Merged with mainline at revision 128810.
[official-gcc.git] / gcc / config / i386 / i386.h
blobbc3e5f6dc9d35dccb1c6905590dcab49240aab3c
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
37 /* Redefines for option macros. */
39 #define TARGET_64BIT OPTION_ISA_64BIT
40 #define TARGET_MMX OPTION_ISA_MMX
41 #define TARGET_3DNOW OPTION_ISA_3DNOW
42 #define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
43 #define TARGET_SSE OPTION_ISA_SSE
44 #define TARGET_SSE2 OPTION_ISA_SSE2
45 #define TARGET_SSE3 OPTION_ISA_SSE3
46 #define TARGET_SSSE3 OPTION_ISA_SSSE3
47 #define TARGET_SSE4_1 OPTION_ISA_SSE4_1
48 #define TARGET_SSE4_2 OPTION_ISA_SSE4_2
49 #define TARGET_SSE4A OPTION_ISA_SSE4A
50 #define TARGET_SSE5 OPTION_ISA_SSE5
51 #define TARGET_ROUND OPTION_ISA_ROUND
53 /* SSE5 and SSE4.1 define the same round instructions */
54 #define OPTION_MASK_ISA_ROUND (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE5)
55 #define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
57 #include "config/vxworks-dummy.h"
59 /* Algorithm to expand string function with. */
60 enum stringop_alg
62 no_stringop,
63 libcall,
64 rep_prefix_1_byte,
65 rep_prefix_4_byte,
66 rep_prefix_8_byte,
67 loop_1_byte,
68 loop,
69 unrolled_loop
72 #define NAX_STRINGOP_ALGS 4
74 /* Specify what algorithm to use for stringops on known size.
75 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
76 known at compile time or estimated via feedback, the SIZE array
77 is walked in order until MAX is greater then the estimate (or -1
78 means infinity). Corresponding ALG is used then.
79 For example initializer:
80 {{256, loop}, {-1, rep_prefix_4_byte}}
81 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
82 be used otherwise. */
83 struct stringop_algs
85 const enum stringop_alg unknown_size;
86 const struct stringop_strategy {
87 const int max;
88 const enum stringop_alg alg;
89 } size [NAX_STRINGOP_ALGS];
92 /* Define the specific costs for a given cpu */
94 struct processor_costs {
95 const int add; /* cost of an add instruction */
96 const int lea; /* cost of a lea instruction */
97 const int shift_var; /* variable shift costs */
98 const int shift_const; /* constant shift costs */
99 const int mult_init[5]; /* cost of starting a multiply
100 in QImode, HImode, SImode, DImode, TImode*/
101 const int mult_bit; /* cost of multiply per each bit set */
102 const int divide[5]; /* cost of a divide/mod
103 in QImode, HImode, SImode, DImode, TImode*/
104 int movsx; /* The cost of movsx operation. */
105 int movzx; /* The cost of movzx operation. */
106 const int large_insn; /* insns larger than this cost more */
107 const int move_ratio; /* The threshold of number of scalar
108 memory-to-memory move insns. */
109 const int movzbl_load; /* cost of loading using movzbl */
110 const int int_load[3]; /* cost of loading integer registers
111 in QImode, HImode and SImode relative
112 to reg-reg move (2). */
113 const int int_store[3]; /* cost of storing integer register
114 in QImode, HImode and SImode */
115 const int fp_move; /* cost of reg,reg fld/fst */
116 const int fp_load[3]; /* cost of loading FP register
117 in SFmode, DFmode and XFmode */
118 const int fp_store[3]; /* cost of storing FP register
119 in SFmode, DFmode and XFmode */
120 const int mmx_move; /* cost of moving MMX register. */
121 const int mmx_load[2]; /* cost of loading MMX register
122 in SImode and DImode */
123 const int mmx_store[2]; /* cost of storing MMX register
124 in SImode and DImode */
125 const int sse_move; /* cost of moving SSE register. */
126 const int sse_load[3]; /* cost of loading SSE register
127 in SImode, DImode and TImode*/
128 const int sse_store[3]; /* cost of storing SSE register
129 in SImode, DImode and TImode*/
130 const int mmxsse_to_integer; /* cost of moving mmxsse register to
131 integer and vice versa. */
132 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
133 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
134 const int prefetch_block; /* bytes moved to cache for prefetch. */
135 const int simultaneous_prefetches; /* number of parallel prefetch
136 operations. */
137 const int branch_cost; /* Default value for BRANCH_COST. */
138 const int fadd; /* cost of FADD and FSUB instructions. */
139 const int fmul; /* cost of FMUL instruction. */
140 const int fdiv; /* cost of FDIV instruction. */
141 const int fabs; /* cost of FABS instruction. */
142 const int fchs; /* cost of FCHS instruction. */
143 const int fsqrt; /* cost of FSQRT instruction. */
144 /* Specify what algorithm
145 to use for stringops on unknown size. */
146 struct stringop_algs memcpy[2], memset[2];
147 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
148 load and store. */
149 const int scalar_load_cost; /* Cost of scalar load. */
150 const int scalar_store_cost; /* Cost of scalar store. */
151 const int vec_stmt_cost; /* Cost of any vector operation, excluding
152 load, store, vector-to-scalar and
153 scalar-to-vector operation. */
154 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
155 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
156 const int vec_align_load_cost; /* Cost of aligned vector load. */
157 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
158 const int vec_store_cost; /* Cost of vector store. */
159 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
160 cost model. */
161 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
162 vectorizer cost model. */
165 extern const struct processor_costs *ix86_cost;
167 /* Macros used in the machine description to test the flags. */
169 /* configure can arrange to make this 2, to force a 486. */
171 #ifndef TARGET_CPU_DEFAULT
172 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
173 #endif
175 #ifndef TARGET_FPMATH_DEFAULT
176 #define TARGET_FPMATH_DEFAULT \
177 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
178 #endif
180 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
182 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
183 compile-time constant. */
184 #ifdef IN_LIBGCC2
185 #undef TARGET_64BIT
186 #ifdef __x86_64__
187 #define TARGET_64BIT 1
188 #else
189 #define TARGET_64BIT 0
190 #endif
191 #else
192 #ifndef TARGET_BI_ARCH
193 #undef TARGET_64BIT
194 #if TARGET_64BIT_DEFAULT
195 #define TARGET_64BIT 1
196 #else
197 #define TARGET_64BIT 0
198 #endif
199 #endif
200 #endif
202 #define HAS_LONG_COND_BRANCH 1
203 #define HAS_LONG_UNCOND_BRANCH 1
205 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
206 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
207 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
208 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
209 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
210 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
211 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
212 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
213 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
214 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
215 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
216 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
217 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
218 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
219 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
220 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
222 /* Feature tests against the various tunings. */
223 enum ix86_tune_indices {
224 X86_TUNE_USE_LEAVE,
225 X86_TUNE_PUSH_MEMORY,
226 X86_TUNE_ZERO_EXTEND_WITH_AND,
227 X86_TUNE_USE_BIT_TEST,
228 X86_TUNE_UNROLL_STRLEN,
229 X86_TUNE_DEEP_BRANCH_PREDICTION,
230 X86_TUNE_BRANCH_PREDICTION_HINTS,
231 X86_TUNE_DOUBLE_WITH_ADD,
232 X86_TUNE_USE_SAHF,
233 X86_TUNE_MOVX,
234 X86_TUNE_PARTIAL_REG_STALL,
235 X86_TUNE_PARTIAL_FLAG_REG_STALL,
236 X86_TUNE_USE_HIMODE_FIOP,
237 X86_TUNE_USE_SIMODE_FIOP,
238 X86_TUNE_USE_MOV0,
239 X86_TUNE_USE_CLTD,
240 X86_TUNE_USE_XCHGB,
241 X86_TUNE_SPLIT_LONG_MOVES,
242 X86_TUNE_READ_MODIFY_WRITE,
243 X86_TUNE_READ_MODIFY,
244 X86_TUNE_PROMOTE_QIMODE,
245 X86_TUNE_FAST_PREFIX,
246 X86_TUNE_SINGLE_STRINGOP,
247 X86_TUNE_QIMODE_MATH,
248 X86_TUNE_HIMODE_MATH,
249 X86_TUNE_PROMOTE_QI_REGS,
250 X86_TUNE_PROMOTE_HI_REGS,
251 X86_TUNE_ADD_ESP_4,
252 X86_TUNE_ADD_ESP_8,
253 X86_TUNE_SUB_ESP_4,
254 X86_TUNE_SUB_ESP_8,
255 X86_TUNE_INTEGER_DFMODE_MOVES,
256 X86_TUNE_PARTIAL_REG_DEPENDENCY,
257 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
258 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
259 X86_TUNE_SSE_SPLIT_REGS,
260 X86_TUNE_SSE_TYPELESS_STORES,
261 X86_TUNE_SSE_LOAD0_BY_PXOR,
262 X86_TUNE_MEMORY_MISMATCH_STALL,
263 X86_TUNE_PROLOGUE_USING_MOVE,
264 X86_TUNE_EPILOGUE_USING_MOVE,
265 X86_TUNE_SHIFT1,
266 X86_TUNE_USE_FFREEP,
267 X86_TUNE_INTER_UNIT_MOVES,
268 X86_TUNE_INTER_UNIT_CONVERSIONS,
269 X86_TUNE_FOUR_JUMP_LIMIT,
270 X86_TUNE_SCHEDULE,
271 X86_TUNE_USE_BT,
272 X86_TUNE_USE_INCDEC,
273 X86_TUNE_PAD_RETURNS,
274 X86_TUNE_EXT_80387_CONSTANTS,
275 X86_TUNE_SHORTEN_X87_SSE,
276 X86_TUNE_AVOID_VECTOR_DECODE,
277 X86_TUNE_PROMOTE_HIMODE_IMUL,
278 X86_TUNE_SLOW_IMUL_IMM32_MEM,
279 X86_TUNE_SLOW_IMUL_IMM8,
280 X86_TUNE_MOVE_M1_VIA_OR,
281 X86_TUNE_NOT_UNPAIRABLE,
282 X86_TUNE_NOT_VECTORMODE,
283 X86_TUNE_USE_VECTOR_CONVERTS,
285 X86_TUNE_LAST
288 extern unsigned int ix86_tune_features[X86_TUNE_LAST];
290 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
291 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
292 #define TARGET_ZERO_EXTEND_WITH_AND \
293 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
294 #define TARGET_USE_BIT_TEST ix86_tune_features[X86_TUNE_USE_BIT_TEST]
295 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
296 #define TARGET_DEEP_BRANCH_PREDICTION \
297 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
298 #define TARGET_BRANCH_PREDICTION_HINTS \
299 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
300 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
301 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
302 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
303 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
304 #define TARGET_PARTIAL_FLAG_REG_STALL \
305 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
306 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
307 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
308 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
309 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
310 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
311 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
312 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
313 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
