Merged with mainline at revision 128810.
[official-gcc.git] / gcc / ada / sem_res.adb
blob718fb242e083b110191128312aaa121a83c75f29
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aggr; use Sem_Aggr;
54 with Sem_Attr; use Sem_Attr;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch4; use Sem_Ch4;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Disp; use Sem_Disp;
60 with Sem_Dist; use Sem_Dist;
61 with Sem_Elab; use Sem_Elab;
62 with Sem_Eval; use Sem_Eval;
63 with Sem_Intr; use Sem_Intr;
64 with Sem_Util; use Sem_Util;
65 with Sem_Type; use Sem_Type;
66 with Sem_Warn; use Sem_Warn;
67 with Sinfo; use Sinfo;
68 with Snames; use Snames;
69 with Stand; use Stand;
70 with Stringt; use Stringt;
71 with Targparm; use Targparm;
72 with Tbuild; use Tbuild;
73 with Uintp; use Uintp;
74 with Urealp; use Urealp;
76 package body Sem_Res is
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 -- Second pass (top-down) type checking and overload resolution procedures
83 -- Typ is the type required by context. These procedures propagate the
84 -- type information recursively to the descendants of N. If the node
85 -- is not overloaded, its Etype is established in the first pass. If
86 -- overloaded, the Resolve routines set the correct type. For arith.
87 -- operators, the Etype is the base type of the context.
89 -- Note that Resolve_Attribute is separated off in Sem_Attr
91 procedure Check_Discriminant_Use (N : Node_Id);
92 -- Enforce the restrictions on the use of discriminants when constraining
93 -- a component of a discriminated type (record or concurrent type).
95 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
96 -- Given a node for an operator associated with type T, check that
97 -- the operator is visible. Operators all of whose operands are
98 -- universal must be checked for visibility during resolution
99 -- because their type is not determinable based on their operands.
101 procedure Check_Fully_Declared_Prefix
102 (Typ : Entity_Id;
103 Pref : Node_Id);
104 -- Check that the type of the prefix of a dereference is not incomplete
106 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
107 -- Given a call node, N, which is known to occur immediately within the
108 -- subprogram being called, determines whether it is a detectable case of
109 -- an infinite recursion, and if so, outputs appropriate messages. Returns
110 -- True if an infinite recursion is detected, and False otherwise.
112 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
113 -- If the type of the object being initialized uses the secondary stack
114 -- directly or indirectly, create a transient scope for the call to the
115 -- init proc. This is because we do not create transient scopes for the
116 -- initialization of individual components within the init proc itself.
117 -- Could be optimized away perhaps?
119 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
120 -- Utility to check whether the name in the call is a predefined
121 -- operator, in which case the call is made into an operator node.
122 -- An instance of an intrinsic conversion operation may be given
123 -- an operator name, but is not treated like an operator.
125 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
126 -- If a default expression in entry call N depends on the discriminants
127 -- of the task, it must be replaced with a reference to the discriminant
128 -- of the task being called.
130 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
131 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
132 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
133 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
134 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
135 procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id);
136 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
137 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
138 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
139 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
140 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
141 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
142 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
143 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
144 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
145 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
146 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
147 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
148 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
149 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
150 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
151 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
152 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
153 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
154 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
155 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
156 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
157 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id);
158 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
159 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
160 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
161 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
163 function Operator_Kind
164 (Op_Name : Name_Id;
165 Is_Binary : Boolean) return Node_Kind;
166 -- Utility to map the name of an operator into the corresponding Node. Used
167 -- by other node rewriting procedures.
169 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
170 -- Resolve actuals of call, and add default expressions for missing ones.
171 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
172 -- called subprogram.
174 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
175 -- Called from Resolve_Call, when the prefix denotes an entry or element
176 -- of entry family. Actuals are resolved as for subprograms, and the node
177 -- is rebuilt as an entry call. Also called for protected operations. Typ
178 -- is the context type, which is used when the operation is a protected
179 -- function with no arguments, and the return value is indexed.
181 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
182 -- A call to a user-defined intrinsic operator is rewritten as a call
183 -- to the corresponding predefined operator, with suitable conversions.
185 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
186 -- Ditto, for unary operators (only arithmetic ones)
188 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
189 -- If an operator node resolves to a call to a user-defined operator,
190 -- rewrite the node as a function call.
192 procedure Make_Call_Into_Operator
193 (N : Node_Id;
194 Typ : Entity_Id;
195 Op_Id : Entity_Id);
196 -- Inverse transformation: if an operator is given in functional notation,
197 -- then after resolving the node, transform into an operator node, so
198 -- that operands are resolved properly. Recall that predefined operators
199 -- do not have a full signature and special resolution rules apply.
201 procedure Rewrite_Renamed_Operator
202 (N : Node_Id;
203 Op : Entity_Id;
204 Typ : Entity_Id);
205 -- An operator can rename another, e.g. in an instantiation. In that
206 -- case, the proper operator node must be constructed and resolved.
208 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
209 -- The String_Literal_Subtype is built for all strings that are not
210 -- operands of a static concatenation operation. If the argument is
211 -- not a N_String_Literal node, then the call has no effect.
213 procedure Set_Slice_Subtype (N : Node_Id);
214 -- Build subtype of array type, with the range specified by the slice
216 procedure Simplify_Type_Conversion (N : Node_Id);
217 -- Called after N has been resolved and evaluated, but before range checks
218 -- have been applied. Currently simplifies a combination of floating-point
219 -- to integer conversion and Truncation attribute.
221 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
222 -- A universal_fixed expression in an universal context is unambiguous
223 -- if there is only one applicable fixed point type. Determining whether
224 -- there is only one requires a search over all visible entities, and
225 -- happens only in very pathological cases (see 6115-006).
227 function Valid_Conversion
228 (N : Node_Id;
229 Target : Entity_Id;
230 Operand : Node_Id) return Boolean;
231 -- Verify legality rules given in 4.6 (8-23). Target is the target
232 -- type of the conversion, which may be an implicit conversion of
233 -- an actual parameter to an anonymous access type (in which case
234 -- N denotes the actual parameter and N = Operand).
236 -------------------------
237 -- Ambiguous_Character --
238 -------------------------
240 procedure Ambiguous_Character (C : Node_Id) is
241 E : Entity_Id;
243 begin
244 if Nkind (C) = N_Character_Literal then
245 Error_Msg_N ("ambiguous character literal", C);
247 -- First the ones in Standard
249 Error_Msg_N
250 ("\\possible interpretation: Character!", C);
251 Error_Msg_N
252 ("\\possible interpretation: Wide_Character!", C);
254 -- Include Wide_Wide_Character in Ada 2005 mode
256 if Ada_Version >= Ada_05 then
257 Error_Msg_N
258 ("\\possible interpretation: Wide_Wide_Character!", C);
259 end if;
261 -- Now any other types that match
263 E := Current_Entity (C);
264 while Present (E) loop
265 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
266 E := Homonym (E);
267 end loop;
268 end if;
269 end Ambiguous_Character;
271 -------------------------
272 -- Analyze_And_Resolve --
273 -------------------------
275 procedure Analyze_And_Resolve (N : Node_Id) is
276 begin
277 Analyze (N);
278 Resolve (N);
279 end Analyze_And_Resolve;
281 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
282 begin
283 Analyze (N);
284 Resolve (N, Typ);
285 end Analyze_And_Resolve;
287 -- Version withs check(s) suppressed
289 procedure Analyze_And_Resolve
290 (N : Node_Id;
291 Typ : Entity_Id;
292 Suppress : Check_Id)
294 Scop : constant Entity_Id := Current_Scope;
296 begin
297 if Suppress = All_Checks then
298 declare
299 Svg : constant Suppress_Array := Scope_Suppress;
300 begin
301 Scope_Suppress := (others => True);
302 Analyze_And_Resolve (N, Typ);
303 Scope_Suppress := Svg;
304 end;
306 else
307 declare
308 Svg : constant Boolean := Scope_Suppress (Suppress);
310 begin
311 Scope_Suppress (Suppress) := True;
312 Analyze_And_Resolve (N, Typ);
313 Scope_Suppress (Suppress) := Svg;
314 end;
315 end if;
317 if Current_Scope /= Scop
318 and then Scope_Is_Transient
319 then
320 -- This can only happen if a transient scope was created
321 -- for an inner expression, which will be removed upon
322 -- completion of the analysis of an enclosing construct.
323 -- The transient scope must have the suppress status of
324 -- the enclosing environment, not of this Analyze call.
326 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
327 Scope_Suppress;
328 end if;
329 end Analyze_And_Resolve;
331 procedure Analyze_And_Resolve
332 (N : Node_Id;
333 Suppress : Check_Id)
335 Scop : constant Entity_Id := Current_Scope;
337 begin
338 if Suppress = All_Checks then
339 declare
340 Svg : constant Suppress_Array := Scope_Suppress;
341 begin
342 Scope_Suppress := (others => True);
343 Analyze_And_Resolve (N);
344 Scope_Suppress := Svg;
345 end;
347 else
348 declare
349 Svg : constant Boolean := Scope_Suppress (Suppress);
351 begin
352 Scope_Suppress (Suppress) := True;
353 Analyze_And_Resolve (N);
354 Scope_Suppress (Suppress) := Svg;
355 end;
356 end if;
358 if Current_Scope /= Scop
359 and then Scope_Is_Transient
360 then
361 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
362 Scope_Suppress;
363 end if;
364 end Analyze_And_Resolve;
366 ----------------------------
367 -- Check_Discriminant_Use --
368 ----------------------------
370 procedure Check_Discriminant_Use (N : Node_Id) is
371 PN : constant Node_Id := Parent (N);
372 Disc : constant Entity_Id := Entity (N);
373 P : Node_Id;
374 D : Node_Id;
376 begin
377 -- Any use in a default expression is legal
379 if In_Default_Expression then
380 null;
382 elsif Nkind (PN) = N_Range then
384 -- Discriminant cannot be used to constrain a scalar type
386 P := Parent (PN);
388 if Nkind (P) = N_Range_Constraint
389 and then Nkind (Parent (P)) = N_Subtype_Indication
390 and then Nkind (Parent (Parent (P))) = N_Component_Definition
391 then
392 Error_Msg_N ("discriminant cannot constrain scalar type", N);
394 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
396 -- The following check catches the unusual case where
397 -- a discriminant appears within an index constraint
398 -- that is part of a larger expression within a constraint
399 -- on a component, e.g. "C : Int range 1 .. F (new A(1 .. D))".
400 -- For now we only check case of record components, and
401 -- note that a similar check should also apply in the
402 -- case of discriminant constraints below. ???
404 -- Note that the check for N_Subtype_Declaration below is to
405 -- detect the valid use of discriminants in the constraints of a
406 -- subtype declaration when this subtype declaration appears
407 -- inside the scope of a record type (which is syntactically
408 -- illegal, but which may be created as part of derived type
409 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
410 -- for more info.
412 if Ekind (Current_Scope) = E_Record_Type
413 and then Scope (Disc) = Current_Scope
414 and then not
415 (Nkind (Parent (P)) = N_Subtype_Indication
416 and then
417 (Nkind (Parent (Parent (P))) = N_Component_Definition
418 or else
419 Nkind (Parent (Parent (P))) = N_Subtype_Declaration)
420 and then Paren_Count (N) = 0)
421 then
422 Error_Msg_N
423 ("discriminant must appear alone in component constraint", N);
424 return;
425 end if;
427 -- Detect a common beginner error:
429 -- type R (D : Positive := 100) is record
430 -- Name : String (1 .. D);
431 -- end record;
433 -- The default value causes an object of type R to be
434 -- allocated with room for Positive'Last characters.
436 declare
437 SI : Node_Id;
438 T : Entity_Id;
439 TB : Node_Id;
440 CB : Entity_Id;
442 function Large_Storage_Type (T : Entity_Id) return Boolean;
443 -- Return True if type T has a large enough range that
444 -- any array whose index type covered the whole range of
445 -- the type would likely raise Storage_Error.
447 ------------------------
448 -- Large_Storage_Type --
449 ------------------------
451 function Large_Storage_Type (T : Entity_Id) return Boolean is
452 begin
453 return
454 T = Standard_Integer
455 or else
456 T = Standard_Positive
457 or else
458 T = Standard_Natural;
459 end Large_Storage_Type;
461 begin
462 -- Check that the Disc has a large range
464 if not Large_Storage_Type (Etype (Disc)) then
465 goto No_Danger;
466 end if;
468 -- If the enclosing type is limited, we allocate only the
469 -- default value, not the maximum, and there is no need for
470 -- a warning.
472 if Is_Limited_Type (Scope (Disc)) then
473 goto No_Danger;
474 end if;
476 -- Check that it is the high bound
478 if N /= High_Bound (PN)
479 or else No (Discriminant_Default_Value (Disc))
480 then
481 goto No_Danger;
482 end if;
484 -- Check the array allows a large range at this bound.
485 -- First find the array
487 SI := Parent (P);
489 if Nkind (SI) /= N_Subtype_Indication then
490 goto No_Danger;
491 end if;
493 T := Entity (Subtype_Mark (SI));
495 if not Is_Array_Type (T) then
496 goto No_Danger;
497 end if;
499 -- Next, find the dimension
501 TB := First_Index (T);
502 CB := First (Constraints (P));
503 while True
504 and then Present (TB)
505 and then Present (CB)
506 and then CB /= PN
507 loop
508 Next_Index (TB);
509 Next (CB);
510 end loop;
512 if CB /= PN then
513 goto No_Danger;
514 end if;
516 -- Now, check the dimension has a large range
518 if not Large_Storage_Type (Etype (TB)) then
519 goto No_Danger;
520 end if;
522 -- Warn about the danger
524 Error_Msg_N
525 ("?creation of & object may raise Storage_Error!",
526 Scope (Disc));
528 <<No_Danger>>
529 null;
531 end;
532 end if;
534 -- Legal case is in index or discriminant constraint
536 elsif Nkind (PN) = N_Index_Or_Discriminant_Constraint
537 or else Nkind (PN) = N_Discriminant_Association
538 then
539 if Paren_Count (N) > 0 then
540 Error_Msg_N
541 ("discriminant in constraint must appear alone", N);
543 elsif Nkind (N) = N_Expanded_Name
544 and then Comes_From_Source (N)
545 then
546 Error_Msg_N
547 ("discriminant must appear alone as a direct name", N);
548 end if;
550 return;
552 -- Otherwise, context is an expression. It should not be within
553 -- (i.e. a subexpression of) a constraint for a component.
555 else
556 D := PN;
557 P := Parent (PN);
558 while Nkind (P) /= N_Component_Declaration
559 and then Nkind (P) /= N_Subtype_Indication
560 and then Nkind (P) /= N_Entry_Declaration
561 loop
562 D := P;
563 P := Parent (P);
564 exit when No (P);
565 end loop;
567 -- If the discriminant is used in an expression that is a bound
568 -- of a scalar type, an Itype is created and the bounds are attached
569 -- to its range, not to the original subtype indication. Such use
570 -- is of course a double fault.
572 if (Nkind (P) = N_Subtype_Indication
573 and then
574 (Nkind (Parent (P)) = N_Component_Definition
575 or else
576 Nkind (Parent (P)) = N_Derived_Type_Definition)
577 and then D = Constraint (P))
579 -- The constraint itself may be given by a subtype indication,
580 -- rather than by a more common discrete range.
582 or else (Nkind (P) = N_Subtype_Indication
583 and then
584 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
585 or else Nkind (P) = N_Entry_Declaration
586 or else Nkind (D) = N_Defining_Identifier
587 then
588 Error_Msg_N
589 ("discriminant in constraint must appear alone", N);
590 end if;
591 end if;
592 end Check_Discriminant_Use;
594 --------------------------------
595 -- Check_For_Visible_Operator --
596 --------------------------------
598 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
599 begin
600 if Is_Invisible_Operator (N, T) then
601 Error_Msg_NE
602 ("operator for} is not directly visible!", N, First_Subtype (T));
603 Error_Msg_N ("use clause would make operation legal!", N);
604 end if;
605 end Check_For_Visible_Operator;
607 ----------------------------------
608 -- Check_Fully_Declared_Prefix --
609 ----------------------------------
611 procedure Check_Fully_Declared_Prefix
612 (Typ : Entity_Id;
613 Pref : Node_Id)
615 begin
616 -- Check that the designated type of the prefix of a dereference is
617 -- not an incomplete type. This cannot be done unconditionally, because
618 -- dereferences of private types are legal in default expressions. This
619 -- case is taken care of in Check_Fully_Declared, called below. There
620 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
622 -- This consideration also applies to similar checks for allocators,
623 -- qualified expressions, and type conversions.
625 -- An additional exception concerns other per-object expressions that
626 -- are not directly related to component declarations, in particular
627 -- representation pragmas for tasks. These will be per-object
628 -- expressions if they depend on discriminants or some global entity.
629 -- If the task has access discriminants, the designated type may be
630 -- incomplete at the point the expression is resolved. This resolution
631 -- takes place within the body of the initialization procedure, where
632 -- the discriminant is replaced by its discriminal.
634 if Is_Entity_Name (Pref)
635 and then Ekind (Entity (Pref)) = E_In_Parameter
636 then
637 null;
639 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
640 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
641 -- Analyze_Object_Renaming, and Freeze_Entity.
643 elsif Ada_Version >= Ada_05
644 and then Is_Entity_Name (Pref)
645 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
646 E_Incomplete_Type
647 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
648 then
649 null;
650 else
651 Check_Fully_Declared (Typ, Parent (Pref));
652 end if;
653 end Check_Fully_Declared_Prefix;
655 ------------------------------
656 -- Check_Infinite_Recursion --
657 ------------------------------
659 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
660 P : Node_Id;
661 C : Node_Id;
663 function Same_Argument_List return Boolean;
664 -- Check whether list of actuals is identical to list of formals
665 -- of called function (which is also the enclosing scope).
667 ------------------------
668 -- Same_Argument_List --
669 ------------------------
671 function Same_Argument_List return Boolean is
672 A : Node_Id;
673 F : Entity_Id;
674 Subp : Entity_Id;
676 begin
677 if not Is_Entity_Name (Name (N)) then
678 return False;
679 else
680 Subp := Entity (Name (N));
681 end if;
683 F := First_Formal (Subp);
684 A := First_Actual (N);
685 while Present (F) and then Present (A) loop
686 if not Is_Entity_Name (A)
687 or else Entity (A) /= F
688 then
689 return False;
690 end if;
692 Next_Actual (A);
693 Next_Formal (F);
694 end loop;
696 return True;
697 end Same_Argument_List;
699 -- Start of processing for Check_Infinite_Recursion
701 begin
702 -- Loop moving up tree, quitting if something tells us we are
703 -- definitely not in an infinite recursion situation.
705 C := N;
706 loop
707 P := Parent (C);
708 exit when Nkind (P) = N_Subprogram_Body;
710 if Nkind (P) = N_Or_Else or else
711 Nkind (P) = N_And_Then or else
712 Nkind (P) = N_If_Statement or else
713 Nkind (P) = N_Case_Statement
714 then
715 return False;
717 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
718 and then C /= First (Statements (P))
719 then
720 -- If the call is the expression of a return statement and
721 -- the actuals are identical to the formals, it's worth a
722 -- warning. However, we skip this if there is an immediately
723 -- preceding raise statement, since the call is never executed.
725 -- Furthermore, this corresponds to a common idiom:
727 -- function F (L : Thing) return Boolean is
728 -- begin
729 -- raise Program_Error;
730 -- return F (L);
731 -- end F;
733 -- for generating a stub function
735 if Nkind (Parent (N)) = N_Simple_Return_Statement
736 and then Same_Argument_List
737 then
738 exit when not Is_List_Member (Parent (N));
740 -- OK, return statement is in a statement list, look for raise
742 declare
743 Nod : Node_Id;
745 begin
746 -- Skip past N_Freeze_Entity nodes generated by expansion
748 Nod := Prev (Parent (N));
749 while Present (Nod)
750 and then Nkind (Nod) = N_Freeze_Entity
751 loop
752 Prev (Nod);
753 end loop;
755 -- If no raise statement, give warning
757 exit when Nkind (Nod) /= N_Raise_Statement
758 and then
759 (Nkind (Nod) not in N_Raise_xxx_Error
760 or else Present (Condition (Nod)));
761 end;
762 end if;
764 return False;
766 else
767 C := P;
768 end if;
769 end loop;
771 Error_Msg_N ("!?possible infinite recursion", N);
772 Error_Msg_N ("\!?Storage_Error may be raised at run time", N);
774 return True;
775 end Check_Infinite_Recursion;
777 -------------------------------
778 -- Check_Initialization_Call --
779 -------------------------------
781 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
782 Typ : constant Entity_Id := Etype (First_Formal (Nam));
784 function Uses_SS (T : Entity_Id) return Boolean;
785 -- Check whether the creation of an object of the type will involve
786 -- use of the secondary stack. If T is a record type, this is true
787 -- if the expression for some component uses the secondary stack, eg.
788 -- through a call to a function that returns an unconstrained value.
789 -- False if T is controlled, because cleanups occur elsewhere.
791 -------------
792 -- Uses_SS --
793 -------------
795 function Uses_SS (T : Entity_Id) return Boolean is
796 Comp : Entity_Id;
797 Expr : Node_Id;
798 Full_Type : Entity_Id := Underlying_Type (T);
800 begin
801 -- Normally we want to use the underlying type, but if it's not set
802 -- then continue with T.
804 if not Present (Full_Type) then
805 Full_Type := T;
806 end if;
808 if Is_Controlled (Full_Type) then
809 return False;
811 elsif Is_Array_Type (Full_Type) then
812 return Uses_SS (Component_Type (Full_Type));
814 elsif Is_Record_Type (Full_Type) then
815 Comp := First_Component (Full_Type);
816 while Present (Comp) loop
817 if Ekind (Comp) = E_Component
818 and then Nkind (Parent (Comp)) = N_Component_Declaration
819 then
820 -- The expression for a dynamic component may be rewritten
821 -- as a dereference, so retrieve original node.
823 Expr := Original_Node (Expression (Parent (Comp)));
825 -- Return True if the expression is a call to a function
826 -- (including an attribute function such as Image) with
827 -- a result that requires a transient scope.
829 if (Nkind (Expr) = N_Function_Call
830 or else (Nkind (Expr) = N_Attribute_Reference
831 and then Present (Expressions (Expr))))
832 and then Requires_Transient_Scope (Etype (Expr))
833 then
834 return True;
836 elsif Uses_SS (Etype (Comp)) then
837 return True;
838 end if;
839 end if;
841 Next_Component (Comp);
842 end loop;
844 return False;
846 else
847 return False;
848 end if;
849 end Uses_SS;
851 -- Start of processing for Check_Initialization_Call
853 begin
854 -- Establish a transient scope if the type needs it
856 if Uses_SS (Typ) then
857 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
858 end if;
859 end Check_Initialization_Call;
861 ------------------------------
862 -- Check_Parameterless_Call --
863 ------------------------------
865 procedure Check_Parameterless_Call (N : Node_Id) is
866 Nam : Node_Id;
868 function Prefix_Is_Access_Subp return Boolean;
869 -- If the prefix is of an access_to_subprogram type, the node must be
870 -- rewritten as a call. Ditto if the prefix is overloaded and all its
871 -- interpretations are access to subprograms.
873 ---------------------------
874 -- Prefix_Is_Access_Subp --
875 ---------------------------
877 function Prefix_Is_Access_Subp return Boolean is
878 I : Interp_Index;
879 It : Interp;
881 begin
882 if not Is_Overloaded (N) then
883 return
884 Ekind (Etype (N)) = E_Subprogram_Type
885 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
886 else
887 Get_First_Interp (N, I, It);
888 while Present (It.Typ) loop
889 if Ekind (It.Typ) /= E_Subprogram_Type
890 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
891 then
892 return False;
893 end if;
895 Get_Next_Interp (I, It);
896 end loop;
898 return True;
899 end if;
900 end Prefix_Is_Access_Subp;
902 -- Start of processing for Check_Parameterless_Call
904 begin
905 -- Defend against junk stuff if errors already detected
907 if Total_Errors_Detected /= 0 then
908 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
909 return;
910 elsif Nkind (N) in N_Has_Chars
911 and then Chars (N) in Error_Name_Or_No_Name
912 then
913 return;
914 end if;
916 Require_Entity (N);
917 end if;
919 -- If the context expects a value, and the name is a procedure,
920 -- this is most likely a missing 'Access. Do not try to resolve
921 -- the parameterless call, error will be caught when the outer
922 -- call is analyzed.
924 if Is_Entity_Name (N)
925 and then Ekind (Entity (N)) = E_Procedure
926 and then not Is_Overloaded (N)
927 and then
928 (Nkind (Parent (N)) = N_Parameter_Association
929 or else Nkind (Parent (N)) = N_Function_Call
930 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
931 then
932 return;
933 end if;
935 -- Rewrite as call if overloadable entity that is (or could be, in
936 -- the overloaded case) a function call. If we know for sure that
937 -- the entity is an enumeration literal, we do not rewrite it.
939 if (Is_Entity_Name (N)
940 and then Is_Overloadable (Entity (N))
941 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
942 or else Is_Overloaded (N)))
944 -- Rewrite as call if it is an explicit deference of an expression of
945 -- a subprogram access type, and the suprogram type is not that of a
946 -- procedure or entry.
948 or else
949 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
951 -- Rewrite as call if it is a selected component which is a function,
952 -- this is the case of a call to a protected function (which may be
953 -- overloaded with other protected operations).
955 or else
956 (Nkind (N) = N_Selected_Component
957 and then (Ekind (Entity (Selector_Name (N))) = E_Function
958 or else
959 ((Ekind (Entity (Selector_Name (N))) = E_Entry
960 or else
961 Ekind (Entity (Selector_Name (N))) = E_Procedure)
962 and then Is_Overloaded (Selector_Name (N)))))
964 -- If one of the above three conditions is met, rewrite as call.
965 -- Apply the rewriting only once.
967 then
968 if Nkind (Parent (N)) /= N_Function_Call
969 or else N /= Name (Parent (N))
970 then
971 Nam := New_Copy (N);
973 -- If overloaded, overload set belongs to new copy
975 Save_Interps (N, Nam);
977 -- Change node to parameterless function call (note that the
978 -- Parameter_Associations associations field is left set to Empty,
979 -- its normal default value since there are no parameters)
981 Change_Node (N, N_Function_Call);
982 Set_Name (N, Nam);
983 Set_Sloc (N, Sloc (Nam));
984 Analyze_Call (N);
985 end if;
987 elsif Nkind (N) = N_Parameter_Association then
988 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
989 end if;
990 end Check_Parameterless_Call;
992 ----------------------
993 -- Is_Predefined_Op --
994 ----------------------
996 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
997 begin
998 return Is_Intrinsic_Subprogram (Nam)
999 and then not Is_Generic_Instance (Nam)
1000 and then Chars (Nam) in Any_Operator_Name
1001 and then (No (Alias (Nam))
1002 or else Is_Predefined_Op (Alias (Nam)));
1003 end Is_Predefined_Op;
1005 -----------------------------
1006 -- Make_Call_Into_Operator --
1007 -----------------------------
1009 procedure Make_Call_Into_Operator
1010 (N : Node_Id;
1011 Typ : Entity_Id;
1012 Op_Id : Entity_Id)
1014 Op_Name : constant Name_Id := Chars (Op_Id);
1015 Act1 : Node_Id := First_Actual (N);
1016 Act2 : Node_Id := Next_Actual (Act1);
1017 Error : Boolean := False;
1018 Func : constant Entity_Id := Entity (Name (N));
1019 Is_Binary : constant Boolean := Present (Act2);
1020 Op_Node : Node_Id;
1021 Opnd_Type : Entity_Id;
1022 Orig_Type : Entity_Id := Empty;
1023 Pack : Entity_Id;
1025 type Kind_Test is access function (E : Entity_Id) return Boolean;
1027 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
1028 -- Determine whether E is an access type declared by an access decla-
1029 -- ration, and not an (anonymous) allocator type.
1031 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1032 -- If the operand is not universal, and the operator is given by a
1033 -- expanded name, verify that the operand has an interpretation with
1034 -- a type defined in the given scope of the operator.
1036 function Type_In_P (Test : Kind_Test) return Entity_Id;
1037 -- Find a type of the given class in the package Pack that contains
1038 -- the operator.
1040 -----------------------------
1041 -- Is_Definite_Access_Type --
1042 -----------------------------
1044 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1045 Btyp : constant Entity_Id := Base_Type (E);
1046 begin
1047 return Ekind (Btyp) = E_Access_Type
1048 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1049 and then Comes_From_Source (Btyp));
1050 end Is_Definite_Access_Type;
1052 ---------------------------
1053 -- Operand_Type_In_Scope --
1054 ---------------------------
1056 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1057 Nod : constant Node_Id := Right_Opnd (Op_Node);
1058 I : Interp_Index;
1059 It : Interp;
1061 begin
1062 if not Is_Overloaded (Nod) then
1063 return Scope (Base_Type (Etype (Nod))) = S;
1065 else
1066 Get_First_Interp (Nod, I, It);
1067 while Present (It.Typ) loop
1068 if Scope (Base_Type (It.Typ)) = S then
1069 return True;
1070 end if;
1072 Get_Next_Interp (I, It);
1073 end loop;
1075 return False;
1076 end if;
1077 end Operand_Type_In_Scope;
1079 ---------------
1080 -- Type_In_P --
1081 ---------------
1083 function Type_In_P (Test : Kind_Test) return Entity_Id is
1084 E : Entity_Id;
1086 function In_Decl return Boolean;
1087 -- Verify that node is not part of the type declaration for the
1088 -- candidate type, which would otherwise be invisible.
1090 -------------
1091 -- In_Decl --
1092 -------------
1094 function In_Decl return Boolean is
1095 Decl_Node : constant Node_Id := Parent (E);
1096 N2 : Node_Id;
1098 begin
1099 N2 := N;
1101 if Etype (E) = Any_Type then
1102 return True;
1104 elsif No (Decl_Node) then
1105 return False;
1107 else
1108 while Present (N2)
1109 and then Nkind (N2) /= N_Compilation_Unit
1110 loop
1111 if N2 = Decl_Node then
1112 return True;
1113 else
1114 N2 := Parent (N2);
1115 end if;
1116 end loop;
1118 return False;
1119 end if;
1120 end In_Decl;
1122 -- Start of processing for Type_In_P
1124 begin
1125 -- If the context type is declared in the prefix package, this
1126 -- is the desired base type.
1128 if Scope (Base_Type (Typ)) = Pack
1129 and then Test (Typ)
1130 then
1131 return Base_Type (Typ);
1133 else
1134 E := First_Entity (Pack);
1135 while Present (E) loop
1136 if Test (E)
1137 and then not In_Decl
1138 then
1139 return E;
1140 end if;
1142 Next_Entity (E);
1143 end loop;
1145 return Empty;
1146 end if;
1147 end Type_In_P;
1149 -- Start of processing for Make_Call_Into_Operator
1151 begin
1152 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1154 -- Binary operator
1156 if Is_Binary then
1157 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1158 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1159 Save_Interps (Act1, Left_Opnd (Op_Node));
1160 Save_Interps (Act2, Right_Opnd (Op_Node));
1161 Act1 := Left_Opnd (Op_Node);
1162 Act2 := Right_Opnd (Op_Node);
1164 -- Unary operator
1166 else
1167 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1168 Save_Interps (Act1, Right_Opnd (Op_Node));
1169 Act1 := Right_Opnd (Op_Node);
1170 end if;
1172 -- If the operator is denoted by an expanded name, and the prefix is
1173 -- not Standard, but the operator is a predefined one whose scope is
1174 -- Standard, then this is an implicit_operator, inserted as an
1175 -- interpretation by the procedure of the same name. This procedure
1176 -- overestimates the presence of implicit operators, because it does
1177 -- not examine the type of the operands. Verify now that the operand
1178 -- type appears in the given scope. If right operand is universal,
1179 -- check the other operand. In the case of concatenation, either
1180 -- argument can be the component type, so check the type of the result.
1181 -- If both arguments are literals, look for a type of the right kind
1182 -- defined in the given scope. This elaborate nonsense is brought to
1183 -- you courtesy of b33302a. The type itself must be frozen, so we must
1184 -- find the type of the proper class in the given scope.
1186 -- A final wrinkle is the multiplication operator for fixed point
1187 -- types, which is defined in Standard only, and not in the scope of
1188 -- the fixed_point type itself.
1190 if Nkind (Name (N)) = N_Expanded_Name then
1191 Pack := Entity (Prefix (Name (N)));
1193 -- If the entity being called is defined in the given package,
1194 -- it is a renaming of a predefined operator, and known to be
1195 -- legal.
1197 if Scope (Entity (Name (N))) = Pack
1198 and then Pack /= Standard_Standard
1199 then
1200 null;
1202 -- Visibility does not need to be checked in an instance: if the
1203 -- operator was not visible in the generic it has been diagnosed
1204 -- already, else there is an implicit copy of it in the instance.
1206 elsif In_Instance then
1207 null;
1209 elsif (Op_Name = Name_Op_Multiply
1210 or else Op_Name = Name_Op_Divide)
1211 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1212 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1213 then
1214 if Pack /= Standard_Standard then
1215 Error := True;
1216 end if;
1218 -- Ada 2005, AI-420: Predefined equality on Universal_Access
1219 -- is available.
1221 elsif Ada_Version >= Ada_05
1222 and then (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1223 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1224 then
1225 null;
1227 else
1228 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1230 if Op_Name = Name_Op_Concat then
1231 Opnd_Type := Base_Type (Typ);
1233 elsif (Scope (Opnd_Type) = Standard_Standard
1234 and then Is_Binary)
1235 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1236 and then Is_Binary
1237 and then not Comes_From_Source (Opnd_Type))
1238 then
1239 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1240 end if;
1242 if Scope (Opnd_Type) = Standard_Standard then
1244 -- Verify that the scope contains a type that corresponds to
1245 -- the given literal. Optimize the case where Pack is Standard.
1247 if Pack /= Standard_Standard then
1249 if Opnd_Type = Universal_Integer then
1250 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1252 elsif Opnd_Type = Universal_Real then
1253 Orig_Type := Type_In_P (Is_Real_Type'Access);
1255 elsif Opnd_Type = Any_String then
1256 Orig_Type := Type_In_P (Is_String_Type'Access);
1258 elsif Opnd_Type = Any_Access then
1259 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1261 elsif Opnd_Type = Any_Composite then
1262 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1264 if Present (Orig_Type) then
1265 if Has_Private_Component (Orig_Type) then
1266 Orig_Type := Empty;
1267 else
1268 Set_Etype (Act1, Orig_Type);
1270 if Is_Binary then
1271 Set_Etype (Act2, Orig_Type);
1272 end if;
1273 end if;
1274 end if;
1276 else
1277 Orig_Type := Empty;
1278 end if;
1280 Error := No (Orig_Type);
1281 end if;
1283 elsif Ekind (Opnd_Type) = E_Allocator_Type
1284 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1285 then
1286 Error := True;
1288 -- If the type is defined elsewhere, and the operator is not
1289 -- defined in the given scope (by a renaming declaration, e.g.)
1290 -- then this is an error as well. If an extension of System is
1291 -- present, and the type may be defined there, Pack must be
1292 -- System itself.
