
613 * [%map, %map + map_size).
614 * - A pointer in the range [%map, %map + map_size) points to an allocated
615 * node if and only if the pointer is in the range
616 * [start.node, finish.node].
618 * Here's the magic: nothing in deque is "aware" of the discontiguous
619 * storage!
621 * The memory setup and layout occurs in the parent, _Base, and the iterator
622 * class is entirely responsible for "leaping" from one node to the next.
623 * All the implementation routines for deque itself work only through the
624 * start and finish iterators. This keeps the routines simple and sane,
625 * and we can use other standard algorithms as well.
626 * @endif
628 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
629 class deque : protected _Deque_base<_Tp, _Alloc>
631 // concept requirements
632 typedef typename _Alloc::value_type _Alloc_value_type;
633 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
634 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
636 typedef _Deque_base<_Tp, _Alloc> _Base;
637 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
639 public:
640 typedef _Tp value_type;
641 typedef typename _Tp_alloc_type::pointer pointer;
642 typedef typename _Tp_alloc_type::const_pointer const_pointer;
643 typedef typename _Tp_alloc_type::reference reference;
644 typedef typename _Tp_alloc_type::const_reference const_reference;
645 typedef typename _Base::iterator iterator;
646 typedef typename _Base::const_iterator const_iterator;
647 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
648 typedef std::reverse_iterator<iterator> reverse_iterator;
649 typedef size_t size_type;
650 typedef ptrdiff_t difference_type;
651 typedef _Alloc allocator_type;
653 protected:
654 typedef pointer* _Map_pointer;
656 static size_t _S_buffer_size()
657 { return __deque_buf_size(sizeof(_Tp)); }
659 // Functions controlling memory layout, and nothing else.
660 using _Base::_M_initialize_map;
661 using _Base::_M_create_nodes;
662 using _Base::_M_destroy_nodes;
663 using _Base::_M_allocate_node;
664 using _Base::_M_deallocate_node;
665 using _Base::_M_allocate_map;
666 using _Base::_M_deallocate_map;
667 using _Base::_M_get_Tp_allocator;
669 /** @if maint
670 * A total of four data members accumulated down the heirarchy.
671 * May be accessed via _M_impl.*
672 * @endif
674 using _Base::_M_impl;
676 public:
677 // [23.2.1.1] construct/copy/destroy
678 // (assign() and get_allocator() are also listed in this section)
680 * @brief Default constructor creates no elements.
682 explicit
683 deque(const allocator_type& __a = allocator_type())
684 : _Base(__a, 0) {}
687 * @brief Create a %deque with copies of an exemplar element.
688 * @param n The number of elements to initially create.
689 * @param value An element to copy.
691 * This constructor fills the %deque with @a n copies of @a value.
693 explicit
694 deque(size_type __n, const value_type& __value = value_type(),
695 const allocator_type& __a = allocator_type())
696 : _Base(__a, __n)
697 { _M_fill_initialize(__value); }
700 * @brief %Deque copy constructor.
701 * @param x A %deque of identical element and allocator types.
703 * The newly-created %deque uses a copy of the allocation object used
704 * by @a x.
706 deque(const deque& __x)
707 : _Base(__x._M_get_Tp_allocator(), __x.size())
708 { std::__uninitialized_copy_a(__x.begin(), __x.end(),
709 this->_M_impl._M_start,
710 _M_get_Tp_allocator()); }
713 * @brief Builds a %deque from a range.
714 * @param first An input iterator.
715 * @param last An input iterator.
717 * Create a %deque consisting of copies of the elements from [first,
718 * last).
720 * If the iterators are forward, bidirectional, or random-access, then
721 * this will call the elements' copy constructor N times (where N is
722 * distance(first,last)) and do no memory reallocation. But if only
723 * input iterators are used, then this will do at most 2N calls to the
724 * copy constructor, and logN memory reallocations.
726 template<typename _InputIterator>
727 deque(_InputIterator __first, _InputIterator __last,
728 const allocator_type& __a = allocator_type())
729 : _Base(__a)
731 // Check whether it's an integral type. If so, it's not an iterator.