314 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
315 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
316 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
317 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
318 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
319 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
320 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
321 #define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
322 #define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
323 #define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
324 #define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
325 #define TARGET_INTEGER_DFMODE_MOVES \
326 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
327 #define TARGET_PARTIAL_REG_DEPENDENCY \
328 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
329 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
330 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
331 #define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
332 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
333 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
334 #define TARGET_SSE_TYPELESS_STORES \
335 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
336 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
337 #define TARGET_MEMORY_MISMATCH_STALL \
338 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
339 #define TARGET_PROLOGUE_USING_MOVE \
340 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
341 #define TARGET_EPILOGUE_USING_MOVE \
342 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
343 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
344 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
345 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
346 #define TARGET_INTER_UNIT_CONVERSIONS\
347 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
348 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
349 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
350 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
351 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
352 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
353 #define TARGET_EXT_80387_CONSTANTS \
354 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
355 #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
356 #define TARGET_AVOID_VECTOR_DECODE \
357 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
358 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
359 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
360 #define TARGET_SLOW_IMUL_IMM32_MEM \
361 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
362 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
363 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
364 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
365 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
366 #define TARGET_USE_VECTOR_CONVERTS ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
368 /* Feature tests against the various architecture variations. */
369 enum ix86_arch_indices {
370 X86_ARCH_CMOVE, /* || TARGET_SSE */
371 X86_ARCH_CMPXCHG,
372 X86_ARCH_CMPXCHG8B,
373 X86_ARCH_XADD,
374 X86_ARCH_BSWAP,
376 X86_ARCH_LAST
379 extern unsigned int ix86_arch_features[X86_ARCH_LAST];
381 #define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
382 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
383 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
384 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
385 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
387 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
389 extern int x86_prefetch_sse;
391 #define TARGET_ABM x86_abm
392 #define TARGET_CMPXCHG16B x86_cmpxchg16b
393 #define TARGET_POPCNT x86_popcnt
394 #define TARGET_PREFETCH_SSE x86_prefetch_sse
395 #define TARGET_SAHF x86_sahf
396 #define TARGET_RECIP x86_recip
397 #define TARGET_FUSED_MADD x86_fused_muladd
399 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
401 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
402 #define TARGET_MIX_SSE_I387 \
403 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
405 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
406 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
407 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
408 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
410 extern int ix86_isa_flags;
412 #ifndef TARGET_64BIT_DEFAULT
413 #define TARGET_64BIT_DEFAULT 0
414 #endif
415 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
416 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
417 #endif
419 /* Fence to use after loop using storent. */
421 extern tree x86_mfence;
422 #define FENCE_FOLLOWING_MOVNT x86_mfence
424 /* Once GDB has been enhanced to deal with functions without frame
425 pointers, we can change this to allow for elimination of
426 the frame pointer in leaf functions. */
427 #define TARGET_DEFAULT 0
429 /* Extra bits to force. */
430 #define TARGET_SUBTARGET_DEFAULT 0
431 #define TARGET_SUBTARGET_ISA_DEFAULT 0
433 /* Extra bits to force on w/ 32-bit mode. */
434 #define TARGET_SUBTARGET32_DEFAULT 0
435 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
437 /* Extra bits to force on w/ 64-bit mode. */
438 #define TARGET_SUBTARGET64_DEFAULT 0
439 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
441 /* This is not really a target flag, but is done this way so that
442 it's analogous to similar code for Mach-O on PowerPC. darwin.h
443 redefines this to 1. */
444 #define TARGET_MACHO 0
446 /* Likewise, for the Windows 64-bit ABI. */
447 #define TARGET_64BIT_MS_ABI 0
449 /* Subtargets may reset this to 1 in order to enable 96-bit long double
450 with the rounding mode forced to 53 bits. */
451 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
453 /* Sometimes certain combinations of command options do not make
454 sense on a particular target machine. You can define a macro
455 `OVERRIDE_OPTIONS' to take account of this. This macro, if
456 defined, is executed once just after all the command options have
457 been parsed.
459 Don't use this macro to turn on various extra optimizations for
460 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
462 #define OVERRIDE_OPTIONS override_options ()
464 /* Define this to change the optimizations performed by default. */
465 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
466 optimization_options ((LEVEL), (SIZE))
468 /* -march=native handling only makes sense with compiler running on
469 an x86 or x86_64 chip. If changing this condition, also change
470 the condition in driver-i386.c. */
471 #if defined(__i386__) || defined(__x86_64__)
472 /* In driver-i386.c. */
473 extern const char *host_detect_local_cpu (int argc, const char **argv);
474 #define EXTRA_SPEC_FUNCTIONS \
475 { "local_cpu_detect", host_detect_local_cpu },
476 #define HAVE_LOCAL_CPU_DETECT
477 #endif
479 /* Support for configure-time defaults of some command line options.
480 The order here is important so that -march doesn't squash the
481 tune or cpu values. */
482 #define OPTION_DEFAULT_SPECS \
483 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
484 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
485 {"arch", "%{!march=*:-march=%(VALUE)}"}
487 /* Specs for the compiler proper */
489 #ifndef CC1_CPU_SPEC
490 #define CC1_CPU_SPEC_1 "\
491 %{mcpu=*:-mtune=%* \
492 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
493 %<mcpu=* \
494 %{mintel-syntax:-masm=intel \
495 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
496 %{mno-intel-syntax:-masm=att \
497 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
499 #ifndef HAVE_LOCAL_CPU_DETECT
500 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
501 #else
502 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
503 "%{march=native:%<march=native %:local_cpu_detect(arch) \
504 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
505 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
506 #endif
507 #endif
509 /* Target CPU builtins. */
510 #define TARGET_CPU_CPP_BUILTINS() \
511 do \
513 size_t arch_len = strlen (ix86_arch_string); \
514 size_t tune_len = strlen (ix86_tune_string); \
515 int last_arch_char = ix86_arch_string[arch_len - 1]; \
516 int last_tune_char = ix86_tune_string[tune_len - 1]; \
518 if (TARGET_64BIT) \
520 builtin_assert ("cpu=x86_64"); \
521 builtin_assert ("machine=x86_64"); \
522 builtin_define ("__amd64"); \
523 builtin_define ("__amd64__"); \
524 builtin_define ("__x86_64"); \
525 builtin_define ("__x86_64__"); \
527 else \
529 builtin_assert ("cpu=i386"); \
530 builtin_assert ("machine=i386"); \
531 builtin_define_std ("i386"); \
534 /* Built-ins based on -mtune= (or -march= if no \
535 -mtune= given). */ \
536 if (TARGET_386) \
537 builtin_define ("__tune_i386__"); \
538 else if (TARGET_486) \
539 builtin_define ("__tune_i486__"); \
540 else if (TARGET_PENTIUM) \
542 builtin_define ("__tune_i586__"); \
543 builtin_define ("__tune_pentium__"); \
544 if (last_tune_char == 'x') \
545 builtin_define ("__tune_pentium_mmx__"); \
547 else if (TARGET_PENTIUMPRO) \
549 builtin_define ("__tune_i686__"); \
550 builtin_define ("__tune_pentiumpro__"); \
551 switch (last_tune_char) \
553 case '3': \
554 builtin_define ("__tune_pentium3__"); \
555 /* FALLTHRU */ \
556 case '2': \
557 builtin_define ("__tune_pentium2__"); \
558 break; \
561 else if (TARGET_GEODE) \
563 builtin_define ("__tune_geode__"); \
565 else if (TARGET_K6) \
567 builtin_define ("__tune_k6__"); \
568 if (last_tune_char == '2') \
569 builtin_define ("__tune_k6_2__"); \
570 else if (last_tune_char == '3') \
571 builtin_define ("__tune_k6_3__"); \
573 else if (TARGET_ATHLON) \
575 builtin_define ("__tune_athlon__"); \
576 /* Only plain "athlon" lacks SSE. */ \
577 if (last_tune_char != 'n') \
578 builtin_define ("__tune_athlon_sse__"); \
580 else if (TARGET_K8) \
581 builtin_define ("__tune_k8__"); \
582 else if (TARGET_AMDFAM10) \
583 builtin_define ("__tune_amdfam10__"); \
584 else if (TARGET_PENTIUM4) \
585 builtin_define ("__tune_pentium4__"); \
586 else if (TARGET_NOCONA) \
587 builtin_define ("__tune_nocona__"); \
588 else if (TARGET_CORE2) \
589 builtin_define ("__tune_core2__"); \
591 if (TARGET_MMX) \
592 builtin_define ("__MMX__"); \
593 if (TARGET_3DNOW) \
594 builtin_define ("__3dNOW__"); \
595 if (TARGET_3DNOW_A) \
596 builtin_define ("__3dNOW_A__"); \
597 if (TARGET_SSE) \
598 builtin_define ("__SSE__"); \
599 if (TARGET_SSE2) \
600 builtin_define ("__SSE2__"); \
601 if (TARGET_SSE3) \
602 builtin_define ("__SSE3__"); \
603 if (TARGET_SSSE3) \
604 builtin_define ("__SSSE3__"); \
605 if (TARGET_SSE4_1) \
606 builtin_define ("__SSE4_1__"); \
607 if (TARGET_SSE4_2) \