1294 elsif Scope (Opnd_Type) /= Pack
1295 and then Scope (Op_Id) /= Pack
1296 and then (No (System_Aux_Id)
1297 or else Scope (Opnd_Type) /= System_Aux_Id
1298 or else Pack /= Scope (System_Aux_Id))
1299 then
1300 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1301 Error := True;
1302 else
1303 Error := not Operand_Type_In_Scope (Pack);
1304 end if;
1306 elsif Pack = Standard_Standard
1307 and then not Operand_Type_In_Scope (Standard_Standard)
1308 then
1309 Error := True;
1310 end if;
1311 end if;
1313 if Error then
1314 Error_Msg_Node_2 := Pack;
1315 Error_Msg_NE
1316 ("& not declared in&", N, Selector_Name (Name (N)));
1317 Set_Etype (N, Any_Type);
1318 return;
1319 end if;
1320 end if;
1322 Set_Chars (Op_Node, Op_Name);
1324 if not Is_Private_Type (Etype (N)) then
1325 Set_Etype (Op_Node, Base_Type (Etype (N)));
1326 else
1327 Set_Etype (Op_Node, Etype (N));
1328 end if;
1330 -- If this is a call to a function that renames a predefined equality,
1331 -- the renaming declaration provides a type that must be used to
1332 -- resolve the operands. This must be done now because resolution of
1333 -- the equality node will not resolve any remaining ambiguity, and it
1334 -- assumes that the first operand is not overloaded.
1336 if (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1337 and then Ekind (Func) = E_Function
1338 and then Is_Overloaded (Act1)
1339 then
1340 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1341 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1342 end if;
1344 Set_Entity (Op_Node, Op_Id);
1345 Generate_Reference (Op_Id, N, ' ');
1346 Rewrite (N, Op_Node);
1348 -- If this is an arithmetic operator and the result type is private,
1349 -- the operands and the result must be wrapped in conversion to
1350 -- expose the underlying numeric type and expand the proper checks,
1351 -- e.g. on division.
1353 if Is_Private_Type (Typ) then
1354 case Nkind (N) is
1355 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1356 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1357 Resolve_Intrinsic_Operator (N, Typ);
1359 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1360 Resolve_Intrinsic_Unary_Operator (N, Typ);
1362 when others =>
1363 Resolve (N, Typ);
1364 end case;
1365 else
1366 Resolve (N, Typ);
1367 end if;
1369 -- For predefined operators on literals, the operation freezes
1370 -- their type.
1372 if Present (Orig_Type) then
1373 Set_Etype (Act1, Orig_Type);
1374 Freeze_Expression (Act1);
1375 end if;
1376 end Make_Call_Into_Operator;
1378 -------------------
1379 -- Operator_Kind --
1380 -------------------
1382 function Operator_Kind
1383 (Op_Name : Name_Id;
1384 Is_Binary : Boolean) return Node_Kind
1386 Kind : Node_Kind;
1388 begin
1389 if Is_Binary then
1390 if Op_Name = Name_Op_And then
1391 Kind := N_Op_And;
1392 elsif Op_Name = Name_Op_Or then
1393 Kind := N_Op_Or;
1394 elsif Op_Name = Name_Op_Xor then
1395 Kind := N_Op_Xor;
1396 elsif Op_Name = Name_Op_Eq then
1397 Kind := N_Op_Eq;
1398 elsif Op_Name = Name_Op_Ne then
1399 Kind := N_Op_Ne;
1400 elsif Op_Name = Name_Op_Lt then
1401 Kind := N_Op_Lt;
1402 elsif Op_Name = Name_Op_Le then
1403 Kind := N_Op_Le;
1404 elsif Op_Name = Name_Op_Gt then
1405 Kind := N_Op_Gt;
1406 elsif Op_Name = Name_Op_Ge then
1407 Kind := N_Op_Ge;
1408 elsif Op_Name = Name_Op_Add then
1409 Kind := N_Op_Add;
1410 elsif Op_Name = Name_Op_Subtract then
1411 Kind := N_Op_Subtract;
1412 elsif Op_Name = Name_Op_Concat then
1413 Kind := N_Op_Concat;
1414 elsif Op_Name = Name_Op_Multiply then
1415 Kind := N_Op_Multiply;
1416 elsif Op_Name = Name_Op_Divide then
1417 Kind := N_Op_Divide;
1418 elsif Op_Name = Name_Op_Mod then
1419 Kind := N_Op_Mod;
1420 elsif Op_Name = Name_Op_Rem then
1421 Kind := N_Op_Rem;
1422 elsif Op_Name = Name_Op_Expon then
1423 Kind := N_Op_Expon;
1424 else
1425 raise Program_Error;
1426 end if;
1428 -- Unary operators
1430 else
1431 if Op_Name = Name_Op_Add then
1432 Kind := N_Op_Plus;
1433 elsif Op_Name = Name_Op_Subtract then
1434 Kind := N_Op_Minus;
1435 elsif Op_Name = Name_Op_Abs then
1436 Kind := N_Op_Abs;
1437 elsif Op_Name = Name_Op_Not then
1438 Kind := N_Op_Not;
1439 else
1440 raise Program_Error;
1441 end if;
1442 end if;
1444 return Kind;
1445 end Operator_Kind;
1447 -----------------------------
1448 -- Pre_Analyze_And_Resolve --
1449 -----------------------------
1451 procedure Pre_Analyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1452 Save_Full_Analysis : constant Boolean := Full_Analysis;
1454 begin
1455 Full_Analysis := False;
1456 Expander_Mode_Save_And_Set (False);
1458 -- We suppress all checks for this analysis, since the checks will
1459 -- be applied properly, and in the right location, when the default
1460 -- expression is reanalyzed and reexpanded later on.
1462 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1464 Expander_Mode_Restore;
1465 Full_Analysis := Save_Full_Analysis;
1466 end Pre_Analyze_And_Resolve;
1468 -- Version without context type
1470 procedure Pre_Analyze_And_Resolve (N : Node_Id) is
1471 Save_Full_Analysis : constant Boolean := Full_Analysis;
1473 begin
1474 Full_Analysis := False;
1475 Expander_Mode_Save_And_Set (False);
1477 Analyze (N);
1478 Resolve (N, Etype (N), Suppress => All_Checks);
1480 Expander_Mode_Restore;
1481 Full_Analysis := Save_Full_Analysis;
1482 end Pre_Analyze_And_Resolve;
1484 ----------------------------------
1485 -- Replace_Actual_Discriminants --
1486 ----------------------------------
1488 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1489 Loc : constant Source_Ptr := Sloc (N);
1490 Tsk : Node_Id := Empty;
1492 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1494 -------------------
1495 -- Process_Discr --
1496 -------------------
1498 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1499 Ent : Entity_Id;
1501 begin
1502 if Nkind (Nod) = N_Identifier then
1503 Ent := Entity (Nod);
1505 if Present (Ent)
1506 and then Ekind (Ent) = E_Discriminant
1507 then
1508 Rewrite (Nod,
1509 Make_Selected_Component (Loc,
1510 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1511 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1513 Set_Etype (Nod, Etype (Ent));
1514 end if;
1516 end if;
1518 return OK;
1519 end Process_Discr;
1521 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1523 -- Start of processing for Replace_Actual_Discriminants
1525 begin
1526 if not Expander_Active then
1527 return;
1528 end if;
1530 if Nkind (Name (N)) = N_Selected_Component then
1531 Tsk := Prefix (Name (N));
1533 elsif Nkind (Name (N)) = N_Indexed_Component then
1534 Tsk := Prefix (Prefix (Name (N)));
1535 end if;
1537 if No (Tsk) then
1538 return;
1539 else
1540 Replace_Discrs (Default);
1541 end if;
1542 end Replace_Actual_Discriminants;
1544 -------------
1545 -- Resolve --
1546 -------------
1548 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1549 Ambiguous : Boolean := False;
1550 Ctx_Type : Entity_Id := Typ;
1551 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1552 Err_Type : Entity_Id := Empty;
1553 Found : Boolean := False;
1554 From_Lib : Boolean;
1555 I : Interp_Index;
1556 I1 : Interp_Index := 0; -- prevent junk warning
1557 It : Interp;
1558 It1 : Interp;
1559 Seen : Entity_Id := Empty; -- prevent junk warning
1561 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1562 -- Determine whether a node comes from a predefined library unit or
1563 -- Standard.
1565 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1566 -- Try and fix up a literal so that it matches its expected type. New
1567 -- literals are manufactured if necessary to avoid cascaded errors.
1569 procedure Resolution_Failed;
1570 -- Called when attempt at resolving current expression fails
1572 ------------------------------------
1573 -- Comes_From_Predefined_Lib_Unit --
1574 -------------------------------------
1576 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1577 begin
1578 return
1579 Sloc (Nod) = Standard_Location
1580 or else Is_Predefined_File_Name (Unit_File_Name (
1581 Get_Source_Unit (Sloc (Nod))));
1582 end Comes_From_Predefined_Lib_Unit;
1584 --------------------
1585 -- Patch_Up_Value --
1586 --------------------
1588 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1589 begin
1590 if Nkind (N) = N_Integer_Literal
1591 and then Is_Real_Type (Typ)
1592 then
1593 Rewrite (N,
1594 Make_Real_Literal (Sloc (N),
1595 Realval => UR_From_Uint (Intval (N))));
1596 Set_Etype (N, Universal_Real);
1597 Set_Is_Static_Expression (N);
1599 elsif Nkind (N) = N_Real_Literal
1600 and then Is_Integer_Type (Typ)
1601 then
1602 Rewrite (N,
1603 Make_Integer_Literal (Sloc (N),
1604 Intval => UR_To_Uint (Realval (N))));
1605 Set_Etype (N, Universal_Integer);
1606 Set_Is_Static_Expression (N);
1607 elsif Nkind (N) = N_String_Literal
1608 and then Is_Character_Type (Typ)
1609 then
1610 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1611 Rewrite (N,
1612 Make_Character_Literal (Sloc (N),
1613 Chars => Name_Find,
1614 Char_Literal_Value =>
1615 UI_From_Int (Character'Pos ('A'))));
1616 Set_Etype (N, Any_Character);
1617 Set_Is_Static_Expression (N);
1619 elsif Nkind (N) /= N_String_Literal
1620 and then Is_String_Type (Typ)
1621 then
1622 Rewrite (N,
1623 Make_String_Literal (Sloc (N),
1624 Strval => End_String));
1626 elsif Nkind (N) = N_Range then
1627 Patch_Up_Value (Low_Bound (N), Typ);
1628 Patch_Up_Value (High_Bound (N), Typ);
1629 end if;
1630 end Patch_Up_Value;
1632 -----------------------
1633 -- Resolution_Failed --
1634 -----------------------
1636 procedure Resolution_Failed is
1637 begin
1638 Patch_Up_Value (N, Typ);
1639 Set_Etype (N, Typ);
1640 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1641 Set_Is_Overloaded (N, False);
1643 -- The caller will return without calling the expander, so we need
1644 -- to set the analyzed flag. Note that it is fine to set Analyzed
1645 -- to True even if we are in the middle of a shallow analysis,
1646 -- (see the spec of sem for more details) since this is an error
1647 -- situation anyway, and there is no point in repeating the
1648 -- analysis later (indeed it won't work to repeat it later, since
1649 -- we haven't got a clear resolution of which entity is being
1650 -- referenced.)
1652 Set_Analyzed (N, True);
1653 return;
1654 end Resolution_Failed;
1656 -- Start of processing for Resolve
1658 begin
1659 if N = Error then
1660 return;
1661 end if;
1663 -- Access attribute on remote subprogram cannot be used for
1664 -- a non-remote access-to-subprogram type.
1666 if Nkind (N) = N_Attribute_Reference
1667 and then (Attribute_Name (N) = Name_Access
1668 or else Attribute_Name (N) = Name_Unrestricted_Access
1669 or else Attribute_Name (N) = Name_Unchecked_Access)
1670 and then Comes_From_Source (N)
1671 and then Is_Entity_Name (Prefix (N))
1672 and then Is_Subprogram (Entity (Prefix (N)))
1673 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1674 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1675 then
1676 Error_Msg_N
1677 ("prefix must statically denote a non-remote subprogram", N);
1678 end if;
1680 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1682 -- If the context is a Remote_Access_To_Subprogram, access attributes
1683 -- must be resolved with the corresponding fat pointer. There is no need
1684 -- to check for the attribute name since the return type of an
1685 -- attribute is never a remote type.
1687 if Nkind (N) = N_Attribute_Reference
1688 and then Comes_From_Source (N)
1689 and then (Is_Remote_Call_Interface (Typ)
1690 or else Is_Remote_Types (Typ))
1691 then
1692 declare
1693 Attr : constant Attribute_Id :=
1694 Get_Attribute_Id (Attribute_Name (N));
1695 Pref : constant Node_Id := Prefix (N);
1696 Decl : Node_Id;
1697 Spec : Node_Id;
1698 Is_Remote : Boolean := True;
1700 begin
1701 -- Check that Typ is a remote access-to-subprogram type
1703 if Is_Remote_Access_To_Subprogram_Type (Typ) then
1704 -- Prefix (N) must statically denote a remote subprogram
1705 -- declared in a package specification.
1707 if Attr = Attribute_Access then
1708 Decl := Unit_Declaration_Node (Entity (Pref));
1710 if Nkind (Decl) = N_Subprogram_Body then
1711 Spec := Corresponding_Spec (Decl);
1713 if not No (Spec) then
1714 Decl := Unit_Declaration_Node (Spec);
1715 end if;
1716 end if;
1718 Spec := Parent (Decl);
1720 if not Is_Entity_Name (Prefix (N))
1721 or else Nkind (Spec) /= N_Package_Specification
1722 or else
1723 not Is_Remote_Call_Interface (Defining_Entity (Spec))
1724 then
1725 Is_Remote := False;
1726 Error_Msg_N
1727 ("prefix must statically denote a remote subprogram ",
1729 end if;
1730 end if;
1732 -- If we are generating code for a distributed program.
1733 -- perform semantic checks against the corresponding
1734 -- remote entities.
1736 if (Attr = Attribute_Access
1737 or else Attr = Attribute_Unchecked_Access
1738 or else Attr = Attribute_Unrestricted_Access)
1739 and then Expander_Active
1740 and then Get_PCS_Name /= Name_No_DSA
1741 then
1742 Check_Subtype_Conformant
1743 (New_Id => Entity (Prefix (N)),
1744 Old_Id => Designated_Type
1745 (Corresponding_Remote_Type (Typ)),
1746 Err_Loc => N);
1748 if Is_Remote then
1749 Process_Remote_AST_Attribute (N, Typ);
1750 end if;
1751 end if;
1752 end if;
1753 end;
1754 end if;
1756 Debug_A_Entry ("resolving ", N);
1758 if Comes_From_Source (N) then
1759 if Is_Fixed_Point_Type (Typ) then
1760 Check_Restriction (No_Fixed_Point, N);
1762 elsif Is_Floating_Point_Type (Typ)
1763 and then Typ /= Universal_Real
1764 and then Typ /= Any_Real
1765 then
1766 Check_Restriction (No_Floating_Point, N);
1767 end if;
1768 end if;
1770 -- Return if already analyzed
1772 if Analyzed (N) then
1773 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
1774 return;
1776 -- Return if type = Any_Type (previous error encountered)
1778 elsif Etype (N) = Any_Type then
1779 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
1780 return;
1781 end if;
1783 Check_Parameterless_Call (N);
1785 -- If not overloaded, then we know the type, and all that needs doing
1786 -- is to check that this type is compatible with the context.
1788 if not Is_Overloaded (N) then
1789 Found := Covers (Typ, Etype (N));
1790 Expr_Type := Etype (N);
1792 -- In the overloaded case, we must select the interpretation that
1793 -- is compatible with the context (i.e. the type passed to Resolve)
1795 else
1796 -- Loop through possible interpretations
1798 Get_First_Interp (N, I, It);
1799 Interp_Loop : while Present (It.Typ) loop
1801 -- We are only interested in interpretations that are compatible
1802 -- with the expected type, any other interpretations are ignored.
1804 if not Covers (Typ, It.Typ) then
1805 if Debug_Flag_V then
1806 Write_Str (" interpretation incompatible with context");
1807 Write_Eol;
1808 end if;
1810 else
1811 -- Skip the current interpretation if it is disabled by an
1812 -- abstract operator. This action is performed only when the
1813 -- type against which we are resolving is the same as the
1814 -- type of the interpretation.
1816 if Ada_Version >= Ada_05
1817 and then It.Typ = Typ
1818 and then Typ /= Universal_Integer
1819 and then Typ /= Universal_Real
1820 and then Present (It.Abstract_Op)
1821 then
1822 goto Continue;
1823 end if;
1825 -- First matching interpretation
1827 if not Found then
1828 Found := True;
1829 I1 := I;
1830 Seen := It.Nam;
1831 Expr_Type := It.Typ;
1833 -- Matching interpretation that is not the first, maybe an
1834 -- error, but there are some cases where preference rules are
1835 -- used to choose between the two possibilities. These and
1836 -- some more obscure cases are handled in Disambiguate.
1838 else
1839 -- If the current statement is part of a predefined library
1840 -- unit, then all interpretations which come from user level
1841 -- packages should not be considered.
1843 if From_Lib
1844 and then not Comes_From_Predefined_Lib_Unit (It.Nam)
1845 then
1846 goto Continue;
1847 end if;
1849 Error_Msg_Sloc := Sloc (Seen);
1850 It1 := Disambiguate (N, I1, I, Typ);
1852 -- Disambiguation has succeeded. Skip the remaining
1853 -- interpretations.
1855 if It1 /= No_Interp then
1856 Seen := It1.Nam;
1857 Expr_Type := It1.Typ;
1859 while Present (It.Typ) loop
1860 Get_Next_Interp (I, It);
1861 end loop;
1863 else
1864 -- Before we issue an ambiguity complaint, check for
1865 -- the case of a subprogram call where at least one
1866 -- of the arguments is Any_Type, and if so, suppress
1867 -- the message, since it is a cascaded error.
1869 if Nkind (N) = N_Function_Call
1870 or else Nkind (N) = N_Procedure_Call_Statement
1871 then
1872 declare
1873 A : Node_Id;
1874 E : Node_Id;
1876 begin
1877 A := First_Actual (N);
1878 while Present (A) loop
1879 E := A;
1881 if Nkind (E) = N_Parameter_Association then
1882 E := Explicit_Actual_Parameter (E);
1883 end if;
1885 if Etype (E) = Any_Type then
1886 if Debug_Flag_V then
1887 Write_Str ("Any_Type in call");
1888 Write_Eol;
1889 end if;
1891 exit Interp_Loop;
1892 end if;
1894 Next_Actual (A);
1895 end loop;
1896 end;
1898 elsif Nkind (N) in N_Binary_Op
1899 and then (Etype (Left_Opnd (N)) = Any_Type
1900 or else Etype (Right_Opnd (N)) = Any_Type)
1901 then
1902 exit Interp_Loop;
1904 elsif Nkind (N) in N_Unary_Op
1905 and then Etype (Right_Opnd (N)) = Any_Type
1906 then
1907 exit Interp_Loop;
1908 end if;
1910 -- Not that special case, so issue message using the
1911 -- flag Ambiguous to control printing of the header
1912 -- message only at the start of an ambiguous set.
1914 if not Ambiguous then
1915 if Nkind (N) = N_Function_Call
1916 and then Nkind (Name (N)) = N_Explicit_Dereference
1917 then
1918 Error_Msg_N
1919 ("ambiguous expression "
1920 & "(cannot resolve indirect call)!", N);
1921 else
1922 Error_Msg_NE
1923 ("ambiguous expression (cannot resolve&)!",
1924 N, It.Nam);
1925 end if;
1927 Ambiguous := True;
1929 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
1930 Error_Msg_N
1931 ("\\possible interpretation (inherited)#!", N);
1932 else
1933 Error_Msg_N ("\\possible interpretation#!", N);
1934 end if;
1935 end if;
1937 Error_Msg_Sloc := Sloc (It.Nam);
1939 -- By default, the error message refers to the candidate
1940 -- interpretation. But if it is a predefined operator, it
1941 -- is implicitly declared at the declaration of the type
1942 -- of the operand. Recover the sloc of that declaration
1943 -- for the error message.
1945 if Nkind (N) in N_Op
1946 and then Scope (It.Nam) = Standard_Standard
1947 and then not Is_Overloaded (Right_Opnd (N))
1948 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
1949 Standard_Standard
1950 then
1951 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
1953 if Comes_From_Source (Err_Type)
1954 and then Present (Parent (Err_Type))
1955 then
1956 Error_Msg_Sloc := Sloc (Parent (Err_Type));
1957 end if;
1959 elsif Nkind (N) in N_Binary_Op
1960 and then Scope (It.Nam) = Standard_Standard
1961 and then not Is_Overloaded (Left_Opnd (N))
1962 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
1963 Standard_Standard
1964 then
1965 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
1967 if Comes_From_Source (Err_Type)
1968 and then Present (Parent (Err_Type))
1969 then
1970 Error_Msg_Sloc := Sloc (Parent (Err_Type));
1971 end if;
1973 -- If this is an indirect call, use the subprogram_type
1974 -- in the message, to have a meaningful location.
1975 -- Indicate as well if this is an inherited operation,
1976 -- created by a type declaration.
1978 elsif Nkind (N) = N_Function_Call
1979 and then Nkind (Name (N)) = N_Explicit_Dereference
1980 and then Is_Type (It.Nam)
1981 then
1982 Err_Type := It.Nam;
1983 Error_Msg_Sloc :=
1984 Sloc (Associated_Node_For_Itype (Err_Type));
1985 else
1986 Err_Type := Empty;
1987 end if;
1989 if Nkind (N) in N_Op
1990 and then Scope (It.Nam) = Standard_Standard
1991 and then Present (Err_Type)
1992 then
1993 -- Special-case the message for universal_fixed
1994 -- operators, which are not declared with the type
1995 -- of the operand, but appear forever in Standard.
1997 if It.Typ = Universal_Fixed
1998 and then Scope (It.Nam) = Standard_Standard
1999 then
2000 Error_Msg_N
2001 ("\\possible interpretation as " &
2002 "universal_fixed operation " &
2003 "(RM 4.5.5 (19))", N);
2004 else
2005 Error_Msg_N
2006 ("\\possible interpretation (predefined)#!", N);
2007 end if;
2009 elsif
2010 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2011 then
2012 Error_Msg_N
2013 ("\\possible interpretation (inherited)#!", N);
2014 else
2015 Error_Msg_N ("\\possible interpretation#!", N);
2016 end if;
2018 end if;
2019 end if;
2021 -- We have a matching interpretation, Expr_Type is the type
2022 -- from this interpretation, and Seen is the entity.
2024 -- For an operator, just set the entity name. The type will be
2025 -- set by the specific operator resolution routine.
2027 if Nkind (N) in N_Op then
2028 Set_Entity (N, Seen);
2029 Generate_Reference (Seen, N);
2031 elsif Nkind (N) = N_Character_Literal then
2032 Set_Etype (N, Expr_Type);
2034 -- For an explicit dereference, attribute reference, range,
2035 -- short-circuit form (which is not an operator node), or call
2036 -- with a name that is an explicit dereference, there is
2037 -- nothing to be done at this point.
2039 elsif Nkind (N) = N_Explicit_Dereference
2040 or else Nkind (N) = N_Attribute_Reference
2041 or else Nkind (N) = N_And_Then
2042 or else Nkind (N) = N_Indexed_Component
2043 or else Nkind (N) = N_Or_Else
2044 or else Nkind (N) = N_Range
2045 or else Nkind (N) = N_Selected_Component
2046 or else Nkind (N) = N_Slice
2047 or else Nkind (Name (N)) = N_Explicit_Dereference
2048 then
2049 null;
2051 -- For procedure or function calls, set the type of the name,
2052 -- and also the entity pointer for the prefix
2054 elsif (Nkind (N) = N_Procedure_Call_Statement
2055 or else Nkind (N) = N_Function_Call)
2056 and then (Is_Entity_Name (Name (N))
2057 or else Nkind (Name (N)) = N_Operator_Symbol)
2058 then
2059 Set_Etype (Name (N), Expr_Type);
2060 Set_Entity (Name (N), Seen);
2061 Generate_Reference (Seen, Name (N));
2063 elsif Nkind (N) = N_Function_Call
2064 and then Nkind (Name (N)) = N_Selected_Component
2065 then
2066 Set_Etype (Name (N), Expr_Type);
2067 Set_Entity (Selector_Name (Name (N)), Seen);
2068 Generate_Reference (Seen, Selector_Name (Name (N)));
2070 -- For all other cases, just set the type of the Name
2072 else
2073 Set_Etype (Name (N), Expr_Type);
2074 end if;
2076 end if;
2078 <<Continue>>
2080 -- Move to next interpretation
2082 exit Interp_Loop when No (It.Typ);
2084 Get_Next_Interp (I, It);
2085 end loop Interp_Loop;
2086 end if;
2088 -- At this stage Found indicates whether or not an acceptable
2089 -- interpretation exists. If not, then we have an error, except
2090 -- that if the context is Any_Type as a result of some other error,
2091 -- then we suppress the error report.
2093 if not Found then
2094 if Typ /= Any_Type then
2096 -- If type we are looking for is Void, then this is the procedure
2097 -- call case, and the error is simply that what we gave is not a
2098 -- procedure name (we think of procedure calls as expressions with
2099 -- types internally, but the user doesn't think of them this way!)
2101 if Typ = Standard_Void_Type then
2103 -- Special case message if function used as a procedure
2105 if Nkind (N) = N_Procedure_Call_Statement
2106 and then Is_Entity_Name (Name (N))
2107 and then Ekind (Entity (Name (N))) = E_Function
2108 then
2109 Error_Msg_NE
2110 ("cannot use function & in a procedure call",
2111 Name (N), Entity (Name (N)));
2113 -- Otherwise give general message (not clear what cases this
2114 -- covers, but no harm in providing for them!)
2116 else
2117 Error_Msg_N ("expect procedure name in procedure call", N);
2118 end if;
2120 Found := True;
2122 -- Otherwise we do have a subexpression with the wrong type
2124 -- Check for the case of an allocator which uses an access type
2125 -- instead of the designated type. This is a common error and we
2126 -- specialize the message, posting an error on the operand of the
2127 -- allocator, complaining that we expected the designated type of
2128 -- the allocator.
2130 elsif Nkind (N) = N_Allocator
2131 and then Ekind (Typ) in Access_Kind
2132 and then Ekind (Etype (N)) in Access_Kind
2133 and then Designated_Type (Etype (N)) = Typ
2134 then
2135 Wrong_Type (Expression (N), Designated_Type (Typ));
2136 Found := True;
2138 -- Check for view mismatch on Null in instances, for which the
2139 -- view-swapping mechanism has no identifier.
2141 elsif (In_Instance or else In_Inlined_Body)
2142 and then (Nkind (N) = N_Null)
2143 and then Is_Private_Type (Typ)
2144 and then Is_Access_Type (Full_View (Typ))
2145 then
2146 Resolve (N, Full_View (Typ));
2147 Set_Etype (N, Typ);
2148 return;
2150 -- Check for an aggregate. Sometimes we can get bogus aggregates
2151 -- from misuse of parentheses, and we are about to complain about
2152 -- the aggregate without even looking inside it.
2154 -- Instead, if we have an aggregate of type Any_Composite, then
2155 -- analyze and resolve the component fields, and then only issue
2156 -- another message if we get no errors doing this (otherwise
2157 -- assume that the errors in the aggregate caused the problem).
2159 elsif Nkind (N) = N_Aggregate
2160 and then Etype (N) = Any_Composite
2161 then
2162 -- Disable expansion in any case. If there is a type mismatch
2163 -- it may be fatal to try to expand the aggregate. The flag
2164 -- would otherwise be set to false when the error is posted.
2166 Expander_Active := False;
2168 declare
2169 procedure Check_Aggr (Aggr : Node_Id);
2170 -- Check one aggregate, and set Found to True if we have a
2171 -- definite error in any of its elements
2173 procedure Check_Elmt (Aelmt : Node_Id);
2174 -- Check one element of aggregate and set Found to True if
2175 -- we definitely have an error in the element.
2177 ----------------
2178 -- Check_Aggr --
2179 ----------------
2181 procedure Check_Aggr (Aggr : Node_Id) is
2182 Elmt : Node_Id;
2184 begin
2185 if Present (Expressions (Aggr)) then
2186 Elmt := First (Expressions (Aggr));
2187 while Present (Elmt) loop
2188 Check_Elmt (Elmt);
2189 Next (Elmt);
2190 end loop;
2191 end if;
2193 if Present (Component_Associations (Aggr)) then
2194 Elmt := First (Component_Associations (Aggr));
2195 while Present (Elmt) loop
2197 -- If this is a default-initialized component, then
2198 -- there is nothing to check. The box will be
2199 -- replaced by the appropriate call during late
2200 -- expansion.
2202 if not Box_Present (Elmt) then
2203 Check_Elmt (Expression (Elmt));
2204 end if;
2206 Next (Elmt);
2207 end loop;
2208 end if;
2209 end Check_Aggr;
2211 ----------------
2212 -- Check_Elmt --
2213 ----------------
2215 procedure Check_Elmt (Aelmt : Node_Id) is
2216 begin
2217 -- If we have a nested aggregate, go inside it (to
2218 -- attempt a naked analyze-resolve of the aggregate
2219 -- can cause undesirable cascaded errors). Do not
2220 -- resolve expression if it needs a type from context,
2221 -- as for integer * fixed expression.
2223 if Nkind (Aelmt) = N_Aggregate then
2224 Check_Aggr (Aelmt);
2226 else
2227 Analyze (Aelmt);
2229 if not Is_Overloaded (Aelmt)
2230 and then Etype (Aelmt) /= Any_Fixed
2231 then
2232 Resolve (Aelmt);
2233 end if;
2235 if Etype (Aelmt) = Any_Type then
2236 Found := True;
2237 end if;
2238 end if;
2239 end Check_Elmt;
2241 begin
2242 Check_Aggr (N);
2243 end;
2244 end if;
2246 -- If an error message was issued already, Found got reset
2247 -- to True, so if it is still False, issue the standard
2248 -- Wrong_Type message.
2250 if not Found then
2251 if Is_Overloaded (N)
2252 and then Nkind (N) = N_Function_Call
2253 then
2254 declare
2255 Subp_Name : Node_Id;
2256 begin
2257 if Is_Entity_Name (Name (N)) then
2258 Subp_Name := Name (N);
2260 elsif Nkind (Name (N)) = N_Selected_Component then
2262 -- Protected operation: retrieve operation name
2264 Subp_Name := Selector_Name (Name (N));
2265 else
2266 raise Program_Error;
2267 end if;
2269 Error_Msg_Node_2 := Typ;
2270 Error_Msg_NE ("no visible interpretation of&" &
2271 " matches expected type&", N, Subp_Name);
2272 end;
2274 if All_Errors_Mode then
2275 declare
2276 Index : Interp_Index;
2277 It : Interp;
2279 begin
2280 Error_Msg_N ("\\possible interpretations:", N);
2282 Get_First_Interp (Name (N), Index, It);
2283 while Present (It.Nam) loop
2284 Error_Msg_Sloc := Sloc (It.Nam);
2285 Error_Msg_Node_2 := It.Nam;
2286 Error_Msg_NE
2287 ("\\ type& for & declared#", N, It.Typ);
2288 Get_Next_Interp (Index, It);
2289 end loop;
2290 end;
2292 else
2293 Error_Msg_N ("\use -gnatf for details", N);
2294 end if;
2295 else
2296 Wrong_Type (N, Typ);
2297 end if;
2298 end if;
2299 end if;
2301 Resolution_Failed;
2302 return;
2304 -- Test if we have more than one interpretation for the context
2306 elsif Ambiguous then
2307 Resolution_Failed;
2308 return;
2310 -- Here we have an acceptable interpretation for the context
2312 else
2313 -- Propagate type information and normalize tree for various
2314 -- predefined operations. If the context only imposes a class of
2315 -- types, rather than a specific type, propagate the actual type
2316 -- downward.
2318 if Typ = Any_Integer
2319 or else Typ = Any_Boolean
2320 or else Typ = Any_Modular
2321 or else Typ = Any_Real
2322 or else Typ = Any_Discrete
2323 then
2324 Ctx_Type := Expr_Type;
2326 -- Any_Fixed is legal in a real context only if a specific
2327 -- fixed point type is imposed. If Norman Cohen can be
2328 -- confused by this, it deserves a separate message.
2330 if Typ = Any_Real
2331 and then Expr_Type = Any_Fixed
2332 then
2333 Error_Msg_N ("illegal context for mixed mode operation", N);
2334 Set_Etype (N, Universal_Real);
2335 Ctx_Type := Universal_Real;
2336 end if;
2337 end if;
2339 -- A user-defined operator is tranformed into a function call at
2340 -- this point, so that further processing knows that operators are
2341 -- really operators (i.e. are predefined operators). User-defined
2342 -- operators that are intrinsic are just renamings of the predefined
2343 -- ones, and need not be turned into calls either, but if they rename
2344 -- a different operator, we must transform the node accordingly.
2345 -- Instantiations of Unchecked_Conversion are intrinsic but are
2346 -- treated as functions, even if given an operator designator.
2348 if Nkind (N) in N_Op
2349 and then Present (Entity (N))
2350 and then Ekind (Entity (N)) /= E_Operator
2351 then
2353 if not Is_Predefined_Op (Entity (N)) then
2354 Rewrite_Operator_As_Call (N, Entity (N));
2356 elsif Present (Alias (Entity (N)))
2357 and then
2358 Nkind (Parent (Parent (Entity (N))))
2359 = N_Subprogram_Renaming_Declaration
2360 then
2361 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2363 -- If the node is rewritten, it will be fully resolved in
2364 -- Rewrite_Renamed_Operator.
2366 if Analyzed (N) then
2367 return;
2368 end if;
2369 end if;
2370 end if;
2372 case N_Subexpr'(Nkind (N)) is
2374 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2376 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2378 when N_And_Then | N_Or_Else
2379 => Resolve_Short_Circuit (N, Ctx_Type);
2381 when N_Attribute_Reference
2382 => Resolve_Attribute (N, Ctx_Type);
2384 when N_Character_Literal
2385 => Resolve_Character_Literal (N, Ctx_Type);
2387 when N_Conditional_Expression
2388 => Resolve_Conditional_Expression (N, Ctx_Type);
2390 when N_Expanded_Name
2391 => Resolve_Entity_Name (N, Ctx_Type);
2393 when N_Extension_Aggregate
2394 => Resolve_Extension_Aggregate (N, Ctx_Type);
2396 when N_Explicit_Dereference
2397 => Resolve_Explicit_Dereference (N, Ctx_Type);
2399 when N_Function_Call
2400 => Resolve_Call (N, Ctx_Type);
2402 when N_Identifier
2403 => Resolve_Entity_Name (N, Ctx_Type);
2405 when N_Indexed_Component
2406 => Resolve_Indexed_Component (N, Ctx_Type);
2408 when N_Integer_Literal
2409 => Resolve_Integer_Literal (N, Ctx_Type);
2411 when N_Membership_Test
2412 => Resolve_Membership_Op (N, Ctx_Type);
2414 when N_Null => Resolve_Null (N, Ctx_Type);
2416 when N_Op_And | N_Op_Or | N_Op_Xor
2417 => Resolve_Logical_Op (N, Ctx_Type);
2419 when N_Op_Eq | N_Op_Ne
2420 => Resolve_Equality_Op (N, Ctx_Type);
2422 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2423 => Resolve_Comparison_Op (N, Ctx_Type);
2425 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2427 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2428 N_Op_Divide | N_Op_Mod | N_Op_Rem
2430 => Resolve_Arithmetic_Op (N, Ctx_Type);
2432 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2434 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2436 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2437 => Resolve_Unary_Op (N, Ctx_Type);
2439 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2441 when N_Procedure_Call_Statement
2442 => Resolve_Call (N, Ctx_Type);
2444 when N_Operator_Symbol
2445 => Resolve_Operator_Symbol (N, Ctx_Type);
2447 when N_Qualified_Expression
2448 => Resolve_Qualified_Expression (N, Ctx_Type);
2450 when N_Raise_xxx_Error
2451 => Set_Etype (N, Ctx_Type);
2453 when N_Range => Resolve_Range (N, Ctx_Type);
2455 when N_Real_Literal
2456 => Resolve_Real_Literal (N, Ctx_Type);
2458 when N_Reference => Resolve_Reference (N, Ctx_Type);
2460 when N_Selected_Component
2461 => Resolve_Selected_Component (N, Ctx_Type);
2463 when N_Slice => Resolve_Slice (N, Ctx_Type);
2465 when N_String_Literal
2466 => Resolve_String_Literal (N, Ctx_Type);
2468 when N_Subprogram_Info
2469 => Resolve_Subprogram_Info (N, Ctx_Type);
2471 when N_Type_Conversion
2472 => Resolve_Type_Conversion (N, Ctx_Type);
2474 when N_Unchecked_Expression =>
2475 Resolve_Unchecked_Expression (N, Ctx_Type);
2477 when N_Unchecked_Type_Conversion =>
2478 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2480 end case;
2482 -- If the subexpression was replaced by a non-subexpression, then
2483 -- all we do is to expand it. The only legitimate case we know of
2484 -- is converting procedure call statement to entry call statements,
2485 -- but there may be others, so we are making this test general.