732 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
733 _M_initialize_dispatch(__first, __last, _Integral());
737 * The dtor only erases the elements, and note that if the elements
738 * themselves are pointers, the pointed-to memory is not touched in any
739 * way. Managing the pointer is the user's responsibilty.
741 ~deque()
742 { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
745 * @brief %Deque assignment operator.
746 * @param x A %deque of identical element and allocator types.
748 * All the elements of @a x are copied, but unlike the copy constructor,
749 * the allocator object is not copied.
751 deque&
752 operator=(const deque& __x);
755 * @brief Assigns a given value to a %deque.
756 * @param n Number of elements to be assigned.
757 * @param val Value to be assigned.
759 * This function fills a %deque with @a n copies of the given
760 * value. Note that the assignment completely changes the
761 * %deque and that the resulting %deque's size is the same as
762 * the number of elements assigned. Old data may be lost.
764 void
765 assign(size_type __n, const value_type& __val)
766 { _M_fill_assign(__n, __val); }
769 * @brief Assigns a range to a %deque.
770 * @param first An input iterator.
771 * @param last An input iterator.
773 * This function fills a %deque with copies of the elements in the
774 * range [first,last).
776 * Note that the assignment completely changes the %deque and that the
777 * resulting %deque's size is the same as the number of elements
778 * assigned. Old data may be lost.
780 template<typename _InputIterator>
781 void
782 assign(_InputIterator __first, _InputIterator __last)
784 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
785 _M_assign_dispatch(__first, __last, _Integral());
788 /// Get a copy of the memory allocation object.
789 allocator_type
790 get_allocator() const
791 { return _Base::get_allocator(); }
793 // iterators
795 * Returns a read/write iterator that points to the first element in the
796 * %deque. Iteration is done in ordinary element order.
798 iterator
799 begin()
800 { return this->_M_impl._M_start; }
803 * Returns a read-only (constant) iterator that points to the first
804 * element in the %deque. Iteration is done in ordinary element order.
806 const_iterator
807 begin() const
808 { return this->_M_impl._M_start; }
811 * Returns a read/write iterator that points one past the last
812 * element in the %deque. Iteration is done in ordinary
813 * element order.
815 iterator
816 end()
817 { return this->_M_impl._M_finish; }
820 * Returns a read-only (constant) iterator that points one past
821 * the last element in the %deque. Iteration is done in
822 * ordinary element order.
824 const_iterator
825 end() const
826 { return this->_M_impl._M_finish; }
829 * Returns a read/write reverse iterator that points to the
830 * last element in the %deque. Iteration is done in reverse
831 * element order.
833 reverse_iterator
834 rbegin()
835 { return reverse_iterator(this->_M_impl._M_finish); }
838 * Returns a read-only (constant) reverse iterator that points
839 * to the last element in the %deque. Iteration is done in
840 * reverse element order.
842 const_reverse_iterator
843 rbegin() const
844 { return const_reverse_iterator(this->_M_impl._M_finish); }
847 * Returns a read/write reverse iterator that points to one
848 * before the first element in the %deque. Iteration is done
849 * in reverse element order.
851 reverse_iterator
852 rend()
853 { return reverse_iterator(this->_M_impl._M_start); }
856 * Returns a read-only (constant) reverse iterator that points
857 * to one before the first element in the %deque. Iteration is
858 * done in reverse element order.
860 const_reverse_iterator
861 rend() const
862 { return const_reverse_iterator(this->_M_impl._M_start); }
864 // [23.2.1.2] capacity
865 /** Returns the number of elements in the %deque. */
866 size_type
867 size() const
868 { return this->_M_impl._M_finish - this->_M_impl._M_start; }
870 /** Returns the size() of the largest possible %deque. */
871 size_type
872 max_size() const
873 { return _M_get_Tp_allocator().max_size(); }
876 * @brief Resizes the %deque to the specified number of elements.
877 * @param new_size Number of elements the %deque should contain.
878 * @param x Data with which new elements should be populated.
