1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "libgfortran.h"
36 #if defined (HAVE_GFC_COMPLEX_16) && defined (HAVE_GFC_COMPLEX_16)
39 extern void product_c16 (gfc_array_c16
* const restrict
,
40 gfc_array_c16
* const restrict
, const index_type
* const restrict
);
41 export_proto(product_c16
);
44 product_c16 (gfc_array_c16
* const restrict retarray
,
45 gfc_array_c16
* const restrict array
,
46 const index_type
* const restrict pdim
)
48 index_type count
[GFC_MAX_DIMENSIONS
];
49 index_type extent
[GFC_MAX_DIMENSIONS
];
50 index_type sstride
[GFC_MAX_DIMENSIONS
];
51 index_type dstride
[GFC_MAX_DIMENSIONS
];
52 const GFC_COMPLEX_16
* restrict base
;
53 GFC_COMPLEX_16
* restrict dest
;
60 /* Make dim zero based to avoid confusion. */
62 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
64 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
65 delta
= array
->dim
[dim
].stride
;
67 for (n
= 0; n
< dim
; n
++)
69 sstride
[n
] = array
->dim
[n
].stride
;
70 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
75 for (n
= dim
; n
< rank
; n
++)
77 sstride
[n
] = array
->dim
[n
+ 1].stride
;
79 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
85 if (retarray
->data
== NULL
)
89 for (n
= 0; n
< rank
; n
++)
91 retarray
->dim
[n
].lbound
= 0;
92 retarray
->dim
[n
].ubound
= extent
[n
]-1;
94 retarray
->dim
[n
].stride
= 1;
96 retarray
->dim
[n
].stride
= retarray
->dim
[n
-1].stride
* extent
[n
-1];
100 retarray
->dtype
= (array
->dtype
& ~GFC_DTYPE_RANK_MASK
) | rank
;
102 alloc_size
= sizeof (GFC_COMPLEX_16
) * retarray
->dim
[rank
-1].stride
107 /* Make sure we have a zero-sized array. */
108 retarray
->dim
[0].lbound
= 0;
109 retarray
->dim
[0].ubound
= -1;
113 retarray
->data
= internal_malloc_size (alloc_size
);
117 if (rank
!= GFC_DESCRIPTOR_RANK (retarray
))
118 runtime_error ("rank of return array incorrect");
121 for (n
= 0; n
< rank
; n
++)
124 dstride
[n
] = retarray
->dim
[n
].stride
;
130 dest
= retarray
->data
;
134 const GFC_COMPLEX_16
* restrict src
;
135 GFC_COMPLEX_16 result
;
144 for (n
= 0; n
< len
; n
++, src
+= delta
)
152 /* Advance to the next element. */
157 while (count
[n
] == extent
[n
])
159 /* When we get to the end of a dimension, reset it and increment
160 the next dimension. */
162 /* We could precalculate these products, but this is a less
163 frequently used path so probably not worth it. */
164 base
-= sstride
[n
] * extent
[n
];
165 dest
-= dstride
[n
] * extent
[n
];
169 /* Break out of the look. */
184 extern void mproduct_c16 (gfc_array_c16
* const restrict
,
185 gfc_array_c16
* const restrict
, const index_type
* const restrict
,
186 gfc_array_l1
* const restrict
);
187 export_proto(mproduct_c16
);
190 mproduct_c16 (gfc_array_c16
* const restrict retarray
,
191 gfc_array_c16
* const restrict array
,
192 const index_type
* const restrict pdim
,
193 gfc_array_l1
* const restrict mask
)
195 index_type count
[GFC_MAX_DIMENSIONS
];
196 index_type extent
[GFC_MAX_DIMENSIONS
];
197 index_type sstride
[GFC_MAX_DIMENSIONS
];
198 index_type dstride
[GFC_MAX_DIMENSIONS
];
199 index_type mstride
[GFC_MAX_DIMENSIONS
];
200 GFC_COMPLEX_16
* restrict dest
;
201 const GFC_COMPLEX_16
* restrict base
;
202 const GFC_LOGICAL_1
* restrict mbase
;
212 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
214 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
220 mask_kind