2487 if Nkind (N) not in N_Subexpr then
2488 Debug_A_Exit ("resolving ", N, " (done)");
2489 Expand (N);
2490 return;
2491 end if;
2493 -- The expression is definitely NOT overloaded at this point, so
2494 -- we reset the Is_Overloaded flag to avoid any confusion when
2495 -- reanalyzing the node.
2497 Set_Is_Overloaded (N, False);
2499 -- Freeze expression type, entity if it is a name, and designated
2500 -- type if it is an allocator (RM 13.14(10,11,13)).
2502 -- Now that the resolution of the type of the node is complete,
2503 -- and we did not detect an error, we can expand this node. We
2504 -- skip the expand call if we are in a default expression, see
2505 -- section "Handling of Default Expressions" in Sem spec.
2507 Debug_A_Exit ("resolving ", N, " (done)");
2509 -- We unconditionally freeze the expression, even if we are in
2510 -- default expression mode (the Freeze_Expression routine tests
2511 -- this flag and only freezes static types if it is set).
2513 Freeze_Expression (N);
2515 -- Now we can do the expansion
2517 Expand (N);
2518 end if;
2519 end Resolve;
2521 -------------
2522 -- Resolve --
2523 -------------
2525 -- Version with check(s) suppressed
2527 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2528 begin
2529 if Suppress = All_Checks then
2530 declare
2531 Svg : constant Suppress_Array := Scope_Suppress;
2532 begin
2533 Scope_Suppress := (others => True);
2534 Resolve (N, Typ);
2535 Scope_Suppress := Svg;
2536 end;
2538 else
2539 declare
2540 Svg : constant Boolean := Scope_Suppress (Suppress);
2541 begin
2542 Scope_Suppress (Suppress) := True;
2543 Resolve (N, Typ);
2544 Scope_Suppress (Suppress) := Svg;
2545 end;
2546 end if;
2547 end Resolve;
2549 -------------
2550 -- Resolve --
2551 -------------
2553 -- Version with implicit type
2555 procedure Resolve (N : Node_Id) is
2556 begin
2557 Resolve (N, Etype (N));
2558 end Resolve;
2560 ---------------------
2561 -- Resolve_Actuals --
2562 ---------------------
2564 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2565 Loc : constant Source_Ptr := Sloc (N);
2566 A : Node_Id;
2567 F : Entity_Id;
2568 A_Typ : Entity_Id;
2569 F_Typ : Entity_Id;
2570 Prev : Node_Id := Empty;
2572 procedure Check_Prefixed_Call;
2573 -- If the original node is an overloaded call in prefix notation,
2574 -- insert an 'Access or a dereference as needed over the first actual.
2575 -- Try_Object_Operation has already verified that there is a valid
2576 -- interpretation, but the form of the actual can only be determined
2577 -- once the primitive operation is identified.
2579 procedure Insert_Default;
2580 -- If the actual is missing in a call, insert in the actuals list
2581 -- an instance of the default expression. The insertion is always
2582 -- a named association.
2584 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
2585 -- Check whether T1 and T2, or their full views, are derived from a
2586 -- common type. Used to enforce the restrictions on array conversions
2587 -- of AI95-00246.
2589 -------------------------
2590 -- Check_Prefixed_Call --
2591 -------------------------
2593 procedure Check_Prefixed_Call is
2594 Act : constant Node_Id := First_Actual (N);
2595 A_Type : constant Entity_Id := Etype (Act);
2596 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
2597 Orig : constant Node_Id := Original_Node (N);
2598 New_A : Node_Id;
2600 begin
2601 -- Check whether the call is a prefixed call, with or without
2602 -- additional actuals.
2604 if Nkind (Orig) = N_Selected_Component
2605 or else
2606 (Nkind (Orig) = N_Indexed_Component
2607 and then Nkind (Prefix (Orig)) = N_Selected_Component
2608 and then Is_Entity_Name (Prefix (Prefix (Orig)))
2609 and then Is_Entity_Name (Act)
2610 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
2611 then
2612 if Is_Access_Type (A_Type)
2613 and then not Is_Access_Type (F_Type)
2614 then
2615 -- Introduce dereference on object in prefix
2617 New_A :=
2618 Make_Explicit_Dereference (Sloc (Act),
2619 Prefix => Relocate_Node (Act));
2620 Rewrite (Act, New_A);
2621 Analyze (Act);
2623 elsif Is_Access_Type (F_Type)
2624 and then not Is_Access_Type (A_Type)
2625 then
2626 -- Introduce an implicit 'Access in prefix
2628 if not Is_Aliased_View (Act) then
2629 Error_Msg_NE
2630 ("object in prefixed call to& must be aliased"
2631 & " (RM-2005 4.3.1 (13))",
2632 Prefix (Act), Nam);
2633 end if;
2635 Rewrite (Act,
2636 Make_Attribute_Reference (Loc,
2637 Attribute_Name => Name_Access,
2638 Prefix => Relocate_Node (Act)));
2639 end if;
2641 Analyze (Act);
2642 end if;
2643 end Check_Prefixed_Call;
2645 --------------------
2646 -- Insert_Default --
2647 --------------------
2649 procedure Insert_Default is
2650 Actval : Node_Id;
2651 Assoc : Node_Id;
2653 begin
2654 -- Missing argument in call, nothing to insert
2656 if No (Default_Value (F)) then
2657 return;
2659 else
2660 -- Note that we do a full New_Copy_Tree, so that any associated
2661 -- Itypes are properly copied. This may not be needed any more,
2662 -- but it does no harm as a safety measure! Defaults of a generic
2663 -- formal may be out of bounds of the corresponding actual (see
2664 -- cc1311b) and an additional check may be required.
2666 Actval :=
2667 New_Copy_Tree
2668 (Default_Value (F),
2669 New_Scope => Current_Scope,
2670 New_Sloc => Loc);
2672 if Is_Concurrent_Type (Scope (Nam))
2673 and then Has_Discriminants (Scope (Nam))
2674 then
2675 Replace_Actual_Discriminants (N, Actval);
2676 end if;
2678 if Is_Overloadable (Nam)
2679 and then Present (Alias (Nam))
2680 then
2681 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
2682 and then not Is_Tagged_Type (Etype (F))
2683 then
2684 -- If default is a real literal, do not introduce a
2685 -- conversion whose effect may depend on the run-time
2686 -- size of universal real.
2688 if Nkind (Actval) = N_Real_Literal then
2689 Set_Etype (Actval, Base_Type (Etype (F)));
2690 else
2691 Actval := Unchecked_Convert_To (Etype (F), Actval);
2692 end if;
2693 end if;
2695 if Is_Scalar_Type (Etype (F)) then
2696 Enable_Range_Check (Actval);
2697 end if;
2699 Set_Parent (Actval, N);
2701 -- Resolve aggregates with their base type, to avoid scope
2702 -- anomalies: the subtype was first built in the suprogram
2703 -- declaration, and the current call may be nested.
2705 if Nkind (Actval) = N_Aggregate
2706 and then Has_Discriminants (Etype (Actval))
2707 then
2708 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
2709 else
2710 Analyze_And_Resolve (Actval, Etype (Actval));
2711 end if;
2713 else
2714 Set_Parent (Actval, N);
2716 -- See note above concerning aggregates
2718 if Nkind (Actval) = N_Aggregate
2719 and then Has_Discriminants (Etype (Actval))
2720 then
2721 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
2723 -- Resolve entities with their own type, which may differ
2724 -- from the type of a reference in a generic context (the
2725 -- view swapping mechanism did not anticipate the re-analysis
2726 -- of default values in calls).
2728 elsif Is_Entity_Name (Actval) then
2729 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
2731 else
2732 Analyze_And_Resolve (Actval, Etype (Actval));
2733 end if;
2734 end if;
2736 -- If default is a tag indeterminate function call, propagate
2737 -- tag to obtain proper dispatching.
2739 if Is_Controlling_Formal (F)
2740 and then Nkind (Default_Value (F)) = N_Function_Call
2741 then
2742 Set_Is_Controlling_Actual (Actval);
2743 end if;
2745 end if;
2747 -- If the default expression raises constraint error, then just
2748 -- silently replace it with an N_Raise_Constraint_Error node,
2749 -- since we already gave the warning on the subprogram spec.
2751 if Raises_Constraint_Error (Actval) then
2752 Rewrite (Actval,
2753 Make_Raise_Constraint_Error (Loc,
2754 Reason => CE_Range_Check_Failed));
2755 Set_Raises_Constraint_Error (Actval);
2756 Set_Etype (Actval, Etype (F));
2757 end if;
2759 Assoc :=
2760 Make_Parameter_Association (Loc,
2761 Explicit_Actual_Parameter => Actval,
2762 Selector_Name => Make_Identifier (Loc, Chars (F)));
2764 -- Case of insertion is first named actual
2766 if No (Prev) or else
2767 Nkind (Parent (Prev)) /= N_Parameter_Association
2768 then
2769 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
2770 Set_First_Named_Actual (N, Actval);
2772 if No (Prev) then
2773 if No (Parameter_Associations (N)) then
2774 Set_Parameter_Associations (N, New_List (Assoc));
2775 else
2776 Append (Assoc, Parameter_Associations (N));
2777 end if;
2779 else
2780 Insert_After (Prev, Assoc);
2781 end if;
2783 -- Case of insertion is not first named actual
2785 else
2786 Set_Next_Named_Actual
2787 (Assoc, Next_Named_Actual (Parent (Prev)));
2788 Set_Next_Named_Actual (Parent (Prev), Actval);
2789 Append (Assoc, Parameter_Associations (N));
2790 end if;
2792 Mark_Rewrite_Insertion (Assoc);
2793 Mark_Rewrite_Insertion (Actval);
2795 Prev := Actval;
2796 end Insert_Default;
2798 -------------------
2799 -- Same_Ancestor --
2800 -------------------
2802 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
2803 FT1 : Entity_Id := T1;
2804 FT2 : Entity_Id := T2;
2806 begin
2807 if Is_Private_Type (T1)
2808 and then Present (Full_View (T1))
2809 then
2810 FT1 := Full_View (T1);
2811 end if;
2813 if Is_Private_Type (T2)
2814 and then Present (Full_View (T2))
2815 then
2816 FT2 := Full_View (T2);
2817 end if;
2819 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
2820 end Same_Ancestor;
2822 -- Start of processing for Resolve_Actuals
2824 begin
2825 if Present (First_Actual (N)) then
2826 Check_Prefixed_Call;
2827 end if;
2829 A := First_Actual (N);
2830 F := First_Formal (Nam);
2831 while Present (F) loop
2832 if No (A) and then Needs_No_Actuals (Nam) then
2833 null;
2835 -- If we have an error in any actual or formal, indicated by
2836 -- a type of Any_Type, then abandon resolution attempt, and
2837 -- set result type to Any_Type.
2839 elsif (Present (A) and then Etype (A) = Any_Type)
2840 or else Etype (F) = Any_Type
2841 then
2842 Set_Etype (N, Any_Type);
2843 return;
2844 end if;
2846 -- Case where actual is present
2848 if Present (A)
2849 and then (Nkind (Parent (A)) /= N_Parameter_Association
2850 or else
2851 Chars (Selector_Name (Parent (A))) = Chars (F))
2852 then
2853 -- If the formal is Out or In_Out, do not resolve and expand the
2854 -- conversion, because it is subsequently expanded into explicit
2855 -- temporaries and assignments. However, the object of the
2856 -- conversion can be resolved. An exception is the case of tagged
2857 -- type conversion with a class-wide actual. In that case we want
2858 -- the tag check to occur and no temporary will be needed (no
2859 -- representation change can occur) and the parameter is passed by
2860 -- reference, so we go ahead and resolve the type conversion.
2861 -- Another exception is the case of reference to component or
2862 -- subcomponent of a bit-packed array, in which case we want to
2863 -- defer expansion to the point the in and out assignments are
2864 -- performed.
2866 if Ekind (F) /= E_In_Parameter
2867 and then Nkind (A) = N_Type_Conversion
2868 and then not Is_Class_Wide_Type (Etype (Expression (A)))
2869 then
2870 if Ekind (F) = E_In_Out_Parameter
2871 and then Is_Array_Type (Etype (F))
2872 then
2873 if Has_Aliased_Components (Etype (Expression (A)))
2874 /= Has_Aliased_Components (Etype (F))
2875 then
2876 if Ada_Version < Ada_05 then
2877 Error_Msg_N
2878 ("both component types in a view conversion must be"
2879 & " aliased, or neither", A);
2881 -- Ada 2005: rule is relaxed (see AI-363)
2883 elsif Has_Aliased_Components (Etype (F))
2884 and then
2885 not Has_Aliased_Components (Etype (Expression (A)))
2886 then
2887 Error_Msg_N
2888 ("view conversion operand must have aliased " &
2889 "components", N);
2890 Error_Msg_N
2891 ("\since target type has aliased components", N);
2892 end if;
2894 elsif not Same_Ancestor (Etype (F), Etype (Expression (A)))
2895 and then
2896 (Is_By_Reference_Type (Etype (F))
2897 or else Is_By_Reference_Type (Etype (Expression (A))))
2898 then
2899 Error_Msg_N
2900 ("view conversion between unrelated by reference " &
2901 "array types not allowed (\'A'I-00246)", A);
2902 end if;
2903 end if;
2905 if (Conversion_OK (A)
2906 or else Valid_Conversion (A, Etype (A), Expression (A)))
2907 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
2908 then
2909 Resolve (Expression (A));
2910 end if;
2912 -- If the actual is a function call that returns a limited
2913 -- unconstrained object that needs finalization, create a
2914 -- transient scope for it, so that it can receive the proper
2915 -- finalization list.
2917 elsif Nkind (A) = N_Function_Call
2918 and then Is_Limited_Record (Etype (F))
2919 and then not Is_Constrained (Etype (F))
2920 and then Expander_Active
2921 and then
2922 (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
2923 then
2924 Establish_Transient_Scope (A, False);
2926 else
2927 if Nkind (A) = N_Type_Conversion
2928 and then Is_Array_Type (Etype (F))
2929 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
2930 and then
2931 (Is_Limited_Type (Etype (F))
2932 or else Is_Limited_Type (Etype (Expression (A))))
2933 then
2934 Error_Msg_N
2935 ("conversion between unrelated limited array types " &
2936 "not allowed (\A\I-00246)", A);
2938 if Is_Limited_Type (Etype (F)) then
2939 Explain_Limited_Type (Etype (F), A);
2940 end if;
2942 if Is_Limited_Type (Etype (Expression (A))) then
2943 Explain_Limited_Type (Etype (Expression (A)), A);
2944 end if;
2945 end if;
2947 -- (Ada 2005: AI-251): If the actual is an allocator whose
2948 -- directly designated type is a class-wide interface, we build
2949 -- an anonymous access type to use it as the type of the
2950 -- allocator. Later, when the subprogram call is expanded, if
2951 -- the interface has a secondary dispatch table the expander
2952 -- will add a type conversion to force the correct displacement
2953 -- of the pointer.
2955 if Nkind (A) = N_Allocator then
2956 declare
2957 DDT : constant Entity_Id :=
2958 Directly_Designated_Type (Base_Type (Etype (F)));
2959 New_Itype : Entity_Id;
2960 begin
2961 if Is_Class_Wide_Type (DDT)
2962 and then Is_Interface (DDT)
2963 then
2964 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
2965 Set_Etype (New_Itype, Etype (A));
2966 Init_Size_Align (New_Itype);
2967 Set_Directly_Designated_Type (New_Itype,
2968 Directly_Designated_Type (Etype (A)));
2969 Set_Etype (A, New_Itype);
2970 end if;
2972 -- Ada 2005, AI-162:If the actual is an allocator, the
2973 -- innermost enclosing statement is the master of the
2974 -- created object. This needs to be done with expansion
2975 -- enabled only, otherwise the transient scope will not
2976 -- be removed in the expansion of the wrapped construct.
2978 if (Is_Controlled (DDT)
2979 or else Has_Task (DDT))
2980 and then Expander_Active
2981 then
2982 Establish_Transient_Scope (A, False);
2983 end if;
2984 end;
2985 end if;
2987 -- (Ada 2005): The call may be to a primitive operation of
2988 -- a tagged synchronized type, declared outside of the type.
2989 -- In this case the controlling actual must be converted to
2990 -- its corresponding record type, which is the formal type.
2992 if Is_Concurrent_Type (Etype (A))
2993 and then Etype (F) = Corresponding_Record_Type (Etype (A))
2994 then
2995 Rewrite (A,
2996 Unchecked_Convert_To
2997 (Corresponding_Record_Type (Etype (A)), A));
2998 end if;
3000 Resolve (A, Etype (F));
3001 end if;
3003 A_Typ := Etype (A);
3004 F_Typ := Etype (F);
3006 -- Perform error checks for IN and IN OUT parameters
3008 if Ekind (F) /= E_Out_Parameter then
3010 -- Check unset reference. For scalar parameters, it is clearly
3011 -- wrong to pass an uninitialized value as either an IN or
3012 -- IN-OUT parameter. For composites, it is also clearly an
3013 -- error to pass a completely uninitialized value as an IN
3014 -- parameter, but the case of IN OUT is trickier. We prefer
3015 -- not to give a warning here. For example, suppose there is
3016 -- a routine that sets some component of a record to False.
3017 -- It is perfectly reasonable to make this IN-OUT and allow
3018 -- either initialized or uninitialized records to be passed
3019 -- in this case.
3021 -- For partially initialized composite values, we also avoid
3022 -- warnings, since it is quite likely that we are passing a
3023 -- partially initialized value and only the initialized fields
3024 -- will in fact be read in the subprogram.
3026 if Is_Scalar_Type (A_Typ)
3027 or else (Ekind (F) = E_In_Parameter
3028 and then not Is_Partially_Initialized_Type (A_Typ))
3029 then
3030 Check_Unset_Reference (A);
3031 end if;
3033 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3034 -- actual to a nested call, since this is case of reading an
3035 -- out parameter, which is not allowed.
3037 if Ada_Version = Ada_83
3038 and then Is_Entity_Name (A)
3039 and then Ekind (Entity (A)) = E_Out_Parameter
3040 then
3041 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
3042 end if;
3043 end if;
3045 if Ekind (F) /= E_In_Parameter
3046 and then not Is_OK_Variable_For_Out_Formal (A)
3047 then
3048 Error_Msg_NE ("actual for& must be a variable", A, F);
3050 if Is_Entity_Name (A) then
3051 Kill_Checks (Entity (A));
3052 else
3053 Kill_All_Checks;
3054 end if;
3055 end if;
3057 if Etype (A) = Any_Type then
3058 Set_Etype (N, Any_Type);
3059 return;
3060 end if;
3062 -- Apply appropriate range checks for in, out, and in-out
3063 -- parameters. Out and in-out parameters also need a separate
3064 -- check, if there is a type conversion, to make sure the return
3065 -- value meets the constraints of the variable before the
3066 -- conversion.
3068 -- Gigi looks at the check flag and uses the appropriate types.
3069 -- For now since one flag is used there is an optimization which
3070 -- might not be done in the In Out case since Gigi does not do
3071 -- any analysis. More thought required about this ???
3073 if Ekind (F) = E_In_Parameter
3074 or else Ekind (F) = E_In_Out_Parameter
3075 then
3076 if Is_Scalar_Type (Etype (A)) then
3077 Apply_Scalar_Range_Check (A, F_Typ);
3079 elsif Is_Array_Type (Etype (A)) then
3080 Apply_Length_Check (A, F_Typ);
3082 elsif Is_Record_Type (F_Typ)
3083 and then Has_Discriminants (F_Typ)
3084 and then Is_Constrained (F_Typ)
3085 and then (not Is_Derived_Type (F_Typ)
3086 or else Comes_From_Source (Nam))
3087 then
3088 Apply_Discriminant_Check (A, F_Typ);
3090 elsif Is_Access_Type (F_Typ)
3091 and then Is_Array_Type (Designated_Type (F_Typ))
3092 and then Is_Constrained (Designated_Type (F_Typ))
3093 then
3094 Apply_Length_Check (A, F_Typ);
3096 elsif Is_Access_Type (F_Typ)
3097 and then Has_Discriminants (Designated_Type (F_Typ))
3098 and then Is_Constrained (Designated_Type (F_Typ))
3099 then
3100 Apply_Discriminant_Check (A, F_Typ);
3102 else
3103 Apply_Range_Check (A, F_Typ);
3104 end if;
3106 -- Ada 2005 (AI-231)
3108 if Ada_Version >= Ada_05
3109 and then Is_Access_Type (F_Typ)
3110 and then Can_Never_Be_Null (F_Typ)
3111 and then Known_Null (A)
3112 then
3113 Apply_Compile_Time_Constraint_Error
3114 (N => A,
3115 Msg => "(Ada 2005) null not allowed in "
3116 & "null-excluding formal?",
3117 Reason => CE_Null_Not_Allowed);
3118 end if;
3119 end if;
3121 if Ekind (F) = E_Out_Parameter
3122 or else Ekind (F) = E_In_Out_Parameter
3123 then
3124 if Nkind (A) = N_Type_Conversion then
3125 if Is_Scalar_Type (A_Typ) then
3126 Apply_Scalar_Range_Check
3127 (Expression (A), Etype (Expression (A)), A_Typ);
3128 else
3129 Apply_Range_Check
3130 (Expression (A), Etype (Expression (A)), A_Typ);
3131 end if;
3133 else
3134 if Is_Scalar_Type (F_Typ) then
3135 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
3137 elsif Is_Array_Type (F_Typ)
3138 and then Ekind (F) = E_Out_Parameter
3139 then
3140 Apply_Length_Check (A, F_Typ);
3142 else
3143 Apply_Range_Check (A, A_Typ, F_Typ);
3144 end if;
3145 end if;
3146 end if;
3148 -- An actual associated with an access parameter is implicitly
3149 -- converted to the anonymous access type of the formal and
3150 -- must satisfy the legality checks for access conversions.
3152 if Ekind (F_Typ) = E_Anonymous_Access_Type then
3153 if not Valid_Conversion (A, F_Typ, A) then
3154 Error_Msg_N
3155 ("invalid implicit conversion for access parameter", A);
3156 end if;
3157 end if;
3159 -- Check bad case of atomic/volatile argument (RM C.6(12))
3161 if Is_By_Reference_Type (Etype (F))
3162 and then Comes_From_Source (N)
3163 then
3164 if Is_Atomic_Object (A)
3165 and then not Is_Atomic (Etype (F))
3166 then
3167 Error_Msg_N
3168 ("cannot pass atomic argument to non-atomic formal",
3171 elsif Is_Volatile_Object (A)
3172 and then not Is_Volatile (Etype (F))
3173 then
3174 Error_Msg_N
3175 ("cannot pass volatile argument to non-volatile formal",
3177 end if;
3178 end if;
3180 -- Check that subprograms don't have improper controlling
3181 -- arguments (RM 3.9.2 (9))
3183 -- A primitive operation may have an access parameter of an
3184 -- incomplete tagged type, but a dispatching call is illegal
3185 -- if the type is still incomplete.
3187 if Is_Controlling_Formal (F) then
3188 Set_Is_Controlling_Actual (A);
3190 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3191 declare
3192 Desig : constant Entity_Id := Designated_Type (Etype (F));
3193 begin
3194 if Ekind (Desig) = E_Incomplete_Type
3195 and then No (Full_View (Desig))
3196 and then No (Non_Limited_View (Desig))
3197 then
3198 Error_Msg_NE
3199 ("premature use of incomplete type& " &
3200 "in dispatching call", A, Desig);
3201 end if;
3202 end;
3203 end if;
3205 elsif Nkind (A) = N_Explicit_Dereference then
3206 Validate_Remote_Access_To_Class_Wide_Type (A);
3207 end if;
3209 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
3210 and then not Is_Class_Wide_Type (F_Typ)
3211 and then not Is_Controlling_Formal (F)
3212 then
3213 Error_Msg_N ("class-wide argument not allowed here!", A);
3215 if Is_Subprogram (Nam)
3216 and then Comes_From_Source (Nam)
3217 then
3218 Error_Msg_Node_2 := F_Typ;
3219 Error_Msg_NE
3220 ("& is not a dispatching operation of &!", A, Nam);
3221 end if;
3223 elsif Is_Access_Type (A_Typ)
3224 and then Is_Access_Type (F_Typ)
3225 and then Ekind (F_Typ) /= E_Access_Subprogram_Type
3226 and then Ekind (F_Typ) /= E_Anonymous_Access_Subprogram_Type
3227 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
3228 or else (Nkind (A) = N_Attribute_Reference
3229 and then
3230 Is_Class_Wide_Type (Etype (Prefix (A)))))
3231 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
3232 and then not Is_Controlling_Formal (F)
3233 then
3234 Error_Msg_N
3235 ("access to class-wide argument not allowed here!", A);
3237 if Is_Subprogram (Nam)
3238 and then Comes_From_Source (Nam)
3239 then
3240 Error_Msg_Node_2 := Designated_Type (F_Typ);
3241 Error_Msg_NE
3242 ("& is not a dispatching operation of &!", A, Nam);
3243 end if;
3244 end if;
3246 Eval_Actual (A);
3248 -- If it is a named association, treat the selector_name as
3249 -- a proper identifier, and mark the corresponding entity.
3251 if Nkind (Parent (A)) = N_Parameter_Association then
3252 Set_Entity (Selector_Name (Parent (A)), F);
3253 Generate_Reference (F, Selector_Name (Parent (A)));
3254 Set_Etype (Selector_Name (Parent (A)), F_Typ);
3255 Generate_Reference (F_Typ, N, ' ');
3256 end if;
3258 Prev := A;
3260 if Ekind (F) /= E_Out_Parameter then
3261 Check_Unset_Reference (A);
3262 end if;
3264 Next_Actual (A);
3266 -- Case where actual is not present
3268 else
3269 Insert_Default;
3270 end if;
3272 Next_Formal (F);
3273 end loop;
3274 end Resolve_Actuals;
3276 -----------------------
3277 -- Resolve_Allocator --
3278 -----------------------
3280 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
3281 E : constant Node_Id := Expression (N);
3282 Subtyp : Entity_Id;
3283 Discrim : Entity_Id;
3284 Constr : Node_Id;
3285 Aggr : Node_Id;
3286 Assoc : Node_Id := Empty;
3287 Disc_Exp : Node_Id;
3289 procedure Check_Allocator_Discrim_Accessibility
3290 (Disc_Exp : Node_Id;
3291 Alloc_Typ : Entity_Id);
3292 -- Check that accessibility level associated with an access discriminant
3293 -- initialized in an allocator by the expression Disc_Exp is not deeper
3294 -- than the level of the allocator type Alloc_Typ. An error message is
3295 -- issued if this condition is violated. Specialized checks are done for
3296 -- the cases of a constraint expression which is an access attribute or
3297 -- an access discriminant.
3299 function In_Dispatching_Context return Boolean;
3300 -- If the allocator is an actual in a call, it is allowed to be class-
3301 -- wide when the context is not because it is a controlling actual.
3303 procedure Propagate_Coextensions (Root : Node_Id);
3304 -- Propagate all nested coextensions which are located one nesting
3305 -- level down the tree to the node Root. Example:
3307 -- Top_Record
3308 -- Level_1_Coextension
3309 -- Level_2_Coextension
3311 -- The algorithm is paired with delay actions done by the Expander. In
3312 -- the above example, assume all coextensions are controlled types.
3313 -- The cycle of analysis, resolution and expansion will yield:
3315 -- 1) Analyze Top_Record
3316 -- 2) Analyze Level_1_Coextension
3317 -- 3) Analyze Level_2_Coextension
3318 -- 4) Resolve Level_2_Coextnesion. The allocator is marked as a
3319 -- coextension.
3320 -- 5) Expand Level_2_Coextension. A temporary variable Temp_1 is
3321 -- generated to capture the allocated object. Temp_1 is attached
3322 -- to the coextension chain of Level_2_Coextension.
3323 -- 6) Resolve Level_1_Coextension. The allocator is marked as a
3324 -- coextension. A forward tree traversal is performed which finds
3325 -- Level_2_Coextension's list and copies its contents into its
3326 -- own list.
3327 -- 7) Expand Level_1_Coextension. A temporary variable Temp_2 is
3328 -- generated to capture the allocated object. Temp_2 is attached
3329 -- to the coextension chain of Level_1_Coextension. Currently, the
3330 -- contents of the list are [Temp_2, Temp_1].
3331 -- 8) Resolve Top_Record. A forward tree traversal is performed which
3332 -- finds Level_1_Coextension's list and copies its contents into
3333 -- its own list.
3334 -- 9) Expand Top_Record. Generate finalization calls for Temp_1 and
3335 -- Temp_2 and attach them to Top_Record's finalization list.
3337 -------------------------------------------
3338 -- Check_Allocator_Discrim_Accessibility --
3339 -------------------------------------------
3341 procedure Check_Allocator_Discrim_Accessibility
3342 (Disc_Exp : Node_Id;
3343 Alloc_Typ : Entity_Id)
3345 begin
3346 if Type_Access_Level (Etype (Disc_Exp)) >
3347 Type_Access_Level (Alloc_Typ)
3348 then
3349 Error_Msg_N
3350 ("operand type has deeper level than allocator type", Disc_Exp);
3352 -- When the expression is an Access attribute the level of the prefix
3353 -- object must not be deeper than that of the allocator's type.
3355 elsif Nkind (Disc_Exp) = N_Attribute_Reference
3356 and then Get_Attribute_Id (Attribute_Name (Disc_Exp))
3357 = Attribute_Access
3358 and then Object_Access_Level (Prefix (Disc_Exp))
3359 > Type_Access_Level (Alloc_Typ)
3360 then
3361 Error_Msg_N
3362 ("prefix of attribute has deeper level than allocator type",
3363 Disc_Exp);
3365 -- When the expression is an access discriminant the check is against
3366 -- the level of the prefix object.
3368 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
3369 and then Nkind (Disc_Exp) = N_Selected_Component
3370 and then Object_Access_Level (Prefix (Disc_Exp))
3371 > Type_Access_Level (Alloc_Typ)
3372 then
3373 Error_Msg_N
3374 ("access discriminant has deeper level than allocator type",
3375 Disc_Exp);
3377 -- All other cases are legal
3379 else
3380 null;
3381 end if;
3382 end Check_Allocator_Discrim_Accessibility;
3384 ----------------------------
3385 -- In_Dispatching_Context --
3386 ----------------------------
3388 function In_Dispatching_Context return Boolean is
3389 Par : constant Node_Id := Parent (N);
3390 begin
3391 return (Nkind (Par) = N_Function_Call
3392 or else Nkind (Par) = N_Procedure_Call_Statement)
3393 and then Is_Entity_Name (Name (Par))
3394 and then Is_Dispatching_Operation (Entity (Name (Par)));
3395 end In_Dispatching_Context;
3397 ----------------------------
3398 -- Propagate_Coextensions --
3399 ----------------------------
3401 procedure Propagate_Coextensions (Root : Node_Id) is
3403 procedure Copy_List (From : Elist_Id; To : Elist_Id);
3404 -- Copy the contents of list From into list To, preserving the
3405 -- order of elements.
3407 function Process_Allocator (Nod : Node_Id) return Traverse_Result;
3408 -- Recognize an allocator or a rewritten allocator node and add it
3409 -- allong with its nested coextensions to the list of Root.
3411 ---------------
3412 -- Copy_List --
3413 ---------------
3415 procedure Copy_List (From : Elist_Id; To : Elist_Id) is
3416 From_Elmt : Elmt_Id;
3417 begin
3418 From_Elmt := First_Elmt (From);
3419 while Present (From_Elmt) loop
3420 Append_Elmt (Node (From_Elmt), To);
3421 Next_Elmt (From_Elmt);
3422 end loop;
3423 end Copy_List;
3425 -----------------------
3426 -- Process_Allocator --
3427 -----------------------
3429 function Process_Allocator (Nod : Node_Id) return Traverse_Result is
3430 Orig_Nod : Node_Id := Nod;
3432 begin
3433 -- This is a possible rewritten subtype indication allocator. Any
3434 -- nested coextensions will appear as discriminant constraints.
3436 if Nkind (Nod) = N_Identifier
3437 and then Present (Original_Node (Nod))
3438 and then Nkind (Original_Node (Nod)) = N_Subtype_Indication
3439 then
3440 declare
3441 Discr : Node_Id;
3442 Discr_Elmt : Elmt_Id;
3444 begin
3445 if Is_Record_Type (Entity (Nod)) then
3446 Discr_Elmt :=
3447 First_Elmt (Discriminant_Constraint (Entity (Nod)));
3448 while Present (Discr_Elmt) loop
3449 Discr := Node (Discr_Elmt);
3451 if Nkind (Discr) = N_Identifier
3452 and then Present (Original_Node (Discr))
3453 and then Nkind (Original_Node (Discr)) = N_Allocator
3454 and then Present (Coextensions (
3455 Original_Node (Discr)))
3456 then
3457 if No (Coextensions (Root)) then
3458 Set_Coextensions (Root, New_Elmt_List);
3459 end if;
3461 Copy_List
3462 (From => Coextensions (Original_Node (Discr)),
3463 To => Coextensions (Root));
3464 end if;
3466 Next_Elmt (Discr_Elmt);
3467 end loop;
3469 -- There is no need to continue the traversal of this
3470 -- subtree since all the information has already been
3471 -- propagated.
3473 return Skip;
3474 end if;
3475 end;
3477 -- Case of either a stand alone allocator or a rewritten allocator
3478 -- with an aggregate.
3480 else
3481 if Present (Original_Node (Nod)) then
3482 Orig_Nod := Original_Node (Nod);
3483 end if;
3485 if Nkind (Orig_Nod) = N_Allocator then
3487 -- Propagate the list of nested coextensions to the Root
3488 -- allocator. This is done through list copy since a single
3489 -- allocator may have multiple coextensions. Do not touch
3490 -- coextensions roots.
3492 if not Is_Coextension_Root (Orig_Nod)
3493 and then Present (Coextensions (Orig_Nod))
3494 then
3495 if No (Coextensions (Root)) then
3496 Set_Coextensions (Root, New_Elmt_List);
3497 end if;
3499 Copy_List
3500 (From => Coextensions (Orig_Nod),
3501 To => Coextensions (Root));
3502 end if;
3504 -- There is no need to continue the traversal of this
3505 -- subtree since all the information has already been
3506 -- propagated.