880 * This function will %resize the %deque to the specified
881 * number of elements. If the number is smaller than the
882 * %deque's current size the %deque is truncated, otherwise the
883 * %deque is extended and new elements are populated with given
884 * data.
886 void
887 resize(size_type __new_size, value_type __x = value_type())
889 const size_type __len = size();
890 if (__new_size < __len)
891 _M_erase_at_end(this->_M_impl._M_start + difference_type(__new_size));
892 else
893 insert(this->_M_impl._M_finish, __new_size - __len, __x);
897 * Returns true if the %deque is empty. (Thus begin() would
898 * equal end().)
900 bool
901 empty() const
902 { return this->_M_impl._M_finish == this->_M_impl._M_start; }
904 // element access
906 * @brief Subscript access to the data contained in the %deque.
907 * @param n The index of the element for which data should be
908 * accessed.
909 * @return Read/write reference to data.
911 * This operator allows for easy, array-style, data access.
912 * Note that data access with this operator is unchecked and
913 * out_of_range lookups are not defined. (For checked lookups
914 * see at().)
916 reference
917 operator[](size_type __n)
918 { return this->_M_impl._M_start[difference_type(__n)]; }
921 * @brief Subscript access to the data contained in the %deque.
922 * @param n The index of the element for which data should be
923 * accessed.
924 * @return Read-only (constant) reference to data.
926 * This operator allows for easy, array-style, data access.
927 * Note that data access with this operator is unchecked and
928 * out_of_range lookups are not defined. (For checked lookups
929 * see at().)
931 const_reference
932 operator[](size_type __n) const
933 { return this->_M_impl._M_start[difference_type(__n)]; }
935 protected:
936 /// @if maint Safety check used only from at(). @endif
937 void
938 _M_range_check(size_type __n) const
940 if (__n >= this->size())
941 __throw_out_of_range(__N("deque::_M_range_check"));
944 public:
946 * @brief Provides access to the data contained in the %deque.
947 * @param n The index of the element for which data should be
948 * accessed.
949 * @return Read/write reference to data.
950 * @throw std::out_of_range If @a n is an invalid index.
952 * This function provides for safer data access. The parameter
953 * is first checked that it is in the range of the deque. The
954 * function throws out_of_range if the check fails.
956 reference
957 at(size_type __n)
959 _M_range_check(__n);
960 return (*this)[__n];
964 * @brief Provides access to the data contained in the %deque.
965 * @param n The index of the element for which data should be
966 * accessed.
967 * @return Read-only (constant) reference to data.
968 * @throw std::out_of_range If @a n is an invalid index.
970 * This function provides for safer data access. The parameter is first
971 * checked that it is in the range of the deque. The function throws
972 * out_of_range if the check fails.
974 const_reference
975 at(size_type __n) const
977 _M_range_check(__n);
978 return (*this)[__n];
982 * Returns a read/write reference to the data at the first
983 * element of the %deque.
985 reference
986 front()
987 { return *begin(); }
990 * Returns a read-only (constant) reference to the data at the first
991 * element of the %deque.
993 const_reference
994 front() const
995 { return *begin(); }
998 * Returns a read/write reference to the data at the last element of the
999 * %deque.
1001 reference
1002 back()
1004 iterator __tmp = end();
1005 --__tmp;
1006 return *__tmp;
1010 * Returns a read-only (constant) reference to the data at the last
1011 * element of the %deque.
1013 const_reference
1014 back() const
1016 const_iterator __tmp = end();
1017 --__tmp;
1018 return *__tmp;
1021 // [23.2.1.2] modifiers
1023 * @brief Add data to the front of the %deque.
1024 * @param x Data to be added.
1026 * This is a typical stack operation. The function creates an
1027 * element at the front of the %deque and assigns the given
1028 * data to it. Due to the nature of a %deque this operation
1029 * can be done in constant time.
1031 void
1032 push_front(const value_type& __x)
1034 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1036 this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1037 --this->_M_impl._M_start._M_cur;
1039 else
1040 _M_push_front_aux(__x);
1044 * @brief Add data to the end of the %deque.
1045 * @param x Data to be added.