608 builtin_define ("__SSE4_2__"); \
609 if (TARGET_SSE4A) \
610 builtin_define ("__SSE4A__"); \
611 if (TARGET_SSE5) \
612 builtin_define ("__SSE5__"); \
613 if (TARGET_SSE_MATH && TARGET_SSE) \
614 builtin_define ("__SSE_MATH__"); \
615 if (TARGET_SSE_MATH && TARGET_SSE2) \
616 builtin_define ("__SSE2_MATH__"); \
618 /* Built-ins based on -march=. */ \
619 if (ix86_arch == PROCESSOR_I486) \
621 builtin_define ("__i486"); \
622 builtin_define ("__i486__"); \
624 else if (ix86_arch == PROCESSOR_PENTIUM) \
626 builtin_define ("__i586"); \
627 builtin_define ("__i586__"); \
628 builtin_define ("__pentium"); \
629 builtin_define ("__pentium__"); \
630 if (last_arch_char == 'x') \
631 builtin_define ("__pentium_mmx__"); \
633 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
635 builtin_define ("__i686"); \
636 builtin_define ("__i686__"); \
637 builtin_define ("__pentiumpro"); \
638 builtin_define ("__pentiumpro__"); \
640 else if (ix86_arch == PROCESSOR_GEODE) \
642 builtin_define ("__geode"); \
643 builtin_define ("__geode__"); \
645 else if (ix86_arch == PROCESSOR_K6) \
648 builtin_define ("__k6"); \
649 builtin_define ("__k6__"); \
650 if (last_arch_char == '2') \
651 builtin_define ("__k6_2__"); \
652 else if (last_arch_char == '3') \
653 builtin_define ("__k6_3__"); \
655 else if (ix86_arch == PROCESSOR_ATHLON) \
657 builtin_define ("__athlon"); \
658 builtin_define ("__athlon__"); \
659 /* Only plain "athlon" lacks SSE. */ \
660 if (last_arch_char != 'n') \
661 builtin_define ("__athlon_sse__"); \
663 else if (ix86_arch == PROCESSOR_K8) \
665 builtin_define ("__k8"); \
666 builtin_define ("__k8__"); \
668 else if (ix86_arch == PROCESSOR_AMDFAM10) \
670 builtin_define ("__amdfam10"); \
671 builtin_define ("__amdfam10__"); \
673 else if (ix86_arch == PROCESSOR_PENTIUM4) \
675 builtin_define ("__pentium4"); \
676 builtin_define ("__pentium4__"); \
678 else if (ix86_arch == PROCESSOR_NOCONA) \
680 builtin_define ("__nocona"); \
681 builtin_define ("__nocona__"); \
683 else if (ix86_arch == PROCESSOR_CORE2) \
685 builtin_define ("__core2"); \
686 builtin_define ("__core2__"); \
689 while (0)
691 #define TARGET_CPU_DEFAULT_i386 0
692 #define TARGET_CPU_DEFAULT_i486 1
693 #define TARGET_CPU_DEFAULT_pentium 2
694 #define TARGET_CPU_DEFAULT_pentium_mmx 3
695 #define TARGET_CPU_DEFAULT_pentiumpro 4
696 #define TARGET_CPU_DEFAULT_pentium2 5
697 #define TARGET_CPU_DEFAULT_pentium3 6
698 #define TARGET_CPU_DEFAULT_pentium4 7
699 #define TARGET_CPU_DEFAULT_geode 8
700 #define TARGET_CPU_DEFAULT_k6 9
701 #define TARGET_CPU_DEFAULT_k6_2 10
702 #define TARGET_CPU_DEFAULT_k6_3 11
703 #define TARGET_CPU_DEFAULT_athlon 12
704 #define TARGET_CPU_DEFAULT_athlon_sse 13
705 #define TARGET_CPU_DEFAULT_k8 14
706 #define TARGET_CPU_DEFAULT_pentium_m 15
707 #define TARGET_CPU_DEFAULT_prescott 16
708 #define TARGET_CPU_DEFAULT_nocona 17
709 #define TARGET_CPU_DEFAULT_core2 18
710 #define TARGET_CPU_DEFAULT_generic 19
711 #define TARGET_CPU_DEFAULT_amdfam10 20
713 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
714 "pentiumpro", "pentium2", "pentium3", \
715 "pentium4", "geode", "k6", "k6-2", "k6-3", \
716 "athlon", "athlon-4", "k8", \
717 "pentium-m", "prescott", "nocona", \
718 "core2", "generic", "amdfam10"}
720 #ifndef CC1_SPEC
721 #define CC1_SPEC "%(cc1_cpu) "
722 #endif
724 /* This macro defines names of additional specifications to put in the
725 specs that can be used in various specifications like CC1_SPEC. Its
726 definition is an initializer with a subgrouping for each command option.
728 Each subgrouping contains a string constant, that defines the
729 specification name, and a string constant that used by the GCC driver
730 program.
732 Do not define this macro if it does not need to do anything. */
734 #ifndef SUBTARGET_EXTRA_SPECS
735 #define SUBTARGET_EXTRA_SPECS
736 #endif
738 #define EXTRA_SPECS \
739 { "cc1_cpu", CC1_CPU_SPEC }, \
740 SUBTARGET_EXTRA_SPECS
742 /* target machine storage layout */
744 #define LONG_DOUBLE_TYPE_SIZE 80
746 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
747 FPU, assume that the fpcw is set to extended precision; when using
748 only SSE, rounding is correct; when using both SSE and the FPU,
749 the rounding precision is indeterminate, since either may be chosen
750 apparently at random. */
751 #define TARGET_FLT_EVAL_METHOD \
752 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
754 #define SHORT_TYPE_SIZE 16
755 #define INT_TYPE_SIZE 32
756 #define FLOAT_TYPE_SIZE 32
757 #define LONG_TYPE_SIZE BITS_PER_WORD
758 #define DOUBLE_TYPE_SIZE 64
759 #define LONG_LONG_TYPE_SIZE 64
761 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
762 #define MAX_BITS_PER_WORD 64
763 #else
764 #define MAX_BITS_PER_WORD 32
765 #endif
767 /* Define this if most significant byte of a word is the lowest numbered. */
768 /* That is true on the 80386. */
770 #define BITS_BIG_ENDIAN 0
772 /* Define this if most significant byte of a word is the lowest numbered. */
773 /* That is not true on the 80386. */
774 #define BYTES_BIG_ENDIAN 0
776 /* Define this if most significant word of a multiword number is the lowest
777 numbered. */
778 /* Not true for 80386 */
779 #define WORDS_BIG_ENDIAN 0
781 /* Width of a word, in units (bytes). */
782 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
783 #ifdef IN_LIBGCC2
784 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
785 #else
786 #define MIN_UNITS_PER_WORD 4
787 #endif
789 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
790 #define PARM_BOUNDARY BITS_PER_WORD
792 /* Boundary (in *bits*) on which stack pointer should be aligned. */
793 #define STACK_BOUNDARY BITS_PER_WORD
795 /* Boundary (in *bits*) on which the stack pointer prefers to be
796 aligned; the compiler cannot rely on having this alignment. */
797 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
799 /* As of July 2001, many runtimes do not align the stack properly when
800 entering main. This causes expand_main_function to forcibly align
801 the stack, which results in aligned frames for functions called from
802 main, though it does nothing for the alignment of main itself. */
803 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
804 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
806 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
807 mandatory for the 64-bit ABI, and may or may not be true for other
808 operating systems. */
809 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
811 /* Minimum allocation boundary for the code of a function. */
812 #define FUNCTION_BOUNDARY 8
814 /* C++ stores the virtual bit in the lowest bit of function pointers. */
815 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
817 /* Alignment of field after `int : 0' in a structure. */
819 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
821 /* Minimum size in bits of the largest boundary to which any
822 and all fundamental data types supported by the hardware
823 might need to be aligned. No data type wants to be aligned
824 rounder than this.
826 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
827 and Pentium Pro XFmode values at 128 bit boundaries. */
829 #define BIGGEST_ALIGNMENT 128
831 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
832 #define ALIGN_MODE_128(MODE) \
833 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
835 /* The published ABIs say that doubles should be aligned on word
836 boundaries, so lower the alignment for structure fields unless
837 -malign-double is set. */
839 /* ??? Blah -- this macro is used directly by libobjc. Since it
840 supports no vector modes, cut out the complexity and fall back
841 on BIGGEST_FIELD_ALIGNMENT. */
842 #ifdef IN_TARGET_LIBS
843 #ifdef __x86_64__
844 #define BIGGEST_FIELD_ALIGNMENT 128
845 #else
846 #define BIGGEST_FIELD_ALIGNMENT 32
847 #endif
848 #else
849 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
850 x86_field_alignment (FIELD, COMPUTED)
851 #endif
853 /* If defined, a C expression to compute the alignment given to a
854 constant that is being placed in memory. EXP is the constant
855 and ALIGN is the alignment that the object would ordinarily have.
856 The value of this macro is used instead of that alignment to align
857 the object.
859 If this macro is not defined, then ALIGN is used.
861 The typical use of this macro is to increase alignment for string
862 constants to be word aligned so that `strcpy' calls that copy
863 constants can be done inline. */
865 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
867 /* If defined, a C expression to compute the alignment for a static
868 variable. TYPE is the data type, and ALIGN is the alignment that
869 the object would ordinarily have. The value of this macro is used
870 instead of that alignment to align the object.
872 If this macro is not defined, then ALIGN is used.
874 One use of this macro is to increase alignment of medium-size
875 data to make it all fit in fewer cache lines. Another is to
876 cause character arrays to be word-aligned so that `strcpy' calls
877 that copy constants to character arrays can be done inline. */
879 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
881 /* If defined, a C expression to compute the alignment for a local
882 variable. TYPE is the data type, and ALIGN is the alignment that
883 the object would ordinarily have. The value of this macro is used
884 instead of that alignment to align the object.
886 If this macro is not defined, then ALIGN is used.
888 One use of this macro is to increase alignment of medium-size
889 data to make it all fit in fewer cache lines. */
891 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
893 /* If defined, a C expression that gives the alignment boundary, in
894 bits, of an argument with the specified mode and type. If it is
895 not defined, `PARM_BOUNDARY' is used for all arguments. */
897 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
898 ix86_function_arg_boundary ((MODE), (TYPE))
900 /* Set this nonzero if move instructions will actually fail to work
901 when given unaligned data. */
902 #define STRICT_ALIGNMENT 0
904 /* If bit field type is int, don't let it cross an int,
905 and give entire struct the alignment of an int. */
906 /* Required on the 386 since it doesn't have bit-field insns. */
907 #define PCC_BITFIELD_TYPE_MATTERS 1
909 /* Standard register usage. */
911 /* This processor has special stack-like registers. See reg-stack.c
912 for details. */
914 #define STACK_REGS
915 #define IS_STACK_MODE(MODE) \
916 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
917 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
918 || (MODE) == XFmode)
920 /* Number of actual hardware registers.
