Merged with mainline at revision 128810.
[official-gcc.git] / gcc / fold-const.c
blob12413d833d00cd0f3ecf996345011cfd547de2eb
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type_double.
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type_double takes a constant, an overflowable flag and a
43 prior overflow indicator. It forces the value to fit the type and
44 sets TREE_OVERFLOW.
46 Note: Since the folders get called on non-gimple code as well as
47 gimple code, we need to handle GIMPLE tuples as well as their
48 corresponding tree equivalents. */
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "flags.h"
55 #include "tree.h"
56 #include "real.h"
57 #include "fixed-value.h"
58 #include "rtl.h"
59 #include "expr.h"
60 #include "tm_p.h"
61 #include "toplev.h"
62 #include "intl.h"
63 #include "ggc.h"
64 #include "hashtab.h"
65 #include "langhooks.h"
66 #include "md5.h"
68 /* Nonzero if we are folding constants inside an initializer; zero
69 otherwise. */
70 int folding_initializer = 0;
72 /* The following constants represent a bit based encoding of GCC's
73 comparison operators. This encoding simplifies transformations
74 on relational comparison operators, such as AND and OR. */
75 enum comparison_code {
76 COMPCODE_FALSE = 0,
77 COMPCODE_LT = 1,
78 COMPCODE_EQ = 2,
79 COMPCODE_LE = 3,
80 COMPCODE_GT = 4,
81 COMPCODE_LTGT = 5,
82 COMPCODE_GE = 6,
83 COMPCODE_ORD = 7,
84 COMPCODE_UNORD = 8,
85 COMPCODE_UNLT = 9,
86 COMPCODE_UNEQ = 10,
87 COMPCODE_UNLE = 11,
88 COMPCODE_UNGT = 12,
89 COMPCODE_NE = 13,
90 COMPCODE_UNGE = 14,
91 COMPCODE_TRUE = 15
94 static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
95 static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
96 static bool negate_mathfn_p (enum built_in_function);
97 static bool negate_expr_p (tree);
98 static tree negate_expr (tree);
99 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
100 static tree associate_trees (tree, tree, enum tree_code, tree);
101 static tree const_binop (enum tree_code, tree, tree, int);
102 static enum comparison_code comparison_to_compcode (enum tree_code);
103 static enum tree_code compcode_to_comparison (enum comparison_code);
104 static tree combine_comparisons (enum tree_code, enum tree_code,
105 enum tree_code, tree, tree, tree);
106 static int truth_value_p (enum tree_code);
107 static int operand_equal_for_comparison_p (tree, tree, tree);
108 static int twoval_comparison_p (tree, tree *, tree *, int *);
109 static tree eval_subst (tree, tree, tree, tree, tree);
110 static tree pedantic_omit_one_operand (tree, tree, tree);
111 static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
112 static tree make_bit_field_ref (tree, tree, int, int, int);
113 static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
114 static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
115 enum machine_mode *, int *, int *,
116 tree *, tree *);
117 static int all_ones_mask_p (const_tree, int);
118 static tree sign_bit_p (tree, const_tree);
119 static int simple_operand_p (const_tree);
120 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
121 static tree range_predecessor (tree);
122 static tree range_successor (tree);
123 static tree make_range (tree, int *, tree *, tree *, bool *);
124 static tree build_range_check (tree, tree, int, tree, tree);
125 static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
126 tree);
127 static tree fold_range_test (enum tree_code, tree, tree, tree);
128 static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
129 static tree unextend (tree, int, int, tree);
130 static tree fold_truthop (enum tree_code, tree, tree, tree);
131 static tree optimize_minmax_comparison (enum tree_code, tree, tree, tree);
132 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
133 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
134 static tree fold_binary_op_with_conditional_arg (enum tree_code, tree,
135 tree, tree,
136 tree, tree, int);
137 static bool fold_real_zero_addition_p (const_tree, const_tree, int);
138 static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
139 tree, tree, tree);
140 static tree fold_inf_compare (enum tree_code, tree, tree, tree);
141 static tree fold_div_compare (enum tree_code, tree, tree, tree);
142 static bool reorder_operands_p (const_tree, const_tree);
143 static tree fold_negate_const (tree, tree);
144 static tree fold_not_const (tree, tree);
145 static tree fold_relational_const (enum tree_code, tree, tree, tree);
148 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
149 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
150 and SUM1. Then this yields nonzero if overflow occurred during the
151 addition.
153 Overflow occurs if A and B have the same sign, but A and SUM differ in
154 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
155 sign. */
156 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
158 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
159 We do that by representing the two-word integer in 4 words, with only
160 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
161 number. The value of the word is LOWPART + HIGHPART * BASE. */
163 #define LOWPART(x) \
164 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
165 #define HIGHPART(x) \
166 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
167 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
169 /* Unpack a two-word integer into 4 words.
170 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
171 WORDS points to the array of HOST_WIDE_INTs. */
173 static void
174 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
176 words[0] = LOWPART (low);
177 words[1] = HIGHPART (low);
178 words[2] = LOWPART (hi);
179 words[3] = HIGHPART (hi);
182 /* Pack an array of 4 words into a two-word integer.
183 WORDS points to the array of words.
184 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
186 static void
187 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
188 HOST_WIDE_INT *hi)
190 *low = words[0] + words[1] * BASE;
191 *hi = words[2] + words[3] * BASE;
194 /* Force the double-word integer L1, H1 to be within the range of the
195 integer type TYPE. Stores the properly truncated and sign-extended
196 double-word integer in *LV, *HV. Returns true if the operation
197 overflows, that is, argument and result are different. */
200 fit_double_type (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
201 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, const_tree type)
203 unsigned HOST_WIDE_INT low0 = l1;
204 HOST_WIDE_INT high0 = h1;
205 unsigned int prec;
206 int sign_extended_type;
208 if (POINTER_TYPE_P (type)
209 || TREE_CODE (type) == OFFSET_TYPE)
210 prec = POINTER_SIZE;
211 else
212 prec = TYPE_PRECISION (type);
214 /* Size types *are* sign extended. */
215 sign_extended_type = (!TYPE_UNSIGNED (type)
216 || (TREE_CODE (type) == INTEGER_TYPE
217 && TYPE_IS_SIZETYPE (type)));
219 /* First clear all bits that are beyond the type's precision. */
220 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
222 else if (prec > HOST_BITS_PER_WIDE_INT)
223 h1 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
224 else
226 h1 = 0;
227 if (prec < HOST_BITS_PER_WIDE_INT)
228 l1 &= ~((HOST_WIDE_INT) (-1) << prec);
231 /* Then do sign extension if necessary. */
232 if (!sign_extended_type)
233 /* No sign extension */;
234 else if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
235 /* Correct width already. */;
236 else if (prec > HOST_BITS_PER_WIDE_INT)
238 /* Sign extend top half? */
239 if (h1 & ((unsigned HOST_WIDE_INT)1
240 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
241 h1 |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
243 else if (prec == HOST_BITS_PER_WIDE_INT)
245 if ((HOST_WIDE_INT)l1 < 0)
246 h1 = -1;
248 else
250 /* Sign extend bottom half? */
251 if (l1 & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
253 h1 = -1;
254 l1 |= (HOST_WIDE_INT)(-1) << prec;
258 *lv = l1;
259 *hv = h1;
261 /* If the value didn't fit, signal overflow. */
262 return l1 != low0 || h1 != high0;
265 /* We force the double-int HIGH:LOW to the range of the type TYPE by
266 sign or zero extending it.
267 OVERFLOWABLE indicates if we are interested
268 in overflow of the value, when >0 we are only interested in signed
269 overflow, for <0 we are interested in any overflow. OVERFLOWED
270 indicates whether overflow has already occurred. CONST_OVERFLOWED
271 indicates whether constant overflow has already occurred. We force
272 T's value to be within range of T's type (by setting to 0 or 1 all
273 the bits outside the type's range). We set TREE_OVERFLOWED if,
274 OVERFLOWED is nonzero,
275 or OVERFLOWABLE is >0 and signed overflow occurs
276 or OVERFLOWABLE is <0 and any overflow occurs
277 We return a new tree node for the extended double-int. The node
278 is shared if no overflow flags are set. */
280 tree
281 force_fit_type_double (tree type, unsigned HOST_WIDE_INT low,
282 HOST_WIDE_INT high, int overflowable,
283 bool overflowed)
285 int sign_extended_type;
286 bool overflow;
288 /* Size types *are* sign extended. */
289 sign_extended_type = (!TYPE_UNSIGNED (type)
290 || (TREE_CODE (type) == INTEGER_TYPE
291 && TYPE_IS_SIZETYPE (type)));
293 overflow = fit_double_type (low, high, &low, &high, type);
295 /* If we need to set overflow flags, return a new unshared node. */
296 if (overflowed || overflow)
298 if (overflowed
299 || overflowable < 0
300 || (overflowable > 0 && sign_extended_type))
302 tree t = make_node (INTEGER_CST);
303 TREE_INT_CST_LOW (t) = low;
304 TREE_INT_CST_HIGH (t) = high;
305 TREE_TYPE (t) = type;
306 TREE_OVERFLOW (t) = 1;
307 return t;
311 /* Else build a shared node. */
312 return build_int_cst_wide (type, low, high);
315 /* Add two doubleword integers with doubleword result.
316 Return nonzero if the operation overflows according to UNSIGNED_P.
317 Each argument is given as two `HOST_WIDE_INT' pieces.
318 One argument is L1 and H1; the other, L2 and H2.
319 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
322 add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
323 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
324 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
325 bool unsigned_p)
327 unsigned HOST_WIDE_INT l;
328 HOST_WIDE_INT h;
330 l = l1 + l2;
331 h = h1 + h2 + (l < l1);
333 *lv = l;
334 *hv = h;
336 if (unsigned_p)
337 return (unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1;
338 else
339 return OVERFLOW_SUM_SIGN (h1, h2, h);
342 /* Negate a doubleword integer with doubleword result.
343 Return nonzero if the operation overflows, assuming it's signed.
344 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
345 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
348 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
349 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
351 if (l1 == 0)
353 *lv = 0;
354 *hv = - h1;
355 return (*hv & h1) < 0;
357 else
359 *lv = -l1;
360 *hv = ~h1;
361 return 0;
365 /* Multiply two doubleword integers with doubleword result.
366 Return nonzero if the operation overflows according to UNSIGNED_P.
367 Each argument is given as two `HOST_WIDE_INT' pieces.
368 One argument is L1 and H1; the other, L2 and H2.
369 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
372 mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
373 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
374 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
375 bool unsigned_p)
377 HOST_WIDE_INT arg1[4];
378 HOST_WIDE_INT arg2[4];
379 HOST_WIDE_INT prod[4 * 2];
380 unsigned HOST_WIDE_INT carry;
381 int i, j, k;
382 unsigned HOST_WIDE_INT toplow, neglow;
383 HOST_WIDE_INT tophigh, neghigh;
385 encode (arg1, l1, h1);
386 encode (arg2, l2, h2);
388 memset (prod, 0, sizeof prod);
390 for (i = 0; i < 4; i++)
392 carry = 0;
393 for (j = 0; j < 4; j++)
395 k = i + j;
396 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
397 carry += arg1[i] * arg2[j];
398 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
399 carry += prod[k];
400 prod[k] = LOWPART (carry);
401 carry = HIGHPART (carry);
403 prod[i + 4] = carry;
406 decode (prod, lv, hv);
407 decode (prod + 4, &toplow, &tophigh);
409 /* Unsigned overflow is immediate. */
410 if (unsigned_p)
411 return (toplow | tophigh) != 0;
413 /* Check for signed overflow by calculating the signed representation of the
414 top half of the result; it should agree with the low half's sign bit. */
415 if (h1 < 0)
417 neg_double (l2, h2, &neglow, &neghigh);
418 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
420 if (h2 < 0)
422 neg_double (l1, h1, &neglow, &neghigh);
423 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
425 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
428 /* Shift the doubleword integer in L1, H1 left by COUNT places
429 keeping only PREC bits of result.
430 Shift right if COUNT is negative.
431 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
432 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
434 void
435 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
436 HOST_WIDE_INT count, unsigned int prec,
437 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
439 unsigned HOST_WIDE_INT signmask;
441 if (count < 0)
443 rshift_double (l1, h1, -count, prec, lv, hv, arith);
444 return;
447 if (SHIFT_COUNT_TRUNCATED)
448 count %= prec;
450 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
452 /* Shifting by the host word size is undefined according to the
453 ANSI standard, so we must handle this as a special case. */
454 *hv = 0;
455 *lv = 0;
457 else if (count >= HOST_BITS_PER_WIDE_INT)
459 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
460 *lv = 0;
462 else
464 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
465 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
466 *lv = l1 << count;
469 /* Sign extend all bits that are beyond the precision. */
471 signmask = -((prec > HOST_BITS_PER_WIDE_INT
472 ? ((unsigned HOST_WIDE_INT) *hv
473 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
474 : (*lv >> (prec - 1))) & 1);
476 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
478 else if (prec >= HOST_BITS_PER_WIDE_INT)
480 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
481 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
483 else
485 *hv = signmask;
486 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
487 *lv |= signmask << prec;
491 /* Shift the doubleword integer in L1, H1 right by COUNT places
492 keeping only PREC bits of result. COUNT must be positive.
493 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
494 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
496 void
497 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
498 HOST_WIDE_INT count, unsigned int prec,
499 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
500 int arith)
502 unsigned HOST_WIDE_INT signmask;
504 signmask = (arith
505 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
506 : 0);
508 if (SHIFT_COUNT_TRUNCATED)
509 count %= prec;
511 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
513 /* Shifting by the host word size is undefined according to the
514 ANSI standard, so we must handle this as a special case. */
515 *hv = 0;
516 *lv = 0;
518 else if (count >= HOST_BITS_PER_WIDE_INT)
520 *hv = 0;
521 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
523 else
525 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
526 *lv = ((l1 >> count)
527 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
530 /* Zero / sign extend all bits that are beyond the precision. */
532 if (count >= (HOST_WIDE_INT)prec)
534 *hv = signmask;
535 *lv = signmask;
537 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
539 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
541 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
542 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
544 else
546 *hv = signmask;
547 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
548 *lv |= signmask << (prec - count);
552 /* Rotate the doubleword integer in L1, H1 left by COUNT places
553 keeping only PREC bits of result.
554 Rotate right if COUNT is negative.
555 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
557 void
558 lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
559 HOST_WIDE_INT count, unsigned int prec,
560 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
562 unsigned HOST_WIDE_INT s1l, s2l;
563 HOST_WIDE_INT s1h, s2h;
565 count %= prec;
566 if (count < 0)
567 count += prec;
569 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
570 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
571 *lv = s1l | s2l;
572 *hv = s1h | s2h;
575 /* Rotate the doubleword integer in L1, H1 left by COUNT places
576 keeping only PREC bits of result. COUNT must be positive.
577 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
579 void
580 rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
581 HOST_WIDE_INT count, unsigned int prec,
582 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
584 unsigned HOST_WIDE_INT s1l, s2l;
585 HOST_WIDE_INT s1h, s2h;
587 count %= prec;
588 if (count < 0)
589 count += prec;
591 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
592 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
593 *lv = s1l | s2l;
594 *hv = s1h | s2h;
597 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
598 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
599 CODE is a tree code for a kind of division, one of
600 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
601 or EXACT_DIV_EXPR
602 It controls how the quotient is rounded to an integer.
603 Return nonzero if the operation overflows.
604 UNS nonzero says do unsigned division. */
607 div_and_round_double (enum tree_code code, int uns,
608 unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
609 HOST_WIDE_INT hnum_orig,
610 unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
611 HOST_WIDE_INT hden_orig,
612 unsigned HOST_WIDE_INT *lquo,
613 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
614 HOST_WIDE_INT *hrem)
616 int quo_neg = 0;
617 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
618 HOST_WIDE_INT den[4], quo[4];
619 int i, j;
620 unsigned HOST_WIDE_INT work;
621 unsigned HOST_WIDE_INT carry = 0;
622 unsigned HOST_WIDE_INT lnum = lnum_orig;
623 HOST_WIDE_INT hnum = hnum_orig;
624 unsigned HOST_WIDE_INT lden = lden_orig;
625 HOST_WIDE_INT hden = hden_orig;
626 int overflow = 0;
628 if (hden == 0 && lden == 0)
629 overflow = 1, lden = 1;
631 /* Calculate quotient sign and convert operands to unsigned. */
632 if (!uns)
634 if (hnum < 0)
636 quo_neg = ~ quo_neg;
637 /* (minimum integer) / (-1) is the only overflow case. */
638 if (neg_double (lnum, hnum, &lnum, &hnum)
639 && ((HOST_WIDE_INT) lden & hden) == -1)
640 overflow = 1;
642 if (hden < 0)
644 quo_neg = ~ quo_neg;
645 neg_double (lden, hden, &lden, &hden);
649 if (hnum == 0 && hden == 0)
650 { /* single precision */
651 *hquo = *hrem = 0;
652 /* This unsigned division rounds toward zero. */
653 *lquo = lnum / lden;
654 goto finish_up;
657 if (hnum == 0)
658 { /* trivial case: dividend < divisor */
659 /* hden != 0 already checked. */
660 *hquo = *lquo = 0;
661 *hrem = hnum;
662 *lrem = lnum;
663 goto finish_up;
666 memset (quo, 0, sizeof quo);
668 memset (num, 0, sizeof num); /* to zero 9th element */
669 memset (den, 0, sizeof den);
671 encode (num, lnum, hnum);
672 encode (den, lden, hden);
674 /* Special code for when the divisor < BASE. */
675 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
677 /* hnum != 0 already checked. */
678 for (i = 4 - 1; i >= 0; i--)
680 work = num[i] + carry * BASE;
681 quo[i] = work / lden;
682 carry = work % lden;
685 else
687 /* Full double precision division,
688 with thanks to Don Knuth's "Seminumerical Algorithms". */
689 int num_hi_sig, den_hi_sig;
690 unsigned HOST_WIDE_INT quo_est, scale;
692 /* Find the highest nonzero divisor digit. */
693 for (i = 4 - 1;; i--)
694 if (den[i] != 0)
696 den_hi_sig = i;
697 break;
700 /* Insure that the first digit of the divisor is at least BASE/2.
701 This is required by the quotient digit estimation algorithm. */
703 scale = BASE / (den[den_hi_sig] + 1);
704 if (scale > 1)
705 { /* scale divisor and dividend */
706 carry = 0;
707 for (i = 0; i <= 4 - 1; i++)
709 work = (num[i] * scale) + carry;
710 num[i] = LOWPART (work);
711 carry = HIGHPART (work);
714 num[4] = carry;
715 carry = 0;
716 for (i = 0; i <= 4 - 1; i++)
718 work = (den[i] * scale) + carry;
719 den[i] = LOWPART (work);
720 carry = HIGHPART (work);
721 if (den[i] != 0) den_hi_sig = i;
725 num_hi_sig = 4;
727 /* Main loop */
728 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
730 /* Guess the next quotient digit, quo_est, by dividing the first
731 two remaining dividend digits by the high order quotient digit.
732 quo_est is never low and is at most 2 high. */
733 unsigned HOST_WIDE_INT tmp;
735 num_hi_sig = i + den_hi_sig + 1;
736 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
737 if (num[num_hi_sig] != den[den_hi_sig])
738 quo_est = work / den[den_hi_sig];
739 else
740 quo_est = BASE - 1;
742 /* Refine quo_est so it's usually correct, and at most one high. */
743 tmp = work - quo_est * den[den_hi_sig];
744 if (tmp < BASE
745 && (den[den_hi_sig - 1] * quo_est
746 > (tmp * BASE + num[num_hi_sig - 2])))
747 quo_est--;
749 /* Try QUO_EST as the quotient digit, by multiplying the
750 divisor by QUO_EST and subtracting from the remaining dividend.
751 Keep in mind that QUO_EST is the I - 1st digit. */
753 carry = 0;
754 for (j = 0; j <= den_hi_sig; j++)
756 work = quo_est * den[j] + carry;
757 carry = HIGHPART (work);
758 work = num[i + j] - LOWPART (work);
759 num[i + j] = LOWPART (work);
760 carry += HIGHPART (work) != 0;
763 /* If quo_est was high by one, then num[i] went negative and
764 we need to correct things. */
765 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
767 quo_est--;
768 carry = 0; /* add divisor back in */
769 for (j = 0; j <= den_hi_sig; j++)
771 work = num[i + j] + den[j] + carry;
772 carry = HIGHPART (work);
773 num[i + j] = LOWPART (work);
776 num [num_hi_sig] += carry;
779 /* Store the quotient digit. */
780 quo[i] = quo_est;
784 decode (quo, lquo, hquo);
786 finish_up:
787 /* If result is negative, make it so. */
788 if (quo_neg)
789 neg_double (*lquo, *hquo, lquo, hquo);
791 /* Compute trial remainder: rem = num - (quo * den) */
792 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
793 neg_double (*lrem, *hrem, lrem, hrem);
794 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
796 switch (code)
798 case TRUNC_DIV_EXPR:
799 case TRUNC_MOD_EXPR: /* round toward zero */
800 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
801 return overflow;
803 case FLOOR_DIV_EXPR:
804 case FLOOR_MOD_EXPR: /* round toward negative infinity */
805 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
807 /* quo = quo - 1; */
808 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
809 lquo, hquo);
811 else
812 return overflow;
813 break;
815 case CEIL_DIV_EXPR:
816 case CEIL_MOD_EXPR: /* round toward positive infinity */
817 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
819 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
820 lquo, hquo);
822 else
823 return overflow;
824 break;
826 case ROUND_DIV_EXPR:
827 case ROUND_MOD_EXPR: /* round to closest integer */
829 unsigned HOST_WIDE_INT labs_rem = *lrem;
830 HOST_WIDE_INT habs_rem = *hrem;
831 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
832 HOST_WIDE_INT habs_den = hden, htwice;
834 /* Get absolute values. */
835 if (*hrem < 0)
836 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
837 if (hden < 0)
838 neg_double (lden, hden, &labs_den, &habs_den);
840 /* If (2 * abs (lrem) >= abs (lden)) */
841 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
842 labs_rem, habs_rem, &ltwice, &htwice);
844 if (((unsigned HOST_WIDE_INT) habs_den
845 < (unsigned HOST_WIDE_INT) htwice)
846 || (((unsigned HOST_WIDE_INT) habs_den
847 == (unsigned HOST_WIDE_INT) htwice)
848 && (labs_den < ltwice)))
850 if (*hquo < 0)
851 /* quo = quo - 1; */
852 add_double (*lquo, *hquo,
853 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
854 else
855 /* quo = quo + 1; */
856 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
857 lquo, hquo);
859 else
860 return overflow;
862 break;
864 default:
865 gcc_unreachable ();
868 /* Compute true remainder: rem = num - (quo * den) */
869 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
870 neg_double (*lrem, *hrem, lrem, hrem);
871 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
872 return overflow;
875 /* If ARG2 divides ARG1 with zero remainder, carries out the division
876 of type CODE and returns the quotient.
877 Otherwise returns NULL_TREE. */
879 static tree
880 div_if_zero_remainder (enum tree_code code, const_tree arg1, const_tree arg2)
882 unsigned HOST_WIDE_INT int1l, int2l;
883 HOST_WIDE_INT int1h, int2h;
884 unsigned HOST_WIDE_INT quol, reml;
885 HOST_WIDE_INT quoh, remh;
886 tree type = TREE_TYPE (arg1);
887 int uns = TYPE_UNSIGNED (type);
889 int1l = TREE_INT_CST_LOW (arg1);
890 int1h = TREE_INT_CST_HIGH (arg1);
891 /* &obj[0] + -128 really should be compiled as &obj[-8] rather than
892 &obj[some_exotic_number]. */
893 if (POINTER_TYPE_P (type))
895 uns = false;
896 type = signed_type_for (type);
897 fit_double_type (int1l, int1h, &int1l, &int1h,
898 type);
900 else
901 fit_double_type (int1l, int1h, &int1l, &int1h, type);
902 int2l = TREE_INT_CST_LOW (arg2);
903 int2h = TREE_INT_CST_HIGH (arg2);
905 div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
906 &quol, &quoh, &reml, &remh);
907 if (remh != 0 || reml != 0)
908 return NULL_TREE;
910 return build_int_cst_wide (type, quol, quoh);
913 /* This is nonzero if we should defer warnings about undefined
914 overflow. This facility exists because these warnings are a
915 special case. The code to estimate loop iterations does not want
916 to issue any warnings, since it works with expressions which do not
917 occur in user code. Various bits of cleanup code call fold(), but
918 only use the result if it has certain characteristics (e.g., is a
919 constant); that code only wants to issue a warning if the result is
920 used. */
922 static int fold_deferring_overflow_warnings;
924 /* If a warning about undefined overflow is deferred, this is the
925 warning. Note that this may cause us to turn two warnings into
926 one, but that is fine since it is sufficient to only give one
927 warning per expression. */
929 static const char* fold_deferred_overflow_warning;
931 /* If a warning about undefined overflow is deferred, this is the
932 level at which the warning should be emitted. */
934 static enum warn_strict_overflow_code fold_deferred_overflow_code;
936 /* Start deferring overflow warnings. We could use a stack here to
937 permit nested calls, but at present it is not necessary. */
939 void
940 fold_defer_overflow_warnings (void)
942 ++fold_deferring_overflow_warnings;
945 /* Stop deferring overflow warnings. If there is a pending warning,
946 and ISSUE is true, then issue the warning if appropriate. STMT is
947 the statement with which the warning should be associated (used for
948 location information); STMT may be NULL. CODE is the level of the
949 warning--a warn_strict_overflow_code value. This function will use
950 the smaller of CODE and the deferred code when deciding whether to
951 issue the warning. CODE may be zero to mean to always use the
952 deferred code. */
954 void
955 fold_undefer_overflow_warnings (bool issue, const_tree stmt, int code)
957 const char *warnmsg;
958 location_t locus;
960 gcc_assert (fold_deferring_overflow_warnings > 0);
961 --fold_deferring_overflow_warnings;
962 if (fold_deferring_overflow_warnings > 0)
964 if (fold_deferred_overflow_warning != NULL
965 && code != 0
966 && code < (int) fold_deferred_overflow_code)
967 fold_deferred_overflow_code = code;
968 return;
971 warnmsg = fold_deferred_overflow_warning;
972 fold_deferred_overflow_warning = NULL;
974 if (!issue || warnmsg == NULL)
975 return;
977 /* Use the smallest code level when deciding to issue the
978 warning. */
979 if (code == 0 || code > (int) fold_deferred_overflow_code)
980 code = fold_deferred_overflow_code;
982 if (!issue_strict_overflow_warning (code))
983 return;
985 if (stmt == NULL_TREE || !expr_has_location (stmt))
986 locus = input_location;
987 else
988 locus = expr_location (stmt);
989 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
992 /* Stop deferring overflow warnings, ignoring any deferred
993 warnings. */
995 void
996 fold_undefer_and_ignore_overflow_warnings (void)
998 fold_undefer_overflow_warnings (false, NULL_TREE, 0);
1001 /* Whether we are deferring overflow warnings. */
1003 bool
1004 fold_deferring_overflow_warnings_p (void)
1006 return fold_deferring_overflow_warnings > 0;
1009 /* This is called when we fold something based on the fact that signed
1010 overflow is undefined. */
1012 static void
1013 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
1015 gcc_assert (!flag_wrapv && !flag_trapv);
1016 if (fold_deferring_overflow_warnings > 0)
1018 if (fold_deferred_overflow_warning == NULL
1019 || wc < fold_deferred_overflow_code)
1021 fold_deferred_overflow_warning = gmsgid;
1022 fold_deferred_overflow_code = wc;
1025 else if (issue_strict_overflow_warning (wc))
1026 warning (OPT_Wstrict_overflow, gmsgid);
1029 /* Return true if the built-in mathematical function specified by CODE
1030 is odd, i.e. -f(x) == f(-x). */
1032 static bool
1033 negate_mathfn_p (enum built_in_function code)
1035 switch (code)
1037 CASE_FLT_FN (BUILT_IN_ASIN):
1038 CASE_FLT_FN (BUILT_IN_ASINH):
1039 CASE_FLT_FN (BUILT_IN_ATAN):
1040 CASE_FLT_FN (BUILT_IN_ATANH):
1041 CASE_FLT_FN (BUILT_IN_CASIN):
1042 CASE_FLT_FN (BUILT_IN_CASINH):
1043 CASE_FLT_FN (BUILT_IN_CATAN):
1044 CASE_FLT_FN (BUILT_IN_CATANH):
1045 CASE_FLT_FN (BUILT_IN_CBRT):
1046 CASE_FLT_FN (BUILT_IN_CPROJ):
1047 CASE_FLT_FN (BUILT_IN_CSIN):
1048 CASE_FLT_FN (BUILT_IN_CSINH):
1049 CASE_FLT_FN (BUILT_IN_CTAN):
1050 CASE_FLT_FN (BUILT_IN_CTANH):
1051 CASE_FLT_FN (BUILT_IN_ERF):
1052 CASE_FLT_FN (BUILT_IN_LLROUND):
1053 CASE_FLT_FN (BUILT_IN_LROUND):
1054 CASE_FLT_FN (BUILT_IN_ROUND):
1055 CASE_FLT_FN (BUILT_IN_SIN):
1056 CASE_FLT_FN (BUILT_IN_SINH):
1057 CASE_FLT_FN (BUILT_IN_TAN):
1058 CASE_FLT_FN (BUILT_IN_TANH):
1059 CASE_FLT_FN (BUILT_IN_TRUNC):
1060 return true;
1062 CASE_FLT_FN (BUILT_IN_LLRINT):
1063 CASE_FLT_FN (BUILT_IN_LRINT):
1064 CASE_FLT_FN (BUILT_IN_NEARBYINT):
1065 CASE_FLT_FN (BUILT_IN_RINT):
1066 return !flag_rounding_math;
1068 default:
1069 break;
1071 return false;
1074 /* Check whether we may negate an integer constant T without causing
1075 overflow. */
1077 bool
1078 may_negate_without_overflow_p (const_tree t)
1080 unsigned HOST_WIDE_INT val;
1081 unsigned int prec;
1082 tree type;
1084 gcc_assert (TREE_CODE (t) == INTEGER_CST);
1086 type = TREE_TYPE (t);
1087 if (TYPE_UNSIGNED (type))
1088 return false;
1090 prec = TYPE_PRECISION (type);
1091 if (prec > HOST_BITS_PER_WIDE_INT)
1093 if (TREE_INT_CST_LOW (t) != 0)
1094 return true;
1095 prec -= HOST_BITS_PER_WIDE_INT;
1096 val = TREE_INT_CST_HIGH (t);
1098 else
1099 val = TREE_INT_CST_LOW (t);
1100 if (prec < HOST_BITS_PER_WIDE_INT)
1101 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1102 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
1105 /* Determine whether an expression T can be cheaply negated using
1106 the function negate_expr without introducing undefined overflow. */
1108 static bool
1109 negate_expr_p (tree t)
1111 tree type;
1113 if (t == 0)
1114 return false;
1116 type = TREE_TYPE (t);
1118 STRIP_SIGN_NOPS (t);
1119 switch (TREE_CODE (t))
1121 case INTEGER_CST:
1122 if (TYPE_OVERFLOW_WRAPS (type))
1123 return true;
1125 /* Check that -CST will not overflow type. */
1126 return may_negate_without_overflow_p (t);
1127 case BIT_NOT_EXPR:
1128 return (INTEGRAL_TYPE_P (type)
1129 && TYPE_OVERFLOW_WRAPS (type));
1131 case FIXED_CST:
1132 case REAL_CST:
1133 case NEGATE_EXPR:
1134 return true;
1136 case COMPLEX_CST:
1137 return negate_expr_p (TREE_REALPART (t))
1138 && negate_expr_p (TREE_IMAGPART (t));
1140 case COMPLEX_EXPR:
1141 return negate_expr_p (TREE_OPERAND (t, 0))
1142 && negate_expr_p (TREE_OPERAND (t, 1));
1144 case CONJ_EXPR:
1145 return negate_expr_p (TREE_OPERAND (t, 0));
1147 case PLUS_EXPR:
1148 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1149 || HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
1150 return false;
1151 /* -(A + B) -> (-B) - A. */
1152 if (negate_expr_p (TREE_OPERAND (t, 1))
1153 && reorder_operands_p (TREE_OPERAND (t, 0),
1154 TREE_OPERAND (t, 1)))
1155 return true;
1156 /* -(A + B) -> (-A) - B. */
1157 return negate_expr_p (TREE_OPERAND (t, 0));
1159 case MINUS_EXPR:
1160 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
1161 return !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1162 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
1163 && reorder_operands_p (TREE_OPERAND (t, 0),
1164 TREE_OPERAND (t, 1));
1166 case MULT_EXPR:
1167 if (TYPE_UNSIGNED (TREE_TYPE (t)))
1168 break;
1170 /* Fall through. */
1172 case RDIV_EXPR:
1173 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
1174 return negate_expr_p (TREE_OPERAND (t, 1))
1175 || negate_expr_p (TREE_OPERAND (t, 0));
1176 break;
1178 case TRUNC_DIV_EXPR:
1179 case ROUND_DIV_EXPR:
1180 case FLOOR_DIV_EXPR:
1181 case CEIL_DIV_EXPR:
1182 case EXACT_DIV_EXPR:
1183 /* In general we can't negate A / B, because if A is INT_MIN and
1184 B is 1, we may turn this into INT_MIN / -1 which is undefined
1185 and actually traps on some architectures. But if overflow is
1186 undefined, we can negate, because - (INT_MIN / 1) is an
1187 overflow. */
1188 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
1189 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
1190 break;
1191 return negate_expr_p (TREE_OPERAND (t, 1))
1192 || negate_expr_p (TREE_OPERAND (t, 0));
1194 case NOP_EXPR:
1195 /* Negate -((double)float) as (double)(-float). */
1196 if (TREE_CODE (type) == REAL_TYPE)
1198 tree tem = strip_float_extensions (t);
1199 if (tem != t)
1200 return negate_expr_p (tem);
1202 break;
1204 case CALL_EXPR:
1205 /* Negate -f(x) as f(-x). */
1206 if (negate_mathfn_p (builtin_mathfn_code (t)))
1207 return negate_expr_p (CALL_EXPR_ARG (t, 0));
1208 break;
1210 case RSHIFT_EXPR:
1211 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1212 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1214 tree op1 = TREE_OPERAND (t, 1);
1215 if (TREE_INT_CST_HIGH (op1) == 0
1216 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1217 == TREE_INT_CST_LOW (op1))
1218 return true;
1220 break;
1222 default:
1223 break;
1225 return false;
1228 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
1229 simplification is possible.
1230 If negate_expr_p would return true for T, NULL_TREE will never be
1231 returned. */
1233 static tree
1234 fold_negate_expr (tree t)
1236 tree type = TREE_TYPE (t);
1237 tree tem;
1239 switch (TREE_CODE (t))
1241 /* Convert - (~A) to A + 1. */
1242 case BIT_NOT_EXPR:
1243 if (INTEGRAL_TYPE_P (type))
1244 return fold_build2 (PLUS_EXPR, type, TREE_OPERAND (t, 0),
1245 build_int_cst (type, 1));
1246 break;
1248 case INTEGER_CST:
1249 tem = fold_negate_const (t, type);
1250 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
1251 || !TYPE_OVERFLOW_TRAPS (type))
1252 return tem;
1253 break;
1255 case REAL_CST:
1256 tem = fold_negate_const (t, type);
1257 /* Two's complement FP formats, such as c4x, may overflow. */
1258 if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1259 return tem;
1260 break;
1262 case FIXED_CST:
1263 tem = fold_negate_const (t, type);
1264 return tem;
1266 case COMPLEX_CST:
1268 tree rpart = negate_expr (TREE_REALPART (t));
1269 tree ipart = negate_expr (TREE_IMAGPART (t));
1271 if ((TREE_CODE (rpart) == REAL_CST
1272 && TREE_CODE (ipart) == REAL_CST)
1273 || (TREE_CODE (rpart) == INTEGER_CST
1274 && TREE_CODE (ipart) == INTEGER_CST))
1275 return build_complex (type, rpart, ipart);
1277 break;
1279 case COMPLEX_EXPR:
1280 if (negate_expr_p (t))
1281 return fold_build2 (COMPLEX_EXPR, type,
1282 fold_negate_expr (TREE_OPERAND (t, 0)),
1283 fold_negate_expr (TREE_OPERAND (t, 1)));
1284 break;
1286 case CONJ_EXPR:
1287 if (negate_expr_p (t))
1288 return fold_build1 (CONJ_EXPR, type,
1289 fold_negate_expr (TREE_OPERAND (t, 0)));
1290 break;
1292 case NEGATE_EXPR:
1293 return TREE_OPERAND (t, 0);
1295 case PLUS_EXPR:
1296 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1297 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
1299 /* -(A + B) -> (-B) - A. */
1300 if (negate_expr_p (TREE_OPERAND (t, 1))
1301 && reorder_operands_p (TREE_OPERAND (t, 0),
1302 TREE_OPERAND (t, 1)))
1304 tem = negate_expr (TREE_OPERAND (t, 1));
1305 return fold_build2 (MINUS_EXPR, type,
1306 tem, TREE_OPERAND (t, 0));
1309 /* -(A + B) -> (-A) - B. */
1310 if (negate_expr_p (TREE_OPERAND (t, 0)))
1312 tem = negate_expr (TREE_OPERAND (t, 0));
1313 return fold_build2 (MINUS_EXPR, type,
1314 tem, TREE_OPERAND (t, 1));
1317 break;
1319 case MINUS_EXPR:
1320 /* - (A - B) -> B - A */
1321 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1322 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
1323 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
1324 return fold_build2 (MINUS_EXPR, type,
1325 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
1326 break;
1328 case MULT_EXPR:
1329 if (TYPE_UNSIGNED (type))
1330 break;
1332 /* Fall through. */
1334 case RDIV_EXPR:
1335 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
1337 tem = TREE_OPERAND (t, 1);
1338 if (negate_expr_p (tem))
1339 return fold_build2 (TREE_CODE (t), type,
1340 TREE_OPERAND (t, 0), negate_expr (tem));
1341 tem = TREE_OPERAND (t, 0);
1342 if (negate_expr_p (tem))
1343 return fold_build2 (TREE_CODE (t), type,
1344 negate_expr (tem), TREE_OPERAND (t, 1));
1346 break;
1348 case TRUNC_DIV_EXPR:
1349 case ROUND_DIV_EXPR:
1350 case FLOOR_DIV_EXPR:
1351 case CEIL_DIV_EXPR:
1352 case EXACT_DIV_EXPR:
1353 /* In general we can't negate A / B, because if A is INT_MIN and
1354 B is 1, we may turn this into INT_MIN / -1 which is undefined
1355 and actually traps on some architectures. But if overflow is
1356 undefined, we can negate, because - (INT_MIN / 1) is an
1357 overflow. */
1358 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
1360 const char * const warnmsg = G_("assuming signed overflow does not "
1361 "occur when negating a division");
1362 tem = TREE_OPERAND (t, 1);
1363 if (negate_expr_p (tem))
1365 if (INTEGRAL_TYPE_P (type)
1366 && (TREE_CODE (tem) != INTEGER_CST
1367 || integer_onep (tem)))
1368 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
1369 return fold_build2 (TREE_CODE (t), type,
1370 TREE_OPERAND (t, 0), negate_expr (tem));
1372 tem = TREE_OPERAND (t, 0);
1373 if (negate_expr_p (tem))
1375 if (INTEGRAL_TYPE_P (type)
1376 && (TREE_CODE (tem) != INTEGER_CST
1377 || tree_int_cst_equal (tem, TYPE_MIN_VALUE (type))))
1378 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
1379 return fold_build2 (TREE_CODE (t), type,
1380 negate_expr (tem), TREE_OPERAND (t, 1));
1383 break;
1385 case NOP_EXPR:
1386 /* Convert -((double)float) into (double)(-float). */
1387 if (TREE_CODE (type) == REAL_TYPE)
1389 tem = strip_float_extensions (t);
1390 if (tem != t && negate_expr_p (tem))
1391 return fold_convert (type, negate_expr (tem));
1393 break;
1395 case CALL_EXPR:
1396 /* Negate -f(x) as f(-x). */
1397 if (negate_mathfn_p (builtin_mathfn_code (t))
1398 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
1400 tree fndecl, arg;
1402 fndecl = get_callee_fndecl (t);
1403 arg = negate_expr (CALL_EXPR_ARG (t, 0));
1404 return build_call_expr (fndecl, 1, arg);
1406 break;
1408 case RSHIFT_EXPR:
1409 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1410 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1412 tree op1 = TREE_OPERAND (t, 1);
1413 if (TREE_INT_CST_HIGH (op1) == 0
1414 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1415 == TREE_INT_CST_LOW (op1))
1417 tree ntype = TYPE_UNSIGNED (type)
1418 ? signed_type_for (type)
1419 : unsigned_type_for (type);
1420 tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
1421 temp = fold_build2 (RSHIFT_EXPR, ntype, temp, op1);
1422 return fold_convert (type, temp);
1425 break;
1427 default:
1428 break;
1431 return NULL_TREE;
1434 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
1435 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
1436 return NULL_TREE. */
1438 static tree
1439 negate_expr (tree t)
1441 tree type, tem;
1443 if (t == NULL_TREE)
1444 return NULL_TREE;
1446 type = TREE_TYPE (t);
1447 STRIP_SIGN_NOPS (t);
1449 tem = fold_negate_expr (t);
1450 if (!tem)
1451 tem = build1 (NEGATE_EXPR, TREE_TYPE (t), t);
1452 return fold_convert (type, tem);
1455 /* Split a tree IN into a constant, literal and variable parts that could be
1456 combined with CODE to make IN. "constant" means an expression with
1457 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1458 commutative arithmetic operation. Store the constant part into *CONP,
1459 the literal in *LITP and return the variable part. If a part isn't
1460 present, set it to null. If the tree does not decompose in this way,
1461 return the entire tree as the variable part and the other parts as null.
1463 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1464 case, we negate an operand that was subtracted. Except if it is a
1465 literal for which we use *MINUS_LITP instead.
1467 If NEGATE_P is true, we are negating all of IN, again except a literal
1468 for which we use *MINUS_LITP instead.
1470 If IN is itself a literal or constant, return it as appropriate.
1472 Note that we do not guarantee that any of the three values will be the
1473 same type as IN, but they will have the same signedness and mode. */
1475 static tree
1476 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
1477 tree *minus_litp, int negate_p)
1479 tree var = 0;
1481 *conp = 0;
1482 *litp = 0;
1483 *minus_litp = 0;
1485 /* Strip any conversions that don't change the machine mode or signedness. */
1486 STRIP_SIGN_NOPS (in);
1488 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
1489 || TREE_CODE (in) == FIXED_CST)
1490 *litp = in;
1491 else if (TREE_CODE (in) == code
1492 || (! FLOAT_TYPE_P (TREE_TYPE (in))
1493 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
1494 /* We can associate addition and subtraction together (even
1495 though the C standard doesn't say so) for integers because
1496 the value is not affected. For reals, the value might be
1497 affected, so we can't. */
1498 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1499 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1501 tree op0 = TREE_OPERAND (in, 0);
1502 tree op1 = TREE_OPERAND (in, 1);
1503 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
1504 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
1506 /* First see if either of the operands is a literal, then a constant. */
1507 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
1508 || TREE_CODE (op0) == FIXED_CST)
1509 *litp = op0, op0 = 0;
1510 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
1511 || TREE_CODE (op1) == FIXED_CST)
1512 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
1514 if (op0 != 0 && TREE_CONSTANT (op0))
1515 *conp = op0, op0 = 0;
1516 else if (op1 != 0 && TREE_CONSTANT (op1))
1517 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1519 /* If we haven't dealt with either operand, this is not a case we can
1520 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1521 if (op0 != 0 && op1 != 0)
1522 var = in;
1523 else if (op0 != 0)
1524 var = op0;
1525 else
1526 var = op1, neg_var_p = neg1_p;
1528 /* Now do any needed negations. */
1529 if (neg_litp_p)
1530 *minus_litp = *litp, *litp = 0;
1531 if (neg_conp_p)
1532 *conp = negate_expr (*conp);
1533 if (neg_var_p)
1534 var = negate_expr (var);
1536 else if (TREE_CONSTANT (in))
1537 *conp = in;
1538 else
1539 var = in;
1541 if (negate_p)
1543 if (*litp)
1544 *minus_litp = *litp, *litp = 0;
1545 else if (*minus_litp)
1546 *litp = *minus_litp, *minus_litp = 0;
1547 *conp = negate_expr (*conp);
1548 var = negate_expr (var);
1551 return var;
1554 /* Re-associate trees split by the above function. T1 and T2 are either
1555 expressions to associate or null. Return the new expression, if any. If
1556 we build an operation, do it in TYPE and with CODE. */
1558 static tree
1559 associate_trees (tree t1, tree t2, enum tree_code code, tree type)
1561 if (t1 == 0)
1562 return t2;
1563 else if (t2 == 0)
1564 return t1;
1566 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1567 try to fold this since we will have infinite recursion. But do
1568 deal with any NEGATE_EXPRs. */
1569 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1570 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1572 if (code == PLUS_EXPR)
1574 if (TREE_CODE (t1) == NEGATE_EXPR)
1575 return build2 (MINUS_EXPR, type, fold_convert (type, t2),
1576 fold_convert (type, TREE_OPERAND (t1, 0)));
1577 else if (TREE_CODE (t2) == NEGATE_EXPR)
1578 return build2 (MINUS_EXPR, type, fold_convert (type, t1),
1579 fold_convert (type, TREE_OPERAND (t2, 0)));
1580 else if (integer_zerop (t2))
1581 return fold_convert (type, t1);
1583 else if (code == MINUS_EXPR)
1585 if (integer_zerop (t2))
1586 return fold_convert (type, t1);
1589 return build2 (code, type, fold_convert (type, t1),
1590 fold_convert (type, t2));
1593 return fold_build2 (code, type, fold_convert (type, t1),
1594 fold_convert (type, t2));
1597 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
1598 for use in int_const_binop, size_binop and size_diffop. */
1600 static bool
1601 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
1603 if (TREE_CODE (type1) != INTEGER_TYPE && !POINTER_TYPE_P (type1))
1604 return false;
1605 if (TREE_CODE (type2) != INTEGER_TYPE && !POINTER_TYPE_P (type2))
1606 return false;
1608 switch (code)
1610 case LSHIFT_EXPR:
1611 case RSHIFT_EXPR:
1612 case LROTATE_EXPR:
1613 case RROTATE_EXPR:
1614 return true;
1616 default:
1617 break;
1620 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
1621 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
1622 && TYPE_MODE (type1) == TYPE_MODE (type2);
1626 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1627 to produce a new constant. Return NULL_TREE if we don't know how
1628 to evaluate CODE at compile-time.
1630 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1632 tree
1633 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2, int notrunc)
1635 unsigned HOST_WIDE_INT int1l, int2l;
1636 HOST_WIDE_INT int1h, int2h;
1637 unsigned HOST_WIDE_INT low;
1638 HOST_WIDE_INT hi;
1639 unsigned HOST_WIDE_INT garbagel;
1640 HOST_WIDE_INT garbageh;
1641 tree t;
1642 tree type = TREE_TYPE (arg1);
1643 int uns = TYPE_UNSIGNED (type);
1644 int is_sizetype
1645 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1646 int overflow = 0;
1648 int1l = TREE_INT_CST_LOW (arg1);
1649 int1h = TREE_INT_CST_HIGH (arg1);
1650 int2l = TREE_INT_CST_LOW (arg2);
1651 int2h = TREE_INT_CST_HIGH (arg2);
1653 switch (code)
1655 case BIT_IOR_EXPR:
1656 low = int1l | int2l, hi = int1h | int2h;
1657 break;
1659 case BIT_XOR_EXPR:
1660 low = int1l ^ int2l, hi = int1h ^ int2h;
1661 break;
1663 case BIT_AND_EXPR:
1664 low = int1l & int2l, hi = int1h & int2h;
1665 break;
1667 case RSHIFT_EXPR:
1668 int2l = -int2l;
1669 case LSHIFT_EXPR:
1670 /* It's unclear from the C standard whether shifts can overflow.
1671 The following code ignores overflow; perhaps a C standard
1672 interpretation ruling is needed. */
1673 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1674 &low, &hi, !uns);
1675 break;
1677 case RROTATE_EXPR:
1678 int2l = - int2l;
1679 case LROTATE_EXPR:
1680 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1681 &low, &hi);
1682 break;
1684 case PLUS_EXPR:
1685 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1686 break;
1688 case MINUS_EXPR:
1689 neg_double (int2l, int2h, &low, &hi);
1690 add_double (int1l, int1h, low, hi, &low, &hi);
1691 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1692 break;
1694 case MULT_EXPR:
1695 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1696 break;
1698 case TRUNC_DIV_EXPR:
1699 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1700 case EXACT_DIV_EXPR:
1701 /* This is a shortcut for a common special case. */
1702 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1703 && !TREE_OVERFLOW (arg1)
1704 && !TREE_OVERFLOW (arg2)
1705 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1707 if (code == CEIL_DIV_EXPR)
1708 int1l += int2l - 1;
1710 low = int1l / int2l, hi = 0;
1711 break;
1714 /* ... fall through ... */
1716 case ROUND_DIV_EXPR:
1717 if (int2h == 0 && int2l == 0)
1718 return NULL_TREE;
1719 if (int2h == 0 && int2l == 1)
1721 low = int1l, hi = int1h;
1722 break;
1724 if (int1l == int2l && int1h == int2h
1725 && ! (int1l == 0 && int1h == 0))
1727 low = 1, hi = 0;
1728 break;
1730 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1731 &low, &hi, &garbagel, &garbageh);
1732 break;
1734 case TRUNC_MOD_EXPR:
1735 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1736 /* This is a shortcut for a common special case. */
1737 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1738 && !TREE_OVERFLOW (arg1)
1739 && !TREE_OVERFLOW (arg2)
1740 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1742 if (code == CEIL_MOD_EXPR)
1743 int1l += int2l - 1;
1744 low = int1l % int2l, hi = 0;
1745 break;
1748 /* ... fall through ... */
1750 case ROUND_MOD_EXPR:
1751 if (int2h == 0 && int2l == 0)
1752 return NULL_TREE;
1753 overflow = div_and_round_double (code, uns,
1754 int1l, int1h, int2l, int2h,
1755 &garbagel, &garbageh, &low, &hi);
1756 break;
1758 case MIN_EXPR:
1759 case MAX_EXPR:
1760 if (uns)
1761 low = (((unsigned HOST_WIDE_INT) int1h
1762 < (unsigned HOST_WIDE_INT) int2h)
1763 || (((unsigned HOST_WIDE_INT) int1h
1764 == (unsigned HOST_WIDE_INT) int2h)
1765 && int1l < int2l));
1766 else
1767 low = (int1h < int2h
1768 || (int1h == int2h && int1l < int2l));
1770 if (low == (code == MIN_EXPR))
1771 low = int1l, hi = int1h;
1772 else
1773 low = int2l, hi = int2h;
1774 break;
1776 default:
1777 return NULL_TREE;
1780 if (notrunc)
1782 t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
1784 /* Propagate overflow flags ourselves. */
1785 if (((!uns || is_sizetype) && overflow)
1786 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1788 t = copy_node (t);
1789 TREE_OVERFLOW (t) = 1;
1792 else
1793 t = force_fit_type_double (TREE_TYPE (arg1), low, hi, 1,
1794 ((!uns || is_sizetype) && overflow)
1795 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1797 return t;
1800 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1801 constant. We assume ARG1 and ARG2 have the same data type, or at least
1802 are the same kind of constant and the same machine mode. Return zero if
1803 combining the constants is not allowed in the current operating mode.
1805 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1807 static tree
1808 const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1810 /* Sanity check for the recursive cases. */
1811 if (!arg1 || !arg2)
1812 return NULL_TREE;
1814 STRIP_NOPS (arg1);
1815 STRIP_NOPS (arg2);
1817 if (TREE_CODE (arg1) == INTEGER_CST)
1818 return int_const_binop (code, arg1, arg2, notrunc);
1820 if (TREE_CODE (arg1) == REAL_CST)
1822 enum machine_mode mode;
1823 REAL_VALUE_TYPE d1;
1824 REAL_VALUE_TYPE d2;
1825 REAL_VALUE_TYPE value;
1826 REAL_VALUE_TYPE result;
1827 bool inexact;
1828 tree t, type;
1830 /* The following codes are handled by real_arithmetic. */
1831 switch (code)
1833 case PLUS_EXPR:
1834 case MINUS_EXPR:
1835 case MULT_EXPR:
1836 case RDIV_EXPR:
1837 case MIN_EXPR:
1838 case MAX_EXPR:
1839 break;
1841 default:
1842 return NULL_TREE;
1845 d1 = TREE_REAL_CST (arg1);
1846 d2 = TREE_REAL_CST (arg2);
1848 type = TREE_TYPE (arg1);
1849 mode = TYPE_MODE (type);
1851 /* Don't perform operation if we honor signaling NaNs and
1852 either operand is a NaN. */
1853 if (HONOR_SNANS (mode)
1854 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1855 return NULL_TREE;
1857 /* Don't perform operation if it would raise a division
1858 by zero exception. */
1859 if (code == RDIV_EXPR
1860 && REAL_VALUES_EQUAL (d2, dconst0)
1861 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1862 return NULL_TREE;
1864 /* If either operand is a NaN, just return it. Otherwise, set up
1865 for floating-point trap; we return an overflow. */
1866 if (REAL_VALUE_ISNAN (d1))
1867 return arg1;
1868 else if (REAL_VALUE_ISNAN (d2))
1869 return arg2;
1871 inexact = real_arithmetic (&value, code, &d1, &d2);
1872 real_convert (&result, mode, &value);
1874 /* Don't constant fold this floating point operation if
1875 the result has overflowed and flag_trapping_math. */
1876 if (flag_trapping_math
1877 && MODE_HAS_INFINITIES (mode)
1878 && REAL_VALUE_ISINF (result)
1879 && !REAL_VALUE_ISINF (d1)
1880 && !REAL_VALUE_ISINF (d2))
1881 return NULL_TREE;
1883 /* Don't constant fold this floating point operation if the
1884 result may dependent upon the run-time rounding mode and
1885 flag_rounding_math is set, or if GCC's software emulation
1886 is unable to accurately represent the result. */
1887 if ((flag_rounding_math
1888 || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
1889 && !flag_unsafe_math_optimizations))
1890 && (inexact || !real_identical (&result, &value)))
1891 return NULL_TREE;
1893 t = build_real (type, result);
1895 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1896 return t;
1899 if (TREE_CODE (arg1) == FIXED_CST)
1901 FIXED_VALUE_TYPE f1;
1902 FIXED_VALUE_TYPE f2;
1903 FIXED_VALUE_TYPE result;
1904 tree t, type;
1905 int sat_p;
1906 bool overflow_p;
1908 /* The following codes are handled by fixed_arithmetic. */
1909 switch (code)
1911 case PLUS_EXPR:
1912 case MINUS_EXPR:
1913 case MULT_EXPR:
1914 case TRUNC_DIV_EXPR:
1915 f2 = TREE_FIXED_CST (arg2);
1916 break;
1918 case LSHIFT_EXPR:
1919 case RSHIFT_EXPR:
1920 f2.data.high = TREE_INT_CST_HIGH (arg2);
1921 f2.data.low = TREE_INT_CST_LOW (arg2);
1922 f2.mode = SImode;
1923 break;
1925 default:
1926 return NULL_TREE;
1929 f1 = TREE_FIXED_CST (arg1);
1930 type = TREE_TYPE (arg1);
1931 sat_p = TYPE_SATURATING (type);
1932 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1933 t = build_fixed (type, result);
1934 /* Propagate overflow flags. */
1935 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1937 TREE_OVERFLOW (t) = 1;
1938 TREE_CONSTANT_OVERFLOW (t) = 1;
1940 else if (TREE_CONSTANT_OVERFLOW (arg1) | TREE_CONSTANT_OVERFLOW (arg2))
1941 TREE_CONSTANT_OVERFLOW (t) = 1;
1942 return t;
1945 if (TREE_CODE (arg1) == COMPLEX_CST)
1947 tree type = TREE_TYPE (arg1);
1948 tree r1 = TREE_REALPART (arg1);
1949 tree i1 = TREE_IMAGPART (arg1);
1950 tree r2 = TREE_REALPART (arg2);
1951 tree i2 = TREE_IMAGPART (arg2);
1952 tree real, imag;
1954 switch (code)
1956 case PLUS_EXPR:
1957 case MINUS_EXPR:
1958 real = const_binop (code, r1, r2, notrunc);
1959 imag = const_binop (code, i1, i2, notrunc);
1960 break;
1962 case MULT_EXPR:
1963 real = const_binop (MINUS_EXPR,
1964 const_binop (MULT_EXPR, r1, r2, notrunc),
1965 const_binop (MULT_EXPR, i1, i2, notrunc),
1966 notrunc);
1967 imag = const_binop (PLUS_EXPR,
1968 const_binop (MULT_EXPR, r1, i2, notrunc),
1969 const_binop (MULT_EXPR, i1, r2, notrunc),
1970 notrunc);
1971 break;
1973 case RDIV_EXPR:
1975 tree magsquared
1976 = const_binop (PLUS_EXPR,
1977 const_binop (MULT_EXPR, r2, r2, notrunc),
1978 const_binop (MULT_EXPR, i2, i2, notrunc),
1979 notrunc);
1980 tree t1
1981 = const_binop (PLUS_EXPR,
1982 const_binop (MULT_EXPR, r1, r2, notrunc),
1983 const_binop (MULT_EXPR, i1, i2, notrunc),
1984 notrunc);
1985 tree t2
1986 = const_binop (MINUS_EXPR,
1987 const_binop (MULT_EXPR, i1, r2, notrunc),
1988 const_binop (MULT_EXPR, r1, i2, notrunc),
1989 notrunc);
1991 if (INTEGRAL_TYPE_P (TREE_TYPE (r1)))
1992 code = TRUNC_DIV_EXPR;
1994 real = const_binop (code, t1, magsquared, notrunc);
1995 imag = const_binop (code, t2, magsquared, notrunc);
1997 break;
1999 default:
2000 return NULL_TREE;
2003 if (real && imag)
2004 return build_complex (type, real, imag);
2007 return NULL_TREE;
2010 /* Create a size type INT_CST node with NUMBER sign extended. KIND
2011 indicates which particular sizetype to create. */
2013 tree
2014 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
2016 return build_int_cst (sizetype_tab[(int) kind], number);
2019 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
2020 is a tree code. The type of the result is taken from the operands.