1047 * This is a typical stack operation. The function creates an
1048 * element at the end of the %deque and assigns the given data
1049 * to it. Due to the nature of a %deque this operation can be
1050 * done in constant time.
1052 void
1053 push_back(const value_type& __x)
1055 if (this->_M_impl._M_finish._M_cur
1056 != this->_M_impl._M_finish._M_last - 1)
1058 this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1059 ++this->_M_impl._M_finish._M_cur;
1061 else
1062 _M_push_back_aux(__x);
1066 * @brief Removes first element.
1068 * This is a typical stack operation. It shrinks the %deque by one.
1070 * Note that no data is returned, and if the first element's data is
1071 * needed, it should be retrieved before pop_front() is called.
1073 void
1074 pop_front()
1076 if (this->_M_impl._M_start._M_cur
1077 != this->_M_impl._M_start._M_last - 1)
1079 this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1080 ++this->_M_impl._M_start._M_cur;
1082 else
1083 _M_pop_front_aux();
1087 * @brief Removes last element.
1089 * This is a typical stack operation. It shrinks the %deque by one.
1091 * Note that no data is returned, and if the last element's data is
1092 * needed, it should be retrieved before pop_back() is called.
1094 void
1095 pop_back()
1097 if (this->_M_impl._M_finish._M_cur
1098 != this->_M_impl._M_finish._M_first)
1100 --this->_M_impl._M_finish._M_cur;
1101 this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1103 else
1104 _M_pop_back_aux();
1108 * @brief Inserts given value into %deque before specified iterator.
1109 * @param position An iterator into the %deque.
1110 * @param x Data to be inserted.
1111 * @return An iterator that points to the inserted data.
1113 * This function will insert a copy of the given value before the
1114 * specified location.
1116 iterator
1117 insert(iterator __position, const value_type& __x);
1120 * @brief Inserts a number of copies of given data into the %deque.
1121 * @param position An iterator into the %deque.
1122 * @param n Number of elements to be inserted.
1123 * @param x Data to be inserted.
1125 * This function will insert a specified number of copies of the given
1126 * data before the location specified by @a position.
1128 void
1129 insert(iterator __position, size_type __n, const value_type& __x)
1130 { _M_fill_insert(__position, __n, __x); }
1133 * @brief Inserts a range into the %deque.
1134 * @param position An iterator into the %deque.
1135 * @param first An input iterator.
1136 * @param last An input iterator.
1138 * This function will insert copies of the data in the range
1139 * [first,last) into the %deque before the location specified
1140 * by @a pos. This is known as "range insert."
1142 template<typename _InputIterator>
1143 void
1144 insert(iterator __position, _InputIterator __first,
1145 _InputIterator __last)
1147 // Check whether it's an integral type. If so, it's not an iterator.
1148 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1149 _M_insert_dispatch(__position, __first, __last, _Integral());
1153 * @brief Remove element at given position.
1154 * @param position Iterator pointing to element to be erased.
1155 * @return An iterator pointing to the next element (or end()).
1157 * This function will erase the element at the given position and thus
1158 * shorten the %deque by one.
1160 * The user is cautioned that
1161 * this function only erases the element, and that if the element is
1162 * itself a pointer, the pointed-to memory is not touched in any way.
1163 * Managing the pointer is the user's responsibilty.
1165 iterator
1166 erase(iterator __position);
1169 * @brief Remove a range of elements.
1170 * @param first Iterator pointing to the first element to be erased.
1171 * @param last Iterator pointing to one past the last element to be
1172 * erased.
1173 * @return An iterator pointing to the element pointed to by @a last
1174 * prior to erasing (or end()).
1176 * This function will erase the elements in the range [first,last) and
1177 * shorten the %deque accordingly.
1179 * The user is cautioned that
1180 * this function only erases the elements, and that if the elements
1181 * themselves are pointers, the pointed-to memory is not touched in any
1182 * way. Managing the pointer is the user's responsibilty.
1184 iterator
1185 erase(iterator __first, iterator __last);
1188 * @brief Swaps data with another %deque.
1189 * @param x A %deque of the same element and allocator types.
1191 * This exchanges the elements between two deques in constant time.