921 The hardware registers are assigned numbers for the compiler
922 from 0 to just below FIRST_PSEUDO_REGISTER.
923 All registers that the compiler knows about must be given numbers,
924 even those that are not normally considered general registers.
926 In the 80386 we give the 8 general purpose registers the numbers 0-7.
927 We number the floating point registers 8-15.
928 Note that registers 0-7 can be accessed as a short or int,
929 while only 0-3 may be used with byte `mov' instructions.
931 Reg 16 does not correspond to any hardware register, but instead
932 appears in the RTL as an argument pointer prior to reload, and is
933 eliminated during reloading in favor of either the stack or frame
934 pointer. */
936 #define FIRST_PSEUDO_REGISTER 53
938 /* Number of hardware registers that go into the DWARF-2 unwind info.
939 If not defined, equals FIRST_PSEUDO_REGISTER. */
941 #define DWARF_FRAME_REGISTERS 17
943 /* 1 for registers that have pervasive standard uses
944 and are not available for the register allocator.
945 On the 80386, the stack pointer is such, as is the arg pointer.
947 The value is zero if the register is not fixed on either 32 or
948 64 bit targets, one if the register if fixed on both 32 and 64
949 bit targets, two if it is only fixed on 32bit targets and three
950 if its only fixed on 64bit targets.
951 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
953 #define FIXED_REGISTERS \
954 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
955 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
956 /*arg,flags,fpsr,fpcr,frame*/ \
957 1, 1, 1, 1, 1, \
958 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
959 0, 0, 0, 0, 0, 0, 0, 0, \
960 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
961 0, 0, 0, 0, 0, 0, 0, 0, \
962 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
963 2, 2, 2, 2, 2, 2, 2, 2, \
964 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
965 2, 2, 2, 2, 2, 2, 2, 2}
968 /* 1 for registers not available across function calls.
969 These must include the FIXED_REGISTERS and also any
970 registers that can be used without being saved.
971 The latter must include the registers where values are returned
972 and the register where structure-value addresses are passed.
973 Aside from that, you can include as many other registers as you like.
975 The value is zero if the register is not call used on either 32 or
976 64 bit targets, one if the register if call used on both 32 and 64
977 bit targets, two if it is only call used on 32bit targets and three
978 if its only call used on 64bit targets.
979 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
981 #define CALL_USED_REGISTERS \
982 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
983 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
984 /*arg,flags,fpsr,fpcr,frame*/ \
985 1, 1, 1, 1, 1, \
986 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
987 1, 1, 1, 1, 1, 1, 1, 1, \
988 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
989 1, 1, 1, 1, 1, 1, 1, 1, \
990 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
991 1, 1, 1, 1, 2, 2, 2, 2, \
992 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
993 1, 1, 1, 1, 1, 1, 1, 1} \
995 /* Order in which to allocate registers. Each register must be
996 listed once, even those in FIXED_REGISTERS. List frame pointer
997 late and fixed registers last. Note that, in general, we prefer
998 registers listed in CALL_USED_REGISTERS, keeping the others
999 available for storage of persistent values.
1001 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
1002 so this is just empty initializer for array. */
1004 #define REG_ALLOC_ORDER \
1005 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1006 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1007 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1008 48, 49, 50, 51, 52 }
1010 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1011 to be rearranged based on a particular function. When using sse math,
1012 we want to allocate SSE before x87 registers and vice versa. */
1014 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
1017 /* Macro to conditionally modify fixed_regs/call_used_regs. */
1018 #define CONDITIONAL_REGISTER_USAGE \
1019 do { \
1020 int i; \
1021 unsigned int j; \
1022 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1024 if (fixed_regs[i] > 1) \
1025 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
1026 if (call_used_regs[i] > 1) \
1027 call_used_regs[i] = (call_used_regs[i] \
1028 == (TARGET_64BIT ? 3 : 2)); \
1030 j = PIC_OFFSET_TABLE_REGNUM; \
1031 if (j != INVALID_REGNUM) \
1033 fixed_regs[j] = 1; \
1034 call_used_regs[j] = 1; \
1036 if (! TARGET_MMX) \
1038 int i; \
1039 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1040 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1041 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
1043 if (! TARGET_SSE) \
1045 int i; \
1046 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1047 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1048 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
1050 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1052 int i; \
1053 HARD_REG_SET x; \
1054 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1055 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1056 if (TEST_HARD_REG_BIT (x, i)) \
1057 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
1059 if (! TARGET_64BIT) \
1061 int i; \
1062 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
1063 reg_names[i] = ""; \
1064 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
1065 reg_names[i] = ""; \
1067 if (TARGET_64BIT_MS_ABI) \
1069 call_used_regs[4 /*RSI*/] = 0; \
1070 call_used_regs[5 /*RDI*/] = 0; \
1072 } while (0)
1074 /* Return number of consecutive hard regs needed starting at reg REGNO
1075 to hold something of mode MODE.
1076 This is ordinarily the length in words of a value of mode MODE
1077 but can be less for certain modes in special long registers.
1079 Actually there are no two word move instructions for consecutive
1080 registers. And only registers 0-3 may have mov byte instructions
1081 applied to them.
1084 #define HARD_REGNO_NREGS(REGNO, MODE) \
1085 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1086 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1087 : ((MODE) == XFmode \
1088 ? (TARGET_64BIT ? 2 : 3) \
1089 : (MODE) == XCmode \
1090 ? (TARGET_64BIT ? 4 : 6) \
1091 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1093 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1094 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1095 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1096 ? 0 \
1097 : ((MODE) == XFmode || (MODE) == XCmode)) \
1098 : 0)
1100 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1102 #define VALID_SSE2_REG_MODE(MODE) \
1103 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1104 || (MODE) == V2DImode || (MODE) == DFmode)
1106 #define VALID_SSE_REG_MODE(MODE) \
1107 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1108 || (MODE) == SFmode || (MODE) == TFmode)
1110 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1111 ((MODE) == V2SFmode || (MODE) == SFmode)
1113 #define VALID_MMX_REG_MODE(MODE) \
1114 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1115 || (MODE) == V2SImode || (MODE) == SImode)
1117 /* ??? No autovectorization into MMX or 3DNOW until we can reliably
1118 place emms and femms instructions. */
1119 #define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
1121 #define VALID_DFP_MODE_P(MODE) \
1122 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1124 #define VALID_FP_MODE_P(MODE) \
1125 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1126 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1128 #define VALID_INT_MODE_P(MODE) \
1129 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1130 || (MODE) == DImode \
1131 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1132 || (MODE) == CDImode \
1133 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1134 || (MODE) == TFmode || (MODE) == TCmode)))
1136 /* Return true for modes passed in SSE registers. */
1137 #define SSE_REG_MODE_P(MODE) \
1138 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
1139 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1140 || (MODE) == V4SFmode || (MODE) == V4SImode)
1142 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1144 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1145 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1147 /* Value is 1 if it is a good idea to tie two pseudo registers
1148 when one has mode MODE1 and one has mode MODE2.
1149 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1150 for any hard reg, then this must be 0 for correct output. */
1152 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1154 /* It is possible to write patterns to move flags; but until someone
1155 does it, */
1156 #define AVOID_CCMODE_COPIES
1158 /* Specify the modes required to caller save a given hard regno.
1159 We do this on i386 to prevent flags from being saved at all.
1161 Kill any attempts to combine saving of modes. */
1163 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1164 (CC_REGNO_P (REGNO) ? VOIDmode \
1165 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1166 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1167 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1168 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1169 : (MODE))
1170 /* Specify the registers used for certain standard purposes.
1171 The values of these macros are register numbers. */
1173 /* on the 386 the pc register is %eip, and is not usable as a general
1174 register. The ordinary mov instructions won't work */
1175 /* #define PC_REGNUM */
1177 /* Register to use for pushing function arguments. */
1178 #define STACK_POINTER_REGNUM 7
1180 /* Base register for access to local variables of the function. */
1181 #define HARD_FRAME_POINTER_REGNUM 6
1183 /* Base register for access to local variables of the function. */
1184 #define FRAME_POINTER_REGNUM 20
1186 /* First floating point reg */
1187 #define FIRST_FLOAT_REG 8
1189 /* First & last stack-like regs */
1190 #define FIRST_STACK_REG FIRST_FLOAT_REG
1191 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1193 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1194 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1196 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1197 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1199 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1200 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1202 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1203 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1205 /* Value should be nonzero if functions must have frame pointers.
1206 Zero means the frame pointer need not be set up (and parms
1207 may be accessed via the stack pointer) in functions that seem suitable.
1208 This is computed in `reload', in reload1.c. */
1209 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1211 /* Override this in other tm.h files to cope with various OS lossage
1212 requiring a frame pointer. */
1213 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1214 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1215 #endif
1217 /* Make sure we can access arbitrary call frames. */
1218 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1220 /* Base register for access to arguments of the function. */
1221 #define ARG_POINTER_REGNUM 16
1223 /* Register in which static-chain is passed to a function.
1224 We do use ECX as static chain register for 32 bit ABI. On the
1225 64bit ABI, ECX is an argument register, so we use R10 instead. */
1226 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1228 /* Register to hold the addressing base for position independent
1229 code access to data items. We don't use PIC pointer for 64bit
1230 mode. Define the regnum to dummy value to prevent gcc from
1231 pessimizing code dealing with EBX.