2021 Both must be equivalent integer types, ala int_binop_types_match_p.
2022 If the operands are constant, so is the result. */
2024 tree
2025 size_binop (enum tree_code code, tree arg0, tree arg1)
2027 tree type = TREE_TYPE (arg0);
2029 if (arg0 == error_mark_node || arg1 == error_mark_node)
2030 return error_mark_node;
2032 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
2033 TREE_TYPE (arg1)));
2035 /* Handle the special case of two integer constants faster. */
2036 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2038 /* And some specific cases even faster than that. */
2039 if (code == PLUS_EXPR)
2041 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
2042 return arg1;
2043 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
2044 return arg0;
2046 else if (code == MINUS_EXPR)
2048 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
2049 return arg0;
2051 else if (code == MULT_EXPR)
2053 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
2054 return arg1;
2057 /* Handle general case of two integer constants. */
2058 return int_const_binop (code, arg0, arg1, 0);
2061 return fold_build2 (code, type, arg0, arg1);
2064 /* Given two values, either both of sizetype or both of bitsizetype,
2065 compute the difference between the two values. Return the value
2066 in signed type corresponding to the type of the operands. */
2068 tree
2069 size_diffop (tree arg0, tree arg1)
2071 tree type = TREE_TYPE (arg0);
2072 tree ctype;
2074 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
2075 TREE_TYPE (arg1)));
2077 /* If the type is already signed, just do the simple thing. */
2078 if (!TYPE_UNSIGNED (type))
2079 return size_binop (MINUS_EXPR, arg0, arg1);
2081 if (type == sizetype)
2082 ctype = ssizetype;
2083 else if (type == bitsizetype)
2084 ctype = sbitsizetype;
2085 else
2086 ctype = signed_type_for (type);
2088 /* If either operand is not a constant, do the conversions to the signed
2089 type and subtract. The hardware will do the right thing with any
2090 overflow in the subtraction. */
2091 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
2092 return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
2093 fold_convert (ctype, arg1));
2095 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
2096 Otherwise, subtract the other way, convert to CTYPE (we know that can't
2097 overflow) and negate (which can't either). Special-case a result
2098 of zero while we're here. */
2099 if (tree_int_cst_equal (arg0, arg1))
2100 return build_int_cst (ctype, 0);
2101 else if (tree_int_cst_lt (arg1, arg0))
2102 return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
2103 else
2104 return size_binop (MINUS_EXPR, build_int_cst (ctype, 0),
2105 fold_convert (ctype, size_binop (MINUS_EXPR,
2106 arg1, arg0)));
2109 /* A subroutine of fold_convert_const handling conversions of an
2110 INTEGER_CST to another integer type. */
2112 static tree
2113 fold_convert_const_int_from_int (tree type, const_tree arg1)
2115 tree t;
2117 /* Given an integer constant, make new constant with new type,
2118 appropriately sign-extended or truncated. */
2119 t = force_fit_type_double (type, TREE_INT_CST_LOW (arg1),
2120 TREE_INT_CST_HIGH (arg1),
2121 /* Don't set the overflow when
2122 converting a pointer */
2123 !POINTER_TYPE_P (TREE_TYPE (arg1)),
2124 (TREE_INT_CST_HIGH (arg1) < 0
2125 && (TYPE_UNSIGNED (type)
2126 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2127 | TREE_OVERFLOW (arg1));
2129 return t;
2132 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2133 to an integer type. */
2135 static tree
2136 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
2138 int overflow = 0;
2139 tree t;
2141 /* The following code implements the floating point to integer
2142 conversion rules required by the Java Language Specification,
2143 that IEEE NaNs are mapped to zero and values that overflow
2144 the target precision saturate, i.e. values greater than
2145 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2146 are mapped to INT_MIN. These semantics are allowed by the
2147 C and C++ standards that simply state that the behavior of
2148 FP-to-integer conversion is unspecified upon overflow. */
2150 HOST_WIDE_INT high, low;
2151 REAL_VALUE_TYPE r;
2152 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
2154 switch (code)
2156 case FIX_TRUNC_EXPR:
2157 real_trunc (&r, VOIDmode, &x);
2158 break;
2160 default:
2161 gcc_unreachable ();
2164 /* If R is NaN, return zero and show we have an overflow. */
2165 if (REAL_VALUE_ISNAN (r))
2167 overflow = 1;
2168 high = 0;
2169 low = 0;
2172 /* See if R is less than the lower bound or greater than the
2173 upper bound. */
2175 if (! overflow)
2177 tree lt = TYPE_MIN_VALUE (type);
2178 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
2179 if (REAL_VALUES_LESS (r, l))
2181 overflow = 1;
2182 high = TREE_INT_CST_HIGH (lt);
2183 low = TREE_INT_CST_LOW (lt);
2187 if (! overflow)
2189 tree ut = TYPE_MAX_VALUE (type);
2190 if (ut)
2192 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
2193 if (REAL_VALUES_LESS (u, r))
2195 overflow = 1;
2196 high = TREE_INT_CST_HIGH (ut);
2197 low = TREE_INT_CST_LOW (ut);
2202 if (! overflow)
2203 REAL_VALUE_TO_INT (&low, &high, r);
2205 t = force_fit_type_double (type, low, high, -1,
2206 overflow | TREE_OVERFLOW (arg1));
2207 return t;
2210 /* A subroutine of fold_convert_const handling conversions of a
2211 FIXED_CST to an integer type. */
2213 static tree
2214 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
2216 tree t;
2217 double_int temp, temp_trunc;
2218 unsigned int mode;
2220 /* Right shift FIXED_CST to temp by fbit. */
2221 temp = TREE_FIXED_CST (arg1).data;
2222 mode = TREE_FIXED_CST (arg1).mode;
2223 if (GET_MODE_FBIT (mode) < 2 * HOST_BITS_PER_WIDE_INT)
2225 lshift_double (temp.low, temp.high,
2226 - GET_MODE_FBIT (mode), 2 * HOST_BITS_PER_WIDE_INT,
2227 &temp.low, &temp.high, SIGNED_FIXED_POINT_MODE_P (mode));
2229 /* Left shift temp to temp_trunc by fbit. */
2230 lshift_double (temp.low, temp.high,
2231 GET_MODE_FBIT (mode), 2 * HOST_BITS_PER_WIDE_INT,
2232 &temp_trunc.low, &temp_trunc.high,
2233 SIGNED_FIXED_POINT_MODE_P (mode));
2235 else
2237 temp.low = 0;
2238 temp.high = 0;
2239 temp_trunc.low = 0;
2240 temp_trunc.high = 0;
2243 /* If FIXED_CST is negative, we need to round the value toward 0.
2244 By checking if the fractional bits are not zero to add 1 to temp. */
2245 if (SIGNED_FIXED_POINT_MODE_P (mode) && temp_trunc.high < 0
2246 && !double_int_equal_p (TREE_FIXED_CST (arg1).data, temp_trunc))
2248 double_int one;
2249 one.low = 1;
2250 one.high = 0;
2251 temp = double_int_add (temp, one);
2254 /* Given a fixed-point constant, make new constant with new type,
2255 appropriately sign-extended or truncated. */
2256 t = force_fit_type_double (type, temp.low, temp.high, -1,
2257 (temp.high < 0
2258 && (TYPE_UNSIGNED (type)
2259 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2260 | TREE_OVERFLOW (arg1));
2262 return t;
2265 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2266 to another floating point type. */
2268 static tree
2269 fold_convert_const_real_from_real (tree type, const_tree arg1)
2271 REAL_VALUE_TYPE value;
2272 tree t;
2274 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2275 t = build_real (type, value);
2277 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2278 return t;
2281 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2282 to a floating point type. */
2284 static tree
2285 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2287 REAL_VALUE_TYPE value;
2288 tree t;
2290 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
2291 t = build_real (type, value);
2293 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2294 TREE_CONSTANT_OVERFLOW (t)
2295 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
2296 return t;
2299 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2300 to another fixed-point type. */
2302 static tree
2303 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2305 FIXED_VALUE_TYPE value;
2306 tree t;
2307 bool overflow_p;
2309 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2310 TYPE_SATURATING (type));
2311 t = build_fixed (type, value);
2313 /* Propagate overflow flags. */
2314 if (overflow_p | TREE_OVERFLOW (arg1))
2316 TREE_OVERFLOW (t) = 1;
2317 TREE_CONSTANT_OVERFLOW (t) = 1;
2319 else if (TREE_CONSTANT_OVERFLOW (arg1))
2320 TREE_CONSTANT_OVERFLOW (t) = 1;
2321 return t;
2324 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2325 to a fixed-point type. */
2327 static tree
2328 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2330 FIXED_VALUE_TYPE value;
2331 tree t;
2332 bool overflow_p;
2334 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type),
2335 TREE_INT_CST (arg1),
2336 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2337 TYPE_SATURATING (type));
2338 t = build_fixed (type, value);
2340 /* Propagate overflow flags. */
2341 if (overflow_p | TREE_OVERFLOW (arg1))
2343 TREE_OVERFLOW (t) = 1;
2344 TREE_CONSTANT_OVERFLOW (t) = 1;
2346 else if (TREE_CONSTANT_OVERFLOW (arg1))
2347 TREE_CONSTANT_OVERFLOW (t) = 1;
2348 return t;
2351 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2352 to a fixed-point type. */
2354 static tree
2355 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2357 FIXED_VALUE_TYPE value;
2358 tree t;
2359 bool overflow_p;
2361 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2362 &TREE_REAL_CST (arg1),
2363 TYPE_SATURATING (type));
2364 t = build_fixed (type, value);
2366 /* Propagate overflow flags. */
2367 if (overflow_p | TREE_OVERFLOW (arg1))
2369 TREE_OVERFLOW (t) = 1;
2370 TREE_CONSTANT_OVERFLOW (t) = 1;
2372 else if (TREE_CONSTANT_OVERFLOW (arg1))
2373 TREE_CONSTANT_OVERFLOW (t) = 1;
2374 return t;
2377 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2378 type TYPE. If no simplification can be done return NULL_TREE. */
2380 static tree
2381 fold_convert_const (enum tree_code code, tree type, tree arg1)
2383 if (TREE_TYPE (arg1) == type)
2384 return arg1;
2386 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
2388 if (TREE_CODE (arg1) == INTEGER_CST)
2389 return fold_convert_const_int_from_int (type, arg1);
2390 else if (TREE_CODE (arg1) == REAL_CST)
2391 return fold_convert_const_int_from_real (code, type, arg1);
2392 else if (TREE_CODE (arg1) == FIXED_CST)
2393 return fold_convert_const_int_from_fixed (type, arg1);
2395 else if (TREE_CODE (type) == REAL_TYPE)
2397 if (TREE_CODE (arg1) == INTEGER_CST)
2398 return build_real_from_int_cst (type, arg1);
2399 else if (TREE_CODE (arg1) == REAL_CST)
2400 return fold_convert_const_real_from_real (type, arg1);
2401 else if (TREE_CODE (arg1) == FIXED_CST)
2402 return fold_convert_const_real_from_fixed (type, arg1);
2404 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2406 if (TREE_CODE (arg1) == FIXED_CST)
2407 return fold_convert_const_fixed_from_fixed (type, arg1);
2408 else if (TREE_CODE (arg1) == INTEGER_CST)
2409 return fold_convert_const_fixed_from_int (type, arg1);
2410 else if (TREE_CODE (arg1) == REAL_CST)
2411 return fold_convert_const_fixed_from_real (type, arg1);
2413 return NULL_TREE;
2416 /* Construct a vector of zero elements of vector type TYPE. */
2418 static tree
2419 build_zero_vector (tree type)
2421 tree elem, list;
2422 int i, units;
2424 elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2425 units = TYPE_VECTOR_SUBPARTS (type);
2427 list = NULL_TREE;
2428 for (i = 0; i < units; i++)
2429 list = tree_cons (NULL_TREE, elem, list);
2430 return build_vector (type, list);
2433 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2435 bool
2436 fold_convertible_p (const_tree type, const_tree arg)
2438 tree orig = TREE_TYPE (arg);
2440 if (type == orig)
2441 return true;
2443 if (TREE_CODE (arg) == ERROR_MARK
2444 || TREE_CODE (type) == ERROR_MARK
2445 || TREE_CODE (orig) == ERROR_MARK)
2446 return false;
2448 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2449 return true;
2451 switch (TREE_CODE (type))
2453 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2454 case POINTER_TYPE: case REFERENCE_TYPE:
2455 case OFFSET_TYPE:
2456 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2457 || TREE_CODE (orig) == OFFSET_TYPE)
2458 return true;
2459 return (TREE_CODE (orig) == VECTOR_TYPE
2460 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2462 default:
2463 return TREE_CODE (type) == TREE_CODE (orig);
2467 /* Convert expression ARG to type TYPE. Used by the middle-end for
2468 simple conversions in preference to calling the front-end's convert. */
2470 tree
2471 fold_convert (tree type, tree arg)
2473 tree orig = TREE_TYPE (arg);
2474 tree tem;
2476 if (type == orig)
2477 return arg;
2479 if (TREE_CODE (arg) == ERROR_MARK
2480 || TREE_CODE (type) == ERROR_MARK
2481 || TREE_CODE (orig) == ERROR_MARK)
2482 return error_mark_node;
2484 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2485 return fold_build1 (NOP_EXPR, type, arg);
2487 switch (TREE_CODE (type))
2489 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2490 case POINTER_TYPE: case REFERENCE_TYPE:
2491 case OFFSET_TYPE:
2492 if (TREE_CODE (arg) == INTEGER_CST)
2494 tem = fold_convert_const (NOP_EXPR, type, arg);
2495 if (tem != NULL_TREE)
2496 return tem;
2498 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2499 || TREE_CODE (orig) == OFFSET_TYPE)
2500 return fold_build1 (NOP_EXPR, type, arg);
2501 if (TREE_CODE (orig) == COMPLEX_TYPE)
2503 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2504 return fold_convert (type, tem);
2506 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2507 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2508 return fold_build1 (NOP_EXPR, type, arg);
2510 case REAL_TYPE:
2511 if (TREE_CODE (arg) == INTEGER_CST)
2513 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2514 if (tem != NULL_TREE)
2515 return tem;
2517 else if (TREE_CODE (arg) == REAL_CST)
2519 tem = fold_convert_const (NOP_EXPR, type, arg);
2520 if (tem != NULL_TREE)
2521 return tem;
2523 else if (TREE_CODE (arg) == FIXED_CST)
2525 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2526 if (tem != NULL_TREE)
2527 return tem;
2530 switch (TREE_CODE (orig))
2532 case INTEGER_TYPE:
2533 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2534 case POINTER_TYPE: case REFERENCE_TYPE:
2535 return fold_build1 (FLOAT_EXPR, type, arg);
2537 case REAL_TYPE:
2538 return fold_build1 (NOP_EXPR, type, arg);
2540 case FIXED_POINT_TYPE:
2541 return fold_build1 (FIXED_CONVERT_EXPR, type, arg);
2543 case COMPLEX_TYPE:
2544 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2545 return fold_convert (type, tem);
2547 default:
2548 gcc_unreachable ();
2551 case FIXED_POINT_TYPE:
2552 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2553 || TREE_CODE (arg) == REAL_CST)
2555 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2556 if (tem != NULL_TREE)
2557 return tem;
2560 switch (TREE_CODE (orig))
2562 case FIXED_POINT_TYPE:
2563 case INTEGER_TYPE:
2564 case ENUMERAL_TYPE:
2565 case BOOLEAN_TYPE:
2566 case REAL_TYPE:
2567 return fold_build1 (FIXED_CONVERT_EXPR, type, arg);
2569 case COMPLEX_TYPE:
2570 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2571 return fold_convert (type, tem);
2573 default:
2574 gcc_unreachable ();
2577 case COMPLEX_TYPE:
2578 switch (TREE_CODE (orig))
2580 case INTEGER_TYPE:
2581 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2582 case POINTER_TYPE: case REFERENCE_TYPE:
2583 case REAL_TYPE:
2584 case FIXED_POINT_TYPE:
2585 return build2 (COMPLEX_EXPR, type,
2586 fold_convert (TREE_TYPE (type), arg),
2587 fold_convert (TREE_TYPE (type), integer_zero_node));
2588 case COMPLEX_TYPE:
2590 tree rpart, ipart;
2592 if (TREE_CODE (arg) == COMPLEX_EXPR)
2594 rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
2595 ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
2596 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2599 arg = save_expr (arg);
2600 rpart = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2601 ipart = fold_build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg);
2602 rpart = fold_convert (TREE_TYPE (type), rpart);
2603 ipart = fold_convert (TREE_TYPE (type), ipart);
2604 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2607 default:
2608 gcc_unreachable ();
2611 case VECTOR_TYPE:
2612 if (integer_zerop (arg))
2613 return build_zero_vector (type);
2614 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2615 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2616 || TREE_CODE (orig) == VECTOR_TYPE);
2617 return fold_build1 (VIEW_CONVERT_EXPR, type, arg);
2619 case VOID_TYPE:
2620 tem = fold_ignored_result (arg);
2621 if (TREE_CODE (tem) == GIMPLE_MODIFY_STMT)
2622 return tem;
2623 return fold_build1 (NOP_EXPR, type, tem);
2625 default:
2626 gcc_unreachable ();
2630 /* Return false if expr can be assumed not to be an lvalue, true
2631 otherwise. */
2633 static bool
2634 maybe_lvalue_p (const_tree x)
2636 /* We only need to wrap lvalue tree codes. */
2637 switch (TREE_CODE (x))
2639 case VAR_DECL:
2640 case PARM_DECL:
2641 case RESULT_DECL:
2642 case LABEL_DECL:
2643 case FUNCTION_DECL:
2644 case SSA_NAME:
2646 case COMPONENT_REF:
2647 case INDIRECT_REF:
2648 case ALIGN_INDIRECT_REF:
2649 case MISALIGNED_INDIRECT_REF:
2650 case ARRAY_REF:
2651 case ARRAY_RANGE_REF:
2652 case BIT_FIELD_REF:
2653 case OBJ_TYPE_REF:
2655 case REALPART_EXPR:
2656 case IMAGPART_EXPR:
2657 case PREINCREMENT_EXPR:
2658 case PREDECREMENT_EXPR:
2659 case SAVE_EXPR:
2660 case TRY_CATCH_EXPR:
2661 case WITH_CLEANUP_EXPR:
2662 case COMPOUND_EXPR:
2663 case MODIFY_EXPR:
2664 case GIMPLE_MODIFY_STMT:
2665 case TARGET_EXPR:
2666 case COND_EXPR:
2667 case BIND_EXPR:
2668 case MIN_EXPR:
2669 case MAX_EXPR:
2670 break;
2672 default:
2673 /* Assume the worst for front-end tree codes. */
2674 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2675 break;
2676 return false;
2679 return true;
2682 /* Return an expr equal to X but certainly not valid as an lvalue. */
2684 tree
2685 non_lvalue (tree x)
2687 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2688 us. */
2689 if (in_gimple_form)
2690 return x;
2692 if (! maybe_lvalue_p (x))
2693 return x;
2694 return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
2697 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2698 Zero means allow extended lvalues. */
2700 int pedantic_lvalues;
2702 /* When pedantic, return an expr equal to X but certainly not valid as a
2703 pedantic lvalue. Otherwise, return X. */
2705 static tree
2706 pedantic_non_lvalue (tree x)
2708 if (pedantic_lvalues)
2709 return non_lvalue (x);
2710 else
2711 return x;
2714 /* Given a tree comparison code, return the code that is the logical inverse
2715 of the given code. It is not safe to do this for floating-point
2716 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2717 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2719 enum tree_code
2720 invert_tree_comparison (enum tree_code code, bool honor_nans)
2722 if (honor_nans && flag_trapping_math)
2723 return ERROR_MARK;
2725 switch (code)
2727 case EQ_EXPR:
2728 return NE_EXPR;
2729 case NE_EXPR:
2730 return EQ_EXPR;
2731 case GT_EXPR:
2732 return honor_nans ? UNLE_EXPR : LE_EXPR;
2733 case GE_EXPR:
2734 return honor_nans ? UNLT_EXPR : LT_EXPR;
2735 case LT_EXPR:
2736 return honor_nans ? UNGE_EXPR : GE_EXPR;
2737 case LE_EXPR:
2738 return honor_nans ? UNGT_EXPR : GT_EXPR;
2739 case LTGT_EXPR:
2740 return UNEQ_EXPR;
2741 case UNEQ_EXPR:
2742 return LTGT_EXPR;
2743 case UNGT_EXPR:
2744 return LE_EXPR;
2745 case UNGE_EXPR:
2746 return LT_EXPR;
2747 case UNLT_EXPR:
2748 return GE_EXPR;
2749 case UNLE_EXPR:
2750 return GT_EXPR;
2751 case ORDERED_EXPR:
2752 return UNORDERED_EXPR;
2753 case UNORDERED_EXPR:
2754 return ORDERED_EXPR;
2755 default:
2756 gcc_unreachable ();
2760 /* Similar, but return the comparison that results if the operands are
2761 swapped. This is safe for floating-point. */
2763 enum tree_code
2764 swap_tree_comparison (enum tree_code code)
2766 switch (code)
2768 case EQ_EXPR:
2769 case NE_EXPR:
2770 case ORDERED_EXPR:
2771 case UNORDERED_EXPR:
2772 case LTGT_EXPR:
2773 case UNEQ_EXPR:
2774 return code;
2775 case GT_EXPR:
2776 return LT_EXPR;
2777 case GE_EXPR:
2778 return LE_EXPR;
2779 case LT_EXPR:
2780 return GT_EXPR;
2781 case LE_EXPR:
2782 return GE_EXPR;
2783 case UNGT_EXPR:
2784 return UNLT_EXPR;
2785 case UNGE_EXPR:
2786 return UNLE_EXPR;
2787 case UNLT_EXPR:
2788 return UNGT_EXPR;
2789 case UNLE_EXPR:
2790 return UNGE_EXPR;
2791 default:
2792 gcc_unreachable ();
2797 /* Convert a comparison tree code from an enum tree_code representation
2798 into a compcode bit-based encoding. This function is the inverse of
2799 compcode_to_comparison. */
2801 static enum comparison_code
2802 comparison_to_compcode (enum tree_code code)
2804 switch (code)
2806 case LT_EXPR:
2807 return COMPCODE_LT;
2808 case EQ_EXPR:
2809 return COMPCODE_EQ;
2810 case LE_EXPR:
2811 return COMPCODE_LE;
2812 case GT_EXPR:
2813 return COMPCODE_GT;
2814 case NE_EXPR:
2815 return COMPCODE_NE;
2816 case GE_EXPR:
2817 return COMPCODE_GE;
2818 case ORDERED_EXPR:
2819 return COMPCODE_ORD;
2820 case UNORDERED_EXPR:
2821 return COMPCODE_UNORD;
2822 case UNLT_EXPR:
2823 return COMPCODE_UNLT;
2824 case UNEQ_EXPR:
2825 return COMPCODE_UNEQ;
2826 case UNLE_EXPR:
2827 return COMPCODE_UNLE;
2828 case UNGT_EXPR:
2829 return COMPCODE_UNGT;
2830 case LTGT_EXPR:
2831 return COMPCODE_LTGT;
2832 case UNGE_EXPR:
2833 return COMPCODE_UNGE;
2834 default:
2835 gcc_unreachable ();
2839 /* Convert a compcode bit-based encoding of a comparison operator back
2840 to GCC's enum tree_code representation. This function is the
2841 inverse of comparison_to_compcode. */
2843 static enum tree_code
2844 compcode_to_comparison (enum comparison_code code)
2846 switch (code)
2848 case COMPCODE_LT:
2849 return LT_EXPR;
2850 case COMPCODE_EQ:
2851 return EQ_EXPR;
2852 case COMPCODE_LE:
2853 return LE_EXPR;
2854 case COMPCODE_GT:
2855 return GT_EXPR;
2856 case COMPCODE_NE:
2857 return NE_EXPR;
2858 case COMPCODE_GE:
2859 return GE_EXPR;
2860 case COMPCODE_ORD:
2861 return ORDERED_EXPR;
2862 case COMPCODE_UNORD:
2863 return UNORDERED_EXPR;
2864 case COMPCODE_UNLT:
2865 return UNLT_EXPR;
2866 case COMPCODE_UNEQ:
2867 return UNEQ_EXPR;
2868 case COMPCODE_UNLE:
2869 return UNLE_EXPR;
2870 case COMPCODE_UNGT:
2871 return UNGT_EXPR;
2872 case COMPCODE_LTGT:
2873 return LTGT_EXPR;
2874 case COMPCODE_UNGE:
2875 return UNGE_EXPR;
2876 default:
2877 gcc_unreachable ();
2881 /* Return a tree for the comparison which is the combination of
2882 doing the AND or OR (depending on CODE) of the two operations LCODE
2883 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2884 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2885 if this makes the transformation invalid. */
2887 tree
2888 combine_comparisons (enum tree_code code, enum tree_code lcode,
2889 enum tree_code rcode, tree truth_type,
2890 tree ll_arg, tree lr_arg)
2892 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2893 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2894 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2895 enum comparison_code compcode;
2897 switch (code)
2899 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2900 compcode = lcompcode & rcompcode;
2901 break;
2903 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2904 compcode = lcompcode | rcompcode;
2905 break;
2907 default:
2908 return NULL_TREE;
2911 if (!honor_nans)
2913 /* Eliminate unordered comparisons, as well as LTGT and ORD
2914 which are not used unless the mode has NaNs. */
2915 compcode &= ~COMPCODE_UNORD;
2916 if (compcode == COMPCODE_LTGT)
2917 compcode = COMPCODE_NE;
2918 else if (compcode == COMPCODE_ORD)
2919 compcode = COMPCODE_TRUE;
2921 else if (flag_trapping_math)
2923 /* Check that the original operation and the optimized ones will trap
2924 under the same condition. */
2925 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2926 && (lcompcode != COMPCODE_EQ)
2927 && (lcompcode != COMPCODE_ORD);
2928 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2929 && (rcompcode != COMPCODE_EQ)
2930 && (rcompcode != COMPCODE_ORD);
2931 bool trap = (compcode & COMPCODE_UNORD) == 0
2932 && (compcode != COMPCODE_EQ)
2933 && (compcode != COMPCODE_ORD);
2935 /* In a short-circuited boolean expression the LHS might be
2936 such that the RHS, if evaluated, will never trap. For
2937 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2938 if neither x nor y is NaN. (This is a mixed blessing: for
2939 example, the expression above will never trap, hence
2940 optimizing it to x < y would be invalid). */
2941 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2942 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2943 rtrap = false;
2945 /* If the comparison was short-circuited, and only the RHS
2946 trapped, we may now generate a spurious trap. */
2947 if (rtrap && !ltrap
2948 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2949 return NULL_TREE;
2951 /* If we changed the conditions that cause a trap, we lose. */
2952 if ((ltrap || rtrap) != trap)
2953 return NULL_TREE;
2956 if (compcode == COMPCODE_TRUE)
2957 return constant_boolean_node (true, truth_type);
2958 else if (compcode == COMPCODE_FALSE)
2959 return constant_boolean_node (false, truth_type);
2960 else
2961 return fold_build2 (compcode_to_comparison (compcode),
2962 truth_type, ll_arg, lr_arg);
2965 /* Return nonzero if CODE is a tree code that represents a truth value. */
2967 static int
2968 truth_value_p (enum tree_code code)
2970 return (TREE_CODE_CLASS (code) == tcc_comparison
2971 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
2972 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
2973 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
2976 /* Return nonzero if two operands (typically of the same tree node)
2977 are necessarily equal. If either argument has side-effects this
2978 function returns zero. FLAGS modifies behavior as follows:
2980 If OEP_ONLY_CONST is set, only return nonzero for constants.
2981 This function tests whether the operands are indistinguishable;
2982 it does not test whether they are equal using C's == operation.
2983 The distinction is important for IEEE floating point, because
2984 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2985 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2987 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2988 even though it may hold multiple values during a function.
2989 This is because a GCC tree node guarantees that nothing else is
2990 executed between the evaluation of its "operands" (which may often
2991 be evaluated in arbitrary order). Hence if the operands themselves
2992 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2993 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2994 unset means assuming isochronic (or instantaneous) tree equivalence.
2995 Unless comparing arbitrary expression trees, such as from different
2996 statements, this flag can usually be left unset.
2998 If OEP_PURE_SAME is set, then pure functions with identical arguments
2999 are considered the same. It is used when the caller has other ways
3000 to ensure that global memory is unchanged in between. */
3003 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
3005 /* If either is ERROR_MARK, they aren't equal. */
3006 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
3007 return 0;
3009 /* If both types don't have the same signedness, then we can't consider
3010 them equal. We must check this before the STRIP_NOPS calls
3011 because they may change the signedness of the arguments. */
3012 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3013 return 0;
3015 /* If both types don't have the same precision, then it is not safe
3016 to strip NOPs. */
3017 if (TYPE_PRECISION (TREE_TYPE (arg0)) != TYPE_PRECISION (TREE_TYPE (arg1)))
3018 return 0;
3020 STRIP_NOPS (arg0);
3021 STRIP_NOPS (arg1);
3023 /* In case both args are comparisons but with different comparison
3024 code, try to swap the comparison operands of one arg to produce
3025 a match and compare that variant. */
3026 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3027 && COMPARISON_CLASS_P (arg0)
3028 && COMPARISON_CLASS_P (arg1))
3030 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
3032 if (TREE_CODE (arg0) == swap_code)
3033 return operand_equal_p (TREE_OPERAND (arg0, 0),
3034 TREE_OPERAND (arg1, 1), flags)
3035 && operand_equal_p (TREE_OPERAND (arg0, 1),
3036 TREE_OPERAND (arg1, 0), flags);
3039 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3040 /* This is needed for conversions and for COMPONENT_REF.
3041 Might as well play it safe and always test this. */
3042 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
3043 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
3044 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
3045 return 0;
3047 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3048 We don't care about side effects in that case because the SAVE_EXPR
3049 takes care of that for us. In all other cases, two expressions are
3050 equal if they have no side effects. If we have two identical
3051 expressions with side effects that should be treated the same due
3052 to the only side effects being identical SAVE_EXPR's, that will
3053 be detected in the recursive calls below. */
3054 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
3055 && (TREE_CODE (arg0) == SAVE_EXPR
3056 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
3057 return 1;
3059 /* Next handle constant cases, those for which we can return 1 even
3060 if ONLY_CONST is set. */
3061 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
3062 switch (TREE_CODE (arg0))
3064 case INTEGER_CST:
3065 return tree_int_cst_equal (arg0, arg1);
3067 case FIXED_CST:
3068 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
3069 TREE_FIXED_CST (arg1));
3071 case REAL_CST:
3072 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
3073 TREE_REAL_CST (arg1)))
3074 return 1;
3077 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0))))
3079 /* If we do not distinguish between signed and unsigned zero,
3080 consider them equal. */
3081 if (real_zerop (arg0) && real_zerop (arg1))
3082 return 1;
3084 return 0;
3086 case VECTOR_CST:
3088 tree v1, v2;
3090 v1 = TREE_VECTOR_CST_ELTS (arg0);
3091 v2 = TREE_VECTOR_CST_ELTS (arg1);
3092 while (v1 && v2)
3094 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
3095 flags))
3096 return 0;
3097 v1 = TREE_CHAIN (v1);
3098 v2 = TREE_CHAIN (v2);
3101 return v1 == v2;
3104 case COMPLEX_CST:
3105 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
3106 flags)
3107 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
3108 flags));
3110 case STRING_CST:
3111 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
3112 && ! memcmp (TREE_STRING_POINTER (arg0),
3113 TREE_STRING_POINTER (arg1),
3114 TREE_STRING_LENGTH (arg0)));
3116 case ADDR_EXPR:
3117 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
3119 default:
3120 break;
3123 if (flags & OEP_ONLY_CONST)
3124 return 0;
3126 /* Define macros to test an operand from arg0 and arg1 for equality and a
3127 variant that allows null and views null as being different from any
3128 non-null value. In the latter case, if either is null, the both
3129 must be; otherwise, do the normal comparison. */
3130 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3131 TREE_OPERAND (arg1, N), flags)
3133 #define OP_SAME_WITH_NULL(N) \
3134 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3135 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3137 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
3139 case tcc_unary:
3140 /* Two conversions are equal only if signedness and modes match. */
3141 switch (TREE_CODE (arg0))
3143 case NOP_EXPR:
3144 case CONVERT_EXPR:
3145 case FIX_TRUNC_EXPR:
3146 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3147 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3148 return 0;
3149 break;
3150 default:
3151 break;
3154 return OP_SAME (0);
3157 case tcc_comparison:
3158 case tcc_binary:
3159 if (OP_SAME (0) && OP_SAME (1))
3160 return 1;
3162 /* For commutative ops, allow the other order. */
3163 return (commutative_tree_code (TREE_CODE (arg0))
3164 && operand_equal_p (TREE_OPERAND (arg0, 0),
3165 TREE_OPERAND (arg1, 1), flags)
3166 && operand_equal_p (TREE_OPERAND (arg0, 1),
3167 TREE_OPERAND (arg1, 0), flags));
3169 case tcc_reference:
3170 /* If either of the pointer (or reference) expressions we are
3171 dereferencing contain a side effect, these cannot be equal. */
3172 if (TREE_SIDE_EFFECTS (arg0)
3173 || TREE_SIDE_EFFECTS (arg1))
3174 return 0;
3176 switch (TREE_CODE (arg0))
3178 case INDIRECT_REF:
3179 case ALIGN_INDIRECT_REF:
3180 case MISALIGNED_INDIRECT_REF:
3181 case REALPART_EXPR:
3182 case IMAGPART_EXPR:
3183 return OP_SAME (0);
3185 case ARRAY_REF:
3186 case ARRAY_RANGE_REF:
3187 /* Operands 2 and 3 may be null.
3188 Compare the array index by value if it is constant first as we
3189 may have different types but same value here. */
3190 return (OP_SAME (0)
3191 && (tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3192 TREE_OPERAND (arg1, 1))
3193 || OP_SAME (1))
3194 && OP_SAME_WITH_NULL (2)
3195 && OP_SAME_WITH_NULL (3));
3197 case COMPONENT_REF:
3198 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3199 may be NULL when we're called to compare MEM_EXPRs. */
3200 return OP_SAME_WITH_NULL (0)
3201 && OP_SAME (1)
3202 && OP_SAME_WITH_NULL (2);
3204 case BIT_FIELD_REF:
3205 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3207 default:
3208 return 0;
3211 case tcc_expression:
3212 switch (TREE_CODE (arg0))
3214 case ADDR_EXPR:
3215 case TRUTH_NOT_EXPR:
3216 return OP_SAME (0);
3218 case TRUTH_ANDIF_EXPR:
3219 case TRUTH_ORIF_EXPR:
3220 return OP_SAME (0) && OP_SAME (1);
3222 case TRUTH_AND_EXPR:
3223 case TRUTH_OR_EXPR:
3224 case TRUTH_XOR_EXPR:
3225 if (OP_SAME (0) && OP_SAME (1))
3226 return 1;
3228 /* Otherwise take into account this is a commutative operation. */
3229 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3230 TREE_OPERAND (arg1, 1), flags)
3231 && operand_equal_p (TREE_OPERAND (arg0, 1),
3232 TREE_OPERAND (arg1, 0), flags));
3234 default:
3235 return 0;
3238 case tcc_vl_exp:
3239 switch (TREE_CODE (arg0))
3241 case CALL_EXPR:
3242 /* If the CALL_EXPRs call different functions, then they
3243 clearly can not be equal. */
3244 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3245 flags))
3246 return 0;
3249 unsigned int cef = call_expr_flags (arg0);
3250 if (flags & OEP_PURE_SAME)
3251 cef &= ECF_CONST | ECF_PURE;
3252 else
3253 cef &= ECF_CONST;
3254 if (!cef)
3255 return 0;
3258 /* Now see if all the arguments are the same. */
3260 const_call_expr_arg_iterator iter0, iter1;
3261 const_tree a0, a1;
3262 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3263 a1 = first_const_call_expr_arg (arg1, &iter1);
3264 a0 && a1;
3265 a0 = next_const_call_expr_arg (&iter0),
3266 a1 = next_const_call_expr_arg (&iter1))
3267 if (! operand_equal_p (a0, a1, flags))
3268 return 0;
3270 /* If we get here and both argument lists are exhausted
3271 then the CALL_EXPRs are equal. */
3272 return ! (a0 || a1);
3274 default:
3275 return 0;
3278 case tcc_declaration:
3279 /* Consider __builtin_sqrt equal to sqrt. */
3280 return (TREE_CODE (arg0) == FUNCTION_DECL
3281 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3282 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3283 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3285 default:
3286 return 0;
3289 #undef OP_SAME
3290 #undef OP_SAME_WITH_NULL
3293 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3294 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3296 When in doubt, return 0. */
3298 static int
3299 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3301 int unsignedp1, unsignedpo;
3302 tree primarg0, primarg1, primother;
3303 unsigned int correct_width;
3305 if (operand_equal_p (arg0, arg1, 0))
3306 return 1;
3308 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3309 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3310 return 0;
3312 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3313 and see if the inner values are the same. This removes any
3314 signedness comparison, which doesn't matter here. */
3315 primarg0 = arg0, primarg1 = arg1;
3316 STRIP_NOPS (primarg0);
3317 STRIP_NOPS (primarg1);
3318 if (operand_equal_p (primarg0, primarg1, 0))
3319 return 1;
3321 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3322 actual comparison operand, ARG0.
3324 First throw away any conversions to wider types
3325 already present in the operands. */
3327 primarg1 = get_narrower (arg1, &unsignedp1);
3328 primother = get_narrower (other, &unsignedpo);
3330 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3331 if (unsignedp1 == unsignedpo
3332 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3333 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3335 tree type = TREE_TYPE (arg0);
3337 /* Make sure shorter operand is extended the right way
3338 to match the longer operand. */
3339 primarg1 = fold_convert (signed_or_unsigned_type_for
3340 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3342 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3343 return 1;
3346 return 0;
3349 /* See if ARG is an expression that is either a comparison or is performing
3350 arithmetic on comparisons. The comparisons must only be comparing
3351 two different values, which will be stored in *CVAL1 and *CVAL2; if
3352 they are nonzero it means that some operands have already been found.
3353 No variables may be used anywhere else in the expression except in the
3354 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3355 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3357 If this is true, return 1. Otherwise, return zero. */
3359 static int
3360 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3362 enum tree_code code = TREE_CODE (arg);
3363 enum tree_code_class class = TREE_CODE_CLASS (code);
3365 /* We can handle some of the tcc_expression cases here. */
3366 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
3367 class = tcc_unary;
3368 else if (class == tcc_expression
3369 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3370 || code == COMPOUND_EXPR))
3371 class = tcc_binary;
3373 else if (class == tcc_expression && code == SAVE_EXPR
3374 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3376 /* If we've already found a CVAL1 or CVAL2, this expression is
3377 two complex to handle. */
3378 if (*cval1 || *cval2)
3379 return 0;
3381 class = tcc_unary;
3382 *save_p = 1;
3385 switch (class)
3387 case tcc_unary:
3388 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3390 case tcc_binary:
3391 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3392 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3393 cval1, cval2, save_p));
3395 case tcc_constant:
3396 return 1;
3398 case tcc_expression:
3399 if (code == COND_EXPR)
3400 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3401 cval1, cval2, save_p)
3402 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3403 cval1, cval2, save_p)
3404 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3405 cval1, cval2, save_p));
3406 return 0;
3408 case tcc_comparison:
3409 /* First see if we can handle the first operand, then the second. For
3410 the second operand, we know *CVAL1 can't be zero. It must be that
3411 one side of the comparison is each of the values; test for the
3412 case where this isn't true by failing if the two operands
3413 are the same. */
3415 if (operand_equal_p (TREE_OPERAND (arg, 0),
3416 TREE_OPERAND (arg, 1), 0))
3417 return 0;
3419 if (*cval1 == 0)
3420 *cval1 = TREE_OPERAND (arg, 0);
3421 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3423 else if (*cval2 == 0)
3424 *cval2 = TREE_OPERAND (arg, 0);
3425 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3427 else
3428 return 0;
3430 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3432 else if (*cval2 == 0)
3433 *cval2 = TREE_OPERAND (arg, 1);
3434 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3436 else
3437 return 0;
3439 return 1;
3441 default:
3442 return 0;
3446 /* ARG is a tree that is known to contain just arithmetic operations and
3447 comparisons. Evaluate the operations in the tree substituting NEW0 for
3448 any occurrence of OLD0 as an operand of a comparison and likewise for
3449 NEW1 and OLD1. */
3451 static tree
3452 eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
3454 tree type = TREE_TYPE (arg);
3455 enum tree_code code = TREE_CODE (arg);
3456 enum tree_code_class class = TREE_CODE_CLASS (code);
3458 /* We can handle some of the tcc_expression cases here. */
3459 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
3460 class = tcc_unary;
3461 else if (class == tcc_expression
3462 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3463 class = tcc_binary;
3465 switch (class)
3467 case tcc_unary:
3468 return fold_build1 (code, type,
3469 eval_subst (TREE_OPERAND (arg, 0),
3470 old0, new0, old1, new1));
3472 case tcc_binary:
3473 return fold_build2 (code, type,
3474 eval_subst (TREE_OPERAND (arg, 0),
3475 old0, new0, old1, new1),
3476 eval_subst (TREE_OPERAND (arg, 1),
3477 old0, new0, old1, new1));
3479 case tcc_expression:
3480 switch (code)
3482 case SAVE_EXPR:
3483 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
3485 case COMPOUND_EXPR:
3486 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
3488 case COND_EXPR:
3489 return fold_build3 (code, type,
3490 eval_subst (TREE_OPERAND (arg, 0),
3491 old0, new0, old1, new1),
3492 eval_subst (TREE_OPERAND (arg, 1),
3493 old0, new0, old1, new1),
3494 eval_subst (TREE_OPERAND (arg, 2),
3495 old0, new0, old1, new1));
3496 default:
3497 break;
3499 /* Fall through - ??? */
3501 case tcc_comparison:
3503 tree arg0 = TREE_OPERAND (arg, 0);
3504 tree arg1 = TREE_OPERAND (arg, 1);
3506 /* We need to check both for exact equality and tree equality. The
3507 former will be true if the operand has a side-effect. In that
3508 case, we know the operand occurred exactly once. */
3510 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3511 arg0 = new0;
3512 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3513 arg0 = new1;
3515 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3516 arg1 = new0;
3517 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3518 arg1 = new1;
3520 return fold_build2 (code, type, arg0, arg1);
3523 default:
3524 return arg;
3528 /* Return a tree for the case when the result of an expression is RESULT
3529 converted to TYPE and OMITTED was previously an operand of the expression
3530 but is now not needed (e.g., we folded OMITTED * 0).
3532 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3533 the conversion of RESULT to TYPE. */
3535 tree
3536 omit_one_operand (tree type, tree result, tree omitted)
3538 tree t = fold_convert (type, result);
3540 /* If the resulting operand is an empty statement, just return the omitted
3541 statement casted to void. */
3542 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3543 return build1 (NOP_EXPR, void_type_node, fold_ignored_result (omitted));
3545 if (TREE_SIDE_EFFECTS (omitted))
3546 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3548 return non_lvalue (t);
3551 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
3553 static tree
3554 pedantic_omit_one_operand (tree type, tree result, tree omitted)
3556 tree t = fold_convert (type, result);
3558 /* If the resulting operand is an empty statement, just return the omitted
3559 statement casted to void. */
3560 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3561 return build1 (NOP_EXPR, void_type_node, fold_ignored_result (omitted));
3563 if (TREE_SIDE_EFFECTS (omitted))
3564 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3566 return pedantic_non_lvalue (t);
3569 /* Return a tree for the case when the result of an expression is RESULT
3570 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3571 of the expression but are now not needed.
3573 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3574 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3575 evaluated before OMITTED2. Otherwise, if neither has side effects,
3576 just do the conversion of RESULT to TYPE. */
3578 tree
3579 omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
3581 tree t = fold_convert (type, result);
3583 if (TREE_SIDE_EFFECTS (omitted2))
3584 t = build2 (COMPOUND_EXPR, type, omitted2, t);
3585 if (TREE_SIDE_EFFECTS (omitted1))
3586 t = build2 (COMPOUND_EXPR, type, omitted1, t);
3588 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
3592 /* Return a simplified tree node for the truth-negation of ARG. This
3593 never alters ARG itself. We assume that ARG is an operation that
3594 returns a truth value (0 or 1).
3596 FIXME: one would think we would fold the result, but it causes
3597 problems with the dominator optimizer. */
3599 tree
3600 fold_truth_not_expr (tree arg)
3602 tree type = TREE_TYPE (arg);
3603 enum tree_code code = TREE_CODE (arg);
3605 /* If this is a comparison, we can simply invert it, except for
3606 floating-point non-equality comparisons, in which case we just
3607 enclose a TRUTH_NOT_EXPR around what we have. */
3609 if (TREE_CODE_CLASS (code) == tcc_comparison)
3611 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3612 if (FLOAT_TYPE_P (op_type)
3613 && flag_trapping_math
3614 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3615 && code != NE_EXPR && code != EQ_EXPR)
3616 return NULL_TREE;
3617 else
3619 code = invert_tree_comparison (code,
3620 HONOR_NANS (TYPE_MODE (op_type)));
3621 if (code == ERROR_MARK)
3622 return NULL_TREE;
3623 else
3624 return build2 (code, type,
3625 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
3629 switch (code)
3631 case INTEGER_CST:
3632 return constant_boolean_node (integer_zerop (arg), type);
3634 case TRUTH_AND_EXPR:
3635 return build2 (TRUTH_OR_EXPR, type,
3636 invert_truthvalue (TREE_OPERAND (arg, 0)),
3637 invert_truthvalue (TREE_OPERAND (arg, 1)));
3639 case TRUTH_OR_EXPR:
3640 return build2 (TRUTH_AND_EXPR, type,
3641 invert_truthvalue (TREE_OPERAND (arg, 0)),
3642 invert_truthvalue (TREE_OPERAND (arg, 1)));
3644 case TRUTH_XOR_EXPR:
3645 /* Here we can invert either operand. We invert the first operand
3646 unless the second operand is a TRUTH_NOT_EXPR in which case our
3647 result is the XOR of the first operand with the inside of the
3648 negation of the second operand. */
3650 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3651 return build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3652 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3653 else
3654 return build2 (TRUTH_XOR_EXPR, type,
3655 invert_truthvalue (TREE_OPERAND (arg, 0)),
3656 TREE_OPERAND (arg, 1));
3658 case TRUTH_ANDIF_EXPR:
3659 return build2 (TRUTH_ORIF_EXPR, type,
3660 invert_truthvalue (TREE_OPERAND (arg, 0)),
3661 invert_truthvalue (TREE_OPERAND (arg, 1)));
3663 case TRUTH_ORIF_EXPR:
3664 return build2 (TRUTH_ANDIF_EXPR, type,
3665 invert_truthvalue (TREE_OPERAND (arg, 0)),
3666 invert_truthvalue (TREE_OPERAND (arg, 1)));
3668 case TRUTH_NOT_EXPR:
3669 return TREE_OPERAND (arg, 0);
3671 case COND_EXPR:
3673 tree arg1 = TREE_OPERAND (arg, 1);
3674 tree arg2 = TREE_OPERAND (arg, 2);
3675 /* A COND_EXPR may have a throw as one operand, which
3676 then has void type. Just leave void operands
3677 as they are. */
3678 return build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
3679 VOID_TYPE_P (TREE_TYPE (arg1))
3680 ? arg1 : invert_truthvalue (arg1),
3681 VOID_TYPE_P (TREE_TYPE (arg2))
3682 ? arg2 : invert_truthvalue (arg2));
3685 case COMPOUND_EXPR:
3686 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
3687 invert_truthvalue (TREE_OPERAND (arg, 1)));
3689 case NON_LVALUE_EXPR:
3690 return invert_truthvalue (TREE_OPERAND (arg, 0));
3692 case NOP_EXPR:
3693 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3694 return build1 (TRUTH_NOT_EXPR, type, arg);
3696 case CONVERT_EXPR:
3697 case FLOAT_EXPR:
3698 return build1 (TREE_CODE (arg), type,
3699 invert_truthvalue (TREE_OPERAND (arg, 0)));
3701 case BIT_AND_EXPR:
3702 if (!integer_onep (TREE_OPERAND (arg, 1)))
3703 break;
3704 return build2 (EQ_EXPR, type, arg,
3705 build_int_cst (type, 0));
3707 case SAVE_EXPR:
3708 return build1 (TRUTH_NOT_EXPR, type, arg);
3710 case CLEANUP_POINT_EXPR:
3711 return build1 (CLEANUP_POINT_EXPR, type,
3712 invert_truthvalue (TREE_OPERAND (arg, 0)));
3714 default:
3715 break;
3718 return NULL_TREE;
3721 /* Return a simplified tree node for the truth-negation of ARG. This
3722 never alters ARG itself. We assume that ARG is an operation that
3723 returns a truth value (0 or 1).
3725 FIXME: one would think we would fold the result, but it causes
3726 problems with the dominator optimizer. */
3728 tree
3729 invert_truthvalue (tree arg)
3731 tree tem;
3733 if (TREE_CODE (arg) == ERROR_MARK)
3734 return arg;
3736 tem = fold_truth_not_expr (arg);
3737 if (!tem)
3738 tem = build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg), arg);
3740 return tem;
3743 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3744 operands are another bit-wise operation with a common input. If so,
3745 distribute the bit operations to save an operation and possibly two if
3746 constants are involved. For example, convert
3747 (A | B) & (A | C) into A | (B & C)
3748 Further simplification will occur if B and C are constants.
3750 If this optimization cannot be done, 0 will be returned. */
3752 static tree
3753 distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
3755 tree common;
3756 tree left, right;
3758 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3759 || TREE_CODE (arg0) == code
3760 || (TREE_CODE (arg0) != BIT_AND_EXPR
3761 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3762 return 0;
3764 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3766 common = TREE_OPERAND (arg0, 0);
3767 left = TREE_OPERAND (arg0, 1);
3768 right = TREE_OPERAND (arg1, 1);
3770 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3772 common = TREE_OPERAND (arg0, 0);
3773 left = TREE_OPERAND (arg0, 1);
3774 right = TREE_OPERAND (arg1, 0);
3776 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3778 common = TREE_OPERAND (arg0, 1);
3779 left = TREE_OPERAND (arg0, 0);
3780 right = TREE_OPERAND (arg1, 1);
3782 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3784 common = TREE_OPERAND (arg0, 1);
3785 left = TREE_OPERAND (arg0, 0);
3786 right = TREE_OPERAND (arg1, 0);
3788 else
3789 return 0;
3791 return fold_build2 (TREE_CODE (arg0), type, common,
3792 fold_build2 (code, type, left, right));
3795 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3796 with code CODE. This optimization is unsafe. */
3797 static tree
3798 distribute_real_division (enum tree_code code, tree type, tree arg0, tree arg1)
3800 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3801 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3803 /* (A / C) +- (B / C) -> (A +- B) / C. */
3804 if (mul0 == mul1
3805 && operand_equal_p (TREE_OPERAND (arg0, 1),
3806 TREE_OPERAND (arg1, 1), 0))
3807 return fold_build2 (mul0 ? MULT_EXPR : RDIV_EXPR, type,
3808 fold_build2 (code, type,
3809 TREE_OPERAND (arg0, 0),
3810 TREE_OPERAND (arg1, 0)),
3811 TREE_OPERAND (arg0, 1));
3813 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3814 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3815 TREE_OPERAND (arg1, 0), 0)
3816 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3817 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3819 REAL_VALUE_TYPE r0, r1;
3820 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3821 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3822 if (!mul0)
3823 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3824 if (!mul1)
3825 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3826 real_arithmetic (&r0, code, &r0, &r1);
3827 return fold_build2 (MULT_EXPR, type,
3828 TREE_OPERAND (arg0, 0),
3829 build_real (type, r0));
3832 return NULL_TREE;
3835 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3836 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3838 static tree
3839 make_bit_field_ref (tree inner, tree type, int bitsize, int bitpos,
3840 int unsignedp)
3842 tree result;
3844 if (bitpos == 0)
3846 tree size = TYPE_SIZE (TREE_TYPE (inner));
3847 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3848 || POINTER_TYPE_P (TREE_TYPE (inner)))
3849 && host_integerp (size, 0)
3850 && tree_low_cst (size, 0) == bitsize)
3851 return fold_convert (type, inner);
3854 result = build3 (BIT_FIELD_REF, type, inner,
3855 size_int (bitsize), bitsize_int (bitpos));
3857 BIT_FIELD_REF_UNSIGNED (result) = unsignedp;
3859 return result;
3862 /* Optimize a bit-field compare.
3864 There are two cases: First is a compare against a constant and the
3865 second is a comparison of two items where the fields are at the same
3866 bit position relative to the start of a chunk (byte, halfword, word)
3867 large enough to contain it. In these cases we can avoid the shift
3868 implicit in bitfield extractions.
3870 For constants, we emit a compare of the shifted constant with the
3871 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3872 compared. For two fields at the same position, we do the ANDs with the
3873 similar mask and compare the result of the ANDs.
3875 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3876 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3877 are the left and right operands of the comparison, respectively.
3879 If the optimization described above can be done, we return the resulting
3880 tree. Otherwise we return zero. */
3882 static tree
3883 optimize_bit_field_compare (enum tree_code code, tree compare_type,
3884 tree lhs, tree rhs)
3886 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3887 tree type = TREE_TYPE (lhs);
3888 tree signed_type, unsigned_type;
3889 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3890 enum machine_mode lmode, rmode, nmode;
3891 int lunsignedp, runsignedp;
3892 int lvolatilep = 0, rvolatilep = 0;
3893 tree linner, rinner = NULL_TREE;
3894 tree mask;
3895 tree offset;
3897 /* Get all the information about the extractions being done. If the bit size
3898 if the same as the size of the underlying object, we aren't doing an
3899 extraction at all and so can do nothing. We also don't want to
3900 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3901 then will no longer be able to replace it. */
3902 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3903 &lunsignedp, &lvolatilep, false);
3904 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3905 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3906 return 0;
3908 if (!const_p)
3910 /* If this is not a constant, we can only do something if bit positions,
3911 sizes, and signedness are the same. */
3912 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3913 &runsignedp, &rvolatilep, false);
3915 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3916 || lunsignedp != runsignedp || offset != 0
3917 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3918 return 0;
3921 /* See if we can find a mode to refer to this field. We should be able to,
3922 but fail if we can't. */
3923 nmode = get_best_mode (lbitsize, lbitpos,
3924 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3925 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3926 TYPE_ALIGN (TREE_TYPE (rinner))),
3927 word_mode, lvolatilep || rvolatilep);
3928 if (nmode == VOIDmode)
3929 return 0;
3931 /* Set signed and unsigned types of the precision of this mode for the
3932 shifts below. */
3933 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3934 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3936 /* Compute the bit position and size for the new reference and our offset
3937 within it. If the new reference is the same size as the original, we
3938 won't optimize anything, so return zero. */
3939 nbitsize = GET_MODE_BITSIZE (nmode);
3940 nbitpos = lbitpos & ~ (nbitsize - 1);
3941 lbitpos -= nbitpos;
3942 if (nbitsize == lbitsize)
3943 return 0;
3945 if (BYTES_BIG_ENDIAN)
3946 lbitpos = nbitsize - lbitsize - lbitpos;
3948 /* Make the mask to be used against the extracted field. */
3949 mask = build_int_cst_type (unsigned_type, -1);
3950 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
3951 mask = const_binop (RSHIFT_EXPR, mask,
3952 size_int (nbitsize - lbitsize - lbitpos), 0);
3954 if (! const_p)
3955 /* If not comparing with constant, just rework the comparison
3956 and return. */
3957 return fold_build2 (code, compare_type,
3958 fold_build2 (BIT_AND_EXPR, unsigned_type,
3959 make_bit_field_ref (linner,
3960 unsigned_type,
3961 nbitsize, nbitpos,
3963 mask),
3964 fold_build2 (BIT_AND_EXPR, unsigned_type,
3965 make_bit_field_ref (rinner,
3966 unsigned_type,
3967 nbitsize, nbitpos,
3969 mask));
3971 /* Otherwise, we are handling the constant case. See if the constant is too
3972 big for the field. Warn and return a tree of for 0 (false) if so. We do
3973 this not only for its own sake, but to avoid having to test for this
3974 error case below. If we didn't, we might generate wrong code.
3976 For unsigned fields, the constant shifted right by the field length should
3977 be all zero. For signed fields, the high-order bits should agree with
3978 the sign bit. */
3980 if (lunsignedp)
3982 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3983 fold_convert (unsigned_type, rhs),
3984 size_int (lbitsize), 0)))
3986 warning (0, "comparison is always %d due to width of bit-field",
3987 code == NE_EXPR);
3988 return constant_boolean_node (code == NE_EXPR, compare_type);
3991 else
3993 tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
3994 size_int (lbitsize - 1), 0);
3995 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3997 warning (0, "comparison is always %d due to width of bit-field",
3998 code == NE_EXPR);
3999 return constant_boolean_node (code == NE_EXPR, compare_type);
4003 /* Single-bit compares should always be against zero. */
4004 if (lbitsize == 1 && ! integer_zerop (rhs))
4006 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4007 rhs = build_int_cst (type, 0);
4010 /* Make a new bitfield reference, shift the constant over the
4011 appropriate number of bits and mask it with the computed mask
4012 (in case this was a signed field). If we changed it, make a new one. */
4013 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
4014 if (lvolatilep)
4016 TREE_SIDE_EFFECTS (lhs) = 1;
4017 TREE_THIS_VOLATILE (lhs) = 1;
4020 rhs = const_binop (BIT_AND_EXPR,
4021 const_binop (LSHIFT_EXPR,
4022 fold_convert (unsigned_type, rhs),
4023 size_int (lbitpos), 0),
4024 mask, 0);
4026 return build2 (code, compare_type,
4027 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
4028 rhs);
4031 /* Subroutine for fold_truthop: decode a field reference.
4033 If EXP is a comparison reference, we return the innermost reference.
4035 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4036 set to the starting bit number.
4038 If the innermost field can be completely contained in a mode-sized
4039 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4041 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4042 otherwise it is not changed.
4044 *PUNSIGNEDP is set to the signedness of the field.
4046 *PMASK is set to the mask used. This is either contained in a
4047 BIT_AND_EXPR or derived from the width of the field.
4049 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4051 Return 0 if this is not a component reference or is one that we can't
4052 do anything with. */
4054 static tree
4055 decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
4056 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
4057 int *punsignedp, int *pvolatilep,
4058 tree *pmask, tree *pand_mask)
4060 tree outer_type = 0;
4061 tree and_mask = 0;
4062 tree mask, inner, offset;
4063 tree unsigned_type;
4064 unsigned int precision;
4066 /* All the optimizations using this function assume integer fields.