1192 * (Four pointers, so it should be quite fast.)
1193 * Note that the global std::swap() function is specialized such that
1194 * std::swap(d1,d2) will feed to this function.
1196 void
1197 swap(deque& __x)
1199 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1200 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1201 std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1202 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1204 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1205 // 431. Swapping containers with unequal allocators.
1206 std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1207 __x._M_get_Tp_allocator());
1211 * Erases all the elements. Note that this function only erases the
1212 * elements, and that if the elements themselves are pointers, the
1213 * pointed-to memory is not touched in any way. Managing the pointer is
1214 * the user's responsibilty.
1216 void
1217 clear()
1218 { _M_erase_at_end(begin()); }
1220 protected:
1221 // Internal constructor functions follow.
1223 // called by the range constructor to implement [23.1.1]/9
1225 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1226 // 438. Ambiguity in the "do the right thing" clause
1227 template<typename _Integer>
1228 void
1229 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1231 _M_initialize_map(static_cast<size_type>(__n));
1232 _M_fill_initialize(__x);
1235 // called by the range constructor to implement [23.1.1]/9
1236 template<typename _InputIterator>
1237 void
1238 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1239 __false_type)
1241 typedef typename std::iterator_traits<_InputIterator>::
1242 iterator_category _IterCategory;
1243 _M_range_initialize(__first, __last, _IterCategory());
1246 // called by the second initialize_dispatch above
1247 //@{
1249 * @if maint
1250 * @brief Fills the deque with whatever is in [first,last).
1251 * @param first An input iterator.
1252 * @param last An input iterator.
1253 * @return Nothing.
1255 * If the iterators are actually forward iterators (or better), then the
1256 * memory layout can be done all at once. Else we move forward using
1257 * push_back on each value from the iterator.
1258 * @endif
1260 template<typename _InputIterator>
1261 void
1262 _M_range_initialize(_InputIterator __first, _InputIterator __last,
1263 std::input_iterator_tag);
1265 // called by the second initialize_dispatch above
1266 template<typename _ForwardIterator>
1267 void
1268 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1269 std::forward_iterator_tag);
1270 //@}
1273 * @if maint
1274 * @brief Fills the %deque with copies of value.
1275 * @param value Initial value.
1276 * @return Nothing.
1277 * @pre _M_start and _M_finish have already been initialized,
1278 * but none of the %deque's elements have yet been constructed.
1280 * This function is called only when the user provides an explicit size
1281 * (with or without an explicit exemplar value).
1282 * @endif
1284 void
1285 _M_fill_initialize(const value_type& __value);
1287 // Internal assign functions follow. The *_aux functions do the actual
1288 // assignment work for the range versions.
1290 // called by the range assign to implement [23.1.1]/9
1292 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1293 // 438. Ambiguity in the "do the right thing" clause
1294 template<typename _Integer>
1295 void
1296 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1297 { _M_fill_assign(__n, __val); }
1299 // called by the range assign to implement [23.1.1]/9
1300 template<typename _InputIterator>
1301 void
1302 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1303 __false_type)
1305 typedef typename std::iterator_traits<_InputIterator>::
1306 iterator_category _IterCategory;
1307 _M_assign_aux(__first, __last, _IterCategory());
1310 // called by the second assign_dispatch above
1311 template<typename _InputIterator>
1312 void
1313 _M_assign_aux(_InputIterator __first, _InputIterator __last,
1314 std::input_iterator_tag);
1316 // called by the second assign_dispatch above
1317 template<typename _ForwardIterator>
1318 void
1319 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1320 std::forward_iterator_tag)
1322 const size_type __len = std::distance(__first, __last);
1323 if (__len > size())
1325 _ForwardIterator __mid = __first;
1326 std::advance(__mid, size());
1327 std::copy(__first, __mid, begin());
1328 insert(end(), __mid, __last);
1330 else
1331 _M_erase_at_end(std::copy(__first, __last, begin()));
1334 // Called by assign(n,t), and the range assign when it turns out
1335 // to be the same thing.