3508 return Skip;
3509 end if;
3510 end if;
3512 -- Keep on traversing, looking for the next allocator
3514 return OK;
3515 end Process_Allocator;
3517 procedure Process_Allocators is
3518 new Traverse_Proc (Process_Allocator);
3520 -- Start of processing for Propagate_Coextensions
3522 begin
3523 Process_Allocators (Expression (Root));
3524 end Propagate_Coextensions;
3526 -- Start of processing for Resolve_Allocator
3528 begin
3529 -- Replace general access with specific type
3531 if Ekind (Etype (N)) = E_Allocator_Type then
3532 Set_Etype (N, Base_Type (Typ));
3533 end if;
3535 if Is_Abstract_Type (Typ) then
3536 Error_Msg_N ("type of allocator cannot be abstract", N);
3537 end if;
3539 -- For qualified expression, resolve the expression using the
3540 -- given subtype (nothing to do for type mark, subtype indication)
3542 if Nkind (E) = N_Qualified_Expression then
3543 if Is_Class_Wide_Type (Etype (E))
3544 and then not Is_Class_Wide_Type (Designated_Type (Typ))
3545 and then not In_Dispatching_Context
3546 then
3547 Error_Msg_N
3548 ("class-wide allocator not allowed for this access type", N);
3549 end if;
3551 Resolve (Expression (E), Etype (E));
3552 Check_Unset_Reference (Expression (E));
3554 -- A qualified expression requires an exact match of the type,
3555 -- class-wide matching is not allowed.
3557 if (Is_Class_Wide_Type (Etype (Expression (E)))
3558 or else Is_Class_Wide_Type (Etype (E)))
3559 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
3560 then
3561 Wrong_Type (Expression (E), Etype (E));
3562 end if;
3564 -- A special accessibility check is needed for allocators that
3565 -- constrain access discriminants. The level of the type of the
3566 -- expression used to constrain an access discriminant cannot be
3567 -- deeper than the type of the allocator (in constrast to access
3568 -- parameters, where the level of the actual can be arbitrary).
3570 -- We can't use Valid_Conversion to perform this check because
3571 -- in general the type of the allocator is unrelated to the type
3572 -- of the access discriminant.
3574 if Ekind (Typ) /= E_Anonymous_Access_Type
3575 or else Is_Local_Anonymous_Access (Typ)
3576 then
3577 Subtyp := Entity (Subtype_Mark (E));
3579 Aggr := Original_Node (Expression (E));
3581 if Has_Discriminants (Subtyp)
3582 and then
3583 (Nkind (Aggr) = N_Aggregate
3584 or else
3585 Nkind (Aggr) = N_Extension_Aggregate)
3586 then
3587 Discrim := First_Discriminant (Base_Type (Subtyp));
3589 -- Get the first component expression of the aggregate
3591 if Present (Expressions (Aggr)) then
3592 Disc_Exp := First (Expressions (Aggr));
3594 elsif Present (Component_Associations (Aggr)) then
3595 Assoc := First (Component_Associations (Aggr));
3597 if Present (Assoc) then
3598 Disc_Exp := Expression (Assoc);
3599 else
3600 Disc_Exp := Empty;
3601 end if;
3603 else
3604 Disc_Exp := Empty;
3605 end if;
3607 while Present (Discrim) and then Present (Disc_Exp) loop
3608 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
3609 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
3610 end if;
3612 Next_Discriminant (Discrim);
3614 if Present (Discrim) then
3615 if Present (Assoc) then
3616 Next (Assoc);
3617 Disc_Exp := Expression (Assoc);
3619 elsif Present (Next (Disc_Exp)) then
3620 Next (Disc_Exp);
3622 else
3623 Assoc := First (Component_Associations (Aggr));
3625 if Present (Assoc) then
3626 Disc_Exp := Expression (Assoc);
3627 else
3628 Disc_Exp := Empty;
3629 end if;
3630 end if;
3631 end if;
3632 end loop;
3633 end if;
3634 end if;
3636 -- For a subtype mark or subtype indication, freeze the subtype
3638 else
3639 Freeze_Expression (E);
3641 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
3642 Error_Msg_N
3643 ("initialization required for access-to-constant allocator", N);
3644 end if;
3646 -- A special accessibility check is needed for allocators that
3647 -- constrain access discriminants. The level of the type of the
3648 -- expression used to constrain an access discriminant cannot be
3649 -- deeper than the type of the allocator (in constrast to access
3650 -- parameters, where the level of the actual can be arbitrary).
3651 -- We can't use Valid_Conversion to perform this check because
3652 -- in general the type of the allocator is unrelated to the type
3653 -- of the access discriminant.
3655 if Nkind (Original_Node (E)) = N_Subtype_Indication
3656 and then (Ekind (Typ) /= E_Anonymous_Access_Type
3657 or else Is_Local_Anonymous_Access (Typ))
3658 then
3659 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
3661 if Has_Discriminants (Subtyp) then
3662 Discrim := First_Discriminant (Base_Type (Subtyp));
3663 Constr := First (Constraints (Constraint (Original_Node (E))));
3664 while Present (Discrim) and then Present (Constr) loop
3665 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
3666 if Nkind (Constr) = N_Discriminant_Association then
3667 Disc_Exp := Original_Node (Expression (Constr));
3668 else
3669 Disc_Exp := Original_Node (Constr);
3670 end if;
3672 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
3673 end if;
3675 Next_Discriminant (Discrim);
3676 Next (Constr);
3677 end loop;
3678 end if;
3679 end if;
3680 end if;
3682 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
3683 -- check that the level of the type of the created object is not deeper
3684 -- than the level of the allocator's access type, since extensions can
3685 -- now occur at deeper levels than their ancestor types. This is a
3686 -- static accessibility level check; a run-time check is also needed in
3687 -- the case of an initialized allocator with a class-wide argument (see
3688 -- Expand_Allocator_Expression).
3690 if Ada_Version >= Ada_05
3691 and then Is_Class_Wide_Type (Designated_Type (Typ))
3692 then
3693 declare
3694 Exp_Typ : Entity_Id;
3696 begin
3697 if Nkind (E) = N_Qualified_Expression then
3698 Exp_Typ := Etype (E);
3699 elsif Nkind (E) = N_Subtype_Indication then
3700 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
3701 else
3702 Exp_Typ := Entity (E);
3703 end if;
3705 if Type_Access_Level (Exp_Typ) > Type_Access_Level (Typ) then
3706 if In_Instance_Body then
3707 Error_Msg_N ("?type in allocator has deeper level than" &
3708 " designated class-wide type", E);
3709 Error_Msg_N ("\?Program_Error will be raised at run time",
3711 Rewrite (N,
3712 Make_Raise_Program_Error (Sloc (N),
3713 Reason => PE_Accessibility_Check_Failed));
3714 Set_Etype (N, Typ);
3716 -- Do not apply Ada 2005 accessibility checks on a class-wide
3717 -- allocator if the type given in the allocator is a formal
3718 -- type. A run-time check will be performed in the instance.
3720 elsif not Is_Generic_Type (Exp_Typ) then
3721 Error_Msg_N ("type in allocator has deeper level than" &
3722 " designated class-wide type", E);
3723 end if;
3724 end if;
3725 end;
3726 end if;
3728 -- Check for allocation from an empty storage pool
3730 if No_Pool_Assigned (Typ) then
3731 declare
3732 Loc : constant Source_Ptr := Sloc (N);
3733 begin
3734 Error_Msg_N ("?allocation from empty storage pool!", N);
3735 Error_Msg_N ("\?Storage_Error will be raised at run time!", N);
3736 Insert_Action (N,
3737 Make_Raise_Storage_Error (Loc,
3738 Reason => SE_Empty_Storage_Pool));
3739 end;
3741 -- If the context is an unchecked conversion, as may happen within
3742 -- an inlined subprogram, the allocator is being resolved with its
3743 -- own anonymous type. In that case, if the target type has a specific
3744 -- storage pool, it must be inherited explicitly by the allocator type.
3746 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
3747 and then No (Associated_Storage_Pool (Typ))
3748 then
3749 Set_Associated_Storage_Pool
3750 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
3751 end if;
3753 -- An erroneous allocator may be rewritten as a raise Program_Error
3754 -- statement.
3756 if Nkind (N) = N_Allocator then
3758 -- An anonymous access discriminant is the definition of a
3759 -- coextension.
3761 if Ekind (Typ) = E_Anonymous_Access_Type
3762 and then Nkind (Associated_Node_For_Itype (Typ)) =
3763 N_Discriminant_Specification
3764 then
3765 -- Avoid marking an allocator as a dynamic coextension if it is
3766 -- within a static construct.
3768 if not Is_Static_Coextension (N) then
3769 Set_Is_Dynamic_Coextension (N);
3770 end if;
3772 -- Cleanup for potential static coextensions
3774 else
3775 Set_Is_Dynamic_Coextension (N, False);
3776 Set_Is_Static_Coextension (N, False);
3777 end if;
3779 -- There is no need to propagate any nested coextensions if they
3780 -- are marked as static since they will be rewritten on the spot.
3782 if not Is_Static_Coextension (N) then
3783 Propagate_Coextensions (N);
3784 end if;
3785 end if;
3786 end Resolve_Allocator;
3788 ---------------------------
3789 -- Resolve_Arithmetic_Op --
3790 ---------------------------
3792 -- Used for resolving all arithmetic operators except exponentiation
3794 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
3795 L : constant Node_Id := Left_Opnd (N);
3796 R : constant Node_Id := Right_Opnd (N);
3797 TL : constant Entity_Id := Base_Type (Etype (L));
3798 TR : constant Entity_Id := Base_Type (Etype (R));
3799 T : Entity_Id;
3800 Rop : Node_Id;
3802 B_Typ : constant Entity_Id := Base_Type (Typ);
3803 -- We do the resolution using the base type, because intermediate values
3804 -- in expressions always are of the base type, not a subtype of it.
3806 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
3807 -- Returns True if N is in a context that expects "any real type"
3809 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
3810 -- Return True iff given type is Integer or universal real/integer
3812 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
3813 -- Choose type of integer literal in fixed-point operation to conform
3814 -- to available fixed-point type. T is the type of the other operand,
3815 -- which is needed to determine the expected type of N.
3817 procedure Set_Operand_Type (N : Node_Id);
3818 -- Set operand type to T if universal
3820 -------------------------------
3821 -- Expected_Type_Is_Any_Real --
3822 -------------------------------
3824 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
3825 begin
3826 -- N is the expression after "delta" in a fixed_point_definition;
3827 -- see RM-3.5.9(6):
3829 return Nkind (Parent (N)) = N_Ordinary_Fixed_Point_Definition
3830 or else Nkind (Parent (N)) = N_Decimal_Fixed_Point_Definition
3832 -- N is one of the bounds in a real_range_specification;
3833 -- see RM-3.5.7(5):
3835 or else Nkind (Parent (N)) = N_Real_Range_Specification
3837 -- N is the expression of a delta_constraint;
3838 -- see RM-J.3(3):
3840 or else Nkind (Parent (N)) = N_Delta_Constraint;
3841 end Expected_Type_Is_Any_Real;
3843 -----------------------------
3844 -- Is_Integer_Or_Universal --
3845 -----------------------------
3847 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
3848 T : Entity_Id;
3849 Index : Interp_Index;
3850 It : Interp;
3852 begin
3853 if not Is_Overloaded (N) then
3854 T := Etype (N);
3855 return Base_Type (T) = Base_Type (Standard_Integer)
3856 or else T = Universal_Integer
3857 or else T = Universal_Real;
3858 else
3859 Get_First_Interp (N, Index, It);
3860 while Present (It.Typ) loop
3861 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
3862 or else It.Typ = Universal_Integer
3863 or else It.Typ = Universal_Real
3864 then
3865 return True;
3866 end if;
3868 Get_Next_Interp (Index, It);
3869 end loop;
3870 end if;
3872 return False;
3873 end Is_Integer_Or_Universal;
3875 ----------------------------
3876 -- Set_Mixed_Mode_Operand --
3877 ----------------------------
3879 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
3880 Index : Interp_Index;
3881 It : Interp;
3883 begin
3884 if Universal_Interpretation (N) = Universal_Integer then
3886 -- A universal integer literal is resolved as standard integer
3887 -- except in the case of a fixed-point result, where we leave it
3888 -- as universal (to be handled by Exp_Fixd later on)
3890 if Is_Fixed_Point_Type (T) then
3891 Resolve (N, Universal_Integer);
3892 else
3893 Resolve (N, Standard_Integer);
3894 end if;
3896 elsif Universal_Interpretation (N) = Universal_Real
3897 and then (T = Base_Type (Standard_Integer)
3898 or else T = Universal_Integer
3899 or else T = Universal_Real)
3900 then
3901 -- A universal real can appear in a fixed-type context. We resolve
3902 -- the literal with that context, even though this might raise an
3903 -- exception prematurely (the other operand may be zero).
3905 Resolve (N, B_Typ);
3907 elsif Etype (N) = Base_Type (Standard_Integer)
3908 and then T = Universal_Real
3909 and then Is_Overloaded (N)
3910 then
3911 -- Integer arg in mixed-mode operation. Resolve with universal
3912 -- type, in case preference rule must be applied.
3914 Resolve (N, Universal_Integer);
3916 elsif Etype (N) = T
3917 and then B_Typ /= Universal_Fixed
3918 then
3919 -- Not a mixed-mode operation, resolve with context
3921 Resolve (N, B_Typ);
3923 elsif Etype (N) = Any_Fixed then
3925 -- N may itself be a mixed-mode operation, so use context type
3927 Resolve (N, B_Typ);
3929 elsif Is_Fixed_Point_Type (T)
3930 and then B_Typ = Universal_Fixed
3931 and then Is_Overloaded (N)
3932 then
3933 -- Must be (fixed * fixed) operation, operand must have one
3934 -- compatible interpretation.
3936 Resolve (N, Any_Fixed);
3938 elsif Is_Fixed_Point_Type (B_Typ)
3939 and then (T = Universal_Real
3940 or else Is_Fixed_Point_Type (T))
3941 and then Is_Overloaded (N)
3942 then
3943 -- C * F(X) in a fixed context, where C is a real literal or a
3944 -- fixed-point expression. F must have either a fixed type
3945 -- interpretation or an integer interpretation, but not both.
3947 Get_First_Interp (N, Index, It);
3948 while Present (It.Typ) loop
3949 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
3951 if Analyzed (N) then
3952 Error_Msg_N ("ambiguous operand in fixed operation", N);
3953 else
3954 Resolve (N, Standard_Integer);
3955 end if;
3957 elsif Is_Fixed_Point_Type (It.Typ) then
3959 if Analyzed (N) then
3960 Error_Msg_N ("ambiguous operand in fixed operation", N);
3961 else
3962 Resolve (N, It.Typ);
3963 end if;
3964 end if;
3966 Get_Next_Interp (Index, It);
3967 end loop;
3969 -- Reanalyze the literal with the fixed type of the context. If
3970 -- context is Universal_Fixed, we are within a conversion, leave
3971 -- the literal as a universal real because there is no usable
3972 -- fixed type, and the target of the conversion plays no role in
3973 -- the resolution.
3975 declare
3976 Op2 : Node_Id;
3977 T2 : Entity_Id;
3979 begin
3980 if N = L then
3981 Op2 := R;
3982 else
3983 Op2 := L;
3984 end if;
3986 if B_Typ = Universal_Fixed
3987 and then Nkind (Op2) = N_Real_Literal
3988 then
3989 T2 := Universal_Real;
3990 else
3991 T2 := B_Typ;
3992 end if;
3994 Set_Analyzed (Op2, False);
3995 Resolve (Op2, T2);
3996 end;
3998 else
3999 Resolve (N);
4000 end if;
4001 end Set_Mixed_Mode_Operand;
4003 ----------------------
4004 -- Set_Operand_Type --
4005 ----------------------
4007 procedure Set_Operand_Type (N : Node_Id) is
4008 begin
4009 if Etype (N) = Universal_Integer
4010 or else Etype (N) = Universal_Real
4011 then
4012 Set_Etype (N, T);
4013 end if;
4014 end Set_Operand_Type;
4016 -- Start of processing for Resolve_Arithmetic_Op
4018 begin
4019 if Comes_From_Source (N)
4020 and then Ekind (Entity (N)) = E_Function
4021 and then Is_Imported (Entity (N))
4022 and then Is_Intrinsic_Subprogram (Entity (N))
4023 then
4024 Resolve_Intrinsic_Operator (N, Typ);
4025 return;
4027 -- Special-case for mixed-mode universal expressions or fixed point
4028 -- type operation: each argument is resolved separately. The same
4029 -- treatment is required if one of the operands of a fixed point
4030 -- operation is universal real, since in this case we don't do a
4031 -- conversion to a specific fixed-point type (instead the expander
4032 -- takes care of the case).
4034 elsif (B_Typ = Universal_Integer
4035 or else B_Typ = Universal_Real)
4036 and then Present (Universal_Interpretation (L))
4037 and then Present (Universal_Interpretation (R))
4038 then
4039 Resolve (L, Universal_Interpretation (L));
4040 Resolve (R, Universal_Interpretation (R));
4041 Set_Etype (N, B_Typ);
4043 elsif (B_Typ = Universal_Real
4044 or else Etype (N) = Universal_Fixed
4045 or else (Etype (N) = Any_Fixed
4046 and then Is_Fixed_Point_Type (B_Typ))
4047 or else (Is_Fixed_Point_Type (B_Typ)
4048 and then (Is_Integer_Or_Universal (L)
4049 or else
4050 Is_Integer_Or_Universal (R))))
4051 and then (Nkind (N) = N_Op_Multiply or else
4052 Nkind (N) = N_Op_Divide)
4053 then
4054 if TL = Universal_Integer or else TR = Universal_Integer then
4055 Check_For_Visible_Operator (N, B_Typ);
4056 end if;
4058 -- If context is a fixed type and one operand is integer, the
4059 -- other is resolved with the type of the context.
4061 if Is_Fixed_Point_Type (B_Typ)
4062 and then (Base_Type (TL) = Base_Type (Standard_Integer)
4063 or else TL = Universal_Integer)
4064 then
4065 Resolve (R, B_Typ);
4066 Resolve (L, TL);
4068 elsif Is_Fixed_Point_Type (B_Typ)
4069 and then (Base_Type (TR) = Base_Type (Standard_Integer)
4070 or else TR = Universal_Integer)
4071 then
4072 Resolve (L, B_Typ);
4073 Resolve (R, TR);
4075 else
4076 Set_Mixed_Mode_Operand (L, TR);
4077 Set_Mixed_Mode_Operand (R, TL);
4078 end if;
4080 -- Check the rule in RM05-4.5.5(19.1/2) disallowing the
4081 -- universal_fixed multiplying operators from being used when the
4082 -- expected type is also universal_fixed. Note that B_Typ will be
4083 -- Universal_Fixed in some cases where the expected type is actually
4084 -- Any_Real; Expected_Type_Is_Any_Real takes care of that case.
4086 if Etype (N) = Universal_Fixed
4087 or else Etype (N) = Any_Fixed
4088 then
4089 if B_Typ = Universal_Fixed
4090 and then not Expected_Type_Is_Any_Real (N)
4091 and then Nkind (Parent (N)) /= N_Type_Conversion
4092 and then Nkind (Parent (N)) /= N_Unchecked_Type_Conversion
4093 then
4094 Error_Msg_N
4095 ("type cannot be determined from context!", N);
4096 Error_Msg_N
4097 ("\explicit conversion to result type required", N);
4099 Set_Etype (L, Any_Type);
4100 Set_Etype (R, Any_Type);
4102 else
4103 if Ada_Version = Ada_83
4104 and then Etype (N) = Universal_Fixed
4105 and then Nkind (Parent (N)) /= N_Type_Conversion
4106 and then Nkind (Parent (N)) /= N_Unchecked_Type_Conversion
4107 then
4108 Error_Msg_N
4109 ("(Ada 83) fixed-point operation " &
4110 "needs explicit conversion",
4112 end if;
4114 -- The expected type is "any real type" in contexts like
4115 -- type T is delta <universal_fixed-expression> ...
4116 -- in which case we need to set the type to Universal_Real
4117 -- so that static expression evaluation will work properly.
4119 if Expected_Type_Is_Any_Real (N) then
4120 Set_Etype (N, Universal_Real);
4121 else
4122 Set_Etype (N, B_Typ);
4123 end if;
4124 end if;
4126 elsif Is_Fixed_Point_Type (B_Typ)
4127 and then (Is_Integer_Or_Universal (L)
4128 or else Nkind (L) = N_Real_Literal
4129 or else Nkind (R) = N_Real_Literal
4130 or else
4131 Is_Integer_Or_Universal (R))
4132 then
4133 Set_Etype (N, B_Typ);
4135 elsif Etype (N) = Any_Fixed then
4137 -- If no previous errors, this is only possible if one operand
4138 -- is overloaded and the context is universal. Resolve as such.
4140 Set_Etype (N, B_Typ);
4141 end if;
4143 else
4144 if (TL = Universal_Integer or else TL = Universal_Real)
4145 and then (TR = Universal_Integer or else TR = Universal_Real)
4146 then
4147 Check_For_Visible_Operator (N, B_Typ);
4148 end if;
4150 -- If the context is Universal_Fixed and the operands are also
4151 -- universal fixed, this is an error, unless there is only one
4152 -- applicable fixed_point type (usually duration).
4154 if B_Typ = Universal_Fixed
4155 and then Etype (L) = Universal_Fixed
4156 then
4157 T := Unique_Fixed_Point_Type (N);
4159 if T = Any_Type then
4160 Set_Etype (N, T);
4161 return;
4162 else
4163 Resolve (L, T);
4164 Resolve (R, T);
4165 end if;
4167 else
4168 Resolve (L, B_Typ);
4169 Resolve (R, B_Typ);
4170 end if;
4172 -- If one of the arguments was resolved to a non-universal type.
4173 -- label the result of the operation itself with the same type.
4174 -- Do the same for the universal argument, if any.
4176 T := Intersect_Types (L, R);
4177 Set_Etype (N, Base_Type (T));
4178 Set_Operand_Type (L);
4179 Set_Operand_Type (R);
4180 end if;
4182 Generate_Operator_Reference (N, Typ);
4183 Eval_Arithmetic_Op (N);
4185 -- Set overflow and division checking bit. Much cleverer code needed
4186 -- here eventually and perhaps the Resolve routines should be separated
4187 -- for the various arithmetic operations, since they will need
4188 -- different processing. ???
4190 if Nkind (N) in N_Op then
4191 if not Overflow_Checks_Suppressed (Etype (N)) then
4192 Enable_Overflow_Check (N);
4193 end if;
4195 -- Give warning if explicit division by zero
4197 if (Nkind (N) = N_Op_Divide
4198 or else Nkind (N) = N_Op_Rem
4199 or else Nkind (N) = N_Op_Mod)
4200 and then not Division_Checks_Suppressed (Etype (N))
4201 then
4202 Rop := Right_Opnd (N);
4204 if Compile_Time_Known_Value (Rop)
4205 and then ((Is_Integer_Type (Etype (Rop))
4206 and then Expr_Value (Rop) = Uint_0)
4207 or else
4208 (Is_Real_Type (Etype (Rop))
4209 and then Expr_Value_R (Rop) = Ureal_0))
4210 then
4211 -- Specialize the warning message according to the operation
4213 case Nkind (N) is
4214 when N_Op_Divide =>
4215 Apply_Compile_Time_Constraint_Error
4216 (N, "division by zero?", CE_Divide_By_Zero,
4217 Loc => Sloc (Right_Opnd (N)));
4219 when N_Op_Rem =>
4220 Apply_Compile_Time_Constraint_Error
4221 (N, "rem with zero divisor?", CE_Divide_By_Zero,
4222 Loc => Sloc (Right_Opnd (N)));
4224 when N_Op_Mod =>
4225 Apply_Compile_Time_Constraint_Error
4226 (N, "mod with zero divisor?", CE_Divide_By_Zero,
4227 Loc => Sloc (Right_Opnd (N)));
4229 -- Division by zero can only happen with division, rem,
4230 -- and mod operations.
4232 when others =>
4233 raise Program_Error;
4234 end case;
4236 -- Otherwise just set the flag to check at run time
4238 else
4239 Activate_Division_Check (N);
4240 end if;
4241 end if;
4242 end if;
4244 Check_Unset_Reference (L);
4245 Check_Unset_Reference (R);
4246 end Resolve_Arithmetic_Op;
4248 ------------------
4249 -- Resolve_Call --
4250 ------------------
4252 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
4253 Loc : constant Source_Ptr := Sloc (N);
4254 Subp : constant Node_Id := Name (N);
4255 Nam : Entity_Id;
4256 I : Interp_Index;
4257 It : Interp;
4258 Norm_OK : Boolean;
4259 Scop : Entity_Id;
4260 Rtype : Entity_Id;
4262 begin
4263 -- The context imposes a unique interpretation with type Typ on a
4264 -- procedure or function call. Find the entity of the subprogram that
4265 -- yields the expected type, and propagate the corresponding formal
4266 -- constraints on the actuals. The caller has established that an
4267 -- interpretation exists, and emitted an error if not unique.
4269 -- First deal with the case of a call to an access-to-subprogram,
4270 -- dereference made explicit in Analyze_Call.
4272 if Ekind (Etype (Subp)) = E_Subprogram_Type then
4273 if not Is_Overloaded (Subp) then
4274 Nam := Etype (Subp);
4276 else
4277 -- Find the interpretation whose type (a subprogram type) has a
4278 -- return type that is compatible with the context. Analysis of
4279 -- the node has established that one exists.
4281 Nam := Empty;
4283 Get_First_Interp (Subp, I, It);
4284 while Present (It.Typ) loop
4285 if Covers (Typ, Etype (It.Typ)) then
4286 Nam := It.Typ;
4287 exit;
4288 end if;
4290 Get_Next_Interp (I, It);
4291 end loop;
4293 if No (Nam) then
4294 raise Program_Error;
4295 end if;
4296 end if;
4298 -- If the prefix is not an entity, then resolve it
4300 if not Is_Entity_Name (Subp) then
4301 Resolve (Subp, Nam);
4302 end if;
4304 -- For an indirect call, we always invalidate checks, since we do not
4305 -- know whether the subprogram is local or global. Yes we could do
4306 -- better here, e.g. by knowing that there are no local subprograms,
4307 -- but it does not seem worth the effort. Similarly, we kill all
4308 -- knowledge of current constant values.
4310 Kill_Current_Values;
4312 -- If this is a procedure call which is really an entry call, do
4313 -- the conversion of the procedure call to an entry call. Protected
4314 -- operations use the same circuitry because the name in the call
4315 -- can be an arbitrary expression with special resolution rules.
4317 elsif Nkind (Subp) = N_Selected_Component
4318 or else Nkind (Subp) = N_Indexed_Component
4319 or else (Is_Entity_Name (Subp)
4320 and then Ekind (Entity (Subp)) = E_Entry)
4321 then
4322 Resolve_Entry_Call (N, Typ);
4323 Check_Elab_Call (N);
4325 -- Kill checks and constant values, as above for indirect case
4326 -- Who knows what happens when another task is activated?
4328 Kill_Current_Values;
4329 return;
4331 -- Normal subprogram call with name established in Resolve
4333 elsif not (Is_Type (Entity (Subp))) then
4334 Nam := Entity (Subp);
4335 Set_Entity_With_Style_Check (Subp, Nam);
4337 -- Otherwise we must have the case of an overloaded call
4339 else
4340 pragma Assert (Is_Overloaded (Subp));
4341 Nam := Empty; -- We know that it will be assigned in loop below
4343 Get_First_Interp (Subp, I, It);
4344 while Present (It.Typ) loop
4345 if Covers (Typ, It.Typ) then
4346 Nam := It.Nam;
4347 Set_Entity_With_Style_Check (Subp, Nam);
4348 exit;
4349 end if;
4351 Get_Next_Interp (I, It);
4352 end loop;
4353 end if;
4355 -- Check that a call to Current_Task does not occur in an entry body
4357 if Is_RTE (Nam, RE_Current_Task) then
4358 declare
4359 P : Node_Id;
4361 begin
4362 P := N;
4363 loop
4364 P := Parent (P);
4365 exit when No (P);
4367 if Nkind (P) = N_Entry_Body
4368 or else (Nkind (P) = N_Subprogram_Body
4369 and then Is_Entry_Barrier_Function (P))
4370 then
4371 Rtype := Etype (N);
4372 Error_Msg_NE
4373 ("?& should not be used in entry body (RM C.7(17))",
4374 N, Nam);
4375 Error_Msg_NE
4376 ("\Program_Error will be raised at run time?", N, Nam);
4377 Rewrite (N,
4378 Make_Raise_Program_Error (Loc,
4379 Reason => PE_Current_Task_In_Entry_Body));
4380 Set_Etype (N, Rtype);
4381 return;
4382 end if;
4383 end loop;
4384 end;
4385 end if;
4387 -- Check that a procedure call does not occur in the context of the
4388 -- entry call statement of a conditional or timed entry call. Note that
4389 -- the case of a call to a subprogram renaming of an entry will also be
4390 -- rejected. The test for N not being an N_Entry_Call_Statement is
4391 -- defensive, covering the possibility that the processing of entry
4392 -- calls might reach this point due to later modifications of the code
4393 -- above.
4395 if Nkind (Parent (N)) = N_Entry_Call_Alternative
4396 and then Nkind (N) /= N_Entry_Call_Statement
4397 and then Entry_Call_Statement (Parent (N)) = N
4398 then
4399 if Ada_Version < Ada_05 then
4400 Error_Msg_N ("entry call required in select statement", N);
4402 -- Ada 2005 (AI-345): If a procedure_call_statement is used
4403 -- for a procedure_or_entry_call, the procedure_name or pro-
4404 -- cedure_prefix of the procedure_call_statement shall denote
4405 -- an entry renamed by a procedure, or (a view of) a primitive
4406 -- subprogram of a limited interface whose first parameter is
4407 -- a controlling parameter.
4409 elsif Nkind (N) = N_Procedure_Call_Statement
4410 and then not Is_Renamed_Entry (Nam)
4411 and then not Is_Controlling_Limited_Procedure (Nam)
4412 then
4413 Error_Msg_N
4414 ("entry call or dispatching primitive of interface required", N);
4415 end if;
4416 end if;
4418 -- Check that this is not a call to a protected procedure or
4419 -- entry from within a protected function.
4421 if Ekind (Current_Scope) = E_Function
4422 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
4423 and then Ekind (Nam) /= E_Function
4424 and then Scope (Nam) = Scope (Current_Scope)
4425 then
4426 Error_Msg_N ("within protected function, protected " &
4427 "object is constant", N);
4428 Error_Msg_N ("\cannot call operation that may modify it", N);
4429 end if;
4431 -- Freeze the subprogram name if not in default expression. Note that we
4432 -- freeze procedure calls as well as function calls. Procedure calls are
4433 -- not frozen according to the rules (RM 13.14(14)) because it is
4434 -- impossible to have a procedure call to a non-frozen procedure in pure
4435 -- Ada, but in the code that we generate in the expander, this rule
4436 -- needs extending because we can generate procedure calls that need
4437 -- freezing.
4439 if Is_Entity_Name (Subp) and then not In_Default_Expression then
4440 Freeze_Expression (Subp);
4441 end if;
4443 -- For a predefined operator, the type of the result is the type imposed
4444 -- by context, except for a predefined operation on universal fixed.
4445 -- Otherwise The type of the call is the type returned by the subprogram
4446 -- being called.
4448 if Is_Predefined_Op (Nam) then
4449 if Etype (N) /= Universal_Fixed then
4450 Set_Etype (N, Typ);
4451 end if;
4453 -- If the subprogram returns an array type, and the context requires the
4454 -- component type of that array type, the node is really an indexing of
4455 -- the parameterless call. Resolve as such. A pathological case occurs
4456 -- when the type of the component is an access to the array type. In
4457 -- this case the call is truly ambiguous.
4459 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
4460 and then
4461 ((Is_Array_Type (Etype (Nam))
4462 and then Covers (Typ, Component_Type (Etype (Nam))))
4463 or else (Is_Access_Type (Etype (Nam))
4464 and then Is_Array_Type (Designated_Type (Etype (Nam)))
4465 and then
4466 Covers (Typ,
4467 Component_Type (Designated_Type (Etype (Nam))))))
4468 then
4469 declare
4470 Index_Node : Node_Id;
4471 New_Subp : Node_Id;
4472 Ret_Type : constant Entity_Id := Etype (Nam);
4474 begin
4475 if Is_Access_Type (Ret_Type)
4476 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
4477 then
4478 Error_Msg_N
4479 ("cannot disambiguate function call and indexing", N);
4480 else
4481 New_Subp := Relocate_Node (Subp);
4482 Set_Entity (Subp, Nam);
4484 if Component_Type (Ret_Type) /= Any_Type then
4485 if Needs_No_Actuals (Nam) then
4487 -- Indexed call to a parameterless function
4489 Index_Node :=
4490 Make_Indexed_Component (Loc,
4491 Prefix =>
4492 Make_Function_Call (Loc,
4493 Name => New_Subp),
4494 Expressions => Parameter_Associations (N));
4495 else
4496 -- An Ada 2005 prefixed call to a primitive operation
4497 -- whose first parameter is the prefix. This prefix was
4498 -- prepended to the parameter list, which is actually a
4499 -- list of indices. Remove the prefix in order to build
4500 -- the proper indexed component.
4502 Index_Node :=
4503 Make_Indexed_Component (Loc,
4504 Prefix =>
4505 Make_Function_Call (Loc,
4506 Name => New_Subp,
4507 Parameter_Associations =>
4508 New_List
4509 (Remove_Head (Parameter_Associations (N)))),
4510 Expressions => Parameter_Associations (N));
4511 end if;
4513 -- Since we are correcting a node classification error made
4514 -- by the parser, we call Replace rather than Rewrite.
4516 Replace (N, Index_Node);
4517 Set_Etype (Prefix (N), Ret_Type);
4518 Set_Etype (N, Typ);
4519 Resolve_Indexed_Component (N, Typ);
4520 Check_Elab_Call (Prefix (N));
4521 end if;
4522 end if;
4524 return;
4525 end;
4527 else
4528 Set_Etype (N, Etype (Nam));
4529 end if;
4531 -- In the case where the call is to an overloaded subprogram, Analyze
4532 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
4533 -- such a case Normalize_Actuals needs to be called once more to order
4534 -- the actuals correctly. Otherwise the call will have the ordering
4535 -- given by the last overloaded subprogram whether this is the correct
4536 -- one being called or not.
4538 if Is_Overloaded (Subp) then
4539 Normalize_Actuals (N, Nam, False, Norm_OK);
4540 pragma Assert (Norm_OK);
4541 end if;
4543 -- In any case, call is fully resolved now. Reset Overload flag, to
4544 -- prevent subsequent overload resolution if node is analyzed again
4546 Set_Is_Overloaded (Subp, False);
4547 Set_Is_Overloaded (N, False);
4549 -- If we are calling the current subprogram from immediately within its
4550 -- body, then that is the case where we can sometimes detect cases of
4551 -- infinite recursion statically. Do not try this in case restriction
4552 -- No_Recursion is in effect anyway, and do it only for source calls.
4554 if Comes_From_Source (N) then
4555 Scop := Current_Scope;
4557 if Nam = Scop
4558 and then not Restriction_Active (No_Recursion)
4559 and then Check_Infinite_Recursion (N)
4560 then
4561 -- Here we detected and flagged an infinite recursion, so we do
4562 -- not need to test the case below for further warnings.
4564 null;
4566 -- If call is to immediately containing subprogram, then check for
4567 -- the case of a possible run-time detectable infinite recursion.
4569 else
4570 Scope_Loop : while Scop /= Standard_Standard loop
4571 if Nam = Scop then
4573 -- Although in general case, recursion is not statically
4574 -- checkable, the case of calling an immediately containing
4575 -- subprogram is easy to catch.
4577 Check_Restriction (No_Recursion, N);
4579 -- If the recursive call is to a parameterless subprogram,
4580 -- then even if we can't statically detect infinite
4581 -- recursion, this is pretty suspicious, and we output a
4582 -- warning. Furthermore, we will try later to detect some
4583 -- cases here at run time by expanding checking code (see
4584 -- Detect_Infinite_Recursion in package Exp_Ch6).