4067 There are problems with FP fields since the type_for_size call
4068 below can fail for, e.g., XFmode. */
4069 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4070 return 0;
4072 /* We are interested in the bare arrangement of bits, so strip everything
4073 that doesn't affect the machine mode. However, record the type of the
4074 outermost expression if it may matter below. */
4075 if (TREE_CODE (exp) == NOP_EXPR
4076 || TREE_CODE (exp) == CONVERT_EXPR
4077 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4078 outer_type = TREE_TYPE (exp);
4079 STRIP_NOPS (exp);
4081 if (TREE_CODE (exp) == BIT_AND_EXPR)
4083 and_mask = TREE_OPERAND (exp, 1);
4084 exp = TREE_OPERAND (exp, 0);
4085 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4086 if (TREE_CODE (and_mask) != INTEGER_CST)
4087 return 0;
4090 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4091 punsignedp, pvolatilep, false);
4092 if ((inner == exp && and_mask == 0)
4093 || *pbitsize < 0 || offset != 0
4094 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
4095 return 0;
4097 /* If the number of bits in the reference is the same as the bitsize of
4098 the outer type, then the outer type gives the signedness. Otherwise
4099 (in case of a small bitfield) the signedness is unchanged. */
4100 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4101 *punsignedp = TYPE_UNSIGNED (outer_type);
4103 /* Compute the mask to access the bitfield. */
4104 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4105 precision = TYPE_PRECISION (unsigned_type);
4107 mask = build_int_cst_type (unsigned_type, -1);
4109 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
4110 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
4112 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4113 if (and_mask != 0)
4114 mask = fold_build2 (BIT_AND_EXPR, unsigned_type,
4115 fold_convert (unsigned_type, and_mask), mask);
4117 *pmask = mask;
4118 *pand_mask = and_mask;
4119 return inner;
4122 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4123 bit positions. */
4125 static int
4126 all_ones_mask_p (const_tree mask, int size)
4128 tree type = TREE_TYPE (mask);
4129 unsigned int precision = TYPE_PRECISION (type);
4130 tree tmask;
4132 tmask = build_int_cst_type (signed_type_for (type), -1);
4134 return
4135 tree_int_cst_equal (mask,
4136 const_binop (RSHIFT_EXPR,
4137 const_binop (LSHIFT_EXPR, tmask,
4138 size_int (precision - size),
4140 size_int (precision - size), 0));
4143 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4144 represents the sign bit of EXP's type. If EXP represents a sign
4145 or zero extension, also test VAL against the unextended type.
4146 The return value is the (sub)expression whose sign bit is VAL,
4147 or NULL_TREE otherwise. */
4149 static tree
4150 sign_bit_p (tree exp, const_tree val)
4152 unsigned HOST_WIDE_INT mask_lo, lo;
4153 HOST_WIDE_INT mask_hi, hi;
4154 int width;
4155 tree t;
4157 /* Tree EXP must have an integral type. */
4158 t = TREE_TYPE (exp);
4159 if (! INTEGRAL_TYPE_P (t))
4160 return NULL_TREE;
4162 /* Tree VAL must be an integer constant. */
4163 if (TREE_CODE (val) != INTEGER_CST
4164 || TREE_OVERFLOW (val))
4165 return NULL_TREE;
4167 width = TYPE_PRECISION (t);
4168 if (width > HOST_BITS_PER_WIDE_INT)
4170 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
4171 lo = 0;
4173 mask_hi = ((unsigned HOST_WIDE_INT) -1
4174 >> (2 * HOST_BITS_PER_WIDE_INT - width));
4175 mask_lo = -1;
4177 else
4179 hi = 0;
4180 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
4182 mask_hi = 0;
4183 mask_lo = ((unsigned HOST_WIDE_INT) -1
4184 >> (HOST_BITS_PER_WIDE_INT - width));
4187 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
4188 treat VAL as if it were unsigned. */
4189 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
4190 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
4191 return exp;
4193 /* Handle extension from a narrower type. */
4194 if (TREE_CODE (exp) == NOP_EXPR
4195 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4196 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4198 return NULL_TREE;
4201 /* Subroutine for fold_truthop: determine if an operand is simple enough
4202 to be evaluated unconditionally. */
4204 static int
4205 simple_operand_p (const_tree exp)
4207 /* Strip any conversions that don't change the machine mode. */
4208 STRIP_NOPS (exp);
4210 return (CONSTANT_CLASS_P (exp)
4211 || TREE_CODE (exp) == SSA_NAME
4212 || (DECL_P (exp)
4213 && ! TREE_ADDRESSABLE (exp)
4214 && ! TREE_THIS_VOLATILE (exp)
4215 && ! DECL_NONLOCAL (exp)
4216 /* Don't regard global variables as simple. They may be
4217 allocated in ways unknown to the compiler (shared memory,
4218 #pragma weak, etc). */
4219 && ! TREE_PUBLIC (exp)
4220 && ! DECL_EXTERNAL (exp)
4221 /* Loading a static variable is unduly expensive, but global
4222 registers aren't expensive. */
4223 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4226 /* The following functions are subroutines to fold_range_test and allow it to
4227 try to change a logical combination of comparisons into a range test.
4229 For example, both
4230 X == 2 || X == 3 || X == 4 || X == 5
4232 X >= 2 && X <= 5
4233 are converted to
4234 (unsigned) (X - 2) <= 3
4236 We describe each set of comparisons as being either inside or outside
4237 a range, using a variable named like IN_P, and then describe the
4238 range with a lower and upper bound. If one of the bounds is omitted,
4239 it represents either the highest or lowest value of the type.
4241 In the comments below, we represent a range by two numbers in brackets
4242 preceded by a "+" to designate being inside that range, or a "-" to
4243 designate being outside that range, so the condition can be inverted by
4244 flipping the prefix. An omitted bound is represented by a "-". For
4245 example, "- [-, 10]" means being outside the range starting at the lowest
4246 possible value and ending at 10, in other words, being greater than 10.
4247 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4248 always false.
4250 We set up things so that the missing bounds are handled in a consistent
4251 manner so neither a missing bound nor "true" and "false" need to be
4252 handled using a special case. */
4254 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4255 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4256 and UPPER1_P are nonzero if the respective argument is an upper bound
4257 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4258 must be specified for a comparison. ARG1 will be converted to ARG0's
4259 type if both are specified. */
4261 static tree
4262 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4263 tree arg1, int upper1_p)
4265 tree tem;
4266 int result;
4267 int sgn0, sgn1;
4269 /* If neither arg represents infinity, do the normal operation.
4270 Else, if not a comparison, return infinity. Else handle the special
4271 comparison rules. Note that most of the cases below won't occur, but
4272 are handled for consistency. */
4274 if (arg0 != 0 && arg1 != 0)
4276 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4277 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4278 STRIP_NOPS (tem);
4279 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4282 if (TREE_CODE_CLASS (code) != tcc_comparison)
4283 return 0;
4285 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4286 for neither. In real maths, we cannot assume open ended ranges are
4287 the same. But, this is computer arithmetic, where numbers are finite.
4288 We can therefore make the transformation of any unbounded range with
4289 the value Z, Z being greater than any representable number. This permits
4290 us to treat unbounded ranges as equal. */
4291 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4292 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4293 switch (code)
4295 case EQ_EXPR:
4296 result = sgn0 == sgn1;
4297 break;
4298 case NE_EXPR:
4299 result = sgn0 != sgn1;
4300 break;
4301 case LT_EXPR:
4302 result = sgn0 < sgn1;
4303 break;
4304 case LE_EXPR:
4305 result = sgn0 <= sgn1;
4306 break;
4307 case GT_EXPR:
4308 result = sgn0 > sgn1;
4309 break;
4310 case GE_EXPR:
4311 result = sgn0 >= sgn1;
4312 break;
4313 default:
4314 gcc_unreachable ();
4317 return constant_boolean_node (result, type);
4320 /* Given EXP, a logical expression, set the range it is testing into
4321 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4322 actually being tested. *PLOW and *PHIGH will be made of the same
4323 type as the returned expression. If EXP is not a comparison, we
4324 will most likely not be returning a useful value and range. Set
4325 *STRICT_OVERFLOW_P to true if the return value is only valid
4326 because signed overflow is undefined; otherwise, do not change
4327 *STRICT_OVERFLOW_P. */
4329 static tree
4330 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4331 bool *strict_overflow_p)
4333 enum tree_code code;
4334 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
4335 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
4336 int in_p, n_in_p;
4337 tree low, high, n_low, n_high;
4339 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4340 and see if we can refine the range. Some of the cases below may not
4341 happen, but it doesn't seem worth worrying about this. We "continue"
4342 the outer loop when we've changed something; otherwise we "break"
4343 the switch, which will "break" the while. */
4345 in_p = 0;
4346 low = high = build_int_cst (TREE_TYPE (exp), 0);
4348 while (1)
4350 code = TREE_CODE (exp);
4351 exp_type = TREE_TYPE (exp);
4353 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4355 if (TREE_OPERAND_LENGTH (exp) > 0)
4356 arg0 = TREE_OPERAND (exp, 0);
4357 if (TREE_CODE_CLASS (code) == tcc_comparison
4358 || TREE_CODE_CLASS (code) == tcc_unary
4359 || TREE_CODE_CLASS (code) == tcc_binary)
4360 arg0_type = TREE_TYPE (arg0);
4361 if (TREE_CODE_CLASS (code) == tcc_binary
4362 || TREE_CODE_CLASS (code) == tcc_comparison
4363 || (TREE_CODE_CLASS (code) == tcc_expression
4364 && TREE_OPERAND_LENGTH (exp) > 1))
4365 arg1 = TREE_OPERAND (exp, 1);
4368 switch (code)
4370 case TRUTH_NOT_EXPR:
4371 in_p = ! in_p, exp = arg0;
4372 continue;
4374 case EQ_EXPR: case NE_EXPR:
4375 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4376 /* We can only do something if the range is testing for zero
4377 and if the second operand is an integer constant. Note that
4378 saying something is "in" the range we make is done by
4379 complementing IN_P since it will set in the initial case of
4380 being not equal to zero; "out" is leaving it alone. */
4381 if (low == 0 || high == 0
4382 || ! integer_zerop (low) || ! integer_zerop (high)
4383 || TREE_CODE (arg1) != INTEGER_CST)
4384 break;
4386 switch (code)
4388 case NE_EXPR: /* - [c, c] */
4389 low = high = arg1;
4390 break;
4391 case EQ_EXPR: /* + [c, c] */
4392 in_p = ! in_p, low = high = arg1;
4393 break;
4394 case GT_EXPR: /* - [-, c] */
4395 low = 0, high = arg1;
4396 break;
4397 case GE_EXPR: /* + [c, -] */
4398 in_p = ! in_p, low = arg1, high = 0;
4399 break;
4400 case LT_EXPR: /* - [c, -] */
4401 low = arg1, high = 0;
4402 break;
4403 case LE_EXPR: /* + [-, c] */
4404 in_p = ! in_p, low = 0, high = arg1;
4405 break;
4406 default:
4407 gcc_unreachable ();
4410 /* If this is an unsigned comparison, we also know that EXP is
4411 greater than or equal to zero. We base the range tests we make
4412 on that fact, so we record it here so we can parse existing
4413 range tests. We test arg0_type since often the return type
4414 of, e.g. EQ_EXPR, is boolean. */
4415 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4417 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4418 in_p, low, high, 1,
4419 build_int_cst (arg0_type, 0),
4420 NULL_TREE))
4421 break;
4423 in_p = n_in_p, low = n_low, high = n_high;
4425 /* If the high bound is missing, but we have a nonzero low
4426 bound, reverse the range so it goes from zero to the low bound
4427 minus 1. */
4428 if (high == 0 && low && ! integer_zerop (low))
4430 in_p = ! in_p;
4431 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4432 integer_one_node, 0);
4433 low = build_int_cst (arg0_type, 0);
4437 exp = arg0;
4438 continue;
4440 case NEGATE_EXPR:
4441 /* (-x) IN [a,b] -> x in [-b, -a] */
4442 n_low = range_binop (MINUS_EXPR, exp_type,
4443 build_int_cst (exp_type, 0),
4444 0, high, 1);
4445 n_high = range_binop (MINUS_EXPR, exp_type,
4446 build_int_cst (exp_type, 0),
4447 0, low, 0);
4448 low = n_low, high = n_high;
4449 exp = arg0;
4450 continue;
4452 case BIT_NOT_EXPR:
4453 /* ~ X -> -X - 1 */
4454 exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
4455 build_int_cst (exp_type, 1));
4456 continue;
4458 case PLUS_EXPR: case MINUS_EXPR:
4459 if (TREE_CODE (arg1) != INTEGER_CST)
4460 break;
4462 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4463 move a constant to the other side. */
4464 if (!TYPE_UNSIGNED (arg0_type)
4465 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4466 break;
4468 /* If EXP is signed, any overflow in the computation is undefined,
4469 so we don't worry about it so long as our computations on
4470 the bounds don't overflow. For unsigned, overflow is defined
4471 and this is exactly the right thing. */
4472 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4473 arg0_type, low, 0, arg1, 0);
4474 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4475 arg0_type, high, 1, arg1, 0);
4476 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4477 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4478 break;
4480 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4481 *strict_overflow_p = true;
4483 /* Check for an unsigned range which has wrapped around the maximum
4484 value thus making n_high < n_low, and normalize it. */
4485 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4487 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4488 integer_one_node, 0);
4489 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4490 integer_one_node, 0);
4492 /* If the range is of the form +/- [ x+1, x ], we won't
4493 be able to normalize it. But then, it represents the
4494 whole range or the empty set, so make it
4495 +/- [ -, - ]. */
4496 if (tree_int_cst_equal (n_low, low)
4497 && tree_int_cst_equal (n_high, high))
4498 low = high = 0;
4499 else
4500 in_p = ! in_p;
4502 else
4503 low = n_low, high = n_high;
4505 exp = arg0;
4506 continue;
4508 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
4509 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4510 break;
4512 if (! INTEGRAL_TYPE_P (arg0_type)
4513 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4514 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4515 break;
4517 n_low = low, n_high = high;
4519 if (n_low != 0)
4520 n_low = fold_convert (arg0_type, n_low);
4522 if (n_high != 0)
4523 n_high = fold_convert (arg0_type, n_high);
4526 /* If we're converting arg0 from an unsigned type, to exp,
4527 a signed type, we will be doing the comparison as unsigned.
4528 The tests above have already verified that LOW and HIGH
4529 are both positive.
4531 So we have to ensure that we will handle large unsigned
4532 values the same way that the current signed bounds treat
4533 negative values. */
4535 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4537 tree high_positive;
4538 tree equiv_type;
4539 /* For fixed-point modes, we need to pass the saturating flag
4540 as the 2nd parameter. */
4541 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4542 equiv_type = lang_hooks.types.type_for_mode
4543 (TYPE_MODE (arg0_type),
4544 TYPE_SATURATING (arg0_type));
4545 else
4546 equiv_type = lang_hooks.types.type_for_mode
4547 (TYPE_MODE (arg0_type), 1);
4549 /* A range without an upper bound is, naturally, unbounded.
4550 Since convert would have cropped a very large value, use
4551 the max value for the destination type. */
4552 high_positive
4553 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4554 : TYPE_MAX_VALUE (arg0_type);
4556 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4557 high_positive = fold_build2 (RSHIFT_EXPR, arg0_type,
4558 fold_convert (arg0_type,
4559 high_positive),
4560 build_int_cst (arg0_type, 1));
4562 /* If the low bound is specified, "and" the range with the
4563 range for which the original unsigned value will be
4564 positive. */
4565 if (low != 0)
4567 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4568 1, n_low, n_high, 1,
4569 fold_convert (arg0_type,
4570 integer_zero_node),
4571 high_positive))
4572 break;
4574 in_p = (n_in_p == in_p);
4576 else
4578 /* Otherwise, "or" the range with the range of the input
4579 that will be interpreted as negative. */
4580 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4581 0, n_low, n_high, 1,
4582 fold_convert (arg0_type,
4583 integer_zero_node),
4584 high_positive))
4585 break;
4587 in_p = (in_p != n_in_p);
4591 exp = arg0;
4592 low = n_low, high = n_high;
4593 continue;
4595 default:
4596 break;
4599 break;
4602 /* If EXP is a constant, we can evaluate whether this is true or false. */
4603 if (TREE_CODE (exp) == INTEGER_CST)
4605 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4606 exp, 0, low, 0))
4607 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4608 exp, 1, high, 1)));
4609 low = high = 0;
4610 exp = 0;
4613 *pin_p = in_p, *plow = low, *phigh = high;
4614 return exp;
4617 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4618 type, TYPE, return an expression to test if EXP is in (or out of, depending
4619 on IN_P) the range. Return 0 if the test couldn't be created. */
4621 static tree
4622 build_range_check (tree type, tree exp, int in_p, tree low, tree high)
4624 tree etype = TREE_TYPE (exp);
4625 tree value;
4627 #ifdef HAVE_canonicalize_funcptr_for_compare
4628 /* Disable this optimization for function pointer expressions
4629 on targets that require function pointer canonicalization. */
4630 if (HAVE_canonicalize_funcptr_for_compare
4631 && TREE_CODE (etype) == POINTER_TYPE
4632 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4633 return NULL_TREE;
4634 #endif
4636 if (! in_p)
4638 value = build_range_check (type, exp, 1, low, high);
4639 if (value != 0)
4640 return invert_truthvalue (value);
4642 return 0;
4645 if (low == 0 && high == 0)
4646 return build_int_cst (type, 1);
4648 if (low == 0)
4649 return fold_build2 (LE_EXPR, type, exp,
4650 fold_convert (etype, high));
4652 if (high == 0)
4653 return fold_build2 (GE_EXPR, type, exp,
4654 fold_convert (etype, low));
4656 if (operand_equal_p (low, high, 0))
4657 return fold_build2 (EQ_EXPR, type, exp,
4658 fold_convert (etype, low));
4660 if (integer_zerop (low))
4662 if (! TYPE_UNSIGNED (etype))
4664 etype = unsigned_type_for (etype);
4665 high = fold_convert (etype, high);
4666 exp = fold_convert (etype, exp);
4668 return build_range_check (type, exp, 1, 0, high);
4671 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4672 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4674 unsigned HOST_WIDE_INT lo;
4675 HOST_WIDE_INT hi;
4676 int prec;
4678 prec = TYPE_PRECISION (etype);
4679 if (prec <= HOST_BITS_PER_WIDE_INT)
4681 hi = 0;
4682 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
4684 else
4686 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
4687 lo = (unsigned HOST_WIDE_INT) -1;
4690 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
4692 if (TYPE_UNSIGNED (etype))
4694 etype = signed_type_for (etype);
4695 exp = fold_convert (etype, exp);
4697 return fold_build2 (GT_EXPR, type, exp,
4698 build_int_cst (etype, 0));
4702 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4703 This requires wrap-around arithmetics for the type of the expression. */
4704 switch (TREE_CODE (etype))
4706 case INTEGER_TYPE:
4707 /* There is no requirement that LOW be within the range of ETYPE
4708 if the latter is a subtype. It must, however, be within the base
4709 type of ETYPE. So be sure we do the subtraction in that type. */
4710 if (TREE_TYPE (etype))
4711 etype = TREE_TYPE (etype);
4712 break;
4714 case ENUMERAL_TYPE:
4715 case BOOLEAN_TYPE:
4716 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4717 TYPE_UNSIGNED (etype));
4718 break;
4720 default:
4721 break;
4724 /* If we don't have wrap-around arithmetics upfront, try to force it. */
4725 if (TREE_CODE (etype) == INTEGER_TYPE
4726 && !TYPE_OVERFLOW_WRAPS (etype))
4728 tree utype, minv, maxv;
4730 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4731 for the type in question, as we rely on this here. */
4732 utype = unsigned_type_for (etype);
4733 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4734 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4735 integer_one_node, 1);
4736 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4738 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4739 minv, 1, maxv, 1)))
4740 etype = utype;
4741 else
4742 return 0;
4745 high = fold_convert (etype, high);
4746 low = fold_convert (etype, low);
4747 exp = fold_convert (etype, exp);
4749 value = const_binop (MINUS_EXPR, high, low, 0);
4752 if (POINTER_TYPE_P (etype))
4754 if (value != 0 && !TREE_OVERFLOW (value))
4756 low = fold_convert (sizetype, low);
4757 low = fold_build1 (NEGATE_EXPR, sizetype, low);
4758 return build_range_check (type,
4759 fold_build2 (POINTER_PLUS_EXPR, etype, exp, low),
4760 1, build_int_cst (etype, 0), value);
4762 return 0;
4765 if (value != 0 && !TREE_OVERFLOW (value))
4766 return build_range_check (type,
4767 fold_build2 (MINUS_EXPR, etype, exp, low),
4768 1, build_int_cst (etype, 0), value);
4770 return 0;
4773 /* Return the predecessor of VAL in its type, handling the infinite case. */
4775 static tree
4776 range_predecessor (tree val)
4778 tree type = TREE_TYPE (val);
4780 if (INTEGRAL_TYPE_P (type)
4781 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4782 return 0;
4783 else
4784 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4787 /* Return the successor of VAL in its type, handling the infinite case. */
4789 static tree
4790 range_successor (tree val)
4792 tree type = TREE_TYPE (val);
4794 if (INTEGRAL_TYPE_P (type)
4795 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4796 return 0;
4797 else
4798 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4801 /* Given two ranges, see if we can merge them into one. Return 1 if we
4802 can, 0 if we can't. Set the output range into the specified parameters. */
4804 static int
4805 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4806 tree high0, int in1_p, tree low1, tree high1)
4808 int no_overlap;
4809 int subset;
4810 int temp;
4811 tree tem;
4812 int in_p;
4813 tree low, high;
4814 int lowequal = ((low0 == 0 && low1 == 0)
4815 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4816 low0, 0, low1, 0)));
4817 int highequal = ((high0 == 0 && high1 == 0)
4818 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4819 high0, 1, high1, 1)));
4821 /* Make range 0 be the range that starts first, or ends last if they
4822 start at the same value. Swap them if it isn't. */
4823 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4824 low0, 0, low1, 0))
4825 || (lowequal
4826 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4827 high1, 1, high0, 1))))
4829 temp = in0_p, in0_p = in1_p, in1_p = temp;
4830 tem = low0, low0 = low1, low1 = tem;
4831 tem = high0, high0 = high1, high1 = tem;
4834 /* Now flag two cases, whether the ranges are disjoint or whether the
4835 second range is totally subsumed in the first. Note that the tests
4836 below are simplified by the ones above. */
4837 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4838 high0, 1, low1, 0));
4839 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4840 high1, 1, high0, 1));
4842 /* We now have four cases, depending on whether we are including or
4843 excluding the two ranges. */
4844 if (in0_p && in1_p)
4846 /* If they don't overlap, the result is false. If the second range
4847 is a subset it is the result. Otherwise, the range is from the start
4848 of the second to the end of the first. */
4849 if (no_overlap)
4850 in_p = 0, low = high = 0;
4851 else if (subset)
4852 in_p = 1, low = low1, high = high1;
4853 else
4854 in_p = 1, low = low1, high = high0;
4857 else if (in0_p && ! in1_p)
4859 /* If they don't overlap, the result is the first range. If they are
4860 equal, the result is false. If the second range is a subset of the
4861 first, and the ranges begin at the same place, we go from just after
4862 the end of the second range to the end of the first. If the second
4863 range is not a subset of the first, or if it is a subset and both
4864 ranges end at the same place, the range starts at the start of the
4865 first range and ends just before the second range.
4866 Otherwise, we can't describe this as a single range. */
4867 if (no_overlap)
4868 in_p = 1, low = low0, high = high0;
4869 else if (lowequal && highequal)
4870 in_p = 0, low = high = 0;
4871 else if (subset && lowequal)
4873 low = range_successor (high1);
4874 high = high0;
4875 in_p = 1;
4876 if (low == 0)
4878 /* We are in the weird situation where high0 > high1 but
4879 high1 has no successor. Punt. */
4880 return 0;
4883 else if (! subset || highequal)
4885 low = low0;
4886 high = range_predecessor (low1);
4887 in_p = 1;
4888 if (high == 0)
4890 /* low0 < low1 but low1 has no predecessor. Punt. */
4891 return 0;
4894 else
4895 return 0;
4898 else if (! in0_p && in1_p)
4900 /* If they don't overlap, the result is the second range. If the second
4901 is a subset of the first, the result is false. Otherwise,
4902 the range starts just after the first range and ends at the
4903 end of the second. */
4904 if (no_overlap)
4905 in_p = 1, low = low1, high = high1;
4906 else if (subset || highequal)
4907 in_p = 0, low = high = 0;
4908 else
4910 low = range_successor (high0);
4911 high = high1;
4912 in_p = 1;
4913 if (low == 0)
4915 /* high1 > high0 but high0 has no successor. Punt. */
4916 return 0;
4921 else
4923 /* The case where we are excluding both ranges. Here the complex case
4924 is if they don't overlap. In that case, the only time we have a
4925 range is if they are adjacent. If the second is a subset of the
4926 first, the result is the first. Otherwise, the range to exclude
4927 starts at the beginning of the first range and ends at the end of the
4928 second. */
4929 if (no_overlap)
4931 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4932 range_successor (high0),
4933 1, low1, 0)))
4934 in_p = 0, low = low0, high = high1;
4935 else
4937 /* Canonicalize - [min, x] into - [-, x]. */
4938 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4939 switch (TREE_CODE (TREE_TYPE (low0)))
4941 case ENUMERAL_TYPE:
4942 if (TYPE_PRECISION (TREE_TYPE (low0))
4943 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4944 break;
4945 /* FALLTHROUGH */
4946 case INTEGER_TYPE:
4947 if (tree_int_cst_equal (low0,
4948 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4949 low0 = 0;
4950 break;
4951 case POINTER_TYPE:
4952 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4953 && integer_zerop (low0))
4954 low0 = 0;
4955 break;
4956 default:
4957 break;
4960 /* Canonicalize - [x, max] into - [x, -]. */
4961 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4962 switch (TREE_CODE (TREE_TYPE (high1)))
4964 case ENUMERAL_TYPE:
4965 if (TYPE_PRECISION (TREE_TYPE (high1))
4966 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4967 break;
4968 /* FALLTHROUGH */
4969 case INTEGER_TYPE:
4970 if (tree_int_cst_equal (high1,
4971 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4972 high1 = 0;
4973 break;
4974 case POINTER_TYPE:
4975 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4976 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4977 high1, 1,
4978 integer_one_node, 1)))
4979 high1 = 0;
4980 break;
4981 default:
4982 break;
4985 /* The ranges might be also adjacent between the maximum and
4986 minimum values of the given type. For
4987 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4988 return + [x + 1, y - 1]. */
4989 if (low0 == 0 && high1 == 0)
4991 low = range_successor (high0);
4992 high = range_predecessor (low1);
4993 if (low == 0 || high == 0)
4994 return 0;
4996 in_p = 1;
4998 else
4999 return 0;
5002 else if (subset)
5003 in_p = 0, low = low0, high = high0;
5004 else
5005 in_p = 0, low = low0, high = high1;
5008 *pin_p = in_p, *plow = low, *phigh = high;
5009 return 1;
5013 /* Subroutine of fold, looking inside expressions of the form
5014 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5015 of the COND_EXPR. This function is being used also to optimize
5016 A op B ? C : A, by reversing the comparison first.
5018 Return a folded expression whose code is not a COND_EXPR
5019 anymore, or NULL_TREE if no folding opportunity is found. */
5021 static tree
5022 fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
5024 enum tree_code comp_code = TREE_CODE (arg0);
5025 tree arg00 = TREE_OPERAND (arg0, 0);
5026 tree arg01 = TREE_OPERAND (arg0, 1);
5027 tree arg1_type = TREE_TYPE (arg1);
5028 tree tem;
5030 STRIP_NOPS (arg1);
5031 STRIP_NOPS (arg2);
5033 /* If we have A op 0 ? A : -A, consider applying the following
5034 transformations:
5036 A == 0? A : -A same as -A
5037 A != 0? A : -A same as A
5038 A >= 0? A : -A same as abs (A)
5039 A > 0? A : -A same as abs (A)
5040 A <= 0? A : -A same as -abs (A)
5041 A < 0? A : -A same as -abs (A)
5043 None of these transformations work for modes with signed
5044 zeros. If A is +/-0, the first two transformations will
5045 change the sign of the result (from +0 to -0, or vice
5046 versa). The last four will fix the sign of the result,
5047 even though the original expressions could be positive or
5048 negative, depending on the sign of A.
5050 Note that all these transformations are correct if A is
5051 NaN, since the two alternatives (A and -A) are also NaNs. */
5052 if ((FLOAT_TYPE_P (TREE_TYPE (arg01))
5053 ? real_zerop (arg01)
5054 : integer_zerop (arg01))
5055 && ((TREE_CODE (arg2) == NEGATE_EXPR
5056 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5057 /* In the case that A is of the form X-Y, '-A' (arg2) may
5058 have already been folded to Y-X, check for that. */
5059 || (TREE_CODE (arg1) == MINUS_EXPR
5060 && TREE_CODE (arg2) == MINUS_EXPR
5061 && operand_equal_p (TREE_OPERAND (arg1, 0),
5062 TREE_OPERAND (arg2, 1), 0)
5063 && operand_equal_p (TREE_OPERAND (arg1, 1),
5064 TREE_OPERAND (arg2, 0), 0))))
5065 switch (comp_code)
5067 case EQ_EXPR:
5068 case UNEQ_EXPR:
5069 tem = fold_convert (arg1_type, arg1);
5070 return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
5071 case NE_EXPR:
5072 case LTGT_EXPR:
5073 return pedantic_non_lvalue (fold_convert (type, arg1));
5074 case UNGE_EXPR:
5075 case UNGT_EXPR:
5076 if (flag_trapping_math)
5077 break;
5078 /* Fall through. */
5079 case GE_EXPR:
5080 case GT_EXPR:
5081 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5082 arg1 = fold_convert (signed_type_for
5083 (TREE_TYPE (arg1)), arg1);
5084 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
5085 return pedantic_non_lvalue (fold_convert (type, tem));
5086 case UNLE_EXPR:
5087 case UNLT_EXPR:
5088 if (flag_trapping_math)
5089 break;
5090 case LE_EXPR:
5091 case LT_EXPR:
5092 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5093 arg1 = fold_convert (signed_type_for
5094 (TREE_TYPE (arg1)), arg1);
5095 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
5096 return negate_expr (fold_convert (type, tem));
5097 default:
5098 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5099 break;
5102 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5103 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5104 both transformations are correct when A is NaN: A != 0
5105 is then true, and A == 0 is false. */
5107 if (integer_zerop (arg01) && integer_zerop (arg2))
5109 if (comp_code == NE_EXPR)
5110 return pedantic_non_lvalue (fold_convert (type, arg1));
5111 else if (comp_code == EQ_EXPR)
5112 return build_int_cst (type, 0);
5115 /* Try some transformations of A op B ? A : B.
5117 A == B? A : B same as B
5118 A != B? A : B same as A
5119 A >= B? A : B same as max (A, B)
5120 A > B? A : B same as max (B, A)
5121 A <= B? A : B same as min (A, B)
5122 A < B? A : B same as min (B, A)
5124 As above, these transformations don't work in the presence
5125 of signed zeros. For example, if A and B are zeros of
5126 opposite sign, the first two transformations will change
5127 the sign of the result. In the last four, the original
5128 expressions give different results for (A=+0, B=-0) and
5129 (A=-0, B=+0), but the transformed expressions do not.
5131 The first two transformations are correct if either A or B
5132 is a NaN. In the first transformation, the condition will
5133 be false, and B will indeed be chosen. In the case of the
5134 second transformation, the condition A != B will be true,
5135 and A will be chosen.
5137 The conversions to max() and min() are not correct if B is
5138 a number and A is not. The conditions in the original
5139 expressions will be false, so all four give B. The min()
5140 and max() versions would give a NaN instead. */
5141 if (operand_equal_for_comparison_p (arg01, arg2, arg00)
5142 /* Avoid these transformations if the COND_EXPR may be used
5143 as an lvalue in the C++ front-end. PR c++/19199. */
5144 && (in_gimple_form
5145 || (strcmp (lang_hooks.name, "GNU C++") != 0
5146 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5147 || ! maybe_lvalue_p (arg1)
5148 || ! maybe_lvalue_p (arg2)))
5150 tree comp_op0 = arg00;
5151 tree comp_op1 = arg01;
5152 tree comp_type = TREE_TYPE (comp_op0);
5154 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
5155 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
5157 comp_type = type;
5158 comp_op0 = arg1;
5159 comp_op1 = arg2;
5162 switch (comp_code)
5164 case EQ_EXPR:
5165 return pedantic_non_lvalue (fold_convert (type, arg2));
5166 case NE_EXPR:
5167 return pedantic_non_lvalue (fold_convert (type, arg1));
5168 case LE_EXPR:
5169 case LT_EXPR:
5170 case UNLE_EXPR:
5171 case UNLT_EXPR:
5172 /* In C++ a ?: expression can be an lvalue, so put the
5173 operand which will be used if they are equal first
5174 so that we can convert this back to the
5175 corresponding COND_EXPR. */
5176 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5178 comp_op0 = fold_convert (comp_type, comp_op0);
5179 comp_op1 = fold_convert (comp_type, comp_op1);
5180 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5181 ? fold_build2 (MIN_EXPR, comp_type, comp_op0, comp_op1)
5182 : fold_build2 (MIN_EXPR, comp_type, comp_op1, comp_op0);
5183 return pedantic_non_lvalue (fold_convert (type, tem));
5185 break;
5186 case GE_EXPR:
5187 case GT_EXPR:
5188 case UNGE_EXPR:
5189 case UNGT_EXPR:
5190 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5192 comp_op0 = fold_convert (comp_type, comp_op0);
5193 comp_op1 = fold_convert (comp_type, comp_op1);
5194 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5195 ? fold_build2 (MAX_EXPR, comp_type, comp_op0, comp_op1)
5196 : fold_build2 (MAX_EXPR, comp_type, comp_op1, comp_op0);
5197 return pedantic_non_lvalue (fold_convert (type, tem));
5199 break;
5200 case UNEQ_EXPR:
5201 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5202 return pedantic_non_lvalue (fold_convert (type, arg2));
5203 break;
5204 case LTGT_EXPR:
5205 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5206 return pedantic_non_lvalue (fold_convert (type, arg1));
5207 break;
5208 default:
5209 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5210 break;
5214 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5215 we might still be able to simplify this. For example,
5216 if C1 is one less or one more than C2, this might have started
5217 out as a MIN or MAX and been transformed by this function.
5218 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5220 if (INTEGRAL_TYPE_P (type)
5221 && TREE_CODE (arg01) == INTEGER_CST
5222 && TREE_CODE (arg2) == INTEGER_CST)
5223 switch (comp_code)
5225 case EQ_EXPR:
5226 /* We can replace A with C1 in this case. */
5227 arg1 = fold_convert (type, arg01);
5228 return fold_build3 (COND_EXPR, type, arg0, arg1, arg2);
5230 case LT_EXPR:
5231 /* If C1 is C2 + 1, this is min(A, C2). */
5232 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5233 OEP_ONLY_CONST)
5234 && operand_equal_p (arg01,
5235 const_binop (PLUS_EXPR, arg2,
5236 build_int_cst (type, 1), 0),
5237 OEP_ONLY_CONST))
5238 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
5239 type,
5240 fold_convert (type, arg1),
5241 arg2));
5242 break;
5244 case LE_EXPR:
5245 /* If C1 is C2 - 1, this is min(A, C2). */
5246 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5247 OEP_ONLY_CONST)
5248 && operand_equal_p (arg01,
5249 const_binop (MINUS_EXPR, arg2,
5250 build_int_cst (type, 1), 0),
5251 OEP_ONLY_CONST))
5252 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
5253 type,
5254 fold_convert (type, arg1),
5255 arg2));
5256 break;
5258 case GT_EXPR:
5259 /* If C1 is C2 - 1, this is max(A, C2). */
5260 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5261 OEP_ONLY_CONST)
5262 && operand_equal_p (arg01,
5263 const_binop (MINUS_EXPR, arg2,
5264 build_int_cst (type, 1), 0),
5265 OEP_ONLY_CONST))
5266 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
5267 type,
5268 fold_convert (type, arg1),
5269 arg2));
5270 break;
5272 case GE_EXPR:
5273 /* If C1 is C2 + 1, this is max(A, C2). */
5274 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5275 OEP_ONLY_CONST)
5276 && operand_equal_p (arg01,
5277 const_binop (PLUS_EXPR, arg2,
5278 build_int_cst (type, 1), 0),
5279 OEP_ONLY_CONST))
5280 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
5281 type,
5282 fold_convert (type, arg1),
5283 arg2));
5284 break;
5285 case NE_EXPR:
5286 break;
5287 default:
5288 gcc_unreachable ();
5291 return NULL_TREE;
5296 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5297 #define LOGICAL_OP_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
5298 #endif
5300 /* EXP is some logical combination of boolean tests. See if we can
5301 merge it into some range test. Return the new tree if so. */
5303 static tree
5304 fold_range_test (enum tree_code code, tree type, tree op0, tree op1)
5306 int or_op = (code == TRUTH_ORIF_EXPR
5307 || code == TRUTH_OR_EXPR);
5308 int in0_p, in1_p, in_p;
5309 tree low0, low1, low, high0, high1, high;
5310 bool strict_overflow_p = false;
5311 tree lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5312 tree rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5313 tree tem;
5314 const char * const warnmsg = G_("assuming signed overflow does not occur "
5315 "when simplifying range test");
5317 /* If this is an OR operation, invert both sides; we will invert
5318 again at the end. */
5319 if (or_op)
5320 in0_p = ! in0_p, in1_p = ! in1_p;
5322 /* If both expressions are the same, if we can merge the ranges, and we
5323 can build the range test, return it or it inverted. If one of the
5324 ranges is always true or always false, consider it to be the same
5325 expression as the other. */
5326 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5327 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5328 in1_p, low1, high1)
5329 && 0 != (tem = (build_range_check (type,
5330 lhs != 0 ? lhs
5331 : rhs != 0 ? rhs : integer_zero_node,
5332 in_p, low, high))))
5334 if (strict_overflow_p)
5335 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5336 return or_op ? invert_truthvalue (tem) : tem;
5339 /* On machines where the branch cost is expensive, if this is a
5340 short-circuited branch and the underlying object on both sides
5341 is the same, make a non-short-circuit operation. */
5342 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5343 && lhs != 0 && rhs != 0
5344 && (code == TRUTH_ANDIF_EXPR
5345 || code == TRUTH_ORIF_EXPR)
5346 && operand_equal_p (lhs, rhs, 0))
5348 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5349 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5350 which cases we can't do this. */
5351 if (simple_operand_p (lhs))
5352 return build2 (code == TRUTH_ANDIF_EXPR
5353 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5354 type, op0, op1);
5356 else if (lang_hooks.decls.global_bindings_p () == 0
5357 && ! CONTAINS_PLACEHOLDER_P (lhs))
5359 tree common = save_expr (lhs);
5361 if (0 != (lhs = build_range_check (type, common,
5362 or_op ? ! in0_p : in0_p,
5363 low0, high0))
5364 && (0 != (rhs = build_range_check (type, common,
5365 or_op ? ! in1_p : in1_p,
5366 low1, high1))))
5368 if (strict_overflow_p)
5369 fold_overflow_warning (warnmsg,
5370 WARN_STRICT_OVERFLOW_COMPARISON);
5371 return build2 (code == TRUTH_ANDIF_EXPR
5372 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5373 type, lhs, rhs);
5378 return 0;
5381 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
5382 bit value. Arrange things so the extra bits will be set to zero if and
5383 only if C is signed-extended to its full width. If MASK is nonzero,
5384 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5386 static tree
5387 unextend (tree c, int p, int unsignedp, tree mask)
5389 tree type = TREE_TYPE (c);
5390 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5391 tree temp;
5393 if (p == modesize || unsignedp)
5394 return c;
5396 /* We work by getting just the sign bit into the low-order bit, then
5397 into the high-order bit, then sign-extend. We then XOR that value
5398 with C. */
5399 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
5400 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
5402 /* We must use a signed type in order to get an arithmetic right shift.
5403 However, we must also avoid introducing accidental overflows, so that
5404 a subsequent call to integer_zerop will work. Hence we must
5405 do the type conversion here. At this point, the constant is either
5406 zero or one, and the conversion to a signed type can never overflow.
5407 We could get an overflow if this conversion is done anywhere else. */
5408 if (TYPE_UNSIGNED (type))
5409 temp = fold_convert (signed_type_for (type), temp);
5411 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
5412 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
5413 if (mask != 0)
5414 temp = const_binop (BIT_AND_EXPR, temp,
5415 fold_convert (TREE_TYPE (c), mask), 0);
5416 /* If necessary, convert the type back to match the type of C. */
5417 if (TYPE_UNSIGNED (type))
5418 temp = fold_convert (type, temp);
5420 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
5423 /* Find ways of folding logical expressions of LHS and RHS:
5424 Try to merge two comparisons to the same innermost item.
5425 Look for range tests like "ch >= '0' && ch <= '9'".
5426 Look for combinations of simple terms on machines with expensive branches
5427 and evaluate the RHS unconditionally.
5429 For example, if we have p->a == 2 && p->b == 4 and we can make an
5430 object large enough to span both A and B, we can do this with a comparison
5431 against the object ANDed with the a mask.
5433 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5434 operations to do this with one comparison.
5436 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5437 function and the one above.
5439 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5440 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5442 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5443 two operands.
5445 We return the simplified tree or 0 if no optimization is possible. */
5447 static tree
5448 fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
5450 /* If this is the "or" of two comparisons, we can do something if
5451 the comparisons are NE_EXPR. If this is the "and", we can do something
5452 if the comparisons are EQ_EXPR. I.e.,
5453 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5455 WANTED_CODE is this operation code. For single bit fields, we can
5456 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5457 comparison for one-bit fields. */
5459 enum tree_code wanted_code;
5460 enum tree_code lcode, rcode;
5461 tree ll_arg, lr_arg, rl_arg, rr_arg;
5462 tree ll_inner, lr_inner, rl_inner, rr_inner;
5463 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5464 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5465 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5466 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5467 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5468 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5469 enum machine_mode lnmode, rnmode;
5470 tree ll_mask, lr_mask, rl_mask, rr_mask;
5471 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5472 tree l_const, r_const;
5473 tree lntype, rntype, result;
5474 int first_bit, end_bit;
5475 int volatilep;
5476 tree orig_lhs = lhs, orig_rhs = rhs;
5477 enum tree_code orig_code = code;
5479 /* Start by getting the comparison codes. Fail if anything is volatile.
5480 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5481 it were surrounded with a NE_EXPR. */
5483 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5484 return 0;
5486 lcode = TREE_CODE (lhs);
5487 rcode = TREE_CODE (rhs);
5489 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5491 lhs = build2 (NE_EXPR, truth_type, lhs,
5492 build_int_cst (TREE_TYPE (lhs), 0));
5493 lcode = NE_EXPR;
5496 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5498 rhs = build2 (NE_EXPR, truth_type, rhs,
5499 build_int_cst (TREE_TYPE (rhs), 0));
5500 rcode = NE_EXPR;
5503 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5504 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5505 return 0;
5507 ll_arg = TREE_OPERAND (lhs, 0);
5508 lr_arg = TREE_OPERAND (lhs, 1);
5509 rl_arg = TREE_OPERAND (rhs, 0);
5510 rr_arg = TREE_OPERAND (rhs, 1);
5512 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5513 if (simple_operand_p (ll_arg)
5514 && simple_operand_p (lr_arg))
5516 tree result;
5517 if (operand_equal_p (ll_arg, rl_arg, 0)
5518 && operand_equal_p (lr_arg, rr_arg, 0))
5520 result = combine_comparisons (code, lcode, rcode,
5521 truth_type, ll_arg, lr_arg);
5522 if (result)
5523 return result;
5525 else if (operand_equal_p (ll_arg, rr_arg, 0)
5526 && operand_equal_p (lr_arg, rl_arg, 0))
5528 result = combine_comparisons (code, lcode,
5529 swap_tree_comparison (rcode),
5530 truth_type, ll_arg, lr_arg);
5531 if (result)
5532 return result;
5536 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5537 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5539 /* If the RHS can be evaluated unconditionally and its operands are
5540 simple, it wins to evaluate the RHS unconditionally on machines
5541 with expensive branches. In this case, this isn't a comparison
5542 that can be merged. Avoid doing this if the RHS is a floating-point
5543 comparison since those can trap. */
5545 if (BRANCH_COST >= 2
5546 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5547 && simple_operand_p (rl_arg)
5548 && simple_operand_p (rr_arg))
5550 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5551 if (code == TRUTH_OR_EXPR
5552 && lcode == NE_EXPR && integer_zerop (lr_arg)
5553 && rcode == NE_EXPR && integer_zerop (rr_arg)
5554 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
5555 return build2 (NE_EXPR, truth_type,
5556 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5557 ll_arg, rl_arg),
5558 build_int_cst (TREE_TYPE (ll_arg), 0));
5560 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5561 if (code == TRUTH_AND_EXPR
5562 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5563 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5564 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
5565 return build2 (EQ_EXPR, truth_type,
5566 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5567 ll_arg, rl_arg),
5568 build_int_cst (TREE_TYPE (ll_arg), 0));
5570 if (LOGICAL_OP_NON_SHORT_CIRCUIT)
5572 if (code != orig_code || lhs != orig_lhs || rhs != orig_rhs)
5573 return build2 (code, truth_type, lhs, rhs);
5574 return NULL_TREE;
5578 /* See if the comparisons can be merged. Then get all the parameters for
5579 each side. */
5581 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5582 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5583 return 0;
5585 volatilep = 0;
5586 ll_inner = decode_field_reference (ll_arg,
5587 &ll_bitsize, &ll_bitpos, &ll_mode,
5588 &ll_unsignedp, &volatilep, &ll_mask,
5589 &ll_and_mask);
5590 lr_inner = decode_field_reference (lr_arg,
5591 &lr_bitsize, &lr_bitpos, &lr_mode,
5592 &lr_unsignedp, &volatilep, &lr_mask,
5593 &lr_and_mask);
5594 rl_inner = decode_field_reference (rl_arg,
5595 &rl_bitsize, &rl_bitpos, &rl_mode,
5596 &rl_unsignedp, &volatilep, &rl_mask,
5597 &rl_and_mask);
5598 rr_inner = decode_field_reference (rr_arg,
5599 &rr_bitsize, &rr_bitpos, &rr_mode,
5600 &rr_unsignedp, &volatilep, &rr_mask,
5601 &rr_and_mask);
5603 /* It must be true that the inner operation on the lhs of each
5604 comparison must be the same if we are to be able to do anything.
5605 Then see if we have constants. If not, the same must be true for
5606 the rhs's. */
5607 if (volatilep || ll_inner == 0 || rl_inner == 0
5608 || ! operand_equal_p (ll_inner, rl_inner, 0))
5609 return 0;
5611 if (TREE_CODE (lr_arg) == INTEGER_CST
5612 && TREE_CODE (rr_arg) == INTEGER_CST)
5613 l_const = lr_arg, r_const = rr_arg;
5614 else if (lr_inner == 0 || rr_inner == 0
5615 || ! operand_equal_p (lr_inner, rr_inner, 0))
5616 return 0;
5617 else
5618 l_const = r_const = 0;
5620 /* If either comparison code is not correct for our logical operation,
5621 fail. However, we can convert a one-bit comparison against zero into
5622 the opposite comparison against that bit being set in the field. */
5624 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5625 if (lcode != wanted_code)
5627 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5629 /* Make the left operand unsigned, since we are only interested
5630 in the value of one bit. Otherwise we are doing the wrong
5631 thing below. */
5632 ll_unsignedp = 1;
5633 l_const = ll_mask;
5635 else
5636 return 0;
5639 /* This is analogous to the code for l_const above. */
5640 if (rcode != wanted_code)
5642 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5644 rl_unsignedp = 1;
5645 r_const = rl_mask;
5647 else
5648 return 0;
5651 /* See if we can find a mode that contains both fields being compared on
5652 the left. If we can't, fail. Otherwise, update all constants and masks
5653 to be relative to a field of that size. */
5654 first_bit = MIN (ll_bitpos, rl_bitpos);
5655 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5656 lnmode = get_best_mode (end_bit - first_bit, first_bit,
5657 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5658 volatilep);
5659 if (lnmode == VOIDmode)
5660 return 0;
5662 lnbitsize = GET_MODE_BITSIZE (lnmode);
5663 lnbitpos = first_bit & ~ (lnbitsize - 1);
5664 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5665 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5667 if (BYTES_BIG_ENDIAN)
5669 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5670 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5673 ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
5674 size_int (xll_bitpos), 0);
5675 rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
5676 size_int (xrl_bitpos), 0);
5678 if (l_const)
5680 l_const = fold_convert (lntype, l_const);
5681 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5682 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
5683 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5684 fold_build1 (BIT_NOT_EXPR,
5685 lntype, ll_mask),
5686 0)))
5688 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5690 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5693 if (r_const)
5695 r_const = fold_convert (lntype, r_const);
5696 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5697 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
5698 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5699 fold_build1 (BIT_NOT_EXPR,
5700 lntype, rl_mask),
5701 0)))
5703 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5705 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5709 /* If the right sides are not constant, do the same for it. Also,
5710 disallow this optimization if a size or signedness mismatch occurs
5711 between the left and right sides. */
5712 if (l_const == 0)
5714 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5715 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5716 /* Make sure the two fields on the right
5717 correspond to the left without being swapped. */
5718 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5719 return 0;
5721 first_bit = MIN (lr_bitpos, rr_bitpos);
5722 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5723 rnmode = get_best_mode (end_bit - first_bit, first_bit,
5724 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5725 volatilep);
5726 if (rnmode == VOIDmode)
5727 return 0;
5729 rnbitsize = GET_MODE_BITSIZE (rnmode);
5730 rnbitpos = first_bit & ~ (rnbitsize - 1);
5731 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5732 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5734 if (BYTES_BIG_ENDIAN)
5736 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5737 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5740 lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
5741 size_int (xlr_bitpos), 0);
5742 rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
5743 size_int (xrr_bitpos), 0);
5745 /* Make a mask that corresponds to both fields being compared.
5746 Do this for both items being compared. If the operands are the
5747 same size and the bits being compared are in the same position
5748 then we can do this by masking both and comparing the masked
5749 results. */
5750 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5751 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
5752 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5754 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5755 ll_unsignedp || rl_unsignedp);
5756 if (! all_ones_mask_p (ll_mask, lnbitsize))
5757 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5759 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
5760 lr_unsignedp || rr_unsignedp);
5761 if (! all_ones_mask_p (lr_mask, rnbitsize))
5762 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5764 return build2 (wanted_code, truth_type, lhs, rhs);
5767 /* There is still another way we can do something: If both pairs of
5768 fields being compared are adjacent, we may be able to make a wider
5769 field containing them both.
5771 Note that we still must mask the lhs/rhs expressions. Furthermore,
5772 the mask must be shifted to account for the shift done by
5773 make_bit_field_ref. */
5774 if ((ll_bitsize + ll_bitpos == rl_bitpos
5775 && lr_bitsize + lr_bitpos == rr_bitpos)
5776 || (ll_bitpos == rl_bitpos + rl_bitsize
5777 && lr_bitpos == rr_bitpos + rr_bitsize))
5779 tree type;
5781 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
5782 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5783 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
5784 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5786 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5787 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
5788 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5789 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
5791 /* Convert to the smaller type before masking out unwanted bits. */
5792 type = lntype;
5793 if (lntype != rntype)
5795 if (lnbitsize > rnbitsize)
5797 lhs = fold_convert (rntype, lhs);
5798 ll_mask = fold_convert (rntype, ll_mask);
5799 type = rntype;
5801 else if (lnbitsize < rnbitsize)
5803 rhs = fold_convert (lntype, rhs);
5804 lr_mask = fold_convert (lntype, lr_mask);
5805 type = lntype;
5809 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5810 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5812 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5813 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5815 return build2 (wanted_code, truth_type, lhs, rhs);
5818 return 0;
5821 /* Handle the case of comparisons with constants. If there is something in
5822 common between the masks, those bits of the constants must be the same.
5823 If not, the condition is always false. Test for this to avoid generating
5824 incorrect code below. */
5825 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
5826 if (! integer_zerop (result)
5827 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
5828 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
5830 if (wanted_code == NE_EXPR)
5832 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5833 return constant_boolean_node (true, truth_type);
5835 else
5837 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5838 return constant_boolean_node (false, truth_type);
5842 /* Construct the expression we will return. First get the component
5843 reference we will make. Unless the mask is all ones the width of
5844 that field, perform the mask operation. Then compare with the
5845 merged constant. */
5846 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5847 ll_unsignedp || rl_unsignedp);
5849 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5850 if (! all_ones_mask_p (ll_mask, lnbitsize))
5851 result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
5853 return build2 (wanted_code, truth_type, result,
5854 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
5857 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5858 constant. */
5860 static tree
5861 optimize_minmax_comparison (enum tree_code code, tree type, tree op0, tree op1)
5863 tree arg0 = op0;
5864 enum tree_code op_code;
5865 tree comp_const = op1;
5866 tree minmax_const;
5867 int consts_equal, consts_lt;
5868 tree inner;
5870 STRIP_SIGN_NOPS (arg0);
5872 op_code = TREE_CODE (arg0);
5873 minmax_const = TREE_OPERAND (arg0, 1);
5874 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5875 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5876 inner = TREE_OPERAND (arg0, 0);
5878 /* If something does not permit us to optimize, return the original tree. */
5879 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5880 || TREE_CODE (comp_const) != INTEGER_CST
5881 || TREE_OVERFLOW (comp_const)
5882 || TREE_CODE (minmax_const) != INTEGER_CST
5883 || TREE_OVERFLOW (minmax_const))
5884 return NULL_TREE;
5886 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5887 and GT_EXPR, doing the rest with recursive calls using logical
5888 simplifications. */
5889 switch (code)
5891 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5893 tree tem = optimize_minmax_comparison (invert_tree_comparison (code, false),
5894 type, op0, op1);
5895 if (tem)
5896 return invert_truthvalue (tem);
5897 return NULL_TREE;
5900 case GE_EXPR:
5901 return
5902 fold_build2 (TRUTH_ORIF_EXPR, type,
5903 optimize_minmax_comparison
5904 (EQ_EXPR, type, arg0, comp_const),
5905 optimize_minmax_comparison
5906 (GT_EXPR, type, arg0, comp_const));
5908 case EQ_EXPR:
5909 if (op_code == MAX_EXPR && consts_equal)
5910 /* MAX (X, 0) == 0 -> X <= 0 */
5911 return fold_build2 (LE_EXPR, type, inner, comp_const);
5913 else if (op_code == MAX_EXPR && consts_lt)
5914 /* MAX (X, 0) == 5 -> X == 5 */
5915 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5917 else if (op_code == MAX_EXPR)
5918 /* MAX (X, 0) == -1 -> false */
5919 return omit_one_operand (type, integer_zero_node, inner);
5921 else if (consts_equal)
5922 /* MIN (X, 0) == 0 -> X >= 0 */
5923 return fold_build2 (GE_EXPR, type, inner, comp_const);
5925 else if (consts_lt)
5926 /* MIN (X, 0) == 5 -> false */
5927 return omit_one_operand (type, integer_zero_node, inner);
5929 else
5930 /* MIN (X, 0) == -1 -> X == -1 */
5931 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5933 case GT_EXPR:
5934 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5935 /* MAX (X, 0) > 0 -> X > 0
5936 MAX (X, 0) > 5 -> X > 5 */
5937 return fold_build2 (GT_EXPR, type, inner, comp_const);
5939 else if (op_code == MAX_EXPR)
5940 /* MAX (X, 0) > -1 -> true */
5941 return omit_one_operand (type, integer_one_node, inner);
5943 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5944 /* MIN (X, 0) > 0 -> false
5945 MIN (X, 0) > 5 -> false */
5946 return omit_one_operand (type, integer_zero_node, inner);
5948 else
5949 /* MIN (X, 0) > -1 -> X > -1 */
5950 return fold_build2 (GT_EXPR, type, inner, comp_const);
5952 default:
5953 return NULL_TREE;
5957 /* T is an integer expression that is being multiplied, divided, or taken a
5958 modulus (CODE says which and what kind of divide or modulus) by a
5959 constant C. See if we can eliminate that operation by folding it with
5960 other operations already in T. WIDE_TYPE, if non-null, is a type that
5961 should be used for the computation if wider than our type.
5963 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5964 (X * 2) + (Y * 4). We must, however, be assured that either the original
5965 expression would not overflow or that overflow is undefined for the type
5966 in the language in question.
5968 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
5969 the machine has a multiply-accumulate insn or that this is part of an
5970 addressing calculation.
5972 If we return a non-null expression, it is an equivalent form of the
5973 original computation, but need not be in the original type.