1233 To avoid clobbering a call-saved register unnecessarily, we renumber
1234 the pic register when possible. The change is visible after the
1235 prologue has been emitted. */
1237 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1239 #define PIC_OFFSET_TABLE_REGNUM \
1240 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1241 || !flag_pic ? INVALID_REGNUM \
1242 : reload_completed ? REGNO (pic_offset_table_rtx) \
1243 : REAL_PIC_OFFSET_TABLE_REGNUM)
1245 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1247 /* A C expression which can inhibit the returning of certain function
1248 values in registers, based on the type of value. A nonzero value
1249 says to return the function value in memory, just as large
1250 structures are always returned. Here TYPE will be a C expression
1251 of type `tree', representing the data type of the value.
1253 Note that values of mode `BLKmode' must be explicitly handled by
1254 this macro. Also, the option `-fpcc-struct-return' takes effect
1255 regardless of this macro. On most systems, it is possible to
1256 leave the macro undefined; this causes a default definition to be
1257 used, whose value is the constant 1 for `BLKmode' values, and 0
1258 otherwise.
1260 Do not use this macro to indicate that structures and unions
1261 should always be returned in memory. You should instead use
1262 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1264 #define RETURN_IN_MEMORY(TYPE) \
1265 ix86_return_in_memory (TYPE)
1267 /* This is overridden by <cygwin.h>. */
1268 #define MS_AGGREGATE_RETURN 0
1270 /* This is overridden by <netware.h>. */
1271 #define KEEP_AGGREGATE_RETURN_POINTER 0
1273 /* Define the classes of registers for register constraints in the
1274 machine description. Also define ranges of constants.
1276 One of the classes must always be named ALL_REGS and include all hard regs.
1277 If there is more than one class, another class must be named NO_REGS
1278 and contain no registers.
1280 The name GENERAL_REGS must be the name of a class (or an alias for
1281 another name such as ALL_REGS). This is the class of registers
1282 that is allowed by "g" or "r" in a register constraint.
1283 Also, registers outside this class are allocated only when
1284 instructions express preferences for them.
1286 The classes must be numbered in nondecreasing order; that is,
1287 a larger-numbered class must never be contained completely
1288 in a smaller-numbered class.
1290 For any two classes, it is very desirable that there be another
1291 class that represents their union.
1293 It might seem that class BREG is unnecessary, since no useful 386
1294 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1295 and the "b" register constraint is useful in asms for syscalls.
1297 The flags, fpsr and fpcr registers are in no class. */
1299 enum reg_class
1301 NO_REGS,
1302 AREG, DREG, CREG, BREG, SIREG, DIREG,
1303 AD_REGS, /* %eax/%edx for DImode */
1304 Q_REGS, /* %eax %ebx %ecx %edx */
1305 NON_Q_REGS, /* %esi %edi %ebp %esp */
1306 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1307 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1308 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1309 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1310 FLOAT_REGS,
1311 SSE_FIRST_REG,
1312 SSE_REGS,
1313 MMX_REGS,
1314 FP_TOP_SSE_REGS,
1315 FP_SECOND_SSE_REGS,
1316 FLOAT_SSE_REGS,
1317 FLOAT_INT_REGS,
1318 INT_SSE_REGS,
1319 FLOAT_INT_SSE_REGS,
1320 ALL_REGS, LIM_REG_CLASSES
1323 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1325 #define INTEGER_CLASS_P(CLASS) \
1326 reg_class_subset_p ((CLASS), GENERAL_REGS)
1327 #define FLOAT_CLASS_P(CLASS) \
1328 reg_class_subset_p ((CLASS), FLOAT_REGS)
1329 #define SSE_CLASS_P(CLASS) \
1330 reg_class_subset_p ((CLASS), SSE_REGS)
1331 #define MMX_CLASS_P(CLASS) \
1332 ((CLASS) == MMX_REGS)
1333 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1334 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1335 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1336 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1337 #define MAYBE_SSE_CLASS_P(CLASS) \
1338 reg_classes_intersect_p (SSE_REGS, (CLASS))
1339 #define MAYBE_MMX_CLASS_P(CLASS) \
1340 reg_classes_intersect_p (MMX_REGS, (CLASS))
1342 #define Q_CLASS_P(CLASS) \
1343 reg_class_subset_p ((CLASS), Q_REGS)
1345 /* Give names of register classes as strings for dump file. */
1347 #define REG_CLASS_NAMES \
1348 { "NO_REGS", \
1349 "AREG", "DREG", "CREG", "BREG", \
1350 "SIREG", "DIREG", \
1351 "AD_REGS", \
1352 "Q_REGS", "NON_Q_REGS", \
1353 "INDEX_REGS", \
1354 "LEGACY_REGS", \
1355 "GENERAL_REGS", \
1356 "FP_TOP_REG", "FP_SECOND_REG", \
1357 "FLOAT_REGS", \
1358 "SSE_FIRST_REG", \
1359 "SSE_REGS", \
1360 "MMX_REGS", \
1361 "FP_TOP_SSE_REGS", \
1362 "FP_SECOND_SSE_REGS", \
1363 "FLOAT_SSE_REGS", \
1364 "FLOAT_INT_REGS", \
1365 "INT_SSE_REGS", \
1366 "FLOAT_INT_SSE_REGS", \
1367 "ALL_REGS" }
1369 /* Define which registers fit in which classes.
1370 This is an initializer for a vector of HARD_REG_SET
1371 of length N_REG_CLASSES. */
1373 #define REG_CLASS_CONTENTS \
1374 { { 0x00, 0x0 }, \
1375 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1376 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1377 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1378 { 0x03, 0x0 }, /* AD_REGS */ \
1379 { 0x0f, 0x0 }, /* Q_REGS */ \
1380 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1381 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1382 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1383 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1384 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1385 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1386 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1387 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1388 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1389 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1390 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1391 { 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1392 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1393 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1394 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1395 { 0xffffffff,0x1fffff } \
1398 /* The same information, inverted:
1399 Return the class number of the smallest class containing
1400 reg number REGNO. This could be a conditional expression
1401 or could index an array. */
1403 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1405 /* When defined, the compiler allows registers explicitly used in the
1406 rtl to be used as spill registers but prevents the compiler from
1407 extending the lifetime of these registers. */
1409 #define SMALL_REGISTER_CLASSES 1
1411 #define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
1413 #define GENERAL_REGNO_P(N) \
1414 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1416 #define GENERAL_REG_P(X) \
1417 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1419 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1421 #define REX_INT_REGNO_P(N) \
1422 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1423 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1425 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1426 #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1427 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1428 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1430 #define X87_FLOAT_MODE_P(MODE) \
1431 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1433 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1434 #define SSE_REGNO_P(N) \
1435 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1436 || REX_SSE_REGNO_P (N))
1438 #define REX_SSE_REGNO_P(N) \
1439 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1441 #define SSE_REGNO(N) \
1442 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1444 #define SSE_FLOAT_MODE_P(MODE) \
1445 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1447 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1448 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1450 #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1451 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1453 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1455 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1456 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1458 /* The class value for index registers, and the one for base regs. */
1460 #define INDEX_REG_CLASS INDEX_REGS
1461 #define BASE_REG_CLASS GENERAL_REGS
1463 /* Place additional restrictions on the register class to use when it
1464 is necessary to be able to hold a value of mode MODE in a reload
1465 register for which class CLASS would ordinarily be used. */
1467 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1468 ((MODE) == QImode && !TARGET_64BIT \
1469 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1470 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1471 ? Q_REGS : (CLASS))
1473 /* Given an rtx X being reloaded into a reg required to be
1474 in class CLASS, return the class of reg to actually use.
1475 In general this is just CLASS; but on some machines
1476 in some cases it is preferable to use a more restrictive class.
1477 On the 80386 series, we prevent floating constants from being
1478 reloaded into floating registers (since no move-insn can do that)
1479 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1481 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1482 QImode must go into class Q_REGS.
1483 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1484 movdf to do mem-to-mem moves through integer regs. */
1486 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1487 ix86_preferred_reload_class ((X), (CLASS))
1489 /* Discourage putting floating-point values in SSE registers unless
1490 SSE math is being used, and likewise for the 387 registers. */
1492 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1493 ix86_preferred_output_reload_class ((X), (CLASS))
1495 /* If we are copying between general and FP registers, we need a memory
1496 location. The same is true for SSE and MMX registers. */
1497 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1498 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1500 /* QImode spills from non-QI registers need a scratch. This does not
1501 happen often -- the only example so far requires an uninitialized
1502 pseudo. */
1504 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1505 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1506 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1507 ? Q_REGS : NO_REGS)
1509 /* Return the maximum number of consecutive registers
1510 needed to represent mode MODE in a register of class CLASS. */
1511 /* On the 80386, this is the size of MODE in words,
1512 except in the FP regs, where a single reg is always enough. */
1513 #define CLASS_MAX_NREGS(CLASS, MODE) \
1514 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1515 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1516 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1517 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1519 /* A C expression whose value is nonzero if pseudos that have been
1520 assigned to registers of class CLASS would likely be spilled
1521 because registers of CLASS are needed for spill registers.
1523 The default value of this macro returns 1 if CLASS has exactly one
1524 register and zero otherwise. On most machines, this default
1525 should be used. Only define this macro to some other expression
1526 if pseudo allocated by `local-alloc.c' end up in memory because
1527 their hard registers were needed for spill registers. If this
1528 macro returns nonzero for those classes, those pseudos will only
1529 be allocated by `global.c', which knows how to reallocate the
1530 pseudo to another register. If there would not be another
1531 register available for reallocation, you should not change the
1532 definition of this macro since the only effect of such a
1533 definition would be to slow down register allocation. */
1535 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1536 (((CLASS) == AREG) \
1537 || ((CLASS) == DREG) \
1538 || ((CLASS) == CREG) \
1539 || ((CLASS) == BREG) \
1540 || ((CLASS) == AD_REGS) \
1541 || ((CLASS) == SIREG) \
1542 || ((CLASS) == DIREG) \
1543 || ((CLASS) == FP_TOP_REG) \
1544 || ((CLASS) == FP_SECOND_REG))
1546 /* Return a class of registers that cannot change FROM mode to TO mode. */
1548 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1549 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1551 /* Stack layout; function entry, exit and calling. */
1553 /* Define this if pushing a word on the stack
1554 makes the stack pointer a smaller address. */
1555 #define STACK_GROWS_DOWNWARD
1557 /* Define this to nonzero if the nominal address of the stack frame
1558 is at the high-address end of the local variables;
1559 that is, each additional local variable allocated
1560 goes at a more negative offset in the frame. */
1561 #define FRAME_GROWS_DOWNWARD 1
1563 /* Offset within stack frame to start allocating local variables at.