4586 -- If the recursive call is within a handler, do not emit a
4587 -- warning, because this is a common idiom: loop until input
4588 -- is correct, catch illegal input in handler and restart.
4590 if No (First_Formal (Nam))
4591 and then Etype (Nam) = Standard_Void_Type
4592 and then not Error_Posted (N)
4593 and then Nkind (Parent (N)) /= N_Exception_Handler
4594 then
4595 -- For the case of a procedure call. We give the message
4596 -- only if the call is the first statement in a sequence
4597 -- of statements, or if all previous statements are
4598 -- simple assignments. This is simply a heuristic to
4599 -- decrease false positives, without losing too many good
4600 -- warnings. The idea is that these previous statements
4601 -- may affect global variables the procedure depends on.
4603 if Nkind (N) = N_Procedure_Call_Statement
4604 and then Is_List_Member (N)
4605 then
4606 declare
4607 P : Node_Id;
4608 begin
4609 P := Prev (N);
4610 while Present (P) loop
4611 if Nkind (P) /= N_Assignment_Statement then
4612 exit Scope_Loop;
4613 end if;
4615 Prev (P);
4616 end loop;
4617 end;
4618 end if;
4620 -- Do not give warning if we are in a conditional context
4622 declare
4623 K : constant Node_Kind := Nkind (Parent (N));
4624 begin
4625 if (K = N_Loop_Statement
4626 and then Present (Iteration_Scheme (Parent (N))))
4627 or else K = N_If_Statement
4628 or else K = N_Elsif_Part
4629 or else K = N_Case_Statement_Alternative
4630 then
4631 exit Scope_Loop;
4632 end if;
4633 end;
4635 -- Here warning is to be issued
4637 Set_Has_Recursive_Call (Nam);
4638 Error_Msg_N
4639 ("?possible infinite recursion!", N);
4640 Error_Msg_N
4641 ("\?Storage_Error may be raised at run time!", N);
4642 end if;
4644 exit Scope_Loop;
4645 end if;
4647 Scop := Scope (Scop);
4648 end loop Scope_Loop;
4649 end if;
4650 end if;
4652 -- If subprogram name is a predefined operator, it was given in
4653 -- functional notation. Replace call node with operator node, so
4654 -- that actuals can be resolved appropriately.
4656 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
4657 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
4658 return;
4660 elsif Present (Alias (Nam))
4661 and then Is_Predefined_Op (Alias (Nam))
4662 then
4663 Resolve_Actuals (N, Nam);
4664 Make_Call_Into_Operator (N, Typ, Alias (Nam));
4665 return;
4666 end if;
4668 -- Create a transient scope if the resulting type requires it
4670 -- There are 4 notable exceptions: in init procs, the transient scope
4671 -- overhead is not needed and even incorrect due to the actual expansion
4672 -- of adjust calls; the second case is enumeration literal pseudo calls;
4673 -- the third case is intrinsic subprograms (Unchecked_Conversion and
4674 -- source information functions) that do not use the secondary stack
4675 -- even though the return type is unconstrained; the fourth case is a
4676 -- call to a build-in-place function, since such functions may allocate
4677 -- their result directly in a target object, and cases where the result
4678 -- does get allocated in the secondary stack are checked for within the
4679 -- specialized Exp_Ch6 procedures for expanding build-in-place calls.
4681 -- If this is an initialization call for a type whose initialization
4682 -- uses the secondary stack, we also need to create a transient scope
4683 -- for it, precisely because we will not do it within the init proc
4684 -- itself.
4686 -- If the subprogram is marked Inlined_Always, then even if it returns
4687 -- an unconstrained type the call does not require use of the secondary
4688 -- stack.
4690 if Is_Inlined (Nam)
4691 and then Present (First_Rep_Item (Nam))
4692 and then Nkind (First_Rep_Item (Nam)) = N_Pragma
4693 and then Chars (First_Rep_Item (Nam)) = Name_Inline_Always
4694 then
4695 null;
4697 elsif Expander_Active
4698 and then Is_Type (Etype (Nam))
4699 and then Requires_Transient_Scope (Etype (Nam))
4700 and then not Is_Build_In_Place_Function (Nam)
4701 and then Ekind (Nam) /= E_Enumeration_Literal
4702 and then not Within_Init_Proc
4703 and then not Is_Intrinsic_Subprogram (Nam)
4704 then
4705 Establish_Transient_Scope (N, Sec_Stack => True);
4707 -- If the call appears within the bounds of a loop, it will
4708 -- be rewritten and reanalyzed, nothing left to do here.
4710 if Nkind (N) /= N_Function_Call then
4711 return;
4712 end if;
4714 elsif Is_Init_Proc (Nam)
4715 and then not Within_Init_Proc
4716 then
4717 Check_Initialization_Call (N, Nam);
4718 end if;
4720 -- A protected function cannot be called within the definition of the
4721 -- enclosing protected type.
4723 if Is_Protected_Type (Scope (Nam))
4724 and then In_Open_Scopes (Scope (Nam))
4725 and then not Has_Completion (Scope (Nam))
4726 then
4727 Error_Msg_NE
4728 ("& cannot be called before end of protected definition", N, Nam);
4729 end if;
4731 -- Propagate interpretation to actuals, and add default expressions
4732 -- where needed.
4734 if Present (First_Formal (Nam)) then
4735 Resolve_Actuals (N, Nam);
4737 -- Overloaded literals are rewritten as function calls, for
4738 -- purpose of resolution. After resolution, we can replace
4739 -- the call with the literal itself.
4741 elsif Ekind (Nam) = E_Enumeration_Literal then
4742 Copy_Node (Subp, N);
4743 Resolve_Entity_Name (N, Typ);
4745 -- Avoid validation, since it is a static function call
4747 Generate_Reference (Nam, Subp);
4748 return;
4749 end if;
4751 -- If the subprogram is not global, then kill all saved values and
4752 -- checks. This is a bit conservative, since in many cases we could do
4753 -- better, but it is not worth the effort. Similarly, we kill constant
4754 -- values. However we do not need to do this for internal entities
4755 -- (unless they are inherited user-defined subprograms), since they
4756 -- are not in the business of molesting local values.
4758 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
4759 -- kill all checks and values for calls to global subprograms. This
4760 -- takes care of the case where an access to a local subprogram is
4761 -- taken, and could be passed directly or indirectly and then called
4762 -- from almost any context.
4764 -- Note: we do not do this step till after resolving the actuals. That
4765 -- way we still take advantage of the current value information while
4766 -- scanning the actuals.
4768 if (not Is_Library_Level_Entity (Nam)
4769 or else Suppress_Value_Tracking_On_Call (Current_Scope))
4770 and then (Comes_From_Source (Nam)
4771 or else (Present (Alias (Nam))
4772 and then Comes_From_Source (Alias (Nam))))
4773 then
4774 Kill_Current_Values;
4775 end if;
4777 -- If the subprogram is a primitive operation, check whether or not
4778 -- it is a correct dispatching call.
4780 if Is_Overloadable (Nam)
4781 and then Is_Dispatching_Operation (Nam)
4782 then
4783 Check_Dispatching_Call (N);
4785 elsif Ekind (Nam) /= E_Subprogram_Type
4786 and then Is_Abstract_Subprogram (Nam)
4787 and then not In_Instance
4788 then
4789 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
4790 end if;
4792 -- If this is a dispatching call, generate the appropriate reference,
4793 -- for better source navigation in GPS.
4795 if Is_Overloadable (Nam)
4796 and then Present (Controlling_Argument (N))
4797 then
4798 Generate_Reference (Nam, Subp, 'R');
4799 else
4800 Generate_Reference (Nam, Subp);
4801 end if;
4803 if Is_Intrinsic_Subprogram (Nam) then
4804 Check_Intrinsic_Call (N);
4805 end if;
4807 Eval_Call (N);
4808 Check_Elab_Call (N);
4809 end Resolve_Call;
4811 -------------------------------
4812 -- Resolve_Character_Literal --
4813 -------------------------------
4815 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
4816 B_Typ : constant Entity_Id := Base_Type (Typ);
4817 C : Entity_Id;
4819 begin
4820 -- Verify that the character does belong to the type of the context
4822 Set_Etype (N, B_Typ);
4823 Eval_Character_Literal (N);
4825 -- Wide_Wide_Character literals must always be defined, since the set
4826 -- of wide wide character literals is complete, i.e. if a character
4827 -- literal is accepted by the parser, then it is OK for wide wide
4828 -- character (out of range character literals are rejected).
4830 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
4831 return;
4833 -- Always accept character literal for type Any_Character, which
4834 -- occurs in error situations and in comparisons of literals, both
4835 -- of which should accept all literals.
4837 elsif B_Typ = Any_Character then
4838 return;
4840 -- For Standard.Character or a type derived from it, check that
4841 -- the literal is in range
4843 elsif Root_Type (B_Typ) = Standard_Character then
4844 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
4845 return;
4846 end if;
4848 -- For Standard.Wide_Character or a type derived from it, check
4849 -- that the literal is in range
4851 elsif Root_Type (B_Typ) = Standard_Wide_Character then
4852 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
4853 return;
4854 end if;
4856 -- For Standard.Wide_Wide_Character or a type derived from it, we
4857 -- know the literal is in range, since the parser checked!
4859 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
4860 return;
4862 -- If the entity is already set, this has already been resolved in
4863 -- a generic context, or comes from expansion. Nothing else to do.
4865 elsif Present (Entity (N)) then
4866 return;
4868 -- Otherwise we have a user defined character type, and we can use
4869 -- the standard visibility mechanisms to locate the referenced entity
4871 else
4872 C := Current_Entity (N);
4873 while Present (C) loop
4874 if Etype (C) = B_Typ then
4875 Set_Entity_With_Style_Check (N, C);
4876 Generate_Reference (C, N);
4877 return;
4878 end if;
4880 C := Homonym (C);
4881 end loop;
4882 end if;
4884 -- If we fall through, then the literal does not match any of the
4885 -- entries of the enumeration type. This isn't just a constraint
4886 -- error situation, it is an illegality (see RM 4.2).
4888 Error_Msg_NE
4889 ("character not defined for }", N, First_Subtype (B_Typ));
4890 end Resolve_Character_Literal;
4892 ---------------------------
4893 -- Resolve_Comparison_Op --
4894 ---------------------------
4896 -- Context requires a boolean type, and plays no role in resolution.
4897 -- Processing identical to that for equality operators. The result
4898 -- type is the base type, which matters when pathological subtypes of
4899 -- booleans with limited ranges are used.
4901 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
4902 L : constant Node_Id := Left_Opnd (N);
4903 R : constant Node_Id := Right_Opnd (N);
4904 T : Entity_Id;
4906 begin
4907 -- If this is an intrinsic operation which is not predefined, use
4908 -- the types of its declared arguments to resolve the possibly
4909 -- overloaded operands. Otherwise the operands are unambiguous and
4910 -- specify the expected type.
4912 if Scope (Entity (N)) /= Standard_Standard then
4913 T := Etype (First_Entity (Entity (N)));
4915 else
4916 T := Find_Unique_Type (L, R);
4918 if T = Any_Fixed then
4919 T := Unique_Fixed_Point_Type (L);
4920 end if;
4921 end if;
4923 Set_Etype (N, Base_Type (Typ));
4924 Generate_Reference (T, N, ' ');
4926 if T /= Any_Type then
4927 if T = Any_String
4928 or else T = Any_Composite
4929 or else T = Any_Character
4930 then
4931 if T = Any_Character then
4932 Ambiguous_Character (L);
4933 else
4934 Error_Msg_N ("ambiguous operands for comparison", N);
4935 end if;
4937 Set_Etype (N, Any_Type);
4938 return;
4940 else
4941 Resolve (L, T);
4942 Resolve (R, T);
4943 Check_Unset_Reference (L);
4944 Check_Unset_Reference (R);
4945 Generate_Operator_Reference (N, T);
4946 Eval_Relational_Op (N);
4947 end if;
4948 end if;
4949 end Resolve_Comparison_Op;
4951 ------------------------------------
4952 -- Resolve_Conditional_Expression --
4953 ------------------------------------
4955 procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id) is
4956 Condition : constant Node_Id := First (Expressions (N));
4957 Then_Expr : constant Node_Id := Next (Condition);
4958 Else_Expr : constant Node_Id := Next (Then_Expr);
4960 begin
4961 Resolve (Condition, Standard_Boolean);
4962 Resolve (Then_Expr, Typ);
4963 Resolve (Else_Expr, Typ);
4965 Set_Etype (N, Typ);
4966 Eval_Conditional_Expression (N);
4967 end Resolve_Conditional_Expression;
4969 -----------------------------------------
4970 -- Resolve_Discrete_Subtype_Indication --
4971 -----------------------------------------
4973 procedure Resolve_Discrete_Subtype_Indication
4974 (N : Node_Id;
4975 Typ : Entity_Id)
4977 R : Node_Id;
4978 S : Entity_Id;
4980 begin
4981 Analyze (Subtype_Mark (N));
4982 S := Entity (Subtype_Mark (N));
4984 if Nkind (Constraint (N)) /= N_Range_Constraint then
4985 Error_Msg_N ("expect range constraint for discrete type", N);
4986 Set_Etype (N, Any_Type);
4988 else
4989 R := Range_Expression (Constraint (N));
4991 if R = Error then
4992 return;
4993 end if;
4995 Analyze (R);
4997 if Base_Type (S) /= Base_Type (Typ) then
4998 Error_Msg_NE
4999 ("expect subtype of }", N, First_Subtype (Typ));
5001 -- Rewrite the constraint as a range of Typ
5002 -- to allow compilation to proceed further.
5004 Set_Etype (N, Typ);
5005 Rewrite (Low_Bound (R),
5006 Make_Attribute_Reference (Sloc (Low_Bound (R)),
5007 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
5008 Attribute_Name => Name_First));
5009 Rewrite (High_Bound (R),
5010 Make_Attribute_Reference (Sloc (High_Bound (R)),
5011 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
5012 Attribute_Name => Name_First));
5014 else
5015 Resolve (R, Typ);
5016 Set_Etype (N, Etype (R));
5018 -- Additionally, we must check that the bounds are compatible
5019 -- with the given subtype, which might be different from the
5020 -- type of the context.
5022 Apply_Range_Check (R, S);
5024 -- ??? If the above check statically detects a Constraint_Error
5025 -- it replaces the offending bound(s) of the range R with a
5026 -- Constraint_Error node. When the itype which uses these bounds
5027 -- is frozen the resulting call to Duplicate_Subexpr generates
5028 -- a new temporary for the bounds.
5030 -- Unfortunately there are other itypes that are also made depend
5031 -- on these bounds, so when Duplicate_Subexpr is called they get
5032 -- a forward reference to the newly created temporaries and Gigi
5033 -- aborts on such forward references. This is probably sign of a
5034 -- more fundamental problem somewhere else in either the order of
5035 -- itype freezing or the way certain itypes are constructed.
5037 -- To get around this problem we call Remove_Side_Effects right
5038 -- away if either bounds of R are a Constraint_Error.
5040 declare
5041 L : constant Node_Id := Low_Bound (R);
5042 H : constant Node_Id := High_Bound (R);
5044 begin
5045 if Nkind (L) = N_Raise_Constraint_Error then
5046 Remove_Side_Effects (L);
5047 end if;
5049 if Nkind (H) = N_Raise_Constraint_Error then
5050 Remove_Side_Effects (H);
5051 end if;
5052 end;
5054 Check_Unset_Reference (Low_Bound (R));
5055 Check_Unset_Reference (High_Bound (R));
5056 end if;
5057 end if;
5058 end Resolve_Discrete_Subtype_Indication;
5060 -------------------------
5061 -- Resolve_Entity_Name --
5062 -------------------------
5064 -- Used to resolve identifiers and expanded names
5066 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
5067 E : constant Entity_Id := Entity (N);
5069 begin
5070 -- If garbage from errors, set to Any_Type and return
5072 if No (E) and then Total_Errors_Detected /= 0 then
5073 Set_Etype (N, Any_Type);
5074 return;
5075 end if;
5077 -- Replace named numbers by corresponding literals. Note that this is
5078 -- the one case where Resolve_Entity_Name must reset the Etype, since
5079 -- it is currently marked as universal.
5081 if Ekind (E) = E_Named_Integer then
5082 Set_Etype (N, Typ);
5083 Eval_Named_Integer (N);
5085 elsif Ekind (E) = E_Named_Real then
5086 Set_Etype (N, Typ);
5087 Eval_Named_Real (N);
5089 -- Allow use of subtype only if it is a concurrent type where we are
5090 -- currently inside the body. This will eventually be expanded
5091 -- into a call to Self (for tasks) or _object (for protected
5092 -- objects). Any other use of a subtype is invalid.
5094 elsif Is_Type (E) then
5095 if Is_Concurrent_Type (E)
5096 and then In_Open_Scopes (E)
5097 then
5098 null;
5099 else
5100 Error_Msg_N
5101 ("invalid use of subtype mark in expression or call", N);
5102 end if;
5104 -- Check discriminant use if entity is discriminant in current scope,
5105 -- i.e. discriminant of record or concurrent type currently being
5106 -- analyzed. Uses in corresponding body are unrestricted.
5108 elsif Ekind (E) = E_Discriminant
5109 and then Scope (E) = Current_Scope
5110 and then not Has_Completion (Current_Scope)
5111 then
5112 Check_Discriminant_Use (N);
5114 -- A parameterless generic function cannot appear in a context that
5115 -- requires resolution.
5117 elsif Ekind (E) = E_Generic_Function then
5118 Error_Msg_N ("illegal use of generic function", N);
5120 elsif Ekind (E) = E_Out_Parameter
5121 and then Ada_Version = Ada_83
5122 and then (Nkind (Parent (N)) in N_Op
5123 or else (Nkind (Parent (N)) = N_Assignment_Statement
5124 and then N = Expression (Parent (N)))
5125 or else Nkind (Parent (N)) = N_Explicit_Dereference)
5126 then
5127 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
5129 -- In all other cases, just do the possible static evaluation
5131 else
5132 -- A deferred constant that appears in an expression must have
5133 -- a completion, unless it has been removed by in-place expansion
5134 -- of an aggregate.
5136 if Ekind (E) = E_Constant
5137 and then Comes_From_Source (E)
5138 and then No (Constant_Value (E))
5139 and then Is_Frozen (Etype (E))
5140 and then not In_Default_Expression
5141 and then not Is_Imported (E)
5142 then
5144 if No_Initialization (Parent (E))
5145 or else (Present (Full_View (E))
5146 and then No_Initialization (Parent (Full_View (E))))
5147 then
5148 null;
5149 else
5150 Error_Msg_N (
5151 "deferred constant is frozen before completion", N);
5152 end if;
5153 end if;
5155 Eval_Entity_Name (N);
5156 end if;
5157 end Resolve_Entity_Name;
5159 -------------------
5160 -- Resolve_Entry --
5161 -------------------
5163 procedure Resolve_Entry (Entry_Name : Node_Id) is
5164 Loc : constant Source_Ptr := Sloc (Entry_Name);
5165 Nam : Entity_Id;
5166 New_N : Node_Id;
5167 S : Entity_Id;
5168 Tsk : Entity_Id;
5169 E_Name : Node_Id;
5170 Index : Node_Id;
5172 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
5173 -- If the bounds of the entry family being called depend on task
5174 -- discriminants, build a new index subtype where a discriminant is
5175 -- replaced with the value of the discriminant of the target task.
5176 -- The target task is the prefix of the entry name in the call.
5178 -----------------------
5179 -- Actual_Index_Type --
5180 -----------------------
5182 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
5183 Typ : constant Entity_Id := Entry_Index_Type (E);
5184 Tsk : constant Entity_Id := Scope (E);
5185 Lo : constant Node_Id := Type_Low_Bound (Typ);
5186 Hi : constant Node_Id := Type_High_Bound (Typ);
5187 New_T : Entity_Id;
5189 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
5190 -- If the bound is given by a discriminant, replace with a reference
5191 -- to the discriminant of the same name in the target task.
5192 -- If the entry name is the target of a requeue statement and the
5193 -- entry is in the current protected object, the bound to be used
5194 -- is the discriminal of the object (see apply_range_checks for
5195 -- details of the transformation).
5197 -----------------------------
5198 -- Actual_Discriminant_Ref --
5199 -----------------------------
5201 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
5202 Typ : constant Entity_Id := Etype (Bound);
5203 Ref : Node_Id;
5205 begin
5206 Remove_Side_Effects (Bound);
5208 if not Is_Entity_Name (Bound)
5209 or else Ekind (Entity (Bound)) /= E_Discriminant
5210 then
5211 return Bound;
5213 elsif Is_Protected_Type (Tsk)
5214 and then In_Open_Scopes (Tsk)
5215 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
5216 then
5217 return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5219 else
5220 Ref :=
5221 Make_Selected_Component (Loc,
5222 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
5223 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
5224 Analyze (Ref);
5225 Resolve (Ref, Typ);
5226 return Ref;
5227 end if;
5228 end Actual_Discriminant_Ref;
5230 -- Start of processing for Actual_Index_Type
5232 begin
5233 if not Has_Discriminants (Tsk)
5234 or else (not Is_Entity_Name (Lo)
5235 and then not Is_Entity_Name (Hi))
5236 then
5237 return Entry_Index_Type (E);
5239 else
5240 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
5241 Set_Etype (New_T, Base_Type (Typ));
5242 Set_Size_Info (New_T, Typ);
5243 Set_RM_Size (New_T, RM_Size (Typ));
5244 Set_Scalar_Range (New_T,
5245 Make_Range (Sloc (Entry_Name),
5246 Low_Bound => Actual_Discriminant_Ref (Lo),
5247 High_Bound => Actual_Discriminant_Ref (Hi)));
5249 return New_T;
5250 end if;
5251 end Actual_Index_Type;
5253 -- Start of processing of Resolve_Entry
5255 begin
5256 -- Find name of entry being called, and resolve prefix of name
5257 -- with its own type. The prefix can be overloaded, and the name
5258 -- and signature of the entry must be taken into account.
5260 if Nkind (Entry_Name) = N_Indexed_Component then
5262 -- Case of dealing with entry family within the current tasks
5264 E_Name := Prefix (Entry_Name);
5266 else
5267 E_Name := Entry_Name;
5268 end if;
5270 if Is_Entity_Name (E_Name) then
5271 -- Entry call to an entry (or entry family) in the current task.
5272 -- This is legal even though the task will deadlock. Rewrite as
5273 -- call to current task.
5275 -- This can also be a call to an entry in an enclosing task.
5276 -- If this is a single task, we have to retrieve its name,
5277 -- because the scope of the entry is the task type, not the
5278 -- object. If the enclosing task is a task type, the identity
5279 -- of the task is given by its own self variable.
5281 -- Finally this can be a requeue on an entry of the same task
5282 -- or protected object.
5284 S := Scope (Entity (E_Name));
5286 for J in reverse 0 .. Scope_Stack.Last loop
5288 if Is_Task_Type (Scope_Stack.Table (J).Entity)
5289 and then not Comes_From_Source (S)
5290 then
5291 -- S is an enclosing task or protected object. The concurrent
5292 -- declaration has been converted into a type declaration, and
5293 -- the object itself has an object declaration that follows
5294 -- the type in the same declarative part.
5296 Tsk := Next_Entity (S);
5297 while Etype (Tsk) /= S loop
5298 Next_Entity (Tsk);
5299 end loop;
5301 S := Tsk;
5302 exit;
5304 elsif S = Scope_Stack.Table (J).Entity then
5306 -- Call to current task. Will be transformed into call to Self
5308 exit;
5310 end if;
5311 end loop;
5313 New_N :=
5314 Make_Selected_Component (Loc,
5315 Prefix => New_Occurrence_Of (S, Loc),
5316 Selector_Name =>
5317 New_Occurrence_Of (Entity (E_Name), Loc));
5318 Rewrite (E_Name, New_N);
5319 Analyze (E_Name);
5321 elsif Nkind (Entry_Name) = N_Selected_Component
5322 and then Is_Overloaded (Prefix (Entry_Name))
5323 then
5324 -- Use the entry name (which must be unique at this point) to
5325 -- find the prefix that returns the corresponding task type or
5326 -- protected type.
5328 declare
5329 Pref : constant Node_Id := Prefix (Entry_Name);
5330 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
5331 I : Interp_Index;
5332 It : Interp;
5334 begin
5335 Get_First_Interp (Pref, I, It);
5336 while Present (It.Typ) loop
5337 if Scope (Ent) = It.Typ then
5338 Set_Etype (Pref, It.Typ);
5339 exit;
5340 end if;
5342 Get_Next_Interp (I, It);
5343 end loop;
5344 end;
5345 end if;
5347 if Nkind (Entry_Name) = N_Selected_Component then
5348 Resolve (Prefix (Entry_Name));
5350 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
5351 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
5352 Resolve (Prefix (Prefix (Entry_Name)));
5353 Index := First (Expressions (Entry_Name));
5354 Resolve (Index, Entry_Index_Type (Nam));
5356 -- Up to this point the expression could have been the actual
5357 -- in a simple entry call, and be given by a named association.
5359 if Nkind (Index) = N_Parameter_Association then
5360 Error_Msg_N ("expect expression for entry index", Index);
5361 else
5362 Apply_Range_Check (Index, Actual_Index_Type (Nam));
5363 end if;
5364 end if;
5365 end Resolve_Entry;
5367 ------------------------
5368 -- Resolve_Entry_Call --
5369 ------------------------
5371 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
5372 Entry_Name : constant Node_Id := Name (N);
5373 Loc : constant Source_Ptr := Sloc (Entry_Name);
5374 Actuals : List_Id;
5375 First_Named : Node_Id;
5376 Nam : Entity_Id;
5377 Norm_OK : Boolean;
5378 Obj : Node_Id;
5379 Was_Over : Boolean;
5381 begin
5382 -- We kill all checks here, because it does not seem worth the
5383 -- effort to do anything better, an entry call is a big operation.
5385 Kill_All_Checks;
5387 -- Processing of the name is similar for entry calls and protected
5388 -- operation calls. Once the entity is determined, we can complete
5389 -- the resolution of the actuals.
5391 -- The selector may be overloaded, in the case of a protected object
5392 -- with overloaded functions. The type of the context is used for
5393 -- resolution.
5395 if Nkind (Entry_Name) = N_Selected_Component
5396 and then Is_Overloaded (Selector_Name (Entry_Name))
5397 and then Typ /= Standard_Void_Type
5398 then
5399 declare
5400 I : Interp_Index;
5401 It : Interp;
5403 begin
5404 Get_First_Interp (Selector_Name (Entry_Name), I, It);
5405 while Present (It.Typ) loop
5406 if Covers (Typ, It.Typ) then
5407 Set_Entity (Selector_Name (Entry_Name), It.Nam);
5408 Set_Etype (Entry_Name, It.Typ);
5410 Generate_Reference (It.Typ, N, ' ');
5411 end if;
5413 Get_Next_Interp (I, It);
5414 end loop;
5415 end;
5416 end if;
5418 Resolve_Entry (Entry_Name);
5420 if Nkind (Entry_Name) = N_Selected_Component then
5422 -- Simple entry call
5424 Nam := Entity (Selector_Name (Entry_Name));
5425 Obj := Prefix (Entry_Name);
5426 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
5428 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
5430 -- Call to member of entry family
5432 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
5433 Obj := Prefix (Prefix (Entry_Name));
5434 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
5435 end if;
5437 -- We cannot in general check the maximum depth of protected entry
5438 -- calls at compile time. But we can tell that any protected entry
5439 -- call at all violates a specified nesting depth of zero.
5441 if Is_Protected_Type (Scope (Nam)) then
5442 Check_Restriction (Max_Entry_Queue_Length, N);
5443 end if;
5445 -- Use context type to disambiguate a protected function that can be
5446 -- called without actuals and that returns an array type, and where
5447 -- the argument list may be an indexing of the returned value.
5449 if Ekind (Nam) = E_Function
5450 and then Needs_No_Actuals (Nam)
5451 and then Present (Parameter_Associations (N))
5452 and then
5453 ((Is_Array_Type (Etype (Nam))
5454 and then Covers (Typ, Component_Type (Etype (Nam))))
5456 or else (Is_Access_Type (Etype (Nam))
5457 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5458 and then Covers (Typ,
5459 Component_Type (Designated_Type (Etype (Nam))))))
5460 then
5461 declare
5462 Index_Node : Node_Id;
5464 begin
5465 Index_Node :=
5466 Make_Indexed_Component (Loc,
5467 Prefix =>
5468 Make_Function_Call (Loc,
5469 Name => Relocate_Node (Entry_Name)),
5470 Expressions => Parameter_Associations (N));
5472 -- Since we are correcting a node classification error made by
5473 -- the parser, we call Replace rather than Rewrite.
5475 Replace (N, Index_Node);
5476 Set_Etype (Prefix (N), Etype (Nam));
5477 Set_Etype (N, Typ);
5478 Resolve_Indexed_Component (N, Typ);
5479 return;
5480 end;
5481 end if;
5483 -- The operation name may have been overloaded. Order the actuals
5484 -- according to the formals of the resolved entity, and set the
5485 -- return type to that of the operation.
5487 if Was_Over then
5488 Normalize_Actuals (N, Nam, False, Norm_OK);
5489 pragma Assert (Norm_OK);
5490 Set_Etype (N, Etype (Nam));
5491 end if;
5493 Resolve_Actuals (N, Nam);
5494 Generate_Reference (Nam, Entry_Name);
5496 if Ekind (Nam) = E_Entry
5497 or else Ekind (Nam) = E_Entry_Family
5498 then
5499 Check_Potentially_Blocking_Operation (N);
5500 end if;
5502 -- Verify that a procedure call cannot masquerade as an entry
5503 -- call where an entry call is expected.
5505 if Ekind (Nam) = E_Procedure then
5506 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5507 and then N = Entry_Call_Statement (Parent (N))
5508 then
5509 Error_Msg_N ("entry call required in select statement", N);
5511 elsif Nkind (Parent (N)) = N_Triggering_Alternative
5512 and then N = Triggering_Statement (Parent (N))
5513 then
5514 Error_Msg_N ("triggering statement cannot be procedure call", N);
5516 elsif Ekind (Scope (Nam)) = E_Task_Type
5517 and then not In_Open_Scopes (Scope (Nam))
5518 then
5519 Error_Msg_N ("task has no entry with this name", Entry_Name);
5520 end if;
5521 end if;
5523 -- After resolution, entry calls and protected procedure calls
5524 -- are changed into entry calls, for expansion. The structure
5525 -- of the node does not change, so it can safely be done in place.
5526 -- Protected function calls must keep their structure because they
5527 -- are subexpressions.
5529 if Ekind (Nam) /= E_Function then
5531 -- A protected operation that is not a function may modify the
5532 -- corresponding object, and cannot apply to a constant.
5533 -- If this is an internal call, the prefix is the type itself.
5535 if Is_Protected_Type (Scope (Nam))
5536 and then not Is_Variable (Obj)
5537 and then (not Is_Entity_Name (Obj)
5538 or else not Is_Type (Entity (Obj)))
5539 then
5540 Error_Msg_N
5541 ("prefix of protected procedure or entry call must be variable",
5542 Entry_Name);
5543 end if;
5545 Actuals := Parameter_Associations (N);
5546 First_Named := First_Named_Actual (N);
5548 Rewrite (N,
5549 Make_Entry_Call_Statement (Loc,
5550 Name => Entry_Name,
5551 Parameter_Associations => Actuals));
5553 Set_First_Named_Actual (N, First_Named);
5554 Set_Analyzed (N, True);
5556 -- Protected functions can return on the secondary stack, in which
5557 -- case we must trigger the transient scope mechanism.
5559 elsif Expander_Active
5560 and then Requires_Transient_Scope (Etype (Nam))
5561 then
5562 Establish_Transient_Scope (N, Sec_Stack => True);
5563 end if;
5564 end Resolve_Entry_Call;
5566 -------------------------
5567 -- Resolve_Equality_Op --
5568 -------------------------
5570 -- Both arguments must have the same type, and the boolean context
5571 -- does not participate in the resolution. The first pass verifies
5572 -- that the interpretation is not ambiguous, and the type of the left
5573 -- argument is correctly set, or is Any_Type in case of ambiguity.
5574 -- If both arguments are strings or aggregates, allocators, or Null,
5575 -- they are ambiguous even though they carry a single (universal) type.
5576 -- Diagnose this case here.
5578 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
5579 L : constant Node_Id := Left_Opnd (N);
5580 R : constant Node_Id := Right_Opnd (N);
5581 T : Entity_Id := Find_Unique_Type (L, R);
5583 function Find_Unique_Access_Type return Entity_Id;
5584 -- In the case of allocators, make a last-ditch attempt to find a single
5585 -- access type with the right designated type. This is semantically
5586 -- dubious, and of no interest to any real code, but c48008a makes it
5587 -- all worthwhile.
5589 -----------------------------
5590 -- Find_Unique_Access_Type --
5591 -----------------------------
5593 function Find_Unique_Access_Type return Entity_Id is
5594 Acc : Entity_Id;
5595 E : Entity_Id;
5596 S : Entity_Id;
5598 begin
5599 if Ekind (Etype (R)) = E_Allocator_Type then
5600 Acc := Designated_Type (Etype (R));
5601 elsif Ekind (Etype (L)) = E_Allocator_Type then
5602 Acc := Designated_Type (Etype (L));
5603 else
5604 return Empty;
5605 end if;
5607 S := Current_Scope;
5608 while S /= Standard_Standard loop
5609 E := First_Entity (S);
5610 while Present (E) loop
5611 if Is_Type (E)
5612 and then Is_Access_Type (E)
5613 and then Ekind (E) /= E_Allocator_Type
5614 and then Designated_Type (E) = Base_Type (Acc)
5615 then
5616 return E;
5617 end if;
5619 Next_Entity (E);
5620 end loop;
5622 S := Scope (S);
5623 end loop;
5625 return Empty;
5626 end Find_Unique_Access_Type;
5628 -- Start of processing for Resolve_Equality_Op
5630 begin
5631 Set_Etype (N, Base_Type (Typ));
5632 Generate_Reference (T, N, ' ');
5634 if T = Any_Fixed then
5635 T := Unique_Fixed_Point_Type (L);
5636 end if;
5638 if T /= Any_Type then
5639 if T = Any_String
5640 or else T = Any_Composite
5641 or else T = Any_Character
5642 then
5643 if T = Any_Character then
5644 Ambiguous_Character (L);
5645 else
5646 Error_Msg_N ("ambiguous operands for equality", N);
5647 end if;
5649 Set_Etype (N, Any_Type);
5650 return;
5652 elsif T = Any_Access
5653 or else Ekind (T) = E_Allocator_Type
5654 or else Ekind (T) = E_Access_Attribute_Type
5655 then
5656 T := Find_Unique_Access_Type;
5658 if No (T) then
5659 Error_Msg_N ("ambiguous operands for equality", N);
5660 Set_Etype (N, Any_Type);
5661 return;
5662 end if;
5663 end if;
5665 Resolve (L, T);
5666 Resolve (R, T);
5668 -- If the unique type is a class-wide type then it will be expanded
5669 -- into a dispatching call to the predefined primitive. Therefore we
5670 -- check here for potential violation of such restriction.
5672 if Is_Class_Wide_Type (T) then
5673 Check_Restriction (No_Dispatching_Calls, N);
5674 end if;
5676 if Warn_On_Redundant_Constructs
5677 and then Comes_From_Source (N)
5678 and then Is_Entity_Name (R)
5679 and then Entity (R) = Standard_True
5680 and then Comes_From_Source (R)
5681 then
5682 Error_Msg_N ("?comparison with True is redundant!", R);
5683 end if;
5685 Check_Unset_Reference (L);
5686 Check_Unset_Reference (R);
5687 Generate_Operator_Reference (N, T);
5689 -- If this is an inequality, it may be the implicit inequality
5690 -- created for a user-defined operation, in which case the corres-
5691 -- ponding equality operation is not intrinsic, and the operation
5692 -- cannot be constant-folded. Else fold.