5975 We set *STRICT_OVERFLOW_P to true if the return values depends on
5976 signed overflow being undefined. Otherwise we do not change
5977 *STRICT_OVERFLOW_P. */
5979 static tree
5980 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5981 bool *strict_overflow_p)
5983 /* To avoid exponential search depth, refuse to allow recursion past
5984 three levels. Beyond that (1) it's highly unlikely that we'll find
5985 something interesting and (2) we've probably processed it before
5986 when we built the inner expression. */
5988 static int depth;
5989 tree ret;
5991 if (depth > 3)
5992 return NULL;
5994 depth++;
5995 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5996 depth--;
5998 return ret;
6001 static tree
6002 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6003 bool *strict_overflow_p)
6005 tree type = TREE_TYPE (t);
6006 enum tree_code tcode = TREE_CODE (t);
6007 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
6008 > GET_MODE_SIZE (TYPE_MODE (type)))
6009 ? wide_type : type);
6010 tree t1, t2;
6011 int same_p = tcode == code;
6012 tree op0 = NULL_TREE, op1 = NULL_TREE;
6013 bool sub_strict_overflow_p;
6015 /* Don't deal with constants of zero here; they confuse the code below. */
6016 if (integer_zerop (c))
6017 return NULL_TREE;
6019 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6020 op0 = TREE_OPERAND (t, 0);
6022 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6023 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6025 /* Note that we need not handle conditional operations here since fold
6026 already handles those cases. So just do arithmetic here. */
6027 switch (tcode)
6029 case INTEGER_CST:
6030 /* For a constant, we can always simplify if we are a multiply
6031 or (for divide and modulus) if it is a multiple of our constant. */
6032 if (code == MULT_EXPR
6033 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
6034 return const_binop (code, fold_convert (ctype, t),
6035 fold_convert (ctype, c), 0);
6036 break;
6038 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
6039 /* If op0 is an expression ... */
6040 if ((COMPARISON_CLASS_P (op0)
6041 || UNARY_CLASS_P (op0)
6042 || BINARY_CLASS_P (op0)
6043 || VL_EXP_CLASS_P (op0)
6044 || EXPRESSION_CLASS_P (op0))
6045 /* ... and is unsigned, and its type is smaller than ctype,
6046 then we cannot pass through as widening. */
6047 && ((TYPE_UNSIGNED (TREE_TYPE (op0))
6048 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
6049 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
6050 && (GET_MODE_SIZE (TYPE_MODE (ctype))
6051 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
6052 /* ... or this is a truncation (t is narrower than op0),
6053 then we cannot pass through this narrowing. */
6054 || (GET_MODE_SIZE (TYPE_MODE (type))
6055 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
6056 /* ... or signedness changes for division or modulus,
6057 then we cannot pass through this conversion. */
6058 || (code != MULT_EXPR
6059 && (TYPE_UNSIGNED (ctype)
6060 != TYPE_UNSIGNED (TREE_TYPE (op0))))))
6061 break;
6063 /* Pass the constant down and see if we can make a simplification. If
6064 we can, replace this expression with the inner simplification for
6065 possible later conversion to our or some other type. */
6066 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6067 && TREE_CODE (t2) == INTEGER_CST
6068 && !TREE_OVERFLOW (t2)
6069 && (0 != (t1 = extract_muldiv (op0, t2, code,
6070 code == MULT_EXPR
6071 ? ctype : NULL_TREE,
6072 strict_overflow_p))))
6073 return t1;
6074 break;
6076 case ABS_EXPR:
6077 /* If widening the type changes it from signed to unsigned, then we
6078 must avoid building ABS_EXPR itself as unsigned. */
6079 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6081 tree cstype = (*signed_type_for) (ctype);
6082 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6083 != 0)
6085 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6086 return fold_convert (ctype, t1);
6088 break;
6090 /* FALLTHROUGH */
6091 case NEGATE_EXPR:
6092 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6093 != 0)
6094 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6095 break;
6097 case MIN_EXPR: case MAX_EXPR:
6098 /* If widening the type changes the signedness, then we can't perform
6099 this optimization as that changes the result. */
6100 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6101 break;
6103 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6104 sub_strict_overflow_p = false;
6105 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6106 &sub_strict_overflow_p)) != 0
6107 && (t2 = extract_muldiv (op1, c, code, wide_type,
6108 &sub_strict_overflow_p)) != 0)
6110 if (tree_int_cst_sgn (c) < 0)
6111 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6112 if (sub_strict_overflow_p)
6113 *strict_overflow_p = true;
6114 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6115 fold_convert (ctype, t2));
6117 break;
6119 case LSHIFT_EXPR: case RSHIFT_EXPR:
6120 /* If the second operand is constant, this is a multiplication
6121 or floor division, by a power of two, so we can treat it that
6122 way unless the multiplier or divisor overflows. Signed
6123 left-shift overflow is implementation-defined rather than
6124 undefined in C90, so do not convert signed left shift into
6125 multiplication. */
6126 if (TREE_CODE (op1) == INTEGER_CST
6127 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6128 /* const_binop may not detect overflow correctly,
6129 so check for it explicitly here. */
6130 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
6131 && TREE_INT_CST_HIGH (op1) == 0
6132 && 0 != (t1 = fold_convert (ctype,
6133 const_binop (LSHIFT_EXPR,
6134 size_one_node,
6135 op1, 0)))
6136 && !TREE_OVERFLOW (t1))
6137 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6138 ? MULT_EXPR : FLOOR_DIV_EXPR,
6139 ctype, fold_convert (ctype, op0), t1),
6140 c, code, wide_type, strict_overflow_p);
6141 break;
6143 case PLUS_EXPR: case MINUS_EXPR:
6144 /* See if we can eliminate the operation on both sides. If we can, we
6145 can return a new PLUS or MINUS. If we can't, the only remaining
6146 cases where we can do anything are if the second operand is a
6147 constant. */
6148 sub_strict_overflow_p = false;
6149 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6150 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6151 if (t1 != 0 && t2 != 0
6152 && (code == MULT_EXPR
6153 /* If not multiplication, we can only do this if both operands
6154 are divisible by c. */
6155 || (multiple_of_p (ctype, op0, c)
6156 && multiple_of_p (ctype, op1, c))))
6158 if (sub_strict_overflow_p)
6159 *strict_overflow_p = true;
6160 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6161 fold_convert (ctype, t2));
6164 /* If this was a subtraction, negate OP1 and set it to be an addition.
6165 This simplifies the logic below. */
6166 if (tcode == MINUS_EXPR)
6167 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6169 if (TREE_CODE (op1) != INTEGER_CST)
6170 break;
6172 /* If either OP1 or C are negative, this optimization is not safe for
6173 some of the division and remainder types while for others we need
6174 to change the code. */
6175 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6177 if (code == CEIL_DIV_EXPR)
6178 code = FLOOR_DIV_EXPR;
6179 else if (code == FLOOR_DIV_EXPR)
6180 code = CEIL_DIV_EXPR;
6181 else if (code != MULT_EXPR
6182 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6183 break;
6186 /* If it's a multiply or a division/modulus operation of a multiple
6187 of our constant, do the operation and verify it doesn't overflow. */
6188 if (code == MULT_EXPR
6189 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
6191 op1 = const_binop (code, fold_convert (ctype, op1),
6192 fold_convert (ctype, c), 0);
6193 /* We allow the constant to overflow with wrapping semantics. */
6194 if (op1 == 0
6195 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6196 break;
6198 else
6199 break;
6201 /* If we have an unsigned type is not a sizetype, we cannot widen
6202 the operation since it will change the result if the original
6203 computation overflowed. */
6204 if (TYPE_UNSIGNED (ctype)
6205 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
6206 && ctype != type)
6207 break;
6209 /* If we were able to eliminate our operation from the first side,
6210 apply our operation to the second side and reform the PLUS. */
6211 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6212 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6214 /* The last case is if we are a multiply. In that case, we can
6215 apply the distributive law to commute the multiply and addition
6216 if the multiplication of the constants doesn't overflow. */
6217 if (code == MULT_EXPR)
6218 return fold_build2 (tcode, ctype,
6219 fold_build2 (code, ctype,
6220 fold_convert (ctype, op0),
6221 fold_convert (ctype, c)),
6222 op1);
6224 break;
6226 case MULT_EXPR:
6227 /* We have a special case here if we are doing something like
6228 (C * 8) % 4 since we know that's zero. */
6229 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6230 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6231 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6232 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
6233 return omit_one_operand (type, integer_zero_node, op0);
6235 /* ... fall through ... */
6237 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6238 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6239 /* If we can extract our operation from the LHS, do so and return a
6240 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6241 do something only if the second operand is a constant. */
6242 if (same_p
6243 && (t1 = extract_muldiv (op0, c, code, wide_type,
6244 strict_overflow_p)) != 0)
6245 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6246 fold_convert (ctype, op1));
6247 else if (tcode == MULT_EXPR && code == MULT_EXPR
6248 && (t1 = extract_muldiv (op1, c, code, wide_type,
6249 strict_overflow_p)) != 0)
6250 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6251 fold_convert (ctype, t1));
6252 else if (TREE_CODE (op1) != INTEGER_CST)
6253 return 0;
6255 /* If these are the same operation types, we can associate them
6256 assuming no overflow. */
6257 if (tcode == code
6258 && 0 != (t1 = const_binop (MULT_EXPR, fold_convert (ctype, op1),
6259 fold_convert (ctype, c), 0))
6260 && !TREE_OVERFLOW (t1))
6261 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), t1);
6263 /* If these operations "cancel" each other, we have the main
6264 optimizations of this pass, which occur when either constant is a
6265 multiple of the other, in which case we replace this with either an
6266 operation or CODE or TCODE.
6268 If we have an unsigned type that is not a sizetype, we cannot do
6269 this since it will change the result if the original computation
6270 overflowed. */
6271 if ((TYPE_OVERFLOW_UNDEFINED (ctype)
6272 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
6273 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6274 || (tcode == MULT_EXPR
6275 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6276 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6277 && code != MULT_EXPR)))
6279 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
6281 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6282 *strict_overflow_p = true;
6283 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6284 fold_convert (ctype,
6285 const_binop (TRUNC_DIV_EXPR,
6286 op1, c, 0)));
6288 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
6290 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6291 *strict_overflow_p = true;
6292 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6293 fold_convert (ctype,
6294 const_binop (TRUNC_DIV_EXPR,
6295 c, op1, 0)));
6298 break;
6300 default:
6301 break;
6304 return 0;
6307 /* Return a node which has the indicated constant VALUE (either 0 or
6308 1), and is of the indicated TYPE. */
6310 tree
6311 constant_boolean_node (int value, tree type)
6313 if (type == integer_type_node)
6314 return value ? integer_one_node : integer_zero_node;
6315 else if (type == boolean_type_node)
6316 return value ? boolean_true_node : boolean_false_node;
6317 else
6318 return build_int_cst (type, value);
6322 /* Return true if expr looks like an ARRAY_REF and set base and
6323 offset to the appropriate trees. If there is no offset,
6324 offset is set to NULL_TREE. Base will be canonicalized to
6325 something you can get the element type from using
6326 TREE_TYPE (TREE_TYPE (base)). Offset will be the offset
6327 in bytes to the base in sizetype. */
6329 static bool
6330 extract_array_ref (tree expr, tree *base, tree *offset)
6332 /* One canonical form is a PLUS_EXPR with the first
6333 argument being an ADDR_EXPR with a possible NOP_EXPR
6334 attached. */
6335 if (TREE_CODE (expr) == POINTER_PLUS_EXPR)
6337 tree op0 = TREE_OPERAND (expr, 0);
6338 tree inner_base, dummy1;
6339 /* Strip NOP_EXPRs here because the C frontends and/or
6340 folders present us (int *)&x.a p+ 4 possibly. */
6341 STRIP_NOPS (op0);
6342 if (extract_array_ref (op0, &inner_base, &dummy1))
6344 *base = inner_base;
6345 *offset = fold_convert (sizetype, TREE_OPERAND (expr, 1));
6346 if (dummy1 != NULL_TREE)
6347 *offset = fold_build2 (PLUS_EXPR, sizetype,
6348 dummy1, *offset);
6349 return true;
6352 /* Other canonical form is an ADDR_EXPR of an ARRAY_REF,
6353 which we transform into an ADDR_EXPR with appropriate
6354 offset. For other arguments to the ADDR_EXPR we assume
6355 zero offset and as such do not care about the ADDR_EXPR
6356 type and strip possible nops from it. */
6357 else if (TREE_CODE (expr) == ADDR_EXPR)
6359 tree op0 = TREE_OPERAND (expr, 0);
6360 if (TREE_CODE (op0) == ARRAY_REF)
6362 tree idx = TREE_OPERAND (op0, 1);
6363 *base = TREE_OPERAND (op0, 0);
6364 *offset = fold_build2 (MULT_EXPR, TREE_TYPE (idx), idx,
6365 array_ref_element_size (op0));
6366 *offset = fold_convert (sizetype, *offset);
6368 else
6370 /* Handle array-to-pointer decay as &a. */
6371 if (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE)
6372 *base = TREE_OPERAND (expr, 0);
6373 else
6374 *base = expr;
6375 *offset = NULL_TREE;
6377 return true;
6379 /* The next canonical form is a VAR_DECL with POINTER_TYPE. */
6380 else if (SSA_VAR_P (expr)
6381 && TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE)
6383 *base = expr;
6384 *offset = NULL_TREE;
6385 return true;
6388 return false;
6392 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6393 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6394 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6395 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6396 COND is the first argument to CODE; otherwise (as in the example
6397 given here), it is the second argument. TYPE is the type of the
6398 original expression. Return NULL_TREE if no simplification is
6399 possible. */
6401 static tree
6402 fold_binary_op_with_conditional_arg (enum tree_code code,
6403 tree type, tree op0, tree op1,
6404 tree cond, tree arg, int cond_first_p)
6406 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6407 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6408 tree test, true_value, false_value;
6409 tree lhs = NULL_TREE;
6410 tree rhs = NULL_TREE;
6412 /* This transformation is only worthwhile if we don't have to wrap
6413 arg in a SAVE_EXPR, and the operation can be simplified on at least
6414 one of the branches once its pushed inside the COND_EXPR. */
6415 if (!TREE_CONSTANT (arg))
6416 return NULL_TREE;
6418 if (TREE_CODE (cond) == COND_EXPR)
6420 test = TREE_OPERAND (cond, 0);
6421 true_value = TREE_OPERAND (cond, 1);
6422 false_value = TREE_OPERAND (cond, 2);
6423 /* If this operand throws an expression, then it does not make
6424 sense to try to perform a logical or arithmetic operation
6425 involving it. */
6426 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6427 lhs = true_value;
6428 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6429 rhs = false_value;
6431 else
6433 tree testtype = TREE_TYPE (cond);
6434 test = cond;
6435 true_value = constant_boolean_node (true, testtype);
6436 false_value = constant_boolean_node (false, testtype);
6439 arg = fold_convert (arg_type, arg);
6440 if (lhs == 0)
6442 true_value = fold_convert (cond_type, true_value);
6443 if (cond_first_p)
6444 lhs = fold_build2 (code, type, true_value, arg);
6445 else
6446 lhs = fold_build2 (code, type, arg, true_value);
6448 if (rhs == 0)
6450 false_value = fold_convert (cond_type, false_value);
6451 if (cond_first_p)
6452 rhs = fold_build2 (code, type, false_value, arg);
6453 else
6454 rhs = fold_build2 (code, type, arg, false_value);
6457 test = fold_build3 (COND_EXPR, type, test, lhs, rhs);
6458 return fold_convert (type, test);
6462 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6464 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6465 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6466 ADDEND is the same as X.
6468 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6469 and finite. The problematic cases are when X is zero, and its mode
6470 has signed zeros. In the case of rounding towards -infinity,
6471 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6472 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6474 static bool
6475 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6477 if (!real_zerop (addend))
6478 return false;
6480 /* Don't allow the fold with -fsignaling-nans. */
6481 if (HONOR_SNANS (TYPE_MODE (type)))
6482 return false;
6484 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6485 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
6486 return true;
6488 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6489 if (TREE_CODE (addend) == REAL_CST
6490 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6491 negate = !negate;
6493 /* The mode has signed zeros, and we have to honor their sign.
6494 In this situation, there is only one case we can return true for.
6495 X - 0 is the same as X unless rounding towards -infinity is
6496 supported. */
6497 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
6500 /* Subroutine of fold() that checks comparisons of built-in math
6501 functions against real constants.
6503 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6504 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6505 is the type of the result and ARG0 and ARG1 are the operands of the
6506 comparison. ARG1 must be a TREE_REAL_CST.
6508 The function returns the constant folded tree if a simplification
6509 can be made, and NULL_TREE otherwise. */
6511 static tree
6512 fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
6513 tree type, tree arg0, tree arg1)
6515 REAL_VALUE_TYPE c;
6517 if (BUILTIN_SQRT_P (fcode))
6519 tree arg = CALL_EXPR_ARG (arg0, 0);
6520 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
6522 c = TREE_REAL_CST (arg1);
6523 if (REAL_VALUE_NEGATIVE (c))
6525 /* sqrt(x) < y is always false, if y is negative. */
6526 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
6527 return omit_one_operand (type, integer_zero_node, arg);
6529 /* sqrt(x) > y is always true, if y is negative and we
6530 don't care about NaNs, i.e. negative values of x. */
6531 if (code == NE_EXPR || !HONOR_NANS (mode))
6532 return omit_one_operand (type, integer_one_node, arg);
6534 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6535 return fold_build2 (GE_EXPR, type, arg,
6536 build_real (TREE_TYPE (arg), dconst0));
6538 else if (code == GT_EXPR || code == GE_EXPR)
6540 REAL_VALUE_TYPE c2;
6542 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6543 real_convert (&c2, mode, &c2);
6545 if (REAL_VALUE_ISINF (c2))
6547 /* sqrt(x) > y is x == +Inf, when y is very large. */
6548 if (HONOR_INFINITIES (mode))
6549 return fold_build2 (EQ_EXPR, type, arg,
6550 build_real (TREE_TYPE (arg), c2));
6552 /* sqrt(x) > y is always false, when y is very large
6553 and we don't care about infinities. */
6554 return omit_one_operand (type, integer_zero_node, arg);
6557 /* sqrt(x) > c is the same as x > c*c. */
6558 return fold_build2 (code, type, arg,
6559 build_real (TREE_TYPE (arg), c2));
6561 else if (code == LT_EXPR || code == LE_EXPR)
6563 REAL_VALUE_TYPE c2;
6565 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6566 real_convert (&c2, mode, &c2);
6568 if (REAL_VALUE_ISINF (c2))
6570 /* sqrt(x) < y is always true, when y is a very large
6571 value and we don't care about NaNs or Infinities. */
6572 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
6573 return omit_one_operand (type, integer_one_node, arg);
6575 /* sqrt(x) < y is x != +Inf when y is very large and we
6576 don't care about NaNs. */
6577 if (! HONOR_NANS (mode))
6578 return fold_build2 (NE_EXPR, type, arg,
6579 build_real (TREE_TYPE (arg), c2));
6581 /* sqrt(x) < y is x >= 0 when y is very large and we
6582 don't care about Infinities. */
6583 if (! HONOR_INFINITIES (mode))
6584 return fold_build2 (GE_EXPR, type, arg,
6585 build_real (TREE_TYPE (arg), dconst0));
6587 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6588 if (lang_hooks.decls.global_bindings_p () != 0
6589 || CONTAINS_PLACEHOLDER_P (arg))
6590 return NULL_TREE;
6592 arg = save_expr (arg);
6593 return fold_build2 (TRUTH_ANDIF_EXPR, type,
6594 fold_build2 (GE_EXPR, type, arg,
6595 build_real (TREE_TYPE (arg),
6596 dconst0)),
6597 fold_build2 (NE_EXPR, type, arg,
6598 build_real (TREE_TYPE (arg),
6599 c2)));
6602 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6603 if (! HONOR_NANS (mode))
6604 return fold_build2 (code, type, arg,
6605 build_real (TREE_TYPE (arg), c2));
6607 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6608 if (lang_hooks.decls.global_bindings_p () == 0
6609 && ! CONTAINS_PLACEHOLDER_P (arg))
6611 arg = save_expr (arg);
6612 return fold_build2 (TRUTH_ANDIF_EXPR, type,
6613 fold_build2 (GE_EXPR, type, arg,
6614 build_real (TREE_TYPE (arg),
6615 dconst0)),
6616 fold_build2 (code, type, arg,
6617 build_real (TREE_TYPE (arg),
6618 c2)));
6623 return NULL_TREE;
6626 /* Subroutine of fold() that optimizes comparisons against Infinities,
6627 either +Inf or -Inf.
6629 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6630 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6631 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6633 The function returns the constant folded tree if a simplification
6634 can be made, and NULL_TREE otherwise. */
6636 static tree
6637 fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6639 enum machine_mode mode;
6640 REAL_VALUE_TYPE max;
6641 tree temp;
6642 bool neg;
6644 mode = TYPE_MODE (TREE_TYPE (arg0));
6646 /* For negative infinity swap the sense of the comparison. */
6647 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6648 if (neg)
6649 code = swap_tree_comparison (code);
6651 switch (code)
6653 case GT_EXPR:
6654 /* x > +Inf is always false, if with ignore sNANs. */
6655 if (HONOR_SNANS (mode))
6656 return NULL_TREE;
6657 return omit_one_operand (type, integer_zero_node, arg0);
6659 case LE_EXPR:
6660 /* x <= +Inf is always true, if we don't case about NaNs. */
6661 if (! HONOR_NANS (mode))
6662 return omit_one_operand (type, integer_one_node, arg0);
6664 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6665 if (lang_hooks.decls.global_bindings_p () == 0
6666 && ! CONTAINS_PLACEHOLDER_P (arg0))
6668 arg0 = save_expr (arg0);
6669 return fold_build2 (EQ_EXPR, type, arg0, arg0);
6671 break;
6673 case EQ_EXPR:
6674 case GE_EXPR:
6675 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6676 real_maxval (&max, neg, mode);
6677 return fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6678 arg0, build_real (TREE_TYPE (arg0), max));
6680 case LT_EXPR:
6681 /* x < +Inf is always equal to x <= DBL_MAX. */
6682 real_maxval (&max, neg, mode);
6683 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6684 arg0, build_real (TREE_TYPE (arg0), max));
6686 case NE_EXPR:
6687 /* x != +Inf is always equal to !(x > DBL_MAX). */
6688 real_maxval (&max, neg, mode);
6689 if (! HONOR_NANS (mode))
6690 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6691 arg0, build_real (TREE_TYPE (arg0), max));
6693 temp = fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6694 arg0, build_real (TREE_TYPE (arg0), max));
6695 return fold_build1 (TRUTH_NOT_EXPR, type, temp);
6697 default:
6698 break;
6701 return NULL_TREE;
6704 /* Subroutine of fold() that optimizes comparisons of a division by
6705 a nonzero integer constant against an integer constant, i.e.
6706 X/C1 op C2.
6708 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6709 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6710 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6712 The function returns the constant folded tree if a simplification
6713 can be made, and NULL_TREE otherwise. */
6715 static tree
6716 fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6718 tree prod, tmp, hi, lo;
6719 tree arg00 = TREE_OPERAND (arg0, 0);
6720 tree arg01 = TREE_OPERAND (arg0, 1);
6721 unsigned HOST_WIDE_INT lpart;
6722 HOST_WIDE_INT hpart;
6723 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
6724 bool neg_overflow;
6725 int overflow;
6727 /* We have to do this the hard way to detect unsigned overflow.
6728 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
6729 overflow = mul_double_with_sign (TREE_INT_CST_LOW (arg01),
6730 TREE_INT_CST_HIGH (arg01),
6731 TREE_INT_CST_LOW (arg1),
6732 TREE_INT_CST_HIGH (arg1),
6733 &lpart, &hpart, unsigned_p);
6734 prod = force_fit_type_double (TREE_TYPE (arg00), lpart, hpart,
6735 -1, overflow);
6736 neg_overflow = false;
6738 if (unsigned_p)
6740 tmp = int_const_binop (MINUS_EXPR, arg01,
6741 build_int_cst (TREE_TYPE (arg01), 1), 0);
6742 lo = prod;
6744 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
6745 overflow = add_double_with_sign (TREE_INT_CST_LOW (prod),
6746 TREE_INT_CST_HIGH (prod),
6747 TREE_INT_CST_LOW (tmp),
6748 TREE_INT_CST_HIGH (tmp),
6749 &lpart, &hpart, unsigned_p);
6750 hi = force_fit_type_double (TREE_TYPE (arg00), lpart, hpart,
6751 -1, overflow | TREE_OVERFLOW (prod));
6753 else if (tree_int_cst_sgn (arg01) >= 0)
6755 tmp = int_const_binop (MINUS_EXPR, arg01,
6756 build_int_cst (TREE_TYPE (arg01), 1), 0);
6757 switch (tree_int_cst_sgn (arg1))
6759 case -1:
6760 neg_overflow = true;
6761 lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6762 hi = prod;
6763 break;
6765 case 0:
6766 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6767 hi = tmp;
6768 break;
6770 case 1:
6771 hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6772 lo = prod;
6773 break;
6775 default:
6776 gcc_unreachable ();
6779 else
6781 /* A negative divisor reverses the relational operators. */
6782 code = swap_tree_comparison (code);
6784 tmp = int_const_binop (PLUS_EXPR, arg01,
6785 build_int_cst (TREE_TYPE (arg01), 1), 0);
6786 switch (tree_int_cst_sgn (arg1))
6788 case -1:
6789 hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6790 lo = prod;
6791 break;
6793 case 0:
6794 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6795 lo = tmp;
6796 break;
6798 case 1:
6799 neg_overflow = true;
6800 lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6801 hi = prod;
6802 break;
6804 default:
6805 gcc_unreachable ();
6809 switch (code)
6811 case EQ_EXPR:
6812 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6813 return omit_one_operand (type, integer_zero_node, arg00);
6814 if (TREE_OVERFLOW (hi))
6815 return fold_build2 (GE_EXPR, type, arg00, lo);
6816 if (TREE_OVERFLOW (lo))
6817 return fold_build2 (LE_EXPR, type, arg00, hi);
6818 return build_range_check (type, arg00, 1, lo, hi);
6820 case NE_EXPR:
6821 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6822 return omit_one_operand (type, integer_one_node, arg00);
6823 if (TREE_OVERFLOW (hi))
6824 return fold_build2 (LT_EXPR, type, arg00, lo);
6825 if (TREE_OVERFLOW (lo))
6826 return fold_build2 (GT_EXPR, type, arg00, hi);
6827 return build_range_check (type, arg00, 0, lo, hi);
6829 case LT_EXPR:
6830 if (TREE_OVERFLOW (lo))
6832 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6833 return omit_one_operand (type, tmp, arg00);
6835 return fold_build2 (LT_EXPR, type, arg00, lo);
6837 case LE_EXPR:
6838 if (TREE_OVERFLOW (hi))
6840 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6841 return omit_one_operand (type, tmp, arg00);
6843 return fold_build2 (LE_EXPR, type, arg00, hi);
6845 case GT_EXPR:
6846 if (TREE_OVERFLOW (hi))
6848 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6849 return omit_one_operand (type, tmp, arg00);
6851 return fold_build2 (GT_EXPR, type, arg00, hi);
6853 case GE_EXPR:
6854 if (TREE_OVERFLOW (lo))
6856 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6857 return omit_one_operand (type, tmp, arg00);
6859 return fold_build2 (GE_EXPR, type, arg00, lo);
6861 default:
6862 break;
6865 return NULL_TREE;
6869 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6870 equality/inequality test, then return a simplified form of the test
6871 using a sign testing. Otherwise return NULL. TYPE is the desired
6872 result type. */
6874 static tree
6875 fold_single_bit_test_into_sign_test (enum tree_code code, tree arg0, tree arg1,
6876 tree result_type)
6878 /* If this is testing a single bit, we can optimize the test. */
6879 if ((code == NE_EXPR || code == EQ_EXPR)
6880 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6881 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6883 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6884 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6885 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6887 if (arg00 != NULL_TREE
6888 /* This is only a win if casting to a signed type is cheap,
6889 i.e. when arg00's type is not a partial mode. */
6890 && TYPE_PRECISION (TREE_TYPE (arg00))
6891 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
6893 tree stype = signed_type_for (TREE_TYPE (arg00));
6894 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6895 result_type, fold_convert (stype, arg00),
6896 build_int_cst (stype, 0));
6900 return NULL_TREE;
6903 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6904 equality/inequality test, then return a simplified form of
6905 the test using shifts and logical operations. Otherwise return
6906 NULL. TYPE is the desired result type. */
6908 tree
6909 fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
6910 tree result_type)
6912 /* If this is testing a single bit, we can optimize the test. */
6913 if ((code == NE_EXPR || code == EQ_EXPR)
6914 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6915 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6917 tree inner = TREE_OPERAND (arg0, 0);
6918 tree type = TREE_TYPE (arg0);
6919 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6920 enum machine_mode operand_mode = TYPE_MODE (type);
6921 int ops_unsigned;
6922 tree signed_type, unsigned_type, intermediate_type;
6923 tree tem, one;
6925 /* First, see if we can fold the single bit test into a sign-bit
6926 test. */
6927 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1,
6928 result_type);
6929 if (tem)
6930 return tem;
6932 /* Otherwise we have (A & C) != 0 where C is a single bit,
6933 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6934 Similarly for (A & C) == 0. */
6936 /* If INNER is a right shift of a constant and it plus BITNUM does
6937 not overflow, adjust BITNUM and INNER. */
6938 if (TREE_CODE (inner) == RSHIFT_EXPR
6939 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6940 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
6941 && bitnum < TYPE_PRECISION (type)
6942 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
6943 bitnum - TYPE_PRECISION (type)))
6945 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
6946 inner = TREE_OPERAND (inner, 0);
6949 /* If we are going to be able to omit the AND below, we must do our
6950 operations as unsigned. If we must use the AND, we have a choice.
6951 Normally unsigned is faster, but for some machines signed is. */
6952 #ifdef LOAD_EXTEND_OP
6953 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6954 && !flag_syntax_only) ? 0 : 1;
6955 #else
6956 ops_unsigned = 1;
6957 #endif
6959 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6960 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6961 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6962 inner = fold_convert (intermediate_type, inner);
6964 if (bitnum != 0)
6965 inner = build2 (RSHIFT_EXPR, intermediate_type,
6966 inner, size_int (bitnum));
6968 one = build_int_cst (intermediate_type, 1);
6970 if (code == EQ_EXPR)
6971 inner = fold_build2 (BIT_XOR_EXPR, intermediate_type, inner, one);
6973 /* Put the AND last so it can combine with more things. */
6974 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6976 /* Make sure to return the proper type. */
6977 inner = fold_convert (result_type, inner);
6979 return inner;
6981 return NULL_TREE;
6984 /* Check whether we are allowed to reorder operands arg0 and arg1,
6985 such that the evaluation of arg1 occurs before arg0. */
6987 static bool
6988 reorder_operands_p (const_tree arg0, const_tree arg1)
6990 if (! flag_evaluation_order)
6991 return true;
6992 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6993 return true;
6994 return ! TREE_SIDE_EFFECTS (arg0)
6995 && ! TREE_SIDE_EFFECTS (arg1);
6998 /* Test whether it is preferable two swap two operands, ARG0 and
6999 ARG1, for example because ARG0 is an integer constant and ARG1
7000 isn't. If REORDER is true, only recommend swapping if we can
7001 evaluate the operands in reverse order. */
7003 bool
7004 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
7006 STRIP_SIGN_NOPS (arg0);
7007 STRIP_SIGN_NOPS (arg1);
7009 if (TREE_CODE (arg1) == INTEGER_CST)
7010 return 0;
7011 if (TREE_CODE (arg0) == INTEGER_CST)
7012 return 1;
7014 if (TREE_CODE (arg1) == REAL_CST)
7015 return 0;
7016 if (TREE_CODE (arg0) == REAL_CST)
7017 return 1;
7019 if (TREE_CODE (arg1) == FIXED_CST)
7020 return 0;
7021 if (TREE_CODE (arg0) == FIXED_CST)
7022 return 1;
7024 if (TREE_CODE (arg1) == COMPLEX_CST)
7025 return 0;
7026 if (TREE_CODE (arg0) == COMPLEX_CST)
7027 return 1;
7029 if (TREE_CONSTANT (arg1))
7030 return 0;
7031 if (TREE_CONSTANT (arg0))
7032 return 1;
7034 if (optimize_size)
7035 return 0;
7037 if (reorder && flag_evaluation_order
7038 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
7039 return 0;
7041 /* It is preferable to swap two SSA_NAME to ensure a canonical form
7042 for commutative and comparison operators. Ensuring a canonical
7043 form allows the optimizers to find additional redundancies without
7044 having to explicitly check for both orderings. */
7045 if (TREE_CODE (arg0) == SSA_NAME
7046 && TREE_CODE (arg1) == SSA_NAME
7047 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
7048 return 1;
7050 /* Put SSA_NAMEs last. */
7051 if (TREE_CODE (arg1) == SSA_NAME)
7052 return 0;
7053 if (TREE_CODE (arg0) == SSA_NAME)
7054 return 1;
7056 /* Put variables last. */
7057 if (DECL_P (arg1))
7058 return 0;
7059 if (DECL_P (arg0))
7060 return 1;
7062 return 0;
7065 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
7066 ARG0 is extended to a wider type. */
7068 static tree
7069 fold_widened_comparison (enum tree_code code, tree type, tree arg0, tree arg1)
7071 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
7072 tree arg1_unw;
7073 tree shorter_type, outer_type;
7074 tree min, max;
7075 bool above, below;
7077 if (arg0_unw == arg0)
7078 return NULL_TREE;
7079 shorter_type = TREE_TYPE (arg0_unw);
7081 #ifdef HAVE_canonicalize_funcptr_for_compare
7082 /* Disable this optimization if we're casting a function pointer
7083 type on targets that require function pointer canonicalization. */
7084 if (HAVE_canonicalize_funcptr_for_compare
7085 && TREE_CODE (shorter_type) == POINTER_TYPE
7086 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
7087 return NULL_TREE;
7088 #endif
7090 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
7091 return NULL_TREE;
7093 arg1_unw = get_unwidened (arg1, shorter_type);
7095 /* If possible, express the comparison in the shorter mode. */
7096 if ((code == EQ_EXPR || code == NE_EXPR
7097 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
7098 && (TREE_TYPE (arg1_unw) == shorter_type
7099 || (TREE_CODE (arg1_unw) == INTEGER_CST
7100 && (TREE_CODE (shorter_type) == INTEGER_TYPE
7101 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
7102 && int_fits_type_p (arg1_unw, shorter_type))))
7103 return fold_build2 (code, type, arg0_unw,
7104 fold_convert (shorter_type, arg1_unw));
7106 if (TREE_CODE (arg1_unw) != INTEGER_CST
7107 || TREE_CODE (shorter_type) != INTEGER_TYPE
7108 || !int_fits_type_p (arg1_unw, shorter_type))
7109 return NULL_TREE;
7111 /* If we are comparing with the integer that does not fit into the range
7112 of the shorter type, the result is known. */
7113 outer_type = TREE_TYPE (arg1_unw);
7114 min = lower_bound_in_type (outer_type, shorter_type);
7115 max = upper_bound_in_type (outer_type, shorter_type);
7117 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
7118 max, arg1_unw));
7119 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
7120 arg1_unw, min));
7122 switch (code)
7124 case EQ_EXPR:
7125 if (above || below)
7126 return omit_one_operand (type, integer_zero_node, arg0);
7127 break;
7129 case NE_EXPR:
7130 if (above || below)
7131 return omit_one_operand (type, integer_one_node, arg0);
7132 break;
7134 case LT_EXPR:
7135 case LE_EXPR:
7136 if (above)
7137 return omit_one_operand (type, integer_one_node, arg0);
7138 else if (below)
7139 return omit_one_operand (type, integer_zero_node, arg0);
7141 case GT_EXPR:
7142 case GE_EXPR:
7143 if (above)
7144 return omit_one_operand (type, integer_zero_node, arg0);
7145 else if (below)
7146 return omit_one_operand (type, integer_one_node, arg0);
7148 default:
7149 break;
7152 return NULL_TREE;
7155 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
7156 ARG0 just the signedness is changed. */
7158 static tree
7159 fold_sign_changed_comparison (enum tree_code code, tree type,
7160 tree arg0, tree arg1)
7162 tree arg0_inner;
7163 tree inner_type, outer_type;
7165 if (TREE_CODE (arg0) != NOP_EXPR
7166 && TREE_CODE (arg0) != CONVERT_EXPR)
7167 return NULL_TREE;
7169 outer_type = TREE_TYPE (arg0);
7170 arg0_inner = TREE_OPERAND (arg0, 0);
7171 inner_type = TREE_TYPE (arg0_inner);
7173 #ifdef HAVE_canonicalize_funcptr_for_compare
7174 /* Disable this optimization if we're casting a function pointer
7175 type on targets that require function pointer canonicalization. */
7176 if (HAVE_canonicalize_funcptr_for_compare
7177 && TREE_CODE (inner_type) == POINTER_TYPE
7178 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
7179 return NULL_TREE;
7180 #endif
7182 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
7183 return NULL_TREE;
7185 if (TREE_CODE (arg1) != INTEGER_CST
7186 && !((TREE_CODE (arg1) == NOP_EXPR
7187 || TREE_CODE (arg1) == CONVERT_EXPR)
7188 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
7189 return NULL_TREE;
7191 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
7192 && code != NE_EXPR
7193 && code != EQ_EXPR)
7194 return NULL_TREE;
7196 if (TREE_CODE (arg1) == INTEGER_CST)
7197 arg1 = force_fit_type_double (inner_type, TREE_INT_CST_LOW (arg1),
7198 TREE_INT_CST_HIGH (arg1), 0,
7199 TREE_OVERFLOW (arg1));
7200 else
7201 arg1 = fold_convert (inner_type, arg1);
7203 return fold_build2 (code, type, arg0_inner, arg1);
7206 /* Tries to replace &a[idx] p+ s * delta with &a[idx + delta], if s is
7207 step of the array. Reconstructs s and delta in the case of s * delta
7208 being an integer constant (and thus already folded).
7209 ADDR is the address. MULT is the multiplicative expression.
7210 If the function succeeds, the new address expression is returned. Otherwise
7211 NULL_TREE is returned. */
7213 static tree
7214 try_move_mult_to_index (tree addr, tree op1)
7216 tree s, delta, step;
7217 tree ref = TREE_OPERAND (addr, 0), pref;
7218 tree ret, pos;
7219 tree itype;
7220 bool mdim = false;
7222 /* Strip the nops that might be added when converting op1 to sizetype. */
7223 STRIP_NOPS (op1);
7225 /* Canonicalize op1 into a possibly non-constant delta
7226 and an INTEGER_CST s. */
7227 if (TREE_CODE (op1) == MULT_EXPR)
7229 tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
7231 STRIP_NOPS (arg0);
7232 STRIP_NOPS (arg1);
7234 if (TREE_CODE (arg0) == INTEGER_CST)
7236 s = arg0;
7237 delta = arg1;
7239 else if (TREE_CODE (arg1) == INTEGER_CST)
7241 s = arg1;
7242 delta = arg0;
7244 else
7245 return NULL_TREE;
7247 else if (TREE_CODE (op1) == INTEGER_CST)
7249 delta = op1;
7250 s = NULL_TREE;
7252 else
7254 /* Simulate we are delta * 1. */
7255 delta = op1;
7256 s = integer_one_node;
7259 for (;; ref = TREE_OPERAND (ref, 0))
7261 if (TREE_CODE (ref) == ARRAY_REF)
7263 /* Remember if this was a multi-dimensional array. */
7264 if (TREE_CODE (TREE_OPERAND (ref, 0)) == ARRAY_REF)
7265 mdim = true;
7267 itype = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
7268 if (! itype)
7269 continue;
7271 step = array_ref_element_size (ref);
7272 if (TREE_CODE (step) != INTEGER_CST)
7273 continue;
7275 if (s)
7277 if (! tree_int_cst_equal (step, s))
7278 continue;
7280 else
7282 /* Try if delta is a multiple of step. */
7283 tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, delta, step);
7284 if (! tmp)
7285 continue;
7286 delta = tmp;
7289 /* Only fold here if we can verify we do not overflow one
7290 dimension of a multi-dimensional array. */
7291 if (mdim)
7293 tree tmp;
7295 if (TREE_CODE (TREE_OPERAND (ref, 1)) != INTEGER_CST
7296 || !INTEGRAL_TYPE_P (itype)
7297 || !TYPE_MAX_VALUE (itype)
7298 || TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST)
7299 continue;
7301 tmp = fold_binary (PLUS_EXPR, itype,
7302 fold_convert (itype,
7303 TREE_OPERAND (ref, 1)),
7304 fold_convert (itype, delta));
7305 if (!tmp
7306 || TREE_CODE (tmp) != INTEGER_CST
7307 || tree_int_cst_lt (TYPE_MAX_VALUE (itype), tmp))
7308 continue;
7311 break;
7313 else
7314 mdim = false;
7316 if (!handled_component_p (ref))
7317 return NULL_TREE;
7320 /* We found the suitable array reference. So copy everything up to it,
7321 and replace the index. */
7323 pref = TREE_OPERAND (addr, 0);
7324 ret = copy_node (pref);
7325 pos = ret;
7327 while (pref != ref)
7329 pref = TREE_OPERAND (pref, 0);
7330 TREE_OPERAND (pos, 0) = copy_node (pref);
7331 pos = TREE_OPERAND (pos, 0);
7334 TREE_OPERAND (pos, 1) = fold_build2 (PLUS_EXPR, itype,
7335 fold_convert (itype,
7336 TREE_OPERAND (pos, 1)),
7337 fold_convert (itype, delta));
7339 return fold_build1 (ADDR_EXPR, TREE_TYPE (addr), ret);
7343 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7344 means A >= Y && A != MAX, but in this case we know that
7345 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7347 static tree
7348 fold_to_nonsharp_ineq_using_bound (tree ineq, tree bound)
7350 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7352 if (TREE_CODE (bound) == LT_EXPR)
7353 a = TREE_OPERAND (bound, 0);
7354 else if (TREE_CODE (bound) == GT_EXPR)
7355 a = TREE_OPERAND (bound, 1);
7356 else
7357 return NULL_TREE;
7359 typea = TREE_TYPE (a);
7360 if (!INTEGRAL_TYPE_P (typea)
7361 && !POINTER_TYPE_P (typea))
7362 return NULL_TREE;
7364 if (TREE_CODE (ineq) == LT_EXPR)
7366 a1 = TREE_OPERAND (ineq, 1);
7367 y = TREE_OPERAND (ineq, 0);
7369 else if (TREE_CODE (ineq) == GT_EXPR)
7371 a1 = TREE_OPERAND (ineq, 0);
7372 y = TREE_OPERAND (ineq, 1);
7374 else
7375 return NULL_TREE;
7377 if (TREE_TYPE (a1) != typea)
7378 return NULL_TREE;
7380 if (POINTER_TYPE_P (typea))
7382 /* Convert the pointer types into integer before taking the difference. */
7383 tree ta = fold_convert (ssizetype, a);
7384 tree ta1 = fold_convert (ssizetype, a1);
7385 diff = fold_binary (MINUS_EXPR, ssizetype, ta1, ta);
7387 else
7388 diff = fold_binary (MINUS_EXPR, typea, a1, a);
7390 if (!diff || !integer_onep (diff))
7391 return NULL_TREE;
7393 return fold_build2 (GE_EXPR, type, a, y);
7396 /* Fold a sum or difference of at least one multiplication.
7397 Returns the folded tree or NULL if no simplification could be made. */
7399 static tree
7400 fold_plusminus_mult_expr (enum tree_code code, tree type, tree arg0, tree arg1)
7402 tree arg00, arg01, arg10, arg11;
7403 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7405 /* (A * C) +- (B * C) -> (A+-B) * C.
7406 (A * C) +- A -> A * (C+-1).
7407 We are most concerned about the case where C is a constant,
7408 but other combinations show up during loop reduction. Since
7409 it is not difficult, try all four possibilities. */
7411 if (TREE_CODE (arg0) == MULT_EXPR)
7413 arg00 = TREE_OPERAND (arg0, 0);
7414 arg01 = TREE_OPERAND (arg0, 1);
7416 else if (TREE_CODE (arg0) == INTEGER_CST)
7418 arg00 = build_one_cst (type);
7419 arg01 = arg0;
7421 else
7423 /* We cannot generate constant 1 for fract. */
7424 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7425 return NULL_TREE;
7426 arg00 = arg0;
7427 arg01 = build_one_cst (type);
7429 if (TREE_CODE (arg1) == MULT_EXPR)
7431 arg10 = TREE_OPERAND (arg1, 0);
7432 arg11 = TREE_OPERAND (arg1, 1);
7434 else if (TREE_CODE (arg1) == INTEGER_CST)
7436 arg10 = build_one_cst (type);
7437 arg11 = arg1;
7439 else
7441 /* We cannot generate constant 1 for fract. */
7442 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7443 return NULL_TREE;
7444 arg10 = arg1;
7445 arg11 = build_one_cst (type);
7447 same = NULL_TREE;
7449 if (operand_equal_p (arg01, arg11, 0))
7450 same = arg01, alt0 = arg00, alt1 = arg10;
7451 else if (operand_equal_p (arg00, arg10, 0))
7452 same = arg00, alt0 = arg01, alt1 = arg11;
7453 else if (operand_equal_p (arg00, arg11, 0))
7454 same = arg00, alt0 = arg01, alt1 = arg10;
7455 else if (operand_equal_p (arg01, arg10, 0))
7456 same = arg01, alt0 = arg00, alt1 = arg11;
7458 /* No identical multiplicands; see if we can find a common
7459 power-of-two factor in non-power-of-two multiplies. This
7460 can help in multi-dimensional array access. */
7461 else if (host_integerp (arg01, 0)
7462 && host_integerp (arg11, 0))
7464 HOST_WIDE_INT int01, int11, tmp;
7465 bool swap = false;
7466 tree maybe_same;
7467 int01 = TREE_INT_CST_LOW (arg01);
7468 int11 = TREE_INT_CST_LOW (arg11);
7470 /* Move min of absolute values to int11. */
7471 if ((int01 >= 0 ? int01 : -int01)
7472 < (int11 >= 0 ? int11 : -int11))
7474 tmp = int01, int01 = int11, int11 = tmp;
7475 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7476 maybe_same = arg01;
7477 swap = true;
7479 else
7480 maybe_same = arg11;
7482 if (exact_log2 (abs (int11)) > 0 && int01 % int11 == 0)
7484 alt0 = fold_build2 (MULT_EXPR, TREE_TYPE (arg00), arg00,
7485 build_int_cst (TREE_TYPE (arg00),
7486 int01 / int11));
7487 alt1 = arg10;
7488 same = maybe_same;
7489 if (swap)
7490 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7494 if (same)
7495 return fold_build2 (MULT_EXPR, type,
7496 fold_build2 (code, type,
7497 fold_convert (type, alt0),
7498 fold_convert (type, alt1)),
7499 fold_convert (type, same));
7501 return NULL_TREE;
7504 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7505 specified by EXPR into the buffer PTR of length LEN bytes.
7506 Return the number of bytes placed in the buffer, or zero
7507 upon failure. */
7509 static int
7510 native_encode_int (const_tree expr, unsigned char *ptr, int len)
7512 tree type = TREE_TYPE (expr);
7513 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7514 int byte, offset, word, words;
7515 unsigned char value;
7517 if (total_bytes > len)
7518 return 0;
7519 words = total_bytes / UNITS_PER_WORD;
7521 for (byte = 0; byte < total_bytes; byte++)
7523 int bitpos = byte * BITS_PER_UNIT;
7524 if (bitpos < HOST_BITS_PER_WIDE_INT)
7525 value = (unsigned char) (TREE_INT_CST_LOW (expr) >> bitpos);
7526 else
7527 value = (unsigned char) (TREE_INT_CST_HIGH (expr)
7528 >> (bitpos - HOST_BITS_PER_WIDE_INT));
7530 if (total_bytes > UNITS_PER_WORD)
7532 word = byte / UNITS_PER_WORD;
7533 if (WORDS_BIG_ENDIAN)
7534 word = (words - 1) - word;
7535 offset = word * UNITS_PER_WORD;
7536 if (BYTES_BIG_ENDIAN)
7537 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7538 else
7539 offset += byte % UNITS_PER_WORD;
7541 else
7542 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7543 ptr[offset] = value;
7545 return total_bytes;
7549 /* Subroutine of native_encode_expr. Encode the REAL_CST
7550 specified by EXPR into the buffer PTR of length LEN bytes.
7551 Return the number of bytes placed in the buffer, or zero
7552 upon failure. */
7554 static int
7555 native_encode_real (const_tree expr, unsigned char *ptr, int len)
7557 tree type = TREE_TYPE (expr);
7558 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7559 int byte, offset, word, words, bitpos;
7560 unsigned char value;
7562 /* There are always 32 bits in each long, no matter the size of
7563 the hosts long. We handle floating point representations with
7564 up to 192 bits. */
7565 long tmp[6];
7567 if (total_bytes > len)
7568 return 0;
7569 words = 32 / UNITS_PER_WORD;
7571 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7573 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7574 bitpos += BITS_PER_UNIT)
7576 byte = (bitpos / BITS_PER_UNIT) & 3;
7577 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7579 if (UNITS_PER_WORD < 4)
7581 word = byte / UNITS_PER_WORD;
7582 if (WORDS_BIG_ENDIAN)
7583 word = (words - 1) - word;
7584 offset = word * UNITS_PER_WORD;
7585 if (BYTES_BIG_ENDIAN)
7586 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7587 else
7588 offset += byte % UNITS_PER_WORD;
7590 else
7591 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7592 ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)] = value;
7594 return total_bytes;
7597 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7598 specified by EXPR into the buffer PTR of length LEN bytes.
7599 Return the number of bytes placed in the buffer, or zero
7600 upon failure. */
7602 static int
7603 native_encode_complex (const_tree expr, unsigned char *ptr, int len)
7605 int rsize, isize;
7606 tree part;
7608 part = TREE_REALPART (expr);
7609 rsize = native_encode_expr (part, ptr, len);
7610 if (rsize == 0)
7611 return 0;
7612 part = TREE_IMAGPART (expr);
7613 isize = native_encode_expr (part, ptr+rsize, len-rsize);
7614 if (isize != rsize)
7615 return 0;
7616 return rsize + isize;
7620 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7621 specified by EXPR into the buffer PTR of length LEN bytes.
7622 Return the number of bytes placed in the buffer, or zero
7623 upon failure. */
7625 static int
7626 native_encode_vector (const_tree expr, unsigned char *ptr, int len)
7628 int i, size, offset, count;
7629 tree itype, elem, elements;
7631 offset = 0;
7632 elements = TREE_VECTOR_CST_ELTS (expr);
7633 count = TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr));
7634 itype = TREE_TYPE (TREE_TYPE (expr));
7635 size = GET_MODE_SIZE (TYPE_MODE (itype));
7636 for (i = 0; i < count; i++)
7638 if (elements)
7640 elem = TREE_VALUE (elements);
7641 elements = TREE_CHAIN (elements);
7643 else
7644 elem = NULL_TREE;
7646 if (elem)
7648 if (native_encode_expr (elem, ptr+offset, len-offset) != size)
7649 return 0;
7651 else
7653 if (offset + size > len)
7654 return 0;
7655 memset (ptr+offset, 0, size);
7657 offset += size;
7659 return offset;
7663 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7664 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7665 buffer PTR of length LEN bytes. Return the number of bytes
7666 placed in the buffer, or zero upon failure. */
7669 native_encode_expr (const_tree expr, unsigned char *ptr, int len)
7671 switch (TREE_CODE (expr))
7673 case INTEGER_CST:
7674 return native_encode_int (expr, ptr, len);
7676 case REAL_CST:
7677 return native_encode_real (expr, ptr, len);
7679 case COMPLEX_CST:
7680 return native_encode_complex (expr, ptr, len);
7682 case VECTOR_CST:
7683 return native_encode_vector (expr, ptr, len);
7685 default:
7686 return 0;
7691 /* Subroutine of native_interpret_expr. Interpret the contents of
7692 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7693 If the buffer cannot be interpreted, return NULL_TREE. */
7695 static tree
7696 native_interpret_int (tree type, const unsigned char *ptr, int len)
7698 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7699 int byte, offset, word, words;
7700 unsigned char value;
7701 unsigned int HOST_WIDE_INT lo = 0;
7702 HOST_WIDE_INT hi = 0;
7704 if (total_bytes > len)
7705 return NULL_TREE;
7706 if (total_bytes * BITS_PER_UNIT > 2 * HOST_BITS_PER_WIDE_INT)
7707 return NULL_TREE;
7708 words = total_bytes / UNITS_PER_WORD;
7710 for (byte = 0; byte < total_bytes; byte++)
7712 int bitpos = byte * BITS_PER_UNIT;
7713 if (total_bytes > UNITS_PER_WORD)
7715 word = byte / UNITS_PER_WORD;
7716 if (WORDS_BIG_ENDIAN)
7717 word = (words - 1) - word;
7718 offset = word * UNITS_PER_WORD;
7719 if (BYTES_BIG_ENDIAN)
7720 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7721 else
7722 offset += byte % UNITS_PER_WORD;
7724 else
7725 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7726 value = ptr[offset];
7728 if (bitpos < HOST_BITS_PER_WIDE_INT)
7729 lo |= (unsigned HOST_WIDE_INT) value << bitpos;
7730 else
7731 hi |= (unsigned HOST_WIDE_INT) value
7732 << (bitpos - HOST_BITS_PER_WIDE_INT);
7735 return build_int_cst_wide_type (type, lo, hi);
7739 /* Subroutine of native_interpret_expr. Interpret the contents of
7740 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7741 If the buffer cannot be interpreted, return NULL_TREE. */
7743 static tree
7744 native_interpret_real (tree type, const unsigned char *ptr, int len)
7746 enum machine_mode mode = TYPE_MODE (type);
7747 int total_bytes = GET_MODE_SIZE (mode);
7748 int byte, offset, word, words, bitpos;
7749 unsigned char value;
7750 /* There are always 32 bits in each long, no matter the size of
7751 the hosts long. We handle floating point representations with
7752 up to 192 bits. */
7753 REAL_VALUE_TYPE r;
7754 long tmp[6];
7756 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7757 if (total_bytes > len || total_bytes > 24)
7758 return NULL_TREE;
7759 words = 32 / UNITS_PER_WORD;
7761 memset (tmp, 0, sizeof (tmp));
7762 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7763 bitpos += BITS_PER_UNIT)
7765 byte = (bitpos / BITS_PER_UNIT) & 3;
7766 if (UNITS_PER_WORD < 4)
7768 word = byte / UNITS_PER_WORD;
7769 if (WORDS_BIG_ENDIAN)
7770 word = (words - 1) - word;
7771 offset = word * UNITS_PER_WORD;
7772 if (BYTES_BIG_ENDIAN)
7773 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7774 else
7775 offset += byte % UNITS_PER_WORD;
7777 else
7778 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7779 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7781 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7784 real_from_target (&r, tmp, mode);
7785 return build_real (type, r);
7789 /* Subroutine of native_interpret_expr. Interpret the contents of
7790 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7791 If the buffer cannot be interpreted, return NULL_TREE. */
7793 static tree
7794 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7796 tree etype, rpart, ipart;
7797 int size;
7799 etype = TREE_TYPE (type);
7800 size = GET_MODE_SIZE (TYPE_MODE (etype));
7801 if (size * 2 > len)
7802 return NULL_TREE;
7803 rpart = native_interpret_expr (etype, ptr, size);
7804 if (!rpart)
7805 return NULL_TREE;
7806 ipart = native_interpret_expr (etype, ptr+size, size);
7807 if (!ipart)
7808 return NULL_TREE;
7809 return build_complex (type, rpart, ipart);
7813 /* Subroutine of native_interpret_expr. Interpret the contents of
7814 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7815 If the buffer cannot be interpreted, return NULL_TREE. */
7817 static tree
7818 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7820 tree etype, elem, elements;
7821 int i, size, count;
7823 etype = TREE_TYPE (type);
7824 size = GET_MODE_SIZE (TYPE_MODE (etype));
7825 count = TYPE_VECTOR_SUBPARTS (type);
7826 if (size * count > len)
7827 return NULL_TREE;
7829 elements = NULL_TREE;
7830 for (i = count - 1; i >= 0; i--)
7832 elem = native_interpret_expr (etype, ptr+(i*size), size);
7833 if (!elem)
7834 return NULL_TREE;
7835 elements = tree_cons (NULL_TREE, elem, elements);
7837 return build_vector (type, elements);
7841 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7842 the buffer PTR of length LEN as a constant of type TYPE. For
7843 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7844 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7845 return NULL_TREE. */
7847 tree
7848 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7850 switch (TREE_CODE (type))
7852 case INTEGER_TYPE:
7853 case ENUMERAL_TYPE:
7854 case BOOLEAN_TYPE:
7855 return native_interpret_int (type, ptr, len);
7857 case REAL_TYPE:
7858 return native_interpret_real (type, ptr, len);
7860 case COMPLEX_TYPE:
7861 return native_interpret_complex (type, ptr, len);
7863 case VECTOR_TYPE:
7864 return native_interpret_vector (type, ptr, len);
7866 default:
7867 return NULL_TREE;
7872 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7873 TYPE at compile-time. If we're unable to perform the conversion
7874 return NULL_TREE. */
7876 static tree
7877 fold_view_convert_expr (tree type, tree expr)
7879 /* We support up to 512-bit values (for V8DFmode). */
7880 unsigned char buffer[64];
7881 int len;
7883 /* Check that the host and target are sane. */
7884 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7885 return NULL_TREE;
7887 len = native_encode_expr (expr, buffer, sizeof (buffer));
7888 if (len == 0)
7889 return NULL_TREE;
7891 return native_interpret_expr (type, buffer, len);
7894 /* Build an expression for the address of T. Folds away INDIRECT_REF
7895 to avoid confusing the gimplify process. When IN_FOLD is true
7896 avoid modifications of T. */
7898 static tree
7899 build_fold_addr_expr_with_type_1 (tree t, tree ptrtype, bool in_fold)
7901 /* The size of the object is not relevant when talking about its address. */
7902 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7903 t = TREE_OPERAND (t, 0);
7905 /* Note: doesn't apply to ALIGN_INDIRECT_REF */
7906 if (TREE_CODE (t) == INDIRECT_REF
7907 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
7909 t = TREE_OPERAND (t, 0);
7911 if (TREE_TYPE (t) != ptrtype)
7912 t = build1 (NOP_EXPR, ptrtype, t);
7914 else if (!in_fold)
7916 tree base = t;
7918 while (handled_component_p (base))
7919 base = TREE_OPERAND (base, 0);
7921 if (DECL_P (base))
7922 TREE_ADDRESSABLE (base) = 1;
7924 t = build1 (ADDR_EXPR, ptrtype, t);
7926 else
7927 t = build1 (ADDR_EXPR, ptrtype, t);
7929 return t;
7932 /* Build an expression for the address of T with type PTRTYPE. This
7933 function modifies the input parameter 'T' by sometimes setting the
7934 TREE_ADDRESSABLE flag. */
7936 tree
7937 build_fold_addr_expr_with_type (tree t, tree ptrtype)
7939 return build_fold_addr_expr_with_type_1 (t, ptrtype, false);
7942 /* Build an expression for the address of T. This function modifies
7943 the input parameter 'T' by sometimes setting the TREE_ADDRESSABLE
7944 flag. When called from fold functions, use fold_addr_expr instead. */
7946 tree
7947 build_fold_addr_expr (tree t)
7949 return build_fold_addr_expr_with_type_1 (t,
7950 build_pointer_type (TREE_TYPE (t)),
7951 false);
7954 /* Same as build_fold_addr_expr, builds an expression for the address
7955 of T, but avoids touching the input node 't'. Fold functions
7956 should use this version. */
7958 static tree
7959 fold_addr_expr (tree t)
7961 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7963 return build_fold_addr_expr_with_type_1 (t, ptrtype, true);
7966 /* Fold a unary expression of code CODE and type TYPE with operand
7967 OP0. Return the folded expression if folding is successful.
7968 Otherwise, return NULL_TREE. */
7970 tree
7971 fold_unary (enum tree_code code, tree type, tree op0)
7973 tree tem;
7974 tree arg0;
7975 enum tree_code_class kind = TREE_CODE_CLASS (code);
7977 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7978 && TREE_CODE_LENGTH (code) == 1);
7980 arg0 = op0;
7981 if (arg0)
7983 if (code == NOP_EXPR || code == CONVERT_EXPR
7984 || code == FLOAT_EXPR || code == ABS_EXPR)
7986 /* Don't use STRIP_NOPS, because signedness of argument type
7987 matters. */
7988 STRIP_SIGN_NOPS (arg0);
7990 else
7992 /* Strip any conversions that don't change the mode. This
7993 is safe for every expression, except for a comparison
7994 expression because its signedness is derived from its
7995 operands.