1336 void
1337 _M_fill_assign(size_type __n, const value_type& __val)
1339 if (__n > size())
1341 std::fill(begin(), end(), __val);
1342 insert(end(), __n - size(), __val);
1344 else
1346 _M_erase_at_end(begin() + difference_type(__n));
1347 std::fill(begin(), end(), __val);
1351 //@{
1353 * @if maint
1354 * @brief Helper functions for push_* and pop_*.
1355 * @endif
1357 void _M_push_back_aux(const value_type&);
1359 void _M_push_front_aux(const value_type&);
1361 void _M_pop_back_aux();
1363 void _M_pop_front_aux();
1364 //@}
1366 // Internal insert functions follow. The *_aux functions do the actual
1367 // insertion work when all shortcuts fail.
1369 // called by the range insert to implement [23.1.1]/9
1371 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1372 // 438. Ambiguity in the "do the right thing" clause
1373 template<typename _Integer>
1374 void
1375 _M_insert_dispatch(iterator __pos,
1376 _Integer __n, _Integer __x, __true_type)
1377 { _M_fill_insert(__pos, __n, __x); }
1379 // called by the range insert to implement [23.1.1]/9
1380 template<typename _InputIterator>
1381 void
1382 _M_insert_dispatch(iterator __pos,
1383 _InputIterator __first, _InputIterator __last,
1384 __false_type)
1386 typedef typename std::iterator_traits<_InputIterator>::
1387 iterator_category _IterCategory;
1388 _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1391 // called by the second insert_dispatch above
1392 template<typename _InputIterator>
1393 void
1394 _M_range_insert_aux(iterator __pos, _InputIterator __first,
1395 _InputIterator __last, std::input_iterator_tag);
1397 // called by the second insert_dispatch above
1398 template<typename _ForwardIterator>
1399 void
1400 _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1401 _ForwardIterator __last, std::forward_iterator_tag);
1403 // Called by insert(p,n,x), and the range insert when it turns out to be
1404 // the same thing. Can use fill functions in optimal situations,
1405 // otherwise passes off to insert_aux(p,n,x).
1406 void
1407 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1409 // called by insert(p,x)
1410 iterator
1411 _M_insert_aux(iterator __pos, const value_type& __x);
1413 // called by insert(p,n,x) via fill_insert
1414 void
1415 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1417 // called by range_insert_aux for forward iterators
1418 template<typename _ForwardIterator>
1419 void
1420 _M_insert_aux(iterator __pos,
1421 _ForwardIterator __first, _ForwardIterator __last,
1422 size_type __n);
1425 // Internal erase functions follow.
1427 void
1428 _M_destroy_data_aux(iterator __first, iterator __last);
1430 // Called by ~deque().
1431 // NB: Doesn't deallocate the nodes.
1432 template<typename _Alloc1>
1433 void
1434 _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
1435 { _M_destroy_data_aux(__first, __last); }
1437 void
1438 _M_destroy_data(iterator __first, iterator __last,
1439 const std::allocator<_Tp>&)
1441 if (!__has_trivial_destructor(value_type))
1442 _M_destroy_data_aux(__first, __last);
1445 // Called by erase(q1, q2).
1446 void
1447 _M_erase_at_begin(iterator __pos)
1449 _M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
1450 _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
1451 this->_M_impl._M_start = __pos;
1454 // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
1455 // _M_fill_assign, operator=.
1456 void
1457 _M_erase_at_end(iterator __pos)
1459 _M_destroy_data(__pos, end(), _M_get_Tp_allocator());
1460 _M_destroy_nodes(__pos._M_node + 1,
1461 this->_M_impl._M_finish._M_node + 1);
1462 this->_M_impl._M_finish = __pos;
1465 //@{
1467 * @if maint
1468 * @brief Memory-handling helpers for the previous internal insert
1469 * functions.