1564 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1565 first local allocated. Otherwise, it is the offset to the BEGINNING
1566 of the first local allocated. */
1567 #define STARTING_FRAME_OFFSET 0
1569 /* If we generate an insn to push BYTES bytes,
1570 this says how many the stack pointer really advances by.
1571 On 386, we have pushw instruction that decrements by exactly 2 no
1572 matter what the position was, there is no pushb.
1573 But as CIE data alignment factor on this arch is -4, we need to make
1574 sure all stack pointer adjustments are in multiple of 4.
1576 For 64bit ABI we round up to 8 bytes.
1579 #define PUSH_ROUNDING(BYTES) \
1580 (TARGET_64BIT \
1581 ? (((BYTES) + 7) & (-8)) \
1582 : (((BYTES) + 3) & (-4)))
1584 /* If defined, the maximum amount of space required for outgoing arguments will
1585 be computed and placed into the variable
1586 `current_function_outgoing_args_size'. No space will be pushed onto the
1587 stack for each call; instead, the function prologue should increase the stack
1588 frame size by this amount. */
1590 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1592 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1593 instructions to pass outgoing arguments. */
1595 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1597 /* We want the stack and args grow in opposite directions, even if
1598 PUSH_ARGS is 0. */
1599 #define PUSH_ARGS_REVERSED 1
1601 /* Offset of first parameter from the argument pointer register value. */
1602 #define FIRST_PARM_OFFSET(FNDECL) 0
1604 /* Define this macro if functions should assume that stack space has been
1605 allocated for arguments even when their values are passed in registers.
1607 The value of this macro is the size, in bytes, of the area reserved for
1608 arguments passed in registers for the function represented by FNDECL.
1610 This space can be allocated by the caller, or be a part of the
1611 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1612 which. */
1613 #define REG_PARM_STACK_SPACE(FNDECL) 0
1615 /* Value is the number of bytes of arguments automatically
1616 popped when returning from a subroutine call.
1617 FUNDECL is the declaration node of the function (as a tree),
1618 FUNTYPE is the data type of the function (as a tree),
1619 or for a library call it is an identifier node for the subroutine name.
1620 SIZE is the number of bytes of arguments passed on the stack.
1622 On the 80386, the RTD insn may be used to pop them if the number
1623 of args is fixed, but if the number is variable then the caller
1624 must pop them all. RTD can't be used for library calls now
1625 because the library is compiled with the Unix compiler.
1626 Use of RTD is a selectable option, since it is incompatible with
1627 standard Unix calling sequences. If the option is not selected,
1628 the caller must always pop the args.
1630 The attribute stdcall is equivalent to RTD on a per module basis. */
1632 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1633 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1635 #define FUNCTION_VALUE_REGNO_P(N) \
1636 ix86_function_value_regno_p (N)
1638 /* Define how to find the value returned by a library function
1639 assuming the value has mode MODE. */
1641 #define LIBCALL_VALUE(MODE) \
1642 ix86_libcall_value (MODE)
1644 /* Define the size of the result block used for communication between
1645 untyped_call and untyped_return. The block contains a DImode value
1646 followed by the block used by fnsave and frstor. */
1648 #define APPLY_RESULT_SIZE (8+108)
1650 /* 1 if N is a possible register number for function argument passing. */
1651 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1653 /* Define a data type for recording info about an argument list
1654 during the scan of that argument list. This data type should
1655 hold all necessary information about the function itself
1656 and about the args processed so far, enough to enable macros
1657 such as FUNCTION_ARG to determine where the next arg should go. */
1659 typedef struct ix86_args {
1660 int words; /* # words passed so far */
1661 int nregs; /* # registers available for passing */
1662 int regno; /* next available register number */
1663 int fastcall; /* fastcall calling convention is used */
1664 int sse_words; /* # sse words passed so far */
1665 int sse_nregs; /* # sse registers available for passing */
1666 int warn_sse; /* True when we want to warn about SSE ABI. */
1667 int warn_mmx; /* True when we want to warn about MMX ABI. */
1668 int sse_regno; /* next available sse register number */
1669 int mmx_words; /* # mmx words passed so far */
1670 int mmx_nregs; /* # mmx registers available for passing */
1671 int mmx_regno; /* next available mmx register number */
1672 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1673 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1674 be passed in SSE registers. Otherwise 0. */
1675 } CUMULATIVE_ARGS;
1677 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1678 for a call to a function whose data type is FNTYPE.
1679 For a library call, FNTYPE is 0. */
1681 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1682 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1684 /* Update the data in CUM to advance over an argument
1685 of mode MODE and data type TYPE.
1686 (TYPE is null for libcalls where that information may not be available.) */
1688 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1689 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1691 /* Define where to put the arguments to a function.
1692 Value is zero to push the argument on the stack,
1693 or a hard register in which to store the argument.
1695 MODE is the argument's machine mode.
1696 TYPE is the data type of the argument (as a tree).
1697 This is null for libcalls where that information may
1698 not be available.
1699 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1700 the preceding args and about the function being called.
1701 NAMED is nonzero if this argument is a named parameter
1702 (otherwise it is an extra parameter matching an ellipsis). */
1704 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1705 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1707 /* Implement `va_start' for varargs and stdarg. */
1708 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1709 ix86_va_start (VALIST, NEXTARG)
1711 #define TARGET_ASM_FILE_END ix86_file_end
1712 #define NEED_INDICATE_EXEC_STACK 0
1714 /* Output assembler code to FILE to increment profiler label # LABELNO
1715 for profiling a function entry. */
1717 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1719 #define MCOUNT_NAME "_mcount"
1721 #define PROFILE_COUNT_REGISTER "edx"
1723 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1724 the stack pointer does not matter. The value is tested only in
1725 functions that have frame pointers.
1726 No definition is equivalent to always zero. */
1727 /* Note on the 386 it might be more efficient not to define this since
1728 we have to restore it ourselves from the frame pointer, in order to
1729 use pop */
1731 #define EXIT_IGNORE_STACK 1
1733 /* Output assembler code for a block containing the constant parts
1734 of a trampoline, leaving space for the variable parts. */
1736 /* On the 386, the trampoline contains two instructions:
1737 mov #STATIC,ecx
1738 jmp FUNCTION
1739 The trampoline is generated entirely at runtime. The operand of JMP
1740 is the address of FUNCTION relative to the instruction following the
1741 JMP (which is 5 bytes long). */
1743 /* Length in units of the trampoline for entering a nested function. */
1745 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1747 /* Emit RTL insns to initialize the variable parts of a trampoline.
1748 FNADDR is an RTX for the address of the function's pure code.
1749 CXT is an RTX for the static chain value for the function. */
1751 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1752 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1754 /* Definitions for register eliminations.
1756 This is an array of structures. Each structure initializes one pair
1757 of eliminable registers. The "from" register number is given first,
1758 followed by "to". Eliminations of the same "from" register are listed
1759 in order of preference.
1761 There are two registers that can always be eliminated on the i386.
1762 The frame pointer and the arg pointer can be replaced by either the
1763 hard frame pointer or to the stack pointer, depending upon the
1764 circumstances. The hard frame pointer is not used before reload and
1765 so it is not eligible for elimination. */
1767 #define ELIMINABLE_REGS \
1768 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1769 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1770 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1771 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1773 /* Given FROM and TO register numbers, say whether this elimination is
1774 allowed. Frame pointer elimination is automatically handled.
1776 All other eliminations are valid. */
1778 #define CAN_ELIMINATE(FROM, TO) \
1779 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1781 /* Define the offset between two registers, one to be eliminated, and the other
1782 its replacement, at the start of a routine. */
1784 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1785 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1787 /* Addressing modes, and classification of registers for them. */
1789 /* Macros to check register numbers against specific register classes. */
1791 /* These assume that REGNO is a hard or pseudo reg number.
1792 They give nonzero only if REGNO is a hard reg of the suitable class
1793 or a pseudo reg currently allocated to a suitable hard reg.
1794 Since they use reg_renumber, they are safe only once reg_renumber
1795 has been allocated, which happens in local-alloc.c. */
1797 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1798 ((REGNO) < STACK_POINTER_REGNUM \
1799 || REX_INT_REGNO_P (REGNO) \
1800 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1801 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1803 #define REGNO_OK_FOR_BASE_P(REGNO) \
1804 (GENERAL_REGNO_P (REGNO) \
1805 || (REGNO) == ARG_POINTER_REGNUM \
1806 || (REGNO) == FRAME_POINTER_REGNUM \
1807 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1809 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1810 and check its validity for a certain class.
1811 We have two alternate definitions for each of them.
1812 The usual definition accepts all pseudo regs; the other rejects
1813 them unless they have been allocated suitable hard regs.
1814 The symbol REG_OK_STRICT causes the latter definition to be used.
1816 Most source files want to accept pseudo regs in the hope that
1817 they will get allocated to the class that the insn wants them to be in.
1818 Source files for reload pass need to be strict.
1819 After reload, it makes no difference, since pseudo regs have
1820 been eliminated by then. */
1823 /* Non strict versions, pseudos are ok. */
1824 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1825 (REGNO (X) < STACK_POINTER_REGNUM \
1826 || REX_INT_REGNO_P (REGNO (X)) \
1827 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1829 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1830 (GENERAL_REGNO_P (REGNO (X)) \
1831 || REGNO (X) == ARG_POINTER_REGNUM \
1832 || REGNO (X) == FRAME_POINTER_REGNUM \
1833 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1835 /* Strict versions, hard registers only */
1836 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1837 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1839 #ifndef REG_OK_STRICT
1840 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1841 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1843 #else
1844 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1845 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1846 #endif
1848 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1849 that is a valid memory address for an instruction.
1850 The MODE argument is the machine mode for the MEM expression
1851 that wants to use this address.
1853 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1854 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1856 See legitimize_pic_address in i386.c for details as to what
1857 constitutes a legitimate address when -fpic is used. */
1859 #define MAX_REGS_PER_ADDRESS 2
1861 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1863 /* Nonzero if the constant value X is a legitimate general operand.