7997 Note that this is done as an internal manipulation within
7998 the constant folder, in order to find the simplest
7999 representation of the arguments so that their form can be
8000 studied. In any cases, the appropriate type conversions
8001 should be put back in the tree that will get out of the
8002 constant folder. */
8003 STRIP_NOPS (arg0);
8007 if (TREE_CODE_CLASS (code) == tcc_unary)
8009 if (TREE_CODE (arg0) == COMPOUND_EXPR)
8010 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
8011 fold_build1 (code, type, TREE_OPERAND (arg0, 1)));
8012 else if (TREE_CODE (arg0) == COND_EXPR)
8014 tree arg01 = TREE_OPERAND (arg0, 1);
8015 tree arg02 = TREE_OPERAND (arg0, 2);
8016 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
8017 arg01 = fold_build1 (code, type, arg01);
8018 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
8019 arg02 = fold_build1 (code, type, arg02);
8020 tem = fold_build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
8021 arg01, arg02);
8023 /* If this was a conversion, and all we did was to move into
8024 inside the COND_EXPR, bring it back out. But leave it if
8025 it is a conversion from integer to integer and the
8026 result precision is no wider than a word since such a
8027 conversion is cheap and may be optimized away by combine,
8028 while it couldn't if it were outside the COND_EXPR. Then return
8029 so we don't get into an infinite recursion loop taking the
8030 conversion out and then back in. */
8032 if ((code == NOP_EXPR || code == CONVERT_EXPR
8033 || code == NON_LVALUE_EXPR)
8034 && TREE_CODE (tem) == COND_EXPR
8035 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
8036 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
8037 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
8038 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
8039 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
8040 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
8041 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8042 && (INTEGRAL_TYPE_P
8043 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
8044 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
8045 || flag_syntax_only))
8046 tem = build1 (code, type,
8047 build3 (COND_EXPR,
8048 TREE_TYPE (TREE_OPERAND
8049 (TREE_OPERAND (tem, 1), 0)),
8050 TREE_OPERAND (tem, 0),
8051 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
8052 TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
8053 return tem;
8055 else if (COMPARISON_CLASS_P (arg0))
8057 if (TREE_CODE (type) == BOOLEAN_TYPE)
8059 arg0 = copy_node (arg0);
8060 TREE_TYPE (arg0) = type;
8061 return arg0;
8063 else if (TREE_CODE (type) != INTEGER_TYPE)
8064 return fold_build3 (COND_EXPR, type, arg0,
8065 fold_build1 (code, type,
8066 integer_one_node),
8067 fold_build1 (code, type,
8068 integer_zero_node));
8072 switch (code)
8074 case NOP_EXPR:
8075 case FLOAT_EXPR:
8076 case CONVERT_EXPR:
8077 case FIX_TRUNC_EXPR:
8078 if (TREE_TYPE (op0) == type)
8079 return op0;
8081 /* If we have (type) (a CMP b) and type is an integral type, return
8082 new expression involving the new type. */
8083 if (COMPARISON_CLASS_P (op0) && INTEGRAL_TYPE_P (type))
8084 return fold_build2 (TREE_CODE (op0), type, TREE_OPERAND (op0, 0),
8085 TREE_OPERAND (op0, 1));
8087 /* Handle cases of two conversions in a row. */
8088 if (TREE_CODE (op0) == NOP_EXPR
8089 || TREE_CODE (op0) == CONVERT_EXPR)
8091 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
8092 tree inter_type = TREE_TYPE (op0);
8093 int inside_int = INTEGRAL_TYPE_P (inside_type);
8094 int inside_ptr = POINTER_TYPE_P (inside_type);
8095 int inside_float = FLOAT_TYPE_P (inside_type);
8096 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
8097 unsigned int inside_prec = TYPE_PRECISION (inside_type);
8098 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
8099 int inter_int = INTEGRAL_TYPE_P (inter_type);
8100 int inter_ptr = POINTER_TYPE_P (inter_type);
8101 int inter_float = FLOAT_TYPE_P (inter_type);
8102 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
8103 unsigned int inter_prec = TYPE_PRECISION (inter_type);
8104 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
8105 int final_int = INTEGRAL_TYPE_P (type);
8106 int final_ptr = POINTER_TYPE_P (type);
8107 int final_float = FLOAT_TYPE_P (type);
8108 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
8109 unsigned int final_prec = TYPE_PRECISION (type);
8110 int final_unsignedp = TYPE_UNSIGNED (type);
8112 /* In addition to the cases of two conversions in a row
8113 handled below, if we are converting something to its own
8114 type via an object of identical or wider precision, neither
8115 conversion is needed. */
8116 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
8117 && (((inter_int || inter_ptr) && final_int)
8118 || (inter_float && final_float))
8119 && inter_prec >= final_prec)
8120 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8122 /* Likewise, if the intermediate and final types are either both
8123 float or both integer, we don't need the middle conversion if
8124 it is wider than the final type and doesn't change the signedness
8125 (for integers). Avoid this if the final type is a pointer
8126 since then we sometimes need the inner conversion. Likewise if
8127 the outer has a precision not equal to the size of its mode. */
8128 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
8129 || (inter_float && inside_float)
8130 || (inter_vec && inside_vec))
8131 && inter_prec >= inside_prec
8132 && (inter_float || inter_vec
8133 || inter_unsignedp == inside_unsignedp)
8134 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
8135 && TYPE_MODE (type) == TYPE_MODE (inter_type))
8136 && ! final_ptr
8137 && (! final_vec || inter_prec == inside_prec))
8138 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8140 /* If we have a sign-extension of a zero-extended value, we can
8141 replace that by a single zero-extension. */
8142 if (inside_int && inter_int && final_int
8143 && inside_prec < inter_prec && inter_prec < final_prec
8144 && inside_unsignedp && !inter_unsignedp)
8145 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8147 /* Two conversions in a row are not needed unless:
8148 - some conversion is floating-point (overstrict for now), or
8149 - some conversion is a vector (overstrict for now), or
8150 - the intermediate type is narrower than both initial and
8151 final, or
8152 - the intermediate type and innermost type differ in signedness,
8153 and the outermost type is wider than the intermediate, or
8154 - the initial type is a pointer type and the precisions of the
8155 intermediate and final types differ, or
8156 - the final type is a pointer type and the precisions of the
8157 initial and intermediate types differ.
8158 - the final type is a pointer type and the initial type not
8159 - the initial type is a pointer to an array and the final type
8160 not. */
8161 if (! inside_float && ! inter_float && ! final_float
8162 && ! inside_vec && ! inter_vec && ! final_vec
8163 && (inter_prec >= inside_prec || inter_prec >= final_prec)
8164 && ! (inside_int && inter_int
8165 && inter_unsignedp != inside_unsignedp
8166 && inter_prec < final_prec)
8167 && ((inter_unsignedp && inter_prec > inside_prec)
8168 == (final_unsignedp && final_prec > inter_prec))
8169 && ! (inside_ptr && inter_prec != final_prec)
8170 && ! (final_ptr && inside_prec != inter_prec)
8171 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
8172 && TYPE_MODE (type) == TYPE_MODE (inter_type))
8173 && final_ptr == inside_ptr
8174 && ! (inside_ptr
8175 && TREE_CODE (TREE_TYPE (inside_type)) == ARRAY_TYPE
8176 && TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE))
8177 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8180 /* Handle (T *)&A.B.C for A being of type T and B and C
8181 living at offset zero. This occurs frequently in
8182 C++ upcasting and then accessing the base. */
8183 if (TREE_CODE (op0) == ADDR_EXPR
8184 && POINTER_TYPE_P (type)
8185 && handled_component_p (TREE_OPERAND (op0, 0)))
8187 HOST_WIDE_INT bitsize, bitpos;
8188 tree offset;
8189 enum machine_mode mode;
8190 int unsignedp, volatilep;
8191 tree base = TREE_OPERAND (op0, 0);
8192 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
8193 &mode, &unsignedp, &volatilep, false);
8194 /* If the reference was to a (constant) zero offset, we can use
8195 the address of the base if it has the same base type
8196 as the result type. */
8197 if (! offset && bitpos == 0
8198 && TYPE_MAIN_VARIANT (TREE_TYPE (type))
8199 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
8200 return fold_convert (type, fold_addr_expr (base));
8203 if ((TREE_CODE (op0) == MODIFY_EXPR
8204 || TREE_CODE (op0) == GIMPLE_MODIFY_STMT)
8205 && TREE_CONSTANT (GENERIC_TREE_OPERAND (op0, 1))
8206 /* Detect assigning a bitfield. */
8207 && !(TREE_CODE (GENERIC_TREE_OPERAND (op0, 0)) == COMPONENT_REF
8208 && DECL_BIT_FIELD
8209 (TREE_OPERAND (GENERIC_TREE_OPERAND (op0, 0), 1))))
8211 /* Don't leave an assignment inside a conversion
8212 unless assigning a bitfield. */
8213 tem = fold_build1 (code, type, GENERIC_TREE_OPERAND (op0, 1));
8214 /* First do the assignment, then return converted constant. */
8215 tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
8216 TREE_NO_WARNING (tem) = 1;
8217 TREE_USED (tem) = 1;
8218 return tem;
8221 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
8222 constants (if x has signed type, the sign bit cannot be set
8223 in c). This folds extension into the BIT_AND_EXPR. */
8224 if (INTEGRAL_TYPE_P (type)
8225 && TREE_CODE (type) != BOOLEAN_TYPE
8226 && TREE_CODE (op0) == BIT_AND_EXPR
8227 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
8229 tree and = op0;
8230 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
8231 int change = 0;
8233 if (TYPE_UNSIGNED (TREE_TYPE (and))
8234 || (TYPE_PRECISION (type)
8235 <= TYPE_PRECISION (TREE_TYPE (and))))
8236 change = 1;
8237 else if (TYPE_PRECISION (TREE_TYPE (and1))
8238 <= HOST_BITS_PER_WIDE_INT
8239 && host_integerp (and1, 1))
8241 unsigned HOST_WIDE_INT cst;
8243 cst = tree_low_cst (and1, 1);
8244 cst &= (HOST_WIDE_INT) -1
8245 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
8246 change = (cst == 0);
8247 #ifdef LOAD_EXTEND_OP
8248 if (change
8249 && !flag_syntax_only
8250 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
8251 == ZERO_EXTEND))
8253 tree uns = unsigned_type_for (TREE_TYPE (and0));
8254 and0 = fold_convert (uns, and0);
8255 and1 = fold_convert (uns, and1);
8257 #endif
8259 if (change)
8261 tem = force_fit_type_double (type, TREE_INT_CST_LOW (and1),
8262 TREE_INT_CST_HIGH (and1), 0,
8263 TREE_OVERFLOW (and1));
8264 return fold_build2 (BIT_AND_EXPR, type,
8265 fold_convert (type, and0), tem);
8269 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
8270 when one of the new casts will fold away. Conservatively we assume
8271 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
8272 if (POINTER_TYPE_P (type)
8273 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
8274 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8275 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
8276 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
8278 tree arg00 = TREE_OPERAND (arg0, 0);
8279 tree arg01 = TREE_OPERAND (arg0, 1);
8281 return fold_build2 (TREE_CODE (arg0), type, fold_convert (type, arg00),
8282 fold_convert (sizetype, arg01));
8285 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8286 of the same precision, and X is an integer type not narrower than
8287 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8288 if (INTEGRAL_TYPE_P (type)
8289 && TREE_CODE (op0) == BIT_NOT_EXPR
8290 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8291 && (TREE_CODE (TREE_OPERAND (op0, 0)) == NOP_EXPR
8292 || TREE_CODE (TREE_OPERAND (op0, 0)) == CONVERT_EXPR)
8293 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8295 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
8296 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8297 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
8298 return fold_build1 (BIT_NOT_EXPR, type, fold_convert (type, tem));
8301 tem = fold_convert_const (code, type, op0);
8302 return tem ? tem : NULL_TREE;
8304 case FIXED_CONVERT_EXPR:
8305 tem = fold_convert_const (code, type, arg0);
8306 return tem ? tem : NULL_TREE;
8308 case VIEW_CONVERT_EXPR:
8309 if (TREE_TYPE (op0) == type)
8310 return op0;
8311 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
8312 return fold_build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
8313 return fold_view_convert_expr (type, op0);
8315 case NEGATE_EXPR:
8316 tem = fold_negate_expr (arg0);
8317 if (tem)
8318 return fold_convert (type, tem);
8319 return NULL_TREE;
8321 case ABS_EXPR:
8322 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
8323 return fold_abs_const (arg0, type);
8324 else if (TREE_CODE (arg0) == NEGATE_EXPR)
8325 return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
8326 /* Convert fabs((double)float) into (double)fabsf(float). */
8327 else if (TREE_CODE (arg0) == NOP_EXPR
8328 && TREE_CODE (type) == REAL_TYPE)
8330 tree targ0 = strip_float_extensions (arg0);
8331 if (targ0 != arg0)
8332 return fold_convert (type, fold_build1 (ABS_EXPR,
8333 TREE_TYPE (targ0),
8334 targ0));
8336 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
8337 else if (TREE_CODE (arg0) == ABS_EXPR)
8338 return arg0;
8339 else if (tree_expr_nonnegative_p (arg0))
8340 return arg0;
8342 /* Strip sign ops from argument. */
8343 if (TREE_CODE (type) == REAL_TYPE)
8345 tem = fold_strip_sign_ops (arg0);
8346 if (tem)
8347 return fold_build1 (ABS_EXPR, type, fold_convert (type, tem));
8349 return NULL_TREE;
8351 case CONJ_EXPR:
8352 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8353 return fold_convert (type, arg0);
8354 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8356 tree itype = TREE_TYPE (type);
8357 tree rpart = fold_convert (itype, TREE_OPERAND (arg0, 0));
8358 tree ipart = fold_convert (itype, TREE_OPERAND (arg0, 1));
8359 return fold_build2 (COMPLEX_EXPR, type, rpart, negate_expr (ipart));
8361 if (TREE_CODE (arg0) == COMPLEX_CST)
8363 tree itype = TREE_TYPE (type);
8364 tree rpart = fold_convert (itype, TREE_REALPART (arg0));
8365 tree ipart = fold_convert (itype, TREE_IMAGPART (arg0));
8366 return build_complex (type, rpart, negate_expr (ipart));
8368 if (TREE_CODE (arg0) == CONJ_EXPR)
8369 return fold_convert (type, TREE_OPERAND (arg0, 0));
8370 return NULL_TREE;
8372 case BIT_NOT_EXPR:
8373 if (TREE_CODE (arg0) == INTEGER_CST)
8374 return fold_not_const (arg0, type);
8375 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
8376 return TREE_OPERAND (arg0, 0);
8377 /* Convert ~ (-A) to A - 1. */
8378 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
8379 return fold_build2 (MINUS_EXPR, type, TREE_OPERAND (arg0, 0),
8380 build_int_cst (type, 1));
8381 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8382 else if (INTEGRAL_TYPE_P (type)
8383 && ((TREE_CODE (arg0) == MINUS_EXPR
8384 && integer_onep (TREE_OPERAND (arg0, 1)))
8385 || (TREE_CODE (arg0) == PLUS_EXPR
8386 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
8387 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
8388 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8389 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8390 && (tem = fold_unary (BIT_NOT_EXPR, type,
8391 fold_convert (type,
8392 TREE_OPERAND (arg0, 0)))))
8393 return fold_build2 (BIT_XOR_EXPR, type, tem,
8394 fold_convert (type, TREE_OPERAND (arg0, 1)));
8395 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8396 && (tem = fold_unary (BIT_NOT_EXPR, type,
8397 fold_convert (type,
8398 TREE_OPERAND (arg0, 1)))))
8399 return fold_build2 (BIT_XOR_EXPR, type,
8400 fold_convert (type, TREE_OPERAND (arg0, 0)), tem);
8401 /* Perform BIT_NOT_EXPR on each element individually. */
8402 else if (TREE_CODE (arg0) == VECTOR_CST)
8404 tree elements = TREE_VECTOR_CST_ELTS (arg0), elem, list = NULL_TREE;
8405 int count = TYPE_VECTOR_SUBPARTS (type), i;
8407 for (i = 0; i < count; i++)
8409 if (elements)
8411 elem = TREE_VALUE (elements);
8412 elem = fold_unary (BIT_NOT_EXPR, TREE_TYPE (type), elem);
8413 if (elem == NULL_TREE)
8414 break;
8415 elements = TREE_CHAIN (elements);
8417 else
8418 elem = build_int_cst (TREE_TYPE (type), -1);
8419 list = tree_cons (NULL_TREE, elem, list);
8421 if (i == count)
8422 return build_vector (type, nreverse (list));
8425 return NULL_TREE;
8427 case TRUTH_NOT_EXPR:
8428 /* The argument to invert_truthvalue must have Boolean type. */
8429 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
8430 arg0 = fold_convert (boolean_type_node, arg0);
8432 /* Note that the operand of this must be an int
8433 and its values must be 0 or 1.
8434 ("true" is a fixed value perhaps depending on the language,
8435 but we don't handle values other than 1 correctly yet.) */
8436 tem = fold_truth_not_expr (arg0);
8437 if (!tem)
8438 return NULL_TREE;
8439 return fold_convert (type, tem);
8441 case REALPART_EXPR:
8442 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8443 return fold_convert (type, arg0);
8444 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8445 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
8446 TREE_OPERAND (arg0, 1));
8447 if (TREE_CODE (arg0) == COMPLEX_CST)
8448 return fold_convert (type, TREE_REALPART (arg0));
8449 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8451 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8452 tem = fold_build2 (TREE_CODE (arg0), itype,
8453 fold_build1 (REALPART_EXPR, itype,
8454 TREE_OPERAND (arg0, 0)),
8455 fold_build1 (REALPART_EXPR, itype,
8456 TREE_OPERAND (arg0, 1)));
8457 return fold_convert (type, tem);
8459 if (TREE_CODE (arg0) == CONJ_EXPR)
8461 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8462 tem = fold_build1 (REALPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8463 return fold_convert (type, tem);
8465 if (TREE_CODE (arg0) == CALL_EXPR)
8467 tree fn = get_callee_fndecl (arg0);
8468 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8469 switch (DECL_FUNCTION_CODE (fn))
8471 CASE_FLT_FN (BUILT_IN_CEXPI):
8472 fn = mathfn_built_in (type, BUILT_IN_COS);
8473 if (fn)
8474 return build_call_expr (fn, 1, CALL_EXPR_ARG (arg0, 0));
8475 break;
8477 default:
8478 break;
8481 return NULL_TREE;
8483 case IMAGPART_EXPR:
8484 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8485 return fold_convert (type, integer_zero_node);
8486 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8487 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
8488 TREE_OPERAND (arg0, 0));
8489 if (TREE_CODE (arg0) == COMPLEX_CST)
8490 return fold_convert (type, TREE_IMAGPART (arg0));
8491 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8493 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8494 tem = fold_build2 (TREE_CODE (arg0), itype,
8495 fold_build1 (IMAGPART_EXPR, itype,
8496 TREE_OPERAND (arg0, 0)),
8497 fold_build1 (IMAGPART_EXPR, itype,
8498 TREE_OPERAND (arg0, 1)));
8499 return fold_convert (type, tem);
8501 if (TREE_CODE (arg0) == CONJ_EXPR)
8503 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8504 tem = fold_build1 (IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8505 return fold_convert (type, negate_expr (tem));
8507 if (TREE_CODE (arg0) == CALL_EXPR)
8509 tree fn = get_callee_fndecl (arg0);
8510 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8511 switch (DECL_FUNCTION_CODE (fn))
8513 CASE_FLT_FN (BUILT_IN_CEXPI):
8514 fn = mathfn_built_in (type, BUILT_IN_SIN);
8515 if (fn)
8516 return build_call_expr (fn, 1, CALL_EXPR_ARG (arg0, 0));
8517 break;
8519 default:
8520 break;
8523 return NULL_TREE;
8525 default:
8526 return NULL_TREE;
8527 } /* switch (code) */
8530 /* Fold a binary expression of code CODE and type TYPE with operands
8531 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8532 Return the folded expression if folding is successful. Otherwise,
8533 return NULL_TREE. */
8535 static tree
8536 fold_minmax (enum tree_code code, tree type, tree op0, tree op1)
8538 enum tree_code compl_code;
8540 if (code == MIN_EXPR)
8541 compl_code = MAX_EXPR;
8542 else if (code == MAX_EXPR)
8543 compl_code = MIN_EXPR;
8544 else
8545 gcc_unreachable ();
8547 /* MIN (MAX (a, b), b) == b. */
8548 if (TREE_CODE (op0) == compl_code
8549 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8550 return omit_one_operand (type, op1, TREE_OPERAND (op0, 0));
8552 /* MIN (MAX (b, a), b) == b. */
8553 if (TREE_CODE (op0) == compl_code
8554 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8555 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8556 return omit_one_operand (type, op1, TREE_OPERAND (op0, 1));
8558 /* MIN (a, MAX (a, b)) == a. */
8559 if (TREE_CODE (op1) == compl_code
8560 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8561 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8562 return omit_one_operand (type, op0, TREE_OPERAND (op1, 1));
8564 /* MIN (a, MAX (b, a)) == a. */
8565 if (TREE_CODE (op1) == compl_code
8566 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8567 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8568 return omit_one_operand (type, op0, TREE_OPERAND (op1, 0));
8570 return NULL_TREE;
8573 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8574 by changing CODE to reduce the magnitude of constants involved in
8575 ARG0 of the comparison.
8576 Returns a canonicalized comparison tree if a simplification was
8577 possible, otherwise returns NULL_TREE.
8578 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8579 valid if signed overflow is undefined. */
8581 static tree
8582 maybe_canonicalize_comparison_1 (enum tree_code code, tree type,
8583 tree arg0, tree arg1,
8584 bool *strict_overflow_p)
8586 enum tree_code code0 = TREE_CODE (arg0);
8587 tree t, cst0 = NULL_TREE;
8588 int sgn0;
8589 bool swap = false;
8591 /* Match A +- CST code arg1 and CST code arg1. */
8592 if (!(((code0 == MINUS_EXPR
8593 || code0 == PLUS_EXPR)
8594 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8595 || code0 == INTEGER_CST))
8596 return NULL_TREE;
8598 /* Identify the constant in arg0 and its sign. */
8599 if (code0 == INTEGER_CST)
8600 cst0 = arg0;
8601 else
8602 cst0 = TREE_OPERAND (arg0, 1);
8603 sgn0 = tree_int_cst_sgn (cst0);
8605 /* Overflowed constants and zero will cause problems. */
8606 if (integer_zerop (cst0)
8607 || TREE_OVERFLOW (cst0))
8608 return NULL_TREE;
8610 /* See if we can reduce the magnitude of the constant in
8611 arg0 by changing the comparison code. */
8612 if (code0 == INTEGER_CST)
8614 /* CST <= arg1 -> CST-1 < arg1. */
8615 if (code == LE_EXPR && sgn0 == 1)
8616 code = LT_EXPR;
8617 /* -CST < arg1 -> -CST-1 <= arg1. */
8618 else if (code == LT_EXPR && sgn0 == -1)
8619 code = LE_EXPR;
8620 /* CST > arg1 -> CST-1 >= arg1. */
8621 else if (code == GT_EXPR && sgn0 == 1)
8622 code = GE_EXPR;
8623 /* -CST >= arg1 -> -CST-1 > arg1. */
8624 else if (code == GE_EXPR && sgn0 == -1)
8625 code = GT_EXPR;
8626 else
8627 return NULL_TREE;
8628 /* arg1 code' CST' might be more canonical. */
8629 swap = true;
8631 else
8633 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8634 if (code == LT_EXPR
8635 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8636 code = LE_EXPR;
8637 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8638 else if (code == GT_EXPR
8639 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8640 code = GE_EXPR;
8641 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8642 else if (code == LE_EXPR
8643 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8644 code = LT_EXPR;
8645 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8646 else if (code == GE_EXPR
8647 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8648 code = GT_EXPR;
8649 else
8650 return NULL_TREE;
8651 *strict_overflow_p = true;
8654 /* Now build the constant reduced in magnitude. */
8655 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8656 cst0, build_int_cst (TREE_TYPE (cst0), 1), 0);
8657 if (code0 != INTEGER_CST)
8658 t = fold_build2 (code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8660 /* If swapping might yield to a more canonical form, do so. */
8661 if (swap)
8662 return fold_build2 (swap_tree_comparison (code), type, arg1, t);
8663 else
8664 return fold_build2 (code, type, t, arg1);
8667 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8668 overflow further. Try to decrease the magnitude of constants involved
8669 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8670 and put sole constants at the second argument position.
8671 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8673 static tree
8674 maybe_canonicalize_comparison (enum tree_code code, tree type,
8675 tree arg0, tree arg1)
8677 tree t;
8678 bool strict_overflow_p;
8679 const char * const warnmsg = G_("assuming signed overflow does not occur "
8680 "when reducing constant in comparison");
8682 /* In principle pointers also have undefined overflow behavior,
8683 but that causes problems elsewhere. */
8684 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8685 || POINTER_TYPE_P (TREE_TYPE (arg0)))
8686 return NULL_TREE;
8688 /* Try canonicalization by simplifying arg0. */
8689 strict_overflow_p = false;
8690 t = maybe_canonicalize_comparison_1 (code, type, arg0, arg1,
8691 &strict_overflow_p);
8692 if (t)
8694 if (strict_overflow_p)
8695 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8696 return t;
8699 /* Try canonicalization by simplifying arg1 using the swapped
8700 comparison. */
8701 code = swap_tree_comparison (code);
8702 strict_overflow_p = false;
8703 t = maybe_canonicalize_comparison_1 (code, type, arg1, arg0,
8704 &strict_overflow_p);
8705 if (t && strict_overflow_p)
8706 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8707 return t;
8710 /* Subroutine of fold_binary. This routine performs all of the
8711 transformations that are common to the equality/inequality
8712 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8713 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8714 fold_binary should call fold_binary. Fold a comparison with
8715 tree code CODE and type TYPE with operands OP0 and OP1. Return
8716 the folded comparison or NULL_TREE. */
8718 static tree
8719 fold_comparison (enum tree_code code, tree type, tree op0, tree op1)
8721 tree arg0, arg1, tem;
8723 arg0 = op0;
8724 arg1 = op1;
8726 STRIP_SIGN_NOPS (arg0);
8727 STRIP_SIGN_NOPS (arg1);
8729 tem = fold_relational_const (code, type, arg0, arg1);
8730 if (tem != NULL_TREE)
8731 return tem;
8733 /* If one arg is a real or integer constant, put it last. */
8734 if (tree_swap_operands_p (arg0, arg1, true))
8735 return fold_build2 (swap_tree_comparison (code), type, op1, op0);
8737 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
8738 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8739 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8740 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8741 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
8742 && (TREE_CODE (arg1) == INTEGER_CST
8743 && !TREE_OVERFLOW (arg1)))
8745 tree const1 = TREE_OPERAND (arg0, 1);
8746 tree const2 = arg1;
8747 tree variable = TREE_OPERAND (arg0, 0);
8748 tree lhs;
8749 int lhs_add;
8750 lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
8752 lhs = fold_build2 (lhs_add ? PLUS_EXPR : MINUS_EXPR,
8753 TREE_TYPE (arg1), const2, const1);
8755 /* If the constant operation overflowed this can be
8756 simplified as a comparison against INT_MAX/INT_MIN. */
8757 if (TREE_CODE (lhs) == INTEGER_CST
8758 && TREE_OVERFLOW (lhs))
8760 int const1_sgn = tree_int_cst_sgn (const1);
8761 enum tree_code code2 = code;
8763 /* Get the sign of the constant on the lhs if the
8764 operation were VARIABLE + CONST1. */
8765 if (TREE_CODE (arg0) == MINUS_EXPR)
8766 const1_sgn = -const1_sgn;
8768 /* The sign of the constant determines if we overflowed
8769 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8770 Canonicalize to the INT_MIN overflow by swapping the comparison
8771 if necessary. */
8772 if (const1_sgn == -1)
8773 code2 = swap_tree_comparison (code);
8775 /* We now can look at the canonicalized case
8776 VARIABLE + 1 CODE2 INT_MIN
8777 and decide on the result. */
8778 if (code2 == LT_EXPR
8779 || code2 == LE_EXPR
8780 || code2 == EQ_EXPR)
8781 return omit_one_operand (type, boolean_false_node, variable);
8782 else if (code2 == NE_EXPR
8783 || code2 == GE_EXPR
8784 || code2 == GT_EXPR)
8785 return omit_one_operand (type, boolean_true_node, variable);
8788 if (TREE_CODE (lhs) == TREE_CODE (arg1)
8789 && (TREE_CODE (lhs) != INTEGER_CST
8790 || !TREE_OVERFLOW (lhs)))
8792 fold_overflow_warning (("assuming signed overflow does not occur "
8793 "when changing X +- C1 cmp C2 to "
8794 "X cmp C1 +- C2"),
8795 WARN_STRICT_OVERFLOW_COMPARISON);
8796 return fold_build2 (code, type, variable, lhs);
8800 /* For comparisons of pointers we can decompose it to a compile time
8801 comparison of the base objects and the offsets into the object.
8802 This requires at least one operand being an ADDR_EXPR to do more
8803 than the operand_equal_p test below. */
8804 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8805 && (TREE_CODE (arg0) == ADDR_EXPR
8806 || TREE_CODE (arg1) == ADDR_EXPR))
8808 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8809 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8810 enum machine_mode mode;
8811 int volatilep, unsignedp;
8812 bool indirect_base0 = false;
8814 /* Get base and offset for the access. Strip ADDR_EXPR for
8815 get_inner_reference, but put it back by stripping INDIRECT_REF
8816 off the base object if possible. */
8817 base0 = arg0;
8818 if (TREE_CODE (arg0) == ADDR_EXPR)
8820 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8821 &bitsize, &bitpos0, &offset0, &mode,
8822 &unsignedp, &volatilep, false);
8823 if (TREE_CODE (base0) == INDIRECT_REF)
8824 base0 = TREE_OPERAND (base0, 0);
8825 else
8826 indirect_base0 = true;
8829 base1 = arg1;
8830 if (TREE_CODE (arg1) == ADDR_EXPR)
8832 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8833 &bitsize, &bitpos1, &offset1, &mode,
8834 &unsignedp, &volatilep, false);
8835 /* We have to make sure to have an indirect/non-indirect base1
8836 just the same as we did for base0. */
8837 if (TREE_CODE (base1) == INDIRECT_REF
8838 && !indirect_base0)
8839 base1 = TREE_OPERAND (base1, 0);
8840 else if (!indirect_base0)
8841 base1 = NULL_TREE;
8843 else if (indirect_base0)
8844 base1 = NULL_TREE;
8846 /* If we have equivalent bases we might be able to simplify. */
8847 if (base0 && base1
8848 && operand_equal_p (base0, base1, 0))
8850 /* We can fold this expression to a constant if the non-constant
8851 offset parts are equal. */
8852 if (offset0 == offset1
8853 || (offset0 && offset1
8854 && operand_equal_p (offset0, offset1, 0)))
8856 switch (code)
8858 case EQ_EXPR:
8859 return build_int_cst (boolean_type_node, bitpos0 == bitpos1);
8860 case NE_EXPR:
8861 return build_int_cst (boolean_type_node, bitpos0 != bitpos1);
8862 case LT_EXPR:
8863 return build_int_cst (boolean_type_node, bitpos0 < bitpos1);
8864 case LE_EXPR:
8865 return build_int_cst (boolean_type_node, bitpos0 <= bitpos1);
8866 case GE_EXPR:
8867 return build_int_cst (boolean_type_node, bitpos0 >= bitpos1);
8868 case GT_EXPR:
8869 return build_int_cst (boolean_type_node, bitpos0 > bitpos1);
8870 default:;
8873 /* We can simplify the comparison to a comparison of the variable
8874 offset parts if the constant offset parts are equal.
8875 Be careful to use signed size type here because otherwise we
8876 mess with array offsets in the wrong way. This is possible
8877 because pointer arithmetic is restricted to retain within an
8878 object and overflow on pointer differences is undefined as of
8879 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8880 else if (bitpos0 == bitpos1)
8882 tree signed_size_type_node;
8883 signed_size_type_node = signed_type_for (size_type_node);
8885 /* By converting to signed size type we cover middle-end pointer
8886 arithmetic which operates on unsigned pointer types of size
8887 type size and ARRAY_REF offsets which are properly sign or
8888 zero extended from their type in case it is narrower than
8889 size type. */
8890 if (offset0 == NULL_TREE)
8891 offset0 = build_int_cst (signed_size_type_node, 0);
8892 else
8893 offset0 = fold_convert (signed_size_type_node, offset0);
8894 if (offset1 == NULL_TREE)
8895 offset1 = build_int_cst (signed_size_type_node, 0);
8896 else
8897 offset1 = fold_convert (signed_size_type_node, offset1);
8899 return fold_build2 (code, type, offset0, offset1);
8904 /* If this is a comparison of two exprs that look like an ARRAY_REF of the
8905 same object, then we can fold this to a comparison of the two offsets in
8906 signed size type. This is possible because pointer arithmetic is
8907 restricted to retain within an object and overflow on pointer differences
8908 is undefined as of 6.5.6/8 and /9 with respect to the signed ptrdiff_t.
8910 We check flag_wrapv directly because pointers types are unsigned,
8911 and therefore TYPE_OVERFLOW_WRAPS returns true for them. That is
8912 normally what we want to avoid certain odd overflow cases, but
8913 not here. */
8914 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8915 && !flag_wrapv
8916 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (arg0)))
8918 tree base0, offset0, base1, offset1;
8920 if (extract_array_ref (arg0, &base0, &offset0)
8921 && extract_array_ref (arg1, &base1, &offset1)
8922 && operand_equal_p (base0, base1, 0))
8924 tree signed_size_type_node;
8925 signed_size_type_node = signed_type_for (size_type_node);
8927 /* By converting to signed size type we cover middle-end pointer
8928 arithmetic which operates on unsigned pointer types of size
8929 type size and ARRAY_REF offsets which are properly sign or
8930 zero extended from their type in case it is narrower than
8931 size type. */
8932 if (offset0 == NULL_TREE)
8933 offset0 = build_int_cst (signed_size_type_node, 0);
8934 else
8935 offset0 = fold_convert (signed_size_type_node, offset0);
8936 if (offset1 == NULL_TREE)
8937 offset1 = build_int_cst (signed_size_type_node, 0);
8938 else
8939 offset1 = fold_convert (signed_size_type_node, offset1);
8941 return fold_build2 (code, type, offset0, offset1);
8945 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8946 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8947 the resulting offset is smaller in absolute value than the
8948 original one. */
8949 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8950 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8951 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8952 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8953 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8954 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8955 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8957 tree const1 = TREE_OPERAND (arg0, 1);
8958 tree const2 = TREE_OPERAND (arg1, 1);
8959 tree variable1 = TREE_OPERAND (arg0, 0);
8960 tree variable2 = TREE_OPERAND (arg1, 0);
8961 tree cst;
8962 const char * const warnmsg = G_("assuming signed overflow does not "
8963 "occur when combining constants around "
8964 "a comparison");
8966 /* Put the constant on the side where it doesn't overflow and is
8967 of lower absolute value than before. */
8968 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8969 ? MINUS_EXPR : PLUS_EXPR,
8970 const2, const1, 0);
8971 if (!TREE_OVERFLOW (cst)
8972 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2))
8974 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8975 return fold_build2 (code, type,
8976 variable1,
8977 fold_build2 (TREE_CODE (arg1), TREE_TYPE (arg1),
8978 variable2, cst));
8981 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8982 ? MINUS_EXPR : PLUS_EXPR,
8983 const1, const2, 0);
8984 if (!TREE_OVERFLOW (cst)
8985 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1))
8987 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8988 return fold_build2 (code, type,
8989 fold_build2 (TREE_CODE (arg0), TREE_TYPE (arg0),
8990 variable1, cst),
8991 variable2);
8995 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
8996 signed arithmetic case. That form is created by the compiler
8997 often enough for folding it to be of value. One example is in
8998 computing loop trip counts after Operator Strength Reduction. */
8999 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9000 && TREE_CODE (arg0) == MULT_EXPR
9001 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9002 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9003 && integer_zerop (arg1))
9005 tree const1 = TREE_OPERAND (arg0, 1);
9006 tree const2 = arg1; /* zero */
9007 tree variable1 = TREE_OPERAND (arg0, 0);
9008 enum tree_code cmp_code = code;
9010 gcc_assert (!integer_zerop (const1));
9012 fold_overflow_warning (("assuming signed overflow does not occur when "
9013 "eliminating multiplication in comparison "
9014 "with zero"),
9015 WARN_STRICT_OVERFLOW_COMPARISON);
9017 /* If const1 is negative we swap the sense of the comparison. */
9018 if (tree_int_cst_sgn (const1) < 0)
9019 cmp_code = swap_tree_comparison (cmp_code);
9021 return fold_build2 (cmp_code, type, variable1, const2);
9024 tem = maybe_canonicalize_comparison (code, type, op0, op1);
9025 if (tem)
9026 return tem;
9028 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
9030 tree targ0 = strip_float_extensions (arg0);
9031 tree targ1 = strip_float_extensions (arg1);
9032 tree newtype = TREE_TYPE (targ0);
9034 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
9035 newtype = TREE_TYPE (targ1);
9037 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9038 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
9039 return fold_build2 (code, type, fold_convert (newtype, targ0),
9040 fold_convert (newtype, targ1));
9042 /* (-a) CMP (-b) -> b CMP a */
9043 if (TREE_CODE (arg0) == NEGATE_EXPR
9044 && TREE_CODE (arg1) == NEGATE_EXPR)
9045 return fold_build2 (code, type, TREE_OPERAND (arg1, 0),
9046 TREE_OPERAND (arg0, 0));
9048 if (TREE_CODE (arg1) == REAL_CST)
9050 REAL_VALUE_TYPE cst;
9051 cst = TREE_REAL_CST (arg1);
9053 /* (-a) CMP CST -> a swap(CMP) (-CST) */
9054 if (TREE_CODE (arg0) == NEGATE_EXPR)
9055 return fold_build2 (swap_tree_comparison (code), type,
9056 TREE_OPERAND (arg0, 0),
9057 build_real (TREE_TYPE (arg1),
9058 REAL_VALUE_NEGATE (cst)));
9060 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9061 /* a CMP (-0) -> a CMP 0 */
9062 if (REAL_VALUE_MINUS_ZERO (cst))
9063 return fold_build2 (code, type, arg0,
9064 build_real (TREE_TYPE (arg1), dconst0));
9066 /* x != NaN is always true, other ops are always false. */
9067 if (REAL_VALUE_ISNAN (cst)
9068 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
9070 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
9071 return omit_one_operand (type, tem, arg0);
9074 /* Fold comparisons against infinity. */
9075 if (REAL_VALUE_ISINF (cst))
9077 tem = fold_inf_compare (code, type, arg0, arg1);
9078 if (tem != NULL_TREE)
9079 return tem;
9083 /* If this is a comparison of a real constant with a PLUS_EXPR
9084 or a MINUS_EXPR of a real constant, we can convert it into a
9085 comparison with a revised real constant as long as no overflow
9086 occurs when unsafe_math_optimizations are enabled. */
9087 if (flag_unsafe_math_optimizations
9088 && TREE_CODE (arg1) == REAL_CST
9089 && (TREE_CODE (arg0) == PLUS_EXPR
9090 || TREE_CODE (arg0) == MINUS_EXPR)
9091 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
9092 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
9093 ? MINUS_EXPR : PLUS_EXPR,
9094 arg1, TREE_OPERAND (arg0, 1), 0))
9095 && !TREE_OVERFLOW (tem))
9096 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
9098 /* Likewise, we can simplify a comparison of a real constant with
9099 a MINUS_EXPR whose first operand is also a real constant, i.e.
9100 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
9101 floating-point types only if -fassociative-math is set. */
9102 if (flag_associative_math
9103 && TREE_CODE (arg1) == REAL_CST
9104 && TREE_CODE (arg0) == MINUS_EXPR
9105 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
9106 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
9107 arg1, 0))
9108 && !TREE_OVERFLOW (tem))
9109 return fold_build2 (swap_tree_comparison (code), type,
9110 TREE_OPERAND (arg0, 1), tem);
9112 /* Fold comparisons against built-in math functions. */
9113 if (TREE_CODE (arg1) == REAL_CST
9114 && flag_unsafe_math_optimizations
9115 && ! flag_errno_math)
9117 enum built_in_function fcode = builtin_mathfn_code (arg0);
9119 if (fcode != END_BUILTINS)
9121 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
9122 if (tem != NULL_TREE)
9123 return tem;
9128 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
9129 && (TREE_CODE (arg0) == NOP_EXPR
9130 || TREE_CODE (arg0) == CONVERT_EXPR))
9132 /* If we are widening one operand of an integer comparison,
9133 see if the other operand is similarly being widened. Perhaps we
9134 can do the comparison in the narrower type. */
9135 tem = fold_widened_comparison (code, type, arg0, arg1);
9136 if (tem)
9137 return tem;
9139 /* Or if we are changing signedness. */
9140 tem = fold_sign_changed_comparison (code, type, arg0, arg1);
9141 if (tem)
9142 return tem;
9145 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9146 constant, we can simplify it. */
9147 if (TREE_CODE (arg1) == INTEGER_CST
9148 && (TREE_CODE (arg0) == MIN_EXPR
9149 || TREE_CODE (arg0) == MAX_EXPR)
9150 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9152 tem = optimize_minmax_comparison (code, type, op0, op1);
9153 if (tem)
9154 return tem;
9157 /* Simplify comparison of something with itself. (For IEEE
9158 floating-point, we can only do some of these simplifications.) */
9159 if (operand_equal_p (arg0, arg1, 0))
9161 switch (code)
9163 case EQ_EXPR:
9164 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9165 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9166 return constant_boolean_node (1, type);
9167 break;
9169 case GE_EXPR:
9170 case LE_EXPR:
9171 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9172 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9173 return constant_boolean_node (1, type);
9174 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9176 case NE_EXPR:
9177 /* For NE, we can only do this simplification if integer
9178 or we don't honor IEEE floating point NaNs. */
9179 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
9180 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9181 break;
9182 /* ... fall through ... */
9183 case GT_EXPR:
9184 case LT_EXPR:
9185 return constant_boolean_node (0, type);
9186 default:
9187 gcc_unreachable ();
9191 /* If we are comparing an expression that just has comparisons
9192 of two integer values, arithmetic expressions of those comparisons,
9193 and constants, we can simplify it. There are only three cases
9194 to check: the two values can either be equal, the first can be
9195 greater, or the second can be greater. Fold the expression for
9196 those three values. Since each value must be 0 or 1, we have
9197 eight possibilities, each of which corresponds to the constant 0
9198 or 1 or one of the six possible comparisons.
9200 This handles common cases like (a > b) == 0 but also handles
9201 expressions like ((x > y) - (y > x)) > 0, which supposedly
9202 occur in macroized code. */
9204 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9206 tree cval1 = 0, cval2 = 0;
9207 int save_p = 0;
9209 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
9210 /* Don't handle degenerate cases here; they should already
9211 have been handled anyway. */
9212 && cval1 != 0 && cval2 != 0
9213 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9214 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9215 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9216 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9217 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9218 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9219 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9221 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9222 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9224 /* We can't just pass T to eval_subst in case cval1 or cval2
9225 was the same as ARG1. */
9227 tree high_result
9228 = fold_build2 (code, type,
9229 eval_subst (arg0, cval1, maxval,
9230 cval2, minval),
9231 arg1);
9232 tree equal_result
9233 = fold_build2 (code, type,
9234 eval_subst (arg0, cval1, maxval,
9235 cval2, maxval),
9236 arg1);
9237 tree low_result
9238 = fold_build2 (code, type,
9239 eval_subst (arg0, cval1, minval,
9240 cval2, maxval),
9241 arg1);
9243 /* All three of these results should be 0 or 1. Confirm they are.
9244 Then use those values to select the proper code to use. */
9246 if (TREE_CODE (high_result) == INTEGER_CST
9247 && TREE_CODE (equal_result) == INTEGER_CST
9248 && TREE_CODE (low_result) == INTEGER_CST)
9250 /* Make a 3-bit mask with the high-order bit being the
9251 value for `>', the next for '=', and the low for '<'. */
9252 switch ((integer_onep (high_result) * 4)
9253 + (integer_onep (equal_result) * 2)
9254 + integer_onep (low_result))
9256 case 0:
9257 /* Always false. */
9258 return omit_one_operand (type, integer_zero_node, arg0);
9259 case 1:
9260 code = LT_EXPR;
9261 break;
9262 case 2:
9263 code = EQ_EXPR;
9264 break;
9265 case 3:
9266 code = LE_EXPR;
9267 break;
9268 case 4:
9269 code = GT_EXPR;
9270 break;
9271 case 5:
9272 code = NE_EXPR;
9273 break;
9274 case 6:
9275 code = GE_EXPR;
9276 break;
9277 case 7:
9278 /* Always true. */
9279 return omit_one_operand (type, integer_one_node, arg0);
9282 if (save_p)
9283 return save_expr (build2 (code, type, cval1, cval2));
9284 return fold_build2 (code, type, cval1, cval2);
9289 /* Fold a comparison of the address of COMPONENT_REFs with the same
9290 type and component to a comparison of the address of the base
9291 object. In short, &x->a OP &y->a to x OP y and
9292 &x->a OP &y.a to x OP &y */
9293 if (TREE_CODE (arg0) == ADDR_EXPR
9294 && TREE_CODE (TREE_OPERAND (arg0, 0)) == COMPONENT_REF
9295 && TREE_CODE (arg1) == ADDR_EXPR
9296 && TREE_CODE (TREE_OPERAND (arg1, 0)) == COMPONENT_REF)
9298 tree cref0 = TREE_OPERAND (arg0, 0);
9299 tree cref1 = TREE_OPERAND (arg1, 0);
9300 if (TREE_OPERAND (cref0, 1) == TREE_OPERAND (cref1, 1))
9302 tree op0 = TREE_OPERAND (cref0, 0);
9303 tree op1 = TREE_OPERAND (cref1, 0);
9304 return fold_build2 (code, type,
9305 fold_addr_expr (op0),
9306 fold_addr_expr (op1));
9310 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9311 into a single range test. */
9312 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
9313 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
9314 && TREE_CODE (arg1) == INTEGER_CST
9315 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9316 && !integer_zerop (TREE_OPERAND (arg0, 1))
9317 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9318 && !TREE_OVERFLOW (arg1))
9320 tem = fold_div_compare (code, type, arg0, arg1);
9321 if (tem != NULL_TREE)
9322 return tem;
9325 /* Fold ~X op ~Y as Y op X. */
9326 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9327 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9329 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9330 return fold_build2 (code, type,
9331 fold_convert (cmp_type, TREE_OPERAND (arg1, 0)),
9332 TREE_OPERAND (arg0, 0));
9335 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9336 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9337 && TREE_CODE (arg1) == INTEGER_CST)
9339 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9340 return fold_build2 (swap_tree_comparison (code), type,
9341 TREE_OPERAND (arg0, 0),
9342 fold_build1 (BIT_NOT_EXPR, cmp_type,
9343 fold_convert (cmp_type, arg1)));
9346 return NULL_TREE;
9350 /* Subroutine of fold_binary. Optimize complex multiplications of the
9351 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9352 argument EXPR represents the expression "z" of type TYPE. */
9354 static tree
9355 fold_mult_zconjz (tree type, tree expr)
9357 tree itype = TREE_TYPE (type);
9358 tree rpart, ipart, tem;
9360 if (TREE_CODE (expr) == COMPLEX_EXPR)
9362 rpart = TREE_OPERAND (expr, 0);
9363 ipart = TREE_OPERAND (expr, 1);
9365 else if (TREE_CODE (expr) == COMPLEX_CST)
9367 rpart = TREE_REALPART (expr);
9368 ipart = TREE_IMAGPART (expr);
9370 else
9372 expr = save_expr (expr);
9373 rpart = fold_build1 (REALPART_EXPR, itype, expr);
9374 ipart = fold_build1 (IMAGPART_EXPR, itype, expr);
9377 rpart = save_expr (rpart);
9378 ipart = save_expr (ipart);
9379 tem = fold_build2 (PLUS_EXPR, itype,
9380 fold_build2 (MULT_EXPR, itype, rpart, rpart),
9381 fold_build2 (MULT_EXPR, itype, ipart, ipart));
9382 return fold_build2 (COMPLEX_EXPR, type, tem,
9383 fold_convert (itype, integer_zero_node));
9387 /* Subroutine of fold_binary. If P is the value of EXPR, computes
9388 power-of-two M and (arbitrary) N such that M divides (P-N). This condition
9389 guarantees that P and N have the same least significant log2(M) bits.
9390 N is not otherwise constrained. In particular, N is not normalized to
9391 0 <= N < M as is common. In general, the precise value of P is unknown.
9392 M is chosen as large as possible such that constant N can be determined.
9394 Returns M and sets *RESIDUE to N. */
9396 static unsigned HOST_WIDE_INT
9397 get_pointer_modulus_and_residue (tree expr, unsigned HOST_WIDE_INT *residue)
9399 enum tree_code code;
9401 *residue = 0;
9403 code = TREE_CODE (expr);
9404 if (code == ADDR_EXPR)
9406 expr = TREE_OPERAND (expr, 0);
9407 if (handled_component_p (expr))
9409 HOST_WIDE_INT bitsize, bitpos;
9410 tree offset;
9411 enum machine_mode mode;
9412 int unsignedp, volatilep;
9414 expr = get_inner_reference (expr, &bitsize, &bitpos, &offset,
9415 &mode, &unsignedp, &volatilep, false);
9416 *residue = bitpos / BITS_PER_UNIT;
9417 if (offset)
9419 if (TREE_CODE (offset) == INTEGER_CST)
9420 *residue += TREE_INT_CST_LOW (offset);
9421 else
9422 /* We don't handle more complicated offset expressions. */
9423 return 1;
9427 if (DECL_P (expr))
9428 return DECL_ALIGN_UNIT (expr);
9430 else if (code == POINTER_PLUS_EXPR)
9432 tree op0, op1;
9433 unsigned HOST_WIDE_INT modulus;
9434 enum tree_code inner_code;
9436 op0 = TREE_OPERAND (expr, 0);
9437 STRIP_NOPS (op0);
9438 modulus = get_pointer_modulus_and_residue (op0, residue);
9440 op1 = TREE_OPERAND (expr, 1);
9441 STRIP_NOPS (op1);
9442 inner_code = TREE_CODE (op1);
9443 if (inner_code == INTEGER_CST)
9445 *residue += TREE_INT_CST_LOW (op1);
9446 return modulus;
9448 else if (inner_code == MULT_EXPR)
9450 op1 = TREE_OPERAND (op1, 1);
9451 if (TREE_CODE (op1) == INTEGER_CST)
9453 unsigned HOST_WIDE_INT align;
9455 /* Compute the greatest power-of-2 divisor of op1. */
9456 align = TREE_INT_CST_LOW (op1);
9457 align &= -align;
9459 /* If align is non-zero and less than *modulus, replace
9460 *modulus with align., If align is 0, then either op1 is 0
9461 or the greatest power-of-2 divisor of op1 doesn't fit in an
9462 unsigned HOST_WIDE_INT. In either case, no additional
9463 constraint is imposed. */
9464 if (align)
9465 modulus = MIN (modulus, align);
9467 return modulus;
9472 /* If we get here, we were unable to determine anything useful about the
9473 expression. */
9474 return 1;
9478 /* Fold a binary expression of code CODE and type TYPE with operands
9479 OP0 and OP1. Return the folded expression if folding is
9480 successful. Otherwise, return NULL_TREE. */
9482 tree
9483 fold_binary (enum tree_code code, tree type, tree op0, tree op1)
9485 enum tree_code_class kind = TREE_CODE_CLASS (code);
9486 tree arg0, arg1, tem;
9487 tree t1 = NULL_TREE;
9488 bool strict_overflow_p;
9490 gcc_assert ((IS_EXPR_CODE_CLASS (kind)
9491 || IS_GIMPLE_STMT_CODE_CLASS (kind))
9492 && TREE_CODE_LENGTH (code) == 2
9493 && op0 != NULL_TREE
9494 && op1 != NULL_TREE);
9496 arg0 = op0;
9497 arg1 = op1;
9499 /* Strip any conversions that don't change the mode. This is
9500 safe for every expression, except for a comparison expression
9501 because its signedness is derived from its operands. So, in
9502 the latter case, only strip conversions that don't change the
9503 signedness.
9505 Note that this is done as an internal manipulation within the
9506 constant folder, in order to find the simplest representation
9507 of the arguments so that their form can be studied. In any
9508 cases, the appropriate type conversions should be put back in
9509 the tree that will get out of the constant folder. */
9511 if (kind == tcc_comparison)
9513 STRIP_SIGN_NOPS (arg0);
9514 STRIP_SIGN_NOPS (arg1);
9516 else
9518 STRIP_NOPS (arg0);
9519 STRIP_NOPS (arg1);
9522 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9523 constant but we can't do arithmetic on them. */
9524 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9525 || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
9526 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == FIXED_CST)
9527 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == INTEGER_CST)
9528 || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
9529 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
9531 if (kind == tcc_binary)
9533 /* Make sure type and arg0 have the same saturating flag. */
9534 gcc_assert (TYPE_SATURATING (type)
9535 == TYPE_SATURATING (TREE_TYPE (arg0)));
9536 tem = const_binop (code, arg0, arg1, 0);
9538 else if (kind == tcc_comparison)
9539 tem = fold_relational_const (code, type, arg0, arg1);
9540 else
9541 tem = NULL_TREE;
9543 if (tem != NULL_TREE)
9545 if (TREE_TYPE (tem) != type)
9546 tem = fold_convert (type, tem);
9547 return tem;
9551 /* If this is a commutative operation, and ARG0 is a constant, move it
9552 to ARG1 to reduce the number of tests below. */
9553 if (commutative_tree_code (code)
9554 && tree_swap_operands_p (arg0, arg1, true))
9555 return fold_build2 (code, type, op1, op0);
9557 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9559 First check for cases where an arithmetic operation is applied to a
9560 compound, conditional, or comparison operation. Push the arithmetic
9561 operation inside the compound or conditional to see if any folding
9562 can then be done. Convert comparison to conditional for this purpose.
9563 The also optimizes non-constant cases that used to be done in
9564 expand_expr.
9566 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9567 one of the operands is a comparison and the other is a comparison, a
9568 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9569 code below would make the expression more complex. Change it to a
9570 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9571 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9573 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9574 || code == EQ_EXPR || code == NE_EXPR)
9575 && ((truth_value_p (TREE_CODE (arg0))
9576 && (truth_value_p (TREE_CODE (arg1))
9577 || (TREE_CODE (arg1) == BIT_AND_EXPR
9578 && integer_onep (TREE_OPERAND (arg1, 1)))))
9579 || (truth_value_p (TREE_CODE (arg1))
9580 && (truth_value_p (TREE_CODE (arg0))
9581 || (TREE_CODE (arg0) == BIT_AND_EXPR
9582 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9584 tem = fold_build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9585 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9586 : TRUTH_XOR_EXPR,
9587 boolean_type_node,
9588 fold_convert (boolean_type_node, arg0),
9589 fold_convert (boolean_type_node, arg1));
9591 if (code == EQ_EXPR)
9592 tem = invert_truthvalue (tem);
9594 return fold_convert (type, tem);
9597 if (TREE_CODE_CLASS (code) == tcc_binary
9598 || TREE_CODE_CLASS (code) == tcc_comparison)
9600 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9601 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9602 fold_build2 (code, type,
9603 TREE_OPERAND (arg0, 1), op1));
9604 if (TREE_CODE (arg1) == COMPOUND_EXPR
9605 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9606 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9607 fold_build2 (code, type,
9608 op0, TREE_OPERAND (arg1, 1)));
9610 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
9612 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
9613 arg0, arg1,
9614 /*cond_first_p=*/1);
9615 if (tem != NULL_TREE)
9616 return tem;
9619 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
9621 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
9622 arg1, arg0,
9623 /*cond_first_p=*/0);
9624 if (tem != NULL_TREE)
9625 return tem;
9629 switch (code)
9631 case POINTER_PLUS_EXPR:
9632 /* 0 +p index -> (type)index */
9633 if (integer_zerop (arg0))
9634 return non_lvalue (fold_convert (type, arg1));
9636 /* PTR +p 0 -> PTR */
9637 if (integer_zerop (arg1))
9638 return non_lvalue (fold_convert (type, arg0));
9640 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9641 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9642 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9643 return fold_convert (type, fold_build2 (PLUS_EXPR, sizetype,
9644 fold_convert (sizetype, arg1),
9645 fold_convert (sizetype, arg0)));
9647 /* index +p PTR -> PTR +p index */
9648 if (POINTER_TYPE_P (TREE_TYPE (arg1))
9649 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9650 return fold_build2 (POINTER_PLUS_EXPR, type,
9651 fold_convert (type, arg1),
9652 fold_convert (sizetype, arg0));
9654 /* (PTR +p B) +p A -> PTR +p (B + A) */
9655 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9657 tree inner;
9658 tree arg01 = fold_convert (sizetype, TREE_OPERAND (arg0, 1));
9659 tree arg00 = TREE_OPERAND (arg0, 0);
9660 inner = fold_build2 (PLUS_EXPR, sizetype,
9661 arg01, fold_convert (sizetype, arg1));
9662 return fold_convert (type,
9663 fold_build2 (POINTER_PLUS_EXPR,
9664 TREE_TYPE (arg00), arg00, inner));
9667 /* PTR_CST +p CST -> CST1 */
9668 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9669 return fold_build2 (PLUS_EXPR, type, arg0, fold_convert (type, arg1));
9671 /* Try replacing &a[i1] +p c * i2 with &a[i1 + i2], if c is step
9672 of the array. Loop optimizer sometimes produce this type of
9673 expressions. */
9674 if (TREE_CODE (arg0) == ADDR_EXPR)
9676 tem = try_move_mult_to_index (arg0, fold_convert (sizetype, arg1));
9677 if (tem)
9678 return fold_convert (type, tem);
9681 return NULL_TREE;
9683 case PLUS_EXPR:
9684 /* PTR + INT -> (INT)(PTR p+ INT) */
9685 if (POINTER_TYPE_P (TREE_TYPE (arg0))
9686 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
9687 return fold_convert (type, fold_build2 (POINTER_PLUS_EXPR,
9688 TREE_TYPE (arg0),
9689 arg0,
9690 fold_convert (sizetype, arg1)));
9691 /* INT + PTR -> (INT)(PTR p+ INT) */
9692 if (POINTER_TYPE_P (TREE_TYPE (arg1))
9693 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9694 return fold_convert (type, fold_build2 (POINTER_PLUS_EXPR,
9695 TREE_TYPE (arg1),
9696 arg1,
9697 fold_convert (sizetype, arg0)));
9698 /* A + (-B) -> A - B */
9699 if (TREE_CODE (arg1) == NEGATE_EXPR)
9700 return fold_build2 (MINUS_EXPR, type,
9701 fold_convert (type, arg0),
9702 fold_convert (type, TREE_OPERAND (arg1, 0)));
9703 /* (-A) + B -> B - A */
9704 if (TREE_CODE (arg0) == NEGATE_EXPR
9705 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
9706 return fold_build2 (MINUS_EXPR, type,
9707 fold_convert (type, arg1),
9708 fold_convert (type, TREE_OPERAND (arg0, 0)));
9710 if (INTEGRAL_TYPE_P (type))
9712 /* Convert ~A + 1 to -A. */
9713 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9714 && integer_onep (arg1))
9715 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
9717 /* ~X + X is -1. */
9718 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9719 && !TYPE_OVERFLOW_TRAPS (type))
9721 tree tem = TREE_OPERAND (arg0, 0);
9723 STRIP_NOPS (tem);
9724 if (operand_equal_p (tem, arg1, 0))
9726 t1 = build_int_cst_type (type, -1);
9727 return omit_one_operand (type, t1, arg1);
9731 /* X + ~X is -1. */
9732 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9733 && !TYPE_OVERFLOW_TRAPS (type))
9735 tree tem = TREE_OPERAND (arg1, 0);
9737 STRIP_NOPS (tem);
9738 if (operand_equal_p (arg0, tem, 0))
9740 t1 = build_int_cst_type (type, -1);
9741 return omit_one_operand (type, t1, arg0);
9746 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
9747 same or one. Make sure type is not saturating.
