Merged with mainline at revision 128810.
[official-gcc.git] / libgfortran / generated / product_c16.c
blobe95dbac079a6d0a1b74041de5a70914c619d7fd3
1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
36 #if defined (HAVE_GFC_COMPLEX_16) && defined (HAVE_GFC_COMPLEX_16)
39 extern void product_c16 (gfc_array_c16 * const restrict,
40 gfc_array_c16 * const restrict, const index_type * const restrict);
41 export_proto(product_c16);
43 void
44 product_c16 (gfc_array_c16 * const restrict retarray,
45 gfc_array_c16 * const restrict array,
46 const index_type * const restrict pdim)
48 index_type count[GFC_MAX_DIMENSIONS];
49 index_type extent[GFC_MAX_DIMENSIONS];
50 index_type sstride[GFC_MAX_DIMENSIONS];
51 index_type dstride[GFC_MAX_DIMENSIONS];
52 const GFC_COMPLEX_16 * restrict base;
53 GFC_COMPLEX_16 * restrict dest;
54 index_type rank;
55 index_type n;
56 index_type len;
57 index_type delta;
58 index_type dim;
60 /* Make dim zero based to avoid confusion. */
61 dim = (*pdim) - 1;
62 rank = GFC_DESCRIPTOR_RANK (array) - 1;
64 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
65 delta = array->dim[dim].stride;
67 for (n = 0; n < dim; n++)
69 sstride[n] = array->dim[n].stride;
70 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
72 if (extent[n] < 0)
73 extent[n] = 0;
75 for (n = dim; n < rank; n++)
77 sstride[n] = array->dim[n + 1].stride;
78 extent[n] =
79 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
81 if (extent[n] < 0)
82 extent[n] = 0;
85 if (retarray->data == NULL)
87 size_t alloc_size;
89 for (n = 0; n < rank; n++)
91 retarray->dim[n].lbound = 0;
92 retarray->dim[n].ubound = extent[n]-1;
93 if (n == 0)
94 retarray->dim[n].stride = 1;
95 else
96 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
99 retarray->offset = 0;
100 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
102 alloc_size = sizeof (GFC_COMPLEX_16) * retarray->dim[rank-1].stride
103 * extent[rank-1];
105 if (alloc_size == 0)
107 /* Make sure we have a zero-sized array. */
108 retarray->dim[0].lbound = 0;
109 retarray->dim[0].ubound = -1;
110 return;
112 else
113 retarray->data = internal_malloc_size (alloc_size);
115 else
117 if (rank != GFC_DESCRIPTOR_RANK (retarray))
118 runtime_error ("rank of return array incorrect");
121 for (n = 0; n < rank; n++)
123 count[n] = 0;
124 dstride[n] = retarray->dim[n].stride;
125 if (extent[n] <= 0)
126 len = 0;
129 base = array->data;
130 dest = retarray->data;
132 while (base)
134 const GFC_COMPLEX_16 * restrict src;
135 GFC_COMPLEX_16 result;
136 src = base;
139 result = 1;
140 if (len <= 0)
141 *dest = 1;
142 else
144 for (n = 0; n < len; n++, src += delta)
147 result *= *src;
149 *dest = result;
152 /* Advance to the next element. */
153 count[0]++;
154 base += sstride[0];
155 dest += dstride[0];
156 n = 0;
157 while (count[n] == extent[n])
159 /* When we get to the end of a dimension, reset it and increment
160 the next dimension. */
161 count[n] = 0;
162 /* We could precalculate these products, but this is a less
163 frequently used path so probably not worth it. */
164 base -= sstride[n] * extent[n];
165 dest -= dstride[n] * extent[n];
166 n++;
167 if (n == rank)
169 /* Break out of the look. */
170 base = NULL;
171 break;
173 else
175 count[n]++;
176 base += sstride[n];
177 dest += dstride[n];
184 extern void mproduct_c16 (gfc_array_c16 * const restrict,
185 gfc_array_c16 * const restrict, const index_type * const restrict,
186 gfc_array_l1 * const restrict);
187 export_proto(mproduct_c16);
189 void
190 mproduct_c16 (gfc_array_c16 * const restrict retarray,
191 gfc_array_c16 * const restrict array,
192 const index_type * const restrict pdim,
193 gfc_array_l1 * const restrict mask)
195 index_type count[GFC_MAX_DIMENSIONS];
196 index_type extent[GFC_MAX_DIMENSIONS];
197 index_type sstride[GFC_MAX_DIMENSIONS];
198 index_type dstride[GFC_MAX_DIMENSIONS];
199 index_type mstride[GFC_MAX_DIMENSIONS];
200 GFC_COMPLEX_16 * restrict dest;
201 const GFC_COMPLEX_16 * restrict base;
202 const GFC_LOGICAL_1 * restrict mbase;
203 int rank;
204 int dim;
205 index_type n;
206 index_type len;
207 index_type delta;
208 index_type mdelta;
209 int mask_kind;
211 dim = (*pdim) - 1;
212 rank = GFC_DESCRIPTOR_RANK (array) - 1;