5694 if Nkind (N) = N_Op_Eq
5695 or else Comes_From_Source (Entity (N))
5696 or else Ekind (Entity (N)) = E_Operator
5697 or else Is_Intrinsic_Subprogram
5698 (Corresponding_Equality (Entity (N)))
5699 then
5700 Eval_Relational_Op (N);
5701 elsif Nkind (N) = N_Op_Ne
5702 and then Is_Abstract_Subprogram (Entity (N))
5703 then
5704 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
5705 end if;
5707 -- Ada 2005: If one operand is an anonymous access type, convert
5708 -- the other operand to it, to ensure that the underlying types
5709 -- match in the back-end. Same for access_to_subprogram, and the
5710 -- conversion verifies that the types are subtype conformant.
5712 -- We apply the same conversion in the case one of the operands is
5713 -- a private subtype of the type of the other.
5715 -- Why the Expander_Active test here ???
5717 if Expander_Active
5718 and then
5719 (Ekind (T) = E_Anonymous_Access_Type
5720 or else Ekind (T) = E_Anonymous_Access_Subprogram_Type
5721 or else Is_Private_Type (T))
5722 then
5723 if Etype (L) /= T then
5724 Rewrite (L,
5725 Make_Unchecked_Type_Conversion (Sloc (L),
5726 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
5727 Expression => Relocate_Node (L)));
5728 Analyze_And_Resolve (L, T);
5729 end if;
5731 if (Etype (R)) /= T then
5732 Rewrite (R,
5733 Make_Unchecked_Type_Conversion (Sloc (R),
5734 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
5735 Expression => Relocate_Node (R)));
5736 Analyze_And_Resolve (R, T);
5737 end if;
5738 end if;
5739 end if;
5740 end Resolve_Equality_Op;
5742 ----------------------------------
5743 -- Resolve_Explicit_Dereference --
5744 ----------------------------------
5746 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
5747 Loc : constant Source_Ptr := Sloc (N);
5748 New_N : Node_Id;
5749 P : constant Node_Id := Prefix (N);
5750 I : Interp_Index;
5751 It : Interp;
5753 begin
5754 Check_Fully_Declared_Prefix (Typ, P);
5756 if Is_Overloaded (P) then
5758 -- Use the context type to select the prefix that has the correct
5759 -- designated type.
5761 Get_First_Interp (P, I, It);
5762 while Present (It.Typ) loop
5763 exit when Is_Access_Type (It.Typ)
5764 and then Covers (Typ, Designated_Type (It.Typ));
5765 Get_Next_Interp (I, It);
5766 end loop;
5768 if Present (It.Typ) then
5769 Resolve (P, It.Typ);
5770 else
5771 -- If no interpretation covers the designated type of the prefix,
5772 -- this is the pathological case where not all implementations of
5773 -- the prefix allow the interpretation of the node as a call. Now
5774 -- that the expected type is known, Remove other interpretations
5775 -- from prefix, rewrite it as a call, and resolve again, so that
5776 -- the proper call node is generated.
5778 Get_First_Interp (P, I, It);
5779 while Present (It.Typ) loop
5780 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
5781 Remove_Interp (I);
5782 end if;
5784 Get_Next_Interp (I, It);
5785 end loop;
5787 New_N :=
5788 Make_Function_Call (Loc,
5789 Name =>
5790 Make_Explicit_Dereference (Loc,
5791 Prefix => P),
5792 Parameter_Associations => New_List);
5794 Save_Interps (N, New_N);
5795 Rewrite (N, New_N);
5796 Analyze_And_Resolve (N, Typ);
5797 return;
5798 end if;
5800 Set_Etype (N, Designated_Type (It.Typ));
5802 else
5803 Resolve (P);
5804 end if;
5806 if Is_Access_Type (Etype (P)) then
5807 Apply_Access_Check (N);
5808 end if;
5810 -- If the designated type is a packed unconstrained array type, and the
5811 -- explicit dereference is not in the context of an attribute reference,
5812 -- then we must compute and set the actual subtype, since it is needed
5813 -- by Gigi. The reason we exclude the attribute case is that this is
5814 -- handled fine by Gigi, and in fact we use such attributes to build the
5815 -- actual subtype. We also exclude generated code (which builds actual
5816 -- subtypes directly if they are needed).
5818 if Is_Array_Type (Etype (N))
5819 and then Is_Packed (Etype (N))
5820 and then not Is_Constrained (Etype (N))
5821 and then Nkind (Parent (N)) /= N_Attribute_Reference
5822 and then Comes_From_Source (N)
5823 then
5824 Set_Etype (N, Get_Actual_Subtype (N));
5825 end if;
5827 -- Note: there is no Eval processing required for an explicit deference,
5828 -- because the type is known to be an allocators, and allocator
5829 -- expressions can never be static.
5831 end Resolve_Explicit_Dereference;
5833 -------------------------------
5834 -- Resolve_Indexed_Component --
5835 -------------------------------
5837 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
5838 Name : constant Node_Id := Prefix (N);
5839 Expr : Node_Id;
5840 Array_Type : Entity_Id := Empty; -- to prevent junk warning
5841 Index : Node_Id;
5843 begin
5844 if Is_Overloaded (Name) then
5846 -- Use the context type to select the prefix that yields the correct
5847 -- component type.
5849 declare
5850 I : Interp_Index;
5851 It : Interp;
5852 I1 : Interp_Index := 0;
5853 P : constant Node_Id := Prefix (N);
5854 Found : Boolean := False;
5856 begin
5857 Get_First_Interp (P, I, It);
5858 while Present (It.Typ) loop
5859 if (Is_Array_Type (It.Typ)
5860 and then Covers (Typ, Component_Type (It.Typ)))
5861 or else (Is_Access_Type (It.Typ)
5862 and then Is_Array_Type (Designated_Type (It.Typ))
5863 and then Covers
5864 (Typ, Component_Type (Designated_Type (It.Typ))))
5865 then
5866 if Found then
5867 It := Disambiguate (P, I1, I, Any_Type);
5869 if It = No_Interp then
5870 Error_Msg_N ("ambiguous prefix for indexing", N);
5871 Set_Etype (N, Typ);
5872 return;
5874 else
5875 Found := True;
5876 Array_Type := It.Typ;
5877 I1 := I;
5878 end if;
5880 else
5881 Found := True;
5882 Array_Type := It.Typ;
5883 I1 := I;
5884 end if;
5885 end if;
5887 Get_Next_Interp (I, It);
5888 end loop;
5889 end;
5891 else
5892 Array_Type := Etype (Name);
5893 end if;
5895 Resolve (Name, Array_Type);
5896 Array_Type := Get_Actual_Subtype_If_Available (Name);
5898 -- If prefix is access type, dereference to get real array type.
5899 -- Note: we do not apply an access check because the expander always
5900 -- introduces an explicit dereference, and the check will happen there.
5902 if Is_Access_Type (Array_Type) then
5903 Array_Type := Designated_Type (Array_Type);
5904 end if;
5906 -- If name was overloaded, set component type correctly now
5907 -- If a misplaced call to an entry family (which has no index typs)
5908 -- return. Error will be diagnosed from calling context.
5910 if Is_Array_Type (Array_Type) then
5911 Set_Etype (N, Component_Type (Array_Type));
5912 else
5913 return;
5914 end if;
5916 Index := First_Index (Array_Type);
5917 Expr := First (Expressions (N));
5919 -- The prefix may have resolved to a string literal, in which case its
5920 -- etype has a special representation. This is only possible currently
5921 -- if the prefix is a static concatenation, written in functional
5922 -- notation.
5924 if Ekind (Array_Type) = E_String_Literal_Subtype then
5925 Resolve (Expr, Standard_Positive);
5927 else
5928 while Present (Index) and Present (Expr) loop
5929 Resolve (Expr, Etype (Index));
5930 Check_Unset_Reference (Expr);
5932 if Is_Scalar_Type (Etype (Expr)) then
5933 Apply_Scalar_Range_Check (Expr, Etype (Index));
5934 else
5935 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
5936 end if;
5938 Next_Index (Index);
5939 Next (Expr);
5940 end loop;
5941 end if;
5943 -- Do not generate the warning on suspicious index if we are analyzing
5944 -- package Ada.Tags; otherwise we will report the warning with the
5945 -- Prims_Ptr field of the dispatch table.
5947 if Scope (Etype (Prefix (N))) = Standard_Standard
5948 or else not
5949 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
5950 Ada_Tags)
5951 then
5952 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
5953 Eval_Indexed_Component (N);
5954 end if;
5955 end Resolve_Indexed_Component;
5957 -----------------------------
5958 -- Resolve_Integer_Literal --
5959 -----------------------------
5961 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
5962 begin
5963 Set_Etype (N, Typ);
5964 Eval_Integer_Literal (N);
5965 end Resolve_Integer_Literal;
5967 --------------------------------
5968 -- Resolve_Intrinsic_Operator --
5969 --------------------------------
5971 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
5972 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
5973 Op : Entity_Id;
5974 Arg1 : Node_Id;
5975 Arg2 : Node_Id;
5977 begin
5978 Op := Entity (N);
5979 while Scope (Op) /= Standard_Standard loop
5980 Op := Homonym (Op);
5981 pragma Assert (Present (Op));
5982 end loop;
5984 Set_Entity (N, Op);
5985 Set_Is_Overloaded (N, False);
5987 -- If the operand type is private, rewrite with suitable conversions on
5988 -- the operands and the result, to expose the proper underlying numeric
5989 -- type.
5991 if Is_Private_Type (Typ) then
5992 Arg1 := Unchecked_Convert_To (Btyp, Left_Opnd (N));
5994 if Nkind (N) = N_Op_Expon then
5995 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
5996 else
5997 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
5998 end if;
6000 Save_Interps (Left_Opnd (N), Expression (Arg1));
6001 Save_Interps (Right_Opnd (N), Expression (Arg2));
6003 Set_Left_Opnd (N, Arg1);
6004 Set_Right_Opnd (N, Arg2);
6006 Set_Etype (N, Btyp);
6007 Rewrite (N, Unchecked_Convert_To (Typ, N));
6008 Resolve (N, Typ);
6010 elsif Typ /= Etype (Left_Opnd (N))
6011 or else Typ /= Etype (Right_Opnd (N))
6012 then
6013 -- Add explicit conversion where needed, and save interpretations
6014 -- in case operands are overloaded.
6016 Arg1 := Convert_To (Typ, Left_Opnd (N));
6017 Arg2 := Convert_To (Typ, Right_Opnd (N));
6019 if Nkind (Arg1) = N_Type_Conversion then
6020 Save_Interps (Left_Opnd (N), Expression (Arg1));
6021 else
6022 Save_Interps (Left_Opnd (N), Arg1);
6023 end if;
6025 if Nkind (Arg2) = N_Type_Conversion then
6026 Save_Interps (Right_Opnd (N), Expression (Arg2));
6027 else
6028 Save_Interps (Right_Opnd (N), Arg2);
6029 end if;
6031 Rewrite (Left_Opnd (N), Arg1);
6032 Rewrite (Right_Opnd (N), Arg2);
6033 Analyze (Arg1);
6034 Analyze (Arg2);
6035 Resolve_Arithmetic_Op (N, Typ);
6037 else
6038 Resolve_Arithmetic_Op (N, Typ);
6039 end if;
6040 end Resolve_Intrinsic_Operator;
6042 --------------------------------------
6043 -- Resolve_Intrinsic_Unary_Operator --
6044 --------------------------------------
6046 procedure Resolve_Intrinsic_Unary_Operator
6047 (N : Node_Id;
6048 Typ : Entity_Id)
6050 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
6051 Op : Entity_Id;
6052 Arg2 : Node_Id;
6054 begin
6055 Op := Entity (N);
6056 while Scope (Op) /= Standard_Standard loop
6057 Op := Homonym (Op);
6058 pragma Assert (Present (Op));
6059 end loop;
6061 Set_Entity (N, Op);
6063 if Is_Private_Type (Typ) then
6064 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
6065 Save_Interps (Right_Opnd (N), Expression (Arg2));
6067 Set_Right_Opnd (N, Arg2);
6069 Set_Etype (N, Btyp);
6070 Rewrite (N, Unchecked_Convert_To (Typ, N));
6071 Resolve (N, Typ);
6073 else
6074 Resolve_Unary_Op (N, Typ);
6075 end if;
6076 end Resolve_Intrinsic_Unary_Operator;
6078 ------------------------
6079 -- Resolve_Logical_Op --
6080 ------------------------
6082 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
6083 B_Typ : Entity_Id;
6084 N_Opr : constant Node_Kind := Nkind (N);
6086 begin
6087 -- Predefined operations on scalar types yield the base type. On the
6088 -- other hand, logical operations on arrays yield the type of the
6089 -- arguments (and the context).
6091 if Is_Array_Type (Typ) then
6092 B_Typ := Typ;
6093 else
6094 B_Typ := Base_Type (Typ);
6095 end if;
6097 -- The following test is required because the operands of the operation
6098 -- may be literals, in which case the resulting type appears to be
6099 -- compatible with a signed integer type, when in fact it is compatible
6100 -- only with modular types. If the context itself is universal, the
6101 -- operation is illegal.
6103 if not Valid_Boolean_Arg (Typ) then
6104 Error_Msg_N ("invalid context for logical operation", N);
6105 Set_Etype (N, Any_Type);
6106 return;
6108 elsif Typ = Any_Modular then
6109 Error_Msg_N
6110 ("no modular type available in this context", N);
6111 Set_Etype (N, Any_Type);
6112 return;
6113 elsif Is_Modular_Integer_Type (Typ)
6114 and then Etype (Left_Opnd (N)) = Universal_Integer
6115 and then Etype (Right_Opnd (N)) = Universal_Integer
6116 then
6117 Check_For_Visible_Operator (N, B_Typ);
6118 end if;
6120 Resolve (Left_Opnd (N), B_Typ);
6121 Resolve (Right_Opnd (N), B_Typ);
6123 Check_Unset_Reference (Left_Opnd (N));
6124 Check_Unset_Reference (Right_Opnd (N));
6126 Set_Etype (N, B_Typ);
6127 Generate_Operator_Reference (N, B_Typ);
6128 Eval_Logical_Op (N);
6130 -- Check for violation of restriction No_Direct_Boolean_Operators
6131 -- if the operator was not eliminated by the Eval_Logical_Op call.
6133 if Nkind (N) = N_Opr
6134 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
6135 then
6136 Check_Restriction (No_Direct_Boolean_Operators, N);
6137 end if;
6138 end Resolve_Logical_Op;
6140 ---------------------------
6141 -- Resolve_Membership_Op --
6142 ---------------------------
6144 -- The context can only be a boolean type, and does not determine
6145 -- the arguments. Arguments should be unambiguous, but the preference
6146 -- rule for universal types applies.
6148 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
6149 pragma Warnings (Off, Typ);
6151 L : constant Node_Id := Left_Opnd (N);
6152 R : constant Node_Id := Right_Opnd (N);
6153 T : Entity_Id;
6155 begin
6156 if L = Error or else R = Error then
6157 return;
6158 end if;
6160 if not Is_Overloaded (R)
6161 and then
6162 (Etype (R) = Universal_Integer or else
6163 Etype (R) = Universal_Real)
6164 and then Is_Overloaded (L)
6165 then
6166 T := Etype (R);
6168 -- Ada 2005 (AI-251): Give support to the following case:
6170 -- type I is interface;
6171 -- type T is tagged ...
6173 -- function Test (O : I'Class) is
6174 -- begin
6175 -- return O in T'Class.
6176 -- end Test;
6178 -- In this case we have nothing else to do; the membership test will be
6179 -- done at run-time.
6181 elsif Ada_Version >= Ada_05
6182 and then Is_Class_Wide_Type (Etype (L))
6183 and then Is_Interface (Etype (L))
6184 and then Is_Class_Wide_Type (Etype (R))
6185 and then not Is_Interface (Etype (R))
6186 then
6187 return;
6189 else
6190 T := Intersect_Types (L, R);
6191 end if;
6193 Resolve (L, T);
6194 Check_Unset_Reference (L);
6196 if Nkind (R) = N_Range
6197 and then not Is_Scalar_Type (T)
6198 then
6199 Error_Msg_N ("scalar type required for range", R);
6200 end if;
6202 if Is_Entity_Name (R) then
6203 Freeze_Expression (R);
6204 else
6205 Resolve (R, T);
6206 Check_Unset_Reference (R);
6207 end if;
6209 Eval_Membership_Op (N);
6210 end Resolve_Membership_Op;
6212 ------------------
6213 -- Resolve_Null --
6214 ------------------
6216 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
6217 begin
6218 -- Handle restriction against anonymous null access values This
6219 -- restriction can be turned off using -gnatdh.
6221 -- Ada 2005 (AI-231): Remove restriction
6223 if Ada_Version < Ada_05
6224 and then not Debug_Flag_J
6225 and then Ekind (Typ) = E_Anonymous_Access_Type
6226 and then Comes_From_Source (N)
6227 then
6228 -- In the common case of a call which uses an explicitly null
6229 -- value for an access parameter, give specialized error msg
6231 if Nkind (Parent (N)) = N_Procedure_Call_Statement
6232 or else
6233 Nkind (Parent (N)) = N_Function_Call
6234 then
6235 Error_Msg_N
6236 ("null is not allowed as argument for an access parameter", N);
6238 -- Standard message for all other cases (are there any?)
6240 else
6241 Error_Msg_N
6242 ("null cannot be of an anonymous access type", N);
6243 end if;
6244 end if;
6246 -- In a distributed context, null for a remote access to subprogram
6247 -- may need to be replaced with a special record aggregate. In this
6248 -- case, return after having done the transformation.
6250 if (Ekind (Typ) = E_Record_Type
6251 or else Is_Remote_Access_To_Subprogram_Type (Typ))
6252 and then Remote_AST_Null_Value (N, Typ)
6253 then
6254 return;
6255 end if;
6257 -- The null literal takes its type from the context
6259 Set_Etype (N, Typ);
6260 end Resolve_Null;
6262 -----------------------
6263 -- Resolve_Op_Concat --
6264 -----------------------
6266 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
6267 Btyp : constant Entity_Id := Base_Type (Typ);
6268 Op1 : constant Node_Id := Left_Opnd (N);
6269 Op2 : constant Node_Id := Right_Opnd (N);
6271 procedure Resolve_Concatenation_Arg (Arg : Node_Id; Is_Comp : Boolean);
6272 -- Internal procedure to resolve one operand of concatenation operator.
6273 -- The operand is either of the array type or of the component type.
6274 -- If the operand is an aggregate, and the component type is composite,
6275 -- this is ambiguous if component type has aggregates.
6277 -------------------------------
6278 -- Resolve_Concatenation_Arg --
6279 -------------------------------
6281 procedure Resolve_Concatenation_Arg (Arg : Node_Id; Is_Comp : Boolean) is
6282 begin
6283 if In_Instance then
6284 if Is_Comp
6285 or else (not Is_Overloaded (Arg)
6286 and then Etype (Arg) /= Any_Composite
6287 and then Covers (Component_Type (Typ), Etype (Arg)))
6288 then
6289 Resolve (Arg, Component_Type (Typ));
6290 else
6291 Resolve (Arg, Btyp);
6292 end if;
6294 elsif Has_Compatible_Type (Arg, Component_Type (Typ)) then
6296 if Nkind (Arg) = N_Aggregate
6297 and then Is_Composite_Type (Component_Type (Typ))
6298 then
6299 if Is_Private_Type (Component_Type (Typ)) then
6300 Resolve (Arg, Btyp);
6302 else
6303 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
6304 Set_Etype (Arg, Any_Type);
6305 end if;
6307 else
6308 if Is_Overloaded (Arg)
6309 and then Has_Compatible_Type (Arg, Typ)
6310 and then Etype (Arg) /= Any_Type
6311 then
6313 declare
6314 I : Interp_Index;
6315 It : Interp;
6316 Func : Entity_Id;
6318 begin
6319 Get_First_Interp (Arg, I, It);
6320 Func := It.Nam;
6321 Get_Next_Interp (I, It);
6323 -- Special-case the error message when the overloading
6324 -- is caused by a function that yields and array and
6325 -- can be called without parameters.
6327 if It.Nam = Func then
6328 Error_Msg_Sloc := Sloc (Func);
6329 Error_Msg_N ("ambiguous call to function#", Arg);
6330 Error_Msg_NE
6331 ("\\interpretation as call yields&", Arg, Typ);
6332 Error_Msg_NE
6333 ("\\interpretation as indexing of call yields&",
6334 Arg, Component_Type (Typ));
6336 else
6337 Error_Msg_N
6338 ("ambiguous operand for concatenation!", Arg);
6339 Get_First_Interp (Arg, I, It);
6340 while Present (It.Nam) loop
6341 Error_Msg_Sloc := Sloc (It.Nam);
6343 if Base_Type (It.Typ) = Base_Type (Typ)
6344 or else Base_Type (It.Typ) =
6345 Base_Type (Component_Type (Typ))
6346 then
6347 Error_Msg_N ("\\possible interpretation#", Arg);
6348 end if;
6350 Get_Next_Interp (I, It);
6351 end loop;
6352 end if;
6353 end;
6354 end if;
6356 Resolve (Arg, Component_Type (Typ));
6358 if Nkind (Arg) = N_String_Literal then
6359 Set_Etype (Arg, Component_Type (Typ));
6360 end if;
6362 if Arg = Left_Opnd (N) then
6363 Set_Is_Component_Left_Opnd (N);
6364 else
6365 Set_Is_Component_Right_Opnd (N);
6366 end if;
6367 end if;
6369 else
6370 Resolve (Arg, Btyp);
6371 end if;
6373 Check_Unset_Reference (Arg);
6374 end Resolve_Concatenation_Arg;
6376 -- Start of processing for Resolve_Op_Concat
6378 begin
6379 -- The parser folds an enormous sequence of concatenations of string
6380 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
6381 -- in the right. If the expression resolves to a predefined "&"
6382 -- operator, all is well. Otherwise, the parser's folding is wrong, so
6383 -- we give an error. See P_Simple_Expression in Par.Ch4.
6385 if Nkind (Op2) = N_String_Literal
6386 and then Is_Folded_In_Parser (Op2)
6387 and then Ekind (Entity (N)) = E_Function
6388 then
6389 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
6390 and then String_Length (Strval (Op1)) = 0);
6391 Error_Msg_N ("too many user-defined concatenations", N);
6392 return;
6393 end if;
6395 Set_Etype (N, Btyp);
6397 if Is_Limited_Composite (Btyp) then
6398 Error_Msg_N ("concatenation not available for limited array", N);
6399 Explain_Limited_Type (Btyp, N);
6400 end if;
6402 -- If the operands are themselves concatenations, resolve them as such
6403 -- directly. This removes several layers of recursion and allows GNAT to
6404 -- handle larger multiple concatenations.
6406 if Nkind (Op1) = N_Op_Concat
6407 and then not Is_Array_Type (Component_Type (Typ))
6408 and then Entity (Op1) = Entity (N)
6409 then
6410 Resolve_Op_Concat (Op1, Typ);
6411 else
6412 Resolve_Concatenation_Arg
6413 (Op1, Is_Component_Left_Opnd (N));
6414 end if;
6416 if Nkind (Op2) = N_Op_Concat
6417 and then not Is_Array_Type (Component_Type (Typ))
6418 and then Entity (Op2) = Entity (N)
6419 then
6420 Resolve_Op_Concat (Op2, Typ);
6421 else
6422 Resolve_Concatenation_Arg
6423 (Op2, Is_Component_Right_Opnd (N));
6424 end if;
6426 Generate_Operator_Reference (N, Typ);
6428 if Is_String_Type (Typ) then
6429 Eval_Concatenation (N);
6430 end if;
6432 -- If this is not a static concatenation, but the result is a
6433 -- string type (and not an array of strings) insure that static
6434 -- string operands have their subtypes properly constructed.
6436 if Nkind (N) /= N_String_Literal
6437 and then Is_Character_Type (Component_Type (Typ))
6438 then
6439 Set_String_Literal_Subtype (Op1, Typ);
6440 Set_String_Literal_Subtype (Op2, Typ);
6441 end if;
6442 end Resolve_Op_Concat;
6444 ----------------------
6445 -- Resolve_Op_Expon --
6446 ----------------------
6448 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
6449 B_Typ : constant Entity_Id := Base_Type (Typ);
6451 begin
6452 -- Catch attempts to do fixed-point exponentation with universal
6453 -- operands, which is a case where the illegality is not caught during
6454 -- normal operator analysis.
6456 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
6457 Error_Msg_N ("exponentiation not available for fixed point", N);
6458 return;
6459 end if;
6461 if Comes_From_Source (N)
6462 and then Ekind (Entity (N)) = E_Function
6463 and then Is_Imported (Entity (N))
6464 and then Is_Intrinsic_Subprogram (Entity (N))
6465 then
6466 Resolve_Intrinsic_Operator (N, Typ);
6467 return;
6468 end if;
6470 if Etype (Left_Opnd (N)) = Universal_Integer
6471 or else Etype (Left_Opnd (N)) = Universal_Real
6472 then
6473 Check_For_Visible_Operator (N, B_Typ);
6474 end if;
6476 -- We do the resolution using the base type, because intermediate values
6477 -- in expressions always are of the base type, not a subtype of it.
6479 Resolve (Left_Opnd (N), B_Typ);
6480 Resolve (Right_Opnd (N), Standard_Integer);
6482 Check_Unset_Reference (Left_Opnd (N));
6483 Check_Unset_Reference (Right_Opnd (N));
6485 Set_Etype (N, B_Typ);
6486 Generate_Operator_Reference (N, B_Typ);
6487 Eval_Op_Expon (N);
6489 -- Set overflow checking bit. Much cleverer code needed here eventually
6490 -- and perhaps the Resolve routines should be separated for the various
6491 -- arithmetic operations, since they will need different processing. ???
6493 if Nkind (N) in N_Op then
6494 if not Overflow_Checks_Suppressed (Etype (N)) then
6495 Enable_Overflow_Check (N);
6496 end if;
6497 end if;
6498 end Resolve_Op_Expon;
6500 --------------------
6501 -- Resolve_Op_Not --
6502 --------------------
6504 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
6505 B_Typ : Entity_Id;
6507 function Parent_Is_Boolean return Boolean;
6508 -- This function determines if the parent node is a boolean operator
6509 -- or operation (comparison op, membership test, or short circuit form)
6510 -- and the not in question is the left operand of this operation.
6511 -- Note that if the not is in parens, then false is returned.
6513 -----------------------
6514 -- Parent_Is_Boolean --
6515 -----------------------
6517 function Parent_Is_Boolean return Boolean is
6518 begin
6519 if Paren_Count (N) /= 0 then
6520 return False;
6522 else
6523 case Nkind (Parent (N)) is
6524 when N_Op_And |
6525 N_Op_Eq |
6526 N_Op_Ge |
6527 N_Op_Gt |
6528 N_Op_Le |
6529 N_Op_Lt |
6530 N_Op_Ne |
6531 N_Op_Or |
6532 N_Op_Xor |
6533 N_In |
6534 N_Not_In |
6535 N_And_Then |
6536 N_Or_Else =>
6538 return Left_Opnd (Parent (N)) = N;
6540 when others =>
6541 return False;
6542 end case;
6543 end if;
6544 end Parent_Is_Boolean;
6546 -- Start of processing for Resolve_Op_Not
6548 begin
6549 -- Predefined operations on scalar types yield the base type. On the
6550 -- other hand, logical operations on arrays yield the type of the
6551 -- arguments (and the context).
6553 if Is_Array_Type (Typ) then
6554 B_Typ := Typ;
6555 else
6556 B_Typ := Base_Type (Typ);
6557 end if;
6559 -- Straigtforward case of incorrect arguments
6561 if not Valid_Boolean_Arg (Typ) then
6562 Error_Msg_N ("invalid operand type for operator&", N);
6563 Set_Etype (N, Any_Type);
6564 return;
6566 -- Special case of probable missing parens
6568 elsif Typ = Universal_Integer or else Typ = Any_Modular then
6569 if Parent_Is_Boolean then
6570 Error_Msg_N
6571 ("operand of not must be enclosed in parentheses",
6572 Right_Opnd (N));
6573 else
6574 Error_Msg_N
6575 ("no modular type available in this context", N);
6576 end if;
6578 Set_Etype (N, Any_Type);
6579 return;
6581 -- OK resolution of not
6583 else
6584 -- Warn if non-boolean types involved. This is a case like not a < b
6585 -- where a and b are modular, where we will get (not a) < b and most
6586 -- likely not (a < b) was intended.
6588 if Warn_On_Questionable_Missing_Parens
6589 and then not Is_Boolean_Type (Typ)
6590 and then Parent_Is_Boolean
6591 then
6592 Error_Msg_N ("?not expression should be parenthesized here!", N);
6593 end if;
6595 Resolve (Right_Opnd (N), B_Typ);
6596 Check_Unset_Reference (Right_Opnd (N));
6597 Set_Etype (N, B_Typ);
6598 Generate_Operator_Reference (N, B_Typ);
6599 Eval_Op_Not (N);
6600 end if;
6601 end Resolve_Op_Not;
6603 -----------------------------
6604 -- Resolve_Operator_Symbol --
6605 -----------------------------
6607 -- Nothing to be done, all resolved already
6609 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
6610 pragma Warnings (Off, N);
6611 pragma Warnings (Off, Typ);
6613 begin
6614 null;
6615 end Resolve_Operator_Symbol;
6617 ----------------------------------
6618 -- Resolve_Qualified_Expression --
6619 ----------------------------------
6621 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
6622 pragma Warnings (Off, Typ);
6624 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
6625 Expr : constant Node_Id := Expression (N);
6627 begin
6628 Resolve (Expr, Target_Typ);
6630 -- A qualified expression requires an exact match of the type,
6631 -- class-wide matching is not allowed. However, if the qualifying
6632 -- type is specific and the expression has a class-wide type, it
6633 -- may still be okay, since it can be the result of the expansion
6634 -- of a call to a dispatching function, so we also have to check
6635 -- class-wideness of the type of the expression's original node.
6637 if (Is_Class_Wide_Type (Target_Typ)
6638 or else
6639 (Is_Class_Wide_Type (Etype (Expr))
6640 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
6641 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
6642 then
6643 Wrong_Type (Expr, Target_Typ);
6644 end if;
6646 -- If the target type is unconstrained, then we reset the type of
6647 -- the result from the type of the expression. For other cases, the
6648 -- actual subtype of the expression is the target type.
6650 if Is_Composite_Type (Target_Typ)
6651 and then not Is_Constrained (Target_Typ)
6652 then
6653 Set_Etype (N, Etype (Expr));
6654 end if;
6656 Eval_Qualified_Expression (N);
6657 end Resolve_Qualified_Expression;
6659 -------------------
6660 -- Resolve_Range --
6661 -------------------
6663 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
6664 L : constant Node_Id := Low_Bound (N);
6665 H : constant Node_Id := High_Bound (N);
6667 begin
6668 Set_Etype (N, Typ);
6669 Resolve (L, Typ);
6670 Resolve (H, Typ);
6672 Check_Unset_Reference (L);
6673 Check_Unset_Reference (H);
6675 -- We have to check the bounds for being within the base range as
6676 -- required for a non-static context. Normally this is automatic and
6677 -- done as part of evaluating expressions, but the N_Range node is an
6678 -- exception, since in GNAT we consider this node to be a subexpression,
6679 -- even though in Ada it is not. The circuit in Sem_Eval could check for
6680 -- this, but that would put the test on the main evaluation path for
6681 -- expressions.
6683 Check_Non_Static_Context (L);
6684 Check_Non_Static_Context (H);
6686 -- Check for an ambiguous range over character literals. This will
6687 -- happen with a membership test involving only literals.
6689 if Typ = Any_Character then
6690 Ambiguous_Character (L);
6691 Set_Etype (N, Any_Type);
6692 return;
6693 end if;
6695 -- If bounds are static, constant-fold them, so size computations
6696 -- are identical between front-end and back-end. Do not perform this
6697 -- transformation while analyzing generic units, as type information
6698 -- would then be lost when reanalyzing the constant node in the
6699 -- instance.
6701 if Is_Discrete_Type (Typ) and then Expander_Active then
6702 if Is_OK_Static_Expression (L) then
6703 Fold_Uint (L, Expr_Value (L), Is_Static_Expression (L));
6704 end if;
6706 if Is_OK_Static_Expression (H) then
6707 Fold_Uint (H, Expr_Value (H), Is_Static_Expression (H));
6708 end if;
6709 end if;
6710 end Resolve_Range;
6712 --------------------------
6713 -- Resolve_Real_Literal --
6714 --------------------------
6716 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
6717 Actual_Typ : constant Entity_Id := Etype (N);
6719 begin
6720 -- Special processing for fixed-point literals to make sure that the
6721 -- value is an exact multiple of small where this is required. We
6722 -- skip this for the universal real case, and also for generic types.
6724 if Is_Fixed_Point_Type (Typ)
6725 and then Typ /= Universal_Fixed
6726 and then Typ /= Any_Fixed
6727 and then not Is_Generic_Type (Typ)
6728 then
6729 declare
6730 Val : constant Ureal := Realval (N);
6731 Cintr : constant Ureal := Val / Small_Value (Typ);
6732 Cint : constant Uint := UR_Trunc (Cintr);
6733 Den : constant Uint := Norm_Den (Cintr);
6734 Stat : Boolean;
6736 begin
6737 -- Case of literal is not an exact multiple of the Small
6739 if Den /= 1 then
6741 -- For a source program literal for a decimal fixed-point
6742 -- type, this is statically illegal (RM 4.9(36)).
6744 if Is_Decimal_Fixed_Point_Type (Typ)
6745 and then Actual_Typ = Universal_Real
6746 and then Comes_From_Source (N)
6747 then
6748 Error_Msg_N ("value has extraneous low order digits", N);
6749 end if;
6751 -- Generate a warning if literal from source
6753 if Is_Static_Expression (N)
6754 and then Warn_On_Bad_Fixed_Value
6755 then
6756 Error_Msg_N
6757 ("?static fixed-point value is not a multiple of Small!",
6759 end if;
6761 -- Replace literal by a value that is the exact representation
6762 -- of a value of the type, i.e. a multiple of the small value,
6763 -- by truncation, since Machine_Rounds is false for all GNAT
6764 -- fixed-point types (RM 4.9(38)).
6766 Stat := Is_Static_Expression (N);
6767 Rewrite (N,
6768 Make_Real_Literal (Sloc (N),
6769 Realval => Small_Value (Typ) * Cint));
6771 Set_Is_Static_Expression (N, Stat);
6772 end if;
6774 -- In all cases, set the corresponding integer field
6776 Set_Corresponding_Integer_Value (N, Cint);
6777 end;
6778 end if;
6780 -- Now replace the actual type by the expected type as usual
6782 Set_Etype (N, Typ);
6783 Eval_Real_Literal (N);
6784 end Resolve_Real_Literal;
6786 -----------------------
6787 -- Resolve_Reference --
6788 -----------------------
6790 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
6791 P : constant Node_Id := Prefix (N);
6793 begin
6794 -- Replace general access with specific type
6796 if Ekind (Etype (N)) = E_Allocator_Type then
6797 Set_Etype (N, Base_Type (Typ));
6798 end if;
6800 Resolve (P, Designated_Type (Etype (N)));
6802 -- If we are taking the reference of a volatile entity, then treat
6803 -- it as a potential modification of this entity. This is much too
6804 -- conservative, but is necessary because remove side effects can
6805 -- result in transformations of normal assignments into reference
6806 -- sequences that otherwise fail to notice the modification.
6808 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
6809 Note_Possible_Modification (P);
6810 end if;
6811 end Resolve_Reference;
6813 --------------------------------
6814 -- Resolve_Selected_Component --
6815 --------------------------------
6817 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
6818 Comp : Entity_Id;
6819 Comp1 : Entity_Id := Empty; -- prevent junk warning
6820 P : constant Node_Id := Prefix (N);
6821 S : constant Node_Id := Selector_Name (N);
6822 T : Entity_Id := Etype (P);
6823 I : Interp_Index;
6824 I1 : Interp_Index := 0; -- prevent junk warning
6825 It : Interp;
6826 It1 : Interp;
6827 Found : Boolean;
6829 function Init_Component return Boolean;
6830 -- Check whether this is the initialization of a component within an
6831 -- init proc (by assignment or call to another init proc). If true,
6832 -- there is no need for a discriminant check.
6834 --------------------
6835 -- Init_Component --
6836 --------------------
6838 function Init_Component return Boolean is
6839 begin
6840 return Inside_Init_Proc
6841 and then Nkind (Prefix (N)) = N_Identifier
6842 and then Chars (Prefix (N)) = Name_uInit
6843 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
6844 end Init_Component;
6846 -- Start of processing for Resolve_Selected_Component
6848 begin
6849 if Is_Overloaded (P) then
6851 -- Use the context type to select the prefix that has a selector
6852 -- of the correct name and type.
6854 Found := False;
6855 Get_First_Interp (P, I, It);
6857 Search : while Present (It.Typ) loop
6858 if Is_Access_Type (It.Typ) then
6859 T := Designated_Type (It.Typ);
6860 else
6861 T := It.Typ;
6862 end if;
6864 if Is_Record_Type (T) then
6865 Comp := First_Entity (T);
6866 while Present (Comp) loop
6867 if Chars (Comp) = Chars (S)
6868 and then Covers (Etype (Comp), Typ)
6869 then
6870 if not Found then
6871 Found := True;
6872 I1 := I;
6873 It1 := It;
6874 Comp1 := Comp;
6876 else
6877 It := Disambiguate (P, I1, I, Any_Type);
6879 if It = No_Interp then
6880 Error_Msg_N
6881 ("ambiguous prefix for selected component", N);
6882 Set_Etype (N, Typ);
6883 return;
6885 else
6886 It1 := It;
6888 -- There may be an implicit dereference. Retrieve
6889 -- designated record type.
6891 if Is_Access_Type (It1.Typ) then
6892 T := Designated_Type (It1.Typ);
6893 else
6894 T := It1.Typ;
6895 end if;
6897 if Scope (Comp1) /= T then
6899 -- Resolution chooses the new interpretation.
6900 -- Find the component with the right name.
6902 Comp1 := First_Entity (T);
6903 while Present (Comp1)
6904 and then Chars (Comp1) /= Chars (S)
6905 loop
6906 Comp1 := Next_Entity (Comp1);
6907 end loop;
6908 end if;
6910 exit Search;
6911 end if;
6912 end if;
6913 end if;
6915 Comp := Next_Entity (Comp);
6916 end loop;
6918 end if;
6920 Get_Next_Interp (I, It);
6921 end loop Search;
6923 Resolve (P, It1.Typ);
6924 Set_Etype (N, Typ);
6925 Set_Entity_With_Style_Check (S, Comp1);
6927 else
6928 -- Resolve prefix with its type
6930 Resolve (P, T);
6931 end if;
6933 -- Generate cross-reference. We needed to wait until full overloading
6934 -- resolution was complete to do this, since otherwise we can't tell if
6935 -- we are an Lvalue of not.
6937 if May_Be_Lvalue (N) then
6938 Generate_Reference (Entity (S), S, 'm');
6939 else
6940 Generate_Reference (Entity (S), S, 'r');
6941 end if;
6943 -- If prefix is an access type, the node will be transformed into an
6944 -- explicit dereference during expansion. The type of the node is the
6945 -- designated type of that of the prefix.
6947 if Is_Access_Type (Etype (P)) then
6948 T := Designated_Type (Etype (P));
6949 Check_Fully_Declared_Prefix (T, P);
6950 else
6951 T := Etype (P);
6952 end if;
6954 if Has_Discriminants (T)
6955 and then (Ekind (Entity (S)) = E_Component
6956 or else
6957 Ekind (Entity (S)) = E_Discriminant)
6958 and then Present (Original_Record_Component (Entity (S)))
6959 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
6960 and then Present (Discriminant_Checking_Func
6961 (Original_Record_Component (Entity (S))))
6962 and then not Discriminant_Checks_Suppressed (T)
6963 and then not Init_Component
6964 then
6965 Set_Do_Discriminant_Check (N);
6966 end if;
6968 if Ekind (Entity (S)) = E_Void then
6969 Error_Msg_N ("premature use of component", S);
6970 end if;
6972 -- If the prefix is a record conversion, this may be a renamed
6973 -- discriminant whose bounds differ from those of the original
6974 -- one, so we must ensure that a range check is performed.
6976 if Nkind (P) = N_Type_Conversion
6977 and then Ekind (Entity (S)) = E_Discriminant
6978 and then Is_Discrete_Type (Typ)
6979 then
6980 Set_Etype (N, Base_Type (Typ));
6981 end if;
6983 -- Note: No Eval processing is required, because the prefix is of a
6984 -- record type, or protected type, and neither can possibly be static.
6986 end Resolve_Selected_Component;
6988 -------------------
6989 -- Resolve_Shift --
6990 -------------------
6992 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
6993 B_Typ : constant Entity_Id := Base_Type (Typ);
6994 L : constant Node_Id := Left_Opnd (N);
6995 R : constant Node_Id := Right_Opnd (N);
6997 begin
6998 -- We do the resolution using the base type, because intermediate values
6999 -- in expressions always are of the base type, not a subtype of it.
7001 Resolve (L, B_Typ);
7002 Resolve (R, Standard_Natural);
7004 Check_Unset_Reference (L);
7005 Check_Unset_Reference (R);
7007 Set_Etype (N, B_Typ);
7008 Generate_Operator_Reference (N, B_Typ);
7009 Eval_Shift (N);
7010 end Resolve_Shift;
7012 ---------------------------
7013 -- Resolve_Short_Circuit --
7014 ---------------------------
7016 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
7017 B_Typ : constant Entity_Id := Base_Type (Typ);
7018 L : constant Node_Id := Left_Opnd (N);
7019 R : constant Node_Id := Right_Opnd (N);
7021 begin
7022 Resolve (L, B_Typ);
7023 Resolve (R, B_Typ);
7025 Check_Unset_Reference (L);
7026 Check_Unset_Reference (R);
7028 Set_Etype (N, B_Typ);
7029 Eval_Short_Circuit (N);
7030 end Resolve_Short_Circuit;
7032 -------------------
7033 -- Resolve_Slice --
7034 -------------------
7036 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
7037 Name : constant Node_Id := Prefix (N);
7038 Drange : constant Node_Id := Discrete_Range (N);
7039 Array_Type : Entity_Id := Empty;
7040 Index : Node_Id;
7042 begin
7043 if Is_Overloaded (Name) then
7045 -- Use the context type to select the prefix that yields the
7046 -- correct array type.
7048 declare
7049 I : Interp_Index;
7050 I1 : Interp_Index := 0;
7051 It : Interp;
7052 P : constant Node_Id := Prefix (N);
7053 Found : Boolean := False;
7055 begin
7056 Get_First_Interp (P, I, It);
7057 while Present (It.Typ) loop
7058 if (Is_Array_Type (It.Typ)
7059 and then Covers (Typ, It.Typ))
7060 or else (Is_Access_Type (It.Typ)
7061 and then Is_Array_Type (Designated_Type (It.Typ))
7062 and then Covers (Typ, Designated_Type (It.Typ)))
7063 then
7064 if Found then
7065 It := Disambiguate (P, I1, I, Any_Type);
7067 if It = No_Interp then
7068 Error_Msg_N ("ambiguous prefix for slicing", N);
7069 Set_Etype (N, Typ);
7070 return;
7071 else
7072 Found := True;
7073 Array_Type := It.Typ;
7074 I1 := I;
7075 end if;
7076 else
7077 Found := True;
7078 Array_Type := It.Typ;
7079 I1 := I;
7080 end if;
7081 end if;
7083 Get_Next_Interp (I, It);
7084 end loop;
7085 end;
7087 else
7088 Array_Type := Etype (Name);
7089 end if;
7091 Resolve (Name, Array_Type);
7093 if Is_Access_Type (Array_Type) then
7094 Apply_Access_Check (N);
7095 Array_Type := Designated_Type (Array_Type);
7097 -- If the prefix is an access to an unconstrained array, we must use
7098 -- the actual subtype of the object to perform the index checks. The
7099 -- object denoted by the prefix is implicit in the node, so we build
7100 -- an explicit representation for it in order to compute the actual
7101 -- subtype.
7103 if not Is_Constrained (Array_Type) then
7104 Remove_Side_Effects (Prefix (N));
7106 declare
7107 Obj : constant Node_Id :=
7108 Make_Explicit_Dereference (Sloc (N),
7109 Prefix => New_Copy_Tree (Prefix (N)));
7110 begin
7111 Set_Etype (Obj, Array_Type);
7112 Set_Parent (Obj, Parent (N));
7113 Array_Type := Get_Actual_Subtype (Obj);
7114 end;
7115 end if;
7117 elsif Is_Entity_Name (Name)
7118 or else (Nkind (Name) = N_Function_Call
7119 and then not Is_Constrained (Etype (Name)))
7120 then
7121 Array_Type := Get_Actual_Subtype (Name);
7123 -- If the name is a selected component that depends on discriminants,
7124 -- build an actual subtype for it. This can happen only when the name
7125 -- itself is overloaded; otherwise the actual subtype is created when
7126 -- the selected component is analyzed.
7128 elsif Nkind (Name) = N_Selected_Component
7129 and then Full_Analysis
7130 and then Depends_On_Discriminant (First_Index (Array_Type))
7131 then
7132 declare
7133 Act_Decl : constant Node_Id :=
7134 Build_Actual_Subtype_Of_Component (Array_Type, Name);
7135 begin
7136 Insert_Action (N, Act_Decl);
7137 Array_Type := Defining_Identifier (Act_Decl);
7138 end;
7139 end if;
7141 -- If name was overloaded, set slice type correctly now
7143 Set_Etype (N, Array_Type);
7145 -- If the range is specified by a subtype mark, no resolution is
7146 -- necessary. Else resolve the bounds, and apply needed checks.
7148 if not Is_Entity_Name (Drange) then
7149 Index := First_Index (Array_Type);
7150 Resolve (Drange, Base_Type (Etype (Index)));
7152 if Nkind (Drange) = N_Range
7154 -- Do not apply the range check to nodes associated with the
7155 -- frontend expansion of the dispatch table. We first check
7156 -- if Ada.Tags is already loaded to void the addition of an
7157 -- undesired dependence on such run-time unit.
7159 and then
7160 (VM_Target /= No_VM
7161 or else not
7162 (RTU_Loaded (Ada_Tags)
7163 and then Nkind (Prefix (N)) = N_Selected_Component
7164 and then Present (Entity (Selector_Name (Prefix (N))))
7165 and then Entity (Selector_Name (Prefix (N))) =
7166 RTE_Record_Component (RE_Prims_Ptr)))
7167 then
7168 Apply_Range_Check (Drange, Etype (Index));
7169 end if;
7170 end if;
7172 Set_Slice_Subtype (N);
7174 if Nkind (Drange) = N_Range then
7175 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
7176 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
7177 end if;
7179 Eval_Slice (N);
7180 end Resolve_Slice;
7182 ----------------------------
7183 -- Resolve_String_Literal --
7184 ----------------------------
7186 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
7187 C_Typ : constant Entity_Id := Component_Type (Typ);
7188 R_Typ : constant Entity_Id := Root_Type (C_Typ);
7189 Loc : constant Source_Ptr := Sloc (N);
7190 Str : constant String_Id := Strval (N);
7191 Strlen : constant Nat := String_Length (Str);
7192 Subtype_Id : Entity_Id;
7193 Need_Check : Boolean;
7195 begin
7196 -- For a string appearing in a concatenation, defer creation of the
7197 -- string_literal_subtype until the end of the resolution of the
7198 -- concatenation, because the literal may be constant-folded away. This
7199 -- is a useful optimization for long concatenation expressions.
7201 -- If the string is an aggregate built for a single character (which
7202 -- happens in a non-static context) or a is null string to which special
7203 -- checks may apply, we build the subtype. Wide strings must also get a
7204 -- string subtype if they come from a one character aggregate. Strings
7205 -- generated by attributes might be static, but it is often hard to
7206 -- determine whether the enclosing context is static, so we generate
7207 -- subtypes for them as well, thus losing some rarer optimizations ???
7208 -- Same for strings that come from a static conversion.
7210 Need_Check :=
7211 (Strlen = 0 and then Typ /= Standard_String)
7212 or else Nkind (Parent (N)) /= N_Op_Concat
7213 or else (N /= Left_Opnd (Parent (N))
7214 and then N /= Right_Opnd (Parent (N)))
7215 or else ((Typ = Standard_Wide_String
7216 or else Typ = Standard_Wide_Wide_String)
7217 and then Nkind (Original_Node (N)) /= N_String_Literal);
7219 -- If the resolving type is itself a string literal subtype, we
7220 -- can just reuse it, since there is no point in creating another.
7222 if Ekind (Typ) = E_String_Literal_Subtype then
7223 Subtype_Id := Typ;
7225 elsif Nkind (Parent (N)) = N_Op_Concat
7226 and then not Need_Check
7227 and then Nkind (Original_Node (N)) /= N_Character_Literal
7228 and then Nkind (Original_Node (N)) /= N_Attribute_Reference
7229 and then Nkind (Original_Node (N)) /= N_Qualified_Expression
7230 and then Nkind (Original_Node (N)) /= N_Type_Conversion
7231 then
7232 Subtype_Id := Typ;
7234 -- Otherwise we must create a string literal subtype. Note that the
7235 -- whole idea of string literal subtypes is simply to avoid the need
7236 -- for building a full fledged array subtype for each literal.
7237 else
7238 Set_String_Literal_Subtype (N, Typ);
7239 Subtype_Id := Etype (N);
7240 end if;
7242 if Nkind (Parent (N)) /= N_Op_Concat
7243 or else Need_Check
7244 then
7245 Set_Etype (N, Subtype_Id);
7246 Eval_String_Literal (N);
7247 end if;
7249 if Is_Limited_Composite (Typ)
7250 or else Is_Private_Composite (Typ)
7251 then
7252 Error_Msg_N ("string literal not available for private array", N);
7253 Set_Etype (N, Any_Type);
7254 return;
7255 end if;
7257 -- The validity of a null string has been checked in the
7258 -- call to Eval_String_Literal.
7260 if Strlen = 0 then
7261 return;
7263 -- Always accept string literal with component type Any_Character, which
7264 -- occurs in error situations and in comparisons of literals, both of
7265 -- which should accept all literals.
7267 elsif R_Typ = Any_Character then
7268 return;
7270 -- If the type is bit-packed, then we always tranform the string literal
7271 -- into a full fledged aggregate.
7273 elsif Is_Bit_Packed_Array (Typ) then
7274 null;
7276 -- Deal with cases of Wide_Wide_String, Wide_String, and String
7278 else
7279 -- For Standard.Wide_Wide_String, or any other type whose component
7280 -- type is Standard.Wide_Wide_Character, we know that all the
7281 -- characters in the string must be acceptable, since the parser
7282 -- accepted the characters as valid character literals.
7284 if R_Typ = Standard_Wide_Wide_Character then
7285 null;
7287 -- For the case of Standard.String, or any other type whose component
7288 -- type is Standard.Character, we must make sure that there are no
7289 -- wide characters in the string, i.e. that it is entirely composed
7290 -- of characters in range of type Character.
7292 -- If the string literal is the result of a static concatenation, the
7293 -- test has already been performed on the components, and need not be
7294 -- repeated.
7296 elsif R_Typ = Standard_Character
7297 and then Nkind (Original_Node (N)) /= N_Op_Concat
7298 then
7299 for J in 1 .. Strlen loop
7300 if not In_Character_Range (Get_String_Char (Str, J)) then
7302 -- If we are out of range, post error. This is one of the
7303 -- very few places that we place the flag in the middle of
7304 -- a token, right under the offending wide character.
7306 Error_Msg
7307 ("literal out of range of type Standard.Character",
7308 Source_Ptr (Int (Loc) + J));
7309 return;
7310 end if;
7311 end loop;
7313 -- For the case of Standard.Wide_String, or any other type whose
7314 -- component type is Standard.Wide_Character, we must make sure that
7315 -- there are no wide characters in the string, i.e. that it is
7316 -- entirely composed of characters in range of type Wide_Character.
7318 -- If the string literal is the result of a static concatenation,
7319 -- the test has already been performed on the components, and need
7320 -- not be repeated.
7322 elsif R_Typ = Standard_Wide_Character
7323 and then Nkind (Original_Node (N)) /= N_Op_Concat
7324 then
7325 for J in 1 .. Strlen loop
7326 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
7328 -- If we are out of range, post error. This is one of the
7329 -- very few places that we place the flag in the middle of
7330 -- a token, right under the offending wide character.
7332 -- This is not quite right, because characters in general
7333 -- will take more than one character position ???
7335 Error_Msg
7336 ("literal out of range of type Standard.Wide_Character",
7337 Source_Ptr (Int (Loc) + J));
7338 return;
7339 end if;
7340 end loop;
7342 -- If the root type is not a standard character, then we will convert
7343 -- the string into an aggregate and will let the aggregate code do
7344 -- the checking. Standard Wide_Wide_Character is also OK here.
7346 else
7347 null;
7348 end if;
7350 -- See if the component type of the array corresponding to the string
7351 -- has compile time known bounds. If yes we can directly check
7352 -- whether the evaluation of the string will raise constraint error.
7353 -- Otherwise we need to transform the string literal into the
7354 -- corresponding character aggregate and let the aggregate
7355 -- code do the checking.
7357 if R_Typ = Standard_Character
7358 or else R_Typ = Standard_Wide_Character
7359 or else R_Typ = Standard_Wide_Wide_Character
7360 then
7361 -- Check for the case of full range, where we are definitely OK
7363 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
7364 return;
7365 end if;
7367 -- Here the range is not the complete base type range, so check
7369 declare
7370 Comp_Typ_Lo : constant Node_Id :=
7371 Type_Low_Bound (Component_Type (Typ));
7372 Comp_Typ_Hi : constant Node_Id :=
7373 Type_High_Bound (Component_Type (Typ));
7375 Char_Val : Uint;
7377 begin
7378 if Compile_Time_Known_Value (Comp_Typ_Lo)
7379 and then Compile_Time_Known_Value (Comp_Typ_Hi)
7380 then
7381 for J in 1 .. Strlen loop
7382 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
7384 if Char_Val < Expr_Value (Comp_Typ_Lo)
7385 or else Char_Val > Expr_Value (Comp_Typ_Hi)
7386 then
7387 Apply_Compile_Time_Constraint_Error
7388 (N, "character out of range?", CE_Range_Check_Failed,
7389 Loc => Source_Ptr (Int (Loc) + J));
7390 end if;
7391 end loop;
7393 return;
7394 end if;
7395 end;
7396 end if;
7397 end if;
7399 -- If we got here we meed to transform the string literal into the
7400 -- equivalent qualified positional array aggregate. This is rather
7401 -- heavy artillery for this situation, but it is hard work to avoid.
7403 declare
7404 Lits : constant List_Id := New_List;
7405 P : Source_Ptr := Loc + 1;
7406 C : Char_Code;
7408 begin
7409 -- Build the character literals, we give them source locations that
7410 -- correspond to the string positions, which is a bit tricky given
7411 -- the possible presence of wide character escape sequences.
7413 for J in 1 .. Strlen loop
7414 C := Get_String_Char (Str, J);
7415 Set_Character_Literal_Name (C);
7417 Append_To (Lits,
7418 Make_Character_Literal (P,
7419 Chars => Name_Find,
7420 Char_Literal_Value => UI_From_CC (C)));
7422 if In_Character_Range (C) then
7423 P := P + 1;
7425 -- Should we have a call to Skip_Wide here ???
7426 -- ??? else
7427 -- Skip_Wide (P);
7429 end if;
7430 end loop;
7432 Rewrite (N,
7433 Make_Qualified_Expression (Loc,
7434 Subtype_Mark => New_Reference_To (Typ, Loc),
7435 Expression =>
7436 Make_Aggregate (Loc, Expressions => Lits)));
7438 Analyze_And_Resolve (N, Typ);
7439 end;
7440 end Resolve_String_Literal;
7442 -----------------------------
7443 -- Resolve_Subprogram_Info --
7444 -----------------------------
7446 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id) is
7447 begin
7448 Set_Etype (N, Typ);
7449 end Resolve_Subprogram_Info;
7451 -----------------------------
7452 -- Resolve_Type_Conversion --
7453 -----------------------------
7455 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
7456 Conv_OK : constant Boolean := Conversion_OK (N);
7457 Operand : constant Node_Id := Expression (N);
7458 Operand_Typ : constant Entity_Id := Etype (Operand);
7459 Target_Typ : constant Entity_Id := Etype (N);
7460 Rop : Node_Id;
7461 Orig_N : Node_Id;
7462 Orig_T : Node_Id;
7464 begin
7465 if not Conv_OK
7466 and then not Valid_Conversion (N, Target_Typ, Operand)
7467 then
7468 return;
7469 end if;
7471 if Etype (Operand) = Any_Fixed then
7473 -- Mixed-mode operation involving a literal. Context must be a fixed
7474 -- type which is applied to the literal subsequently.
7476 if Is_Fixed_Point_Type (Typ) then
7477 Set_Etype (Operand, Universal_Real);
7479 elsif Is_Numeric_Type (Typ)
7480 and then (Nkind (Operand) = N_Op_Multiply
7481 or else Nkind (Operand) = N_Op_Divide)
7482 and then (Etype (Right_Opnd (Operand)) = Universal_Real
7483 or else Etype (Left_Opnd (Operand)) = Universal_Real)
7484 then
7485 -- Return if expression is ambiguous
7487 if Unique_Fixed_Point_Type (N) = Any_Type then
7488 return;
7490 -- If nothing else, the available fixed type is Duration
7492 else
7493 Set_Etype (Operand, Standard_Duration);
7494 end if;
7496 -- Resolve the real operand with largest available precision
7498 if Etype (Right_Opnd (Operand)) = Universal_Real then
7499 Rop := New_Copy_Tree (Right_Opnd (Operand));
7500 else
7501 Rop := New_Copy_Tree (Left_Opnd (Operand));
7502 end if;
7504 Resolve (Rop, Universal_Real);
7506 -- If the operand is a literal (it could be a non-static and
7507 -- illegal exponentiation) check whether the use of Duration
7508 -- is potentially inaccurate.
7510 if Nkind (Rop) = N_Real_Literal
7511 and then Realval (Rop) /= Ureal_0
7512 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
7513 then
7514 Error_Msg_N
7515 ("?universal real operand can only " &
7516 "be interpreted as Duration!",
7517 Rop);
7518 Error_Msg_N
7519 ("\?precision will be lost in the conversion!", Rop);
7520 end if;
7522 elsif Is_Numeric_Type (Typ)
7523 and then Nkind (Operand) in N_Op
7524 and then Unique_Fixed_Point_Type (N) /= Any_Type
7525 then
7526 Set_Etype (Operand, Standard_Duration);
7528 else
7529 Error_Msg_N ("invalid context for mixed mode operation", N);
7530 Set_Etype (Operand, Any_Type);
7531 return;
7532 end if;
7533 end if;
7535 Resolve (Operand);
7537 -- Note: we do the Eval_Type_Conversion call before applying the
7538 -- required checks for a subtype conversion. This is important,
7539 -- since both are prepared under certain circumstances to change
7540 -- the type conversion to a constraint error node, but in the case
7541 -- of Eval_Type_Conversion this may reflect an illegality in the
7542 -- static case, and we would miss the illegality (getting only a
7543 -- warning message), if we applied the type conversion checks first.
7545 Eval_Type_Conversion (N);
7547 -- Even when evaluation is not possible, we may be able to simplify
7548 -- the conversion or its expression. This needs to be done before
7549 -- applying checks, since otherwise the checks may use the original
7550 -- expression and defeat the simplifications. This is specifically
7551 -- the case for elimination of the floating-point Truncation
7552 -- attribute in float-to-int conversions.
7554 Simplify_Type_Conversion (N);
7556 -- If after evaluation we still have a type conversion, then we
7557 -- may need to apply checks required for a subtype conversion.
7559 -- Skip these type conversion checks if universal fixed operands
7560 -- operands involved, since range checks are handled separately for
7561 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
7563 if Nkind (N) = N_Type_Conversion
7564 and then not Is_Generic_Type (Root_Type (Target_Typ))
7565 and then Target_Typ /= Universal_Fixed
7566 and then Operand_Typ /= Universal_Fixed
7567 then
7568 Apply_Type_Conversion_Checks (N);
7569 end if;
7571 -- Issue warning for conversion of simple object to its own type
7572 -- We have to test the original nodes, since they may have been
7573 -- rewritten by various optimizations.
7575 Orig_N := Original_Node (N);
7577 if Warn_On_Redundant_Constructs
7578 and then Comes_From_Source (Orig_N)
7579 and then Nkind (Orig_N) = N_Type_Conversion
7580 and then not In_Instance
7581 then
7582 Orig_N := Original_Node (Expression (Orig_N));
7583 Orig_T := Target_Typ;
7585 -- If the node is part of a larger expression, the Target_Type
7586 -- may not be the original type of the node if the context is a
7587 -- condition. Recover original type to see if conversion is needed.
7589 if Is_Boolean_Type (Orig_T)
7590 and then Nkind (Parent (N)) in N_Op
7591 then
7592 Orig_T := Etype (Parent (N));
7593 end if;
7595 if Is_Entity_Name (Orig_N)
7596 and then
7597 (Etype (Entity (Orig_N)) = Orig_T
7598 or else
7599 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
7600 and then Covers (Orig_T, Etype (Entity (Orig_N)))))
7601 then
7602 Error_Msg_Node_2 := Orig_T;
7603 Error_Msg_NE
7604 ("?redundant conversion, & is of type &!", N, Entity (Orig_N));
7605 end if;
7606 end if;
7608 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
7609 -- No need to perform any interface conversion if the type of the
7610 -- expression coincides with the target type.
7612 if Ada_Version >= Ada_05
7613 and then Expander_Active
7614 and then Operand_Typ /= Target_Typ
7615 then
7616 declare
7617 Opnd : Entity_Id := Operand_Typ;
7618 Target : Entity_Id := Target_Typ;
7620 begin
7621 if Is_Access_Type (Opnd) then
7622 Opnd := Directly_Designated_Type (Opnd);
7623 end if;
7625 if Is_Access_Type (Target_Typ) then
7626 Target := Directly_Designated_Type (Target);
7627 end if;
7629 if Opnd = Target then
7630 null;
7632 -- Conversion from interface type
7634 elsif Is_Interface (Opnd) then
7636 -- Ada 2005 (AI-217): Handle entities from limited views
7638 if From_With_Type (Opnd) then
7639 Error_Msg_Qual_Level := 99;
7640 Error_Msg_NE ("missing with-clause on package &", N,
7641 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
7642 Error_Msg_N
7643 ("type conversions require visibility of the full view",
7646 elsif From_With_Type (Target)
7647 and then not
7648 (Is_Access_Type (Target_Typ)
7649 and then Present (Non_Limited_View (Etype (Target))))
7650 then
7651 Error_Msg_Qual_Level := 99;
7652 Error_Msg_NE ("missing with-clause on package &", N,
7653 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
7654 Error_Msg_N
7655 ("type conversions require visibility of the full view",
7658 else
7659 Expand_Interface_Conversion (N, Is_Static => False);
7660 end if;
7662 -- Conversion to interface type
7664 elsif Is_Interface (Target) then
7666 -- Handle subtypes
7668 if Ekind (Opnd) = E_Protected_Subtype
7669 or else Ekind (Opnd) = E_Task_Subtype
7670 then
7671 Opnd := Etype (Opnd);
7672 end if;
7674 if not Interface_Present_In_Ancestor
7675 (Typ => Opnd,
7676 Iface => Target)
7677 then
7678 if Is_Class_Wide_Type (Opnd) then
7680 -- The static analysis is not enough to know if the
7681 -- interface is implemented or not. Hence we must pass
7682 -- the work to the expander to generate code to evaluate
7683 -- the conversion at run-time.
7685 Expand_Interface_Conversion (N, Is_Static => False);
7687 else
7688 Error_Msg_Name_1 := Chars (Etype (Target));
7689 Error_Msg_Name_2 := Chars (Opnd);
7690 Error_Msg_N
7691 ("wrong interface conversion (% is not a progenitor " &
7692 "of %)", N);
7693 end if;
7695 else
7696 Expand_Interface_Conversion (N);
7697 end if;
7698 end if;
7699 end;
7700 end if;
7701 end Resolve_Type_Conversion;
7703 ----------------------
7704 -- Resolve_Unary_Op --
7705 ----------------------
7707 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
7708 B_Typ : constant Entity_Id := Base_Type (Typ);
7709 R : constant Node_Id := Right_Opnd (N);
7710 OK : Boolean;
7711 Lo : Uint;
7712 Hi : Uint;
7714 begin
7715 -- Deal with intrinsic unary operators
7717 if Comes_From_Source (N)
7718 and then Ekind (Entity (N)) = E_Function
7719 and then Is_Imported (Entity (N))
7720 and then Is_Intrinsic_Subprogram (Entity (N))
7721 then
7722 Resolve_Intrinsic_Unary_Operator (N, Typ);
7723 return;
7724 end if;
7726 -- Deal with universal cases
7728 if Etype (R) = Universal_Integer
7729 or else
7730 Etype (R) = Universal_Real
7731 then
7732 Check_For_Visible_Operator (N, B_Typ);
7733 end if;
7735 Set_Etype (N, B_Typ);
7736 Resolve (R, B_Typ);
7738 -- Generate warning for expressions like abs (x mod 2)
7740 if Warn_On_Redundant_Constructs
7741 and then Nkind (N) = N_Op_Abs
7742 then
7743 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
7745 if OK and then Hi >= Lo and then Lo >= 0 then
7746 Error_Msg_N
7747 ("?abs applied to known non-negative value has no effect", N);
7748 end if;
7749 end if;
7751 -- Deal with reference generation
7753 Check_Unset_Reference (R);
7754 Generate_Operator_Reference (N, B_Typ);
7755 Eval_Unary_Op (N);
7757 -- Set overflow checking bit. Much cleverer code needed here eventually
7758 -- and perhaps the Resolve routines should be separated for the various
7759 -- arithmetic operations, since they will need different processing ???
7761 if Nkind (N) in N_Op then
7762 if not Overflow_Checks_Suppressed (Etype (N)) then
7763 Enable_Overflow_Check (N);
7764 end if;
7765 end if;
7767 -- Generate warning for expressions like -5 mod 3 for integers. No
7768 -- need to worry in the floating-point case, since parens do not affect
7769 -- the result so there is no point in giving in a warning.
7771 declare
7772 Norig : constant Node_Id := Original_Node (N);
7773 Rorig : Node_Id;
7774 Val : Uint;
7775 HB : Uint;
7776 LB : Uint;
7777 Lval : Uint;
7778 Opnd : Node_Id;
7780 begin
7781 if Warn_On_Questionable_Missing_Parens
7782 and then Comes_From_Source (Norig)
7783 and then Is_Integer_Type (Typ)
7784 and then Nkind (Norig) = N_Op_Minus
7785 then
7786 Rorig := Original_Node (Right_Opnd (Norig));
7788 -- We are looking for cases where the right operand is not
7789 -- parenthesized, and is a bianry operator, multiply, divide, or
7790 -- mod. These are the cases where the grouping can affect results.
7792 if Paren_Count (Rorig) = 0
7793 and then (Nkind (Rorig) = N_Op_Mod
7794 or else
7795 Nkind (Rorig) = N_Op_Multiply
7796 or else
7797 Nkind (Rorig) = N_Op_Divide)
7798 then
7799 -- For mod, we always give the warning, since the value is
7800 -- affected by the parenthesization (e.g. (-5) mod 315 /=
7801 -- (5 mod 315)). But for the other cases, the only concern is
7802 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
7803 -- overflows, but (-2) * 64 does not). So we try to give the
7804 -- message only when overflow is possible.
7806 if Nkind (Rorig) /= N_Op_Mod
7807 and then Compile_Time_Known_Value (R)
7808 then
7809 Val := Expr_Value (R);
7811 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
7812 HB := Expr_Value (Type_High_Bound (Typ));
7813 else
7814 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
7815 end if;
7817 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
7818 LB := Expr_Value (Type_Low_Bound (Typ));
7819 else
7820 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
7821 end if;
7823 -- Note that the test below is deliberately excluding
7824 -- the largest negative number, since that is a potentially
7825 -- troublesome case (e.g. -2 * x, where the result is the
7826 -- largest negative integer has an overflow with 2 * x).
7828 if Val > LB and then Val <= HB then
7829 return;
7830 end if;
7831 end if;
7833 -- For the multiplication case, the only case we have to worry
7834 -- about is when (-a)*b is exactly the largest negative number
7835 -- so that -(a*b) can cause overflow. This can only happen if
7836 -- a is a power of 2, and more generally if any operand is a
7837 -- constant that is not a power of 2, then the parentheses
7838 -- cannot affect whether overflow occurs. We only bother to
7839 -- test the left most operand
7841 -- Loop looking at left operands for one that has known value
7843 Opnd := Rorig;
7844 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
7845 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
7846 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
7848 -- Operand value of 0 or 1 skips warning
7850 if Lval <= 1 then
7851 return;
7853 -- Otherwise check power of 2, if power of 2, warn, if
7854 -- anything else, skip warning.
7856 else
7857 while Lval /= 2 loop
7858 if Lval mod 2 = 1 then
7859 return;
7860 else
7861 Lval := Lval / 2;
7862 end if;
7863 end loop;
7865 exit Opnd_Loop;
7866 end if;
7867 end if;
7869 -- Keep looking at left operands
7871 Opnd := Left_Opnd (Opnd);
7872 end loop Opnd_Loop;
7874 -- For rem or "/" we can only have a problematic situation
7875 -- if the divisor has a value of minus one or one. Otherwise
7876 -- overflow is impossible (divisor > 1) or we have a case of
7877 -- division by zero in any case.
7879 if (Nkind (Rorig) = N_Op_Divide
7880 or else
7881 Nkind (Rorig) = N_Op_Rem)
7882 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
7883 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
7884 then
7885 return;
7886 end if;
7888 -- If we fall through warning should be issued
7890 Error_Msg_N
7891 ("?unary minus expression should be parenthesized here!", N);
7892 end if;
7893 end if;
7894 end;
7895 end Resolve_Unary_Op;
7897 ----------------------------------
7898 -- Resolve_Unchecked_Expression --
7899 ----------------------------------
7901 procedure Resolve_Unchecked_Expression
7902 (N : Node_Id;
7903 Typ : Entity_Id)
7905 begin
7906 Resolve (Expression (N), Typ, Suppress => All_Checks);
7907 Set_Etype (N, Typ);
7908 end Resolve_Unchecked_Expression;
7910 ---------------------------------------
7911 -- Resolve_Unchecked_Type_Conversion --
7912 ---------------------------------------
7914 procedure Resolve_Unchecked_Type_Conversion
7915 (N : Node_Id;
7916 Typ : Entity_Id)
7918 pragma Warnings (Off, Typ);
7920 Operand : constant Node_Id := Expression (N);
7921 Opnd_Type : constant Entity_Id := Etype (Operand);
7923 begin
7924 -- Resolve operand using its own type
7926 Resolve (Operand, Opnd_Type);
7927 Eval_Unchecked_Conversion (N);
7929 end Resolve_Unchecked_Type_Conversion;
7931 ------------------------------
7932 -- Rewrite_Operator_As_Call --
7933 ------------------------------
7935 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
7936 Loc : constant Source_Ptr := Sloc (N);
7937 Actuals : constant List_Id := New_List;
7938 New_N : Node_Id;
7940 begin
7941 if Nkind (N) in N_Binary_Op then
7942 Append (Left_Opnd (N), Actuals);
7943 end if;
7945 Append (Right_Opnd (N), Actuals);
7947 New_N :=
7948 Make_Function_Call (Sloc => Loc,
7949 Name => New_Occurrence_Of (Nam, Loc),
7950 Parameter_Associations => Actuals);
7952 Preserve_Comes_From_Source (New_N, N);
7953 Preserve_Comes_From_Source (Name (New_N), N);
7954 Rewrite (N, New_N);
7955 Set_Etype (N, Etype (Nam));
7956 end Rewrite_Operator_As_Call;
7958 ------------------------------
7959 -- Rewrite_Renamed_Operator --
7960 ------------------------------
7962 procedure Rewrite_Renamed_Operator
7963 (N : Node_Id;
7964 Op : Entity_Id;
7965 Typ : Entity_Id)
7967 Nam : constant Name_Id := Chars (Op);
7968 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
7969 Op_Node : Node_Id;
7971 begin
7972 -- Rewrite the operator node using the real operator, not its
7973 -- renaming. Exclude user-defined intrinsic operations of the same
7974 -- name, which are treated separately and rewritten as calls.
7976 if Ekind (Op) /= E_Function
7977 or else Chars (N) /= Nam
7978 then
7979 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
7980 Set_Chars (Op_Node, Nam);
7981 Set_Etype (Op_Node, Etype (N));
7982 Set_Entity (Op_Node, Op);
7983 Set_Right_Opnd (Op_Node, Right_Opnd (N));
7985 -- Indicate that both the original entity and its renaming are
7986 -- referenced at this point.
7988 Generate_Reference (Entity (N), N);
7989 Generate_Reference (Op, N);
7991 if Is_Binary then
7992 Set_Left_Opnd (Op_Node, Left_Opnd (N));
7993 end if;
7995 Rewrite (N, Op_Node);
7997 -- If the context type is private, add the appropriate conversions
7998 -- so that the operator is applied to the full view. This is done
7999 -- in the routines that resolve intrinsic operators,
8001 if Is_Intrinsic_Subprogram (Op)
8002 and then Is_Private_Type (Typ)
8003 then
8004 case Nkind (N) is
8005 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
8006 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
8007 Resolve_Intrinsic_Operator (N, Typ);
8009 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
8010 Resolve_Intrinsic_Unary_Operator (N, Typ);
8012 when others =>
8013 Resolve (N, Typ);
8014 end case;
8015 end if;
8017 elsif Ekind (Op) = E_Function
8018 and then Is_Intrinsic_Subprogram (Op)
8019 then
8020 -- Operator renames a user-defined operator of the same name. Use
8021 -- the original operator in the node, which is the one that Gigi
8022 -- knows about.
8024 Set_Entity (N, Op);
8025 Set_Is_Overloaded (N, False);
8026 end if;
8027 end Rewrite_Renamed_Operator;
8029 -----------------------
8030 -- Set_Slice_Subtype --
8031 -----------------------
8033 -- Build an implicit subtype declaration to represent the type delivered
8034 -- by the slice. This is an abbreviated version of an array subtype. We
8035 -- define an index subtype for the slice, using either the subtype name
8036 -- or the discrete range of the slice. To be consistent with index usage
8037 -- elsewhere, we create a list header to hold the single index. This list
8038 -- is not otherwise attached to the syntax tree.
8040 procedure Set_Slice_Subtype (N : Node_Id) is
8041 Loc : constant Source_Ptr := Sloc (N);
8042 Index_List : constant List_Id := New_List;
8043 Index : Node_Id;
8044 Index_Subtype : Entity_Id;
8045 Index_Type : Entity_Id;
8046 Slice_Subtype : Entity_Id;
8047 Drange : constant Node_Id := Discrete_Range (N);
8049 begin
8050 if Is_Entity_Name (Drange) then
8051 Index_Subtype := Entity (Drange);
8053 else
8054 -- We force the evaluation of a range. This is definitely needed in
8055 -- the renamed case, and seems safer to do unconditionally. Note in
8056 -- any case that since we will create and insert an Itype referring
8057 -- to this range, we must make sure any side effect removal actions
8058 -- are inserted before the Itype definition.
8060 if Nkind (Drange) = N_Range then
8061 Force_Evaluation (Low_Bound (Drange));
8062 Force_Evaluation (High_Bound (Drange));
8063 end if;
8065 Index_Type := Base_Type (Etype (Drange));
8067 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
8069 Set_Scalar_Range (Index_Subtype, Drange);
8070 Set_Etype (Index_Subtype, Index_Type);
8071 Set_Size_Info (Index_Subtype, Index_Type);
8072 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
8073 end if;
8075 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
8077 Index := New_Occurrence_Of (Index_Subtype, Loc);
8078 Set_Etype (Index, Index_Subtype);
8079 Append (Index, Index_List);
8081 Set_First_Index (Slice_Subtype, Index);
8082 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
8083 Set_Is_Constrained (Slice_Subtype, True);
8084 Init_Size_Align (Slice_Subtype);
8086 Check_Compile_Time_Size (Slice_Subtype);
8088 -- The Etype of the existing Slice node is reset to this slice subtype.
8089 -- Its bounds are obtained from its first index.
8091 Set_Etype (N, Slice_Subtype);
8093 -- In the packed case, this must be immediately frozen
8095 -- Couldn't we always freeze here??? and if we did, then the above
8096 -- call to Check_Compile_Time_Size could be eliminated, which would
8097 -- be nice, because then that routine could be made private to Freeze.
8099 if Is_Packed (Slice_Subtype) and not In_Default_Expression then
8100 Freeze_Itype (Slice_Subtype, N);
8101 end if;
8103 end Set_Slice_Subtype;
8105 --------------------------------
8106 -- Set_String_Literal_Subtype --
8107 --------------------------------
8109 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
8110 Loc : constant Source_Ptr := Sloc (N);
8111 Low_Bound : constant Node_Id :=
8112 Type_Low_Bound (Etype (First_Index (Typ)));
8113 Subtype_Id : Entity_Id;
8115 begin
8116 if Nkind (N) /= N_String_Literal then
8117 return;
8118 end if;
8120 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
8121 Set_String_Literal_Length (Subtype_Id, UI_From_Int
8122 (String_Length (Strval (N))));
8123 Set_Etype (Subtype_Id, Base_Type (Typ));
8124 Set_Is_Constrained (Subtype_Id);
8125 Set_Etype (N, Subtype_Id);
8127 if Is_OK_Static_Expression (Low_Bound) then
8129 -- The low bound is set from the low bound of the corresponding
8130 -- index type. Note that we do not store the high bound in the
8131 -- string literal subtype, but it can be deduced if necessary
8132 -- from the length and the low bound.
8134 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
8136 else
8137 Set_String_Literal_Low_Bound
8138 (Subtype_Id, Make_Integer_Literal (Loc, 1));
8139 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Standard_Positive);
8141 -- Build bona fide subtype for the string, and wrap it in an
8142 -- unchecked conversion, because the backend expects the
8143 -- String_Literal_Subtype to have a static lower bound.
8145 declare
8146 Index_List : constant List_Id := New_List;
8147 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
8148 High_Bound : constant Node_Id :=
8149 Make_Op_Add (Loc,
8150 Left_Opnd => New_Copy_Tree (Low_Bound),
8151 Right_Opnd =>
8152 Make_Integer_Literal (Loc,
8153 String_Length (Strval (N)) - 1));
8154 Array_Subtype : Entity_Id;
8155 Index_Subtype : Entity_Id;
8156 Drange : Node_Id;
8157 Index : Node_Id;
8159 begin
8160 Index_Subtype :=
8161 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
8162 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
8163 Set_Scalar_Range (Index_Subtype, Drange);
8164 Set_Parent (Drange, N);
8165 Analyze_And_Resolve (Drange, Index_Type);
8167 Set_Etype (Index_Subtype, Index_Type);
8168 Set_Size_Info (Index_Subtype, Index_Type);
8169 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
8171 Array_Subtype := Create_Itype (E_Array_Subtype, N);
8173 Index := New_Occurrence_Of (Index_Subtype, Loc);
8174 Set_Etype (Index, Index_Subtype);
8175 Append (Index, Index_List);
8177 Set_First_Index (Array_Subtype, Index);
8178 Set_Etype (Array_Subtype, Base_Type (Typ));
8179 Set_Is_Constrained (Array_Subtype, True);
8180 Init_Size_Align (Array_Subtype);
8182 Rewrite (N,
8183 Make_Unchecked_Type_Conversion (Loc,
8184 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
8185 Expression => Relocate_Node (N)));
8186 Set_Etype (N, Array_Subtype);
8187 end;
8188 end if;
8189 end Set_String_Literal_Subtype;
8191 ------------------------------
8192 -- Simplify_Type_Conversion --
8193 ------------------------------
8195 procedure Simplify_Type_Conversion (N : Node_Id) is
8196 begin
8197 if Nkind (N) = N_Type_Conversion then
8198 declare
8199 Operand : constant Node_Id := Expression (N);
8200 Target_Typ : constant Entity_Id := Etype (N);
8201 Opnd_Typ : constant Entity_Id := Etype (Operand);
8203 begin
8204 if Is_Floating_Point_Type (Opnd_Typ)
8205 and then
8206 (Is_Integer_Type (Target_Typ)
8207 or else (Is_Fixed_Point_Type (Target_Typ)
8208 and then Conversion_OK (N)))
8209 and then Nkind (Operand) = N_Attribute_Reference
8210 and then Attribute_Name (Operand) = Name_Truncation
8212 -- Special processing required if the conversion is the expression
8213 -- of a Truncation attribute reference. In this case we replace:
8215 -- ityp (ftyp'Truncation (x))
8217 -- by
8219 -- ityp (x)
8221 -- with the Float_Truncate flag set, which is more efficient
8223 then
8224 Rewrite (Operand,
8225 Relocate_Node (First (Expressions (Operand))));
8226 Set_Float_Truncate (N, True);
8227 end if;
8228 end;
8229 end if;
8230 end Simplify_Type_Conversion;
8232 -----------------------------
8233 -- Unique_Fixed_Point_Type --
8234 -----------------------------
8236 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
8237 T1 : Entity_Id := Empty;
8238 T2 : Entity_Id;
8239 Item : Node_Id;
8240 Scop : Entity_Id;
8242 procedure Fixed_Point_Error;
8243 -- If true ambiguity, give details
8245 -----------------------
8246 -- Fixed_Point_Error --
8247 -----------------------
8249 procedure Fixed_Point_Error is
8250 begin
8251 Error_Msg_N ("ambiguous universal_fixed_expression", N);
8252 Error_Msg_NE ("\\possible interpretation as}", N, T1);
8253 Error_Msg_NE ("\\possible interpretation as}", N, T2);
8254 end Fixed_Point_Error;
8256 -- Start of processing for Unique_Fixed_Point_Type
8258 begin
8259 -- The operations on Duration are visible, so Duration is always a
8260 -- possible interpretation.
8262 T1 := Standard_Duration;
8264 -- Look for fixed-point types in enclosing scopes
8266 Scop := Current_Scope;
8267 while Scop /= Standard_Standard loop
8268 T2 := First_Entity (Scop);
8269 while Present (T2) loop
8270 if Is_Fixed_Point_Type (T2)
8271 and then Current_Entity (T2) = T2
8272 and then Scope (Base_Type (T2)) = Scop
8273 then
8274 if Present (T1) then
8275 Fixed_Point_Error;
8276 return Any_Type;
8277 else
8278 T1 := T2;
8279 end if;
8280 end if;
8282 Next_Entity (T2);
8283 end loop;
8285 Scop := Scope (Scop);
8286 end loop;
8288 -- Look for visible fixed type declarations in the context
8290 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
8291 while Present (Item) loop
8292 if Nkind (Item) = N_With_Clause then
8293 Scop := Entity (Name (Item));
8294 T2 := First_Entity (Scop);
8295 while Present (T2) loop
8296 if Is_Fixed_Point_Type (T2)
8297 and then Scope (Base_Type (T2)) = Scop
8298 and then (Is_Potentially_Use_Visible (T2)
8299 or else In_Use (T2))
8300 then
8301 if Present (T1) then
8302 Fixed_Point_Error;
8303 return Any_Type;
8304 else
8305 T1 := T2;
8306 end if;
8307 end if;
8309 Next_Entity (T2);
8310 end loop;
8311 end if;
8313 Next (Item);
8314 end loop;
8316 if Nkind (N) = N_Real_Literal then
8317 Error_Msg_NE ("?real literal interpreted as }!", N, T1);
8319 else
8320 Error_Msg_NE ("?universal_fixed expression interpreted as }!", N, T1);
8321 end if;
8323 return T1;
8324 end Unique_Fixed_Point_Type;
8326 ----------------------
8327 -- Valid_Conversion --
8328 ----------------------
8330 function Valid_Conversion
8331 (N : Node_Id;
8332 Target : Entity_Id;
8333 Operand : Node_Id) return Boolean
8335 Target_Type : constant Entity_Id := Base_Type (Target);
8336 Opnd_Type : Entity_Id := Etype (Operand);
8338 function Conversion_Check
8339 (Valid : Boolean;
8340 Msg : String) return Boolean;
8341 -- Little routine to post Msg if Valid is False, returns Valid value
8343 function Valid_Tagged_Conversion
8344 (Target_Type : Entity_Id;
8345 Opnd_Type : Entity_Id) return Boolean;
8346 -- Specifically test for validity of tagged conversions
8348 function Valid_Array_Conversion return Boolean;
8349 -- Check index and component conformance, and accessibility levels
8350 -- if the component types are anonymous access types (Ada 2005)
8352 ----------------------
8353 -- Conversion_Check --
8354 ----------------------
8356 function Conversion_Check
8357 (Valid : Boolean;
8358 Msg : String) return Boolean
8360 begin
8361 if not Valid then
8362 Error_Msg_N (Msg, Operand);
8363 end if;
8365 return Valid;
8366 end Conversion_Check;
8368 ----------------------------
8369 -- Valid_Array_Conversion --
8370 ----------------------------
8372 function Valid_Array_Conversion return Boolean
8374 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
8375 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
8377 Opnd_Index : Node_Id;
8378 Opnd_Index_Type : Entity_Id;
8380 Target_Comp_Type : constant Entity_Id :=
8381 Component_Type (Target_Type);
8382 Target_Comp_Base : constant Entity_Id :=
8383 Base_Type (Target_Comp_Type);
8385 Target_Index : Node_Id;
8386 Target_Index_Type : Entity_Id;
8388 begin
8389 -- Error if wrong number of dimensions
8392 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
8393 then
8394 Error_Msg_N
8395 ("incompatible number of dimensions for conversion", Operand);
8396 return False;
8398 -- Number of dimensions matches
8400 else
8401 -- Loop through indexes of the two arrays
8403 Target_Index := First_Index (Target_Type);
8404 Opnd_Index := First_Index (Opnd_Type);
8405 while Present (Target_Index) and then Present (Opnd_Index) loop
8406 Target_Index_Type := Etype (Target_Index);
8407 Opnd_Index_Type := Etype (Opnd_Index);
8409 -- Error if index types are incompatible
8411 if not (Is_Integer_Type (Target_Index_Type)
8412 and then Is_Integer_Type (Opnd_Index_Type))
8413 and then (Root_Type (Target_Index_Type)
8414 /= Root_Type (Opnd_Index_Type))
8415 then
8416 Error_Msg_N
8417 ("incompatible index types for array conversion",
8418 Operand);
8419 return False;
8420 end if;
8422 Next_Index (Target_Index);
8423 Next_Index (Opnd_Index);
8424 end loop;
8426 -- If component types have same base type, all set
8428 if Target_Comp_Base = Opnd_Comp_Base then
8429 null;
8431 -- Here if base types of components are not the same. The only
8432 -- time this is allowed is if we have anonymous access types.
8434 -- The conversion of arrays of anonymous access types can lead
8435 -- to dangling pointers. AI-392 formalizes the accessibility
8436 -- checks that must be applied to such conversions to prevent
8437 -- out-of-scope references.
8439 elsif
8440 (Ekind (Target_Comp_Base) = E_Anonymous_Access_Type
8441 or else
8442 Ekind (Target_Comp_Base) = E_Anonymous_Access_Subprogram_Type)
8443 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
8444 and then
8445 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
8446 then
8447 if Type_Access_Level (Target_Type) <
8448 Type_Access_Level (Opnd_Type)
8449 then
8450 if In_Instance_Body then
8451 Error_Msg_N ("?source array type " &
8452 "has deeper accessibility level than target", Operand);
8453 Error_Msg_N ("\?Program_Error will be raised at run time",
8454 Operand);
8455 Rewrite (N,
8456 Make_Raise_Program_Error (Sloc (N),
8457 Reason => PE_Accessibility_Check_Failed));
8458 Set_Etype (N, Target_Type);
8459 return False;
8461 -- Conversion not allowed because of accessibility levels
8463 else
8464 Error_Msg_N ("source array type " &
8465 "has deeper accessibility level than target", Operand);
8466 return False;
8467 end if;
8468 else
8469 null;
8470 end if;
8472 -- All other cases where component base types do not match
8474 else
8475 Error_Msg_N
8476 ("incompatible component types for array conversion",
8477 Operand);
8478 return False;
8479 end if;
8481 -- Check that component subtypes statically match
8483 if Is_Constrained (Target_Comp_Type) /=
8484 Is_Constrained (Opnd_Comp_Type)
8485 or else not Subtypes_Statically_Match
8486 (Target_Comp_Type, Opnd_Comp_Type)
8487 then
8488 Error_Msg_N
8489 ("component subtypes must statically match", Operand);
8490 return False;
8491 end if;
8492 end if;
8494 return True;
8495 end Valid_Array_Conversion;
8497 -----------------------------
8498 -- Valid_Tagged_Conversion --
8499 -----------------------------
8501 function Valid_Tagged_Conversion
8502 (Target_Type : Entity_Id;
8503 Opnd_Type : Entity_Id) return Boolean
8505 begin
8506 -- Upward conversions are allowed (RM 4.6(22))
8508 if Covers (Target_Type, Opnd_Type)
8509 or else Is_Ancestor (Target_Type, Opnd_Type)
8510 then
8511 return True;
8513 -- Downward conversion are allowed if the operand is class-wide
8514 -- (RM 4.6(23)).
8516 elsif Is_Class_Wide_Type (Opnd_Type)
8517 and then Covers (Opnd_Type, Target_Type)
8518 then
8519 return True;
8521 elsif Covers (Opnd_Type, Target_Type)
8522 or else Is_Ancestor (Opnd_Type, Target_Type)
8523 then
8524 return
8525 Conversion_Check (False,
8526 "downward conversion of tagged objects not allowed");
8528 -- Ada 2005 (AI-251): The conversion to/from interface types is
8529 -- always valid
8531 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
8532 return True;
8534 -- If the operand is a class-wide type obtained through a limited_
8535 -- with clause, and the context includes the non-limited view, use
8536 -- it to determine whether the conversion is legal.
8538 elsif Is_Class_Wide_Type (Opnd_Type)
8539 and then From_With_Type (Opnd_Type)
8540 and then Present (Non_Limited_View (Etype (Opnd_Type)))
8541 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
8542 then
8543 return True;
8545 elsif Is_Access_Type (Opnd_Type)
8546 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
8547 then
8548 return True;
8550 else
8551 Error_Msg_NE
8552 ("invalid tagged conversion, not compatible with}",
8553 N, First_Subtype (Opnd_Type));
8554 return False;
8555 end if;
8556 end Valid_Tagged_Conversion;
8558 -- Start of processing for Valid_Conversion
8560 begin
8561 Check_Parameterless_Call (Operand);
8563 if Is_Overloaded (Operand) then
8564 declare
8565 I : Interp_Index;
8566 I1 : Interp_Index;
8567 It : Interp;
8568 It1 : Interp;
8569 N1 : Entity_Id;
8571 begin
8572 -- Remove procedure calls, which syntactically cannot appear
8573 -- in this context, but which cannot be removed by type checking,
8574 -- because the context does not impose a type.
8576 -- When compiling for VMS, spurious ambiguities can be produced
8577 -- when arithmetic operations have a literal operand and return
8578 -- System.Address or a descendant of it. These ambiguities are
8579 -- otherwise resolved by the context, but for conversions there
8580 -- is no context type and the removal of the spurious operations
8581 -- must be done explicitly here.
8583 -- The node may be labelled overloaded, but still contain only
8584 -- one interpretation because others were discarded in previous
8585 -- filters. If this is the case, retain the single interpretation
8586 -- if legal.
8588 Get_First_Interp (Operand, I, It);
8589 Opnd_Type := It.Typ;
8590 Get_Next_Interp (I, It);
8592 if Present (It.Typ)
8593 and then Opnd_Type /= Standard_Void_Type
8594 then
8595 -- More than one candidate interpretation is available
8597 Get_First_Interp (Operand, I, It);
8598 while Present (It.Typ) loop
8599 if It.Typ = Standard_Void_Type then
8600 Remove_Interp (I);
8601 end if;
8603 if Present (System_Aux_Id)
8604 and then Is_Descendent_Of_Address (It.Typ)
8605 then
8606 Remove_Interp (I);
8607 end if;
8609 Get_Next_Interp (I, It);
8610 end loop;
8611 end if;
8613 Get_First_Interp (Operand, I, It);
8614 I1 := I;
8615 It1 := It;
8617 if No (It.Typ) then
8618 Error_Msg_N ("illegal operand in conversion", Operand);
8619 return False;
8620 end if;
8622 Get_Next_Interp (I, It);
8624 if Present (It.Typ) then
8625 N1 := It1.Nam;
8626 It1 := Disambiguate (Operand, I1, I, Any_Type);
8628 if It1 = No_Interp then
8629 Error_Msg_N ("ambiguous operand in conversion", Operand);
8631 Error_Msg_Sloc := Sloc (It.Nam);
8632 Error_Msg_N ("\\possible interpretation#!", Operand);
8634 Error_Msg_Sloc := Sloc (N1);
8635 Error_Msg_N ("\\possible interpretation#!", Operand);
8637 return False;
8638 end if;
8639 end if;
8641 Set_Etype (Operand, It1.Typ);
8642 Opnd_Type := It1.Typ;
8643 end;
8644 end if;
8646 -- Numeric types
8648 if Is_Numeric_Type (Target_Type) then
8650 -- A universal fixed expression can be converted to any numeric type
8652 if Opnd_Type = Universal_Fixed then
8653 return True;
8655 -- Also no need to check when in an instance or inlined body, because
8656 -- the legality has been established when the template was analyzed.
8657 -- Furthermore, numeric conversions may occur where only a private
8658 -- view of the operand type is visible at the instanciation point.
8659 -- This results in a spurious error if we check that the operand type
8660 -- is a numeric type.
8662 -- Note: in a previous version of this unit, the following tests were
8663 -- applied only for generated code (Comes_From_Source set to False),
8664 -- but in fact the test is required for source code as well, since
8665 -- this situation can arise in source code.
8667 elsif In_Instance or else In_Inlined_Body then
8668 return True;
8670 -- Otherwise we need the conversion check
8672 else
8673 return Conversion_Check
8674 (Is_Numeric_Type (Opnd_Type),
8675 "illegal operand for numeric conversion");
8676 end if;
8678 -- Array types
8680 elsif Is_Array_Type (Target_Type) then
8681 if not Is_Array_Type (Opnd_Type)
8682 or else Opnd_Type = Any_Composite
8683 or else Opnd_Type = Any_String
8684 then
8685 Error_Msg_N
8686 ("illegal operand for array conversion", Operand);
8687 return False;
8688 else
8689 return Valid_Array_Conversion;
8690 end if;
8692 -- Ada 2005 (AI-251): Anonymous access types where target references an
8693 -- interface type.
8695 elsif (Ekind (Target_Type) = E_General_Access_Type
8696 or else
8697 Ekind (Target_Type) = E_Anonymous_Access_Type)
8698 and then Is_Interface (Directly_Designated_Type (Target_Type))
8699 then
8700 -- Check the static accessibility rule of 4.6(17). Note that the
8701 -- check is not enforced when within an instance body, since the RM
8702 -- requires such cases to be caught at run time.
8704 if Ekind (Target_Type) /= E_Anonymous_Access_Type then
8705 if Type_Access_Level (Opnd_Type) >
8706 Type_Access_Level (Target_Type)
8707 then
8708 -- In an instance, this is a run-time check, but one we know
8709 -- will fail, so generate an appropriate warning. The raise
8710 -- will be generated by Expand_N_Type_Conversion.
8712 if In_Instance_Body then
8713 Error_Msg_N
8714 ("?cannot convert local pointer to non-local access type",
8715 Operand);
8716 Error_Msg_N
8717 ("\?Program_Error will be raised at run time", Operand);
8718 else
8719 Error_Msg_N
8720 ("cannot convert local pointer to non-local access type",
8721 Operand);
8722 return False;
8723 end if;
8725 -- Special accessibility checks are needed in the case of access
8726 -- discriminants declared for a limited type.
8728 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
8729 and then not Is_Local_Anonymous_Access (Opnd_Type)
8730 then
8731 -- When the operand is a selected access discriminant the check
8732 -- needs to be made against the level of the object denoted by
8733 -- the prefix of the selected name. (Object_Access_Level
8734 -- handles checking the prefix of the operand for this case.)
8736 if Nkind (Operand) = N_Selected_Component
8737 and then Object_Access_Level (Operand) >
8738 Type_Access_Level (Target_Type)
8739 then
8740 -- In an instance, this is a run-time check, but one we
8741 -- know will fail, so generate an appropriate warning.
8742 -- The raise will be generated by Expand_N_Type_Conversion.
8744 if In_Instance_Body then
8745 Error_Msg_N
8746 ("?cannot convert access discriminant to non-local" &
8747 " access type", Operand);
8748 Error_Msg_N
8749 ("\?Program_Error will be raised at run time", Operand);
8750 else
8751 Error_Msg_N
8752 ("cannot convert access discriminant to non-local" &
8753 " access type", Operand);
8754 return False;
8755 end if;
8756 end if;
8758 -- The case of a reference to an access discriminant from
8759 -- within a limited type declaration (which will appear as
8760 -- a discriminal) is always illegal because the level of the
8761 -- discriminant is considered to be deeper than any (namable)
8762 -- access type.
8764 if Is_Entity_Name (Operand)
8765 and then not Is_Local_Anonymous_Access (Opnd_Type)
8766 and then (Ekind (Entity (Operand)) = E_In_Parameter
8767 or else Ekind (Entity (Operand)) = E_Constant)
8768 and then Present (Discriminal_Link (Entity (Operand)))
8769 then
8770 Error_Msg_N
8771 ("discriminant has deeper accessibility level than target",
8772 Operand);
8773 return False;
8774 end if;
8775 end if;
8776 end if;
8778 return True;
8780 -- General and anonymous access types
8782 elsif (Ekind (Target_Type) = E_General_Access_Type
8783 or else Ekind (Target_Type) = E_Anonymous_Access_Type)
8784 and then
8785 Conversion_Check
8786 (Is_Access_Type (Opnd_Type)
8787 and then Ekind (Opnd_Type) /=
8788 E_Access_Subprogram_Type
8789 and then Ekind (Opnd_Type) /=
8790 E_Access_Protected_Subprogram_Type,
8791 "must be an access-to-object type")
8792 then
8793 if Is_Access_Constant (Opnd_Type)
8794 and then not Is_Access_Constant (Target_Type)
8795 then
8796 Error_Msg_N
8797 ("access-to-constant operand type not allowed", Operand);
8798 return False;
8799 end if;
8801 -- Check the static accessibility rule of 4.6(17). Note that the
8802 -- check is not enforced when within an instance body, since the RM
8803 -- requires such cases to be caught at run time.
8805 if Ekind (Target_Type) /= E_Anonymous_Access_Type
8806 or else Is_Local_Anonymous_Access (Target_Type)
8807 then
8808 if Type_Access_Level (Opnd_Type)
8809 > Type_Access_Level (Target_Type)
8810 then
8811 -- In an instance, this is a run-time check, but one we
8812 -- know will fail, so generate an appropriate warning.
8813 -- The raise will be generated by Expand_N_Type_Conversion.
8815 if In_Instance_Body then
8816 Error_Msg_N
8817 ("?cannot convert local pointer to non-local access type",
8818 Operand);
8819 Error_Msg_N
8820 ("\?Program_Error will be raised at run time", Operand);
8822 else
8823 -- Avoid generation of spurious error message
8825 if not Error_Posted (N) then
8826 Error_Msg_N
8827 ("cannot convert local pointer to non-local access type",
8828 Operand);
8829 end if;
8831 return False;
8832 end if;
8834 -- Special accessibility checks are needed in the case of access
8835 -- discriminants declared for a limited type.
8837 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
8838 and then not Is_Local_Anonymous_Access (Opnd_Type)
8839 then
8841 -- When the operand is a selected access discriminant the check
8842 -- needs to be made against the level of the object denoted by
8843 -- the prefix of the selected name. (Object_Access_Level
8844 -- handles checking the prefix of the operand for this case.)
8846 if Nkind (Operand) = N_Selected_Component
8847 and then Object_Access_Level (Operand)
8848 > Type_Access_Level (Target_Type)
8849 then
8850 -- In an instance, this is a run-time check, but one we
8851 -- know will fail, so generate an appropriate warning.
8852 -- The raise will be generated by Expand_N_Type_Conversion.
8854 if In_Instance_Body then
8855 Error_Msg_N
8856 ("?cannot convert access discriminant to non-local" &
8857 " access type", Operand);
8858 Error_Msg_N
8859 ("\?Program_Error will be raised at run time",
8860 Operand);
8862 else
8863 Error_Msg_N
8864 ("cannot convert access discriminant to non-local" &
8865 " access type", Operand);
8866 return False;
8867 end if;
8868 end if;
8870 -- The case of a reference to an access discriminant from
8871 -- within a limited type declaration (which will appear as
8872 -- a discriminal) is always illegal because the level of the
8873 -- discriminant is considered to be deeper than any (namable)
8874 -- access type.
8876 if Is_Entity_Name (Operand)
8877 and then (Ekind (Entity (Operand)) = E_In_Parameter
8878 or else Ekind (Entity (Operand)) = E_Constant)
8879 and then Present (Discriminal_Link (Entity (Operand)))
8880 then
8881 Error_Msg_N
8882 ("discriminant has deeper accessibility level than target",
8883 Operand);
8884 return False;
8885 end if;
8886 end if;
8887 end if;
8889 declare
8890 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
8891 -- Helper function to handle limited views
8893 --------------------------
8894 -- Full_Designated_Type --
8895 --------------------------
8897 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
8898 Desig : constant Entity_Id := Designated_Type (T);
8899 begin
8900 if From_With_Type (Desig)
8901 and then Is_Incomplete_Type (Desig)
8902 and then Present (Non_Limited_View (Desig))
8903 then
8904 return Non_Limited_View (Desig);
8905 else
8906 return Desig;
8907 end if;
8908 end Full_Designated_Type;
8910 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
8911 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
8913 Same_Base : constant Boolean :=
8914 Base_Type (Target) = Base_Type (Opnd);
8916 begin
8917 if Is_Tagged_Type (Target) then
8918 return Valid_Tagged_Conversion (Target, Opnd);
8920 else
8921 if not Same_Base then
8922 Error_Msg_NE
8923 ("target designated type not compatible with }",
8924 N, Base_Type (Opnd));
8925 return False;
8927 -- Ada 2005 AI-384: legality rule is symmetric in both
8928 -- designated types. The conversion is legal (with possible
8929 -- constraint check) if either designated type is
8930 -- unconstrained.
8932 elsif Subtypes_Statically_Match (Target, Opnd)
8933 or else
8934 (Has_Discriminants (Target)
8935 and then
8936 (not Is_Constrained (Opnd)
8937 or else not Is_Constrained (Target)))
8938 then
8939 return True;
8941 else
8942 Error_Msg_NE
8943 ("target designated subtype not compatible with }",
8944 N, Opnd);
8945 return False;
8946 end if;
8947 end if;
8948 end;
8950 -- Subprogram access types
8952 elsif (Ekind (Target_Type) = E_Access_Subprogram_Type
8953 or else
8954 Ekind (Target_Type) = E_Anonymous_Access_Subprogram_Type)
8955 and then No (Corresponding_Remote_Type (Opnd_Type))
8956 then
8958 Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
8959 then
8960 Error_Msg_N
8961 ("illegal attempt to store anonymous access to subprogram",
8962 Operand);
8963 Error_Msg_N
8964 ("\value has deeper accessibility than any master " &
8965 "(RM 3.10.2 (13))",
8966 Operand);
8968 if Is_Entity_Name (Operand)
8969 and then Ekind (Entity (Operand)) = E_In_Parameter
8970 then
8971 Error_Msg_NE
8972 ("\use named access type for& instead of access parameter",
8973 Operand, Entity (Operand));
8974 end if;
8975 end if;
8977 -- Check that the designated types are subtype conformant
8979 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
8980 Old_Id => Designated_Type (Opnd_Type),
8981 Err_Loc => N);
8983 -- Check the static accessibility rule of 4.6(20)
8985 if Type_Access_Level (Opnd_Type) >
8986 Type_Access_Level (Target_Type)
8987 then
8988 Error_Msg_N
8989 ("operand type has deeper accessibility level than target",
8990 Operand);
8992 -- Check that if the operand type is declared in a generic body,
8993 -- then the target type must be declared within that same body
8994 -- (enforces last sentence of 4.6(20)).
8996 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
8997 declare
8998 O_Gen : constant Node_Id :=
8999 Enclosing_Generic_Body (Opnd_Type);
9001 T_Gen : Node_Id;
9003 begin
9004 T_Gen := Enclosing_Generic_Body (Target_Type);
9005 while Present (T_Gen) and then T_Gen /= O_Gen loop
9006 T_Gen := Enclosing_Generic_Body (T_Gen);
9007 end loop;
9009 if T_Gen /= O_Gen then
9010 Error_Msg_N
9011 ("target type must be declared in same generic body"
9012 & " as operand type", N);
9013 end if;
9014 end;
9015 end if;
9017 return True;
9019 -- Remote subprogram access types
9021 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
9022 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
9023 then
9024 -- It is valid to convert from one RAS type to another provided
9025 -- that their specification statically match.
9027 Check_Subtype_Conformant
9028 (New_Id =>
9029 Designated_Type (Corresponding_Remote_Type (Target_Type)),
9030 Old_Id =>
9031 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
9032 Err_Loc =>
9034 return True;
9036 -- If both are tagged types, check legality of view conversions
9038 elsif Is_Tagged_Type (Target_Type)
9039 and then Is_Tagged_Type (Opnd_Type)
9040 then
9041 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
9043 -- Types derived from the same root type are convertible
9045 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
9046 return True;
9048 -- In an instance or an inlined body, there may be inconsistent
9049 -- views of the same type, or of types derived from a common root.
9051 elsif (In_Instance or In_Inlined_Body)
9052 and then
9053 Root_Type (Underlying_Type (Target_Type)) =
9054 Root_Type (Underlying_Type (Opnd_Type))
9055 then
9056 return True;
9058 -- Special check for common access type error case
9060 elsif Ekind (Target_Type) = E_Access_Type
9061 and then Is_Access_Type (Opnd_Type)
9062 then
9063 Error_Msg_N ("target type must be general access type!", N);
9064 Error_Msg_NE ("add ALL to }!", N, Target_Type);
9066 return False;
9068 else
9069 Error_Msg_NE ("invalid conversion, not compatible with }",
9070 N, Opnd_Type);
9072 return False;
9073 end if;
9074 end Valid_Conversion;
9076 end Sem_Res;