9748 fold_plusminus_mult_expr will re-associate. */
9749 if ((TREE_CODE (arg0) == MULT_EXPR
9750 || TREE_CODE (arg1) == MULT_EXPR)
9751 && !TYPE_SATURATING (type)
9752 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9754 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
9755 if (tem)
9756 return tem;
9759 if (! FLOAT_TYPE_P (type))
9761 if (integer_zerop (arg1))
9762 return non_lvalue (fold_convert (type, arg0));
9764 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
9765 with a constant, and the two constants have no bits in common,
9766 we should treat this as a BIT_IOR_EXPR since this may produce more
9767 simplifications. */
9768 if (TREE_CODE (arg0) == BIT_AND_EXPR
9769 && TREE_CODE (arg1) == BIT_AND_EXPR
9770 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9771 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9772 && integer_zerop (const_binop (BIT_AND_EXPR,
9773 TREE_OPERAND (arg0, 1),
9774 TREE_OPERAND (arg1, 1), 0)))
9776 code = BIT_IOR_EXPR;
9777 goto bit_ior;
9780 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9781 (plus (plus (mult) (mult)) (foo)) so that we can
9782 take advantage of the factoring cases below. */
9783 if (((TREE_CODE (arg0) == PLUS_EXPR
9784 || TREE_CODE (arg0) == MINUS_EXPR)
9785 && TREE_CODE (arg1) == MULT_EXPR)
9786 || ((TREE_CODE (arg1) == PLUS_EXPR
9787 || TREE_CODE (arg1) == MINUS_EXPR)
9788 && TREE_CODE (arg0) == MULT_EXPR))
9790 tree parg0, parg1, parg, marg;
9791 enum tree_code pcode;
9793 if (TREE_CODE (arg1) == MULT_EXPR)
9794 parg = arg0, marg = arg1;
9795 else
9796 parg = arg1, marg = arg0;
9797 pcode = TREE_CODE (parg);
9798 parg0 = TREE_OPERAND (parg, 0);
9799 parg1 = TREE_OPERAND (parg, 1);
9800 STRIP_NOPS (parg0);
9801 STRIP_NOPS (parg1);
9803 if (TREE_CODE (parg0) == MULT_EXPR
9804 && TREE_CODE (parg1) != MULT_EXPR)
9805 return fold_build2 (pcode, type,
9806 fold_build2 (PLUS_EXPR, type,
9807 fold_convert (type, parg0),
9808 fold_convert (type, marg)),
9809 fold_convert (type, parg1));
9810 if (TREE_CODE (parg0) != MULT_EXPR
9811 && TREE_CODE (parg1) == MULT_EXPR)
9812 return fold_build2 (PLUS_EXPR, type,
9813 fold_convert (type, parg0),
9814 fold_build2 (pcode, type,
9815 fold_convert (type, marg),
9816 fold_convert (type,
9817 parg1)));
9820 else
9822 /* See if ARG1 is zero and X + ARG1 reduces to X. */
9823 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
9824 return non_lvalue (fold_convert (type, arg0));
9826 /* Likewise if the operands are reversed. */
9827 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
9828 return non_lvalue (fold_convert (type, arg1));
9830 /* Convert X + -C into X - C. */
9831 if (TREE_CODE (arg1) == REAL_CST
9832 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
9834 tem = fold_negate_const (arg1, type);
9835 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
9836 return fold_build2 (MINUS_EXPR, type,
9837 fold_convert (type, arg0),
9838 fold_convert (type, tem));
9841 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9842 to __complex__ ( x, y ). This is not the same for SNaNs or
9843 if signed zeros are involved. */
9844 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9845 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
9846 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9848 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9849 tree arg0r = fold_unary (REALPART_EXPR, rtype, arg0);
9850 tree arg0i = fold_unary (IMAGPART_EXPR, rtype, arg0);
9851 bool arg0rz = false, arg0iz = false;
9852 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9853 || (arg0i && (arg0iz = real_zerop (arg0i))))
9855 tree arg1r = fold_unary (REALPART_EXPR, rtype, arg1);
9856 tree arg1i = fold_unary (IMAGPART_EXPR, rtype, arg1);
9857 if (arg0rz && arg1i && real_zerop (arg1i))
9859 tree rp = arg1r ? arg1r
9860 : build1 (REALPART_EXPR, rtype, arg1);
9861 tree ip = arg0i ? arg0i
9862 : build1 (IMAGPART_EXPR, rtype, arg0);
9863 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
9865 else if (arg0iz && arg1r && real_zerop (arg1r))
9867 tree rp = arg0r ? arg0r
9868 : build1 (REALPART_EXPR, rtype, arg0);
9869 tree ip = arg1i ? arg1i
9870 : build1 (IMAGPART_EXPR, rtype, arg1);
9871 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
9876 if (flag_unsafe_math_optimizations
9877 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9878 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9879 && (tem = distribute_real_division (code, type, arg0, arg1)))
9880 return tem;
9882 /* Convert x+x into x*2.0. */
9883 if (operand_equal_p (arg0, arg1, 0)
9884 && SCALAR_FLOAT_TYPE_P (type))
9885 return fold_build2 (MULT_EXPR, type, arg0,
9886 build_real (type, dconst2));
9888 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9889 We associate floats only if the user has specified
9890 -fassociative-math. */
9891 if (flag_associative_math
9892 && TREE_CODE (arg1) == PLUS_EXPR
9893 && TREE_CODE (arg0) != MULT_EXPR)
9895 tree tree10 = TREE_OPERAND (arg1, 0);
9896 tree tree11 = TREE_OPERAND (arg1, 1);
9897 if (TREE_CODE (tree11) == MULT_EXPR
9898 && TREE_CODE (tree10) == MULT_EXPR)
9900 tree tree0;
9901 tree0 = fold_build2 (PLUS_EXPR, type, arg0, tree10);
9902 return fold_build2 (PLUS_EXPR, type, tree0, tree11);
9905 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9906 We associate floats only if the user has specified
9907 -fassociative-math. */
9908 if (flag_associative_math
9909 && TREE_CODE (arg0) == PLUS_EXPR
9910 && TREE_CODE (arg1) != MULT_EXPR)
9912 tree tree00 = TREE_OPERAND (arg0, 0);
9913 tree tree01 = TREE_OPERAND (arg0, 1);
9914 if (TREE_CODE (tree01) == MULT_EXPR
9915 && TREE_CODE (tree00) == MULT_EXPR)
9917 tree tree0;
9918 tree0 = fold_build2 (PLUS_EXPR, type, tree01, arg1);
9919 return fold_build2 (PLUS_EXPR, type, tree00, tree0);
9924 bit_rotate:
9925 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9926 is a rotate of A by C1 bits. */
9927 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9928 is a rotate of A by B bits. */
9930 enum tree_code code0, code1;
9931 code0 = TREE_CODE (arg0);
9932 code1 = TREE_CODE (arg1);
9933 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9934 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9935 && operand_equal_p (TREE_OPERAND (arg0, 0),
9936 TREE_OPERAND (arg1, 0), 0)
9937 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
9939 tree tree01, tree11;
9940 enum tree_code code01, code11;
9942 tree01 = TREE_OPERAND (arg0, 1);
9943 tree11 = TREE_OPERAND (arg1, 1);
9944 STRIP_NOPS (tree01);
9945 STRIP_NOPS (tree11);
9946 code01 = TREE_CODE (tree01);
9947 code11 = TREE_CODE (tree11);
9948 if (code01 == INTEGER_CST
9949 && code11 == INTEGER_CST
9950 && TREE_INT_CST_HIGH (tree01) == 0
9951 && TREE_INT_CST_HIGH (tree11) == 0
9952 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
9953 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9954 return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
9955 code0 == LSHIFT_EXPR ? tree01 : tree11);
9956 else if (code11 == MINUS_EXPR)
9958 tree tree110, tree111;
9959 tree110 = TREE_OPERAND (tree11, 0);
9960 tree111 = TREE_OPERAND (tree11, 1);
9961 STRIP_NOPS (tree110);
9962 STRIP_NOPS (tree111);
9963 if (TREE_CODE (tree110) == INTEGER_CST
9964 && 0 == compare_tree_int (tree110,
9965 TYPE_PRECISION
9966 (TREE_TYPE (TREE_OPERAND
9967 (arg0, 0))))
9968 && operand_equal_p (tree01, tree111, 0))
9969 return build2 ((code0 == LSHIFT_EXPR
9970 ? LROTATE_EXPR
9971 : RROTATE_EXPR),
9972 type, TREE_OPERAND (arg0, 0), tree01);
9974 else if (code01 == MINUS_EXPR)
9976 tree tree010, tree011;
9977 tree010 = TREE_OPERAND (tree01, 0);
9978 tree011 = TREE_OPERAND (tree01, 1);
9979 STRIP_NOPS (tree010);
9980 STRIP_NOPS (tree011);
9981 if (TREE_CODE (tree010) == INTEGER_CST
9982 && 0 == compare_tree_int (tree010,
9983 TYPE_PRECISION
9984 (TREE_TYPE (TREE_OPERAND
9985 (arg0, 0))))
9986 && operand_equal_p (tree11, tree011, 0))
9987 return build2 ((code0 != LSHIFT_EXPR
9988 ? LROTATE_EXPR
9989 : RROTATE_EXPR),
9990 type, TREE_OPERAND (arg0, 0), tree11);
9995 associate:
9996 /* In most languages, can't associate operations on floats through
9997 parentheses. Rather than remember where the parentheses were, we
9998 don't associate floats at all, unless the user has specified
9999 -fassociative-math.
10000 And, we need to make sure type is not saturating. */
10002 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
10003 && !TYPE_SATURATING (type))
10005 tree var0, con0, lit0, minus_lit0;
10006 tree var1, con1, lit1, minus_lit1;
10007 bool ok = true;
10009 /* Split both trees into variables, constants, and literals. Then
10010 associate each group together, the constants with literals,
10011 then the result with variables. This increases the chances of
10012 literals being recombined later and of generating relocatable
10013 expressions for the sum of a constant and literal. */
10014 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
10015 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
10016 code == MINUS_EXPR);
10018 /* With undefined overflow we can only associate constants
10019 with one variable. */
10020 if ((POINTER_TYPE_P (type)
10021 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
10022 && var0 && var1)
10024 tree tmp0 = var0;
10025 tree tmp1 = var1;
10027 if (TREE_CODE (tmp0) == NEGATE_EXPR)
10028 tmp0 = TREE_OPERAND (tmp0, 0);
10029 if (TREE_CODE (tmp1) == NEGATE_EXPR)
10030 tmp1 = TREE_OPERAND (tmp1, 0);
10031 /* The only case we can still associate with two variables
10032 is if they are the same, modulo negation. */
10033 if (!operand_equal_p (tmp0, tmp1, 0))
10034 ok = false;
10037 /* Only do something if we found more than two objects. Otherwise,
10038 nothing has changed and we risk infinite recursion. */
10039 if (ok
10040 && (2 < ((var0 != 0) + (var1 != 0)
10041 + (con0 != 0) + (con1 != 0)
10042 + (lit0 != 0) + (lit1 != 0)
10043 + (minus_lit0 != 0) + (minus_lit1 != 0))))
10045 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
10046 if (code == MINUS_EXPR)
10047 code = PLUS_EXPR;
10049 var0 = associate_trees (var0, var1, code, type);
10050 con0 = associate_trees (con0, con1, code, type);
10051 lit0 = associate_trees (lit0, lit1, code, type);
10052 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
10054 /* Preserve the MINUS_EXPR if the negative part of the literal is
10055 greater than the positive part. Otherwise, the multiplicative
10056 folding code (i.e extract_muldiv) may be fooled in case
10057 unsigned constants are subtracted, like in the following
10058 example: ((X*2 + 4) - 8U)/2. */
10059 if (minus_lit0 && lit0)
10061 if (TREE_CODE (lit0) == INTEGER_CST
10062 && TREE_CODE (minus_lit0) == INTEGER_CST
10063 && tree_int_cst_lt (lit0, minus_lit0))
10065 minus_lit0 = associate_trees (minus_lit0, lit0,
10066 MINUS_EXPR, type);
10067 lit0 = 0;
10069 else
10071 lit0 = associate_trees (lit0, minus_lit0,
10072 MINUS_EXPR, type);
10073 minus_lit0 = 0;
10076 if (minus_lit0)
10078 if (con0 == 0)
10079 return fold_convert (type,
10080 associate_trees (var0, minus_lit0,
10081 MINUS_EXPR, type));
10082 else
10084 con0 = associate_trees (con0, minus_lit0,
10085 MINUS_EXPR, type);
10086 return fold_convert (type,
10087 associate_trees (var0, con0,
10088 PLUS_EXPR, type));
10092 con0 = associate_trees (con0, lit0, code, type);
10093 return fold_convert (type, associate_trees (var0, con0,
10094 code, type));
10098 return NULL_TREE;
10100 case MINUS_EXPR:
10101 /* Pointer simplifications for subtraction, simple reassociations. */
10102 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
10104 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
10105 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
10106 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
10108 tree arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
10109 tree arg01 = fold_convert (type, TREE_OPERAND (arg0, 1));
10110 tree arg10 = fold_convert (type, TREE_OPERAND (arg1, 0));
10111 tree arg11 = fold_convert (type, TREE_OPERAND (arg1, 1));
10112 return fold_build2 (PLUS_EXPR, type,
10113 fold_build2 (MINUS_EXPR, type, arg00, arg10),
10114 fold_build2 (MINUS_EXPR, type, arg01, arg11));
10116 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
10117 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10119 tree arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
10120 tree arg01 = fold_convert (type, TREE_OPERAND (arg0, 1));
10121 tree tmp = fold_binary (MINUS_EXPR, type, arg00, fold_convert (type, arg1));
10122 if (tmp)
10123 return fold_build2 (PLUS_EXPR, type, tmp, arg01);
10126 /* A - (-B) -> A + B */
10127 if (TREE_CODE (arg1) == NEGATE_EXPR)
10128 return fold_build2 (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0));
10129 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10130 if (TREE_CODE (arg0) == NEGATE_EXPR
10131 && (FLOAT_TYPE_P (type)
10132 || INTEGRAL_TYPE_P (type))
10133 && negate_expr_p (arg1)
10134 && reorder_operands_p (arg0, arg1))
10135 return fold_build2 (MINUS_EXPR, type, negate_expr (arg1),
10136 TREE_OPERAND (arg0, 0));
10137 /* Convert -A - 1 to ~A. */
10138 if (INTEGRAL_TYPE_P (type)
10139 && TREE_CODE (arg0) == NEGATE_EXPR
10140 && integer_onep (arg1)
10141 && !TYPE_OVERFLOW_TRAPS (type))
10142 return fold_build1 (BIT_NOT_EXPR, type,
10143 fold_convert (type, TREE_OPERAND (arg0, 0)));
10145 /* Convert -1 - A to ~A. */
10146 if (INTEGRAL_TYPE_P (type)
10147 && integer_all_onesp (arg0))
10148 return fold_build1 (BIT_NOT_EXPR, type, op1);
10150 if (! FLOAT_TYPE_P (type))
10152 if (integer_zerop (arg0))
10153 return negate_expr (fold_convert (type, arg1));
10154 if (integer_zerop (arg1))
10155 return non_lvalue (fold_convert (type, arg0));
10157 /* Fold A - (A & B) into ~B & A. */
10158 if (!TREE_SIDE_EFFECTS (arg0)
10159 && TREE_CODE (arg1) == BIT_AND_EXPR)
10161 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
10163 tree arg10 = fold_convert (type, TREE_OPERAND (arg1, 0));
10164 return fold_build2 (BIT_AND_EXPR, type,
10165 fold_build1 (BIT_NOT_EXPR, type, arg10),
10166 fold_convert (type, arg0));
10168 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10170 tree arg11 = fold_convert (type, TREE_OPERAND (arg1, 1));
10171 return fold_build2 (BIT_AND_EXPR, type,
10172 fold_build1 (BIT_NOT_EXPR, type, arg11),
10173 fold_convert (type, arg0));
10177 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10178 any power of 2 minus 1. */
10179 if (TREE_CODE (arg0) == BIT_AND_EXPR
10180 && TREE_CODE (arg1) == BIT_AND_EXPR
10181 && operand_equal_p (TREE_OPERAND (arg0, 0),
10182 TREE_OPERAND (arg1, 0), 0))
10184 tree mask0 = TREE_OPERAND (arg0, 1);
10185 tree mask1 = TREE_OPERAND (arg1, 1);
10186 tree tem = fold_build1 (BIT_NOT_EXPR, type, mask0);
10188 if (operand_equal_p (tem, mask1, 0))
10190 tem = fold_build2 (BIT_XOR_EXPR, type,
10191 TREE_OPERAND (arg0, 0), mask1);
10192 return fold_build2 (MINUS_EXPR, type, tem, mask1);
10197 /* See if ARG1 is zero and X - ARG1 reduces to X. */
10198 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
10199 return non_lvalue (fold_convert (type, arg0));
10201 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
10202 ARG0 is zero and X + ARG0 reduces to X, since that would mean
10203 (-ARG1 + ARG0) reduces to -ARG1. */
10204 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
10205 return negate_expr (fold_convert (type, arg1));
10207 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10208 __complex__ ( x, -y ). This is not the same for SNaNs or if
10209 signed zeros are involved. */
10210 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10211 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10212 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10214 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10215 tree arg0r = fold_unary (REALPART_EXPR, rtype, arg0);
10216 tree arg0i = fold_unary (IMAGPART_EXPR, rtype, arg0);
10217 bool arg0rz = false, arg0iz = false;
10218 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10219 || (arg0i && (arg0iz = real_zerop (arg0i))))
10221 tree arg1r = fold_unary (REALPART_EXPR, rtype, arg1);
10222 tree arg1i = fold_unary (IMAGPART_EXPR, rtype, arg1);
10223 if (arg0rz && arg1i && real_zerop (arg1i))
10225 tree rp = fold_build1 (NEGATE_EXPR, rtype,
10226 arg1r ? arg1r
10227 : build1 (REALPART_EXPR, rtype, arg1));
10228 tree ip = arg0i ? arg0i
10229 : build1 (IMAGPART_EXPR, rtype, arg0);
10230 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
10232 else if (arg0iz && arg1r && real_zerop (arg1r))
10234 tree rp = arg0r ? arg0r
10235 : build1 (REALPART_EXPR, rtype, arg0);
10236 tree ip = fold_build1 (NEGATE_EXPR, rtype,
10237 arg1i ? arg1i
10238 : build1 (IMAGPART_EXPR, rtype, arg1));
10239 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
10244 /* Fold &x - &x. This can happen from &x.foo - &x.
10245 This is unsafe for certain floats even in non-IEEE formats.
10246 In IEEE, it is unsafe because it does wrong for NaNs.
10247 Also note that operand_equal_p is always false if an operand
10248 is volatile. */
10250 if ((!FLOAT_TYPE_P (type) || !HONOR_NANS (TYPE_MODE (type)))
10251 && operand_equal_p (arg0, arg1, 0))
10252 return fold_convert (type, integer_zero_node);
10254 /* A - B -> A + (-B) if B is easily negatable. */
10255 if (negate_expr_p (arg1)
10256 && ((FLOAT_TYPE_P (type)
10257 /* Avoid this transformation if B is a positive REAL_CST. */
10258 && (TREE_CODE (arg1) != REAL_CST
10259 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
10260 || INTEGRAL_TYPE_P (type)))
10261 return fold_build2 (PLUS_EXPR, type,
10262 fold_convert (type, arg0),
10263 fold_convert (type, negate_expr (arg1)));
10265 /* Try folding difference of addresses. */
10267 HOST_WIDE_INT diff;
10269 if ((TREE_CODE (arg0) == ADDR_EXPR
10270 || TREE_CODE (arg1) == ADDR_EXPR)
10271 && ptr_difference_const (arg0, arg1, &diff))
10272 return build_int_cst_type (type, diff);
10275 /* Fold &a[i] - &a[j] to i-j. */
10276 if (TREE_CODE (arg0) == ADDR_EXPR
10277 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10278 && TREE_CODE (arg1) == ADDR_EXPR
10279 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10281 tree aref0 = TREE_OPERAND (arg0, 0);
10282 tree aref1 = TREE_OPERAND (arg1, 0);
10283 if (operand_equal_p (TREE_OPERAND (aref0, 0),
10284 TREE_OPERAND (aref1, 0), 0))
10286 tree op0 = fold_convert (type, TREE_OPERAND (aref0, 1));
10287 tree op1 = fold_convert (type, TREE_OPERAND (aref1, 1));
10288 tree esz = array_ref_element_size (aref0);
10289 tree diff = build2 (MINUS_EXPR, type, op0, op1);
10290 return fold_build2 (MULT_EXPR, type, diff,
10291 fold_convert (type, esz));
10296 if (flag_unsafe_math_optimizations
10297 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10298 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10299 && (tem = distribute_real_division (code, type, arg0, arg1)))
10300 return tem;
10302 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
10303 same or one. Make sure type is not saturating.
10304 fold_plusminus_mult_expr will re-associate. */
10305 if ((TREE_CODE (arg0) == MULT_EXPR
10306 || TREE_CODE (arg1) == MULT_EXPR)
10307 && !TYPE_SATURATING (type)
10308 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10310 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
10311 if (tem)
10312 return tem;
10315 goto associate;
10317 case MULT_EXPR:
10318 /* (-A) * (-B) -> A * B */
10319 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10320 return fold_build2 (MULT_EXPR, type,
10321 fold_convert (type, TREE_OPERAND (arg0, 0)),
10322 fold_convert (type, negate_expr (arg1)));
10323 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10324 return fold_build2 (MULT_EXPR, type,
10325 fold_convert (type, negate_expr (arg0)),
10326 fold_convert (type, TREE_OPERAND (arg1, 0)));
10328 if (! FLOAT_TYPE_P (type))
10330 if (integer_zerop (arg1))
10331 return omit_one_operand (type, arg1, arg0);
10332 if (integer_onep (arg1))
10333 return non_lvalue (fold_convert (type, arg0));
10334 /* Transform x * -1 into -x. Make sure to do the negation
10335 on the original operand with conversions not stripped
10336 because we can only strip non-sign-changing conversions. */
10337 if (integer_all_onesp (arg1))
10338 return fold_convert (type, negate_expr (op0));
10339 /* Transform x * -C into -x * C if x is easily negatable. */
10340 if (TREE_CODE (arg1) == INTEGER_CST
10341 && tree_int_cst_sgn (arg1) == -1
10342 && negate_expr_p (arg0)
10343 && (tem = negate_expr (arg1)) != arg1
10344 && !TREE_OVERFLOW (tem))
10345 return fold_build2 (MULT_EXPR, type,
10346 negate_expr (arg0), tem);
10348 /* (a * (1 << b)) is (a << b) */
10349 if (TREE_CODE (arg1) == LSHIFT_EXPR
10350 && integer_onep (TREE_OPERAND (arg1, 0)))
10351 return fold_build2 (LSHIFT_EXPR, type, arg0,
10352 TREE_OPERAND (arg1, 1));
10353 if (TREE_CODE (arg0) == LSHIFT_EXPR
10354 && integer_onep (TREE_OPERAND (arg0, 0)))
10355 return fold_build2 (LSHIFT_EXPR, type, arg1,
10356 TREE_OPERAND (arg0, 1));
10358 strict_overflow_p = false;
10359 if (TREE_CODE (arg1) == INTEGER_CST
10360 && 0 != (tem = extract_muldiv (op0,
10361 fold_convert (type, arg1),
10362 code, NULL_TREE,
10363 &strict_overflow_p)))
10365 if (strict_overflow_p)
10366 fold_overflow_warning (("assuming signed overflow does not "
10367 "occur when simplifying "
10368 "multiplication"),
10369 WARN_STRICT_OVERFLOW_MISC);
10370 return fold_convert (type, tem);
10373 /* Optimize z * conj(z) for integer complex numbers. */
10374 if (TREE_CODE (arg0) == CONJ_EXPR
10375 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10376 return fold_mult_zconjz (type, arg1);
10377 if (TREE_CODE (arg1) == CONJ_EXPR
10378 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10379 return fold_mult_zconjz (type, arg0);
10381 else
10383 /* Maybe fold x * 0 to 0. The expressions aren't the same
10384 when x is NaN, since x * 0 is also NaN. Nor are they the
10385 same in modes with signed zeros, since multiplying a
10386 negative value by 0 gives -0, not +0. */
10387 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10388 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10389 && real_zerop (arg1))
10390 return omit_one_operand (type, arg1, arg0);
10391 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
10392 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10393 && real_onep (arg1))
10394 return non_lvalue (fold_convert (type, arg0));
10396 /* Transform x * -1.0 into -x. */
10397 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10398 && real_minus_onep (arg1))
10399 return fold_convert (type, negate_expr (arg0));
10401 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
10402 the result for floating point types due to rounding so it is applied
10403 only if -fassociative-math was specify. */
10404 if (flag_associative_math
10405 && TREE_CODE (arg0) == RDIV_EXPR
10406 && TREE_CODE (arg1) == REAL_CST
10407 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
10409 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
10410 arg1, 0);
10411 if (tem)
10412 return fold_build2 (RDIV_EXPR, type, tem,
10413 TREE_OPERAND (arg0, 1));
10416 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
10417 if (operand_equal_p (arg0, arg1, 0))
10419 tree tem = fold_strip_sign_ops (arg0);
10420 if (tem != NULL_TREE)
10422 tem = fold_convert (type, tem);
10423 return fold_build2 (MULT_EXPR, type, tem, tem);
10427 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10428 This is not the same for NaNs or if signed zeros are
10429 involved. */
10430 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10431 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10432 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10433 && TREE_CODE (arg1) == COMPLEX_CST
10434 && real_zerop (TREE_REALPART (arg1)))
10436 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10437 if (real_onep (TREE_IMAGPART (arg1)))
10438 return fold_build2 (COMPLEX_EXPR, type,
10439 negate_expr (fold_build1 (IMAGPART_EXPR,
10440 rtype, arg0)),
10441 fold_build1 (REALPART_EXPR, rtype, arg0));
10442 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10443 return fold_build2 (COMPLEX_EXPR, type,
10444 fold_build1 (IMAGPART_EXPR, rtype, arg0),
10445 negate_expr (fold_build1 (REALPART_EXPR,
10446 rtype, arg0)));
10449 /* Optimize z * conj(z) for floating point complex numbers.
10450 Guarded by flag_unsafe_math_optimizations as non-finite
10451 imaginary components don't produce scalar results. */
10452 if (flag_unsafe_math_optimizations
10453 && TREE_CODE (arg0) == CONJ_EXPR
10454 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10455 return fold_mult_zconjz (type, arg1);
10456 if (flag_unsafe_math_optimizations
10457 && TREE_CODE (arg1) == CONJ_EXPR
10458 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10459 return fold_mult_zconjz (type, arg0);
10461 if (flag_unsafe_math_optimizations)
10463 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10464 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10466 /* Optimizations of root(...)*root(...). */
10467 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
10469 tree rootfn, arg;
10470 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10471 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10473 /* Optimize sqrt(x)*sqrt(x) as x. */
10474 if (BUILTIN_SQRT_P (fcode0)
10475 && operand_equal_p (arg00, arg10, 0)
10476 && ! HONOR_SNANS (TYPE_MODE (type)))
10477 return arg00;
10479 /* Optimize root(x)*root(y) as root(x*y). */
10480 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10481 arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
10482 return build_call_expr (rootfn, 1, arg);
10485 /* Optimize expN(x)*expN(y) as expN(x+y). */
10486 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
10488 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10489 tree arg = fold_build2 (PLUS_EXPR, type,
10490 CALL_EXPR_ARG (arg0, 0),
10491 CALL_EXPR_ARG (arg1, 0));
10492 return build_call_expr (expfn, 1, arg);
10495 /* Optimizations of pow(...)*pow(...). */
10496 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
10497 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
10498 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
10500 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10501 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10502 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10503 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10505 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10506 if (operand_equal_p (arg01, arg11, 0))
10508 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10509 tree arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
10510 return build_call_expr (powfn, 2, arg, arg01);
10513 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10514 if (operand_equal_p (arg00, arg10, 0))
10516 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10517 tree arg = fold_build2 (PLUS_EXPR, type, arg01, arg11);
10518 return build_call_expr (powfn, 2, arg00, arg);
10522 /* Optimize tan(x)*cos(x) as sin(x). */
10523 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
10524 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
10525 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
10526 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
10527 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
10528 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
10529 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10530 CALL_EXPR_ARG (arg1, 0), 0))
10532 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
10534 if (sinfn != NULL_TREE)
10535 return build_call_expr (sinfn, 1, CALL_EXPR_ARG (arg0, 0));
10538 /* Optimize x*pow(x,c) as pow(x,c+1). */
10539 if (fcode1 == BUILT_IN_POW
10540 || fcode1 == BUILT_IN_POWF
10541 || fcode1 == BUILT_IN_POWL)
10543 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10544 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10545 if (TREE_CODE (arg11) == REAL_CST
10546 && !TREE_OVERFLOW (arg11)
10547 && operand_equal_p (arg0, arg10, 0))
10549 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10550 REAL_VALUE_TYPE c;
10551 tree arg;
10553 c = TREE_REAL_CST (arg11);
10554 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10555 arg = build_real (type, c);
10556 return build_call_expr (powfn, 2, arg0, arg);
10560 /* Optimize pow(x,c)*x as pow(x,c+1). */
10561 if (fcode0 == BUILT_IN_POW
10562 || fcode0 == BUILT_IN_POWF
10563 || fcode0 == BUILT_IN_POWL)
10565 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10566 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10567 if (TREE_CODE (arg01) == REAL_CST
10568 && !TREE_OVERFLOW (arg01)
10569 && operand_equal_p (arg1, arg00, 0))
10571 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10572 REAL_VALUE_TYPE c;
10573 tree arg;
10575 c = TREE_REAL_CST (arg01);
10576 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10577 arg = build_real (type, c);
10578 return build_call_expr (powfn, 2, arg1, arg);
10582 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
10583 if (! optimize_size
10584 && operand_equal_p (arg0, arg1, 0))
10586 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
10588 if (powfn)
10590 tree arg = build_real (type, dconst2);
10591 return build_call_expr (powfn, 2, arg0, arg);
10596 goto associate;
10598 case BIT_IOR_EXPR:
10599 bit_ior:
10600 if (integer_all_onesp (arg1))
10601 return omit_one_operand (type, arg1, arg0);
10602 if (integer_zerop (arg1))
10603 return non_lvalue (fold_convert (type, arg0));
10604 if (operand_equal_p (arg0, arg1, 0))
10605 return non_lvalue (fold_convert (type, arg0));
10607 /* ~X | X is -1. */
10608 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10609 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10611 t1 = fold_convert (type, integer_zero_node);
10612 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10613 return omit_one_operand (type, t1, arg1);
10616 /* X | ~X is -1. */
10617 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10618 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10620 t1 = fold_convert (type, integer_zero_node);
10621 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10622 return omit_one_operand (type, t1, arg0);
10625 /* Canonicalize (X & C1) | C2. */
10626 if (TREE_CODE (arg0) == BIT_AND_EXPR
10627 && TREE_CODE (arg1) == INTEGER_CST
10628 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10630 unsigned HOST_WIDE_INT hi1, lo1, hi2, lo2, mlo, mhi;
10631 int width = TYPE_PRECISION (type);
10632 hi1 = TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1));
10633 lo1 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
10634 hi2 = TREE_INT_CST_HIGH (arg1);
10635 lo2 = TREE_INT_CST_LOW (arg1);
10637 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10638 if ((hi1 & hi2) == hi1 && (lo1 & lo2) == lo1)
10639 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10641 if (width > HOST_BITS_PER_WIDE_INT)
10643 mhi = (unsigned HOST_WIDE_INT) -1
10644 >> (2 * HOST_BITS_PER_WIDE_INT - width);
10645 mlo = -1;
10647 else
10649 mhi = 0;
10650 mlo = (unsigned HOST_WIDE_INT) -1
10651 >> (HOST_BITS_PER_WIDE_INT - width);
10654 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10655 if ((~(hi1 | hi2) & mhi) == 0 && (~(lo1 | lo2) & mlo) == 0)
10656 return fold_build2 (BIT_IOR_EXPR, type,
10657 TREE_OPERAND (arg0, 0), arg1);
10659 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
10660 hi1 &= mhi;
10661 lo1 &= mlo;
10662 if ((hi1 & ~hi2) != hi1 || (lo1 & ~lo2) != lo1)
10663 return fold_build2 (BIT_IOR_EXPR, type,
10664 fold_build2 (BIT_AND_EXPR, type,
10665 TREE_OPERAND (arg0, 0),
10666 build_int_cst_wide (type,
10667 lo1 & ~lo2,
10668 hi1 & ~hi2)),
10669 arg1);
10672 /* (X & Y) | Y is (X, Y). */
10673 if (TREE_CODE (arg0) == BIT_AND_EXPR
10674 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10675 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10676 /* (X & Y) | X is (Y, X). */
10677 if (TREE_CODE (arg0) == BIT_AND_EXPR
10678 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10679 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10680 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
10681 /* X | (X & Y) is (Y, X). */
10682 if (TREE_CODE (arg1) == BIT_AND_EXPR
10683 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10684 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10685 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
10686 /* X | (Y & X) is (Y, X). */
10687 if (TREE_CODE (arg1) == BIT_AND_EXPR
10688 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10689 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10690 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
10692 t1 = distribute_bit_expr (code, type, arg0, arg1);
10693 if (t1 != NULL_TREE)
10694 return t1;
10696 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
10698 This results in more efficient code for machines without a NAND
10699 instruction. Combine will canonicalize to the first form
10700 which will allow use of NAND instructions provided by the
10701 backend if they exist. */
10702 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10703 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10705 return fold_build1 (BIT_NOT_EXPR, type,
10706 build2 (BIT_AND_EXPR, type,
10707 TREE_OPERAND (arg0, 0),
10708 TREE_OPERAND (arg1, 0)));
10711 /* See if this can be simplified into a rotate first. If that
10712 is unsuccessful continue in the association code. */
10713 goto bit_rotate;
10715 case BIT_XOR_EXPR:
10716 if (integer_zerop (arg1))
10717 return non_lvalue (fold_convert (type, arg0));
10718 if (integer_all_onesp (arg1))
10719 return fold_build1 (BIT_NOT_EXPR, type, op0);
10720 if (operand_equal_p (arg0, arg1, 0))
10721 return omit_one_operand (type, integer_zero_node, arg0);
10723 /* ~X ^ X is -1. */
10724 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10725 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10727 t1 = fold_convert (type, integer_zero_node);
10728 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10729 return omit_one_operand (type, t1, arg1);
10732 /* X ^ ~X is -1. */
10733 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10734 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10736 t1 = fold_convert (type, integer_zero_node);
10737 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10738 return omit_one_operand (type, t1, arg0);
10741 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
10742 with a constant, and the two constants have no bits in common,
10743 we should treat this as a BIT_IOR_EXPR since this may produce more
10744 simplifications. */
10745 if (TREE_CODE (arg0) == BIT_AND_EXPR
10746 && TREE_CODE (arg1) == BIT_AND_EXPR
10747 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10748 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10749 && integer_zerop (const_binop (BIT_AND_EXPR,
10750 TREE_OPERAND (arg0, 1),
10751 TREE_OPERAND (arg1, 1), 0)))
10753 code = BIT_IOR_EXPR;
10754 goto bit_ior;
10757 /* (X | Y) ^ X -> Y & ~ X*/
10758 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10759 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10761 tree t2 = TREE_OPERAND (arg0, 1);
10762 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
10763 arg1);
10764 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
10765 fold_convert (type, t1));
10766 return t1;
10769 /* (Y | X) ^ X -> Y & ~ X*/
10770 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10771 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10773 tree t2 = TREE_OPERAND (arg0, 0);
10774 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
10775 arg1);
10776 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
10777 fold_convert (type, t1));
10778 return t1;
10781 /* X ^ (X | Y) -> Y & ~ X*/
10782 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10783 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
10785 tree t2 = TREE_OPERAND (arg1, 1);
10786 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
10787 arg0);
10788 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
10789 fold_convert (type, t1));
10790 return t1;
10793 /* X ^ (Y | X) -> Y & ~ X*/
10794 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10795 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
10797 tree t2 = TREE_OPERAND (arg1, 0);
10798 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
10799 arg0);
10800 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
10801 fold_convert (type, t1));
10802 return t1;
10805 /* Convert ~X ^ ~Y to X ^ Y. */
10806 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10807 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10808 return fold_build2 (code, type,
10809 fold_convert (type, TREE_OPERAND (arg0, 0)),
10810 fold_convert (type, TREE_OPERAND (arg1, 0)));
10812 /* Convert ~X ^ C to X ^ ~C. */
10813 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10814 && TREE_CODE (arg1) == INTEGER_CST)
10815 return fold_build2 (code, type,
10816 fold_convert (type, TREE_OPERAND (arg0, 0)),
10817 fold_build1 (BIT_NOT_EXPR, type, arg1));
10819 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10820 if (TREE_CODE (arg0) == BIT_AND_EXPR
10821 && integer_onep (TREE_OPERAND (arg0, 1))
10822 && integer_onep (arg1))
10823 return fold_build2 (EQ_EXPR, type, arg0,
10824 build_int_cst (TREE_TYPE (arg0), 0));
10826 /* Fold (X & Y) ^ Y as ~X & Y. */
10827 if (TREE_CODE (arg0) == BIT_AND_EXPR
10828 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10830 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
10831 return fold_build2 (BIT_AND_EXPR, type,
10832 fold_build1 (BIT_NOT_EXPR, type, tem),
10833 fold_convert (type, arg1));
10835 /* Fold (X & Y) ^ X as ~Y & X. */
10836 if (TREE_CODE (arg0) == BIT_AND_EXPR
10837 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10838 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10840 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
10841 return fold_build2 (BIT_AND_EXPR, type,
10842 fold_build1 (BIT_NOT_EXPR, type, tem),
10843 fold_convert (type, arg1));
10845 /* Fold X ^ (X & Y) as X & ~Y. */
10846 if (TREE_CODE (arg1) == BIT_AND_EXPR
10847 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10849 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
10850 return fold_build2 (BIT_AND_EXPR, type,
10851 fold_convert (type, arg0),
10852 fold_build1 (BIT_NOT_EXPR, type, tem));
10854 /* Fold X ^ (Y & X) as ~Y & X. */
10855 if (TREE_CODE (arg1) == BIT_AND_EXPR
10856 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10857 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10859 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
10860 return fold_build2 (BIT_AND_EXPR, type,
10861 fold_build1 (BIT_NOT_EXPR, type, tem),
10862 fold_convert (type, arg0));
10865 /* See if this can be simplified into a rotate first. If that
10866 is unsuccessful continue in the association code. */
10867 goto bit_rotate;
10869 case BIT_AND_EXPR:
10870 if (integer_all_onesp (arg1))
10871 return non_lvalue (fold_convert (type, arg0));
10872 if (integer_zerop (arg1))
10873 return omit_one_operand (type, arg1, arg0);
10874 if (operand_equal_p (arg0, arg1, 0))
10875 return non_lvalue (fold_convert (type, arg0));
10877 /* ~X & X is always zero. */
10878 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10879 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10880 return omit_one_operand (type, integer_zero_node, arg1);
10882 /* X & ~X is always zero. */
10883 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10884 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10885 return omit_one_operand (type, integer_zero_node, arg0);
10887 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
10888 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10889 && TREE_CODE (arg1) == INTEGER_CST
10890 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10891 return fold_build2 (BIT_IOR_EXPR, type,
10892 fold_build2 (BIT_AND_EXPR, type,
10893 TREE_OPERAND (arg0, 0), arg1),
10894 fold_build2 (BIT_AND_EXPR, type,
10895 TREE_OPERAND (arg0, 1), arg1));
10897 /* (X | Y) & Y is (X, Y). */
10898 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10899 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10900 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10901 /* (X | Y) & X is (Y, X). */
10902 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10903 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10904 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10905 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
10906 /* X & (X | Y) is (Y, X). */
10907 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10908 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10909 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10910 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
10911 /* X & (Y | X) is (Y, X). */
10912 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10913 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10914 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10915 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
10917 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10918 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10919 && integer_onep (TREE_OPERAND (arg0, 1))
10920 && integer_onep (arg1))
10922 tem = TREE_OPERAND (arg0, 0);
10923 return fold_build2 (EQ_EXPR, type,
10924 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
10925 build_int_cst (TREE_TYPE (tem), 1)),
10926 build_int_cst (TREE_TYPE (tem), 0));
10928 /* Fold ~X & 1 as (X & 1) == 0. */
10929 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10930 && integer_onep (arg1))
10932 tem = TREE_OPERAND (arg0, 0);
10933 return fold_build2 (EQ_EXPR, type,
10934 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
10935 build_int_cst (TREE_TYPE (tem), 1)),
10936 build_int_cst (TREE_TYPE (tem), 0));
10939 /* Fold (X ^ Y) & Y as ~X & Y. */
10940 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10941 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10943 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
10944 return fold_build2 (BIT_AND_EXPR, type,
10945 fold_build1 (BIT_NOT_EXPR, type, tem),
10946 fold_convert (type, arg1));
10948 /* Fold (X ^ Y) & X as ~Y & X. */
10949 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10950 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10951 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10953 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
10954 return fold_build2 (BIT_AND_EXPR, type,
10955 fold_build1 (BIT_NOT_EXPR, type, tem),
10956 fold_convert (type, arg1));
10958 /* Fold X & (X ^ Y) as X & ~Y. */
10959 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10960 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10962 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
10963 return fold_build2 (BIT_AND_EXPR, type,
10964 fold_convert (type, arg0),
10965 fold_build1 (BIT_NOT_EXPR, type, tem));
10967 /* Fold X & (Y ^ X) as ~Y & X. */
10968 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10969 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10970 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10972 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
10973 return fold_build2 (BIT_AND_EXPR, type,
10974 fold_build1 (BIT_NOT_EXPR, type, tem),
10975 fold_convert (type, arg0));
10978 t1 = distribute_bit_expr (code, type, arg0, arg1);
10979 if (t1 != NULL_TREE)
10980 return t1;
10981 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10982 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10983 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10985 unsigned int prec
10986 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10988 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
10989 && (~TREE_INT_CST_LOW (arg1)
10990 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
10991 return fold_convert (type, TREE_OPERAND (arg0, 0));
10994 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
10996 This results in more efficient code for machines without a NOR
10997 instruction. Combine will canonicalize to the first form
10998 which will allow use of NOR instructions provided by the
10999 backend if they exist. */
11000 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11001 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11003 return fold_build1 (BIT_NOT_EXPR, type,
11004 build2 (BIT_IOR_EXPR, type,
11005 TREE_OPERAND (arg0, 0),
11006 TREE_OPERAND (arg1, 0)));
11009 /* If arg0 is derived from the address of an object or function, we may
11010 be able to fold this expression using the object or function's
11011 alignment. */
11012 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && host_integerp (arg1, 1))
11014 unsigned HOST_WIDE_INT modulus, residue;
11015 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (arg1);
11017 modulus = get_pointer_modulus_and_residue (arg0, &residue);
11019 /* This works because modulus is a power of 2. If this weren't the
11020 case, we'd have to replace it by its greatest power-of-2
11021 divisor: modulus & -modulus. */
11022 if (low < modulus)
11023 return build_int_cst (type, residue & low);
11026 goto associate;
11028 case RDIV_EXPR:
11029 /* Don't touch a floating-point divide by zero unless the mode
11030 of the constant can represent infinity. */
11031 if (TREE_CODE (arg1) == REAL_CST
11032 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
11033 && real_zerop (arg1))
11034 return NULL_TREE;
11036 /* Optimize A / A to 1.0 if we don't care about
11037 NaNs or Infinities. Skip the transformation
11038 for non-real operands. */
11039 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
11040 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
11041 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
11042 && operand_equal_p (arg0, arg1, 0))
11044 tree r = build_real (TREE_TYPE (arg0), dconst1);
11046 return omit_two_operands (type, r, arg0, arg1);
11049 /* The complex version of the above A / A optimization. */
11050 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
11051 && operand_equal_p (arg0, arg1, 0))
11053 tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
11054 if (! HONOR_NANS (TYPE_MODE (elem_type))
11055 && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
11057 tree r = build_real (elem_type, dconst1);
11058 /* omit_two_operands will call fold_convert for us. */
11059 return omit_two_operands (type, r, arg0, arg1);
11063 /* (-A) / (-B) -> A / B */
11064 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
11065 return fold_build2 (RDIV_EXPR, type,
11066 TREE_OPERAND (arg0, 0),
11067 negate_expr (arg1));
11068 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
11069 return fold_build2 (RDIV_EXPR, type,
11070 negate_expr (arg0),
11071 TREE_OPERAND (arg1, 0));
11073 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
11074 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11075 && real_onep (arg1))
11076 return non_lvalue (fold_convert (type, arg0));
11078 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
11079 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11080 && real_minus_onep (arg1))
11081 return non_lvalue (fold_convert (type, negate_expr (arg0)));
11083 /* If ARG1 is a constant, we can convert this to a multiply by the
11084 reciprocal. This does not have the same rounding properties,
11085 so only do this if -freciprocal-math. We can actually
11086 always safely do it if ARG1 is a power of two, but it's hard to
11087 tell if it is or not in a portable manner. */
11088 if (TREE_CODE (arg1) == REAL_CST)
11090 if (flag_reciprocal_math
11091 && 0 != (tem = const_binop (code, build_real (type, dconst1),
11092 arg1, 0)))
11093 return fold_build2 (MULT_EXPR, type, arg0, tem);
11094 /* Find the reciprocal if optimizing and the result is exact. */
11095 if (optimize)
11097 REAL_VALUE_TYPE r;
11098 r = TREE_REAL_CST (arg1);
11099 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
11101 tem = build_real (type, r);
11102 return fold_build2 (MULT_EXPR, type,
11103 fold_convert (type, arg0), tem);
11107 /* Convert A/B/C to A/(B*C). */
11108 if (flag_reciprocal_math
11109 && TREE_CODE (arg0) == RDIV_EXPR)
11110 return fold_build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
11111 fold_build2 (MULT_EXPR, type,
11112 TREE_OPERAND (arg0, 1), arg1));
11114 /* Convert A/(B/C) to (A/B)*C. */
11115 if (flag_reciprocal_math
11116 && TREE_CODE (arg1) == RDIV_EXPR)
11117 return fold_build2 (MULT_EXPR, type,
11118 fold_build2 (RDIV_EXPR, type, arg0,
11119 TREE_OPERAND (arg1, 0)),
11120 TREE_OPERAND (arg1, 1));
11122 /* Convert C1/(X*C2) into (C1/C2)/X. */
11123 if (flag_reciprocal_math
11124 && TREE_CODE (arg1) == MULT_EXPR
11125 && TREE_CODE (arg0) == REAL_CST
11126 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
11128 tree tem = const_binop (RDIV_EXPR, arg0,
11129 TREE_OPERAND (arg1, 1), 0);
11130 if (tem)
11131 return fold_build2 (RDIV_EXPR, type, tem,
11132 TREE_OPERAND (arg1, 0));
11135 if (flag_unsafe_math_optimizations)
11137 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
11138 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
11140 /* Optimize sin(x)/cos(x) as tan(x). */
11141 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
11142 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
11143 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
11144 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11145 CALL_EXPR_ARG (arg1, 0), 0))
11147 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11149 if (tanfn != NULL_TREE)
11150 return build_call_expr (tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11153 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
11154 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
11155 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
11156 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
11157 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11158 CALL_EXPR_ARG (arg1, 0), 0))
11160 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11162 if (tanfn != NULL_TREE)
11164 tree tmp = build_call_expr (tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11165 return fold_build2 (RDIV_EXPR, type,
11166 build_real (type, dconst1), tmp);
11170 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
11171 NaNs or Infinities. */
11172 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
11173 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
11174 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
11176 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11177 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11179 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11180 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11181 && operand_equal_p (arg00, arg01, 0))
11183 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11185 if (cosfn != NULL_TREE)
11186 return build_call_expr (cosfn, 1, arg00);
11190 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
11191 NaNs or Infinities. */
11192 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
11193 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
11194 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
11196 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11197 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11199 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11200 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11201 && operand_equal_p (arg00, arg01, 0))
11203 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11205 if (cosfn != NULL_TREE)
11207 tree tmp = build_call_expr (cosfn, 1, arg00);
11208 return fold_build2 (RDIV_EXPR, type,
11209 build_real (type, dconst1),
11210 tmp);
11215 /* Optimize pow(x,c)/x as pow(x,c-1). */
11216 if (fcode0 == BUILT_IN_POW
11217 || fcode0 == BUILT_IN_POWF
11218 || fcode0 == BUILT_IN_POWL)
11220 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11221 tree arg01 = CALL_EXPR_ARG (arg0, 1);
11222 if (TREE_CODE (arg01) == REAL_CST
11223 && !TREE_OVERFLOW (arg01)
11224 && operand_equal_p (arg1, arg00, 0))
11226 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11227 REAL_VALUE_TYPE c;
11228 tree arg;
11230 c = TREE_REAL_CST (arg01);
11231 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
11232 arg = build_real (type, c);
11233 return build_call_expr (powfn, 2, arg1, arg);
11237 /* Optimize a/root(b/c) into a*root(c/b). */
11238 if (BUILTIN_ROOT_P (fcode1))
11240 tree rootarg = CALL_EXPR_ARG (arg1, 0);
11242 if (TREE_CODE (rootarg) == RDIV_EXPR)
11244 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11245 tree b = TREE_OPERAND (rootarg, 0);
11246 tree c = TREE_OPERAND (rootarg, 1);
11248 tree tmp = fold_build2 (RDIV_EXPR, type, c, b);
11250 tmp = build_call_expr (rootfn, 1, tmp);
11251 return fold_build2 (MULT_EXPR, type, arg0, tmp);
11255 /* Optimize x/expN(y) into x*expN(-y). */
11256 if (BUILTIN_EXPONENT_P (fcode1))
11258 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11259 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
11260 arg1 = build_call_expr (expfn, 1, fold_convert (type, arg));
11261 return fold_build2 (MULT_EXPR, type, arg0, arg1);
11264 /* Optimize x/pow(y,z) into x*pow(y,-z). */
11265 if (fcode1 == BUILT_IN_POW
11266 || fcode1 == BUILT_IN_POWF
11267 || fcode1 == BUILT_IN_POWL)
11269 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11270 tree arg10 = CALL_EXPR_ARG (arg1, 0);
11271 tree arg11 = CALL_EXPR_ARG (arg1, 1);
11272 tree neg11 = fold_convert (type, negate_expr (arg11));
11273 arg1 = build_call_expr (powfn, 2, arg10, neg11);
11274 return fold_build2 (MULT_EXPR, type, arg0, arg1);
11277 return NULL_TREE;
11279 case TRUNC_DIV_EXPR:
11280 case FLOOR_DIV_EXPR:
11281 /* Simplify A / (B << N) where A and B are positive and B is
11282 a power of 2, to A >> (N + log2(B)). */
11283 strict_overflow_p = false;
11284 if (TREE_CODE (arg1) == LSHIFT_EXPR
11285 && (TYPE_UNSIGNED (type)
11286 || tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)))
11288 tree sval = TREE_OPERAND (arg1, 0);
11289 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
11291 tree sh_cnt = TREE_OPERAND (arg1, 1);
11292 unsigned long pow2 = exact_log2 (TREE_INT_CST_LOW (sval));
11294 if (strict_overflow_p)
11295 fold_overflow_warning (("assuming signed overflow does not "
11296 "occur when simplifying A / (B << N)"),
11297 WARN_STRICT_OVERFLOW_MISC);
11299 sh_cnt = fold_build2 (PLUS_EXPR, TREE_TYPE (sh_cnt),
11300 sh_cnt, build_int_cst (NULL_TREE, pow2));
11301 return fold_build2 (RSHIFT_EXPR, type,
11302 fold_convert (type, arg0), sh_cnt);
11305 /* Fall thru */
11307 case ROUND_DIV_EXPR:
11308 case CEIL_DIV_EXPR:
11309 case EXACT_DIV_EXPR:
11310 if (integer_onep (arg1))
11311 return non_lvalue (fold_convert (type, arg0));
11312 if (integer_zerop (arg1))
11313 return NULL_TREE;
11314 /* X / -1 is -X. */
11315 if (!TYPE_UNSIGNED (type)
11316 && TREE_CODE (arg1) == INTEGER_CST
11317 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11318 && TREE_INT_CST_HIGH (arg1) == -1)
11319 return fold_convert (type, negate_expr (arg0));
11321 /* Convert -A / -B to A / B when the type is signed and overflow is
11322 undefined. */
11323 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11324 && TREE_CODE (arg0) == NEGATE_EXPR
11325 && negate_expr_p (arg1))
11327 if (INTEGRAL_TYPE_P (type))
11328 fold_overflow_warning (("assuming signed overflow does not occur "
11329 "when distributing negation across "
11330 "division"),
11331 WARN_STRICT_OVERFLOW_MISC);
11332 return fold_build2 (code, type,
11333 fold_convert (type, TREE_OPERAND (arg0, 0)),
11334 negate_expr (arg1));
11336 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11337 && TREE_CODE (arg1) == NEGATE_EXPR
11338 && negate_expr_p (arg0))
11340 if (INTEGRAL_TYPE_P (type))
11341 fold_overflow_warning (("assuming signed overflow does not occur "
11342 "when distributing negation across "
11343 "division"),
11344 WARN_STRICT_OVERFLOW_MISC);
11345 return fold_build2 (code, type, negate_expr (arg0),
11346 TREE_OPERAND (arg1, 0));
11349 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11350 operation, EXACT_DIV_EXPR.