214 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
215 if (len <= 0)
216 return;
218 mbase = mask->data;
220 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
222 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
223 #ifdef HAVE_GFC_LOGICAL_16
224 || mask_kind == 16
225 #endif
227 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
228 else
229 runtime_error ("Funny sized logical array");
231 delta = array->dim[dim].stride;
232 mdelta = mask->dim[dim].stride * mask_kind;
234 for (n = 0; n < dim; n++)
236 sstride[n] = array->dim[n].stride;
237 mstride[n] = mask->dim[n].stride * mask_kind;
238 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
240 if (extent[n] < 0)
241 extent[n] = 0;
244 for (n = dim; n < rank; n++)
246 sstride[n] = array->dim[n + 1].stride;
247 mstride[n] = mask->dim[n + 1].stride * mask_kind;
248 extent[n] =
249 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
251 if (extent[n] < 0)
252 extent[n] = 0;
255 if (retarray->data == NULL)
257 size_t alloc_size;
259 for (n = 0; n < rank; n++)
261 retarray->dim[n].lbound = 0;
262 retarray->dim[n].ubound = extent[n]-1;
263 if (n == 0)
264 retarray->dim[n].stride = 1;
265 else
266 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
269 alloc_size = sizeof (GFC_COMPLEX_16) * retarray->dim[rank-1].stride
270 * extent[rank-1];
272 retarray->offset = 0;
273 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
275 if (alloc_size == 0)
277 /* Make sure we have a zero-sized array. */
278 retarray->dim[0].lbound = 0;
279 retarray->dim[0].ubound = -1;
280 return;
282 else
283 retarray->data = internal_malloc_size (alloc_size);
286 else
288 if (rank != GFC_DESCRIPTOR_RANK (retarray))
289 runtime_error ("rank of return array incorrect");
292 for (n = 0; n < rank; n++)
294 count[n] = 0;
295 dstride[n] = retarray->dim[n].stride;
296 if (extent[n] <= 0)
297 return;
300 dest = retarray->data;
301 base = array->data;
303 while (base)
305 const GFC_COMPLEX_16 * restrict src;
306 const GFC_LOGICAL_1 * restrict msrc;
307 GFC_COMPLEX_16 result;
308 src = base;
309 msrc = mbase;
312 result = 1;
313 if (len <= 0)
314 *dest = 1;
315 else
317 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
320 if (*msrc)
321 result *= *src;
323 *dest = result;
326 /* Advance to the next element. */
327 count[0]++;
328 base += sstride[0];
329 mbase += mstride[0];
330 dest += dstride[0];
331 n = 0;
332 while (count[n] == extent[n])
334 /* When we get to the end of a dimension, reset it and increment
335 the next dimension. */
336 count[n] = 0;
337 /* We could precalculate these products, but this is a less
338 frequently used path so probably not worth it. */
339 base -= sstride[n] * extent[n];
340 mbase -= mstride[n] * extent[n];
341 dest -= dstride[n] * extent[n];
342 n++;
343 if (n == rank)
345 /* Break out of the look. */
346 base = NULL;
347 break;
349 else
351 count[n]++;
352 base += sstride[n];
353 mbase += mstride[n];
354 dest += dstride[n];
361 extern void sproduct_c16 (gfc_array_c16 * const restrict,
362 gfc_array_c16 * const restrict, const index_type * const restrict,
363 GFC_LOGICAL_4 *);
364 export_proto(sproduct_c16);
366 void
367 sproduct_c16 (gfc_array_c16 * const restrict retarray,
368 gfc_array_c16 * const restrict array,
369 const index_type * const restrict pdim,
370 GFC_LOGICAL_4 * mask)
372 index_type rank;
373 index_type n;
374 index_type dstride;
375 GFC_COMPLEX_16 *dest;
377 if (*mask)
379 product_c16 (retarray, array, pdim);
380 return;
382 rank = GFC_DESCRIPTOR_RANK (array);
383 if (rank <= 0)
384 runtime_error ("Rank of array needs to be > 0");
386 if (retarray->data == NULL)
388 retarray->dim[0].lbound = 0;
389 retarray->dim[0].ubound = rank-1;
390 retarray->dim[0].stride = 1;
391 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
392 retarray->offset = 0;
393 retarray->data = internal_malloc_size (sizeof (GFC_COMPLEX_16) * rank);
395 else
397 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
398 runtime_error ("rank of return array does not equal 1");
400 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
401 runtime_error ("dimension of return array incorrect");
404 dstride = retarray->dim[0].stride;
405 dest = retarray->data;
407 for (n = 0; n < rank; n++)
408 dest[n * dstride] = 1 ;
411 #endif