= GFC_DESCRIPTOR_SIZE (mask
);
222 if (mask_kind
== 1 || mask_kind
== 2 || mask_kind
== 4 || mask_kind
== 8
223 #ifdef HAVE_GFC_LOGICAL_16
227 mbase
= GFOR_POINTER_TO_L1 (mbase
, mask_kind
);
229 runtime_error ("Funny sized logical array");
231 delta
= array
->dim
[dim
].stride
;
232 mdelta
= mask
->dim
[dim
].stride
* mask_kind
;
234 for (n
= 0; n
< dim
; n
++)
236 sstride
[n
] = array
->dim
[n
].stride
;
237 mstride
[n
] = mask
->dim
[n
].stride
* mask_kind
;
238 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
244 for (n
= dim
; n
< rank
; n
++)
246 sstride
[n
] = array
->dim
[n
+ 1].stride
;
247 mstride
[n
] = mask
->dim
[n
+ 1].stride
* mask_kind
;
249 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
255 if (retarray
->data
== NULL
)
259 for (n
= 0; n
< rank
; n
++)
261 retarray
->dim
[n
].lbound
= 0;
262 retarray
->dim
[n
].ubound
= extent
[n
]-1;
264 retarray
->dim
[n
].stride
= 1;
266 retarray
->dim
[n
].stride
= retarray
->dim
[n
-1].stride
* extent
[n
-1];
269 alloc_size
= sizeof (GFC_COMPLEX_16
) * retarray
->dim
[rank
-1].stride
272 retarray
->offset
= 0;
273 retarray
->dtype
= (array
->dtype
& ~GFC_DTYPE_RANK_MASK
) | rank
;
277 /* Make sure we have a zero-sized array. */
278 retarray
->dim
[0].lbound
= 0;
279 retarray
->dim
[0].ubound
= -1;
283 retarray
->data
= internal_malloc_size (alloc_size
);
288 if (rank
!= GFC_DESCRIPTOR_RANK (retarray
))
289 runtime_error ("rank of return array incorrect");
292 for (n
= 0; n
< rank
; n
++)
295 dstride
[n
] = retarray
->dim
[n
].stride
;
300 dest
= retarray
->data
;
305 const GFC_COMPLEX_16
* restrict src
;
306 const GFC_LOGICAL_1
* restrict msrc
;
307 GFC_COMPLEX_16 result
;
317 for (n
= 0; n
< len
; n
++, src
+= delta
, msrc
+= mdelta
)
326 /* Advance to the next element. */
332 while (count
[n
] == extent
[n
])
334 /* When we get to the end of a dimension, reset it and increment
335 the next dimension. */
337 /* We could precalculate these products, but this is a less
338 frequently used path so probably not worth it. */
339 base
-= sstride
[n
] * extent
[n
];
340 mbase
-= mstride
[n
] * extent
[n
];
341 dest
-= dstride
[n
] * extent
[n
];
345 /* Break out of the look. */
361 extern void sproduct_c16 (gfc_array_c16
* const restrict
,
362 gfc_array_c16
* const restrict
, const index_type
* const restrict
,
364 export_proto(sproduct_c16
);
367 sproduct_c16 (gfc_array_c16
* const restrict retarray
,
368 gfc_array_c16
* const restrict array
,
369 const index_type
* const restrict pdim
,
370 GFC_LOGICAL_4
* mask
)
375 GFC_COMPLEX_16
*dest
;
379 product_c16 (retarray
, array
, pdim
);
382 rank
= GFC_DESCRIPTOR_RANK (array
);
384 runtime_error ("Rank of array needs to be > 0");
386 if (retarray
->data
== NULL
)
388 retarray
->dim
[0].lbound
= 0;
389 retarray
->dim
[0].ubound
= rank
-1;
390 retarray
->dim
[0].stride
= 1;
391 retarray
->dtype
= (retarray
->dtype
& ~GFC_DTYPE_RANK_MASK
) | 1;
392 retarray
->offset
= 0;
393 retarray
->data
= internal_malloc_size (sizeof (GFC_COMPLEX_16
) * rank
);
397 if (GFC_DESCRIPTOR_RANK (retarray
) != 1)
398 runtime_error ("rank of return array does not equal 1");
400 if (retarray
->dim
[0].ubound
+ 1 - retarray
->dim
[0].lbound
!= rank
)
401 runtime_error ("dimension of return array incorrect");
404 dstride
= retarray
->dim
[0].stride
;
405 dest
= retarray
->data
;
407 for (n
= 0; n
< rank
; n
++)
408 dest
[n
* dstride
] = 1 ;