1864 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1866 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1868 #ifdef REG_OK_STRICT
1869 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1870 do { \
1871 if (legitimate_address_p ((MODE), (X), 1)) \
1872 goto ADDR; \
1873 } while (0)
1875 #else
1876 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1877 do { \
1878 if (legitimate_address_p ((MODE), (X), 0)) \
1879 goto ADDR; \
1880 } while (0)
1882 #endif
1884 /* If defined, a C expression to determine the base term of address X.
1885 This macro is used in only one place: `find_base_term' in alias.c.
1887 It is always safe for this macro to not be defined. It exists so
1888 that alias analysis can understand machine-dependent addresses.
1890 The typical use of this macro is to handle addresses containing
1891 a label_ref or symbol_ref within an UNSPEC. */
1893 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1895 /* Try machine-dependent ways of modifying an illegitimate address
1896 to be legitimate. If we find one, return the new, valid address.
1897 This macro is used in only one place: `memory_address' in explow.c.
1899 OLDX is the address as it was before break_out_memory_refs was called.
1900 In some cases it is useful to look at this to decide what needs to be done.
1902 MODE and WIN are passed so that this macro can use
1903 GO_IF_LEGITIMATE_ADDRESS.
1905 It is always safe for this macro to do nothing. It exists to recognize
1906 opportunities to optimize the output.
1908 For the 80386, we handle X+REG by loading X into a register R and
1909 using R+REG. R will go in a general reg and indexing will be used.
1910 However, if REG is a broken-out memory address or multiplication,
1911 nothing needs to be done because REG can certainly go in a general reg.
1913 When -fpic is used, special handling is needed for symbolic references.
1914 See comments by legitimize_pic_address in i386.c for details. */
1916 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1917 do { \
1918 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1919 if (memory_address_p ((MODE), (X))) \
1920 goto WIN; \
1921 } while (0)
1923 /* Nonzero if the constant value X is a legitimate general operand
1924 when generating PIC code. It is given that flag_pic is on and
1925 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1927 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1929 #define SYMBOLIC_CONST(X) \
1930 (GET_CODE (X) == SYMBOL_REF \
1931 || GET_CODE (X) == LABEL_REF \
1932 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1934 /* Go to LABEL if ADDR (a legitimate address expression)
1935 has an effect that depends on the machine mode it is used for.
1936 On the 80386, only postdecrement and postincrement address depend thus
1937 (the amount of decrement or increment being the length of the operand).
1938 These are now caught in recog.c. */
1939 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
1941 /* Max number of args passed in registers. If this is more than 3, we will
1942 have problems with ebx (register #4), since it is a caller save register and
1943 is also used as the pic register in ELF. So for now, don't allow more than
1944 3 registers to be passed in registers. */
1946 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1948 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1950 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1953 /* Specify the machine mode that this machine uses
1954 for the index in the tablejump instruction. */
1955 #define CASE_VECTOR_MODE \
1956 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1958 /* Define this as 1 if `char' should by default be signed; else as 0. */
1959 #define DEFAULT_SIGNED_CHAR 1
1961 /* Max number of bytes we can move from memory to memory
1962 in one reasonably fast instruction. */
1963 #define MOVE_MAX 16
1965 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1966 move efficiently, as opposed to MOVE_MAX which is the maximum
1967 number of bytes we can move with a single instruction. */
1968 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1970 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1971 move-instruction pairs, we will do a movmem or libcall instead.
1972 Increasing the value will always make code faster, but eventually
1973 incurs high cost in increased code size.
1975 If you don't define this, a reasonable default is used. */
1977 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1979 /* If a clear memory operation would take CLEAR_RATIO or more simple
1980 move-instruction sequences, we will do a clrmem or libcall instead. */
1982 #define CLEAR_RATIO (optimize_size ? 2 \
1983 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1985 /* Define if shifts truncate the shift count
1986 which implies one can omit a sign-extension or zero-extension
1987 of a shift count. */
1988 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1990 /* #define SHIFT_COUNT_TRUNCATED */
1992 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1993 is done just by pretending it is already truncated. */
1994 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1996 /* A macro to update M and UNSIGNEDP when an object whose type is
1997 TYPE and which has the specified mode and signedness is to be
1998 stored in a register. This macro is only called when TYPE is a
1999 scalar type.
2001 On i386 it is sometimes useful to promote HImode and QImode
2002 quantities to SImode. The choice depends on target type. */
2004 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2005 do { \
2006 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2007 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2008 (MODE) = SImode; \
2009 } while (0)
2011 /* Specify the machine mode that pointers have.
2012 After generation of rtl, the compiler makes no further distinction
2013 between pointers and any other objects of this machine mode. */
2014 #define Pmode (TARGET_64BIT ? DImode : SImode)
2016 /* A function address in a call instruction
2017 is a byte address (for indexing purposes)
2018 so give the MEM rtx a byte's mode. */
2019 #define FUNCTION_MODE QImode
2021 /* A C expression for the cost of moving data from a register in class FROM to
2022 one in class TO. The classes are expressed using the enumeration values
2023 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2024 interpreted relative to that.
2026 It is not required that the cost always equal 2 when FROM is the same as TO;
2027 on some machines it is expensive to move between registers if they are not
2028 general registers. */
2030 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2031 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2033 /* A C expression for the cost of moving data of mode M between a
2034 register and memory. A value of 2 is the default; this cost is
2035 relative to those in `REGISTER_MOVE_COST'.
2037 If moving between registers and memory is more expensive than
2038 between two registers, you should define this macro to express the
2039 relative cost. */
2041 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2042 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2044 /* A C expression for the cost of a branch instruction. A value of 1
2045 is the default; other values are interpreted relative to that. */
2047 #define BRANCH_COST ix86_branch_cost
2049 /* Define this macro as a C expression which is nonzero if accessing
2050 less than a word of memory (i.e. a `char' or a `short') is no
2051 faster than accessing a word of memory, i.e., if such access
2052 require more than one instruction or if there is no difference in
2053 cost between byte and (aligned) word loads.
2055 When this macro is not defined, the compiler will access a field by
2056 finding the smallest containing object; when it is defined, a
2057 fullword load will be used if alignment permits. Unless bytes
2058 accesses are faster than word accesses, using word accesses is
2059 preferable since it may eliminate subsequent memory access if
2060 subsequent accesses occur to other fields in the same word of the
2061 structure, but to different bytes. */
2063 #define SLOW_BYTE_ACCESS 0
2065 /* Nonzero if access to memory by shorts is slow and undesirable. */
2066 #define SLOW_SHORT_ACCESS 0
2068 /* Define this macro to be the value 1 if unaligned accesses have a
2069 cost many times greater than aligned accesses, for example if they
2070 are emulated in a trap handler.
2072 When this macro is nonzero, the compiler will act as if
2073 `STRICT_ALIGNMENT' were nonzero when generating code for block
2074 moves. This can cause significantly more instructions to be
2075 produced. Therefore, do not set this macro nonzero if unaligned
2076 accesses only add a cycle or two to the time for a memory access.
2078 If the value of this macro is always zero, it need not be defined. */
2080 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2082 /* Define this macro if it is as good or better to call a constant
2083 function address than to call an address kept in a register.
2085 Desirable on the 386 because a CALL with a constant address is
2086 faster than one with a register address. */
2088 #define NO_FUNCTION_CSE
2090 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2091 return the mode to be used for the comparison.
2093 For floating-point equality comparisons, CCFPEQmode should be used.
2094 VOIDmode should be used in all other cases.
2096 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2097 possible, to allow for more combinations. */
2099 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2101 /* Return nonzero if MODE implies a floating point inequality can be
2102 reversed. */
2104 #define REVERSIBLE_CC_MODE(MODE) 1
2106 /* A C expression whose value is reversed condition code of the CODE for
2107 comparison done in CC_MODE mode. */
2108 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2111 /* Control the assembler format that we output, to the extent
2112 this does not vary between assemblers. */
2114 /* How to refer to registers in assembler output.
2115 This sequence is indexed by compiler's hard-register-number (see above). */
2117 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2118 For non floating point regs, the following are the HImode names.
2120 For float regs, the stack top is sometimes referred to as "%st(0)"
2121 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
2123 #define HI_REGISTER_NAMES \
2124 {"ax","dx","cx","bx","si","di","bp","sp", \
2125 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2126 "argp", "flags", "fpsr", "fpcr", "frame", \
2127 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2128 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
2129 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2130 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2132 #define REGISTER_NAMES HI_REGISTER_NAMES
2134 /* Table of additional register names to use in user input. */
2136 #define ADDITIONAL_REGISTER_NAMES \
2137 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2138 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2139 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2140 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2141 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2142 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
2144 /* Note we are omitting these since currently I don't know how
2145 to get gcc to use these, since they want the same but different
2146 number as al, and ax.
2149 #define QI_REGISTER_NAMES \
2150 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2152 /* These parallel the array above, and can be used to access bits 8:15
2153 of regs 0 through 3. */
2155 #define QI_HIGH_REGISTER_NAMES \
2156 {"ah", "dh", "ch", "bh", }
2158 /* How to renumber registers for dbx and gdb. */
2160 #define DBX_REGISTER_NUMBER(N) \
2161 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2163 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2164 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2165 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2167 /* Before the prologue, RA is at 0(%esp). */
2168 #define INCOMING_RETURN_ADDR_RTX \
2169 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2171 /* After the prologue, RA is at -4(AP) in the current frame. */
2172 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2173 ((COUNT) == 0 \
2174 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2175 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2177 /* PC is dbx register 8; let's use that column for RA. */
2178 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2180 /* Before the prologue, the top of the frame is at 4(%esp). */
2181 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2183 /* Describe how we implement __builtin_eh_return. */
2184 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2185 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2188 /* Select a format to encode pointers in exception handling data. CODE
2189 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2190 true if the symbol may be affected by dynamic relocations.
2192 ??? All x86 object file formats are capable of representing this.
2193 After all, the relocation needed is the same as for the call insn.
2194 Whether or not a particular assembler allows us to enter such, I
2195 guess we'll have to see. */
2196 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2197 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2199 /* This is how to output an insn to push a register on the stack.