1470 * @endif
1472 iterator
1473 _M_reserve_elements_at_front(size_type __n)
1475 const size_type __vacancies = this->_M_impl._M_start._M_cur
1476 - this->_M_impl._M_start._M_first;
1477 if (__n > __vacancies)
1478 _M_new_elements_at_front(__n - __vacancies);
1479 return this->_M_impl._M_start - difference_type(__n);
1482 iterator
1483 _M_reserve_elements_at_back(size_type __n)
1485 const size_type __vacancies = (this->_M_impl._M_finish._M_last
1486 - this->_M_impl._M_finish._M_cur) - 1;
1487 if (__n > __vacancies)
1488 _M_new_elements_at_back(__n - __vacancies);
1489 return this->_M_impl._M_finish + difference_type(__n);
1492 void
1493 _M_new_elements_at_front(size_type __new_elements);
1495 void
1496 _M_new_elements_at_back(size_type __new_elements);
1497 //@}
1500 //@{
1502 * @if maint
1503 * @brief Memory-handling helpers for the major %map.
1505 * Makes sure the _M_map has space for new nodes. Does not
1506 * actually add the nodes. Can invalidate _M_map pointers.
1507 * (And consequently, %deque iterators.)
1508 * @endif
1510 void
1511 _M_reserve_map_at_back(size_type __nodes_to_add = 1)
1513 if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1514 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1515 _M_reallocate_map(__nodes_to_add, false);
1518 void
1519 _M_reserve_map_at_front(size_type __nodes_to_add = 1)
1521 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1522 - this->_M_impl._M_map))
1523 _M_reallocate_map(__nodes_to_add, true);
1526 void
1527 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1528 //@}
1533 * @brief Deque equality comparison.
1534 * @param x A %deque.
1535 * @param y A %deque of the same type as @a x.
1536 * @return True iff the size and elements of the deques are equal.
1538 * This is an equivalence relation. It is linear in the size of the
1539 * deques. Deques are considered equivalent if their sizes are equal,
1540 * and if corresponding elements compare equal.
1542 template<typename _Tp, typename _Alloc>
1543 inline bool
1544 operator==(const deque<_Tp, _Alloc>& __x,
1545 const deque<_Tp, _Alloc>& __y)
1546 { return __x.size() == __y.size()
1547 && std::equal(__x.begin(), __x.end(), __y.begin()); }
1550 * @brief Deque ordering relation.
1551 * @param x A %deque.
1552 * @param y A %deque of the same type as @a x.
1553 * @return True iff @a x is lexicographically less than @a y.
1555 * This is a total ordering relation. It is linear in the size of the
1556 * deques. The elements must be comparable with @c <.
1558 * See std::lexicographical_compare() for how the determination is made.
1560 template<typename _Tp, typename _Alloc>
1561 inline bool
1562 operator<(const deque<_Tp, _Alloc>& __x,
1563 const deque<_Tp, _Alloc>& __y)
1564 { return std::lexicographical_compare(__x.begin(), __x.end(),
1565 __y.begin(), __y.end()); }
1567 /// Based on operator==
1568 template<typename _Tp, typename _Alloc>
1569 inline bool
1570 operator!=(const deque<_Tp, _Alloc>& __x,
1571 const deque<_Tp, _Alloc>& __y)
1572 { return !(__x == __y); }
1574 /// Based on operator<
1575 template<typename _Tp, typename _Alloc>
1576 inline bool
1577 operator>(const deque<_Tp, _Alloc>& __x,
1578 const deque<_Tp, _Alloc>& __y)
1579 { return __y < __x; }
1581 /// Based on operator<
1582 template<typename _Tp, typename _Alloc>
1583 inline bool
1584 operator<=(const deque<_Tp, _Alloc>& __x,
1585 const deque<_Tp, _Alloc>& __y)
1586 { return !(__y < __x); }
1588 /// Based on operator<
1589 template<typename _Tp, typename _Alloc>
1590 inline bool
1591 operator>=(const deque<_Tp, _Alloc>& __x,
1592 const deque<_Tp, _Alloc>& __y)
1593 { return !(__x < __y); }
1595 /// See std::deque::swap().
1596 template<typename _Tp, typename _Alloc>
1597 inline void
1598 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
1599 { __x.swap(__y); }
1601 _GLIBCXX_END_NESTED_NAMESPACE
1603 #endif /* _STL_DEQUE_H */