11352 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11353 At one time others generated faster code, it's not clear if they do
11354 after the last round to changes to the DIV code in expmed.c. */
11355 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
11356 && multiple_of_p (type, arg0, arg1))
11357 return fold_build2 (EXACT_DIV_EXPR, type, arg0, arg1);
11359 strict_overflow_p = false;
11360 if (TREE_CODE (arg1) == INTEGER_CST
11361 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11362 &strict_overflow_p)))
11364 if (strict_overflow_p)
11365 fold_overflow_warning (("assuming signed overflow does not occur "
11366 "when simplifying division"),
11367 WARN_STRICT_OVERFLOW_MISC);
11368 return fold_convert (type, tem);
11371 return NULL_TREE;
11373 case CEIL_MOD_EXPR:
11374 case FLOOR_MOD_EXPR:
11375 case ROUND_MOD_EXPR:
11376 case TRUNC_MOD_EXPR:
11377 /* X % 1 is always zero, but be sure to preserve any side
11378 effects in X. */
11379 if (integer_onep (arg1))
11380 return omit_one_operand (type, integer_zero_node, arg0);
11382 /* X % 0, return X % 0 unchanged so that we can get the
11383 proper warnings and errors. */
11384 if (integer_zerop (arg1))
11385 return NULL_TREE;
11387 /* 0 % X is always zero, but be sure to preserve any side
11388 effects in X. Place this after checking for X == 0. */
11389 if (integer_zerop (arg0))
11390 return omit_one_operand (type, integer_zero_node, arg1);
11392 /* X % -1 is zero. */
11393 if (!TYPE_UNSIGNED (type)
11394 && TREE_CODE (arg1) == INTEGER_CST
11395 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11396 && TREE_INT_CST_HIGH (arg1) == -1)
11397 return omit_one_operand (type, integer_zero_node, arg0);
11399 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
11400 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
11401 strict_overflow_p = false;
11402 if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
11403 && (TYPE_UNSIGNED (type)
11404 || tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)))
11406 tree c = arg1;
11407 /* Also optimize A % (C << N) where C is a power of 2,
11408 to A & ((C << N) - 1). */
11409 if (TREE_CODE (arg1) == LSHIFT_EXPR)
11410 c = TREE_OPERAND (arg1, 0);
11412 if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
11414 tree mask = fold_build2 (MINUS_EXPR, TREE_TYPE (arg1), arg1,
11415 build_int_cst (TREE_TYPE (arg1), 1));
11416 if (strict_overflow_p)
11417 fold_overflow_warning (("assuming signed overflow does not "
11418 "occur when simplifying "
11419 "X % (power of two)"),
11420 WARN_STRICT_OVERFLOW_MISC);
11421 return fold_build2 (BIT_AND_EXPR, type,
11422 fold_convert (type, arg0),
11423 fold_convert (type, mask));
11427 /* X % -C is the same as X % C. */
11428 if (code == TRUNC_MOD_EXPR
11429 && !TYPE_UNSIGNED (type)
11430 && TREE_CODE (arg1) == INTEGER_CST
11431 && !TREE_OVERFLOW (arg1)
11432 && TREE_INT_CST_HIGH (arg1) < 0
11433 && !TYPE_OVERFLOW_TRAPS (type)
11434 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
11435 && !sign_bit_p (arg1, arg1))
11436 return fold_build2 (code, type, fold_convert (type, arg0),
11437 fold_convert (type, negate_expr (arg1)));
11439 /* X % -Y is the same as X % Y. */
11440 if (code == TRUNC_MOD_EXPR
11441 && !TYPE_UNSIGNED (type)
11442 && TREE_CODE (arg1) == NEGATE_EXPR
11443 && !TYPE_OVERFLOW_TRAPS (type))
11444 return fold_build2 (code, type, fold_convert (type, arg0),
11445 fold_convert (type, TREE_OPERAND (arg1, 0)));
11447 if (TREE_CODE (arg1) == INTEGER_CST
11448 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11449 &strict_overflow_p)))
11451 if (strict_overflow_p)
11452 fold_overflow_warning (("assuming signed overflow does not occur "
11453 "when simplifying modulos"),
11454 WARN_STRICT_OVERFLOW_MISC);
11455 return fold_convert (type, tem);
11458 return NULL_TREE;
11460 case LROTATE_EXPR:
11461 case RROTATE_EXPR:
11462 if (integer_all_onesp (arg0))
11463 return omit_one_operand (type, arg0, arg1);
11464 goto shift;
11466 case RSHIFT_EXPR:
11467 /* Optimize -1 >> x for arithmetic right shifts. */
11468 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type))
11469 return omit_one_operand (type, arg0, arg1);
11470 /* ... fall through ... */
11472 case LSHIFT_EXPR:
11473 shift:
11474 if (integer_zerop (arg1))
11475 return non_lvalue (fold_convert (type, arg0));
11476 if (integer_zerop (arg0))
11477 return omit_one_operand (type, arg0, arg1);
11479 /* Since negative shift count is not well-defined,
11480 don't try to compute it in the compiler. */
11481 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
11482 return NULL_TREE;
11484 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
11485 if (TREE_CODE (op0) == code && host_integerp (arg1, false)
11486 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
11487 && host_integerp (TREE_OPERAND (arg0, 1), false)
11488 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
11490 HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
11491 + TREE_INT_CST_LOW (arg1));
11493 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
11494 being well defined. */
11495 if (low >= TYPE_PRECISION (type))
11497 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
11498 low = low % TYPE_PRECISION (type);
11499 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
11500 return build_int_cst (type, 0);
11501 else
11502 low = TYPE_PRECISION (type) - 1;
11505 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
11506 build_int_cst (type, low));
11509 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
11510 into x & ((unsigned)-1 >> c) for unsigned types. */
11511 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
11512 || (TYPE_UNSIGNED (type)
11513 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
11514 && host_integerp (arg1, false)
11515 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
11516 && host_integerp (TREE_OPERAND (arg0, 1), false)
11517 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
11519 HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
11520 HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
11521 tree lshift;
11522 tree arg00;
11524 if (low0 == low1)
11526 arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
11528 lshift = build_int_cst (type, -1);
11529 lshift = int_const_binop (code, lshift, arg1, 0);
11531 return fold_build2 (BIT_AND_EXPR, type, arg00, lshift);
11535 /* Rewrite an LROTATE_EXPR by a constant into an
11536 RROTATE_EXPR by a new constant. */
11537 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
11539 tree tem = build_int_cst (TREE_TYPE (arg1),
11540 GET_MODE_BITSIZE (TYPE_MODE (type)));
11541 tem = const_binop (MINUS_EXPR, tem, arg1, 0);
11542 return fold_build2 (RROTATE_EXPR, type, arg0, tem);
11545 /* If we have a rotate of a bit operation with the rotate count and
11546 the second operand of the bit operation both constant,
11547 permute the two operations. */
11548 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11549 && (TREE_CODE (arg0) == BIT_AND_EXPR
11550 || TREE_CODE (arg0) == BIT_IOR_EXPR
11551 || TREE_CODE (arg0) == BIT_XOR_EXPR)
11552 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11553 return fold_build2 (TREE_CODE (arg0), type,
11554 fold_build2 (code, type,
11555 TREE_OPERAND (arg0, 0), arg1),
11556 fold_build2 (code, type,
11557 TREE_OPERAND (arg0, 1), arg1));
11559 /* Two consecutive rotates adding up to the width of the mode can
11560 be ignored. */
11561 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11562 && TREE_CODE (arg0) == RROTATE_EXPR
11563 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11564 && TREE_INT_CST_HIGH (arg1) == 0
11565 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
11566 && ((TREE_INT_CST_LOW (arg1)
11567 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
11568 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
11569 return TREE_OPERAND (arg0, 0);
11571 return NULL_TREE;
11573 case MIN_EXPR:
11574 if (operand_equal_p (arg0, arg1, 0))
11575 return omit_one_operand (type, arg0, arg1);
11576 if (INTEGRAL_TYPE_P (type)
11577 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
11578 return omit_one_operand (type, arg1, arg0);
11579 tem = fold_minmax (MIN_EXPR, type, arg0, arg1);
11580 if (tem)
11581 return tem;
11582 goto associate;
11584 case MAX_EXPR:
11585 if (operand_equal_p (arg0, arg1, 0))
11586 return omit_one_operand (type, arg0, arg1);
11587 if (INTEGRAL_TYPE_P (type)
11588 && TYPE_MAX_VALUE (type)
11589 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
11590 return omit_one_operand (type, arg1, arg0);
11591 tem = fold_minmax (MAX_EXPR, type, arg0, arg1);
11592 if (tem)
11593 return tem;
11594 goto associate;
11596 case TRUTH_ANDIF_EXPR:
11597 /* Note that the operands of this must be ints
11598 and their values must be 0 or 1.
11599 ("true" is a fixed value perhaps depending on the language.) */
11600 /* If first arg is constant zero, return it. */
11601 if (integer_zerop (arg0))
11602 return fold_convert (type, arg0);
11603 case TRUTH_AND_EXPR:
11604 /* If either arg is constant true, drop it. */
11605 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11606 return non_lvalue (fold_convert (type, arg1));
11607 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
11608 /* Preserve sequence points. */
11609 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11610 return non_lvalue (fold_convert (type, arg0));
11611 /* If second arg is constant zero, result is zero, but first arg
11612 must be evaluated. */
11613 if (integer_zerop (arg1))
11614 return omit_one_operand (type, arg1, arg0);
11615 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
11616 case will be handled here. */
11617 if (integer_zerop (arg0))
11618 return omit_one_operand (type, arg0, arg1);
11620 /* !X && X is always false. */
11621 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11622 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11623 return omit_one_operand (type, integer_zero_node, arg1);
11624 /* X && !X is always false. */
11625 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11626 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11627 return omit_one_operand (type, integer_zero_node, arg0);
11629 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
11630 means A >= Y && A != MAX, but in this case we know that
11631 A < X <= MAX. */
11633 if (!TREE_SIDE_EFFECTS (arg0)
11634 && !TREE_SIDE_EFFECTS (arg1))
11636 tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
11637 if (tem && !operand_equal_p (tem, arg0, 0))
11638 return fold_build2 (code, type, tem, arg1);
11640 tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
11641 if (tem && !operand_equal_p (tem, arg1, 0))
11642 return fold_build2 (code, type, arg0, tem);
11645 truth_andor:
11646 /* We only do these simplifications if we are optimizing. */
11647 if (!optimize)
11648 return NULL_TREE;
11650 /* Check for things like (A || B) && (A || C). We can convert this
11651 to A || (B && C). Note that either operator can be any of the four
11652 truth and/or operations and the transformation will still be
11653 valid. Also note that we only care about order for the
11654 ANDIF and ORIF operators. If B contains side effects, this
11655 might change the truth-value of A. */
11656 if (TREE_CODE (arg0) == TREE_CODE (arg1)
11657 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
11658 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
11659 || TREE_CODE (arg0) == TRUTH_AND_EXPR
11660 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
11661 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
11663 tree a00 = TREE_OPERAND (arg0, 0);
11664 tree a01 = TREE_OPERAND (arg0, 1);
11665 tree a10 = TREE_OPERAND (arg1, 0);
11666 tree a11 = TREE_OPERAND (arg1, 1);
11667 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
11668 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
11669 && (code == TRUTH_AND_EXPR
11670 || code == TRUTH_OR_EXPR));
11672 if (operand_equal_p (a00, a10, 0))
11673 return fold_build2 (TREE_CODE (arg0), type, a00,
11674 fold_build2 (code, type, a01, a11));
11675 else if (commutative && operand_equal_p (a00, a11, 0))
11676 return fold_build2 (TREE_CODE (arg0), type, a00,
11677 fold_build2 (code, type, a01, a10));
11678 else if (commutative && operand_equal_p (a01, a10, 0))
11679 return fold_build2 (TREE_CODE (arg0), type, a01,
11680 fold_build2 (code, type, a00, a11));
11682 /* This case if tricky because we must either have commutative
11683 operators or else A10 must not have side-effects. */
11685 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
11686 && operand_equal_p (a01, a11, 0))
11687 return fold_build2 (TREE_CODE (arg0), type,
11688 fold_build2 (code, type, a00, a10),
11689 a01);
11692 /* See if we can build a range comparison. */
11693 if (0 != (tem = fold_range_test (code, type, op0, op1)))
11694 return tem;
11696 /* Check for the possibility of merging component references. If our
11697 lhs is another similar operation, try to merge its rhs with our
11698 rhs. Then try to merge our lhs and rhs. */
11699 if (TREE_CODE (arg0) == code
11700 && 0 != (tem = fold_truthop (code, type,
11701 TREE_OPERAND (arg0, 1), arg1)))
11702 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
11704 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
11705 return tem;
11707 return NULL_TREE;
11709 case TRUTH_ORIF_EXPR:
11710 /* Note that the operands of this must be ints
11711 and their values must be 0 or true.
11712 ("true" is a fixed value perhaps depending on the language.) */
11713 /* If first arg is constant true, return it. */
11714 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11715 return fold_convert (type, arg0);
11716 case TRUTH_OR_EXPR:
11717 /* If either arg is constant zero, drop it. */
11718 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
11719 return non_lvalue (fold_convert (type, arg1));
11720 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
11721 /* Preserve sequence points. */
11722 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11723 return non_lvalue (fold_convert (type, arg0));
11724 /* If second arg is constant true, result is true, but we must
11725 evaluate first arg. */
11726 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
11727 return omit_one_operand (type, arg1, arg0);
11728 /* Likewise for first arg, but note this only occurs here for
11729 TRUTH_OR_EXPR. */
11730 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11731 return omit_one_operand (type, arg0, arg1);
11733 /* !X || X is always true. */
11734 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11735 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11736 return omit_one_operand (type, integer_one_node, arg1);
11737 /* X || !X is always true. */
11738 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11739 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11740 return omit_one_operand (type, integer_one_node, arg0);
11742 goto truth_andor;
11744 case TRUTH_XOR_EXPR:
11745 /* If the second arg is constant zero, drop it. */
11746 if (integer_zerop (arg1))
11747 return non_lvalue (fold_convert (type, arg0));
11748 /* If the second arg is constant true, this is a logical inversion. */
11749 if (integer_onep (arg1))
11751 /* Only call invert_truthvalue if operand is a truth value. */
11752 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
11753 tem = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
11754 else
11755 tem = invert_truthvalue (arg0);
11756 return non_lvalue (fold_convert (type, tem));
11758 /* Identical arguments cancel to zero. */
11759 if (operand_equal_p (arg0, arg1, 0))
11760 return omit_one_operand (type, integer_zero_node, arg0);
11762 /* !X ^ X is always true. */
11763 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11764 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11765 return omit_one_operand (type, integer_one_node, arg1);
11767 /* X ^ !X is always true. */
11768 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11769 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11770 return omit_one_operand (type, integer_one_node, arg0);
11772 return NULL_TREE;
11774 case EQ_EXPR:
11775 case NE_EXPR:
11776 tem = fold_comparison (code, type, op0, op1);
11777 if (tem != NULL_TREE)
11778 return tem;
11780 /* bool_var != 0 becomes bool_var. */
11781 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
11782 && code == NE_EXPR)
11783 return non_lvalue (fold_convert (type, arg0));
11785 /* bool_var == 1 becomes bool_var. */
11786 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
11787 && code == EQ_EXPR)
11788 return non_lvalue (fold_convert (type, arg0));
11790 /* bool_var != 1 becomes !bool_var. */
11791 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
11792 && code == NE_EXPR)
11793 return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
11795 /* bool_var == 0 becomes !bool_var. */
11796 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
11797 && code == EQ_EXPR)
11798 return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
11800 /* If this is an equality comparison of the address of two non-weak,
11801 unaliased symbols neither of which are extern (since we do not
11802 have access to attributes for externs), then we know the result. */
11803 if (TREE_CODE (arg0) == ADDR_EXPR
11804 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
11805 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
11806 && ! lookup_attribute ("alias",
11807 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
11808 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
11809 && TREE_CODE (arg1) == ADDR_EXPR
11810 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
11811 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
11812 && ! lookup_attribute ("alias",
11813 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
11814 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
11816 /* We know that we're looking at the address of two
11817 non-weak, unaliased, static _DECL nodes.
11819 It is both wasteful and incorrect to call operand_equal_p
11820 to compare the two ADDR_EXPR nodes. It is wasteful in that
11821 all we need to do is test pointer equality for the arguments
11822 to the two ADDR_EXPR nodes. It is incorrect to use
11823 operand_equal_p as that function is NOT equivalent to a
11824 C equality test. It can in fact return false for two
11825 objects which would test as equal using the C equality
11826 operator. */
11827 bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
11828 return constant_boolean_node (equal
11829 ? code == EQ_EXPR : code != EQ_EXPR,
11830 type);
11833 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
11834 a MINUS_EXPR of a constant, we can convert it into a comparison with
11835 a revised constant as long as no overflow occurs. */
11836 if (TREE_CODE (arg1) == INTEGER_CST
11837 && (TREE_CODE (arg0) == PLUS_EXPR
11838 || TREE_CODE (arg0) == MINUS_EXPR)
11839 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11840 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
11841 ? MINUS_EXPR : PLUS_EXPR,
11842 fold_convert (TREE_TYPE (arg0), arg1),
11843 TREE_OPERAND (arg0, 1), 0))
11844 && !TREE_OVERFLOW (tem))
11845 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
11847 /* Similarly for a NEGATE_EXPR. */
11848 if (TREE_CODE (arg0) == NEGATE_EXPR
11849 && TREE_CODE (arg1) == INTEGER_CST
11850 && 0 != (tem = negate_expr (arg1))
11851 && TREE_CODE (tem) == INTEGER_CST
11852 && !TREE_OVERFLOW (tem))
11853 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
11855 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
11856 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11857 && TREE_CODE (arg1) == INTEGER_CST
11858 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11859 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
11860 fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg0),
11861 fold_convert (TREE_TYPE (arg0), arg1),
11862 TREE_OPERAND (arg0, 1)));
11864 /* Transform comparisons of the form X +- C CMP X. */
11865 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11866 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11867 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11868 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11869 || POINTER_TYPE_P (TREE_TYPE (arg0))))
11871 tree cst = TREE_OPERAND (arg0, 1);
11873 if (code == EQ_EXPR
11874 && !integer_zerop (cst))
11875 return omit_two_operands (type, boolean_false_node,
11876 TREE_OPERAND (arg0, 0), arg1);
11877 else
11878 return omit_two_operands (type, boolean_true_node,
11879 TREE_OPERAND (arg0, 0), arg1);
11882 /* If we have X - Y == 0, we can convert that to X == Y and similarly
11883 for !=. Don't do this for ordered comparisons due to overflow. */
11884 if (TREE_CODE (arg0) == MINUS_EXPR
11885 && integer_zerop (arg1))
11886 return fold_build2 (code, type,
11887 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
11889 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
11890 if (TREE_CODE (arg0) == ABS_EXPR
11891 && (integer_zerop (arg1) || real_zerop (arg1)))
11892 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), arg1);
11894 /* If this is an EQ or NE comparison with zero and ARG0 is
11895 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
11896 two operations, but the latter can be done in one less insn
11897 on machines that have only two-operand insns or on which a
11898 constant cannot be the first operand. */
11899 if (TREE_CODE (arg0) == BIT_AND_EXPR
11900 && integer_zerop (arg1))
11902 tree arg00 = TREE_OPERAND (arg0, 0);
11903 tree arg01 = TREE_OPERAND (arg0, 1);
11904 if (TREE_CODE (arg00) == LSHIFT_EXPR
11905 && integer_onep (TREE_OPERAND (arg00, 0)))
11906 return
11907 fold_build2 (code, type,
11908 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
11909 build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
11910 arg01, TREE_OPERAND (arg00, 1)),
11911 fold_convert (TREE_TYPE (arg0),
11912 integer_one_node)),
11913 arg1);
11914 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
11915 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
11916 return
11917 fold_build2 (code, type,
11918 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
11919 build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
11920 arg00, TREE_OPERAND (arg01, 1)),
11921 fold_convert (TREE_TYPE (arg0),
11922 integer_one_node)),
11923 arg1);
11926 /* If this is an NE or EQ comparison of zero against the result of a
11927 signed MOD operation whose second operand is a power of 2, make
11928 the MOD operation unsigned since it is simpler and equivalent. */
11929 if (integer_zerop (arg1)
11930 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
11931 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
11932 || TREE_CODE (arg0) == CEIL_MOD_EXPR
11933 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
11934 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
11935 && integer_pow2p (TREE_OPERAND (arg0, 1)))
11937 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
11938 tree newmod = fold_build2 (TREE_CODE (arg0), newtype,
11939 fold_convert (newtype,
11940 TREE_OPERAND (arg0, 0)),
11941 fold_convert (newtype,
11942 TREE_OPERAND (arg0, 1)));
11944 return fold_build2 (code, type, newmod,
11945 fold_convert (newtype, arg1));
11948 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
11949 C1 is a valid shift constant, and C2 is a power of two, i.e.
11950 a single bit. */
11951 if (TREE_CODE (arg0) == BIT_AND_EXPR
11952 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
11953 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
11954 == INTEGER_CST
11955 && integer_pow2p (TREE_OPERAND (arg0, 1))
11956 && integer_zerop (arg1))
11958 tree itype = TREE_TYPE (arg0);
11959 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (itype);
11960 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
11962 /* Check for a valid shift count. */
11963 if (TREE_INT_CST_HIGH (arg001) == 0
11964 && TREE_INT_CST_LOW (arg001) < prec)
11966 tree arg01 = TREE_OPERAND (arg0, 1);
11967 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11968 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
11969 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
11970 can be rewritten as (X & (C2 << C1)) != 0. */
11971 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
11973 tem = fold_build2 (LSHIFT_EXPR, itype, arg01, arg001);
11974 tem = fold_build2 (BIT_AND_EXPR, itype, arg000, tem);
11975 return fold_build2 (code, type, tem, arg1);
11977 /* Otherwise, for signed (arithmetic) shifts,
11978 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
11979 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
11980 else if (!TYPE_UNSIGNED (itype))
11981 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
11982 arg000, build_int_cst (itype, 0));
11983 /* Otherwise, of unsigned (logical) shifts,
11984 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
11985 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
11986 else
11987 return omit_one_operand (type,
11988 code == EQ_EXPR ? integer_one_node
11989 : integer_zero_node,
11990 arg000);
11994 /* If this is an NE comparison of zero with an AND of one, remove the
11995 comparison since the AND will give the correct value. */
11996 if (code == NE_EXPR
11997 && integer_zerop (arg1)
11998 && TREE_CODE (arg0) == BIT_AND_EXPR
11999 && integer_onep (TREE_OPERAND (arg0, 1)))
12000 return fold_convert (type, arg0);
12002 /* If we have (A & C) == C where C is a power of 2, convert this into
12003 (A & C) != 0. Similarly for NE_EXPR. */
12004 if (TREE_CODE (arg0) == BIT_AND_EXPR
12005 && integer_pow2p (TREE_OPERAND (arg0, 1))
12006 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12007 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12008 arg0, fold_convert (TREE_TYPE (arg0),
12009 integer_zero_node));
12011 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
12012 bit, then fold the expression into A < 0 or A >= 0. */
12013 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1, type);
12014 if (tem)
12015 return tem;
12017 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
12018 Similarly for NE_EXPR. */
12019 if (TREE_CODE (arg0) == BIT_AND_EXPR
12020 && TREE_CODE (arg1) == INTEGER_CST
12021 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12023 tree notc = fold_build1 (BIT_NOT_EXPR,
12024 TREE_TYPE (TREE_OPERAND (arg0, 1)),
12025 TREE_OPERAND (arg0, 1));
12026 tree dandnotc = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
12027 arg1, notc);
12028 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12029 if (integer_nonzerop (dandnotc))
12030 return omit_one_operand (type, rslt, arg0);
12033 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
12034 Similarly for NE_EXPR. */
12035 if (TREE_CODE (arg0) == BIT_IOR_EXPR
12036 && TREE_CODE (arg1) == INTEGER_CST
12037 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12039 tree notd = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
12040 tree candnotd = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
12041 TREE_OPERAND (arg0, 1), notd);
12042 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12043 if (integer_nonzerop (candnotd))
12044 return omit_one_operand (type, rslt, arg0);
12047 /* If this is a comparison of a field, we may be able to simplify it. */
12048 if ((TREE_CODE (arg0) == COMPONENT_REF
12049 || TREE_CODE (arg0) == BIT_FIELD_REF)
12050 /* Handle the constant case even without -O
12051 to make sure the warnings are given. */
12052 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
12054 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
12055 if (t1)
12056 return t1;
12059 /* Optimize comparisons of strlen vs zero to a compare of the
12060 first character of the string vs zero. To wit,
12061 strlen(ptr) == 0 => *ptr == 0
12062 strlen(ptr) != 0 => *ptr != 0
12063 Other cases should reduce to one of these two (or a constant)
12064 due to the return value of strlen being unsigned. */
12065 if (TREE_CODE (arg0) == CALL_EXPR
12066 && integer_zerop (arg1))
12068 tree fndecl = get_callee_fndecl (arg0);
12070 if (fndecl
12071 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
12072 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
12073 && call_expr_nargs (arg0) == 1
12074 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
12076 tree iref = build_fold_indirect_ref (CALL_EXPR_ARG (arg0, 0));
12077 return fold_build2 (code, type, iref,
12078 build_int_cst (TREE_TYPE (iref), 0));
12082 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
12083 of X. Similarly fold (X >> C) == 0 into X >= 0. */
12084 if (TREE_CODE (arg0) == RSHIFT_EXPR
12085 && integer_zerop (arg1)
12086 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12088 tree arg00 = TREE_OPERAND (arg0, 0);
12089 tree arg01 = TREE_OPERAND (arg0, 1);
12090 tree itype = TREE_TYPE (arg00);
12091 if (TREE_INT_CST_HIGH (arg01) == 0
12092 && TREE_INT_CST_LOW (arg01)
12093 == (unsigned HOST_WIDE_INT) (TYPE_PRECISION (itype) - 1))
12095 if (TYPE_UNSIGNED (itype))
12097 itype = signed_type_for (itype);
12098 arg00 = fold_convert (itype, arg00);
12100 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
12101 type, arg00, build_int_cst (itype, 0));
12105 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
12106 if (integer_zerop (arg1)
12107 && TREE_CODE (arg0) == BIT_XOR_EXPR)
12108 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12109 TREE_OPERAND (arg0, 1));
12111 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
12112 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12113 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12114 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12115 build_int_cst (TREE_TYPE (arg1), 0));
12116 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
12117 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12118 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12119 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
12120 return fold_build2 (code, type, TREE_OPERAND (arg0, 1),
12121 build_int_cst (TREE_TYPE (arg1), 0));
12123 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
12124 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12125 && TREE_CODE (arg1) == INTEGER_CST
12126 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12127 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12128 fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg1),
12129 TREE_OPERAND (arg0, 1), arg1));
12131 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
12132 (X & C) == 0 when C is a single bit. */
12133 if (TREE_CODE (arg0) == BIT_AND_EXPR
12134 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
12135 && integer_zerop (arg1)
12136 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12138 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
12139 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
12140 TREE_OPERAND (arg0, 1));
12141 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
12142 type, tem, arg1);
12145 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
12146 constant C is a power of two, i.e. a single bit. */
12147 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12148 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12149 && integer_zerop (arg1)
12150 && integer_pow2p (TREE_OPERAND (arg0, 1))
12151 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12152 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12154 tree arg00 = TREE_OPERAND (arg0, 0);
12155 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12156 arg00, build_int_cst (TREE_TYPE (arg00), 0));
12159 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12160 when is C is a power of two, i.e. a single bit. */
12161 if (TREE_CODE (arg0) == BIT_AND_EXPR
12162 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
12163 && integer_zerop (arg1)
12164 && integer_pow2p (TREE_OPERAND (arg0, 1))
12165 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12166 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12168 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12169 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg000),
12170 arg000, TREE_OPERAND (arg0, 1));
12171 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12172 tem, build_int_cst (TREE_TYPE (tem), 0));
12175 if (integer_zerop (arg1)
12176 && tree_expr_nonzero_p (arg0))
12178 tree res = constant_boolean_node (code==NE_EXPR, type);
12179 return omit_one_operand (type, res, arg0);
12182 /* Fold -X op -Y as X op Y, where op is eq/ne. */
12183 if (TREE_CODE (arg0) == NEGATE_EXPR
12184 && TREE_CODE (arg1) == NEGATE_EXPR)
12185 return fold_build2 (code, type,
12186 TREE_OPERAND (arg0, 0),
12187 TREE_OPERAND (arg1, 0));
12189 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
12190 if (TREE_CODE (arg0) == BIT_AND_EXPR
12191 && TREE_CODE (arg1) == BIT_AND_EXPR)
12193 tree arg00 = TREE_OPERAND (arg0, 0);
12194 tree arg01 = TREE_OPERAND (arg0, 1);
12195 tree arg10 = TREE_OPERAND (arg1, 0);
12196 tree arg11 = TREE_OPERAND (arg1, 1);
12197 tree itype = TREE_TYPE (arg0);
12199 if (operand_equal_p (arg01, arg11, 0))
12200 return fold_build2 (code, type,
12201 fold_build2 (BIT_AND_EXPR, itype,
12202 fold_build2 (BIT_XOR_EXPR, itype,
12203 arg00, arg10),
12204 arg01),
12205 build_int_cst (itype, 0));
12207 if (operand_equal_p (arg01, arg10, 0))
12208 return fold_build2 (code, type,
12209 fold_build2 (BIT_AND_EXPR, itype,
12210 fold_build2 (BIT_XOR_EXPR, itype,
12211 arg00, arg11),
12212 arg01),
12213 build_int_cst (itype, 0));
12215 if (operand_equal_p (arg00, arg11, 0))
12216 return fold_build2 (code, type,
12217 fold_build2 (BIT_AND_EXPR, itype,
12218 fold_build2 (BIT_XOR_EXPR, itype,
12219 arg01, arg10),
12220 arg00),
12221 build_int_cst (itype, 0));
12223 if (operand_equal_p (arg00, arg10, 0))
12224 return fold_build2 (code, type,
12225 fold_build2 (BIT_AND_EXPR, itype,
12226 fold_build2 (BIT_XOR_EXPR, itype,
12227 arg01, arg11),
12228 arg00),
12229 build_int_cst (itype, 0));
12232 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12233 && TREE_CODE (arg1) == BIT_XOR_EXPR)
12235 tree arg00 = TREE_OPERAND (arg0, 0);
12236 tree arg01 = TREE_OPERAND (arg0, 1);
12237 tree arg10 = TREE_OPERAND (arg1, 0);
12238 tree arg11 = TREE_OPERAND (arg1, 1);
12239 tree itype = TREE_TYPE (arg0);
12241 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12242 operand_equal_p guarantees no side-effects so we don't need
12243 to use omit_one_operand on Z. */
12244 if (operand_equal_p (arg01, arg11, 0))
12245 return fold_build2 (code, type, arg00, arg10);
12246 if (operand_equal_p (arg01, arg10, 0))
12247 return fold_build2 (code, type, arg00, arg11);
12248 if (operand_equal_p (arg00, arg11, 0))
12249 return fold_build2 (code, type, arg01, arg10);
12250 if (operand_equal_p (arg00, arg10, 0))
12251 return fold_build2 (code, type, arg01, arg11);
12253 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12254 if (TREE_CODE (arg01) == INTEGER_CST
12255 && TREE_CODE (arg11) == INTEGER_CST)
12256 return fold_build2 (code, type,
12257 fold_build2 (BIT_XOR_EXPR, itype, arg00,
12258 fold_build2 (BIT_XOR_EXPR, itype,
12259 arg01, arg11)),
12260 arg10);
12263 /* Attempt to simplify equality/inequality comparisons of complex
12264 values. Only lower the comparison if the result is known or
12265 can be simplified to a single scalar comparison. */
12266 if ((TREE_CODE (arg0) == COMPLEX_EXPR
12267 || TREE_CODE (arg0) == COMPLEX_CST)
12268 && (TREE_CODE (arg1) == COMPLEX_EXPR
12269 || TREE_CODE (arg1) == COMPLEX_CST))
12271 tree real0, imag0, real1, imag1;
12272 tree rcond, icond;
12274 if (TREE_CODE (arg0) == COMPLEX_EXPR)
12276 real0 = TREE_OPERAND (arg0, 0);
12277 imag0 = TREE_OPERAND (arg0, 1);
12279 else
12281 real0 = TREE_REALPART (arg0);
12282 imag0 = TREE_IMAGPART (arg0);
12285 if (TREE_CODE (arg1) == COMPLEX_EXPR)
12287 real1 = TREE_OPERAND (arg1, 0);
12288 imag1 = TREE_OPERAND (arg1, 1);
12290 else
12292 real1 = TREE_REALPART (arg1);
12293 imag1 = TREE_IMAGPART (arg1);
12296 rcond = fold_binary (code, type, real0, real1);
12297 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
12299 if (integer_zerop (rcond))
12301 if (code == EQ_EXPR)
12302 return omit_two_operands (type, boolean_false_node,
12303 imag0, imag1);
12304 return fold_build2 (NE_EXPR, type, imag0, imag1);
12306 else
12308 if (code == NE_EXPR)
12309 return omit_two_operands (type, boolean_true_node,
12310 imag0, imag1);
12311 return fold_build2 (EQ_EXPR, type, imag0, imag1);
12315 icond = fold_binary (code, type, imag0, imag1);
12316 if (icond && TREE_CODE (icond) == INTEGER_CST)
12318 if (integer_zerop (icond))
12320 if (code == EQ_EXPR)
12321 return omit_two_operands (type, boolean_false_node,
12322 real0, real1);
12323 return fold_build2 (NE_EXPR, type, real0, real1);
12325 else
12327 if (code == NE_EXPR)
12328 return omit_two_operands (type, boolean_true_node,
12329 real0, real1);
12330 return fold_build2 (EQ_EXPR, type, real0, real1);
12335 return NULL_TREE;
12337 case LT_EXPR:
12338 case GT_EXPR:
12339 case LE_EXPR:
12340 case GE_EXPR:
12341 tem = fold_comparison (code, type, op0, op1);
12342 if (tem != NULL_TREE)
12343 return tem;
12345 /* Transform comparisons of the form X +- C CMP X. */
12346 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
12347 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12348 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
12349 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
12350 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12351 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
12353 tree arg01 = TREE_OPERAND (arg0, 1);
12354 enum tree_code code0 = TREE_CODE (arg0);
12355 int is_positive;
12357 if (TREE_CODE (arg01) == REAL_CST)
12358 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
12359 else
12360 is_positive = tree_int_cst_sgn (arg01);
12362 /* (X - c) > X becomes false. */
12363 if (code == GT_EXPR
12364 && ((code0 == MINUS_EXPR && is_positive >= 0)
12365 || (code0 == PLUS_EXPR && is_positive <= 0)))
12367 if (TREE_CODE (arg01) == INTEGER_CST
12368 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12369 fold_overflow_warning (("assuming signed overflow does not "
12370 "occur when assuming that (X - c) > X "
12371 "is always false"),
12372 WARN_STRICT_OVERFLOW_ALL);
12373 return constant_boolean_node (0, type);
12376 /* Likewise (X + c) < X becomes false. */
12377 if (code == LT_EXPR
12378 && ((code0 == PLUS_EXPR && is_positive >= 0)
12379 || (code0 == MINUS_EXPR && is_positive <= 0)))
12381 if (TREE_CODE (arg01) == INTEGER_CST
12382 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12383 fold_overflow_warning (("assuming signed overflow does not "
12384 "occur when assuming that "
12385 "(X + c) < X is always false"),
12386 WARN_STRICT_OVERFLOW_ALL);
12387 return constant_boolean_node (0, type);
12390 /* Convert (X - c) <= X to true. */
12391 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12392 && code == LE_EXPR
12393 && ((code0 == MINUS_EXPR && is_positive >= 0)
12394 || (code0 == PLUS_EXPR && is_positive <= 0)))
12396 if (TREE_CODE (arg01) == INTEGER_CST
12397 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12398 fold_overflow_warning (("assuming signed overflow does not "
12399 "occur when assuming that "
12400 "(X - c) <= X is always true"),
12401 WARN_STRICT_OVERFLOW_ALL);
12402 return constant_boolean_node (1, type);
12405 /* Convert (X + c) >= X to true. */
12406 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12407 && code == GE_EXPR
12408 && ((code0 == PLUS_EXPR && is_positive >= 0)
12409 || (code0 == MINUS_EXPR && is_positive <= 0)))
12411 if (TREE_CODE (arg01) == INTEGER_CST
12412 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12413 fold_overflow_warning (("assuming signed overflow does not "
12414 "occur when assuming that "
12415 "(X + c) >= X is always true"),
12416 WARN_STRICT_OVERFLOW_ALL);
12417 return constant_boolean_node (1, type);
12420 if (TREE_CODE (arg01) == INTEGER_CST)
12422 /* Convert X + c > X and X - c < X to true for integers. */
12423 if (code == GT_EXPR
12424 && ((code0 == PLUS_EXPR && is_positive > 0)
12425 || (code0 == MINUS_EXPR && is_positive < 0)))
12427 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12428 fold_overflow_warning (("assuming signed overflow does "
12429 "not occur when assuming that "
12430 "(X + c) > X is always true"),
12431 WARN_STRICT_OVERFLOW_ALL);
12432 return constant_boolean_node (1, type);
12435 if (code == LT_EXPR
12436 && ((code0 == MINUS_EXPR && is_positive > 0)
12437 || (code0 == PLUS_EXPR && is_positive < 0)))
12439 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12440 fold_overflow_warning (("assuming signed overflow does "
12441 "not occur when assuming that "
12442 "(X - c) < X is always true"),
12443 WARN_STRICT_OVERFLOW_ALL);
12444 return constant_boolean_node (1, type);
12447 /* Convert X + c <= X and X - c >= X to false for integers. */
12448 if (code == LE_EXPR
12449 && ((code0 == PLUS_EXPR && is_positive > 0)
12450 || (code0 == MINUS_EXPR && is_positive < 0)))
12452 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12453 fold_overflow_warning (("assuming signed overflow does "
12454 "not occur when assuming that "
12455 "(X + c) <= X is always false"),
12456 WARN_STRICT_OVERFLOW_ALL);
12457 return constant_boolean_node (0, type);
12460 if (code == GE_EXPR
12461 && ((code0 == MINUS_EXPR && is_positive > 0)
12462 || (code0 == PLUS_EXPR && is_positive < 0)))
12464 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12465 fold_overflow_warning (("assuming signed overflow does "
12466 "not occur when assuming that "
12467 "(X - c) >= X is always false"),
12468 WARN_STRICT_OVERFLOW_ALL);
12469 return constant_boolean_node (0, type);
12474 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
12475 This transformation affects the cases which are handled in later
12476 optimizations involving comparisons with non-negative constants. */
12477 if (TREE_CODE (arg1) == INTEGER_CST
12478 && TREE_CODE (arg0) != INTEGER_CST
12479 && tree_int_cst_sgn (arg1) > 0)
12481 if (code == GE_EXPR)
12483 arg1 = const_binop (MINUS_EXPR, arg1,
12484 build_int_cst (TREE_TYPE (arg1), 1), 0);
12485 return fold_build2 (GT_EXPR, type, arg0,
12486 fold_convert (TREE_TYPE (arg0), arg1));
12488 if (code == LT_EXPR)
12490 arg1 = const_binop (MINUS_EXPR, arg1,
12491 build_int_cst (TREE_TYPE (arg1), 1), 0);
12492 return fold_build2 (LE_EXPR, type, arg0,
12493 fold_convert (TREE_TYPE (arg0), arg1));
12497 /* Comparisons with the highest or lowest possible integer of
12498 the specified precision will have known values. */
12500 tree arg1_type = TREE_TYPE (arg1);
12501 unsigned int width = TYPE_PRECISION (arg1_type);
12503 if (TREE_CODE (arg1) == INTEGER_CST
12504 && !TREE_OVERFLOW (arg1)
12505 && width <= 2 * HOST_BITS_PER_WIDE_INT
12506 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
12508 HOST_WIDE_INT signed_max_hi;
12509 unsigned HOST_WIDE_INT signed_max_lo;
12510 unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
12512 if (width <= HOST_BITS_PER_WIDE_INT)
12514 signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
12515 - 1;
12516 signed_max_hi = 0;
12517 max_hi = 0;
12519 if (TYPE_UNSIGNED (arg1_type))
12521 max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
12522 min_lo = 0;
12523 min_hi = 0;
12525 else
12527 max_lo = signed_max_lo;
12528 min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
12529 min_hi = -1;
12532 else
12534 width -= HOST_BITS_PER_WIDE_INT;
12535 signed_max_lo = -1;
12536 signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
12537 - 1;
12538 max_lo = -1;
12539 min_lo = 0;
12541 if (TYPE_UNSIGNED (arg1_type))
12543 max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
12544 min_hi = 0;
12546 else
12548 max_hi = signed_max_hi;
12549 min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
12553 if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
12554 && TREE_INT_CST_LOW (arg1) == max_lo)
12555 switch (code)
12557 case GT_EXPR:
12558 return omit_one_operand (type, integer_zero_node, arg0);
12560 case GE_EXPR:
12561 return fold_build2 (EQ_EXPR, type, op0, op1);
12563 case LE_EXPR:
12564 return omit_one_operand (type, integer_one_node, arg0);
12566 case LT_EXPR:
12567 return fold_build2 (NE_EXPR, type, op0, op1);
12569 /* The GE_EXPR and LT_EXPR cases above are not normally
12570 reached because of previous transformations. */
12572 default:
12573 break;
12575 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12576 == max_hi
12577 && TREE_INT_CST_LOW (arg1) == max_lo - 1)
12578 switch (code)
12580 case GT_EXPR:
12581 arg1 = const_binop (PLUS_EXPR, arg1,
12582 build_int_cst (TREE_TYPE (arg1), 1), 0);
12583 return fold_build2 (EQ_EXPR, type,
12584 fold_convert (TREE_TYPE (arg1), arg0),
12585 arg1);
12586 case LE_EXPR:
12587 arg1 = const_binop (PLUS_EXPR, arg1,
12588 build_int_cst (TREE_TYPE (arg1), 1), 0);
12589 return fold_build2 (NE_EXPR, type,
12590 fold_convert (TREE_TYPE (arg1), arg0),
12591 arg1);
12592 default:
12593 break;
12595 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12596 == min_hi
12597 && TREE_INT_CST_LOW (arg1) == min_lo)
12598 switch (code)
12600 case LT_EXPR:
12601 return omit_one_operand (type, integer_zero_node, arg0);
12603 case LE_EXPR:
12604 return fold_build2 (EQ_EXPR, type, op0, op1);
12606 case GE_EXPR:
12607 return omit_one_operand (type, integer_one_node, arg0);
12609 case GT_EXPR:
12610 return fold_build2 (NE_EXPR, type, op0, op1);
12612 default:
12613 break;
12615 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12616 == min_hi
12617 && TREE_INT_CST_LOW (arg1) == min_lo + 1)
12618 switch (code)
12620 case GE_EXPR:
12621 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
12622 return fold_build2 (NE_EXPR, type,
12623 fold_convert (TREE_TYPE (arg1), arg0),
12624 arg1);
12625 case LT_EXPR:
12626 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
12627 return fold_build2 (EQ_EXPR, type,
12628 fold_convert (TREE_TYPE (arg1), arg0),
12629 arg1);
12630 default:
12631 break;
12634 else if (TREE_INT_CST_HIGH (arg1) == signed_max_hi
12635 && TREE_INT_CST_LOW (arg1) == signed_max_lo
12636 && TYPE_UNSIGNED (arg1_type)
12637 /* We will flip the signedness of the comparison operator
12638 associated with the mode of arg1, so the sign bit is
12639 specified by this mode. Check that arg1 is the signed
12640 max associated with this sign bit. */
12641 && width == GET_MODE_BITSIZE (TYPE_MODE (arg1_type))
12642 /* signed_type does not work on pointer types. */
12643 && INTEGRAL_TYPE_P (arg1_type))
12645 /* The following case also applies to X < signed_max+1
12646 and X >= signed_max+1 because previous transformations. */
12647 if (code == LE_EXPR || code == GT_EXPR)
12649 tree st;
12650 st = signed_type_for (TREE_TYPE (arg1));
12651 return fold_build2 (code == LE_EXPR ? GE_EXPR : LT_EXPR,
12652 type, fold_convert (st, arg0),
12653 build_int_cst (st, 0));
12659 /* If we are comparing an ABS_EXPR with a constant, we can
12660 convert all the cases into explicit comparisons, but they may
12661 well not be faster than doing the ABS and one comparison.
12662 But ABS (X) <= C is a range comparison, which becomes a subtraction
12663 and a comparison, and is probably faster. */
12664 if (code == LE_EXPR
12665 && TREE_CODE (arg1) == INTEGER_CST
12666 && TREE_CODE (arg0) == ABS_EXPR
12667 && ! TREE_SIDE_EFFECTS (arg0)
12668 && (0 != (tem = negate_expr (arg1)))
12669 && TREE_CODE (tem) == INTEGER_CST
12670 && !TREE_OVERFLOW (tem))
12671 return fold_build2 (TRUTH_ANDIF_EXPR, type,
12672 build2 (GE_EXPR, type,
12673 TREE_OPERAND (arg0, 0), tem),
12674 build2 (LE_EXPR, type,
12675 TREE_OPERAND (arg0, 0), arg1));
12677 /* Convert ABS_EXPR<x> >= 0 to true. */
12678 strict_overflow_p = false;
12679 if (code == GE_EXPR
12680 && (integer_zerop (arg1)
12681 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
12682 && real_zerop (arg1)))
12683 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12685 if (strict_overflow_p)
12686 fold_overflow_warning (("assuming signed overflow does not occur "
12687 "when simplifying comparison of "
12688 "absolute value and zero"),
12689 WARN_STRICT_OVERFLOW_CONDITIONAL);
12690 return omit_one_operand (type, integer_one_node, arg0);
12693 /* Convert ABS_EXPR<x> < 0 to false. */
12694 strict_overflow_p = false;
12695 if (code == LT_EXPR
12696 && (integer_zerop (arg1) || real_zerop (arg1))
12697 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12699 if (strict_overflow_p)
12700 fold_overflow_warning (("assuming signed overflow does not occur "
12701 "when simplifying comparison of "
12702 "absolute value and zero"),
12703 WARN_STRICT_OVERFLOW_CONDITIONAL);
12704 return omit_one_operand (type, integer_zero_node, arg0);
12707 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
12708 and similarly for >= into !=. */
12709 if ((code == LT_EXPR || code == GE_EXPR)
12710 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12711 && TREE_CODE (arg1) == LSHIFT_EXPR
12712 && integer_onep (TREE_OPERAND (arg1, 0)))
12713 return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12714 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12715 TREE_OPERAND (arg1, 1)),
12716 build_int_cst (TREE_TYPE (arg0), 0));
12718 if ((code == LT_EXPR || code == GE_EXPR)
12719 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12720 && (TREE_CODE (arg1) == NOP_EXPR
12721 || TREE_CODE (arg1) == CONVERT_EXPR)
12722 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
12723 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
12724 return
12725 build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12726 fold_convert (TREE_TYPE (arg0),
12727 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12728 TREE_OPERAND (TREE_OPERAND (arg1, 0),
12729 1))),
12730 build_int_cst (TREE_TYPE (arg0), 0));
12732 return NULL_TREE;
12734 case UNORDERED_EXPR:
12735 case ORDERED_EXPR:
12736 case UNLT_EXPR:
12737 case UNLE_EXPR:
12738 case UNGT_EXPR:
12739 case UNGE_EXPR:
12740 case UNEQ_EXPR:
12741 case LTGT_EXPR:
12742 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
12744 t1 = fold_relational_const (code, type, arg0, arg1);
12745 if (t1 != NULL_TREE)
12746 return t1;
12749 /* If the first operand is NaN, the result is constant. */
12750 if (TREE_CODE (arg0) == REAL_CST
12751 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
12752 && (code != LTGT_EXPR || ! flag_trapping_math))
12754 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
12755 ? integer_zero_node
12756 : integer_one_node;
12757 return omit_one_operand (type, t1, arg1);
12760 /* If the second operand is NaN, the result is constant. */
12761 if (TREE_CODE (arg1) == REAL_CST
12762 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
12763 && (code != LTGT_EXPR || ! flag_trapping_math))
12765 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
12766 ? integer_zero_node
12767 : integer_one_node;
12768 return omit_one_operand (type, t1, arg0);
12771 /* Simplify unordered comparison of something with itself. */
12772 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
12773 && operand_equal_p (arg0, arg1, 0))
12774 return constant_boolean_node (1, type);
12776 if (code == LTGT_EXPR
12777 && !flag_trapping_math
12778 && operand_equal_p (arg0, arg1, 0))
12779 return constant_boolean_node (0, type);
12781 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
12783 tree targ0 = strip_float_extensions (arg0);
12784 tree targ1 = strip_float_extensions (arg1);
12785 tree newtype = TREE_TYPE (targ0);
12787 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
12788 newtype = TREE_TYPE (targ1);
12790 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
12791 return fold_build2 (code, type, fold_convert (newtype, targ0),
12792 fold_convert (newtype, targ1));
12795 return NULL_TREE;
12797 case COMPOUND_EXPR:
12798 /* When pedantic, a compound expression can be neither an lvalue
12799 nor an integer constant expression. */
12800 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
12801 return NULL_TREE;
12802 /* Don't let (0, 0) be null pointer constant. */
12803 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
12804 : fold_convert (type, arg1);
12805 return pedantic_non_lvalue (tem);
12807 case COMPLEX_EXPR:
12808 if ((TREE_CODE (arg0) == REAL_CST
12809 && TREE_CODE (arg1) == REAL_CST)
12810 || (TREE_CODE (arg0) == INTEGER_CST
12811 && TREE_CODE (arg1) == INTEGER_CST))
12812 return build_complex (type, arg0, arg1);
12813 return NULL_TREE;
12815 case ASSERT_EXPR:
12816 /* An ASSERT_EXPR should never be passed to fold_binary. */
12817 gcc_unreachable ();
12819 default:
12820 return NULL_TREE;
12821 } /* switch (code) */
12824 /* Callback for walk_tree, looking for LABEL_EXPR.
12825 Returns tree TP if it is LABEL_EXPR. Otherwise it returns NULL_TREE.
12826 Do not check the sub-tree of GOTO_EXPR. */
12828 static tree
12829 contains_label_1 (tree *tp,
12830 int *walk_subtrees,
12831 void *data ATTRIBUTE_UNUSED)
12833 switch (TREE_CODE (*tp))
12835 case LABEL_EXPR:
12836 return *tp;
12837 case GOTO_EXPR:
12838 *walk_subtrees = 0;
12839 /* no break */
12840 default:
12841 return NULL_TREE;
12845 /* Checks whether the sub-tree ST contains a label LABEL_EXPR which is
12846 accessible from outside the sub-tree. Returns NULL_TREE if no
12847 addressable label is found. */
12849 static bool
12850 contains_label_p (tree st)
12852 return (walk_tree (&st, contains_label_1 , NULL, NULL) != NULL_TREE);
12855 /* Fold a ternary expression of code CODE and type TYPE with operands
12856 OP0, OP1, and OP2. Return the folded expression if folding is
12857 successful. Otherwise, return NULL_TREE. */
12859 tree
12860 fold_ternary (enum tree_code code, tree type, tree op0, tree op1, tree op2)
12862 tree tem;
12863 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
12864 enum tree_code_class kind = TREE_CODE_CLASS (code);
12866 gcc_assert (IS_EXPR_CODE_CLASS (kind)
12867 && TREE_CODE_LENGTH (code) == 3);
12869 /* Strip any conversions that don't change the mode. This is safe
12870 for every expression, except for a comparison expression because
12871 its signedness is derived from its operands. So, in the latter
12872 case, only strip conversions that don't change the signedness.
12874 Note that this is done as an internal manipulation within the
12875 constant folder, in order to find the simplest representation of
12876 the arguments so that their form can be studied. In any cases,
12877 the appropriate type conversions should be put back in the tree
12878 that will get out of the constant folder. */
12879 if (op0)
12881 arg0 = op0;
12882 STRIP_NOPS (arg0);
12885 if (op1)
12887 arg1 = op1;
12888 STRIP_NOPS (arg1);
12891 switch (code)
12893 case COMPONENT_REF:
12894 if (TREE_CODE (arg0) == CONSTRUCTOR
12895 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
12897 unsigned HOST_WIDE_INT idx;
12898 tree field, value;
12899 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
12900 if (field == arg1)
12901 return value;
12903 return NULL_TREE;
12905 case COND_EXPR:
12906 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
12907 so all simple results must be passed through pedantic_non_lvalue. */
12908 if (TREE_CODE (arg0) == INTEGER_CST)
12910 tree unused_op = integer_zerop (arg0) ? op1 : op2;
12911 tem = integer_zerop (arg0) ? op2 : op1;
12912 /* Only optimize constant conditions when the selected branch
12913 has the same type as the COND_EXPR. This avoids optimizing
12914 away "c ? x : throw", where the throw has a void type.
12915 Avoid throwing away that operand which contains label. */
12916 if ((!TREE_SIDE_EFFECTS (unused_op)
12917 || !contains_label_p (unused_op))
12918 && (! VOID_TYPE_P (TREE_TYPE (tem))
12919 || VOID_TYPE_P (type)))
12920 return pedantic_non_lvalue (tem);
12921 return NULL_TREE;
12923 if (operand_equal_p (arg1, op2, 0))
12924 return pedantic_omit_one_operand (type, arg1, arg0);
12926 /* If we have A op B ? A : C, we may be able to convert this to a
12927 simpler expression, depending on the operation and the values
12928 of B and C. Signed zeros prevent all of these transformations,
12929 for reasons given above each one.
12931 Also try swapping the arguments and inverting the conditional. */
12932 if (COMPARISON_CLASS_P (arg0)
12933 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
12934 arg1, TREE_OPERAND (arg0, 1))
12935 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
12937 tem = fold_cond_expr_with_comparison (type, arg0, op1, op2);
12938 if (tem)
12939 return tem;
12942 if (COMPARISON_CLASS_P (arg0)
12943 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
12944 op2,
12945 TREE_OPERAND (arg0, 1))
12946 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
12948 tem = fold_truth_not_expr (arg0);
12949 if (tem && COMPARISON_CLASS_P (tem))
12951 tem = fold_cond_expr_with_comparison (type, tem, op2, op1);
12952 if (tem)
12953 return tem;
12957 /* If the second operand is simpler than the third, swap them
12958 since that produces better jump optimization results. */
12959 if (truth_value_p (TREE_CODE (arg0))
12960 && tree_swap_operands_p (op1, op2, false))
12962 /* See if this can be inverted. If it can't, possibly because
12963 it was a floating-point inequality comparison, don't do
12964 anything. */
12965 tem = fold_truth_not_expr (arg0);
12966 if (tem)
12967 return fold_build3 (code, type, tem, op2, op1);
12970 /* Convert A ? 1 : 0 to simply A. */
12971 if (integer_onep (op1)
12972 && integer_zerop (op2)
12973 /* If we try to convert OP0 to our type, the
12974 call to fold will try to move the conversion inside
12975 a COND, which will recurse. In that case, the COND_EXPR
12976 is probably the best choice, so leave it alone. */
12977 && type == TREE_TYPE (arg0))
12978 return pedantic_non_lvalue (arg0);
12980 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
12981 over COND_EXPR in cases such as floating point comparisons. */
12982 if (integer_zerop (op1)
12983 && integer_onep (op2)
12984 && truth_value_p (TREE_CODE (arg0)))
12985 return pedantic_non_lvalue (fold_convert (type,
12986 invert_truthvalue (arg0)));
12988 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
12989 if (TREE_CODE (arg0) == LT_EXPR
12990 && integer_zerop (TREE_OPERAND (arg0, 1))
12991 && integer_zerop (op2)
12992 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
12994 /* sign_bit_p only checks ARG1 bits within A's precision.
12995 If <sign bit of A> has wider type than A, bits outside
12996 of A's precision in <sign bit of A> need to be checked.
12997 If they are all 0, this optimization needs to be done
12998 in unsigned A's type, if they are all 1 in signed A's type,
12999 otherwise this can't be done. */
13000 if (TYPE_PRECISION (TREE_TYPE (tem))
13001 < TYPE_PRECISION (TREE_TYPE (arg1))
13002 && TYPE_PRECISION (TREE_TYPE (tem))
13003 < TYPE_PRECISION (type))
13005 unsigned HOST_WIDE_INT mask_lo;
13006 HOST_WIDE_INT mask_hi;
13007 int inner_width, outer_width;
13008 tree tem_type;
13010 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
13011 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
13012 if (outer_width > TYPE_PRECISION (type))
13013 outer_width = TYPE_PRECISION (type);
13015 if (outer_width > HOST_BITS_PER_WIDE_INT)
13017 mask_hi = ((unsigned HOST_WIDE_INT) -1
13018 >> (2 * HOST_BITS_PER_WIDE_INT - outer_width));
13019 mask_lo = -1;
13021 else
13023 mask_hi = 0;
13024 mask_lo = ((unsigned HOST_WIDE_INT) -1
13025 >> (HOST_BITS_PER_WIDE_INT - outer_width));
13027 if (inner_width > HOST_BITS_PER_WIDE_INT)
13029 mask_hi &= ~((unsigned HOST_WIDE_INT) -1
13030 >> (HOST_BITS_PER_WIDE_INT - inner_width));
13031 mask_lo = 0;
13033 else
13034 mask_lo &= ~((unsigned HOST_WIDE_INT) -1
13035 >> (HOST_BITS_PER_WIDE_INT - inner_width));
13037 if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == mask_hi
13038 && (TREE_INT_CST_LOW (arg1) & mask_lo) == mask_lo)
13040 tem_type = signed_type_for (TREE_TYPE (tem));
13041 tem = fold_convert (tem_type, tem);
13043 else if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == 0
13044 && (TREE_INT_CST_LOW (arg1) & mask_lo) == 0)
13046 tem_type = unsigned_type_for (TREE_TYPE (tem));
13047 tem = fold_convert (tem_type, tem);
13049 else
13050 tem = NULL;
13053 if (tem)
13054 return fold_convert (type,
13055 fold_build2 (BIT_AND_EXPR,
13056 TREE_TYPE (tem), tem,
13057 fold_convert (TREE_TYPE (tem),
13058 arg1)));
13061 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
13062 already handled above. */
13063 if (TREE_CODE (arg0) == BIT_AND_EXPR
13064 && integer_onep (TREE_OPERAND (arg0, 1))
13065 && integer_zerop (op2)
13066 && integer_pow2p (arg1))
13068 tree tem = TREE_OPERAND (arg0, 0);
13069 STRIP_NOPS (tem);
13070 if (TREE_CODE (tem) == RSHIFT_EXPR
13071 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
13072 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
13073 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
13074 return fold_build2 (BIT_AND_EXPR, type,
13075 TREE_OPERAND (tem, 0), arg1);
13078 /* A & N ? N : 0 is simply A & N if N is a power of two. This
13079 is probably obsolete because the first operand should be a
13080 truth value (that's why we have the two cases above), but let's
13081 leave it in until we can confirm this for all front-ends. */
13082 if (integer_zerop (op2)
13083 && TREE_CODE (arg0) == NE_EXPR
13084 && integer_zerop (TREE_OPERAND (arg0, 1))
13085 && integer_pow2p (arg1)
13086 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
13087 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
13088 arg1, OEP_ONLY_CONST))
13089 return pedantic_non_lvalue (fold_convert (type,
13090 TREE_OPERAND (arg0, 0)));
13092 /* Convert A ? B : 0 into A && B if A and B are truth values. */
13093 if (integer_zerop (op2)
13094 && truth_value_p (TREE_CODE (arg0))
13095 && truth_value_p (TREE_CODE (arg1)))
13096 return fold_build2 (TRUTH_ANDIF_EXPR, type,
13097 fold_convert (type, arg0),
13098 arg1);
13100 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
13101 if (integer_onep (op2)
13102 && truth_value_p (TREE_CODE (arg0))
13103 && truth_value_p (TREE_CODE (arg1)))
13105 /* Only perform transformation if ARG0 is easily inverted. */
13106 tem = fold_truth_not_expr (arg0);
13107 if (tem)
13108 return fold_build2 (TRUTH_ORIF_EXPR, type,
13109 fold_convert (type, tem),
13110 arg1);
13113 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
13114 if (integer_zerop (arg1)
13115 && truth_value_p (TREE_CODE (arg0))
13116 && truth_value_p (TREE_CODE (op2)))
13118 /* Only perform transformation if ARG0 is easily inverted. */
13119 tem = fold_truth_not_expr (arg0);
13120 if (tem)
13121 return fold_build2 (TRUTH_ANDIF_EXPR, type,
13122 fold_convert (type, tem),
13123 op2);
13126 /* Convert A ? 1 : B into A || B if A and B are truth values. */
13127 if (integer_onep (arg1)
13128 && truth_value_p (TREE_CODE (arg0))
13129 && truth_value_p (TREE_CODE (op2)))
13130 return fold_build2 (TRUTH_ORIF_EXPR, type,
13131 fold_convert (type, arg0),
13132 op2);
13134 return NULL_TREE;
13136 case CALL_EXPR:
13137 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
13138 of fold_ternary on them. */
13139 gcc_unreachable ();
13141 case BIT_FIELD_REF:
13142 if ((TREE_CODE (arg0) == VECTOR_CST
13143 || (TREE_CODE (arg0) == CONSTRUCTOR && TREE_CONSTANT (arg0)))
13144 && type == TREE_TYPE (TREE_TYPE (arg0))
13145 && host_integerp (arg1, 1)
13146 && host_integerp (op2, 1))
13148 unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
13149 unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
13151 if (width != 0
13152 && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
13153 && (idx % width) == 0
13154 && (idx = idx / width)
13155 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
13157 tree elements = NULL_TREE;
13159 if (TREE_CODE (arg0) == VECTOR_CST)
13160 elements = TREE_VECTOR_CST_ELTS (arg0);
13161 else
13163 unsigned HOST_WIDE_INT idx;
13164 tree value;
13166 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (arg0), idx, value)
13167 elements = tree_cons (NULL_TREE, value, elements);
13169 while (idx-- > 0 && elements)
13170 elements = TREE_CHAIN (elements);
13171 if (elements)
13172 return TREE_VALUE (elements);
13173 else
13174 return fold_convert (type, integer_zero_node);
13177 return NULL_TREE;
13179 default:
13180 return NULL_TREE;
13181 } /* switch (code) */
13184 /* Perform constant folding and related simplification of EXPR.
13185 The related simplifications include x*1 => x, x*0 => 0, etc.,
13186 and application of the associative law.
13187 NOP_EXPR conversions may be removed freely (as long as we
13188 are careful not to change the type of the overall expression).
13189 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13190 but we can constant-fold them if they have constant operands. */
13192 #ifdef ENABLE_FOLD_CHECKING
13193 # define fold(x) fold_1 (x)
13194 static tree fold_1 (tree);
13195 static
13196 #endif
13197 tree
13198 fold (tree expr)
13200 const tree t = expr;
13201 enum tree_code code = TREE_CODE (t);
13202 enum tree_code_class kind = TREE_CODE_CLASS (code);
13203 tree tem;
13205 /* Return right away if a constant. */
13206 if (kind == tcc_constant)
13207 return t;
13209 /* CALL_EXPR-like objects with variable numbers of operands are
13210 treated specially. */
13211 if (kind == tcc_vl_exp)
13213 if (code == CALL_EXPR)
13215 tem = fold_call_expr (expr, false);
13216 return tem ? tem : expr;
13218 return expr;
13221 if (IS_EXPR_CODE_CLASS (kind)
13222 || IS_GIMPLE_STMT_CODE_CLASS (kind))
13224 tree type = TREE_TYPE (t);
13225 tree op0, op1, op2;
13227 switch (TREE_CODE_LENGTH (code))
13229 case 1:
13230 op0 = TREE_OPERAND (t, 0);
13231 tem = fold_unary (code, type, op0);
13232 return tem ? tem : expr;
13233 case 2:
13234 op0 = TREE_OPERAND (t, 0);
13235 op1 = TREE_OPERAND (t, 1);
13236 tem = fold_binary (code, type, op0, op1);
13237 return tem ? tem : expr;
13238 case 3:
13239 op0 = TREE_OPERAND (t, 0);
13240 op1 = TREE_OPERAND (t, 1);
13241 op2 = TREE_OPERAND (t, 2);
13242 tem = fold_ternary (code, type, op0, op1, op2);
13243 return tem ? tem : expr;
13244 default:
13245 break;
13249 switch (code)
13251 case CONST_DECL:
13252 return fold (DECL_INITIAL (t));
13254 default:
13255 return t;
13256 } /* switch (code) */
13259 #ifdef ENABLE_FOLD_CHECKING
13260 #undef fold
13262 static void fold_checksum_tree (const_tree, struct md5_ctx *, htab_t);
13263 static void fold_check_failed (const_tree, const_tree);
13264 void print_fold_checksum (const_tree);
13266 /* When --enable-checking=fold, compute a digest of expr before
13267 and after actual fold call to see if fold did not accidentally
13268 change original expr. */
13270 tree
13271 fold (tree expr)
13273 tree ret;
13274 struct md5_ctx ctx;
13275 unsigned char checksum_before[16], checksum_after[16];
13276 htab_t ht;
13278 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13279 md5_init_ctx (&ctx);
13280 fold_checksum_tree (expr, &ctx, ht);
13281 md5_finish_ctx (&ctx, checksum_before);
13282 htab_empty (ht);
13284 ret = fold_1 (expr);
13286 md5_init_ctx (&ctx);
13287 fold_checksum_tree (expr, &ctx, ht);
13288 md5_finish_ctx (&ctx, checksum_after);
13289 htab_delete (ht);
13291 if (memcmp (checksum_before, checksum_after, 16))
13292 fold_check_failed (expr, ret);
13294 return ret;
13297 void
13298 print_fold_checksum (const_tree expr)
13300 struct md5_ctx ctx;
13301 unsigned char checksum[16], cnt;
13302 htab_t ht;
13304 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13305 md5_init_ctx (&ctx);
13306 fold_checksum_tree (expr, &ctx, ht);
13307 md5_finish_ctx (&ctx, checksum);
13308 htab_delete (ht);
13309 for (cnt = 0; cnt < 16; ++cnt)
13310 fprintf (stderr, "%02x", checksum[cnt]);
13311 putc ('\n', stderr);
13314 static void
13315 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
13317 internal_error ("fold check: original tree changed by fold");
13320 static void
13321 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx, htab_t ht)
13323 const void **slot;
13324 enum tree_code code;
13325 struct tree_function_decl buf;
13326 int i, len;
13328 recursive_label:
13330 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
13331 <= sizeof (struct tree_function_decl))
13332 && sizeof (struct tree_type) <= sizeof (struct tree_function_decl));
13333 if (expr == NULL)
13334 return;
13335 slot = (const void **) htab_find_slot (ht, expr, INSERT);
13336 if (*slot != NULL)
13337 return;
13338 *slot = expr;
13339 code = TREE_CODE (expr);
13340 if (TREE_CODE_CLASS (code) == tcc_declaration
13341 && DECL_ASSEMBLER_NAME_SET_P (expr))
13343 /* Allow DECL_ASSEMBLER_NAME to be modified. */
13344 memcpy ((char *) &buf, expr, tree_size (expr));
13345 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
13346 expr = (tree) &buf;
13348 else if (TREE_CODE_CLASS (code) == tcc_type
13349 && (TYPE_POINTER_TO (expr) || TYPE_REFERENCE_TO (expr)
13350 || TYPE_CACHED_VALUES_P (expr)
13351 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)))
13353 /* Allow these fields to be modified. */
13354 tree tmp;
13355 memcpy ((char *) &buf, expr, tree_size (expr));
13356 expr = tmp = (tree) &buf;
13357 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
13358 TYPE_POINTER_TO (tmp) = NULL;
13359 TYPE_REFERENCE_TO (tmp) = NULL;
13360 if (TYPE_CACHED_VALUES_P (tmp))
13362 TYPE_CACHED_VALUES_P (tmp) = 0;
13363 TYPE_CACHED_VALUES (tmp) = NULL;
13366 md5_process_bytes (expr, tree_size (expr), ctx);
13367 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
13368 if (TREE_CODE_CLASS (code) != tcc_type
13369 && TREE_CODE_CLASS (code) != tcc_declaration
13370 && code != TREE_LIST
13371 && code != SSA_NAME)
13372 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
13373 switch (TREE_CODE_CLASS (code))
13375 case tcc_constant:
13376 switch (code)
13378 case STRING_CST:
13379 md5_process_bytes (TREE_STRING_POINTER (expr),
13380 TREE_STRING_LENGTH (expr), ctx);
13381 break;
13382 case COMPLEX_CST:
13383 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
13384 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
13385 break;
13386 case VECTOR_CST:
13387 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
13388 break;
13389 default:
13390 break;
13392 break;
13393 case tcc_exceptional:
13394 switch (code)
13396 case TREE_LIST:
13397 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
13398 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
13399 expr = TREE_CHAIN (expr);
13400 goto recursive_label;
13401 break;
13402 case TREE_VEC:
13403 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
13404 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
13405 break;
13406 default:
13407 break;
13409 break;
13410 case tcc_expression:
13411 case tcc_reference:
13412 case tcc_comparison:
13413 case tcc_unary:
13414 case tcc_binary:
13415 case tcc_statement:
13416 case tcc_vl_exp:
13417 len = TREE_OPERAND_LENGTH (expr);
13418 for (i = 0; i < len; ++i)
13419 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
13420 break;
13421 case tcc_declaration:
13422 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
13423 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
13424 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
13426 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
13427 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
13428 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
13429 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
13430 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
13432 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
13433 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
13435 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
13437 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
13438 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
13439 fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
13441 break;
13442 case tcc_type:
13443 if (TREE_CODE (expr) == ENUMERAL_TYPE)
13444 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
13445 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
13446 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
13447 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
13448 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
13449 if (INTEGRAL_TYPE_P (expr)
13450 || SCALAR_FLOAT_TYPE_P (expr))
13452 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
13453 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
13455 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
13456 if (TREE_CODE (expr) == RECORD_TYPE
13457 || TREE_CODE (expr) == UNION_TYPE
13458 || TREE_CODE (expr) == QUAL_UNION_TYPE)
13459 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
13460 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
13461 break;
13462 default:
13463 break;
13467 /* Helper function for outputting the checksum of a tree T. When
13468 debugging with gdb, you can "define mynext" to be "next" followed
13469 by "call debug_fold_checksum (op0)", then just trace down till the
13470 outputs differ. */
13472 void
13473 debug_fold_checksum (const_tree t)
13475 int i;
13476 unsigned char checksum[16];
13477 struct md5_ctx ctx;
13478 htab_t ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13480 md5_init_ctx (&ctx);
13481 fold_checksum_tree (t, &ctx, ht);
13482 md5_finish_ctx (&ctx, checksum);
13483 htab_empty (ht);
13485 for (i = 0; i < 16; i++)
13486 fprintf (stderr, "%d ", checksum[i]);
13488 fprintf (stderr, "\n");
13491 #endif
13493 /* Fold a unary tree expression with code CODE of type TYPE with an
13494 operand OP0. Return a folded expression if successful. Otherwise,
13495 return a tree expression with code CODE of type TYPE with an
13496 operand OP0. */
13498 tree
13499 fold_build1_stat (enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
13501 tree tem;
13502 #ifdef ENABLE_FOLD_CHECKING
13503 unsigned char checksum_before[16], checksum_after[16];
13504 struct md5_ctx ctx;
13505 htab_t ht;
13507 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13508 md5_init_ctx (&ctx);
13509 fold_checksum_tree (op0, &ctx, ht);
13510 md5_finish_ctx (&ctx, checksum_before);
13511 htab_empty (ht);
13512 #endif
13514 tem = fold_unary (code, type, op0);
13515 if (!tem)
13516 tem = build1_stat (code, type, op0 PASS_MEM_STAT);
13518 #ifdef ENABLE_FOLD_CHECKING
13519 md5_init_ctx (&ctx);
13520 fold_checksum_tree (op0, &ctx, ht);
13521 md5_finish_ctx (&ctx, checksum_after);
13522 htab_delete (ht);
13524 if (memcmp (checksum_before, checksum_after, 16))
13525 fold_check_failed (op0, tem);
13526 #endif
13527 return tem;
13530 /* Fold a binary tree expression with code CODE of type TYPE with
13531 operands OP0 and OP1. Return a folded expression if successful.
13532 Otherwise, return a tree expression with code CODE of type TYPE
13533 with operands OP0 and OP1. */
13535 tree
13536 fold_build2_stat (enum tree_code code, tree type, tree op0, tree op1
13537 MEM_STAT_DECL)
13539 tree tem;
13540 #ifdef ENABLE_FOLD_CHECKING
13541 unsigned char checksum_before_op0[16],
13542 checksum_before_op1[16],
13543 checksum_after_op0[16],
13544 checksum_after_op1[16];
13545 struct md5_ctx ctx;
13546 htab_t ht;
13548 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13549 md5_init_ctx (&ctx);
13550 fold_checksum_tree (op0, &ctx, ht);
13551 md5_finish_ctx (&ctx, checksum_before_op0);
13552 htab_empty (ht);
13554 md5_init_ctx (&ctx);
13555 fold_checksum_tree (op1, &ctx, ht);
13556 md5_finish_ctx (&ctx, checksum_before_op1);
13557 htab_empty (ht);
13558 #endif
13560 tem = fold_binary (code, type, op0, op1);
13561 if (!tem)
13562 tem = build2_stat (code, type, op0, op1 PASS_MEM_STAT);
13564 #ifdef ENABLE_FOLD_CHECKING
13565 md5_init_ctx (&ctx);
13566 fold_checksum_tree (op0, &ctx, ht);
13567 md5_finish_ctx (&ctx, checksum_after_op0);
13568 htab_empty (ht);
13570 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13571 fold_check_failed (op0, tem);
13573 md5_init_ctx (&ctx);
13574 fold_checksum_tree (op1, &ctx, ht);
13575 md5_finish_ctx (&ctx, checksum_after_op1);
13576 htab_delete (ht);
13578 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13579 fold_check_failed (op1, tem);
13580 #endif
13581 return tem;
13584 /* Fold a ternary tree expression with code CODE of type TYPE with
13585 operands OP0, OP1, and OP2. Return a folded expression if
13586 successful. Otherwise, return a tree expression with code CODE of
13587 type TYPE with operands OP0, OP1, and OP2. */
13589 tree
13590 fold_build3_stat (enum tree_code code, tree type, tree op0, tree op1, tree op2
13591 MEM_STAT_DECL)
13593 tree tem;
13594 #ifdef ENABLE_FOLD_CHECKING
13595 unsigned char checksum_before_op0[16],
13596 checksum_before_op1[16],
13597 checksum_before_op2[16],
13598 checksum_after_op0[16],
13599 checksum_after_op1[16],
13600 checksum_after_op2[16];
13601 struct md5_ctx ctx;
13602 htab_t ht;
13604 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13605 md5_init_ctx (&ctx);
13606 fold_checksum_tree (op0, &ctx, ht);
13607 md5_finish_ctx (&ctx, checksum_before_op0);
13608 htab_empty (ht);
13610 md5_init_ctx (&ctx);
13611 fold_checksum_tree (op1, &ctx, ht);
13612 md5_finish_ctx (&ctx, checksum_before_op1);
13613 htab_empty (ht);
13615 md5_init_ctx (&ctx);
13616 fold_checksum_tree (op2, &ctx, ht);
13617 md5_finish_ctx (&ctx, checksum_before_op2);
13618 htab_empty (ht);
13619 #endif
13621 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
13622 tem = fold_ternary (code, type, op0, op1, op2);
13623 if (!tem)
13624 tem = build3_stat (code, type, op0, op1, op2 PASS_MEM_STAT);
13626 #ifdef ENABLE_FOLD_CHECKING
13627 md5_init_ctx (&ctx);
13628 fold_checksum_tree (op0, &ctx, ht);
13629 md5_finish_ctx (&ctx, checksum_after_op0);
13630 htab_empty (ht);
13632 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13633 fold_check_failed (op0, tem);
13635 md5_init_ctx (&ctx);
13636 fold_checksum_tree (op1, &ctx, ht);
13637 md5_finish_ctx (&ctx, checksum_after_op1);
13638 htab_empty (ht);
13640 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13641 fold_check_failed (op1, tem);
13643 md5_init_ctx (&ctx);
13644 fold_checksum_tree (op2, &ctx, ht);
13645 md5_finish_ctx (&ctx, checksum_after_op2);
13646 htab_delete (ht);
13648 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
13649 fold_check_failed (op2, tem);
13650 #endif
13651 return tem;
13654 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
13655 arguments in ARGARRAY, and a null static chain.
13656 Return a folded expression if successful. Otherwise, return a CALL_EXPR
13657 of type TYPE from the given operands as constructed by build_call_array. */
13659 tree
13660 fold_build_call_array (tree type, tree fn, int nargs, tree *argarray)
13662 tree tem;
13663 #ifdef ENABLE_FOLD_CHECKING
13664 unsigned char checksum_before_fn[16],
13665 checksum_before_arglist[16],
13666 checksum_after_fn[16],
13667 checksum_after_arglist[16];
13668 struct md5_ctx ctx;
13669 htab_t ht;
13670 int i;
13672 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13673 md5_init_ctx (&ctx);
13674 fold_checksum_tree (fn, &ctx, ht);
13675 md5_finish_ctx (&ctx, checksum_before_fn);
13676 htab_empty (ht);
13678 md5_init_ctx (&ctx);
13679 for (i = 0; i < nargs; i++)
13680 fold_checksum_tree (argarray[i], &ctx, ht);
13681 md5_finish_ctx (&ctx, checksum_before_arglist);
13682 htab_empty (ht);
13683 #endif
13685 tem = fold_builtin_call_array (type, fn, nargs, argarray);
13687 #ifdef ENABLE_FOLD_CHECKING
13688 md5_init_ctx (&ctx);
13689 fold_checksum_tree (fn, &ctx, ht);
13690 md5_finish_ctx (&ctx, checksum_after_fn);
13691 htab_empty (ht);
13693 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
13694 fold_check_failed (fn, tem);
13696 md5_init_ctx (&ctx);
13697 for (i = 0; i < nargs; i++)
13698 fold_checksum_tree (argarray[i], &ctx, ht);
13699 md5_finish_ctx (&ctx, checksum_after_arglist);
13700 htab_delete (ht);
13702 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
13703 fold_check_failed (NULL_TREE, tem);
13704 #endif
13705 return tem;
13708 /* Perform constant folding and related simplification of initializer
13709 expression EXPR. These behave identically to "fold_buildN" but ignore
13710 potential run-time traps and exceptions that fold must preserve. */
13712 #define START_FOLD_INIT \
13713 int saved_signaling_nans = flag_signaling_nans;\
13714 int saved_trapping_math = flag_trapping_math;\
13715 int saved_rounding_math = flag_rounding_math;\
13716 int saved_trapv = flag_trapv;\
13717 int saved_folding_initializer = folding_initializer;\
13718 flag_signaling_nans = 0;\
13719 flag_trapping_math = 0;\
13720 flag_rounding_math = 0;\
13721 flag_trapv = 0;\
13722 folding_initializer = 1;
13724 #define END_FOLD_INIT \
13725 flag_signaling_nans = saved_signaling_nans;\
13726 flag_trapping_math = saved_trapping_math;\
13727 flag_rounding_math = saved_rounding_math;\
13728 flag_trapv = saved_trapv;\
13729 folding_initializer = saved_folding_initializer;
13731 tree
13732 fold_build1_initializer (enum tree_code code, tree type, tree op)
13734 tree result;
13735 START_FOLD_INIT;
13737 result = fold_build1 (code, type, op);
13739 END_FOLD_INIT;
13740 return result;
13743 tree
13744 fold_build2_initializer (enum tree_code code, tree type, tree op0, tree op1)
13746 tree result;
13747 START_FOLD_INIT;
13749 result = fold_build2 (code, type, op0, op1);
13751 END_FOLD_INIT;
13752 return result;
13755 tree
13756 fold_build3_initializer (enum tree_code code, tree type, tree op0, tree op1,
13757 tree op2)
13759 tree result;
13760 START_FOLD_INIT;
13762 result = fold_build3 (code, type, op0, op1, op2);
13764 END_FOLD_INIT;
13765 return result;
13768 tree
13769 fold_build_call_array_initializer (tree type, tree fn,
13770 int nargs, tree *argarray)
13772 tree result;
13773 START_FOLD_INIT;
13775 result = fold_build_call_array (type, fn, nargs, argarray);
13777 END_FOLD_INIT;
13778 return result;
13781 #undef START_FOLD_INIT
13782 #undef END_FOLD_INIT
13784 /* Determine if first argument is a multiple of second argument. Return 0 if
13785 it is not, or we cannot easily determined it to be.
13787 An example of the sort of thing we care about (at this point; this routine
13788 could surely be made more general, and expanded to do what the *_DIV_EXPR's
13789 fold cases do now) is discovering that
13791 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13793 is a multiple of
13795 SAVE_EXPR (J * 8)
13797 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
13799 This code also handles discovering that
13801 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13803 is a multiple of 8 so we don't have to worry about dealing with a
13804 possible remainder.
13806 Note that we *look* inside a SAVE_EXPR only to determine how it was
13807 calculated; it is not safe for fold to do much of anything else with the
13808 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
13809 at run time. For example, the latter example above *cannot* be implemented
13810 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
13811 evaluation time of the original SAVE_EXPR is not necessarily the same at
13812 the time the new expression is evaluated. The only optimization of this
13813 sort that would be valid is changing
13815 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
13817 divided by 8 to
13819 SAVE_EXPR (I) * SAVE_EXPR (J)
13821 (where the same SAVE_EXPR (J) is used in the original and the
13822 transformed version). */
13825 multiple_of_p (tree type, const_tree top, const_tree bottom)
13827 if (operand_equal_p (top, bottom, 0))
13828 return 1;
13830 if (TREE_CODE (type) != INTEGER_TYPE)
13831 return 0;
13833 switch (TREE_CODE (top))
13835 case BIT_AND_EXPR:
13836 /* Bitwise and provides a power of two multiple. If the mask is
13837 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
13838 if (!integer_pow2p (bottom))
13839 return 0;
13840 /* FALLTHRU */
13842 case MULT_EXPR:
13843 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
13844 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
13846 case PLUS_EXPR:
13847 case MINUS_EXPR:
13848 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
13849 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
13851 case LSHIFT_EXPR:
13852 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
13854 tree op1, t1;
13856 op1 = TREE_OPERAND (top, 1);
13857 /* const_binop may not detect overflow correctly,
13858 so check for it explicitly here. */
13859 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
13860 > TREE_INT_CST_LOW (op1)
13861 && TREE_INT_CST_HIGH (op1) == 0
13862 && 0 != (t1 = fold_convert (type,
13863 const_binop (LSHIFT_EXPR,
13864 size_one_node,
13865 op1, 0)))
13866 && !TREE_OVERFLOW (t1))
13867 return multiple_of_p (type, t1, bottom);
13869 return 0;
13871 case NOP_EXPR:
13872 /* Can't handle conversions from non-integral or wider integral type. */
13873 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
13874 || (TYPE_PRECISION (type)
13875 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
13876 return 0;
13878 /* .. fall through ... */
13880 case SAVE_EXPR:
13881 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
13883 case INTEGER_CST:
13884 if (TREE_CODE (bottom) != INTEGER_CST
13885 || integer_zerop (bottom)
13886 || (TYPE_UNSIGNED (type)
13887 && (tree_int_cst_sgn (top) < 0
13888 || tree_int_cst_sgn (bottom) < 0)))
13889 return 0;
13890 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR,
13891 top, bottom, 0));
13893 default:
13894 return 0;
13898 /* Return true if `t' is known to be non-negative. If the return
13899 value is based on the assumption that signed overflow is undefined,
13900 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13901 *STRICT_OVERFLOW_P. */
13903 bool
13904 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13906 if (t == error_mark_node)
13907 return false;
13909 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13910 return true;
13912 switch (TREE_CODE (t))
13914 case SSA_NAME:
13915 /* Query VRP to see if it has recorded any information about
13916 the range of this object. */
13917 return ssa_name_nonnegative_p (t);
13919 case ABS_EXPR:
13920 /* We can't return 1 if flag_wrapv is set because
13921 ABS_EXPR<INT_MIN> = INT_MIN. */
13922 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
13923 return true;
13924 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
13926 *strict_overflow_p = true;
13927 return true;
13929 break;
13931 case INTEGER_CST:
13932 return tree_int_cst_sgn (t) >= 0;
13934 case REAL_CST:
13935 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
13937 case FIXED_CST:
13938 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
13940 case POINTER_PLUS_EXPR:
13941 case PLUS_EXPR:
13942 if (FLOAT_TYPE_P (TREE_TYPE (t)))
13943 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13944 strict_overflow_p)
13945 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13946 strict_overflow_p));
13948 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
13949 both unsigned and at least 2 bits shorter than the result. */
13950 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
13951 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
13952 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
13954 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
13955 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
13956 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
13957 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
13959 unsigned int prec = MAX (TYPE_PRECISION (inner1),
13960 TYPE_PRECISION (inner2)) + 1;
13961 return prec < TYPE_PRECISION (TREE_TYPE (t));
13964 break;
13966 case MULT_EXPR:
13967 if (FLOAT_TYPE_P (TREE_TYPE (t)))
13969 /* x * x for floating point x is always non-negative. */
13970 if (operand_equal_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), 0))
13971 return true;
13972 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13973 strict_overflow_p)
13974 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13975 strict_overflow_p));
13978 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
13979 both unsigned and their total bits is shorter than the result. */
13980 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
13981 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
13982 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
13984 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
13985 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
13986 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
13987 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
13988 return TYPE_PRECISION (inner1) + TYPE_PRECISION (inner2)
13989 < TYPE_PRECISION (TREE_TYPE (t));
13991 return false;
13993 case BIT_AND_EXPR:
13994 case MAX_EXPR:
13995 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13996 strict_overflow_p)
13997 || tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13998 strict_overflow_p));
14000 case BIT_IOR_EXPR:
14001 case BIT_XOR_EXPR:
14002 case MIN_EXPR:
14003 case RDIV_EXPR:
14004 case TRUNC_DIV_EXPR:
14005 case CEIL_DIV_EXPR:
14006 case FLOOR_DIV_EXPR:
14007 case ROUND_DIV_EXPR:
14008 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14009 strict_overflow_p)
14010 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14011 strict_overflow_p));
14013 case TRUNC_MOD_EXPR:
14014 case CEIL_MOD_EXPR:
14015 case FLOOR_MOD_EXPR:
14016 case ROUND_MOD_EXPR:
14017 case SAVE_EXPR:
14018 case NON_LVALUE_EXPR:
14019 case FLOAT_EXPR:
14020 case FIX_TRUNC_EXPR:
14021 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14022 strict_overflow_p);
14024 case COMPOUND_EXPR:
14025 case MODIFY_EXPR:
14026 case GIMPLE_MODIFY_STMT:
14027 return tree_expr_nonnegative_warnv_p (GENERIC_TREE_OPERAND (t, 1),
14028 strict_overflow_p);
14030 case BIND_EXPR:
14031 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
14032 strict_overflow_p);
14034 case COND_EXPR:
14035 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14036 strict_overflow_p)
14037 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
14038 strict_overflow_p));
14040 case NOP_EXPR:
14042 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
14043 tree outer_type = TREE_TYPE (t);
14045 if (TREE_CODE (outer_type) == REAL_TYPE)
14047 if (TREE_CODE (inner_type) == REAL_TYPE)
14048 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14049 strict_overflow_p);
14050 if (TREE_CODE (inner_type) == INTEGER_TYPE)
14052 if (TYPE_UNSIGNED (inner_type))
14053 return true;
14054 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14055 strict_overflow_p);
14058 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
14060 if (TREE_CODE (inner_type) == REAL_TYPE)
14061 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t,0),
14062 strict_overflow_p);
14063 if (TREE_CODE (inner_type) == INTEGER_TYPE)
14064 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
14065 && TYPE_UNSIGNED (inner_type);
14068 break;
14070 case TARGET_EXPR:
14072 tree temp = TARGET_EXPR_SLOT (t);
14073 t = TARGET_EXPR_INITIAL (t);
14075 /* If the initializer is non-void, then it's a normal expression
14076 that will be assigned to the slot. */
14077 if (!VOID_TYPE_P (t))
14078 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
14080 /* Otherwise, the initializer sets the slot in some way. One common
14081 way is an assignment statement at the end of the initializer. */
14082 while (1)
14084 if (TREE_CODE (t) == BIND_EXPR)
14085 t = expr_last (BIND_EXPR_BODY (t));
14086 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
14087 || TREE_CODE (t) == TRY_CATCH_EXPR)
14088 t = expr_last (TREE_OPERAND (t, 0));
14089 else if (TREE_CODE (t) == STATEMENT_LIST)
14090 t = expr_last (t);
14091 else
14092 break;
14094 if ((TREE_CODE (t) == MODIFY_EXPR
14095 || TREE_CODE (t) == GIMPLE_MODIFY_STMT)
14096 && GENERIC_TREE_OPERAND (t, 0) == temp)
14097 return tree_expr_nonnegative_warnv_p (GENERIC_TREE_OPERAND (t, 1),
14098 strict_overflow_p);
14100 return false;
14103 case CALL_EXPR:
14105 tree fndecl = get_callee_fndecl (t);
14106 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
14107 switch (DECL_FUNCTION_CODE (fndecl))
14109 CASE_FLT_FN (BUILT_IN_ACOS):
14110 CASE_FLT_FN (BUILT_IN_ACOSH):
14111 CASE_FLT_FN (BUILT_IN_CABS):
14112 CASE_FLT_FN (BUILT_IN_COSH):
14113 CASE_FLT_FN (BUILT_IN_ERFC):
14114 CASE_FLT_FN (BUILT_IN_EXP):
14115 CASE_FLT_FN (BUILT_IN_EXP10):
14116 CASE_FLT_FN (BUILT_IN_EXP2):
14117 CASE_FLT_FN (BUILT_IN_FABS):
14118 CASE_FLT_FN (BUILT_IN_FDIM):
14119 CASE_FLT_FN (BUILT_IN_HYPOT):
14120 CASE_FLT_FN (BUILT_IN_POW10):
14121 CASE_INT_FN (BUILT_IN_FFS):
14122 CASE_INT_FN (BUILT_IN_PARITY):
14123 CASE_INT_FN (BUILT_IN_POPCOUNT):
14124 case BUILT_IN_BSWAP32:
14125 case BUILT_IN_BSWAP64:
14126 /* Always true. */
14127 return true;
14129 CASE_FLT_FN (BUILT_IN_SQRT):
14130 /* sqrt(-0.0) is -0.0. */
14131 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t))))
14132 return true;
14133 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
14134 strict_overflow_p);
14136 CASE_FLT_FN (BUILT_IN_ASINH):
14137 CASE_FLT_FN (BUILT_IN_ATAN):
14138 CASE_FLT_FN (BUILT_IN_ATANH):
14139 CASE_FLT_FN (BUILT_IN_CBRT):
14140 CASE_FLT_FN (BUILT_IN_CEIL):
14141 CASE_FLT_FN (BUILT_IN_ERF):
14142 CASE_FLT_FN (BUILT_IN_EXPM1):
14143 CASE_FLT_FN (BUILT_IN_FLOOR):
14144 CASE_FLT_FN (BUILT_IN_FMOD):
14145 CASE_FLT_FN (BUILT_IN_FREXP):
14146 CASE_FLT_FN (BUILT_IN_LCEIL):
14147 CASE_FLT_FN (BUILT_IN_LDEXP):
14148 CASE_FLT_FN (BUILT_IN_LFLOOR):
14149 CASE_FLT_FN (BUILT_IN_LLCEIL):
14150 CASE_FLT_FN (BUILT_IN_LLFLOOR):
14151 CASE_FLT_FN (BUILT_IN_LLRINT):
14152 CASE_FLT_FN (BUILT_IN_LLROUND):
14153 CASE_FLT_FN (BUILT_IN_LRINT):
14154 CASE_FLT_FN (BUILT_IN_LROUND):
14155 CASE_FLT_FN (BUILT_IN_MODF):
14156 CASE_FLT_FN (BUILT_IN_NEARBYINT):
14157 CASE_FLT_FN (BUILT_IN_RINT):
14158 CASE_FLT_FN (BUILT_IN_ROUND):
14159 CASE_FLT_FN (BUILT_IN_SCALB):
14160 CASE_FLT_FN (BUILT_IN_SCALBLN):
14161 CASE_FLT_FN (BUILT_IN_SCALBN):
14162 CASE_FLT_FN (BUILT_IN_SIGNBIT):
14163 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
14164 CASE_FLT_FN (BUILT_IN_SINH):
14165 CASE_FLT_FN (BUILT_IN_TANH):
14166 CASE_FLT_FN (BUILT_IN_TRUNC):
14167 /* True if the 1st argument is nonnegative. */
14168 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
14169 strict_overflow_p);
14171 CASE_FLT_FN (BUILT_IN_FMAX):
14172 /* True if the 1st OR 2nd arguments are nonnegative. */
14173 return (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
14174 strict_overflow_p)
14175 || (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 1),
14176 strict_overflow_p)));
14178 CASE_FLT_FN (BUILT_IN_FMIN):
14179 /* True if the 1st AND 2nd arguments are nonnegative. */
14180 return (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
14181 strict_overflow_p)
14182 && (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 1),
14183 strict_overflow_p)));
14185 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14186 /* True if the 2nd argument is nonnegative. */
14187 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 1),
14188 strict_overflow_p);
14190 CASE_FLT_FN (BUILT_IN_POWI):
14191 /* True if the 1st argument is nonnegative or the second
14192 argument is an even integer. */
14193 if (TREE_CODE (CALL_EXPR_ARG (t, 1)) == INTEGER_CST)
14195 tree arg1 = CALL_EXPR_ARG (t, 1);
14196 if ((TREE_INT_CST_LOW (arg1) & 1) == 0)
14197 return true;
14199 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
14200 strict_overflow_p);
14202 CASE_FLT_FN (BUILT_IN_POW):
14203 /* True if the 1st argument is nonnegative or the second
14204 argument is an even integer valued real. */
14205 if (TREE_CODE (CALL_EXPR_ARG (t, 1)) == REAL_CST)
14207 REAL_VALUE_TYPE c;
14208 HOST_WIDE_INT n;
14210 c = TREE_REAL_CST (CALL_EXPR_ARG (t, 1));
14211 n = real_to_integer (&c);
14212 if ((n & 1) == 0)
14214 REAL_VALUE_TYPE cint;
14215 real_from_integer (&cint, VOIDmode, n,
14216 n < 0 ? -1 : 0, 0);
14217 if (real_identical (&c, &cint))
14218 return true;
14221 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
14222 strict_overflow_p);
14224 default:
14225 break;
14229 /* ... fall through ... */
14231 default:
14233 tree type = TREE_TYPE (t);
14234 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
14235 && truth_value_p (TREE_CODE (t)))
14236 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14237 have a signed:1 type (where the value is -1 and 0). */
14238 return true;
14242 /* We don't know sign of `t', so be conservative and return false. */
14243 return false;
14246 /* Return true if `t' is known to be non-negative. Handle warnings
14247 about undefined signed overflow. */
14249 bool
14250 tree_expr_nonnegative_p (tree t)
14252 bool ret, strict_overflow_p;
14254 strict_overflow_p = false;
14255 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
14256 if (strict_overflow_p)
14257 fold_overflow_warning (("assuming signed overflow does not occur when "
14258 "determining that expression is always "
14259 "non-negative"),
14260 WARN_STRICT_OVERFLOW_MISC);
14261 return ret;
14264 /* Return true when T is an address and is known to be nonzero.
14265 For floating point we further ensure that T is not denormal.
14266 Similar logic is present in nonzero_address in rtlanal.h.
14268 If the return value is based on the assumption that signed overflow
14269 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14270 change *STRICT_OVERFLOW_P. */
14272 bool
14273 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
14275 tree type = TREE_TYPE (t);
14276 bool sub_strict_overflow_p;
14278 /* Doing something useful for floating point would need more work. */
14279 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
14280 return false;
14282 switch (TREE_CODE (t))
14284 case SSA_NAME:
14285 /* Query VRP to see if it has recorded any information about
14286 the range of this object. */
14287 return ssa_name_nonzero_p (t);
14289 case ABS_EXPR:
14290 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14291 strict_overflow_p);
14293 case INTEGER_CST:
14294 return !integer_zerop (t);
14296 case POINTER_PLUS_EXPR:
14297 case PLUS_EXPR:
14298 if (TYPE_OVERFLOW_UNDEFINED (type))
14300 /* With the presence of negative values it is hard
14301 to say something. */
14302 sub_strict_overflow_p = false;
14303 if (!tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14304 &sub_strict_overflow_p)
14305 || !tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14306 &sub_strict_overflow_p))
14307 return false;
14308 /* One of operands must be positive and the other non-negative. */
14309 /* We don't set *STRICT_OVERFLOW_P here: even if this value
14310 overflows, on a twos-complement machine the sum of two
14311 nonnegative numbers can never be zero. */
14312 return (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14313 strict_overflow_p)
14314 || tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14315 strict_overflow_p));
14317 break;
14319 case MULT_EXPR:
14320 if (TYPE_OVERFLOW_UNDEFINED (type))
14322 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14323 strict_overflow_p)
14324 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14325 strict_overflow_p))
14327 *strict_overflow_p = true;
14328 return true;
14331 break;
14333 case NOP_EXPR:
14335 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
14336 tree outer_type = TREE_TYPE (t);
14338 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
14339 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14340 strict_overflow_p));
14342 break;
14344 case ADDR_EXPR:
14346 tree base = get_base_address (TREE_OPERAND (t, 0));
14348 if (!base)
14349 return false;
14351 /* Weak declarations may link to NULL. */
14352 if (VAR_OR_FUNCTION_DECL_P (base))
14353 return !DECL_WEAK (base);
14355 /* Constants are never weak. */
14356 if (CONSTANT_CLASS_P (base))
14357 return true;
14359 return false;
14362 case COND_EXPR:
14363 sub_strict_overflow_p = false;
14364 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14365 &sub_strict_overflow_p)
14366 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
14367 &sub_strict_overflow_p))
14369 if (sub_strict_overflow_p)
14370 *strict_overflow_p = true;
14371 return true;
14373 break;
14375 case MIN_EXPR:
14376 sub_strict_overflow_p = false;
14377 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14378 &sub_strict_overflow_p)
14379 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14380 &sub_strict_overflow_p))
14382 if (sub_strict_overflow_p)
14383 *strict_overflow_p = true;
14385 break;
14387 case MAX_EXPR:
14388 sub_strict_overflow_p = false;
14389 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14390 &sub_strict_overflow_p))
14392 if (sub_strict_overflow_p)
14393 *strict_overflow_p = true;
14395 /* When both operands are nonzero, then MAX must be too. */
14396 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14397 strict_overflow_p))
14398 return true;
14400 /* MAX where operand 0 is positive is positive. */
14401 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14402 strict_overflow_p);
14404 /* MAX where operand 1 is positive is positive. */
14405 else if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14406 &sub_strict_overflow_p)
14407 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14408 &sub_strict_overflow_p))
14410 if (sub_strict_overflow_p)
14411 *strict_overflow_p = true;
14412 return true;
14414 break;
14416 case COMPOUND_EXPR:
14417 case MODIFY_EXPR:
14418 case GIMPLE_MODIFY_STMT:
14419 case BIND_EXPR:
14420 return tree_expr_nonzero_warnv_p (GENERIC_TREE_OPERAND (t, 1),
14421 strict_overflow_p);
14423 case SAVE_EXPR:
14424 case NON_LVALUE_EXPR:
14425 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14426 strict_overflow_p);
14428 case BIT_IOR_EXPR:
14429 return (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14430 strict_overflow_p)
14431 || tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14432 strict_overflow_p));
14434 case CALL_EXPR:
14435 return alloca_call_p (t);
14437 default:
14438 break;
14440 return false;
14443 /* Return true when T is an address and is known to be nonzero.
14444 Handle warnings about undefined signed overflow. */
14446 bool
14447 tree_expr_nonzero_p (tree t)
14449 bool ret, strict_overflow_p;
14451 strict_overflow_p = false;
14452 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
14453 if (strict_overflow_p)
14454 fold_overflow_warning (("assuming signed overflow does not occur when "
14455 "determining that expression is always "
14456 "non-zero"),
14457 WARN_STRICT_OVERFLOW_MISC);
14458 return ret;
14461 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
14462 attempt to fold the expression to a constant without modifying TYPE,
14463 OP0 or OP1.
14465 If the expression could be simplified to a constant, then return
14466 the constant. If the expression would not be simplified to a
14467 constant, then return NULL_TREE. */
14469 tree
14470 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
14472 tree tem = fold_binary (code, type, op0, op1);
14473 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14476 /* Given the components of a unary expression CODE, TYPE and OP0,
14477 attempt to fold the expression to a constant without modifying
14478 TYPE or OP0.
14480 If the expression could be simplified to a constant, then return
14481 the constant. If the expression would not be simplified to a
14482 constant, then return NULL_TREE. */
14484 tree
14485 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
14487 tree tem = fold_unary (code, type, op0);
14488 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14491 /* If EXP represents referencing an element in a constant string
14492 (either via pointer arithmetic or array indexing), return the
14493 tree representing the value accessed, otherwise return NULL. */
14495 tree
14496 fold_read_from_constant_string (tree exp)
14498 if ((TREE_CODE (exp) == INDIRECT_REF
14499 || TREE_CODE (exp) == ARRAY_REF)
14500 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
14502 tree exp1 = TREE_OPERAND (exp, 0);
14503 tree index;
14504 tree string;
14506 if (TREE_CODE (exp) == INDIRECT_REF)
14507 string = string_constant (exp1, &index);
14508 else
14510 tree low_bound = array_ref_low_bound (exp);
14511 index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
14513 /* Optimize the special-case of a zero lower bound.
14515 We convert the low_bound to sizetype to avoid some problems
14516 with constant folding. (E.g. suppose the lower bound is 1,
14517 and its mode is QI. Without the conversion,l (ARRAY
14518 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
14519 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
14520 if (! integer_zerop (low_bound))
14521 index = size_diffop (index, fold_convert (sizetype, low_bound));
14523 string = exp1;
14526 if (string
14527 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
14528 && TREE_CODE (string) == STRING_CST
14529 && TREE_CODE (index) == INTEGER_CST
14530 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
14531 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
14532 == MODE_INT)
14533 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
14534 return build_int_cst_type (TREE_TYPE (exp),
14535 (TREE_STRING_POINTER (string)
14536 [TREE_INT_CST_LOW (index)]));
14538 return NULL;
14541 /* Return the tree for neg (ARG0) when ARG0 is known to be either
14542 an integer constant, real, or fixed-point constant.
14544 TYPE is the type of the result. */
14546 static tree
14547 fold_negate_const (tree arg0, tree type)
14549 tree t = NULL_TREE;
14551 switch (TREE_CODE (arg0))
14553 case INTEGER_CST:
14555 unsigned HOST_WIDE_INT low;
14556 HOST_WIDE_INT high;
14557 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
14558 TREE_INT_CST_HIGH (arg0),
14559 &low, &high);
14560 t = force_fit_type_double (type, low, high, 1,
14561 (overflow | TREE_OVERFLOW (arg0))
14562 && !TYPE_UNSIGNED (type));
14563 break;
14566 case REAL_CST:
14567 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
14568 break;
14570 case FIXED_CST:
14572 FIXED_VALUE_TYPE f;
14573 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
14574 &(TREE_FIXED_CST (arg0)), NULL,
14575 TYPE_SATURATING (type));
14576 t = build_fixed (type, f);
14577 /* Propagate overflow flags. */
14578 if (overflow_p | TREE_OVERFLOW (arg0))
14580 TREE_OVERFLOW (t) = 1;
14581 TREE_CONSTANT_OVERFLOW (t) = 1;
14583 else if (TREE_CONSTANT_OVERFLOW (arg0))
14584 TREE_CONSTANT_OVERFLOW (t) = 1;
14585 break;
14588 default:
14589 gcc_unreachable ();
14592 return t;
14595 /* Return the tree for abs (ARG0) when ARG0 is known to be either
14596 an integer constant or real constant.
14598 TYPE is the type of the result. */
14600 tree
14601 fold_abs_const (tree arg0, tree type)
14603 tree t = NULL_TREE;
14605 switch (TREE_CODE (arg0))
14607 case INTEGER_CST:
14608 /* If the value is unsigned, then the absolute value is
14609 the same as the ordinary value. */
14610 if (TYPE_UNSIGNED (type))
14611 t = arg0;
14612 /* Similarly, if the value is non-negative. */
14613 else if (INT_CST_LT (integer_minus_one_node, arg0))
14614 t = arg0;
14615 /* If the value is negative, then the absolute value is
14616 its negation. */
14617 else
14619 unsigned HOST_WIDE_INT low;
14620 HOST_WIDE_INT high;
14621 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
14622 TREE_INT_CST_HIGH (arg0),
14623 &low, &high);
14624 t = force_fit_type_double (type, low, high, -1,
14625 overflow | TREE_OVERFLOW (arg0));
14627 break;
14629 case REAL_CST:
14630 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
14631 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
14632 else
14633 t = arg0;
14634 break;
14636 default:
14637 gcc_unreachable ();
14640 return t;
14643 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
14644 constant. TYPE is the type of the result. */
14646 static tree
14647 fold_not_const (tree arg0, tree type)
14649 tree t = NULL_TREE;
14651 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
14653 t = force_fit_type_double (type, ~TREE_INT_CST_LOW (arg0),
14654 ~TREE_INT_CST_HIGH (arg0), 0,
14655 TREE_OVERFLOW (arg0));
14657 return t;
14660 /* Given CODE, a relational operator, the target type, TYPE and two
14661 constant operands OP0 and OP1, return the result of the
14662 relational operation. If the result is not a compile time
14663 constant, then return NULL_TREE. */
14665 static tree
14666 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
14668 int result, invert;
14670 /* From here on, the only cases we handle are when the result is
14671 known to be a constant. */
14673 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
14675 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
14676 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
14678 /* Handle the cases where either operand is a NaN. */
14679 if (real_isnan (c0) || real_isnan (c1))
14681 switch (code)
14683 case EQ_EXPR:
14684 case ORDERED_EXPR:
14685 result = 0;
14686 break;
14688 case NE_EXPR:
14689 case UNORDERED_EXPR:
14690 case UNLT_EXPR:
14691 case UNLE_EXPR:
14692 case UNGT_EXPR:
14693 case UNGE_EXPR:
14694 case UNEQ_EXPR:
14695 result = 1;
14696 break;
14698 case LT_EXPR:
14699 case LE_EXPR:
14700 case GT_EXPR:
14701 case GE_EXPR:
14702 case LTGT_EXPR:
14703 if (flag_trapping_math)
14704 return NULL_TREE;
14705 result = 0;
14706 break;
14708 default:
14709 gcc_unreachable ();
14712 return constant_boolean_node (result, type);
14715 return constant_boolean_node (real_compare (code, c0, c1), type);
14718 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
14720 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
14721 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
14722 return constant_boolean_node (fixed_compare (code, c0, c1), type);
14725 /* Handle equality/inequality of complex constants. */
14726 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
14728 tree rcond = fold_relational_const (code, type,
14729 TREE_REALPART (op0),
14730 TREE_REALPART (op1));
14731 tree icond = fold_relational_const (code, type,
14732 TREE_IMAGPART (op0),
14733 TREE_IMAGPART (op1));
14734 if (code == EQ_EXPR)
14735 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
14736 else if (code == NE_EXPR)
14737 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
14738 else
14739 return NULL_TREE;
14742 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14744 To compute GT, swap the arguments and do LT.
14745 To compute GE, do LT and invert the result.
14746 To compute LE, swap the arguments, do LT and invert the result.
14747 To compute NE, do EQ and invert the result.
14749 Therefore, the code below must handle only EQ and LT. */
14751 if (code == LE_EXPR || code == GT_EXPR)
14753 tree tem = op0;
14754 op0 = op1;
14755 op1 = tem;
14756 code = swap_tree_comparison (code);
14759 /* Note that it is safe to invert for real values here because we
14760 have already handled the one case that it matters. */
14762 invert = 0;
14763 if (code == NE_EXPR || code == GE_EXPR)
14765 invert = 1;
14766 code = invert_tree_comparison (code, false);
14769 /* Compute a result for LT or EQ if args permit;
14770 Otherwise return T. */
14771 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
14773 if (code == EQ_EXPR)
14774 result = tree_int_cst_equal (op0, op1);
14775 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
14776 result = INT_CST_LT_UNSIGNED (op0, op1);
14777 else
14778 result = INT_CST_LT (op0, op1);
14780 else
14781 return NULL_TREE;
14783 if (invert)
14784 result ^= 1;
14785 return constant_boolean_node (result, type);
14788 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14789 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14790 itself. */
14792 tree
14793 fold_build_cleanup_point_expr (tree type, tree expr)
14795 /* If the expression does not have side effects then we don't have to wrap
14796 it with a cleanup point expression. */
14797 if (!TREE_SIDE_EFFECTS (expr))
14798 return expr;
14800 /* If the expression is a return, check to see if the expression inside the
14801 return has no side effects or the right hand side of the modify expression
14802 inside the return. If either don't have side effects set we don't need to
14803 wrap the expression in a cleanup point expression. Note we don't check the
14804 left hand side of the modify because it should always be a return decl. */
14805 if (TREE_CODE (expr) == RETURN_EXPR)
14807 tree op = TREE_OPERAND (expr, 0);
14808 if (!op || !TREE_SIDE_EFFECTS (op))
14809 return expr;
14810 op = TREE_OPERAND (op, 1);
14811 if (!TREE_SIDE_EFFECTS (op))
14812 return expr;
14815 return build1 (CLEANUP_POINT_EXPR, type, expr);
14818 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14819 of an indirection through OP0, or NULL_TREE if no simplification is
14820 possible. */
14822 tree
14823 fold_indirect_ref_1 (tree type, tree op0)
14825 tree sub = op0;
14826 tree subtype;
14828 STRIP_NOPS (sub);
14829 subtype = TREE_TYPE (sub);
14830 if (!POINTER_TYPE_P (subtype))
14831 return NULL_TREE;
14833 if (TREE_CODE (sub) == ADDR_EXPR)
14835 tree op = TREE_OPERAND (sub, 0);
14836 tree optype = TREE_TYPE (op);
14837 /* *&CONST_DECL -> to the value of the const decl. */
14838 if (TREE_CODE (op) == CONST_DECL)
14839 return DECL_INITIAL (op);
14840 /* *&p => p; make sure to handle *&"str"[cst] here. */
14841 if (type == optype)
14843 tree fop = fold_read_from_constant_string (op);
14844 if (fop)
14845 return fop;
14846 else
14847 return op;
14849 /* *(foo *)&fooarray => fooarray[0] */
14850 else if (TREE_CODE (optype) == ARRAY_TYPE
14851 && type == TREE_TYPE (optype))
14853 tree type_domain = TYPE_DOMAIN (optype);
14854 tree min_val = size_zero_node;
14855 if (type_domain && TYPE_MIN_VALUE (type_domain))
14856 min_val = TYPE_MIN_VALUE (type_domain);
14857 return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
14859 /* *(foo *)&complexfoo => __real__ complexfoo */
14860 else if (TREE_CODE (optype) == COMPLEX_TYPE
14861 && type == TREE_TYPE (optype))
14862 return fold_build1 (REALPART_EXPR, type, op);
14863 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14864 else if (TREE_CODE (optype) == VECTOR_TYPE
14865 && type == TREE_TYPE (optype))
14867 tree part_width = TYPE_SIZE (type);
14868 tree index = bitsize_int (0);
14869 return fold_build3 (BIT_FIELD_REF, type, op, part_width, index);
14873 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14874 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14875 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14877 tree op00 = TREE_OPERAND (sub, 0);
14878 tree op01 = TREE_OPERAND (sub, 1);
14879 tree op00type;
14881 STRIP_NOPS (op00);
14882 op00type = TREE_TYPE (op00);
14883 if (TREE_CODE (op00) == ADDR_EXPR
14884 && TREE_CODE (TREE_TYPE (op00type)) == COMPLEX_TYPE
14885 && type == TREE_TYPE (TREE_TYPE (op00type)))
14887 tree size = TYPE_SIZE_UNIT (type);
14888 if (tree_int_cst_equal (size, op01))
14889 return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (op00, 0));
14893 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14894 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14895 && type == TREE_TYPE (TREE_TYPE (subtype)))
14897 tree type_domain;
14898 tree min_val = size_zero_node;
14899 sub = build_fold_indirect_ref (sub);
14900 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14901 if (type_domain && TYPE_MIN_VALUE (type_domain))
14902 min_val = TYPE_MIN_VALUE (type_domain);
14903 return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
14906 return NULL_TREE;
14909 /* Builds an expression for an indirection through T, simplifying some
14910 cases. */
14912 tree
14913 build_fold_indirect_ref (tree t)
14915 tree type = TREE_TYPE (TREE_TYPE (t));
14916 tree sub = fold_indirect_ref_1 (type, t);
14918 if (sub)
14919 return sub;
14920 else
14921 return build1 (INDIRECT_REF, type, t);
14924 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14926 tree
14927 fold_indirect_ref (tree t)
14929 tree sub = fold_indirect_ref_1 (TREE_TYPE (t), TREE_OPERAND (t, 0));
14931 if (sub)
14932 return sub;
14933 else
14934 return t;
14937 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14938 whose result is ignored. The type of the returned tree need not be
14939 the same as the original expression. */
14941 tree
14942 fold_ignored_result (tree t)
14944 if (!TREE_SIDE_EFFECTS (t))
14945 return integer_zero_node;
14947 for (;;)
14948 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14950 case tcc_unary:
14951 t = TREE_OPERAND (t, 0);
14952 break;
14954 case tcc_binary:
14955 case tcc_comparison:
14956 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14957 t = TREE_OPERAND (t, 0);
14958 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14959 t = TREE_OPERAND (t, 1);
14960 else
14961 return t;
14962 break;
14964 case tcc_expression:
14965 switch (TREE_CODE (t))
14967 case COMPOUND_EXPR:
14968 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14969 return t;
14970 t = TREE_OPERAND (t, 0);
14971 break;
14973 case COND_EXPR:
14974 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14975 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14976 return t;
14977 t = TREE_OPERAND (t, 0);
14978 break;
14980 default:
14981 return t;
14983 break;
14985 default:
14986 return t;
14990 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
14991 This can only be applied to objects of a sizetype. */
14993 tree
14994 round_up (tree value, int divisor)
14996 tree div = NULL_TREE;
14998 gcc_assert (divisor > 0);
14999 if (divisor == 1)
15000 return value;
15002 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15003 have to do anything. Only do this when we are not given a const,
15004 because in that case, this check is more expensive than just
15005 doing it. */
15006 if (TREE_CODE (value) != INTEGER_CST)
15008 div = build_int_cst (TREE_TYPE (value), divisor);
15010 if (multiple_of_p (TREE_TYPE (value), value, div))
15011 return value;
15014 /* If divisor is a power of two, simplify this to bit manipulation. */
15015 if (divisor == (divisor & -divisor))
15017 if (TREE_CODE (value) == INTEGER_CST)
15019 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (value);
15020 unsigned HOST_WIDE_INT high;
15021 bool overflow_p;
15023 if ((low & (divisor - 1)) == 0)
15024 return value;
15026 overflow_p = TREE_OVERFLOW (value);
15027 high = TREE_INT_CST_HIGH (value);
15028 low &= ~(divisor - 1);
15029 low += divisor;
15030 if (low == 0)
15032 high++;
15033 if (high == 0)
15034 overflow_p = true;
15037 return force_fit_type_double (TREE_TYPE (value), low, high,
15038 -1, overflow_p);
15040 else
15042 tree t;
15044 t = build_int_cst (TREE_TYPE (value), divisor - 1);
15045 value = size_binop (PLUS_EXPR, value, t);
15046 t = build_int_cst (TREE_TYPE (value), -divisor);
15047 value = size_binop (BIT_AND_EXPR, value, t);
15050 else
15052 if (!div)
15053 div = build_int_cst (TREE_TYPE (value), divisor);
15054 value = size_binop (CEIL_DIV_EXPR, value, div);
15055 value = size_binop (MULT_EXPR, value, div);
15058 return value;
15061 /* Likewise, but round down. */
15063 tree
15064 round_down (tree value, int divisor)
15066 tree div = NULL_TREE;
15068 gcc_assert (divisor > 0);
15069 if (divisor == 1)
15070 return value;
15072 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15073 have to do anything. Only do this when we are not given a const,
15074 because in that case, this check is more expensive than just
15075 doing it. */
15076 if (TREE_CODE (value) != INTEGER_CST)
15078 div = build_int_cst (TREE_TYPE (value), divisor);
15080 if (multiple_of_p (TREE_TYPE (value), value, div))
15081 return value;
15084 /* If divisor is a power of two, simplify this to bit manipulation. */
15085 if (divisor == (divisor & -divisor))
15087 tree t;
15089 t = build_int_cst (TREE_TYPE (value), -divisor);
15090 value = size_binop (BIT_AND_EXPR, value, t);
15092 else
15094 if (!div)
15095 div = build_int_cst (TREE_TYPE (value), divisor);
15096 value = size_binop (FLOOR_DIV_EXPR, value, div);
15097 value = size_binop (MULT_EXPR, value, div);
15100 return value;
15103 /* Returns the pointer to the base of the object addressed by EXP and
15104 extracts the information about the offset of the access, storing it
15105 to PBITPOS and POFFSET. */
15107 static tree
15108 split_address_to_core_and_offset (tree exp,
15109 HOST_WIDE_INT *pbitpos, tree *poffset)
15111 tree core;
15112 enum machine_mode mode;
15113 int unsignedp, volatilep;
15114 HOST_WIDE_INT bitsize;
15116 if (TREE_CODE (exp) == ADDR_EXPR)
15118 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
15119 poffset, &mode, &unsignedp, &volatilep,
15120 false);
15121 core = fold_addr_expr (core);
15123 else
15125 core = exp;
15126 *pbitpos = 0;
15127 *poffset = NULL_TREE;
15130 return core;
15133 /* Returns true if addresses of E1 and E2 differ by a constant, false
15134 otherwise. If they do, E1 - E2 is stored in *DIFF. */
15136 bool
15137 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
15139 tree core1, core2;
15140 HOST_WIDE_INT bitpos1, bitpos2;
15141 tree toffset1, toffset2, tdiff, type;
15143 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
15144 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
15146 if (bitpos1 % BITS_PER_UNIT != 0
15147 || bitpos2 % BITS_PER_UNIT != 0
15148 || !operand_equal_p (core1, core2, 0))
15149 return false;
15151 if (toffset1 && toffset2)
15153 type = TREE_TYPE (toffset1);
15154 if (type != TREE_TYPE (toffset2))
15155 toffset2 = fold_convert (type, toffset2);
15157 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
15158 if (!cst_and_fits_in_hwi (tdiff))
15159 return false;
15161 *diff = int_cst_value (tdiff);
15163 else if (toffset1 || toffset2)
15165 /* If only one of the offsets is non-constant, the difference cannot
15166 be a constant. */
15167 return false;
15169 else
15170 *diff = 0;
15172 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
15173 return true;
15176 /* Simplify the floating point expression EXP when the sign of the
15177 result is not significant. Return NULL_TREE if no simplification
15178 is possible. */
15180 tree
15181 fold_strip_sign_ops (tree exp)
15183 tree arg0, arg1;
15185 switch (TREE_CODE (exp))
15187 case ABS_EXPR:
15188 case NEGATE_EXPR:
15189 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15190 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
15192 case MULT_EXPR:
15193 case RDIV_EXPR:
15194 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
15195 return NULL_TREE;
15196 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15197 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15198 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
15199 return fold_build2 (TREE_CODE (exp), TREE_TYPE (exp),
15200 arg0 ? arg0 : TREE_OPERAND (exp, 0),
15201 arg1 ? arg1 : TREE_OPERAND (exp, 1));
15202 break;
15204 case COMPOUND_EXPR:
15205 arg0 = TREE_OPERAND (exp, 0);
15206 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15207 if (arg1)
15208 return fold_build2 (COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
15209 break;
15211 case COND_EXPR:
15212 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15213 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
15214 if (arg0 || arg1)
15215 return fold_build3 (COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
15216 arg0 ? arg0 : TREE_OPERAND (exp, 1),
15217 arg1 ? arg1 : TREE_OPERAND (exp, 2));
15218 break;
15220 case CALL_EXPR:
15222 const enum built_in_function fcode = builtin_mathfn_code (exp);
15223 switch (fcode)
15225 CASE_FLT_FN (BUILT_IN_COPYSIGN):
15226 /* Strip copysign function call, return the 1st argument. */
15227 arg0 = CALL_EXPR_ARG (exp, 0);
15228 arg1 = CALL_EXPR_ARG (exp, 1);
15229 return omit_one_operand (TREE_TYPE (exp), arg0, arg1);
15231 default:
15232 /* Strip sign ops from the argument of "odd" math functions. */
15233 if (negate_mathfn_p (fcode))
15235 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
15236 if (arg0)
15237 return build_call_expr (get_callee_fndecl (exp), 1, arg0);
15239 break;
15242 break;
15244 default:
15245 break;
15247 return NULL_TREE;