2200 It need not be very fast code. */
2202 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2203 do { \
2204 if (TARGET_64BIT) \
2205 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2206 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2207 else \
2208 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2209 } while (0)
2211 /* This is how to output an insn to pop a register from the stack.
2212 It need not be very fast code. */
2214 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2215 do { \
2216 if (TARGET_64BIT) \
2217 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2218 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2219 else \
2220 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2221 } while (0)
2223 /* This is how to output an element of a case-vector that is absolute. */
2225 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2226 ix86_output_addr_vec_elt ((FILE), (VALUE))
2228 /* This is how to output an element of a case-vector that is relative. */
2230 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2231 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2233 /* Under some conditions we need jump tables in the text section,
2234 because the assembler cannot handle label differences between
2235 sections. This is the case for x86_64 on Mach-O for example. */
2237 #define JUMP_TABLES_IN_TEXT_SECTION \
2238 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2239 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2241 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2242 and switch back. For x86 we do this only to save a few bytes that
2243 would otherwise be unused in the text section. */
2244 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2245 asm (SECTION_OP "\n\t" \
2246 "call " USER_LABEL_PREFIX #FUNC "\n" \
2247 TEXT_SECTION_ASM_OP);
2249 /* Print operand X (an rtx) in assembler syntax to file FILE.
2250 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2251 Effect of various CODE letters is described in i386.c near
2252 print_operand function. */
2254 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2255 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
2257 #define PRINT_OPERAND(FILE, X, CODE) \
2258 print_operand ((FILE), (X), (CODE))
2260 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2261 print_operand_address ((FILE), (ADDR))
2263 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2264 do { \
2265 if (! output_addr_const_extra (FILE, (X))) \
2266 goto FAIL; \
2267 } while (0);
2269 /* Which processor to schedule for. The cpu attribute defines a list that
2270 mirrors this list, so changes to i386.md must be made at the same time. */
2272 enum processor_type
2274 PROCESSOR_I386, /* 80386 */
2275 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2276 PROCESSOR_PENTIUM,
2277 PROCESSOR_PENTIUMPRO,
2278 PROCESSOR_GEODE,
2279 PROCESSOR_K6,
2280 PROCESSOR_ATHLON,
2281 PROCESSOR_PENTIUM4,
2282 PROCESSOR_K8,
2283 PROCESSOR_NOCONA,
2284 PROCESSOR_CORE2,
2285 PROCESSOR_GENERIC32,
2286 PROCESSOR_GENERIC64,
2287 PROCESSOR_AMDFAM10,
2288 PROCESSOR_max
2291 extern enum processor_type ix86_tune;
2292 extern enum processor_type ix86_arch;
2294 enum fpmath_unit
2296 FPMATH_387 = 1,
2297 FPMATH_SSE = 2
2300 extern enum fpmath_unit ix86_fpmath;
2302 enum tls_dialect
2304 TLS_DIALECT_GNU,
2305 TLS_DIALECT_GNU2,
2306 TLS_DIALECT_SUN
2309 extern enum tls_dialect ix86_tls_dialect;
2311 enum cmodel {
2312 CM_32, /* The traditional 32-bit ABI. */
2313 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2314 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2315 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2316 CM_LARGE, /* No assumptions. */
2317 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2318 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2319 CM_LARGE_PIC /* No assumptions. */
2322 extern enum cmodel ix86_cmodel;
2324 /* Size of the RED_ZONE area. */
2325 #define RED_ZONE_SIZE 128
2326 /* Reserved area of the red zone for temporaries. */
2327 #define RED_ZONE_RESERVE 8
2329 enum asm_dialect {
2330 ASM_ATT,
2331 ASM_INTEL
2334 extern enum asm_dialect ix86_asm_dialect;
2335 extern unsigned int ix86_preferred_stack_boundary;
2336 extern int ix86_branch_cost, ix86_section_threshold;
2338 /* Smallest class containing REGNO. */
2339 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2341 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2342 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
2343 extern rtx ix86_compare_emitted;
2345 /* To properly truncate FP values into integers, we need to set i387 control
2346 word. We can't emit proper mode switching code before reload, as spills
2347 generated by reload may truncate values incorrectly, but we still can avoid
2348 redundant computation of new control word by the mode switching pass.
2349 The fldcw instructions are still emitted redundantly, but this is probably
2350 not going to be noticeable problem, as most CPUs do have fast path for
2351 the sequence.
2353 The machinery is to emit simple truncation instructions and split them
2354 before reload to instructions having USEs of two memory locations that
2355 are filled by this code to old and new control word.
2357 Post-reload pass may be later used to eliminate the redundant fildcw if
2358 needed. */
2360 enum ix86_entity
2362 I387_TRUNC = 0,
2363 I387_FLOOR,
2364 I387_CEIL,
2365 I387_MASK_PM,
2366 MAX_386_ENTITIES
2369 enum ix86_stack_slot
2371 SLOT_VIRTUAL = 0,
2372 SLOT_TEMP,
2373 SLOT_CW_STORED,
2374 SLOT_CW_TRUNC,
2375 SLOT_CW_FLOOR,
2376 SLOT_CW_CEIL,
2377 SLOT_CW_MASK_PM,
2378 MAX_386_STACK_LOCALS
2381 /* Define this macro if the port needs extra instructions inserted
2382 for mode switching in an optimizing compilation. */
2384 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2385 ix86_optimize_mode_switching[(ENTITY)]
2387 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2388 initializer for an array of integers. Each initializer element N
2389 refers to an entity that needs mode switching, and specifies the
2390 number of different modes that might need to be set for this
2391 entity. The position of the initializer in the initializer -
2392 starting counting at zero - determines the integer that is used to
2393 refer to the mode-switched entity in question. */
2395 #define NUM_MODES_FOR_MODE_SWITCHING \
2396 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2398 /* ENTITY is an integer specifying a mode-switched entity. If
2399 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2400 return an integer value not larger than the corresponding element
2401 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2402 must be switched into prior to the execution of INSN. */
2404 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2406 /* This macro specifies the order in which modes for ENTITY are
2407 processed. 0 is the highest priority. */
2409 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2411 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2412 is the set of hard registers live at the point where the insn(s)
2413 are to be inserted. */
2415 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2416 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2417 ? emit_i387_cw_initialization (MODE), 0 \
2418 : 0)
2421 /* Avoid renaming of stack registers, as doing so in combination with
2422 scheduling just increases amount of live registers at time and in
2423 the turn amount of fxch instructions needed.
2425 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2427 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2428 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2431 #define FASTCALL_PREFIX '@'
2433 struct machine_function GTY(())
2435 struct stack_local_entry *stack_locals;
2436 const char *some_ld_name;
2437 rtx force_align_arg_pointer;
2438 int save_varrargs_registers;
2439 int accesses_prev_frame;
2440 int optimize_mode_switching[MAX_386_ENTITIES];
2441 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2442 determine the style used. */
2443 int use_fast_prologue_epilogue;
2444 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2445 for. */
2446 int use_fast_prologue_epilogue_nregs;
2447 /* If true, the current function needs the default PIC register, not
2448 an alternate register (on x86) and must not use the red zone (on
2449 x86_64), even if it's a leaf function. We don't want the
2450 function to be regarded as non-leaf because TLS calls need not
2451 affect register allocation. This flag is set when a TLS call
2452 instruction is expanded within a function, and never reset, even
2453 if all such instructions are optimized away. Use the
2454 ix86_current_function_calls_tls_descriptor macro for a better
2455 approximation. */
2456 int tls_descriptor_call_expanded_p;
2459 #define ix86_stack_locals (cfun->machine->stack_locals)
2460 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2461 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2462 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2463 (cfun->machine->tls_descriptor_call_expanded_p)
2464 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2465 calls are optimized away, we try to detect cases in which it was
2466 optimized away. Since such instructions (use (reg REG_SP)), we can
2467 verify whether there's any such instruction live by testing that
2468 REG_SP is live. */
2469 #define ix86_current_function_calls_tls_descriptor \
2470 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2472 /* Control behavior of x86_file_start. */
2473 #define X86_FILE_START_VERSION_DIRECTIVE false
2474 #define X86_FILE_START_FLTUSED false
2476 /* Flag to mark data that is in the large address area. */
2477 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2478 #define SYMBOL_REF_FAR_ADDR_P(X) \
2479 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2481 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2482 have defined always, to avoid ifdefing. */
2483 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2484 #define SYMBOL_REF_DLLIMPORT_P(X) \
2485 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2487 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2488 #define SYMBOL_REF_DLLEXPORT_P(X) \
2489 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2491 /* Model costs for vectorizer. */
2493 /* Cost of conditional branch. */
2494 #undef TARG_COND_BRANCH_COST
2495 #define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2497 /* Cost of any scalar operation, excluding load and store. */
2498 #undef TARG_SCALAR_STMT_COST
2499 #define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2501 /* Cost of scalar load. */
2502 #undef TARG_SCALAR_LOAD_COST
2503 #define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2505 /* Cost of scalar store. */
2506 #undef TARG_SCALAR_STORE_COST
2507 #define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2509 /* Cost of any vector operation, excluding load, store or vector to scalar
2510 operation. */
2511 #undef TARG_VEC_STMT_COST
2512 #define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2514 /* Cost of vector to scalar operation. */
2515 #undef TARG_VEC_TO_SCALAR_COST
2516 #define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2518 /* Cost of scalar to vector operation. */
2519 #undef TARG_SCALAR_TO_VEC_COST
2520 #define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2522 /* Cost of aligned vector load. */
2523 #undef TARG_VEC_LOAD_COST
2524 #define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2526 /* Cost of misaligned vector load. */
2527 #undef TARG_VEC_UNALIGNED_LOAD_COST
2528 #define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2530 /* Cost of vector store. */
2531 #undef TARG_VEC_STORE_COST
2532 #define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2534 /* Cost of conditional taken branch for vectorizer cost model. */
2535 #undef TARG_COND_TAKEN_BRANCH_COST
2536 #define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2538 /* Cost of conditional not taken branch for vectorizer cost model. */
2539 #undef TARG_COND_NOT_TAKEN_BRANCH_COST
2540 #define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2543 Local variables:
2544 version-control: t
2545 End: