Add dg-require-visibility to tests that require visibility support.
[official-gcc.git] / gcc / combine.c
blob58366a6d3316eb10c96a810e1275f90a6c878f03
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "expr.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107 #include "function-abi.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx_insn *i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 struct reg_stat_type {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx_insn *last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx_insn *last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
256 static vec<reg_stat_type> reg_stat;
258 /* One plus the highest pseudo for which we track REG_N_SETS.
259 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
260 but during combine_split_insns new pseudos can be created. As we don't have
261 updated DF information in that case, it is hard to initialize the array
262 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
263 so instead of growing the arrays, just assume all newly created pseudos
264 during combine might be set multiple times. */
266 static unsigned int reg_n_sets_max;
268 /* Record the luid of the last insn that invalidated memory
269 (anything that writes memory, and subroutine calls, but not pushes). */
271 static int mem_last_set;
273 /* Record the luid of the last CALL_INSN
274 so we can tell whether a potential combination crosses any calls. */
276 static int last_call_luid;
278 /* When `subst' is called, this is the insn that is being modified
279 (by combining in a previous insn). The PATTERN of this insn
280 is still the old pattern partially modified and it should not be
281 looked at, but this may be used to examine the successors of the insn
282 to judge whether a simplification is valid. */
284 static rtx_insn *subst_insn;
286 /* This is the lowest LUID that `subst' is currently dealing with.
287 get_last_value will not return a value if the register was set at or
288 after this LUID. If not for this mechanism, we could get confused if
289 I2 or I1 in try_combine were an insn that used the old value of a register
290 to obtain a new value. In that case, we might erroneously get the
291 new value of the register when we wanted the old one. */
293 static int subst_low_luid;
295 /* This contains any hard registers that are used in newpat; reg_dead_at_p
296 must consider all these registers to be always live. */
298 static HARD_REG_SET newpat_used_regs;
300 /* This is an insn to which a LOG_LINKS entry has been added. If this
301 insn is the earlier than I2 or I3, combine should rescan starting at
302 that location. */
304 static rtx_insn *added_links_insn;
306 /* And similarly, for notes. */
308 static rtx_insn *added_notes_insn;
310 /* Basic block in which we are performing combines. */
311 static basic_block this_basic_block;
312 static bool optimize_this_for_speed_p;
315 /* Length of the currently allocated uid_insn_cost array. */
317 static int max_uid_known;
319 /* The following array records the insn_cost for every insn
320 in the instruction stream. */
322 static int *uid_insn_cost;
324 /* The following array records the LOG_LINKS for every insn in the
325 instruction stream as struct insn_link pointers. */
327 struct insn_link {
328 rtx_insn *insn;
329 unsigned int regno;
330 struct insn_link *next;
333 static struct insn_link **uid_log_links;
335 static inline int
336 insn_uid_check (const_rtx insn)
338 int uid = INSN_UID (insn);
339 gcc_checking_assert (uid <= max_uid_known);
340 return uid;
343 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
344 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
346 #define FOR_EACH_LOG_LINK(L, INSN) \
347 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
349 /* Links for LOG_LINKS are allocated from this obstack. */
351 static struct obstack insn_link_obstack;
353 /* Allocate a link. */
355 static inline struct insn_link *
356 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
358 struct insn_link *l
359 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
360 sizeof (struct insn_link));
361 l->insn = insn;
362 l->regno = regno;
363 l->next = next;
364 return l;
367 /* Incremented for each basic block. */
369 static int label_tick;
371 /* Reset to label_tick for each extended basic block in scanning order. */
373 static int label_tick_ebb_start;
375 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
376 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
378 static scalar_int_mode nonzero_bits_mode;
380 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
381 be safely used. It is zero while computing them and after combine has
382 completed. This former test prevents propagating values based on
383 previously set values, which can be incorrect if a variable is modified
384 in a loop. */
386 static int nonzero_sign_valid;
389 /* Record one modification to rtl structure
390 to be undone by storing old_contents into *where. */
392 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
394 struct undo
396 struct undo *next;
397 enum undo_kind kind;
398 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
399 union { rtx *r; int *i; struct insn_link **l; } where;
402 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
403 num_undo says how many are currently recorded.
405 other_insn is nonzero if we have modified some other insn in the process
406 of working on subst_insn. It must be verified too. */
408 struct undobuf
410 struct undo *undos;
411 struct undo *frees;
412 rtx_insn *other_insn;
415 static struct undobuf undobuf;
417 /* Number of times the pseudo being substituted for
418 was found and replaced. */
420 static int n_occurrences;
422 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
423 scalar_int_mode,
424 unsigned HOST_WIDE_INT *);
425 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
426 scalar_int_mode,
427 unsigned int *);
428 static void do_SUBST (rtx *, rtx);
429 static void do_SUBST_INT (int *, int);
430 static void init_reg_last (void);
431 static void setup_incoming_promotions (rtx_insn *);
432 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
433 static int cant_combine_insn_p (rtx_insn *);
434 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 rtx_insn *, rtx_insn *, rtx *, rtx *);
436 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
437 static int contains_muldiv (rtx);
438 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
439 int *, rtx_insn *);
440 static void undo_all (void);
441 static void undo_commit (void);
442 static rtx *find_split_point (rtx *, rtx_insn *, bool);
443 static rtx subst (rtx, rtx, rtx, int, int, int);
444 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
445 static rtx simplify_if_then_else (rtx);
446 static rtx simplify_set (rtx);
447 static rtx simplify_logical (rtx);
448 static rtx expand_compound_operation (rtx);
449 static const_rtx expand_field_assignment (const_rtx);
450 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
451 rtx, unsigned HOST_WIDE_INT, int, int, int);
452 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
453 unsigned HOST_WIDE_INT *);
454 static rtx canon_reg_for_combine (rtx, rtx);
455 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
456 scalar_int_mode, unsigned HOST_WIDE_INT, int);
457 static rtx force_to_mode (rtx, machine_mode,
458 unsigned HOST_WIDE_INT, int);
459 static rtx if_then_else_cond (rtx, rtx *, rtx *);
460 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
461 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
462 static rtx make_field_assignment (rtx);
463 static rtx apply_distributive_law (rtx);
464 static rtx distribute_and_simplify_rtx (rtx, int);
465 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
466 unsigned HOST_WIDE_INT);
467 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
468 unsigned HOST_WIDE_INT);
469 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
470 HOST_WIDE_INT, machine_mode, int *);
471 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
472 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
473 int);
474 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
475 static rtx gen_lowpart_for_combine (machine_mode, rtx);
476 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
477 rtx, rtx *);
478 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
479 static void update_table_tick (rtx);
480 static void record_value_for_reg (rtx, rtx_insn *, rtx);
481 static void check_promoted_subreg (rtx_insn *, rtx);
482 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
483 static void record_dead_and_set_regs (rtx_insn *);
484 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
485 static rtx get_last_value (const_rtx);
486 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
487 static int reg_dead_at_p (rtx, rtx_insn *);
488 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
489 static int reg_bitfield_target_p (rtx, rtx);
490 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
491 static void distribute_links (struct insn_link *);
492 static void mark_used_regs_combine (rtx);
493 static void record_promoted_value (rtx_insn *, rtx);
494 static bool unmentioned_reg_p (rtx, rtx);
495 static void record_truncated_values (rtx *, void *);
496 static bool reg_truncated_to_mode (machine_mode, const_rtx);
497 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
518 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
523 static inline void
524 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
525 bool op0_preserve_value)
527 int code_int = (int)*code;
528 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
529 *code = (enum rtx_code)code_int;
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN cannot be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
536 register. */
538 static rtx_insn *
539 combine_split_insns (rtx pattern, rtx_insn *insn)
541 rtx_insn *ret;
542 unsigned int nregs;
544 ret = split_insns (pattern, insn);
545 nregs = max_reg_num ();
546 if (nregs > reg_stat.length ())
547 reg_stat.safe_grow_cleared (nregs);
548 return ret;
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
557 static rtx *
558 find_single_use_1 (rtx dest, rtx *loc)
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx *result = NULL;
563 rtx *this_result;
564 int i;
565 const char *fmt;
567 switch (code)
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 CASE_CONST_ANY:
573 case CLOBBER:
574 return 0;
576 case SET:
577 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
578 of a REG that occupies all of the REG, the insn uses DEST if
579 it is mentioned in the destination or the source. Otherwise, we
580 need just check the source. */
581 if (GET_CODE (SET_DEST (x)) != CC0
582 && GET_CODE (SET_DEST (x)) != PC
583 && !REG_P (SET_DEST (x))
584 && ! (GET_CODE (SET_DEST (x)) == SUBREG
585 && REG_P (SUBREG_REG (SET_DEST (x)))
586 && !read_modify_subreg_p (SET_DEST (x))))
587 break;
589 return find_single_use_1 (dest, &SET_SRC (x));
591 case MEM:
592 case SUBREG:
593 return find_single_use_1 (dest, &XEXP (x, 0));
595 default:
596 break;
599 /* If it wasn't one of the common cases above, check each expression and
600 vector of this code. Look for a unique usage of DEST. */
602 fmt = GET_RTX_FORMAT (code);
603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 if (fmt[i] == 'e')
607 if (dest == XEXP (x, i)
608 || (REG_P (dest) && REG_P (XEXP (x, i))
609 && REGNO (dest) == REGNO (XEXP (x, i))))
610 this_result = loc;
611 else
612 this_result = find_single_use_1 (dest, &XEXP (x, i));
614 if (result == NULL)
615 result = this_result;
616 else if (this_result)
617 /* Duplicate usage. */
618 return NULL;
620 else if (fmt[i] == 'E')
622 int j;
624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
626 if (XVECEXP (x, i, j) == dest
627 || (REG_P (dest)
628 && REG_P (XVECEXP (x, i, j))
629 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
630 this_result = loc;
631 else
632 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
634 if (result == NULL)
635 result = this_result;
636 else if (this_result)
637 return NULL;
642 return result;
646 /* See if DEST, produced in INSN, is used only a single time in the
647 sequel. If so, return a pointer to the innermost rtx expression in which
648 it is used.
650 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
652 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
653 care about REG_DEAD notes or LOG_LINKS.
655 Otherwise, we find the single use by finding an insn that has a
656 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
657 only referenced once in that insn, we know that it must be the first
658 and last insn referencing DEST. */
660 static rtx *
661 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
663 basic_block bb;
664 rtx_insn *next;
665 rtx *result;
666 struct insn_link *link;
668 if (dest == cc0_rtx)
670 next = NEXT_INSN (insn);
671 if (next == 0
672 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
673 return 0;
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (result && ploc)
677 *ploc = next;
678 return result;
681 if (!REG_P (dest))
682 return 0;
684 bb = BLOCK_FOR_INSN (insn);
685 for (next = NEXT_INSN (insn);
686 next && BLOCK_FOR_INSN (next) == bb;
687 next = NEXT_INSN (next))
688 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
690 FOR_EACH_LOG_LINK (link, next)
691 if (link->insn == insn && link->regno == REGNO (dest))
692 break;
694 if (link)
696 result = find_single_use_1 (dest, &PATTERN (next));
697 if (ploc)
698 *ploc = next;
699 return result;
703 return 0;
706 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
707 insn. The substitution can be undone by undo_all. If INTO is already
708 set to NEWVAL, do not record this change. Because computing NEWVAL might
709 also call SUBST, we have to compute it before we put anything into
710 the undo table. */
712 static void
713 do_SUBST (rtx *into, rtx newval)
715 struct undo *buf;
716 rtx oldval = *into;
718 if (oldval == newval)
719 return;
721 /* We'd like to catch as many invalid transformations here as
722 possible. Unfortunately, there are way too many mode changes
723 that are perfectly valid, so we'd waste too much effort for
724 little gain doing the checks here. Focus on catching invalid
725 transformations involving integer constants. */
726 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
727 && CONST_INT_P (newval))
729 /* Sanity check that we're replacing oldval with a CONST_INT
730 that is a valid sign-extension for the original mode. */
731 gcc_assert (INTVAL (newval)
732 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
734 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
735 CONST_INT is not valid, because after the replacement, the
736 original mode would be gone. Unfortunately, we can't tell
737 when do_SUBST is called to replace the operand thereof, so we
738 perform this test on oldval instead, checking whether an
739 invalid replacement took place before we got here. */
740 gcc_assert (!(GET_CODE (oldval) == SUBREG
741 && CONST_INT_P (SUBREG_REG (oldval))));
742 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
743 && CONST_INT_P (XEXP (oldval, 0))));
746 if (undobuf.frees)
747 buf = undobuf.frees, undobuf.frees = buf->next;
748 else
749 buf = XNEW (struct undo);
751 buf->kind = UNDO_RTX;
752 buf->where.r = into;
753 buf->old_contents.r = oldval;
754 *into = newval;
756 buf->next = undobuf.undos, undobuf.undos = buf;
759 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
761 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
762 for the value of a HOST_WIDE_INT value (including CONST_INT) is
763 not safe. */
765 static void
766 do_SUBST_INT (int *into, int newval)
768 struct undo *buf;
769 int oldval = *into;
771 if (oldval == newval)
772 return;
774 if (undobuf.frees)
775 buf = undobuf.frees, undobuf.frees = buf->next;
776 else
777 buf = XNEW (struct undo);
779 buf->kind = UNDO_INT;
780 buf->where.i = into;
781 buf->old_contents.i = oldval;
782 *into = newval;
784 buf->next = undobuf.undos, undobuf.undos = buf;
787 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
789 /* Similar to SUBST, but just substitute the mode. This is used when
790 changing the mode of a pseudo-register, so that any other
791 references to the entry in the regno_reg_rtx array will change as
792 well. */
794 static void
795 do_SUBST_MODE (rtx *into, machine_mode newval)
797 struct undo *buf;
798 machine_mode oldval = GET_MODE (*into);
800 if (oldval == newval)
801 return;
803 if (undobuf.frees)
804 buf = undobuf.frees, undobuf.frees = buf->next;
805 else
806 buf = XNEW (struct undo);
808 buf->kind = UNDO_MODE;
809 buf->where.r = into;
810 buf->old_contents.m = oldval;
811 adjust_reg_mode (*into, newval);
813 buf->next = undobuf.undos, undobuf.undos = buf;
816 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
818 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820 static void
821 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
823 struct undo *buf;
824 struct insn_link * oldval = *into;
826 if (oldval == newval)
827 return;
829 if (undobuf.frees)
830 buf = undobuf.frees, undobuf.frees = buf->next;
831 else
832 buf = XNEW (struct undo);
834 buf->kind = UNDO_LINKS;
835 buf->where.l = into;
836 buf->old_contents.l = oldval;
837 *into = newval;
839 buf->next = undobuf.undos, undobuf.undos = buf;
842 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
844 /* Subroutine of try_combine. Determine whether the replacement patterns
845 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
846 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
847 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
848 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
849 of all the instructions can be estimated and the replacements are more
850 expensive than the original sequence. */
852 static bool
853 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
854 rtx newpat, rtx newi2pat, rtx newotherpat)
856 int i0_cost, i1_cost, i2_cost, i3_cost;
857 int new_i2_cost, new_i3_cost;
858 int old_cost, new_cost;
860 /* Lookup the original insn_costs. */
861 i2_cost = INSN_COST (i2);
862 i3_cost = INSN_COST (i3);
864 if (i1)
866 i1_cost = INSN_COST (i1);
867 if (i0)
869 i0_cost = INSN_COST (i0);
870 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
871 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
873 else
875 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
876 ? i1_cost + i2_cost + i3_cost : 0);
877 i0_cost = 0;
880 else
882 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
883 i1_cost = i0_cost = 0;
886 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
887 correct that. */
888 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
889 old_cost -= i1_cost;
892 /* Calculate the replacement insn_costs. */
893 rtx tmp = PATTERN (i3);
894 PATTERN (i3) = newpat;
895 int tmpi = INSN_CODE (i3);
896 INSN_CODE (i3) = -1;
897 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
898 PATTERN (i3) = tmp;
899 INSN_CODE (i3) = tmpi;
900 if (newi2pat)
902 tmp = PATTERN (i2);
903 PATTERN (i2) = newi2pat;
904 tmpi = INSN_CODE (i2);
905 INSN_CODE (i2) = -1;
906 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
907 PATTERN (i2) = tmp;
908 INSN_CODE (i2) = tmpi;
909 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
910 ? new_i2_cost + new_i3_cost : 0;
912 else
914 new_cost = new_i3_cost;
915 new_i2_cost = 0;
918 if (undobuf.other_insn)
920 int old_other_cost, new_other_cost;
922 old_other_cost = INSN_COST (undobuf.other_insn);
923 tmp = PATTERN (undobuf.other_insn);
924 PATTERN (undobuf.other_insn) = newotherpat;
925 tmpi = INSN_CODE (undobuf.other_insn);
926 INSN_CODE (undobuf.other_insn) = -1;
927 new_other_cost = insn_cost (undobuf.other_insn,
928 optimize_this_for_speed_p);
929 PATTERN (undobuf.other_insn) = tmp;
930 INSN_CODE (undobuf.other_insn) = tmpi;
931 if (old_other_cost > 0 && new_other_cost > 0)
933 old_cost += old_other_cost;
934 new_cost += new_other_cost;
936 else
937 old_cost = 0;
940 /* Disallow this combination if both new_cost and old_cost are greater than
941 zero, and new_cost is greater than old cost. */
942 int reject = old_cost > 0 && new_cost > old_cost;
944 if (dump_file)
946 fprintf (dump_file, "%s combination of insns ",
947 reject ? "rejecting" : "allowing");
948 if (i0)
949 fprintf (dump_file, "%d, ", INSN_UID (i0));
950 if (i1 && INSN_UID (i1) != INSN_UID (i2))
951 fprintf (dump_file, "%d, ", INSN_UID (i1));
952 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
954 fprintf (dump_file, "original costs ");
955 if (i0)
956 fprintf (dump_file, "%d + ", i0_cost);
957 if (i1 && INSN_UID (i1) != INSN_UID (i2))
958 fprintf (dump_file, "%d + ", i1_cost);
959 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
961 if (newi2pat)
962 fprintf (dump_file, "replacement costs %d + %d = %d\n",
963 new_i2_cost, new_i3_cost, new_cost);
964 else
965 fprintf (dump_file, "replacement cost %d\n", new_cost);
968 if (reject)
969 return false;
971 /* Update the uid_insn_cost array with the replacement costs. */
972 INSN_COST (i2) = new_i2_cost;
973 INSN_COST (i3) = new_i3_cost;
974 if (i1)
976 INSN_COST (i1) = 0;
977 if (i0)
978 INSN_COST (i0) = 0;
981 return true;
985 /* Delete any insns that copy a register to itself.
986 Return true if the CFG was changed. */
988 static bool
989 delete_noop_moves (void)
991 rtx_insn *insn, *next;
992 basic_block bb;
994 bool edges_deleted = false;
996 FOR_EACH_BB_FN (bb, cfun)
998 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
1000 next = NEXT_INSN (insn);
1001 if (INSN_P (insn) && noop_move_p (insn))
1003 if (dump_file)
1004 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1006 edges_deleted |= delete_insn_and_edges (insn);
1011 return edges_deleted;
1015 /* Return false if we do not want to (or cannot) combine DEF. */
1016 static bool
1017 can_combine_def_p (df_ref def)
1019 /* Do not consider if it is pre/post modification in MEM. */
1020 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1021 return false;
1023 unsigned int regno = DF_REF_REGNO (def);
1025 /* Do not combine frame pointer adjustments. */
1026 if ((regno == FRAME_POINTER_REGNUM
1027 && (!reload_completed || frame_pointer_needed))
1028 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1029 && regno == HARD_FRAME_POINTER_REGNUM
1030 && (!reload_completed || frame_pointer_needed))
1031 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1032 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1033 return false;
1035 return true;
1038 /* Return false if we do not want to (or cannot) combine USE. */
1039 static bool
1040 can_combine_use_p (df_ref use)
1042 /* Do not consider the usage of the stack pointer by function call. */
1043 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1044 return false;
1046 return true;
1049 /* Fill in log links field for all insns. */
1051 static void
1052 create_log_links (void)
1054 basic_block bb;
1055 rtx_insn **next_use;
1056 rtx_insn *insn;
1057 df_ref def, use;
1059 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1061 /* Pass through each block from the end, recording the uses of each
1062 register and establishing log links when def is encountered.
1063 Note that we do not clear next_use array in order to save time,
1064 so we have to test whether the use is in the same basic block as def.
1066 There are a few cases below when we do not consider the definition or
1067 usage -- these are taken from original flow.c did. Don't ask me why it is
1068 done this way; I don't know and if it works, I don't want to know. */
1070 FOR_EACH_BB_FN (bb, cfun)
1072 FOR_BB_INSNS_REVERSE (bb, insn)
1074 if (!NONDEBUG_INSN_P (insn))
1075 continue;
1077 /* Log links are created only once. */
1078 gcc_assert (!LOG_LINKS (insn));
1080 FOR_EACH_INSN_DEF (def, insn)
1082 unsigned int regno = DF_REF_REGNO (def);
1083 rtx_insn *use_insn;
1085 if (!next_use[regno])
1086 continue;
1088 if (!can_combine_def_p (def))
1089 continue;
1091 use_insn = next_use[regno];
1092 next_use[regno] = NULL;
1094 if (BLOCK_FOR_INSN (use_insn) != bb)
1095 continue;
1097 /* flow.c claimed:
1099 We don't build a LOG_LINK for hard registers contained
1100 in ASM_OPERANDs. If these registers get replaced,
1101 we might wind up changing the semantics of the insn,
1102 even if reload can make what appear to be valid
1103 assignments later. */
1104 if (regno < FIRST_PSEUDO_REGISTER
1105 && asm_noperands (PATTERN (use_insn)) >= 0)
1106 continue;
1108 /* Don't add duplicate links between instructions. */
1109 struct insn_link *links;
1110 FOR_EACH_LOG_LINK (links, use_insn)
1111 if (insn == links->insn && regno == links->regno)
1112 break;
1114 if (!links)
1115 LOG_LINKS (use_insn)
1116 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1119 FOR_EACH_INSN_USE (use, insn)
1120 if (can_combine_use_p (use))
1121 next_use[DF_REF_REGNO (use)] = insn;
1125 free (next_use);
1128 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1129 true if we found a LOG_LINK that proves that A feeds B. This only works
1130 if there are no instructions between A and B which could have a link
1131 depending on A, since in that case we would not record a link for B.
1132 We also check the implicit dependency created by a cc0 setter/user
1133 pair. */
1135 static bool
1136 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1138 struct insn_link *links;
1139 FOR_EACH_LOG_LINK (links, b)
1140 if (links->insn == a)
1141 return true;
1142 if (HAVE_cc0 && sets_cc0_p (a))
1143 return true;
1144 return false;
1147 /* Main entry point for combiner. F is the first insn of the function.
1148 NREGS is the first unused pseudo-reg number.
1150 Return nonzero if the CFG was changed (e.g. if the combiner has
1151 turned an indirect jump instruction into a direct jump). */
1152 static int
1153 combine_instructions (rtx_insn *f, unsigned int nregs)
1155 rtx_insn *insn, *next;
1156 rtx_insn *prev;
1157 struct insn_link *links, *nextlinks;
1158 rtx_insn *first;
1159 basic_block last_bb;
1161 int new_direct_jump_p = 0;
1163 for (first = f; first && !NONDEBUG_INSN_P (first); )
1164 first = NEXT_INSN (first);
1165 if (!first)
1166 return 0;
1168 combine_attempts = 0;
1169 combine_merges = 0;
1170 combine_extras = 0;
1171 combine_successes = 0;
1173 rtl_hooks = combine_rtl_hooks;
1175 reg_stat.safe_grow_cleared (nregs);
1177 init_recog_no_volatile ();
1179 /* Allocate array for insn info. */
1180 max_uid_known = get_max_uid ();
1181 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1182 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1183 gcc_obstack_init (&insn_link_obstack);
1185 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1187 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1188 problems when, for example, we have j <<= 1 in a loop. */
1190 nonzero_sign_valid = 0;
1191 label_tick = label_tick_ebb_start = 1;
1193 /* Scan all SETs and see if we can deduce anything about what
1194 bits are known to be zero for some registers and how many copies
1195 of the sign bit are known to exist for those registers.
1197 Also set any known values so that we can use it while searching
1198 for what bits are known to be set. */
1200 setup_incoming_promotions (first);
1201 /* Allow the entry block and the first block to fall into the same EBB.
1202 Conceptually the incoming promotions are assigned to the entry block. */
1203 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1205 create_log_links ();
1206 FOR_EACH_BB_FN (this_basic_block, cfun)
1208 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1209 last_call_luid = 0;
1210 mem_last_set = -1;
1212 label_tick++;
1213 if (!single_pred_p (this_basic_block)
1214 || single_pred (this_basic_block) != last_bb)
1215 label_tick_ebb_start = label_tick;
1216 last_bb = this_basic_block;
1218 FOR_BB_INSNS (this_basic_block, insn)
1219 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1221 rtx links;
1223 subst_low_luid = DF_INSN_LUID (insn);
1224 subst_insn = insn;
1226 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1227 record_dead_and_set_regs (insn);
1229 if (AUTO_INC_DEC)
1230 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1231 if (REG_NOTE_KIND (links) == REG_INC)
1232 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1233 insn);
1235 /* Record the current insn_cost of this instruction. */
1236 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1237 if (dump_file)
1239 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1240 dump_insn_slim (dump_file, insn);
1245 nonzero_sign_valid = 1;
1247 /* Now scan all the insns in forward order. */
1248 label_tick = label_tick_ebb_start = 1;
1249 init_reg_last ();
1250 setup_incoming_promotions (first);
1251 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1252 int max_combine = param_max_combine_insns;
1254 FOR_EACH_BB_FN (this_basic_block, cfun)
1256 rtx_insn *last_combined_insn = NULL;
1258 /* Ignore instruction combination in basic blocks that are going to
1259 be removed as unreachable anyway. See PR82386. */
1260 if (EDGE_COUNT (this_basic_block->preds) == 0)
1261 continue;
1263 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1264 last_call_luid = 0;
1265 mem_last_set = -1;
1267 label_tick++;
1268 if (!single_pred_p (this_basic_block)
1269 || single_pred (this_basic_block) != last_bb)
1270 label_tick_ebb_start = label_tick;
1271 last_bb = this_basic_block;
1273 rtl_profile_for_bb (this_basic_block);
1274 for (insn = BB_HEAD (this_basic_block);
1275 insn != NEXT_INSN (BB_END (this_basic_block));
1276 insn = next ? next : NEXT_INSN (insn))
1278 next = 0;
1279 if (!NONDEBUG_INSN_P (insn))
1280 continue;
1282 while (last_combined_insn
1283 && (!NONDEBUG_INSN_P (last_combined_insn)
1284 || last_combined_insn->deleted ()))
1285 last_combined_insn = PREV_INSN (last_combined_insn);
1286 if (last_combined_insn == NULL_RTX
1287 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1288 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1289 last_combined_insn = insn;
1291 /* See if we know about function return values before this
1292 insn based upon SUBREG flags. */
1293 check_promoted_subreg (insn, PATTERN (insn));
1295 /* See if we can find hardregs and subreg of pseudos in
1296 narrower modes. This could help turning TRUNCATEs
1297 into SUBREGs. */
1298 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1300 /* Try this insn with each insn it links back to. */
1302 FOR_EACH_LOG_LINK (links, insn)
1303 if ((next = try_combine (insn, links->insn, NULL,
1304 NULL, &new_direct_jump_p,
1305 last_combined_insn)) != 0)
1307 statistics_counter_event (cfun, "two-insn combine", 1);
1308 goto retry;
1311 /* Try each sequence of three linked insns ending with this one. */
1313 if (max_combine >= 3)
1314 FOR_EACH_LOG_LINK (links, insn)
1316 rtx_insn *link = links->insn;
1318 /* If the linked insn has been replaced by a note, then there
1319 is no point in pursuing this chain any further. */
1320 if (NOTE_P (link))
1321 continue;
1323 FOR_EACH_LOG_LINK (nextlinks, link)
1324 if ((next = try_combine (insn, link, nextlinks->insn,
1325 NULL, &new_direct_jump_p,
1326 last_combined_insn)) != 0)
1328 statistics_counter_event (cfun, "three-insn combine", 1);
1329 goto retry;
1333 /* Try to combine a jump insn that uses CC0
1334 with a preceding insn that sets CC0, and maybe with its
1335 logical predecessor as well.
1336 This is how we make decrement-and-branch insns.
1337 We need this special code because data flow connections
1338 via CC0 do not get entered in LOG_LINKS. */
1340 if (HAVE_cc0
1341 && JUMP_P (insn)
1342 && (prev = prev_nonnote_insn (insn)) != 0
1343 && NONJUMP_INSN_P (prev)
1344 && sets_cc0_p (PATTERN (prev)))
1346 if ((next = try_combine (insn, prev, NULL, NULL,
1347 &new_direct_jump_p,
1348 last_combined_insn)) != 0)
1349 goto retry;
1351 FOR_EACH_LOG_LINK (nextlinks, prev)
1352 if ((next = try_combine (insn, prev, nextlinks->insn,
1353 NULL, &new_direct_jump_p,
1354 last_combined_insn)) != 0)
1355 goto retry;
1358 /* Do the same for an insn that explicitly references CC0. */
1359 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1360 && (prev = prev_nonnote_insn (insn)) != 0
1361 && NONJUMP_INSN_P (prev)
1362 && sets_cc0_p (PATTERN (prev))
1363 && GET_CODE (PATTERN (insn)) == SET
1364 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1366 if ((next = try_combine (insn, prev, NULL, NULL,
1367 &new_direct_jump_p,
1368 last_combined_insn)) != 0)
1369 goto retry;
1371 FOR_EACH_LOG_LINK (nextlinks, prev)
1372 if ((next = try_combine (insn, prev, nextlinks->insn,
1373 NULL, &new_direct_jump_p,
1374 last_combined_insn)) != 0)
1375 goto retry;
1378 /* Finally, see if any of the insns that this insn links to
1379 explicitly references CC0. If so, try this insn, that insn,
1380 and its predecessor if it sets CC0. */
1381 if (HAVE_cc0)
1383 FOR_EACH_LOG_LINK (links, insn)
1384 if (NONJUMP_INSN_P (links->insn)
1385 && GET_CODE (PATTERN (links->insn)) == SET
1386 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1387 && (prev = prev_nonnote_insn (links->insn)) != 0
1388 && NONJUMP_INSN_P (prev)
1389 && sets_cc0_p (PATTERN (prev))
1390 && (next = try_combine (insn, links->insn,
1391 prev, NULL, &new_direct_jump_p,
1392 last_combined_insn)) != 0)
1393 goto retry;
1396 /* Try combining an insn with two different insns whose results it
1397 uses. */
1398 if (max_combine >= 3)
1399 FOR_EACH_LOG_LINK (links, insn)
1400 for (nextlinks = links->next; nextlinks;
1401 nextlinks = nextlinks->next)
1402 if ((next = try_combine (insn, links->insn,
1403 nextlinks->insn, NULL,
1404 &new_direct_jump_p,
1405 last_combined_insn)) != 0)
1408 statistics_counter_event (cfun, "three-insn combine", 1);
1409 goto retry;
1412 /* Try four-instruction combinations. */
1413 if (max_combine >= 4)
1414 FOR_EACH_LOG_LINK (links, insn)
1416 struct insn_link *next1;
1417 rtx_insn *link = links->insn;
1419 /* If the linked insn has been replaced by a note, then there
1420 is no point in pursuing this chain any further. */
1421 if (NOTE_P (link))
1422 continue;
1424 FOR_EACH_LOG_LINK (next1, link)
1426 rtx_insn *link1 = next1->insn;
1427 if (NOTE_P (link1))
1428 continue;
1429 /* I0 -> I1 -> I2 -> I3. */
1430 FOR_EACH_LOG_LINK (nextlinks, link1)
1431 if ((next = try_combine (insn, link, link1,
1432 nextlinks->insn,
1433 &new_direct_jump_p,
1434 last_combined_insn)) != 0)
1436 statistics_counter_event (cfun, "four-insn combine", 1);
1437 goto retry;
1439 /* I0, I1 -> I2, I2 -> I3. */
1440 for (nextlinks = next1->next; nextlinks;
1441 nextlinks = nextlinks->next)
1442 if ((next = try_combine (insn, link, link1,
1443 nextlinks->insn,
1444 &new_direct_jump_p,
1445 last_combined_insn)) != 0)
1447 statistics_counter_event (cfun, "four-insn combine", 1);
1448 goto retry;
1452 for (next1 = links->next; next1; next1 = next1->next)
1454 rtx_insn *link1 = next1->insn;
1455 if (NOTE_P (link1))
1456 continue;
1457 /* I0 -> I2; I1, I2 -> I3. */
1458 FOR_EACH_LOG_LINK (nextlinks, link)
1459 if ((next = try_combine (insn, link, link1,
1460 nextlinks->insn,
1461 &new_direct_jump_p,
1462 last_combined_insn)) != 0)
1464 statistics_counter_event (cfun, "four-insn combine", 1);
1465 goto retry;
1467 /* I0 -> I1; I1, I2 -> I3. */
1468 FOR_EACH_LOG_LINK (nextlinks, link1)
1469 if ((next = try_combine (insn, link, link1,
1470 nextlinks->insn,
1471 &new_direct_jump_p,
1472 last_combined_insn)) != 0)
1474 statistics_counter_event (cfun, "four-insn combine", 1);
1475 goto retry;
1480 /* Try this insn with each REG_EQUAL note it links back to. */
1481 FOR_EACH_LOG_LINK (links, insn)
1483 rtx set, note;
1484 rtx_insn *temp = links->insn;
1485 if ((set = single_set (temp)) != 0
1486 && (note = find_reg_equal_equiv_note (temp)) != 0
1487 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1488 /* Avoid using a register that may already been marked
1489 dead by an earlier instruction. */
1490 && ! unmentioned_reg_p (note, SET_SRC (set))
1491 && (GET_MODE (note) == VOIDmode
1492 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1493 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1494 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1495 || (GET_MODE (XEXP (SET_DEST (set), 0))
1496 == GET_MODE (note))))))
1498 /* Temporarily replace the set's source with the
1499 contents of the REG_EQUAL note. The insn will
1500 be deleted or recognized by try_combine. */
1501 rtx orig_src = SET_SRC (set);
1502 rtx orig_dest = SET_DEST (set);
1503 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1504 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1505 SET_SRC (set) = note;
1506 i2mod = temp;
1507 i2mod_old_rhs = copy_rtx (orig_src);
1508 i2mod_new_rhs = copy_rtx (note);
1509 next = try_combine (insn, i2mod, NULL, NULL,
1510 &new_direct_jump_p,
1511 last_combined_insn);
1512 i2mod = NULL;
1513 if (next)
1515 statistics_counter_event (cfun, "insn-with-note combine", 1);
1516 goto retry;
1518 SET_SRC (set) = orig_src;
1519 SET_DEST (set) = orig_dest;
1523 if (!NOTE_P (insn))
1524 record_dead_and_set_regs (insn);
1526 retry:
1531 default_rtl_profile ();
1532 clear_bb_flags ();
1533 new_direct_jump_p |= purge_all_dead_edges ();
1534 new_direct_jump_p |= delete_noop_moves ();
1536 /* Clean up. */
1537 obstack_free (&insn_link_obstack, NULL);
1538 free (uid_log_links);
1539 free (uid_insn_cost);
1540 reg_stat.release ();
1543 struct undo *undo, *next;
1544 for (undo = undobuf.frees; undo; undo = next)
1546 next = undo->next;
1547 free (undo);
1549 undobuf.frees = 0;
1552 total_attempts += combine_attempts;
1553 total_merges += combine_merges;
1554 total_extras += combine_extras;
1555 total_successes += combine_successes;
1557 nonzero_sign_valid = 0;
1558 rtl_hooks = general_rtl_hooks;
1560 /* Make recognizer allow volatile MEMs again. */
1561 init_recog ();
1563 return new_direct_jump_p;
1566 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1568 static void
1569 init_reg_last (void)
1571 unsigned int i;
1572 reg_stat_type *p;
1574 FOR_EACH_VEC_ELT (reg_stat, i, p)
1575 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1578 /* Set up any promoted values for incoming argument registers. */
1580 static void
1581 setup_incoming_promotions (rtx_insn *first)
1583 tree arg;
1584 bool strictly_local = false;
1586 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1587 arg = DECL_CHAIN (arg))
1589 rtx x, reg = DECL_INCOMING_RTL (arg);
1590 int uns1, uns3;
1591 machine_mode mode1, mode2, mode3, mode4;
1593 /* Only continue if the incoming argument is in a register. */
1594 if (!REG_P (reg))
1595 continue;
1597 /* Determine, if possible, whether all call sites of the current
1598 function lie within the current compilation unit. (This does
1599 take into account the exporting of a function via taking its
1600 address, and so forth.) */
1601 strictly_local
1602 = cgraph_node::local_info_node (current_function_decl)->local;
1604 /* The mode and signedness of the argument before any promotions happen
1605 (equal to the mode of the pseudo holding it at that stage). */
1606 mode1 = TYPE_MODE (TREE_TYPE (arg));
1607 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1609 /* The mode and signedness of the argument after any source language and
1610 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1611 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1612 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1614 /* The mode and signedness of the argument as it is actually passed,
1615 see assign_parm_setup_reg in function.c. */
1616 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1617 TREE_TYPE (cfun->decl), 0);
1619 /* The mode of the register in which the argument is being passed. */
1620 mode4 = GET_MODE (reg);
1622 /* Eliminate sign extensions in the callee when:
1623 (a) A mode promotion has occurred; */
1624 if (mode1 == mode3)
1625 continue;
1626 /* (b) The mode of the register is the same as the mode of
1627 the argument as it is passed; */
1628 if (mode3 != mode4)
1629 continue;
1630 /* (c) There's no language level extension; */
1631 if (mode1 == mode2)
1633 /* (c.1) All callers are from the current compilation unit. If that's
1634 the case we don't have to rely on an ABI, we only have to know
1635 what we're generating right now, and we know that we will do the
1636 mode1 to mode2 promotion with the given sign. */
1637 else if (!strictly_local)
1638 continue;
1639 /* (c.2) The combination of the two promotions is useful. This is
1640 true when the signs match, or if the first promotion is unsigned.
1641 In the later case, (sign_extend (zero_extend x)) is the same as
1642 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1643 else if (uns1)
1644 uns3 = true;
1645 else if (uns3)
1646 continue;
1648 /* Record that the value was promoted from mode1 to mode3,
1649 so that any sign extension at the head of the current
1650 function may be eliminated. */
1651 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1652 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1653 record_value_for_reg (reg, first, x);
1657 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1658 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1659 because some machines (maybe most) will actually do the sign-extension and
1660 this is the conservative approach.
1662 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1663 kludge. */
1665 static rtx
1666 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1668 scalar_int_mode int_mode;
1669 if (CONST_INT_P (src)
1670 && is_a <scalar_int_mode> (mode, &int_mode)
1671 && GET_MODE_PRECISION (int_mode) < prec
1672 && INTVAL (src) > 0
1673 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1674 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1676 return src;
1679 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1680 and SET. */
1682 static void
1683 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1684 rtx x)
1686 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1687 unsigned HOST_WIDE_INT bits = 0;
1688 rtx reg_equal = NULL, src = SET_SRC (set);
1689 unsigned int num = 0;
1691 if (reg_equal_note)
1692 reg_equal = XEXP (reg_equal_note, 0);
1694 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1696 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1697 if (reg_equal)
1698 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1701 /* Don't call nonzero_bits if it cannot change anything. */
1702 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1704 machine_mode mode = GET_MODE (x);
1705 if (GET_MODE_CLASS (mode) == MODE_INT
1706 && HWI_COMPUTABLE_MODE_P (mode))
1707 mode = nonzero_bits_mode;
1708 bits = nonzero_bits (src, mode);
1709 if (reg_equal && bits)
1710 bits &= nonzero_bits (reg_equal, mode);
1711 rsp->nonzero_bits |= bits;
1714 /* Don't call num_sign_bit_copies if it cannot change anything. */
1715 if (rsp->sign_bit_copies != 1)
1717 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1718 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1720 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1721 if (num == 0 || numeq > num)
1722 num = numeq;
1724 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1725 rsp->sign_bit_copies = num;
1729 /* Called via note_stores. If X is a pseudo that is narrower than
1730 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1732 If we are setting only a portion of X and we can't figure out what
1733 portion, assume all bits will be used since we don't know what will
1734 be happening.
1736 Similarly, set how many bits of X are known to be copies of the sign bit
1737 at all locations in the function. This is the smallest number implied
1738 by any set of X. */
1740 static void
1741 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1743 rtx_insn *insn = (rtx_insn *) data;
1744 scalar_int_mode mode;
1746 if (REG_P (x)
1747 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1748 /* If this register is undefined at the start of the file, we can't
1749 say what its contents were. */
1750 && ! REGNO_REG_SET_P
1751 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1752 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1753 && HWI_COMPUTABLE_MODE_P (mode))
1755 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1757 if (set == 0 || GET_CODE (set) == CLOBBER)
1759 rsp->nonzero_bits = GET_MODE_MASK (mode);
1760 rsp->sign_bit_copies = 1;
1761 return;
1764 /* If this register is being initialized using itself, and the
1765 register is uninitialized in this basic block, and there are
1766 no LOG_LINKS which set the register, then part of the
1767 register is uninitialized. In that case we can't assume
1768 anything about the number of nonzero bits.
1770 ??? We could do better if we checked this in
1771 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1772 could avoid making assumptions about the insn which initially
1773 sets the register, while still using the information in other
1774 insns. We would have to be careful to check every insn
1775 involved in the combination. */
1777 if (insn
1778 && reg_referenced_p (x, PATTERN (insn))
1779 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1780 REGNO (x)))
1782 struct insn_link *link;
1784 FOR_EACH_LOG_LINK (link, insn)
1785 if (dead_or_set_p (link->insn, x))
1786 break;
1787 if (!link)
1789 rsp->nonzero_bits = GET_MODE_MASK (mode);
1790 rsp->sign_bit_copies = 1;
1791 return;
1795 /* If this is a complex assignment, see if we can convert it into a
1796 simple assignment. */
1797 set = expand_field_assignment (set);
1799 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1800 set what we know about X. */
1802 if (SET_DEST (set) == x
1803 || (paradoxical_subreg_p (SET_DEST (set))
1804 && SUBREG_REG (SET_DEST (set)) == x))
1805 update_rsp_from_reg_equal (rsp, insn, set, x);
1806 else
1808 rsp->nonzero_bits = GET_MODE_MASK (mode);
1809 rsp->sign_bit_copies = 1;
1814 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1815 optionally insns that were previously combined into I3 or that will be
1816 combined into the merger of INSN and I3. The order is PRED, PRED2,
1817 INSN, SUCC, SUCC2, I3.
1819 Return 0 if the combination is not allowed for any reason.
1821 If the combination is allowed, *PDEST will be set to the single
1822 destination of INSN and *PSRC to the single source, and this function
1823 will return 1. */
1825 static int
1826 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1827 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1828 rtx *pdest, rtx *psrc)
1830 int i;
1831 const_rtx set = 0;
1832 rtx src, dest;
1833 rtx_insn *p;
1834 rtx link;
1835 bool all_adjacent = true;
1836 int (*is_volatile_p) (const_rtx);
1838 if (succ)
1840 if (succ2)
1842 if (next_active_insn (succ2) != i3)
1843 all_adjacent = false;
1844 if (next_active_insn (succ) != succ2)
1845 all_adjacent = false;
1847 else if (next_active_insn (succ) != i3)
1848 all_adjacent = false;
1849 if (next_active_insn (insn) != succ)
1850 all_adjacent = false;
1852 else if (next_active_insn (insn) != i3)
1853 all_adjacent = false;
1855 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1856 or a PARALLEL consisting of such a SET and CLOBBERs.
1858 If INSN has CLOBBER parallel parts, ignore them for our processing.
1859 By definition, these happen during the execution of the insn. When it
1860 is merged with another insn, all bets are off. If they are, in fact,
1861 needed and aren't also supplied in I3, they may be added by
1862 recog_for_combine. Otherwise, it won't match.
1864 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1865 note.
1867 Get the source and destination of INSN. If more than one, can't
1868 combine. */
1870 if (GET_CODE (PATTERN (insn)) == SET)
1871 set = PATTERN (insn);
1872 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1873 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1875 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1877 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1879 switch (GET_CODE (elt))
1881 /* This is important to combine floating point insns
1882 for the SH4 port. */
1883 case USE:
1884 /* Combining an isolated USE doesn't make sense.
1885 We depend here on combinable_i3pat to reject them. */
1886 /* The code below this loop only verifies that the inputs of
1887 the SET in INSN do not change. We call reg_set_between_p
1888 to verify that the REG in the USE does not change between
1889 I3 and INSN.
1890 If the USE in INSN was for a pseudo register, the matching
1891 insn pattern will likely match any register; combining this
1892 with any other USE would only be safe if we knew that the
1893 used registers have identical values, or if there was
1894 something to tell them apart, e.g. different modes. For
1895 now, we forgo such complicated tests and simply disallow
1896 combining of USES of pseudo registers with any other USE. */
1897 if (REG_P (XEXP (elt, 0))
1898 && GET_CODE (PATTERN (i3)) == PARALLEL)
1900 rtx i3pat = PATTERN (i3);
1901 int i = XVECLEN (i3pat, 0) - 1;
1902 unsigned int regno = REGNO (XEXP (elt, 0));
1906 rtx i3elt = XVECEXP (i3pat, 0, i);
1908 if (GET_CODE (i3elt) == USE
1909 && REG_P (XEXP (i3elt, 0))
1910 && (REGNO (XEXP (i3elt, 0)) == regno
1911 ? reg_set_between_p (XEXP (elt, 0),
1912 PREV_INSN (insn), i3)
1913 : regno >= FIRST_PSEUDO_REGISTER))
1914 return 0;
1916 while (--i >= 0);
1918 break;
1920 /* We can ignore CLOBBERs. */
1921 case CLOBBER:
1922 break;
1924 case SET:
1925 /* Ignore SETs whose result isn't used but not those that
1926 have side-effects. */
1927 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1928 && insn_nothrow_p (insn)
1929 && !side_effects_p (elt))
1930 break;
1932 /* If we have already found a SET, this is a second one and
1933 so we cannot combine with this insn. */
1934 if (set)
1935 return 0;
1937 set = elt;
1938 break;
1940 default:
1941 /* Anything else means we can't combine. */
1942 return 0;
1946 if (set == 0
1947 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1948 so don't do anything with it. */
1949 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1950 return 0;
1952 else
1953 return 0;
1955 if (set == 0)
1956 return 0;
1958 /* The simplification in expand_field_assignment may call back to
1959 get_last_value, so set safe guard here. */
1960 subst_low_luid = DF_INSN_LUID (insn);
1962 set = expand_field_assignment (set);
1963 src = SET_SRC (set), dest = SET_DEST (set);
1965 /* Do not eliminate user-specified register if it is in an
1966 asm input because we may break the register asm usage defined
1967 in GCC manual if allow to do so.
1968 Be aware that this may cover more cases than we expect but this
1969 should be harmless. */
1970 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1971 && extract_asm_operands (PATTERN (i3)))
1972 return 0;
1974 /* Don't eliminate a store in the stack pointer. */
1975 if (dest == stack_pointer_rtx
1976 /* Don't combine with an insn that sets a register to itself if it has
1977 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1978 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1979 /* Can't merge an ASM_OPERANDS. */
1980 || GET_CODE (src) == ASM_OPERANDS
1981 /* Can't merge a function call. */
1982 || GET_CODE (src) == CALL
1983 /* Don't eliminate a function call argument. */
1984 || (CALL_P (i3)
1985 && (find_reg_fusage (i3, USE, dest)
1986 || (REG_P (dest)
1987 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1988 && global_regs[REGNO (dest)])))
1989 /* Don't substitute into an incremented register. */
1990 || FIND_REG_INC_NOTE (i3, dest)
1991 || (succ && FIND_REG_INC_NOTE (succ, dest))
1992 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1993 /* Don't substitute into a non-local goto, this confuses CFG. */
1994 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1995 /* Make sure that DEST is not used after INSN but before SUCC, or
1996 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1997 || (!all_adjacent
1998 && ((succ2
1999 && (reg_used_between_p (dest, succ2, i3)
2000 || reg_used_between_p (dest, succ, succ2)))
2001 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
2002 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
2003 || (succ
2004 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2005 that case SUCC is not in the insn stream, so use SUCC2
2006 instead for this test. */
2007 && reg_used_between_p (dest, insn,
2008 succ2
2009 && INSN_UID (succ) == INSN_UID (succ2)
2010 ? succ2 : succ))))
2011 /* Make sure that the value that is to be substituted for the register
2012 does not use any registers whose values alter in between. However,
2013 If the insns are adjacent, a use can't cross a set even though we
2014 think it might (this can happen for a sequence of insns each setting
2015 the same destination; last_set of that register might point to
2016 a NOTE). If INSN has a REG_EQUIV note, the register is always
2017 equivalent to the memory so the substitution is valid even if there
2018 are intervening stores. Also, don't move a volatile asm or
2019 UNSPEC_VOLATILE across any other insns. */
2020 || (! all_adjacent
2021 && (((!MEM_P (src)
2022 || ! find_reg_note (insn, REG_EQUIV, src))
2023 && modified_between_p (src, insn, i3))
2024 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2025 || GET_CODE (src) == UNSPEC_VOLATILE))
2026 /* Don't combine across a CALL_INSN, because that would possibly
2027 change whether the life span of some REGs crosses calls or not,
2028 and it is a pain to update that information.
2029 Exception: if source is a constant, moving it later can't hurt.
2030 Accept that as a special case. */
2031 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2032 return 0;
2034 /* DEST must either be a REG or CC0. */
2035 if (REG_P (dest))
2037 /* If register alignment is being enforced for multi-word items in all
2038 cases except for parameters, it is possible to have a register copy
2039 insn referencing a hard register that is not allowed to contain the
2040 mode being copied and which would not be valid as an operand of most
2041 insns. Eliminate this problem by not combining with such an insn.
2043 Also, on some machines we don't want to extend the life of a hard
2044 register. */
2046 if (REG_P (src)
2047 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2048 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2049 /* Don't extend the life of a hard register unless it is
2050 user variable (if we have few registers) or it can't
2051 fit into the desired register (meaning something special
2052 is going on).
2053 Also avoid substituting a return register into I3, because
2054 reload can't handle a conflict with constraints of other
2055 inputs. */
2056 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2057 && !targetm.hard_regno_mode_ok (REGNO (src),
2058 GET_MODE (src)))))
2059 return 0;
2061 else if (GET_CODE (dest) != CC0)
2062 return 0;
2065 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2066 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2067 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2069 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2071 /* If the clobber represents an earlyclobber operand, we must not
2072 substitute an expression containing the clobbered register.
2073 As we do not analyze the constraint strings here, we have to
2074 make the conservative assumption. However, if the register is
2075 a fixed hard reg, the clobber cannot represent any operand;
2076 we leave it up to the machine description to either accept or
2077 reject use-and-clobber patterns. */
2078 if (!REG_P (reg)
2079 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2080 || !fixed_regs[REGNO (reg)])
2081 if (reg_overlap_mentioned_p (reg, src))
2082 return 0;
2085 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2086 or not), reject, unless nothing volatile comes between it and I3 */
2088 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2090 /* Make sure neither succ nor succ2 contains a volatile reference. */
2091 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2092 return 0;
2093 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2094 return 0;
2095 /* We'll check insns between INSN and I3 below. */
2098 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2099 to be an explicit register variable, and was chosen for a reason. */
2101 if (GET_CODE (src) == ASM_OPERANDS
2102 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2103 return 0;
2105 /* If INSN contains volatile references (specifically volatile MEMs),
2106 we cannot combine across any other volatile references.
2107 Even if INSN doesn't contain volatile references, any intervening
2108 volatile insn might affect machine state. */
2110 is_volatile_p = volatile_refs_p (PATTERN (insn))
2111 ? volatile_refs_p
2112 : volatile_insn_p;
2114 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2115 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2116 return 0;
2118 /* If INSN contains an autoincrement or autodecrement, make sure that
2119 register is not used between there and I3, and not already used in
2120 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2121 Also insist that I3 not be a jump if using LRA; if it were one
2122 and the incremented register were spilled, we would lose.
2123 Reload handles this correctly. */
2125 if (AUTO_INC_DEC)
2126 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2127 if (REG_NOTE_KIND (link) == REG_INC
2128 && ((JUMP_P (i3) && targetm.lra_p ())
2129 || reg_used_between_p (XEXP (link, 0), insn, i3)
2130 || (pred != NULL_RTX
2131 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2132 || (pred2 != NULL_RTX
2133 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2134 || (succ != NULL_RTX
2135 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2136 || (succ2 != NULL_RTX
2137 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2138 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2139 return 0;
2141 /* Don't combine an insn that follows a CC0-setting insn.
2142 An insn that uses CC0 must not be separated from the one that sets it.
2143 We do, however, allow I2 to follow a CC0-setting insn if that insn
2144 is passed as I1; in that case it will be deleted also.
2145 We also allow combining in this case if all the insns are adjacent
2146 because that would leave the two CC0 insns adjacent as well.
2147 It would be more logical to test whether CC0 occurs inside I1 or I2,
2148 but that would be much slower, and this ought to be equivalent. */
2150 if (HAVE_cc0)
2152 p = prev_nonnote_insn (insn);
2153 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2154 && ! all_adjacent)
2155 return 0;
2158 /* If we get here, we have passed all the tests and the combination is
2159 to be allowed. */
2161 *pdest = dest;
2162 *psrc = src;
2164 return 1;
2167 /* LOC is the location within I3 that contains its pattern or the component
2168 of a PARALLEL of the pattern. We validate that it is valid for combining.
2170 One problem is if I3 modifies its output, as opposed to replacing it
2171 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2172 doing so would produce an insn that is not equivalent to the original insns.
2174 Consider:
2176 (set (reg:DI 101) (reg:DI 100))
2177 (set (subreg:SI (reg:DI 101) 0) <foo>)
2179 This is NOT equivalent to:
2181 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2182 (set (reg:DI 101) (reg:DI 100))])
2184 Not only does this modify 100 (in which case it might still be valid
2185 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2187 We can also run into a problem if I2 sets a register that I1
2188 uses and I1 gets directly substituted into I3 (not via I2). In that
2189 case, we would be getting the wrong value of I2DEST into I3, so we
2190 must reject the combination. This case occurs when I2 and I1 both
2191 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2192 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2193 of a SET must prevent combination from occurring. The same situation
2194 can occur for I0, in which case I0_NOT_IN_SRC is set.
2196 Before doing the above check, we first try to expand a field assignment
2197 into a set of logical operations.
2199 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2200 we place a register that is both set and used within I3. If more than one
2201 such register is detected, we fail.
2203 Return 1 if the combination is valid, zero otherwise. */
2205 static int
2206 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2207 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2209 rtx x = *loc;
2211 if (GET_CODE (x) == SET)
2213 rtx set = x ;
2214 rtx dest = SET_DEST (set);
2215 rtx src = SET_SRC (set);
2216 rtx inner_dest = dest;
2217 rtx subdest;
2219 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2220 || GET_CODE (inner_dest) == SUBREG
2221 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2222 inner_dest = XEXP (inner_dest, 0);
2224 /* Check for the case where I3 modifies its output, as discussed
2225 above. We don't want to prevent pseudos from being combined
2226 into the address of a MEM, so only prevent the combination if
2227 i1 or i2 set the same MEM. */
2228 if ((inner_dest != dest &&
2229 (!MEM_P (inner_dest)
2230 || rtx_equal_p (i2dest, inner_dest)
2231 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2232 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2233 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2234 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2235 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2237 /* This is the same test done in can_combine_p except we can't test
2238 all_adjacent; we don't have to, since this instruction will stay
2239 in place, thus we are not considering increasing the lifetime of
2240 INNER_DEST.
2242 Also, if this insn sets a function argument, combining it with
2243 something that might need a spill could clobber a previous
2244 function argument; the all_adjacent test in can_combine_p also
2245 checks this; here, we do a more specific test for this case. */
2247 || (REG_P (inner_dest)
2248 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2249 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2250 GET_MODE (inner_dest)))
2251 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2252 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2253 return 0;
2255 /* If DEST is used in I3, it is being killed in this insn, so
2256 record that for later. We have to consider paradoxical
2257 subregs here, since they kill the whole register, but we
2258 ignore partial subregs, STRICT_LOW_PART, etc.
2259 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2260 STACK_POINTER_REGNUM, since these are always considered to be
2261 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2262 subdest = dest;
2263 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2264 subdest = SUBREG_REG (subdest);
2265 if (pi3dest_killed
2266 && REG_P (subdest)
2267 && reg_referenced_p (subdest, PATTERN (i3))
2268 && REGNO (subdest) != FRAME_POINTER_REGNUM
2269 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2270 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2271 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2272 || (REGNO (subdest) != ARG_POINTER_REGNUM
2273 || ! fixed_regs [REGNO (subdest)]))
2274 && REGNO (subdest) != STACK_POINTER_REGNUM)
2276 if (*pi3dest_killed)
2277 return 0;
2279 *pi3dest_killed = subdest;
2283 else if (GET_CODE (x) == PARALLEL)
2285 int i;
2287 for (i = 0; i < XVECLEN (x, 0); i++)
2288 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2289 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2290 return 0;
2293 return 1;
2296 /* Return 1 if X is an arithmetic expression that contains a multiplication
2297 and division. We don't count multiplications by powers of two here. */
2299 static int
2300 contains_muldiv (rtx x)
2302 switch (GET_CODE (x))
2304 case MOD: case DIV: case UMOD: case UDIV:
2305 return 1;
2307 case MULT:
2308 return ! (CONST_INT_P (XEXP (x, 1))
2309 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2310 default:
2311 if (BINARY_P (x))
2312 return contains_muldiv (XEXP (x, 0))
2313 || contains_muldiv (XEXP (x, 1));
2315 if (UNARY_P (x))
2316 return contains_muldiv (XEXP (x, 0));
2318 return 0;
2322 /* Determine whether INSN can be used in a combination. Return nonzero if
2323 not. This is used in try_combine to detect early some cases where we
2324 can't perform combinations. */
2326 static int
2327 cant_combine_insn_p (rtx_insn *insn)
2329 rtx set;
2330 rtx src, dest;
2332 /* If this isn't really an insn, we can't do anything.
2333 This can occur when flow deletes an insn that it has merged into an
2334 auto-increment address. */
2335 if (!NONDEBUG_INSN_P (insn))
2336 return 1;
2338 /* Never combine loads and stores involving hard regs that are likely
2339 to be spilled. The register allocator can usually handle such
2340 reg-reg moves by tying. If we allow the combiner to make
2341 substitutions of likely-spilled regs, reload might die.
2342 As an exception, we allow combinations involving fixed regs; these are
2343 not available to the register allocator so there's no risk involved. */
2345 set = single_set (insn);
2346 if (! set)
2347 return 0;
2348 src = SET_SRC (set);
2349 dest = SET_DEST (set);
2350 if (GET_CODE (src) == SUBREG)
2351 src = SUBREG_REG (src);
2352 if (GET_CODE (dest) == SUBREG)
2353 dest = SUBREG_REG (dest);
2354 if (REG_P (src) && REG_P (dest)
2355 && ((HARD_REGISTER_P (src)
2356 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2357 #ifdef LEAF_REGISTERS
2358 && ! LEAF_REGISTERS [REGNO (src)])
2359 #else
2361 #endif
2362 || (HARD_REGISTER_P (dest)
2363 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2364 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2365 return 1;
2367 return 0;
2370 struct likely_spilled_retval_info
2372 unsigned regno, nregs;
2373 unsigned mask;
2376 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2377 hard registers that are known to be written to / clobbered in full. */
2378 static void
2379 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2381 struct likely_spilled_retval_info *const info =
2382 (struct likely_spilled_retval_info *) data;
2383 unsigned regno, nregs;
2384 unsigned new_mask;
2386 if (!REG_P (XEXP (set, 0)))
2387 return;
2388 regno = REGNO (x);
2389 if (regno >= info->regno + info->nregs)
2390 return;
2391 nregs = REG_NREGS (x);
2392 if (regno + nregs <= info->regno)
2393 return;
2394 new_mask = (2U << (nregs - 1)) - 1;
2395 if (regno < info->regno)
2396 new_mask >>= info->regno - regno;
2397 else
2398 new_mask <<= regno - info->regno;
2399 info->mask &= ~new_mask;
2402 /* Return nonzero iff part of the return value is live during INSN, and
2403 it is likely spilled. This can happen when more than one insn is needed
2404 to copy the return value, e.g. when we consider to combine into the
2405 second copy insn for a complex value. */
2407 static int
2408 likely_spilled_retval_p (rtx_insn *insn)
2410 rtx_insn *use = BB_END (this_basic_block);
2411 rtx reg;
2412 rtx_insn *p;
2413 unsigned regno, nregs;
2414 /* We assume here that no machine mode needs more than
2415 32 hard registers when the value overlaps with a register
2416 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2417 unsigned mask;
2418 struct likely_spilled_retval_info info;
2420 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2421 return 0;
2422 reg = XEXP (PATTERN (use), 0);
2423 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2424 return 0;
2425 regno = REGNO (reg);
2426 nregs = REG_NREGS (reg);
2427 if (nregs == 1)
2428 return 0;
2429 mask = (2U << (nregs - 1)) - 1;
2431 /* Disregard parts of the return value that are set later. */
2432 info.regno = regno;
2433 info.nregs = nregs;
2434 info.mask = mask;
2435 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2436 if (INSN_P (p))
2437 note_stores (p, likely_spilled_retval_1, &info);
2438 mask = info.mask;
2440 /* Check if any of the (probably) live return value registers is
2441 likely spilled. */
2442 nregs --;
2445 if ((mask & 1 << nregs)
2446 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2447 return 1;
2448 } while (nregs--);
2449 return 0;
2452 /* Adjust INSN after we made a change to its destination.
2454 Changing the destination can invalidate notes that say something about
2455 the results of the insn and a LOG_LINK pointing to the insn. */
2457 static void
2458 adjust_for_new_dest (rtx_insn *insn)
2460 /* For notes, be conservative and simply remove them. */
2461 remove_reg_equal_equiv_notes (insn);
2463 /* The new insn will have a destination that was previously the destination
2464 of an insn just above it. Call distribute_links to make a LOG_LINK from
2465 the next use of that destination. */
2467 rtx set = single_set (insn);
2468 gcc_assert (set);
2470 rtx reg = SET_DEST (set);
2472 while (GET_CODE (reg) == ZERO_EXTRACT
2473 || GET_CODE (reg) == STRICT_LOW_PART
2474 || GET_CODE (reg) == SUBREG)
2475 reg = XEXP (reg, 0);
2476 gcc_assert (REG_P (reg));
2478 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2480 df_insn_rescan (insn);
2483 /* Return TRUE if combine can reuse reg X in mode MODE.
2484 ADDED_SETS is nonzero if the original set is still required. */
2485 static bool
2486 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2488 unsigned int regno;
2490 if (!REG_P (x))
2491 return false;
2493 /* Don't change between modes with different underlying register sizes,
2494 since this could lead to invalid subregs. */
2495 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2496 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2497 return false;
2499 regno = REGNO (x);
2500 /* Allow hard registers if the new mode is legal, and occupies no more
2501 registers than the old mode. */
2502 if (regno < FIRST_PSEUDO_REGISTER)
2503 return (targetm.hard_regno_mode_ok (regno, mode)
2504 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2506 /* Or a pseudo that is only used once. */
2507 return (regno < reg_n_sets_max
2508 && REG_N_SETS (regno) == 1
2509 && !added_sets
2510 && !REG_USERVAR_P (x));
2514 /* Check whether X, the destination of a set, refers to part of
2515 the register specified by REG. */
2517 static bool
2518 reg_subword_p (rtx x, rtx reg)
2520 /* Check that reg is an integer mode register. */
2521 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2522 return false;
2524 if (GET_CODE (x) == STRICT_LOW_PART
2525 || GET_CODE (x) == ZERO_EXTRACT)
2526 x = XEXP (x, 0);
2528 return GET_CODE (x) == SUBREG
2529 && SUBREG_REG (x) == reg
2530 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2533 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2534 Note that the INSN should be deleted *after* removing dead edges, so
2535 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2536 but not for a (set (pc) (label_ref FOO)). */
2538 static void
2539 update_cfg_for_uncondjump (rtx_insn *insn)
2541 basic_block bb = BLOCK_FOR_INSN (insn);
2542 gcc_assert (BB_END (bb) == insn);
2544 purge_dead_edges (bb);
2546 delete_insn (insn);
2547 if (EDGE_COUNT (bb->succs) == 1)
2549 rtx_insn *insn;
2551 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2553 /* Remove barriers from the footer if there are any. */
2554 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2555 if (BARRIER_P (insn))
2557 if (PREV_INSN (insn))
2558 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2559 else
2560 BB_FOOTER (bb) = NEXT_INSN (insn);
2561 if (NEXT_INSN (insn))
2562 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2564 else if (LABEL_P (insn))
2565 break;
2569 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2570 by an arbitrary number of CLOBBERs. */
2571 static bool
2572 is_parallel_of_n_reg_sets (rtx pat, int n)
2574 if (GET_CODE (pat) != PARALLEL)
2575 return false;
2577 int len = XVECLEN (pat, 0);
2578 if (len < n)
2579 return false;
2581 int i;
2582 for (i = 0; i < n; i++)
2583 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2584 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2585 return false;
2586 for ( ; i < len; i++)
2587 switch (GET_CODE (XVECEXP (pat, 0, i)))
2589 case CLOBBER:
2590 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2591 return false;
2592 break;
2593 default:
2594 return false;
2596 return true;
2599 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2600 CLOBBERs), can be split into individual SETs in that order, without
2601 changing semantics. */
2602 static bool
2603 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2605 if (!insn_nothrow_p (insn))
2606 return false;
2608 rtx pat = PATTERN (insn);
2610 int i, j;
2611 for (i = 0; i < n; i++)
2613 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2614 return false;
2616 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2618 for (j = i + 1; j < n; j++)
2619 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2620 return false;
2623 return true;
2626 /* Return whether X is just a single set, with the source
2627 a general_operand. */
2628 static bool
2629 is_just_move (rtx x)
2631 if (INSN_P (x))
2632 x = PATTERN (x);
2634 return (GET_CODE (x) == SET && general_operand (SET_SRC (x), VOIDmode));
2637 /* Callback function to count autoincs. */
2639 static int
2640 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2642 (*((int *) arg))++;
2644 return 0;
2647 /* Try to combine the insns I0, I1 and I2 into I3.
2648 Here I0, I1 and I2 appear earlier than I3.
2649 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2652 If we are combining more than two insns and the resulting insn is not
2653 recognized, try splitting it into two insns. If that happens, I2 and I3
2654 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2655 Otherwise, I0, I1 and I2 are pseudo-deleted.
2657 Return 0 if the combination does not work. Then nothing is changed.
2658 If we did the combination, return the insn at which combine should
2659 resume scanning.
2661 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2662 new direct jump instruction.
2664 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2665 been I3 passed to an earlier try_combine within the same basic
2666 block. */
2668 static rtx_insn *
2669 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2670 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2672 /* New patterns for I3 and I2, respectively. */
2673 rtx newpat, newi2pat = 0;
2674 rtvec newpat_vec_with_clobbers = 0;
2675 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2676 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2677 dead. */
2678 int added_sets_0, added_sets_1, added_sets_2;
2679 /* Total number of SETs to put into I3. */
2680 int total_sets;
2681 /* Nonzero if I2's or I1's body now appears in I3. */
2682 int i2_is_used = 0, i1_is_used = 0;
2683 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2684 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2685 /* Contains I3 if the destination of I3 is used in its source, which means
2686 that the old life of I3 is being killed. If that usage is placed into
2687 I2 and not in I3, a REG_DEAD note must be made. */
2688 rtx i3dest_killed = 0;
2689 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2690 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2691 /* Copy of SET_SRC of I1 and I0, if needed. */
2692 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2693 /* Set if I2DEST was reused as a scratch register. */
2694 bool i2scratch = false;
2695 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2696 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2697 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2698 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2699 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2700 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2701 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2702 /* Notes that must be added to REG_NOTES in I3 and I2. */
2703 rtx new_i3_notes, new_i2_notes;
2704 /* Notes that we substituted I3 into I2 instead of the normal case. */
2705 int i3_subst_into_i2 = 0;
2706 /* Notes that I1, I2 or I3 is a MULT operation. */
2707 int have_mult = 0;
2708 int swap_i2i3 = 0;
2709 int split_i2i3 = 0;
2710 int changed_i3_dest = 0;
2711 bool i2_was_move = false, i3_was_move = false;
2712 int n_auto_inc = 0;
2714 int maxreg;
2715 rtx_insn *temp_insn;
2716 rtx temp_expr;
2717 struct insn_link *link;
2718 rtx other_pat = 0;
2719 rtx new_other_notes;
2720 int i;
2721 scalar_int_mode dest_mode, temp_mode;
2723 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2724 never be). */
2725 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2726 return 0;
2728 /* Only try four-insn combinations when there's high likelihood of
2729 success. Look for simple insns, such as loads of constants or
2730 binary operations involving a constant. */
2731 if (i0)
2733 int i;
2734 int ngood = 0;
2735 int nshift = 0;
2736 rtx set0, set3;
2738 if (!flag_expensive_optimizations)
2739 return 0;
2741 for (i = 0; i < 4; i++)
2743 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2744 rtx set = single_set (insn);
2745 rtx src;
2746 if (!set)
2747 continue;
2748 src = SET_SRC (set);
2749 if (CONSTANT_P (src))
2751 ngood += 2;
2752 break;
2754 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2755 ngood++;
2756 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2757 || GET_CODE (src) == LSHIFTRT)
2758 nshift++;
2761 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2762 are likely manipulating its value. Ideally we'll be able to combine
2763 all four insns into a bitfield insertion of some kind.
2765 Note the source in I0 might be inside a sign/zero extension and the
2766 memory modes in I0 and I3 might be different. So extract the address
2767 from the destination of I3 and search for it in the source of I0.
2769 In the event that there's a match but the source/dest do not actually
2770 refer to the same memory, the worst that happens is we try some
2771 combinations that we wouldn't have otherwise. */
2772 if ((set0 = single_set (i0))
2773 /* Ensure the source of SET0 is a MEM, possibly buried inside
2774 an extension. */
2775 && (GET_CODE (SET_SRC (set0)) == MEM
2776 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2777 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2778 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2779 && (set3 = single_set (i3))
2780 /* Ensure the destination of SET3 is a MEM. */
2781 && GET_CODE (SET_DEST (set3)) == MEM
2782 /* Would it be better to extract the base address for the MEM
2783 in SET3 and look for that? I don't have cases where it matters
2784 but I could envision such cases. */
2785 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2786 ngood += 2;
2788 if (ngood < 2 && nshift < 2)
2789 return 0;
2792 /* Exit early if one of the insns involved can't be used for
2793 combinations. */
2794 if (CALL_P (i2)
2795 || (i1 && CALL_P (i1))
2796 || (i0 && CALL_P (i0))
2797 || cant_combine_insn_p (i3)
2798 || cant_combine_insn_p (i2)
2799 || (i1 && cant_combine_insn_p (i1))
2800 || (i0 && cant_combine_insn_p (i0))
2801 || likely_spilled_retval_p (i3))
2802 return 0;
2804 combine_attempts++;
2805 undobuf.other_insn = 0;
2807 /* Reset the hard register usage information. */
2808 CLEAR_HARD_REG_SET (newpat_used_regs);
2810 if (dump_file && (dump_flags & TDF_DETAILS))
2812 if (i0)
2813 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2814 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2815 else if (i1)
2816 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2817 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2818 else
2819 fprintf (dump_file, "\nTrying %d -> %d:\n",
2820 INSN_UID (i2), INSN_UID (i3));
2822 if (i0)
2823 dump_insn_slim (dump_file, i0);
2824 if (i1)
2825 dump_insn_slim (dump_file, i1);
2826 dump_insn_slim (dump_file, i2);
2827 dump_insn_slim (dump_file, i3);
2830 /* If multiple insns feed into one of I2 or I3, they can be in any
2831 order. To simplify the code below, reorder them in sequence. */
2832 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2833 std::swap (i0, i2);
2834 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2835 std::swap (i0, i1);
2836 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2837 std::swap (i1, i2);
2839 added_links_insn = 0;
2840 added_notes_insn = 0;
2842 /* First check for one important special case that the code below will
2843 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2844 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2845 we may be able to replace that destination with the destination of I3.
2846 This occurs in the common code where we compute both a quotient and
2847 remainder into a structure, in which case we want to do the computation
2848 directly into the structure to avoid register-register copies.
2850 Note that this case handles both multiple sets in I2 and also cases
2851 where I2 has a number of CLOBBERs inside the PARALLEL.
2853 We make very conservative checks below and only try to handle the
2854 most common cases of this. For example, we only handle the case
2855 where I2 and I3 are adjacent to avoid making difficult register
2856 usage tests. */
2858 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2859 && REG_P (SET_SRC (PATTERN (i3)))
2860 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2861 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2862 && GET_CODE (PATTERN (i2)) == PARALLEL
2863 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2864 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2865 below would need to check what is inside (and reg_overlap_mentioned_p
2866 doesn't support those codes anyway). Don't allow those destinations;
2867 the resulting insn isn't likely to be recognized anyway. */
2868 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2869 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2870 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2871 SET_DEST (PATTERN (i3)))
2872 && next_active_insn (i2) == i3)
2874 rtx p2 = PATTERN (i2);
2876 /* Make sure that the destination of I3,
2877 which we are going to substitute into one output of I2,
2878 is not used within another output of I2. We must avoid making this:
2879 (parallel [(set (mem (reg 69)) ...)
2880 (set (reg 69) ...)])
2881 which is not well-defined as to order of actions.
2882 (Besides, reload can't handle output reloads for this.)
2884 The problem can also happen if the dest of I3 is a memory ref,
2885 if another dest in I2 is an indirect memory ref.
2887 Neither can this PARALLEL be an asm. We do not allow combining
2888 that usually (see can_combine_p), so do not here either. */
2889 bool ok = true;
2890 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2892 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2893 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2894 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2895 SET_DEST (XVECEXP (p2, 0, i))))
2896 ok = false;
2897 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2898 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2899 ok = false;
2902 if (ok)
2903 for (i = 0; i < XVECLEN (p2, 0); i++)
2904 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2905 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2907 combine_merges++;
2909 subst_insn = i3;
2910 subst_low_luid = DF_INSN_LUID (i2);
2912 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2913 i2src = SET_SRC (XVECEXP (p2, 0, i));
2914 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2915 i2dest_killed = dead_or_set_p (i2, i2dest);
2917 /* Replace the dest in I2 with our dest and make the resulting
2918 insn the new pattern for I3. Then skip to where we validate
2919 the pattern. Everything was set up above. */
2920 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2921 newpat = p2;
2922 i3_subst_into_i2 = 1;
2923 goto validate_replacement;
2927 /* If I2 is setting a pseudo to a constant and I3 is setting some
2928 sub-part of it to another constant, merge them by making a new
2929 constant. */
2930 if (i1 == 0
2931 && (temp_expr = single_set (i2)) != 0
2932 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2933 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2934 && GET_CODE (PATTERN (i3)) == SET
2935 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2936 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2938 rtx dest = SET_DEST (PATTERN (i3));
2939 rtx temp_dest = SET_DEST (temp_expr);
2940 int offset = -1;
2941 int width = 0;
2943 if (GET_CODE (dest) == ZERO_EXTRACT)
2945 if (CONST_INT_P (XEXP (dest, 1))
2946 && CONST_INT_P (XEXP (dest, 2))
2947 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2948 &dest_mode))
2950 width = INTVAL (XEXP (dest, 1));
2951 offset = INTVAL (XEXP (dest, 2));
2952 dest = XEXP (dest, 0);
2953 if (BITS_BIG_ENDIAN)
2954 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2957 else
2959 if (GET_CODE (dest) == STRICT_LOW_PART)
2960 dest = XEXP (dest, 0);
2961 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2963 width = GET_MODE_PRECISION (dest_mode);
2964 offset = 0;
2968 if (offset >= 0)
2970 /* If this is the low part, we're done. */
2971 if (subreg_lowpart_p (dest))
2973 /* Handle the case where inner is twice the size of outer. */
2974 else if (GET_MODE_PRECISION (temp_mode)
2975 == 2 * GET_MODE_PRECISION (dest_mode))
2976 offset += GET_MODE_PRECISION (dest_mode);
2977 /* Otherwise give up for now. */
2978 else
2979 offset = -1;
2982 if (offset >= 0)
2984 rtx inner = SET_SRC (PATTERN (i3));
2985 rtx outer = SET_SRC (temp_expr);
2987 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2988 rtx_mode_t (inner, dest_mode),
2989 offset, width);
2991 combine_merges++;
2992 subst_insn = i3;
2993 subst_low_luid = DF_INSN_LUID (i2);
2994 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2995 i2dest = temp_dest;
2996 i2dest_killed = dead_or_set_p (i2, i2dest);
2998 /* Replace the source in I2 with the new constant and make the
2999 resulting insn the new pattern for I3. Then skip to where we
3000 validate the pattern. Everything was set up above. */
3001 SUBST (SET_SRC (temp_expr),
3002 immed_wide_int_const (o, temp_mode));
3004 newpat = PATTERN (i2);
3006 /* The dest of I3 has been replaced with the dest of I2. */
3007 changed_i3_dest = 1;
3008 goto validate_replacement;
3012 /* If we have no I1 and I2 looks like:
3013 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
3014 (set Y OP)])
3015 make up a dummy I1 that is
3016 (set Y OP)
3017 and change I2 to be
3018 (set (reg:CC X) (compare:CC Y (const_int 0)))
3020 (We can ignore any trailing CLOBBERs.)
3022 This undoes a previous combination and allows us to match a branch-and-
3023 decrement insn. */
3025 if (!HAVE_cc0 && i1 == 0
3026 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3027 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
3028 == MODE_CC)
3029 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
3030 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
3031 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
3032 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
3033 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3034 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3036 /* We make I1 with the same INSN_UID as I2. This gives it
3037 the same DF_INSN_LUID for value tracking. Our fake I1 will
3038 never appear in the insn stream so giving it the same INSN_UID
3039 as I2 will not cause a problem. */
3041 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3042 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3043 -1, NULL_RTX);
3044 INSN_UID (i1) = INSN_UID (i2);
3046 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3047 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3048 SET_DEST (PATTERN (i1)));
3049 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3050 SUBST_LINK (LOG_LINKS (i2),
3051 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3054 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3055 make those two SETs separate I1 and I2 insns, and make an I0 that is
3056 the original I1. */
3057 if (!HAVE_cc0 && i0 == 0
3058 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3059 && can_split_parallel_of_n_reg_sets (i2, 2)
3060 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3061 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3062 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3063 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3065 /* If there is no I1, there is no I0 either. */
3066 i0 = i1;
3068 /* We make I1 with the same INSN_UID as I2. This gives it
3069 the same DF_INSN_LUID for value tracking. Our fake I1 will
3070 never appear in the insn stream so giving it the same INSN_UID
3071 as I2 will not cause a problem. */
3073 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3074 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3075 -1, NULL_RTX);
3076 INSN_UID (i1) = INSN_UID (i2);
3078 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3081 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3082 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3084 if (dump_file && (dump_flags & TDF_DETAILS))
3085 fprintf (dump_file, "Can't combine i2 into i3\n");
3086 undo_all ();
3087 return 0;
3089 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3091 if (dump_file && (dump_flags & TDF_DETAILS))
3092 fprintf (dump_file, "Can't combine i1 into i3\n");
3093 undo_all ();
3094 return 0;
3096 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3098 if (dump_file && (dump_flags & TDF_DETAILS))
3099 fprintf (dump_file, "Can't combine i0 into i3\n");
3100 undo_all ();
3101 return 0;
3104 /* Record whether i2 and i3 are trivial moves. */
3105 i2_was_move = is_just_move (i2);
3106 i3_was_move = is_just_move (i3);
3108 /* Record whether I2DEST is used in I2SRC and similarly for the other
3109 cases. Knowing this will help in register status updating below. */
3110 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3111 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3112 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3113 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3114 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3115 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3116 i2dest_killed = dead_or_set_p (i2, i2dest);
3117 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3118 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3120 /* For the earlier insns, determine which of the subsequent ones they
3121 feed. */
3122 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3123 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3124 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3125 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3126 && reg_overlap_mentioned_p (i0dest, i2src))));
3128 /* Ensure that I3's pattern can be the destination of combines. */
3129 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3130 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3131 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3132 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3133 &i3dest_killed))
3135 undo_all ();
3136 return 0;
3139 /* See if any of the insns is a MULT operation. Unless one is, we will
3140 reject a combination that is, since it must be slower. Be conservative
3141 here. */
3142 if (GET_CODE (i2src) == MULT
3143 || (i1 != 0 && GET_CODE (i1src) == MULT)
3144 || (i0 != 0 && GET_CODE (i0src) == MULT)
3145 || (GET_CODE (PATTERN (i3)) == SET
3146 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3147 have_mult = 1;
3149 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3150 We used to do this EXCEPT in one case: I3 has a post-inc in an
3151 output operand. However, that exception can give rise to insns like
3152 mov r3,(r3)+
3153 which is a famous insn on the PDP-11 where the value of r3 used as the
3154 source was model-dependent. Avoid this sort of thing. */
3156 #if 0
3157 if (!(GET_CODE (PATTERN (i3)) == SET
3158 && REG_P (SET_SRC (PATTERN (i3)))
3159 && MEM_P (SET_DEST (PATTERN (i3)))
3160 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3161 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3162 /* It's not the exception. */
3163 #endif
3164 if (AUTO_INC_DEC)
3166 rtx link;
3167 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3168 if (REG_NOTE_KIND (link) == REG_INC
3169 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3170 || (i1 != 0
3171 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3173 undo_all ();
3174 return 0;
3178 /* See if the SETs in I1 or I2 need to be kept around in the merged
3179 instruction: whenever the value set there is still needed past I3.
3180 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3182 For the SET in I1, we have two cases: if I1 and I2 independently feed
3183 into I3, the set in I1 needs to be kept around unless I1DEST dies
3184 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3185 in I1 needs to be kept around unless I1DEST dies or is set in either
3186 I2 or I3. The same considerations apply to I0. */
3188 added_sets_2 = !dead_or_set_p (i3, i2dest);
3190 if (i1)
3191 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3192 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3193 else
3194 added_sets_1 = 0;
3196 if (i0)
3197 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3198 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3199 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3200 && dead_or_set_p (i2, i0dest)));
3201 else
3202 added_sets_0 = 0;
3204 /* We are about to copy insns for the case where they need to be kept
3205 around. Check that they can be copied in the merged instruction. */
3207 if (targetm.cannot_copy_insn_p
3208 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3209 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3210 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3212 undo_all ();
3213 return 0;
3216 /* Count how many auto_inc expressions there were in the original insns;
3217 we need to have the same number in the resulting patterns. */
3219 if (i0)
3220 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3221 if (i1)
3222 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3223 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3224 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3226 /* If the set in I2 needs to be kept around, we must make a copy of
3227 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3228 PATTERN (I2), we are only substituting for the original I1DEST, not into
3229 an already-substituted copy. This also prevents making self-referential
3230 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3231 I2DEST. */
3233 if (added_sets_2)
3235 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3236 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3237 else
3238 i2pat = copy_rtx (PATTERN (i2));
3241 if (added_sets_1)
3243 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3244 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3245 else
3246 i1pat = copy_rtx (PATTERN (i1));
3249 if (added_sets_0)
3251 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3252 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3253 else
3254 i0pat = copy_rtx (PATTERN (i0));
3257 combine_merges++;
3259 /* Substitute in the latest insn for the regs set by the earlier ones. */
3261 maxreg = max_reg_num ();
3263 subst_insn = i3;
3265 /* Many machines that don't use CC0 have insns that can both perform an
3266 arithmetic operation and set the condition code. These operations will
3267 be represented as a PARALLEL with the first element of the vector
3268 being a COMPARE of an arithmetic operation with the constant zero.
3269 The second element of the vector will set some pseudo to the result
3270 of the same arithmetic operation. If we simplify the COMPARE, we won't
3271 match such a pattern and so will generate an extra insn. Here we test
3272 for this case, where both the comparison and the operation result are
3273 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3274 I2SRC. Later we will make the PARALLEL that contains I2. */
3276 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3277 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3278 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3279 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3281 rtx newpat_dest;
3282 rtx *cc_use_loc = NULL;
3283 rtx_insn *cc_use_insn = NULL;
3284 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3285 machine_mode compare_mode, orig_compare_mode;
3286 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3287 scalar_int_mode mode;
3289 newpat = PATTERN (i3);
3290 newpat_dest = SET_DEST (newpat);
3291 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3293 if (undobuf.other_insn == 0
3294 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3295 &cc_use_insn)))
3297 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3298 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3299 compare_code = simplify_compare_const (compare_code, mode,
3300 op0, &op1);
3301 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3304 /* Do the rest only if op1 is const0_rtx, which may be the
3305 result of simplification. */
3306 if (op1 == const0_rtx)
3308 /* If a single use of the CC is found, prepare to modify it
3309 when SELECT_CC_MODE returns a new CC-class mode, or when
3310 the above simplify_compare_const() returned a new comparison
3311 operator. undobuf.other_insn is assigned the CC use insn
3312 when modifying it. */
3313 if (cc_use_loc)
3315 #ifdef SELECT_CC_MODE
3316 machine_mode new_mode
3317 = SELECT_CC_MODE (compare_code, op0, op1);
3318 if (new_mode != orig_compare_mode
3319 && can_change_dest_mode (SET_DEST (newpat),
3320 added_sets_2, new_mode))
3322 unsigned int regno = REGNO (newpat_dest);
3323 compare_mode = new_mode;
3324 if (regno < FIRST_PSEUDO_REGISTER)
3325 newpat_dest = gen_rtx_REG (compare_mode, regno);
3326 else
3328 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3329 newpat_dest = regno_reg_rtx[regno];
3332 #endif
3333 /* Cases for modifying the CC-using comparison. */
3334 if (compare_code != orig_compare_code
3335 /* ??? Do we need to verify the zero rtx? */
3336 && XEXP (*cc_use_loc, 1) == const0_rtx)
3338 /* Replace cc_use_loc with entire new RTX. */
3339 SUBST (*cc_use_loc,
3340 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3341 newpat_dest, const0_rtx));
3342 undobuf.other_insn = cc_use_insn;
3344 else if (compare_mode != orig_compare_mode)
3346 /* Just replace the CC reg with a new mode. */
3347 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3348 undobuf.other_insn = cc_use_insn;
3352 /* Now we modify the current newpat:
3353 First, SET_DEST(newpat) is updated if the CC mode has been
3354 altered. For targets without SELECT_CC_MODE, this should be
3355 optimized away. */
3356 if (compare_mode != orig_compare_mode)
3357 SUBST (SET_DEST (newpat), newpat_dest);
3358 /* This is always done to propagate i2src into newpat. */
3359 SUBST (SET_SRC (newpat),
3360 gen_rtx_COMPARE (compare_mode, op0, op1));
3361 /* Create new version of i2pat if needed; the below PARALLEL
3362 creation needs this to work correctly. */
3363 if (! rtx_equal_p (i2src, op0))
3364 i2pat = gen_rtx_SET (i2dest, op0);
3365 i2_is_used = 1;
3369 if (i2_is_used == 0)
3371 /* It is possible that the source of I2 or I1 may be performing
3372 an unneeded operation, such as a ZERO_EXTEND of something
3373 that is known to have the high part zero. Handle that case
3374 by letting subst look at the inner insns.
3376 Another way to do this would be to have a function that tries
3377 to simplify a single insn instead of merging two or more
3378 insns. We don't do this because of the potential of infinite
3379 loops and because of the potential extra memory required.
3380 However, doing it the way we are is a bit of a kludge and
3381 doesn't catch all cases.
3383 But only do this if -fexpensive-optimizations since it slows
3384 things down and doesn't usually win.
3386 This is not done in the COMPARE case above because the
3387 unmodified I2PAT is used in the PARALLEL and so a pattern
3388 with a modified I2SRC would not match. */
3390 if (flag_expensive_optimizations)
3392 /* Pass pc_rtx so no substitutions are done, just
3393 simplifications. */
3394 if (i1)
3396 subst_low_luid = DF_INSN_LUID (i1);
3397 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3400 subst_low_luid = DF_INSN_LUID (i2);
3401 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3404 n_occurrences = 0; /* `subst' counts here */
3405 subst_low_luid = DF_INSN_LUID (i2);
3407 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3408 copy of I2SRC each time we substitute it, in order to avoid creating
3409 self-referential RTL when we will be substituting I1SRC for I1DEST
3410 later. Likewise if I0 feeds into I2, either directly or indirectly
3411 through I1, and I0DEST is in I0SRC. */
3412 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3413 (i1_feeds_i2_n && i1dest_in_i1src)
3414 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3415 && i0dest_in_i0src));
3416 substed_i2 = 1;
3418 /* Record whether I2's body now appears within I3's body. */
3419 i2_is_used = n_occurrences;
3422 /* If we already got a failure, don't try to do more. Otherwise, try to
3423 substitute I1 if we have it. */
3425 if (i1 && GET_CODE (newpat) != CLOBBER)
3427 /* Before we can do this substitution, we must redo the test done
3428 above (see detailed comments there) that ensures I1DEST isn't
3429 mentioned in any SETs in NEWPAT that are field assignments. */
3430 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3431 0, 0, 0))
3433 undo_all ();
3434 return 0;
3437 n_occurrences = 0;
3438 subst_low_luid = DF_INSN_LUID (i1);
3440 /* If the following substitution will modify I1SRC, make a copy of it
3441 for the case where it is substituted for I1DEST in I2PAT later. */
3442 if (added_sets_2 && i1_feeds_i2_n)
3443 i1src_copy = copy_rtx (i1src);
3445 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3446 copy of I1SRC each time we substitute it, in order to avoid creating
3447 self-referential RTL when we will be substituting I0SRC for I0DEST
3448 later. */
3449 newpat = subst (newpat, i1dest, i1src, 0, 0,
3450 i0_feeds_i1_n && i0dest_in_i0src);
3451 substed_i1 = 1;
3453 /* Record whether I1's body now appears within I3's body. */
3454 i1_is_used = n_occurrences;
3457 /* Likewise for I0 if we have it. */
3459 if (i0 && GET_CODE (newpat) != CLOBBER)
3461 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3462 0, 0, 0))
3464 undo_all ();
3465 return 0;
3468 /* If the following substitution will modify I0SRC, make a copy of it
3469 for the case where it is substituted for I0DEST in I1PAT later. */
3470 if (added_sets_1 && i0_feeds_i1_n)
3471 i0src_copy = copy_rtx (i0src);
3472 /* And a copy for I0DEST in I2PAT substitution. */
3473 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3474 || (i0_feeds_i2_n)))
3475 i0src_copy2 = copy_rtx (i0src);
3477 n_occurrences = 0;
3478 subst_low_luid = DF_INSN_LUID (i0);
3479 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3480 substed_i0 = 1;
3483 if (n_auto_inc)
3485 int new_n_auto_inc = 0;
3486 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3488 if (n_auto_inc != new_n_auto_inc)
3490 if (dump_file && (dump_flags & TDF_DETAILS))
3491 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3492 undo_all ();
3493 return 0;
3497 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3498 to count all the ways that I2SRC and I1SRC can be used. */
3499 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3500 && i2_is_used + added_sets_2 > 1)
3501 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3502 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3503 > 1))
3504 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3505 && (n_occurrences + added_sets_0
3506 + (added_sets_1 && i0_feeds_i1_n)
3507 + (added_sets_2 && i0_feeds_i2_n)
3508 > 1))
3509 /* Fail if we tried to make a new register. */
3510 || max_reg_num () != maxreg
3511 /* Fail if we couldn't do something and have a CLOBBER. */
3512 || GET_CODE (newpat) == CLOBBER
3513 /* Fail if this new pattern is a MULT and we didn't have one before
3514 at the outer level. */
3515 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3516 && ! have_mult))
3518 undo_all ();
3519 return 0;
3522 /* If the actions of the earlier insns must be kept
3523 in addition to substituting them into the latest one,
3524 we must make a new PARALLEL for the latest insn
3525 to hold additional the SETs. */
3527 if (added_sets_0 || added_sets_1 || added_sets_2)
3529 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3530 combine_extras++;
3532 if (GET_CODE (newpat) == PARALLEL)
3534 rtvec old = XVEC (newpat, 0);
3535 total_sets = XVECLEN (newpat, 0) + extra_sets;
3536 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3537 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3538 sizeof (old->elem[0]) * old->num_elem);
3540 else
3542 rtx old = newpat;
3543 total_sets = 1 + extra_sets;
3544 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3545 XVECEXP (newpat, 0, 0) = old;
3548 if (added_sets_0)
3549 XVECEXP (newpat, 0, --total_sets) = i0pat;
3551 if (added_sets_1)
3553 rtx t = i1pat;
3554 if (i0_feeds_i1_n)
3555 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3557 XVECEXP (newpat, 0, --total_sets) = t;
3559 if (added_sets_2)
3561 rtx t = i2pat;
3562 if (i1_feeds_i2_n)
3563 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3564 i0_feeds_i1_n && i0dest_in_i0src);
3565 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3566 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3568 XVECEXP (newpat, 0, --total_sets) = t;
3572 validate_replacement:
3574 /* Note which hard regs this insn has as inputs. */
3575 mark_used_regs_combine (newpat);
3577 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3578 consider splitting this pattern, we might need these clobbers. */
3579 if (i1 && GET_CODE (newpat) == PARALLEL
3580 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3582 int len = XVECLEN (newpat, 0);
3584 newpat_vec_with_clobbers = rtvec_alloc (len);
3585 for (i = 0; i < len; i++)
3586 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3589 /* We have recognized nothing yet. */
3590 insn_code_number = -1;
3592 /* See if this is a PARALLEL of two SETs where one SET's destination is
3593 a register that is unused and this isn't marked as an instruction that
3594 might trap in an EH region. In that case, we just need the other SET.
3595 We prefer this over the PARALLEL.
3597 This can occur when simplifying a divmod insn. We *must* test for this
3598 case here because the code below that splits two independent SETs doesn't
3599 handle this case correctly when it updates the register status.
3601 It's pointless doing this if we originally had two sets, one from
3602 i3, and one from i2. Combining then splitting the parallel results
3603 in the original i2 again plus an invalid insn (which we delete).
3604 The net effect is only to move instructions around, which makes
3605 debug info less accurate.
3607 If the remaining SET came from I2 its destination should not be used
3608 between I2 and I3. See PR82024. */
3610 if (!(added_sets_2 && i1 == 0)
3611 && is_parallel_of_n_reg_sets (newpat, 2)
3612 && asm_noperands (newpat) < 0)
3614 rtx set0 = XVECEXP (newpat, 0, 0);
3615 rtx set1 = XVECEXP (newpat, 0, 1);
3616 rtx oldpat = newpat;
3618 if (((REG_P (SET_DEST (set1))
3619 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3620 || (GET_CODE (SET_DEST (set1)) == SUBREG
3621 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3622 && insn_nothrow_p (i3)
3623 && !side_effects_p (SET_SRC (set1)))
3625 newpat = set0;
3626 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3629 else if (((REG_P (SET_DEST (set0))
3630 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3631 || (GET_CODE (SET_DEST (set0)) == SUBREG
3632 && find_reg_note (i3, REG_UNUSED,
3633 SUBREG_REG (SET_DEST (set0)))))
3634 && insn_nothrow_p (i3)
3635 && !side_effects_p (SET_SRC (set0)))
3637 rtx dest = SET_DEST (set1);
3638 if (GET_CODE (dest) == SUBREG)
3639 dest = SUBREG_REG (dest);
3640 if (!reg_used_between_p (dest, i2, i3))
3642 newpat = set1;
3643 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3645 if (insn_code_number >= 0)
3646 changed_i3_dest = 1;
3650 if (insn_code_number < 0)
3651 newpat = oldpat;
3654 /* Is the result of combination a valid instruction? */
3655 if (insn_code_number < 0)
3656 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3658 /* If we were combining three insns and the result is a simple SET
3659 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3660 insns. There are two ways to do this. It can be split using a
3661 machine-specific method (like when you have an addition of a large
3662 constant) or by combine in the function find_split_point. */
3664 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3665 && asm_noperands (newpat) < 0)
3667 rtx parallel, *split;
3668 rtx_insn *m_split_insn;
3670 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3671 use I2DEST as a scratch register will help. In the latter case,
3672 convert I2DEST to the mode of the source of NEWPAT if we can. */
3674 m_split_insn = combine_split_insns (newpat, i3);
3676 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3677 inputs of NEWPAT. */
3679 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3680 possible to try that as a scratch reg. This would require adding
3681 more code to make it work though. */
3683 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3685 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3687 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3688 (temporarily, until we are committed to this instruction
3689 combination) does not work: for example, any call to nonzero_bits
3690 on the register (from a splitter in the MD file, for example)
3691 will get the old information, which is invalid.
3693 Since nowadays we can create registers during combine just fine,
3694 we should just create a new one here, not reuse i2dest. */
3696 /* First try to split using the original register as a
3697 scratch register. */
3698 parallel = gen_rtx_PARALLEL (VOIDmode,
3699 gen_rtvec (2, newpat,
3700 gen_rtx_CLOBBER (VOIDmode,
3701 i2dest)));
3702 m_split_insn = combine_split_insns (parallel, i3);
3704 /* If that didn't work, try changing the mode of I2DEST if
3705 we can. */
3706 if (m_split_insn == 0
3707 && new_mode != GET_MODE (i2dest)
3708 && new_mode != VOIDmode
3709 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3711 machine_mode old_mode = GET_MODE (i2dest);
3712 rtx ni2dest;
3714 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3715 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3716 else
3718 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3719 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3722 parallel = (gen_rtx_PARALLEL
3723 (VOIDmode,
3724 gen_rtvec (2, newpat,
3725 gen_rtx_CLOBBER (VOIDmode,
3726 ni2dest))));
3727 m_split_insn = combine_split_insns (parallel, i3);
3729 if (m_split_insn == 0
3730 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3732 struct undo *buf;
3734 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3735 buf = undobuf.undos;
3736 undobuf.undos = buf->next;
3737 buf->next = undobuf.frees;
3738 undobuf.frees = buf;
3742 i2scratch = m_split_insn != 0;
3745 /* If recog_for_combine has discarded clobbers, try to use them
3746 again for the split. */
3747 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3749 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3750 m_split_insn = combine_split_insns (parallel, i3);
3753 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3755 rtx m_split_pat = PATTERN (m_split_insn);
3756 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3757 if (insn_code_number >= 0)
3758 newpat = m_split_pat;
3760 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3761 && (next_nonnote_nondebug_insn (i2) == i3
3762 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3764 rtx i2set, i3set;
3765 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3766 newi2pat = PATTERN (m_split_insn);
3768 i3set = single_set (NEXT_INSN (m_split_insn));
3769 i2set = single_set (m_split_insn);
3771 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3773 /* If I2 or I3 has multiple SETs, we won't know how to track
3774 register status, so don't use these insns. If I2's destination
3775 is used between I2 and I3, we also can't use these insns. */
3777 if (i2_code_number >= 0 && i2set && i3set
3778 && (next_nonnote_nondebug_insn (i2) == i3
3779 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3780 insn_code_number = recog_for_combine (&newi3pat, i3,
3781 &new_i3_notes);
3782 if (insn_code_number >= 0)
3783 newpat = newi3pat;
3785 /* It is possible that both insns now set the destination of I3.
3786 If so, we must show an extra use of it. */
3788 if (insn_code_number >= 0)
3790 rtx new_i3_dest = SET_DEST (i3set);
3791 rtx new_i2_dest = SET_DEST (i2set);
3793 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3794 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3795 || GET_CODE (new_i3_dest) == SUBREG)
3796 new_i3_dest = XEXP (new_i3_dest, 0);
3798 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3799 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3800 || GET_CODE (new_i2_dest) == SUBREG)
3801 new_i2_dest = XEXP (new_i2_dest, 0);
3803 if (REG_P (new_i3_dest)
3804 && REG_P (new_i2_dest)
3805 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3806 && REGNO (new_i2_dest) < reg_n_sets_max)
3807 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3811 /* If we can split it and use I2DEST, go ahead and see if that
3812 helps things be recognized. Verify that none of the registers
3813 are set between I2 and I3. */
3814 if (insn_code_number < 0
3815 && (split = find_split_point (&newpat, i3, false)) != 0
3816 && (!HAVE_cc0 || REG_P (i2dest))
3817 /* We need I2DEST in the proper mode. If it is a hard register
3818 or the only use of a pseudo, we can change its mode.
3819 Make sure we don't change a hard register to have a mode that
3820 isn't valid for it, or change the number of registers. */
3821 && (GET_MODE (*split) == GET_MODE (i2dest)
3822 || GET_MODE (*split) == VOIDmode
3823 || can_change_dest_mode (i2dest, added_sets_2,
3824 GET_MODE (*split)))
3825 && (next_nonnote_nondebug_insn (i2) == i3
3826 || !modified_between_p (*split, i2, i3))
3827 /* We can't overwrite I2DEST if its value is still used by
3828 NEWPAT. */
3829 && ! reg_referenced_p (i2dest, newpat))
3831 rtx newdest = i2dest;
3832 enum rtx_code split_code = GET_CODE (*split);
3833 machine_mode split_mode = GET_MODE (*split);
3834 bool subst_done = false;
3835 newi2pat = NULL_RTX;
3837 i2scratch = true;
3839 /* *SPLIT may be part of I2SRC, so make sure we have the
3840 original expression around for later debug processing.
3841 We should not need I2SRC any more in other cases. */
3842 if (MAY_HAVE_DEBUG_BIND_INSNS)
3843 i2src = copy_rtx (i2src);
3844 else
3845 i2src = NULL;
3847 /* Get NEWDEST as a register in the proper mode. We have already
3848 validated that we can do this. */
3849 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3851 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3852 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3853 else
3855 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3856 newdest = regno_reg_rtx[REGNO (i2dest)];
3860 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3861 an ASHIFT. This can occur if it was inside a PLUS and hence
3862 appeared to be a memory address. This is a kludge. */
3863 if (split_code == MULT
3864 && CONST_INT_P (XEXP (*split, 1))
3865 && INTVAL (XEXP (*split, 1)) > 0
3866 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3868 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3869 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3870 XEXP (*split, 0), i_rtx));
3871 /* Update split_code because we may not have a multiply
3872 anymore. */
3873 split_code = GET_CODE (*split);
3876 /* Similarly for (plus (mult FOO (const_int pow2))). */
3877 if (split_code == PLUS
3878 && GET_CODE (XEXP (*split, 0)) == MULT
3879 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3880 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3881 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3883 rtx nsplit = XEXP (*split, 0);
3884 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3885 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3886 XEXP (nsplit, 0),
3887 i_rtx));
3888 /* Update split_code because we may not have a multiply
3889 anymore. */
3890 split_code = GET_CODE (*split);
3893 #ifdef INSN_SCHEDULING
3894 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3895 be written as a ZERO_EXTEND. */
3896 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3898 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3899 what it really is. */
3900 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3901 == SIGN_EXTEND)
3902 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3903 SUBREG_REG (*split)));
3904 else
3905 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3906 SUBREG_REG (*split)));
3908 #endif
3910 /* Attempt to split binary operators using arithmetic identities. */
3911 if (BINARY_P (SET_SRC (newpat))
3912 && split_mode == GET_MODE (SET_SRC (newpat))
3913 && ! side_effects_p (SET_SRC (newpat)))
3915 rtx setsrc = SET_SRC (newpat);
3916 machine_mode mode = GET_MODE (setsrc);
3917 enum rtx_code code = GET_CODE (setsrc);
3918 rtx src_op0 = XEXP (setsrc, 0);
3919 rtx src_op1 = XEXP (setsrc, 1);
3921 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3922 if (rtx_equal_p (src_op0, src_op1))
3924 newi2pat = gen_rtx_SET (newdest, src_op0);
3925 SUBST (XEXP (setsrc, 0), newdest);
3926 SUBST (XEXP (setsrc, 1), newdest);
3927 subst_done = true;
3929 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3930 else if ((code == PLUS || code == MULT)
3931 && GET_CODE (src_op0) == code
3932 && GET_CODE (XEXP (src_op0, 0)) == code
3933 && (INTEGRAL_MODE_P (mode)
3934 || (FLOAT_MODE_P (mode)
3935 && flag_unsafe_math_optimizations)))
3937 rtx p = XEXP (XEXP (src_op0, 0), 0);
3938 rtx q = XEXP (XEXP (src_op0, 0), 1);
3939 rtx r = XEXP (src_op0, 1);
3940 rtx s = src_op1;
3942 /* Split both "((X op Y) op X) op Y" and
3943 "((X op Y) op Y) op X" as "T op T" where T is
3944 "X op Y". */
3945 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3946 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3948 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3949 SUBST (XEXP (setsrc, 0), newdest);
3950 SUBST (XEXP (setsrc, 1), newdest);
3951 subst_done = true;
3953 /* Split "((X op X) op Y) op Y)" as "T op T" where
3954 T is "X op Y". */
3955 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3957 rtx tmp = simplify_gen_binary (code, mode, p, r);
3958 newi2pat = gen_rtx_SET (newdest, tmp);
3959 SUBST (XEXP (setsrc, 0), newdest);
3960 SUBST (XEXP (setsrc, 1), newdest);
3961 subst_done = true;
3966 if (!subst_done)
3968 newi2pat = gen_rtx_SET (newdest, *split);
3969 SUBST (*split, newdest);
3972 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3974 /* recog_for_combine might have added CLOBBERs to newi2pat.
3975 Make sure NEWPAT does not depend on the clobbered regs. */
3976 if (GET_CODE (newi2pat) == PARALLEL)
3977 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3978 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3980 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3981 if (reg_overlap_mentioned_p (reg, newpat))
3983 undo_all ();
3984 return 0;
3988 /* If the split point was a MULT and we didn't have one before,
3989 don't use one now. */
3990 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3991 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3995 /* Check for a case where we loaded from memory in a narrow mode and
3996 then sign extended it, but we need both registers. In that case,
3997 we have a PARALLEL with both loads from the same memory location.
3998 We can split this into a load from memory followed by a register-register
3999 copy. This saves at least one insn, more if register allocation can
4000 eliminate the copy.
4002 We cannot do this if the destination of the first assignment is a
4003 condition code register or cc0. We eliminate this case by making sure
4004 the SET_DEST and SET_SRC have the same mode.
4006 We cannot do this if the destination of the second assignment is
4007 a register that we have already assumed is zero-extended. Similarly
4008 for a SUBREG of such a register. */
4010 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
4011 && GET_CODE (newpat) == PARALLEL
4012 && XVECLEN (newpat, 0) == 2
4013 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4014 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
4015 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
4016 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
4017 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4018 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
4019 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
4020 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
4021 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4022 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4023 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
4024 (REG_P (temp_expr)
4025 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4026 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4027 BITS_PER_WORD)
4028 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4029 HOST_BITS_PER_INT)
4030 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4031 != GET_MODE_MASK (word_mode))))
4032 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
4033 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
4034 (REG_P (temp_expr)
4035 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4036 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4037 BITS_PER_WORD)
4038 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4039 HOST_BITS_PER_INT)
4040 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4041 != GET_MODE_MASK (word_mode)))))
4042 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4043 SET_SRC (XVECEXP (newpat, 0, 1)))
4044 && ! find_reg_note (i3, REG_UNUSED,
4045 SET_DEST (XVECEXP (newpat, 0, 0))))
4047 rtx ni2dest;
4049 newi2pat = XVECEXP (newpat, 0, 0);
4050 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4051 newpat = XVECEXP (newpat, 0, 1);
4052 SUBST (SET_SRC (newpat),
4053 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4054 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4056 if (i2_code_number >= 0)
4057 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4059 if (insn_code_number >= 0)
4060 swap_i2i3 = 1;
4063 /* Similarly, check for a case where we have a PARALLEL of two independent
4064 SETs but we started with three insns. In this case, we can do the sets
4065 as two separate insns. This case occurs when some SET allows two
4066 other insns to combine, but the destination of that SET is still live.
4068 Also do this if we started with two insns and (at least) one of the
4069 resulting sets is a noop; this noop will be deleted later.
4071 Also do this if we started with two insns neither of which was a simple
4072 move. */
4074 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4075 && GET_CODE (newpat) == PARALLEL
4076 && XVECLEN (newpat, 0) == 2
4077 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4078 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4079 && (i1
4080 || set_noop_p (XVECEXP (newpat, 0, 0))
4081 || set_noop_p (XVECEXP (newpat, 0, 1))
4082 || (!i2_was_move && !i3_was_move))
4083 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4084 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4085 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4086 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4087 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4088 XVECEXP (newpat, 0, 0))
4089 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4090 XVECEXP (newpat, 0, 1))
4091 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4092 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4094 rtx set0 = XVECEXP (newpat, 0, 0);
4095 rtx set1 = XVECEXP (newpat, 0, 1);
4097 /* Normally, it doesn't matter which of the two is done first,
4098 but the one that references cc0 can't be the second, and
4099 one which uses any regs/memory set in between i2 and i3 can't
4100 be first. The PARALLEL might also have been pre-existing in i3,
4101 so we need to make sure that we won't wrongly hoist a SET to i2
4102 that would conflict with a death note present in there, or would
4103 have its dest modified between i2 and i3. */
4104 if (!modified_between_p (SET_SRC (set1), i2, i3)
4105 && !(REG_P (SET_DEST (set1))
4106 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4107 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4108 && find_reg_note (i2, REG_DEAD,
4109 SUBREG_REG (SET_DEST (set1))))
4110 && !modified_between_p (SET_DEST (set1), i2, i3)
4111 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4112 /* If I3 is a jump, ensure that set0 is a jump so that
4113 we do not create invalid RTL. */
4114 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4117 newi2pat = set1;
4118 newpat = set0;
4120 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4121 && !(REG_P (SET_DEST (set0))
4122 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4123 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4124 && find_reg_note (i2, REG_DEAD,
4125 SUBREG_REG (SET_DEST (set0))))
4126 && !modified_between_p (SET_DEST (set0), i2, i3)
4127 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4128 /* If I3 is a jump, ensure that set1 is a jump so that
4129 we do not create invalid RTL. */
4130 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4133 newi2pat = set0;
4134 newpat = set1;
4136 else
4138 undo_all ();
4139 return 0;
4142 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4144 if (i2_code_number >= 0)
4146 /* recog_for_combine might have added CLOBBERs to newi2pat.
4147 Make sure NEWPAT does not depend on the clobbered regs. */
4148 if (GET_CODE (newi2pat) == PARALLEL)
4150 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4151 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4153 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4154 if (reg_overlap_mentioned_p (reg, newpat))
4156 undo_all ();
4157 return 0;
4162 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4164 if (insn_code_number >= 0)
4165 split_i2i3 = 1;
4169 /* If it still isn't recognized, fail and change things back the way they
4170 were. */
4171 if ((insn_code_number < 0
4172 /* Is the result a reasonable ASM_OPERANDS? */
4173 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4175 undo_all ();
4176 return 0;
4179 /* If we had to change another insn, make sure it is valid also. */
4180 if (undobuf.other_insn)
4182 CLEAR_HARD_REG_SET (newpat_used_regs);
4184 other_pat = PATTERN (undobuf.other_insn);
4185 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4186 &new_other_notes);
4188 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4190 undo_all ();
4191 return 0;
4195 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4196 they are adjacent to each other or not. */
4197 if (HAVE_cc0)
4199 rtx_insn *p = prev_nonnote_insn (i3);
4200 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4201 && sets_cc0_p (newi2pat))
4203 undo_all ();
4204 return 0;
4208 /* Only allow this combination if insn_cost reports that the
4209 replacement instructions are cheaper than the originals. */
4210 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4212 undo_all ();
4213 return 0;
4216 if (MAY_HAVE_DEBUG_BIND_INSNS)
4218 struct undo *undo;
4220 for (undo = undobuf.undos; undo; undo = undo->next)
4221 if (undo->kind == UNDO_MODE)
4223 rtx reg = *undo->where.r;
4224 machine_mode new_mode = GET_MODE (reg);
4225 machine_mode old_mode = undo->old_contents.m;
4227 /* Temporarily revert mode back. */
4228 adjust_reg_mode (reg, old_mode);
4230 if (reg == i2dest && i2scratch)
4232 /* If we used i2dest as a scratch register with a
4233 different mode, substitute it for the original
4234 i2src while its original mode is temporarily
4235 restored, and then clear i2scratch so that we don't
4236 do it again later. */
4237 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4238 this_basic_block);
4239 i2scratch = false;
4240 /* Put back the new mode. */
4241 adjust_reg_mode (reg, new_mode);
4243 else
4245 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4246 rtx_insn *first, *last;
4248 if (reg == i2dest)
4250 first = i2;
4251 last = last_combined_insn;
4253 else
4255 first = i3;
4256 last = undobuf.other_insn;
4257 gcc_assert (last);
4258 if (DF_INSN_LUID (last)
4259 < DF_INSN_LUID (last_combined_insn))
4260 last = last_combined_insn;
4263 /* We're dealing with a reg that changed mode but not
4264 meaning, so we want to turn it into a subreg for
4265 the new mode. However, because of REG sharing and
4266 because its mode had already changed, we have to do
4267 it in two steps. First, replace any debug uses of
4268 reg, with its original mode temporarily restored,
4269 with this copy we have created; then, replace the
4270 copy with the SUBREG of the original shared reg,
4271 once again changed to the new mode. */
4272 propagate_for_debug (first, last, reg, tempreg,
4273 this_basic_block);
4274 adjust_reg_mode (reg, new_mode);
4275 propagate_for_debug (first, last, tempreg,
4276 lowpart_subreg (old_mode, reg, new_mode),
4277 this_basic_block);
4282 /* If we will be able to accept this, we have made a
4283 change to the destination of I3. This requires us to
4284 do a few adjustments. */
4286 if (changed_i3_dest)
4288 PATTERN (i3) = newpat;
4289 adjust_for_new_dest (i3);
4292 /* We now know that we can do this combination. Merge the insns and
4293 update the status of registers and LOG_LINKS. */
4295 if (undobuf.other_insn)
4297 rtx note, next;
4299 PATTERN (undobuf.other_insn) = other_pat;
4301 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4302 ensure that they are still valid. Then add any non-duplicate
4303 notes added by recog_for_combine. */
4304 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4306 next = XEXP (note, 1);
4308 if ((REG_NOTE_KIND (note) == REG_DEAD
4309 && !reg_referenced_p (XEXP (note, 0),
4310 PATTERN (undobuf.other_insn)))
4311 ||(REG_NOTE_KIND (note) == REG_UNUSED
4312 && !reg_set_p (XEXP (note, 0),
4313 PATTERN (undobuf.other_insn)))
4314 /* Simply drop equal note since it may be no longer valid
4315 for other_insn. It may be possible to record that CC
4316 register is changed and only discard those notes, but
4317 in practice it's unnecessary complication and doesn't
4318 give any meaningful improvement.
4320 See PR78559. */
4321 || REG_NOTE_KIND (note) == REG_EQUAL
4322 || REG_NOTE_KIND (note) == REG_EQUIV)
4323 remove_note (undobuf.other_insn, note);
4326 distribute_notes (new_other_notes, undobuf.other_insn,
4327 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4328 NULL_RTX);
4331 if (swap_i2i3)
4333 /* I3 now uses what used to be its destination and which is now
4334 I2's destination. This requires us to do a few adjustments. */
4335 PATTERN (i3) = newpat;
4336 adjust_for_new_dest (i3);
4339 if (swap_i2i3 || split_i2i3)
4341 /* We might need a LOG_LINK from I3 to I2. But then we used to
4342 have one, so we still will.
4344 However, some later insn might be using I2's dest and have
4345 a LOG_LINK pointing at I3. We should change it to point at
4346 I2 instead. */
4348 /* newi2pat is usually a SET here; however, recog_for_combine might
4349 have added some clobbers. */
4350 rtx x = newi2pat;
4351 if (GET_CODE (x) == PARALLEL)
4352 x = XVECEXP (newi2pat, 0, 0);
4354 /* It can only be a SET of a REG or of a SUBREG of a REG. */
4355 unsigned int regno = reg_or_subregno (SET_DEST (x));
4357 bool done = false;
4358 for (rtx_insn *insn = NEXT_INSN (i3);
4359 !done
4360 && insn
4361 && NONDEBUG_INSN_P (insn)
4362 && BLOCK_FOR_INSN (insn) == this_basic_block;
4363 insn = NEXT_INSN (insn))
4365 struct insn_link *link;
4366 FOR_EACH_LOG_LINK (link, insn)
4367 if (link->insn == i3 && link->regno == regno)
4369 link->insn = i2;
4370 done = true;
4371 break;
4377 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4378 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4379 rtx midnotes = 0;
4380 int from_luid;
4381 /* Compute which registers we expect to eliminate. newi2pat may be setting
4382 either i3dest or i2dest, so we must check it. */
4383 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4384 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4385 || !i2dest_killed
4386 ? 0 : i2dest);
4387 /* For i1, we need to compute both local elimination and global
4388 elimination information with respect to newi2pat because i1dest
4389 may be the same as i3dest, in which case newi2pat may be setting
4390 i1dest. Global information is used when distributing REG_DEAD
4391 note for i2 and i3, in which case it does matter if newi2pat sets
4392 i1dest or not.
4394 Local information is used when distributing REG_DEAD note for i1,
4395 in which case it doesn't matter if newi2pat sets i1dest or not.
4396 See PR62151, if we have four insns combination:
4397 i0: r0 <- i0src
4398 i1: r1 <- i1src (using r0)
4399 REG_DEAD (r0)
4400 i2: r0 <- i2src (using r1)
4401 i3: r3 <- i3src (using r0)
4402 ix: using r0
4403 From i1's point of view, r0 is eliminated, no matter if it is set
4404 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4405 should be discarded.
4407 Note local information only affects cases in forms like "I1->I2->I3",
4408 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4409 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4410 i0dest anyway. */
4411 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4412 || !i1dest_killed
4413 ? 0 : i1dest);
4414 rtx elim_i1 = (local_elim_i1 == 0
4415 || (newi2pat && reg_set_p (i1dest, newi2pat))
4416 ? 0 : i1dest);
4417 /* Same case as i1. */
4418 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4419 ? 0 : i0dest);
4420 rtx elim_i0 = (local_elim_i0 == 0
4421 || (newi2pat && reg_set_p (i0dest, newi2pat))
4422 ? 0 : i0dest);
4424 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4425 clear them. */
4426 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4427 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4428 if (i1)
4429 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4430 if (i0)
4431 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4433 /* Ensure that we do not have something that should not be shared but
4434 occurs multiple times in the new insns. Check this by first
4435 resetting all the `used' flags and then copying anything is shared. */
4437 reset_used_flags (i3notes);
4438 reset_used_flags (i2notes);
4439 reset_used_flags (i1notes);
4440 reset_used_flags (i0notes);
4441 reset_used_flags (newpat);
4442 reset_used_flags (newi2pat);
4443 if (undobuf.other_insn)
4444 reset_used_flags (PATTERN (undobuf.other_insn));
4446 i3notes = copy_rtx_if_shared (i3notes);
4447 i2notes = copy_rtx_if_shared (i2notes);
4448 i1notes = copy_rtx_if_shared (i1notes);
4449 i0notes = copy_rtx_if_shared (i0notes);
4450 newpat = copy_rtx_if_shared (newpat);
4451 newi2pat = copy_rtx_if_shared (newi2pat);
4452 if (undobuf.other_insn)
4453 reset_used_flags (PATTERN (undobuf.other_insn));
4455 INSN_CODE (i3) = insn_code_number;
4456 PATTERN (i3) = newpat;
4458 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4460 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4461 link = XEXP (link, 1))
4463 if (substed_i2)
4465 /* I2SRC must still be meaningful at this point. Some
4466 splitting operations can invalidate I2SRC, but those
4467 operations do not apply to calls. */
4468 gcc_assert (i2src);
4469 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4470 i2dest, i2src);
4472 if (substed_i1)
4473 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4474 i1dest, i1src);
4475 if (substed_i0)
4476 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4477 i0dest, i0src);
4481 if (undobuf.other_insn)
4482 INSN_CODE (undobuf.other_insn) = other_code_number;
4484 /* We had one special case above where I2 had more than one set and
4485 we replaced a destination of one of those sets with the destination
4486 of I3. In that case, we have to update LOG_LINKS of insns later
4487 in this basic block. Note that this (expensive) case is rare.
4489 Also, in this case, we must pretend that all REG_NOTEs for I2
4490 actually came from I3, so that REG_UNUSED notes from I2 will be
4491 properly handled. */
4493 if (i3_subst_into_i2)
4495 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4496 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4497 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4498 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4499 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4500 && ! find_reg_note (i2, REG_UNUSED,
4501 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4502 for (temp_insn = NEXT_INSN (i2);
4503 temp_insn
4504 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4505 || BB_HEAD (this_basic_block) != temp_insn);
4506 temp_insn = NEXT_INSN (temp_insn))
4507 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4508 FOR_EACH_LOG_LINK (link, temp_insn)
4509 if (link->insn == i2)
4510 link->insn = i3;
4512 if (i3notes)
4514 rtx link = i3notes;
4515 while (XEXP (link, 1))
4516 link = XEXP (link, 1);
4517 XEXP (link, 1) = i2notes;
4519 else
4520 i3notes = i2notes;
4521 i2notes = 0;
4524 LOG_LINKS (i3) = NULL;
4525 REG_NOTES (i3) = 0;
4526 LOG_LINKS (i2) = NULL;
4527 REG_NOTES (i2) = 0;
4529 if (newi2pat)
4531 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4532 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4533 this_basic_block);
4534 INSN_CODE (i2) = i2_code_number;
4535 PATTERN (i2) = newi2pat;
4537 else
4539 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4540 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4541 this_basic_block);
4542 SET_INSN_DELETED (i2);
4545 if (i1)
4547 LOG_LINKS (i1) = NULL;
4548 REG_NOTES (i1) = 0;
4549 if (MAY_HAVE_DEBUG_BIND_INSNS)
4550 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4551 this_basic_block);
4552 SET_INSN_DELETED (i1);
4555 if (i0)
4557 LOG_LINKS (i0) = NULL;
4558 REG_NOTES (i0) = 0;
4559 if (MAY_HAVE_DEBUG_BIND_INSNS)
4560 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4561 this_basic_block);
4562 SET_INSN_DELETED (i0);
4565 /* Get death notes for everything that is now used in either I3 or
4566 I2 and used to die in a previous insn. If we built two new
4567 patterns, move from I1 to I2 then I2 to I3 so that we get the
4568 proper movement on registers that I2 modifies. */
4570 if (i0)
4571 from_luid = DF_INSN_LUID (i0);
4572 else if (i1)
4573 from_luid = DF_INSN_LUID (i1);
4574 else
4575 from_luid = DF_INSN_LUID (i2);
4576 if (newi2pat)
4577 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4578 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4580 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4581 if (i3notes)
4582 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4583 elim_i2, elim_i1, elim_i0);
4584 if (i2notes)
4585 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4586 elim_i2, elim_i1, elim_i0);
4587 if (i1notes)
4588 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4589 elim_i2, local_elim_i1, local_elim_i0);
4590 if (i0notes)
4591 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4592 elim_i2, elim_i1, local_elim_i0);
4593 if (midnotes)
4594 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4595 elim_i2, elim_i1, elim_i0);
4597 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4598 know these are REG_UNUSED and want them to go to the desired insn,
4599 so we always pass it as i3. */
4601 if (newi2pat && new_i2_notes)
4602 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4603 NULL_RTX);
4605 if (new_i3_notes)
4606 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4607 NULL_RTX);
4609 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4610 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4611 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4612 in that case, it might delete I2. Similarly for I2 and I1.
4613 Show an additional death due to the REG_DEAD note we make here. If
4614 we discard it in distribute_notes, we will decrement it again. */
4616 if (i3dest_killed)
4618 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4619 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4620 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4621 elim_i1, elim_i0);
4622 else
4623 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4624 elim_i2, elim_i1, elim_i0);
4627 if (i2dest_in_i2src)
4629 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4630 if (newi2pat && reg_set_p (i2dest, newi2pat))
4631 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4632 NULL_RTX, NULL_RTX);
4633 else
4634 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4635 NULL_RTX, NULL_RTX, NULL_RTX);
4638 if (i1dest_in_i1src)
4640 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4641 if (newi2pat && reg_set_p (i1dest, newi2pat))
4642 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4643 NULL_RTX, NULL_RTX);
4644 else
4645 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4646 NULL_RTX, NULL_RTX, NULL_RTX);
4649 if (i0dest_in_i0src)
4651 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4652 if (newi2pat && reg_set_p (i0dest, newi2pat))
4653 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4654 NULL_RTX, NULL_RTX);
4655 else
4656 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4657 NULL_RTX, NULL_RTX, NULL_RTX);
4660 distribute_links (i3links);
4661 distribute_links (i2links);
4662 distribute_links (i1links);
4663 distribute_links (i0links);
4665 if (REG_P (i2dest))
4667 struct insn_link *link;
4668 rtx_insn *i2_insn = 0;
4669 rtx i2_val = 0, set;
4671 /* The insn that used to set this register doesn't exist, and
4672 this life of the register may not exist either. See if one of
4673 I3's links points to an insn that sets I2DEST. If it does,
4674 that is now the last known value for I2DEST. If we don't update
4675 this and I2 set the register to a value that depended on its old
4676 contents, we will get confused. If this insn is used, thing
4677 will be set correctly in combine_instructions. */
4678 FOR_EACH_LOG_LINK (link, i3)
4679 if ((set = single_set (link->insn)) != 0
4680 && rtx_equal_p (i2dest, SET_DEST (set)))
4681 i2_insn = link->insn, i2_val = SET_SRC (set);
4683 record_value_for_reg (i2dest, i2_insn, i2_val);
4685 /* If the reg formerly set in I2 died only once and that was in I3,
4686 zero its use count so it won't make `reload' do any work. */
4687 if (! added_sets_2
4688 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4689 && ! i2dest_in_i2src
4690 && REGNO (i2dest) < reg_n_sets_max)
4691 INC_REG_N_SETS (REGNO (i2dest), -1);
4694 if (i1 && REG_P (i1dest))
4696 struct insn_link *link;
4697 rtx_insn *i1_insn = 0;
4698 rtx i1_val = 0, set;
4700 FOR_EACH_LOG_LINK (link, i3)
4701 if ((set = single_set (link->insn)) != 0
4702 && rtx_equal_p (i1dest, SET_DEST (set)))
4703 i1_insn = link->insn, i1_val = SET_SRC (set);
4705 record_value_for_reg (i1dest, i1_insn, i1_val);
4707 if (! added_sets_1
4708 && ! i1dest_in_i1src
4709 && REGNO (i1dest) < reg_n_sets_max)
4710 INC_REG_N_SETS (REGNO (i1dest), -1);
4713 if (i0 && REG_P (i0dest))
4715 struct insn_link *link;
4716 rtx_insn *i0_insn = 0;
4717 rtx i0_val = 0, set;
4719 FOR_EACH_LOG_LINK (link, i3)
4720 if ((set = single_set (link->insn)) != 0
4721 && rtx_equal_p (i0dest, SET_DEST (set)))
4722 i0_insn = link->insn, i0_val = SET_SRC (set);
4724 record_value_for_reg (i0dest, i0_insn, i0_val);
4726 if (! added_sets_0
4727 && ! i0dest_in_i0src
4728 && REGNO (i0dest) < reg_n_sets_max)
4729 INC_REG_N_SETS (REGNO (i0dest), -1);
4732 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4733 been made to this insn. The order is important, because newi2pat
4734 can affect nonzero_bits of newpat. */
4735 if (newi2pat)
4736 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4737 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4740 if (undobuf.other_insn != NULL_RTX)
4742 if (dump_file)
4744 fprintf (dump_file, "modifying other_insn ");
4745 dump_insn_slim (dump_file, undobuf.other_insn);
4747 df_insn_rescan (undobuf.other_insn);
4750 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4752 if (dump_file)
4754 fprintf (dump_file, "modifying insn i0 ");
4755 dump_insn_slim (dump_file, i0);
4757 df_insn_rescan (i0);
4760 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4762 if (dump_file)
4764 fprintf (dump_file, "modifying insn i1 ");
4765 dump_insn_slim (dump_file, i1);
4767 df_insn_rescan (i1);
4770 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4772 if (dump_file)
4774 fprintf (dump_file, "modifying insn i2 ");
4775 dump_insn_slim (dump_file, i2);
4777 df_insn_rescan (i2);
4780 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4782 if (dump_file)
4784 fprintf (dump_file, "modifying insn i3 ");
4785 dump_insn_slim (dump_file, i3);
4787 df_insn_rescan (i3);
4790 /* Set new_direct_jump_p if a new return or simple jump instruction
4791 has been created. Adjust the CFG accordingly. */
4792 if (returnjump_p (i3) || any_uncondjump_p (i3))
4794 *new_direct_jump_p = 1;
4795 mark_jump_label (PATTERN (i3), i3, 0);
4796 update_cfg_for_uncondjump (i3);
4799 if (undobuf.other_insn != NULL_RTX
4800 && (returnjump_p (undobuf.other_insn)
4801 || any_uncondjump_p (undobuf.other_insn)))
4803 *new_direct_jump_p = 1;
4804 update_cfg_for_uncondjump (undobuf.other_insn);
4807 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4808 && XEXP (PATTERN (i3), 0) == const1_rtx)
4810 basic_block bb = BLOCK_FOR_INSN (i3);
4811 gcc_assert (bb);
4812 remove_edge (split_block (bb, i3));
4813 emit_barrier_after_bb (bb);
4814 *new_direct_jump_p = 1;
4817 if (undobuf.other_insn
4818 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4819 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4821 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4822 gcc_assert (bb);
4823 remove_edge (split_block (bb, undobuf.other_insn));
4824 emit_barrier_after_bb (bb);
4825 *new_direct_jump_p = 1;
4828 /* A noop might also need cleaning up of CFG, if it comes from the
4829 simplification of a jump. */
4830 if (JUMP_P (i3)
4831 && GET_CODE (newpat) == SET
4832 && SET_SRC (newpat) == pc_rtx
4833 && SET_DEST (newpat) == pc_rtx)
4835 *new_direct_jump_p = 1;
4836 update_cfg_for_uncondjump (i3);
4839 if (undobuf.other_insn != NULL_RTX
4840 && JUMP_P (undobuf.other_insn)
4841 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4842 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4843 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4845 *new_direct_jump_p = 1;
4846 update_cfg_for_uncondjump (undobuf.other_insn);
4849 combine_successes++;
4850 undo_commit ();
4852 rtx_insn *ret = newi2pat ? i2 : i3;
4853 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4854 ret = added_links_insn;
4855 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4856 ret = added_notes_insn;
4858 return ret;
4861 /* Get a marker for undoing to the current state. */
4863 static void *
4864 get_undo_marker (void)
4866 return undobuf.undos;
4869 /* Undo the modifications up to the marker. */
4871 static void
4872 undo_to_marker (void *marker)
4874 struct undo *undo, *next;
4876 for (undo = undobuf.undos; undo != marker; undo = next)
4878 gcc_assert (undo);
4880 next = undo->next;
4881 switch (undo->kind)
4883 case UNDO_RTX:
4884 *undo->where.r = undo->old_contents.r;
4885 break;
4886 case UNDO_INT:
4887 *undo->where.i = undo->old_contents.i;
4888 break;
4889 case UNDO_MODE:
4890 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4891 break;
4892 case UNDO_LINKS:
4893 *undo->where.l = undo->old_contents.l;
4894 break;
4895 default:
4896 gcc_unreachable ();
4899 undo->next = undobuf.frees;
4900 undobuf.frees = undo;
4903 undobuf.undos = (struct undo *) marker;
4906 /* Undo all the modifications recorded in undobuf. */
4908 static void
4909 undo_all (void)
4911 undo_to_marker (0);
4914 /* We've committed to accepting the changes we made. Move all
4915 of the undos to the free list. */
4917 static void
4918 undo_commit (void)
4920 struct undo *undo, *next;
4922 for (undo = undobuf.undos; undo; undo = next)
4924 next = undo->next;
4925 undo->next = undobuf.frees;
4926 undobuf.frees = undo;
4928 undobuf.undos = 0;
4931 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4932 where we have an arithmetic expression and return that point. LOC will
4933 be inside INSN.
4935 try_combine will call this function to see if an insn can be split into
4936 two insns. */
4938 static rtx *
4939 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4941 rtx x = *loc;
4942 enum rtx_code code = GET_CODE (x);
4943 rtx *split;
4944 unsigned HOST_WIDE_INT len = 0;
4945 HOST_WIDE_INT pos = 0;
4946 int unsignedp = 0;
4947 rtx inner = NULL_RTX;
4948 scalar_int_mode mode, inner_mode;
4950 /* First special-case some codes. */
4951 switch (code)
4953 case SUBREG:
4954 #ifdef INSN_SCHEDULING
4955 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4956 point. */
4957 if (MEM_P (SUBREG_REG (x)))
4958 return loc;
4959 #endif
4960 return find_split_point (&SUBREG_REG (x), insn, false);
4962 case MEM:
4963 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4964 using LO_SUM and HIGH. */
4965 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4966 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4968 machine_mode address_mode = get_address_mode (x);
4970 SUBST (XEXP (x, 0),
4971 gen_rtx_LO_SUM (address_mode,
4972 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4973 XEXP (x, 0)));
4974 return &XEXP (XEXP (x, 0), 0);
4977 /* If we have a PLUS whose second operand is a constant and the
4978 address is not valid, perhaps we can split it up using
4979 the machine-specific way to split large constants. We use
4980 the first pseudo-reg (one of the virtual regs) as a placeholder;
4981 it will not remain in the result. */
4982 if (GET_CODE (XEXP (x, 0)) == PLUS
4983 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4984 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4985 MEM_ADDR_SPACE (x)))
4987 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4988 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4989 subst_insn);
4991 /* This should have produced two insns, each of which sets our
4992 placeholder. If the source of the second is a valid address,
4993 we can put both sources together and make a split point
4994 in the middle. */
4996 if (seq
4997 && NEXT_INSN (seq) != NULL_RTX
4998 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4999 && NONJUMP_INSN_P (seq)
5000 && GET_CODE (PATTERN (seq)) == SET
5001 && SET_DEST (PATTERN (seq)) == reg
5002 && ! reg_mentioned_p (reg,
5003 SET_SRC (PATTERN (seq)))
5004 && NONJUMP_INSN_P (NEXT_INSN (seq))
5005 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
5006 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
5007 && memory_address_addr_space_p
5008 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
5009 MEM_ADDR_SPACE (x)))
5011 rtx src1 = SET_SRC (PATTERN (seq));
5012 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
5014 /* Replace the placeholder in SRC2 with SRC1. If we can
5015 find where in SRC2 it was placed, that can become our
5016 split point and we can replace this address with SRC2.
5017 Just try two obvious places. */
5019 src2 = replace_rtx (src2, reg, src1);
5020 split = 0;
5021 if (XEXP (src2, 0) == src1)
5022 split = &XEXP (src2, 0);
5023 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
5024 && XEXP (XEXP (src2, 0), 0) == src1)
5025 split = &XEXP (XEXP (src2, 0), 0);
5027 if (split)
5029 SUBST (XEXP (x, 0), src2);
5030 return split;
5034 /* If that didn't work and we have a nested plus, like:
5035 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5036 is valid address, try to split (REG1 * CONST1). */
5037 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5038 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5039 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5040 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
5041 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5042 0), 0)))))
5044 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
5045 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
5046 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5047 MEM_ADDR_SPACE (x)))
5049 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5050 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
5052 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5054 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5055 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5056 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5057 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
5058 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5059 0), 1)))))
5061 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
5062 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
5063 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5064 MEM_ADDR_SPACE (x)))
5066 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5067 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
5069 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5072 /* If that didn't work, perhaps the first operand is complex and
5073 needs to be computed separately, so make a split point there.
5074 This will occur on machines that just support REG + CONST
5075 and have a constant moved through some previous computation. */
5076 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5077 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5078 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5079 return &XEXP (XEXP (x, 0), 0);
5082 /* If we have a PLUS whose first operand is complex, try computing it
5083 separately by making a split there. */
5084 if (GET_CODE (XEXP (x, 0)) == PLUS
5085 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5086 MEM_ADDR_SPACE (x))
5087 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5088 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5089 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5090 return &XEXP (XEXP (x, 0), 0);
5091 break;
5093 case SET:
5094 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5095 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5096 we need to put the operand into a register. So split at that
5097 point. */
5099 if (SET_DEST (x) == cc0_rtx
5100 && GET_CODE (SET_SRC (x)) != COMPARE
5101 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5102 && !OBJECT_P (SET_SRC (x))
5103 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5104 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5105 return &SET_SRC (x);
5107 /* See if we can split SET_SRC as it stands. */
5108 split = find_split_point (&SET_SRC (x), insn, true);
5109 if (split && split != &SET_SRC (x))
5110 return split;
5112 /* See if we can split SET_DEST as it stands. */
5113 split = find_split_point (&SET_DEST (x), insn, false);
5114 if (split && split != &SET_DEST (x))
5115 return split;
5117 /* See if this is a bitfield assignment with everything constant. If
5118 so, this is an IOR of an AND, so split it into that. */
5119 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5120 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5121 &inner_mode)
5122 && HWI_COMPUTABLE_MODE_P (inner_mode)
5123 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5124 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5125 && CONST_INT_P (SET_SRC (x))
5126 && ((INTVAL (XEXP (SET_DEST (x), 1))
5127 + INTVAL (XEXP (SET_DEST (x), 2)))
5128 <= GET_MODE_PRECISION (inner_mode))
5129 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5131 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5132 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5133 rtx dest = XEXP (SET_DEST (x), 0);
5134 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5135 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5136 rtx or_mask;
5138 if (BITS_BIG_ENDIAN)
5139 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5141 or_mask = gen_int_mode (src << pos, inner_mode);
5142 if (src == mask)
5143 SUBST (SET_SRC (x),
5144 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5145 else
5147 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5148 SUBST (SET_SRC (x),
5149 simplify_gen_binary (IOR, inner_mode,
5150 simplify_gen_binary (AND, inner_mode,
5151 dest, negmask),
5152 or_mask));
5155 SUBST (SET_DEST (x), dest);
5157 split = find_split_point (&SET_SRC (x), insn, true);
5158 if (split && split != &SET_SRC (x))
5159 return split;
5162 /* Otherwise, see if this is an operation that we can split into two.
5163 If so, try to split that. */
5164 code = GET_CODE (SET_SRC (x));
5166 switch (code)
5168 case AND:
5169 /* If we are AND'ing with a large constant that is only a single
5170 bit and the result is only being used in a context where we
5171 need to know if it is zero or nonzero, replace it with a bit
5172 extraction. This will avoid the large constant, which might
5173 have taken more than one insn to make. If the constant were
5174 not a valid argument to the AND but took only one insn to make,
5175 this is no worse, but if it took more than one insn, it will
5176 be better. */
5178 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5179 && REG_P (XEXP (SET_SRC (x), 0))
5180 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5181 && REG_P (SET_DEST (x))
5182 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5183 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5184 && XEXP (*split, 0) == SET_DEST (x)
5185 && XEXP (*split, 1) == const0_rtx)
5187 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5188 XEXP (SET_SRC (x), 0),
5189 pos, NULL_RTX, 1, 1, 0, 0);
5190 if (extraction != 0)
5192 SUBST (SET_SRC (x), extraction);
5193 return find_split_point (loc, insn, false);
5196 break;
5198 case NE:
5199 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5200 is known to be on, this can be converted into a NEG of a shift. */
5201 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5202 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5203 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5204 GET_MODE (XEXP (SET_SRC (x),
5205 0))))) >= 1))
5207 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5208 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5209 SUBST (SET_SRC (x),
5210 gen_rtx_NEG (mode,
5211 gen_rtx_LSHIFTRT (mode,
5212 XEXP (SET_SRC (x), 0),
5213 pos_rtx)));
5215 split = find_split_point (&SET_SRC (x), insn, true);
5216 if (split && split != &SET_SRC (x))
5217 return split;
5219 break;
5221 case SIGN_EXTEND:
5222 inner = XEXP (SET_SRC (x), 0);
5224 /* We can't optimize if either mode is a partial integer
5225 mode as we don't know how many bits are significant
5226 in those modes. */
5227 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5228 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5229 break;
5231 pos = 0;
5232 len = GET_MODE_PRECISION (inner_mode);
5233 unsignedp = 0;
5234 break;
5236 case SIGN_EXTRACT:
5237 case ZERO_EXTRACT:
5238 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5239 &inner_mode)
5240 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5241 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5243 inner = XEXP (SET_SRC (x), 0);
5244 len = INTVAL (XEXP (SET_SRC (x), 1));
5245 pos = INTVAL (XEXP (SET_SRC (x), 2));
5247 if (BITS_BIG_ENDIAN)
5248 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5249 unsignedp = (code == ZERO_EXTRACT);
5251 break;
5253 default:
5254 break;
5257 if (len
5258 && known_subrange_p (pos, len,
5259 0, GET_MODE_PRECISION (GET_MODE (inner)))
5260 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5262 /* For unsigned, we have a choice of a shift followed by an
5263 AND or two shifts. Use two shifts for field sizes where the
5264 constant might be too large. We assume here that we can
5265 always at least get 8-bit constants in an AND insn, which is
5266 true for every current RISC. */
5268 if (unsignedp && len <= 8)
5270 unsigned HOST_WIDE_INT mask
5271 = (HOST_WIDE_INT_1U << len) - 1;
5272 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5273 SUBST (SET_SRC (x),
5274 gen_rtx_AND (mode,
5275 gen_rtx_LSHIFTRT
5276 (mode, gen_lowpart (mode, inner), pos_rtx),
5277 gen_int_mode (mask, mode)));
5279 split = find_split_point (&SET_SRC (x), insn, true);
5280 if (split && split != &SET_SRC (x))
5281 return split;
5283 else
5285 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5286 int right_bits = GET_MODE_PRECISION (mode) - len;
5287 SUBST (SET_SRC (x),
5288 gen_rtx_fmt_ee
5289 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5290 gen_rtx_ASHIFT (mode,
5291 gen_lowpart (mode, inner),
5292 gen_int_shift_amount (mode, left_bits)),
5293 gen_int_shift_amount (mode, right_bits)));
5295 split = find_split_point (&SET_SRC (x), insn, true);
5296 if (split && split != &SET_SRC (x))
5297 return split;
5301 /* See if this is a simple operation with a constant as the second
5302 operand. It might be that this constant is out of range and hence
5303 could be used as a split point. */
5304 if (BINARY_P (SET_SRC (x))
5305 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5306 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5307 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5308 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5309 return &XEXP (SET_SRC (x), 1);
5311 /* Finally, see if this is a simple operation with its first operand
5312 not in a register. The operation might require this operand in a
5313 register, so return it as a split point. We can always do this
5314 because if the first operand were another operation, we would have
5315 already found it as a split point. */
5316 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5317 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5318 return &XEXP (SET_SRC (x), 0);
5320 return 0;
5322 case AND:
5323 case IOR:
5324 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5325 it is better to write this as (not (ior A B)) so we can split it.
5326 Similarly for IOR. */
5327 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5329 SUBST (*loc,
5330 gen_rtx_NOT (GET_MODE (x),
5331 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5332 GET_MODE (x),
5333 XEXP (XEXP (x, 0), 0),
5334 XEXP (XEXP (x, 1), 0))));
5335 return find_split_point (loc, insn, set_src);
5338 /* Many RISC machines have a large set of logical insns. If the
5339 second operand is a NOT, put it first so we will try to split the
5340 other operand first. */
5341 if (GET_CODE (XEXP (x, 1)) == NOT)
5343 rtx tem = XEXP (x, 0);
5344 SUBST (XEXP (x, 0), XEXP (x, 1));
5345 SUBST (XEXP (x, 1), tem);
5347 break;
5349 case PLUS:
5350 case MINUS:
5351 /* Canonicalization can produce (minus A (mult B C)), where C is a
5352 constant. It may be better to try splitting (plus (mult B -C) A)
5353 instead if this isn't a multiply by a power of two. */
5354 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5355 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5356 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5358 machine_mode mode = GET_MODE (x);
5359 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5360 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5361 SUBST (*loc, gen_rtx_PLUS (mode,
5362 gen_rtx_MULT (mode,
5363 XEXP (XEXP (x, 1), 0),
5364 gen_int_mode (other_int,
5365 mode)),
5366 XEXP (x, 0)));
5367 return find_split_point (loc, insn, set_src);
5370 /* Split at a multiply-accumulate instruction. However if this is
5371 the SET_SRC, we likely do not have such an instruction and it's
5372 worthless to try this split. */
5373 if (!set_src
5374 && (GET_CODE (XEXP (x, 0)) == MULT
5375 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5376 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5377 return loc;
5379 default:
5380 break;
5383 /* Otherwise, select our actions depending on our rtx class. */
5384 switch (GET_RTX_CLASS (code))
5386 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5387 case RTX_TERNARY:
5388 split = find_split_point (&XEXP (x, 2), insn, false);
5389 if (split)
5390 return split;
5391 /* fall through */
5392 case RTX_BIN_ARITH:
5393 case RTX_COMM_ARITH:
5394 case RTX_COMPARE:
5395 case RTX_COMM_COMPARE:
5396 split = find_split_point (&XEXP (x, 1), insn, false);
5397 if (split)
5398 return split;
5399 /* fall through */
5400 case RTX_UNARY:
5401 /* Some machines have (and (shift ...) ...) insns. If X is not
5402 an AND, but XEXP (X, 0) is, use it as our split point. */
5403 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5404 return &XEXP (x, 0);
5406 split = find_split_point (&XEXP (x, 0), insn, false);
5407 if (split)
5408 return split;
5409 return loc;
5411 default:
5412 /* Otherwise, we don't have a split point. */
5413 return 0;
5417 /* Throughout X, replace FROM with TO, and return the result.
5418 The result is TO if X is FROM;
5419 otherwise the result is X, but its contents may have been modified.
5420 If they were modified, a record was made in undobuf so that
5421 undo_all will (among other things) return X to its original state.
5423 If the number of changes necessary is too much to record to undo,
5424 the excess changes are not made, so the result is invalid.
5425 The changes already made can still be undone.
5426 undobuf.num_undo is incremented for such changes, so by testing that
5427 the caller can tell whether the result is valid.
5429 `n_occurrences' is incremented each time FROM is replaced.
5431 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5433 IN_COND is nonzero if we are at the top level of a condition.
5435 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5436 by copying if `n_occurrences' is nonzero. */
5438 static rtx
5439 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5441 enum rtx_code code = GET_CODE (x);
5442 machine_mode op0_mode = VOIDmode;
5443 const char *fmt;
5444 int len, i;
5445 rtx new_rtx;
5447 /* Two expressions are equal if they are identical copies of a shared
5448 RTX or if they are both registers with the same register number
5449 and mode. */
5451 #define COMBINE_RTX_EQUAL_P(X,Y) \
5452 ((X) == (Y) \
5453 || (REG_P (X) && REG_P (Y) \
5454 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5456 /* Do not substitute into clobbers of regs -- this will never result in
5457 valid RTL. */
5458 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5459 return x;
5461 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5463 n_occurrences++;
5464 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5467 /* If X and FROM are the same register but different modes, they
5468 will not have been seen as equal above. However, the log links code
5469 will make a LOG_LINKS entry for that case. If we do nothing, we
5470 will try to rerecognize our original insn and, when it succeeds,
5471 we will delete the feeding insn, which is incorrect.
5473 So force this insn not to match in this (rare) case. */
5474 if (! in_dest && code == REG && REG_P (from)
5475 && reg_overlap_mentioned_p (x, from))
5476 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5478 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5479 of which may contain things that can be combined. */
5480 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5481 return x;
5483 /* It is possible to have a subexpression appear twice in the insn.
5484 Suppose that FROM is a register that appears within TO.
5485 Then, after that subexpression has been scanned once by `subst',
5486 the second time it is scanned, TO may be found. If we were
5487 to scan TO here, we would find FROM within it and create a
5488 self-referent rtl structure which is completely wrong. */
5489 if (COMBINE_RTX_EQUAL_P (x, to))
5490 return to;
5492 /* Parallel asm_operands need special attention because all of the
5493 inputs are shared across the arms. Furthermore, unsharing the
5494 rtl results in recognition failures. Failure to handle this case
5495 specially can result in circular rtl.
5497 Solve this by doing a normal pass across the first entry of the
5498 parallel, and only processing the SET_DESTs of the subsequent
5499 entries. Ug. */
5501 if (code == PARALLEL
5502 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5503 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5505 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5507 /* If this substitution failed, this whole thing fails. */
5508 if (GET_CODE (new_rtx) == CLOBBER
5509 && XEXP (new_rtx, 0) == const0_rtx)
5510 return new_rtx;
5512 SUBST (XVECEXP (x, 0, 0), new_rtx);
5514 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5516 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5518 if (!REG_P (dest)
5519 && GET_CODE (dest) != CC0
5520 && GET_CODE (dest) != PC)
5522 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5524 /* If this substitution failed, this whole thing fails. */
5525 if (GET_CODE (new_rtx) == CLOBBER
5526 && XEXP (new_rtx, 0) == const0_rtx)
5527 return new_rtx;
5529 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5533 else
5535 len = GET_RTX_LENGTH (code);
5536 fmt = GET_RTX_FORMAT (code);
5538 /* We don't need to process a SET_DEST that is a register, CC0,
5539 or PC, so set up to skip this common case. All other cases
5540 where we want to suppress replacing something inside a
5541 SET_SRC are handled via the IN_DEST operand. */
5542 if (code == SET
5543 && (REG_P (SET_DEST (x))
5544 || GET_CODE (SET_DEST (x)) == CC0
5545 || GET_CODE (SET_DEST (x)) == PC))
5546 fmt = "ie";
5548 /* Trying to simplify the operands of a widening MULT is not likely
5549 to create RTL matching a machine insn. */
5550 if (code == MULT
5551 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5552 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5553 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5554 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5555 && REG_P (XEXP (XEXP (x, 0), 0))
5556 && REG_P (XEXP (XEXP (x, 1), 0))
5557 && from == to)
5558 return x;
5561 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5562 constant. */
5563 if (fmt[0] == 'e')
5564 op0_mode = GET_MODE (XEXP (x, 0));
5566 for (i = 0; i < len; i++)
5568 if (fmt[i] == 'E')
5570 int j;
5571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5573 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5575 new_rtx = (unique_copy && n_occurrences
5576 ? copy_rtx (to) : to);
5577 n_occurrences++;
5579 else
5581 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5582 unique_copy);
5584 /* If this substitution failed, this whole thing
5585 fails. */
5586 if (GET_CODE (new_rtx) == CLOBBER
5587 && XEXP (new_rtx, 0) == const0_rtx)
5588 return new_rtx;
5591 SUBST (XVECEXP (x, i, j), new_rtx);
5594 else if (fmt[i] == 'e')
5596 /* If this is a register being set, ignore it. */
5597 new_rtx = XEXP (x, i);
5598 if (in_dest
5599 && i == 0
5600 && (((code == SUBREG || code == ZERO_EXTRACT)
5601 && REG_P (new_rtx))
5602 || code == STRICT_LOW_PART))
5605 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5607 /* In general, don't install a subreg involving two
5608 modes not tieable. It can worsen register
5609 allocation, and can even make invalid reload
5610 insns, since the reg inside may need to be copied
5611 from in the outside mode, and that may be invalid
5612 if it is an fp reg copied in integer mode.
5614 We allow two exceptions to this: It is valid if
5615 it is inside another SUBREG and the mode of that
5616 SUBREG and the mode of the inside of TO is
5617 tieable and it is valid if X is a SET that copies
5618 FROM to CC0. */
5620 if (GET_CODE (to) == SUBREG
5621 && !targetm.modes_tieable_p (GET_MODE (to),
5622 GET_MODE (SUBREG_REG (to)))
5623 && ! (code == SUBREG
5624 && (targetm.modes_tieable_p
5625 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5626 && (!HAVE_cc0
5627 || (! (code == SET
5628 && i == 1
5629 && XEXP (x, 0) == cc0_rtx))))
5630 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5632 if (code == SUBREG
5633 && REG_P (to)
5634 && REGNO (to) < FIRST_PSEUDO_REGISTER
5635 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5636 SUBREG_BYTE (x),
5637 GET_MODE (x)) < 0)
5638 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5640 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5641 n_occurrences++;
5643 else
5644 /* If we are in a SET_DEST, suppress most cases unless we
5645 have gone inside a MEM, in which case we want to
5646 simplify the address. We assume here that things that
5647 are actually part of the destination have their inner
5648 parts in the first expression. This is true for SUBREG,
5649 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5650 things aside from REG and MEM that should appear in a
5651 SET_DEST. */
5652 new_rtx = subst (XEXP (x, i), from, to,
5653 (((in_dest
5654 && (code == SUBREG || code == STRICT_LOW_PART
5655 || code == ZERO_EXTRACT))
5656 || code == SET)
5657 && i == 0),
5658 code == IF_THEN_ELSE && i == 0,
5659 unique_copy);
5661 /* If we found that we will have to reject this combination,
5662 indicate that by returning the CLOBBER ourselves, rather than
5663 an expression containing it. This will speed things up as
5664 well as prevent accidents where two CLOBBERs are considered
5665 to be equal, thus producing an incorrect simplification. */
5667 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5668 return new_rtx;
5670 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5672 machine_mode mode = GET_MODE (x);
5674 x = simplify_subreg (GET_MODE (x), new_rtx,
5675 GET_MODE (SUBREG_REG (x)),
5676 SUBREG_BYTE (x));
5677 if (! x)
5678 x = gen_rtx_CLOBBER (mode, const0_rtx);
5680 else if (CONST_SCALAR_INT_P (new_rtx)
5681 && (GET_CODE (x) == ZERO_EXTEND
5682 || GET_CODE (x) == SIGN_EXTEND
5683 || GET_CODE (x) == FLOAT
5684 || GET_CODE (x) == UNSIGNED_FLOAT))
5686 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5687 new_rtx,
5688 GET_MODE (XEXP (x, 0)));
5689 if (!x)
5690 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5692 else
5693 SUBST (XEXP (x, i), new_rtx);
5698 /* Check if we are loading something from the constant pool via float
5699 extension; in this case we would undo compress_float_constant
5700 optimization and degenerate constant load to an immediate value. */
5701 if (GET_CODE (x) == FLOAT_EXTEND
5702 && MEM_P (XEXP (x, 0))
5703 && MEM_READONLY_P (XEXP (x, 0)))
5705 rtx tmp = avoid_constant_pool_reference (x);
5706 if (x != tmp)
5707 return x;
5710 /* Try to simplify X. If the simplification changed the code, it is likely
5711 that further simplification will help, so loop, but limit the number
5712 of repetitions that will be performed. */
5714 for (i = 0; i < 4; i++)
5716 /* If X is sufficiently simple, don't bother trying to do anything
5717 with it. */
5718 if (code != CONST_INT && code != REG && code != CLOBBER)
5719 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5721 if (GET_CODE (x) == code)
5722 break;
5724 code = GET_CODE (x);
5726 /* We no longer know the original mode of operand 0 since we
5727 have changed the form of X) */
5728 op0_mode = VOIDmode;
5731 return x;
5734 /* If X is a commutative operation whose operands are not in the canonical
5735 order, use substitutions to swap them. */
5737 static void
5738 maybe_swap_commutative_operands (rtx x)
5740 if (COMMUTATIVE_ARITH_P (x)
5741 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5743 rtx temp = XEXP (x, 0);
5744 SUBST (XEXP (x, 0), XEXP (x, 1));
5745 SUBST (XEXP (x, 1), temp);
5749 /* Simplify X, a piece of RTL. We just operate on the expression at the
5750 outer level; call `subst' to simplify recursively. Return the new
5751 expression.
5753 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5754 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5755 of a condition. */
5757 static rtx
5758 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5759 int in_cond)
5761 enum rtx_code code = GET_CODE (x);
5762 machine_mode mode = GET_MODE (x);
5763 scalar_int_mode int_mode;
5764 rtx temp;
5765 int i;
5767 /* If this is a commutative operation, put a constant last and a complex
5768 expression first. We don't need to do this for comparisons here. */
5769 maybe_swap_commutative_operands (x);
5771 /* Try to fold this expression in case we have constants that weren't
5772 present before. */
5773 temp = 0;
5774 switch (GET_RTX_CLASS (code))
5776 case RTX_UNARY:
5777 if (op0_mode == VOIDmode)
5778 op0_mode = GET_MODE (XEXP (x, 0));
5779 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5780 break;
5781 case RTX_COMPARE:
5782 case RTX_COMM_COMPARE:
5784 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5785 if (cmp_mode == VOIDmode)
5787 cmp_mode = GET_MODE (XEXP (x, 1));
5788 if (cmp_mode == VOIDmode)
5789 cmp_mode = op0_mode;
5791 temp = simplify_relational_operation (code, mode, cmp_mode,
5792 XEXP (x, 0), XEXP (x, 1));
5794 break;
5795 case RTX_COMM_ARITH:
5796 case RTX_BIN_ARITH:
5797 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5798 break;
5799 case RTX_BITFIELD_OPS:
5800 case RTX_TERNARY:
5801 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5802 XEXP (x, 1), XEXP (x, 2));
5803 break;
5804 default:
5805 break;
5808 if (temp)
5810 x = temp;
5811 code = GET_CODE (temp);
5812 op0_mode = VOIDmode;
5813 mode = GET_MODE (temp);
5816 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5817 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5818 things. Check for cases where both arms are testing the same
5819 condition.
5821 Don't do anything if all operands are very simple. */
5823 if ((BINARY_P (x)
5824 && ((!OBJECT_P (XEXP (x, 0))
5825 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5826 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5827 || (!OBJECT_P (XEXP (x, 1))
5828 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5829 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5830 || (UNARY_P (x)
5831 && (!OBJECT_P (XEXP (x, 0))
5832 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5833 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5835 rtx cond, true_rtx, false_rtx;
5837 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5838 if (cond != 0
5839 /* If everything is a comparison, what we have is highly unlikely
5840 to be simpler, so don't use it. */
5841 && ! (COMPARISON_P (x)
5842 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5843 /* Similarly, if we end up with one of the expressions the same
5844 as the original, it is certainly not simpler. */
5845 && ! rtx_equal_p (x, true_rtx)
5846 && ! rtx_equal_p (x, false_rtx))
5848 rtx cop1 = const0_rtx;
5849 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5851 if (cond_code == NE && COMPARISON_P (cond))
5852 return x;
5854 /* Simplify the alternative arms; this may collapse the true and
5855 false arms to store-flag values. Be careful to use copy_rtx
5856 here since true_rtx or false_rtx might share RTL with x as a
5857 result of the if_then_else_cond call above. */
5858 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5859 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5861 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5862 is unlikely to be simpler. */
5863 if (general_operand (true_rtx, VOIDmode)
5864 && general_operand (false_rtx, VOIDmode))
5866 enum rtx_code reversed;
5868 /* Restarting if we generate a store-flag expression will cause
5869 us to loop. Just drop through in this case. */
5871 /* If the result values are STORE_FLAG_VALUE and zero, we can
5872 just make the comparison operation. */
5873 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5874 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5875 cond, cop1);
5876 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5877 && ((reversed = reversed_comparison_code_parts
5878 (cond_code, cond, cop1, NULL))
5879 != UNKNOWN))
5880 x = simplify_gen_relational (reversed, mode, VOIDmode,
5881 cond, cop1);
5883 /* Likewise, we can make the negate of a comparison operation
5884 if the result values are - STORE_FLAG_VALUE and zero. */
5885 else if (CONST_INT_P (true_rtx)
5886 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5887 && false_rtx == const0_rtx)
5888 x = simplify_gen_unary (NEG, mode,
5889 simplify_gen_relational (cond_code,
5890 mode, VOIDmode,
5891 cond, cop1),
5892 mode);
5893 else if (CONST_INT_P (false_rtx)
5894 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5895 && true_rtx == const0_rtx
5896 && ((reversed = reversed_comparison_code_parts
5897 (cond_code, cond, cop1, NULL))
5898 != UNKNOWN))
5899 x = simplify_gen_unary (NEG, mode,
5900 simplify_gen_relational (reversed,
5901 mode, VOIDmode,
5902 cond, cop1),
5903 mode);
5905 code = GET_CODE (x);
5906 op0_mode = VOIDmode;
5911 /* First see if we can apply the inverse distributive law. */
5912 if (code == PLUS || code == MINUS
5913 || code == AND || code == IOR || code == XOR)
5915 x = apply_distributive_law (x);
5916 code = GET_CODE (x);
5917 op0_mode = VOIDmode;
5920 /* If CODE is an associative operation not otherwise handled, see if we
5921 can associate some operands. This can win if they are constants or
5922 if they are logically related (i.e. (a & b) & a). */
5923 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5924 || code == AND || code == IOR || code == XOR
5925 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5926 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5927 || (flag_associative_math && FLOAT_MODE_P (mode))))
5929 if (GET_CODE (XEXP (x, 0)) == code)
5931 rtx other = XEXP (XEXP (x, 0), 0);
5932 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5933 rtx inner_op1 = XEXP (x, 1);
5934 rtx inner;
5936 /* Make sure we pass the constant operand if any as the second
5937 one if this is a commutative operation. */
5938 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5939 std::swap (inner_op0, inner_op1);
5940 inner = simplify_binary_operation (code == MINUS ? PLUS
5941 : code == DIV ? MULT
5942 : code,
5943 mode, inner_op0, inner_op1);
5945 /* For commutative operations, try the other pair if that one
5946 didn't simplify. */
5947 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5949 other = XEXP (XEXP (x, 0), 1);
5950 inner = simplify_binary_operation (code, mode,
5951 XEXP (XEXP (x, 0), 0),
5952 XEXP (x, 1));
5955 if (inner)
5956 return simplify_gen_binary (code, mode, other, inner);
5960 /* A little bit of algebraic simplification here. */
5961 switch (code)
5963 case MEM:
5964 /* Ensure that our address has any ASHIFTs converted to MULT in case
5965 address-recognizing predicates are called later. */
5966 temp = make_compound_operation (XEXP (x, 0), MEM);
5967 SUBST (XEXP (x, 0), temp);
5968 break;
5970 case SUBREG:
5971 if (op0_mode == VOIDmode)
5972 op0_mode = GET_MODE (SUBREG_REG (x));
5974 /* See if this can be moved to simplify_subreg. */
5975 if (CONSTANT_P (SUBREG_REG (x))
5976 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5977 /* Don't call gen_lowpart if the inner mode
5978 is VOIDmode and we cannot simplify it, as SUBREG without
5979 inner mode is invalid. */
5980 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5981 || gen_lowpart_common (mode, SUBREG_REG (x))))
5982 return gen_lowpart (mode, SUBREG_REG (x));
5984 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5985 break;
5987 rtx temp;
5988 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5989 SUBREG_BYTE (x));
5990 if (temp)
5991 return temp;
5993 /* If op is known to have all lower bits zero, the result is zero. */
5994 scalar_int_mode int_mode, int_op0_mode;
5995 if (!in_dest
5996 && is_a <scalar_int_mode> (mode, &int_mode)
5997 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5998 && (GET_MODE_PRECISION (int_mode)
5999 < GET_MODE_PRECISION (int_op0_mode))
6000 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
6001 SUBREG_BYTE (x))
6002 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
6003 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
6004 & GET_MODE_MASK (int_mode)) == 0)
6005 && !side_effects_p (SUBREG_REG (x)))
6006 return CONST0_RTX (int_mode);
6009 /* Don't change the mode of the MEM if that would change the meaning
6010 of the address. */
6011 if (MEM_P (SUBREG_REG (x))
6012 && (MEM_VOLATILE_P (SUBREG_REG (x))
6013 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
6014 MEM_ADDR_SPACE (SUBREG_REG (x)))))
6015 return gen_rtx_CLOBBER (mode, const0_rtx);
6017 /* Note that we cannot do any narrowing for non-constants since
6018 we might have been counting on using the fact that some bits were
6019 zero. We now do this in the SET. */
6021 break;
6023 case NEG:
6024 temp = expand_compound_operation (XEXP (x, 0));
6026 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
6027 replaced by (lshiftrt X C). This will convert
6028 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
6030 if (GET_CODE (temp) == ASHIFTRT
6031 && CONST_INT_P (XEXP (temp, 1))
6032 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
6033 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
6034 INTVAL (XEXP (temp, 1)));
6036 /* If X has only a single bit that might be nonzero, say, bit I, convert
6037 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6038 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6039 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6040 or a SUBREG of one since we'd be making the expression more
6041 complex if it was just a register. */
6043 if (!REG_P (temp)
6044 && ! (GET_CODE (temp) == SUBREG
6045 && REG_P (SUBREG_REG (temp)))
6046 && is_a <scalar_int_mode> (mode, &int_mode)
6047 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
6049 rtx temp1 = simplify_shift_const
6050 (NULL_RTX, ASHIFTRT, int_mode,
6051 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
6052 GET_MODE_PRECISION (int_mode) - 1 - i),
6053 GET_MODE_PRECISION (int_mode) - 1 - i);
6055 /* If all we did was surround TEMP with the two shifts, we
6056 haven't improved anything, so don't use it. Otherwise,
6057 we are better off with TEMP1. */
6058 if (GET_CODE (temp1) != ASHIFTRT
6059 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
6060 || XEXP (XEXP (temp1, 0), 0) != temp)
6061 return temp1;
6063 break;
6065 case TRUNCATE:
6066 /* We can't handle truncation to a partial integer mode here
6067 because we don't know the real bitsize of the partial
6068 integer mode. */
6069 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6070 break;
6072 if (HWI_COMPUTABLE_MODE_P (mode))
6073 SUBST (XEXP (x, 0),
6074 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6075 GET_MODE_MASK (mode), 0));
6077 /* We can truncate a constant value and return it. */
6079 poly_int64 c;
6080 if (poly_int_rtx_p (XEXP (x, 0), &c))
6081 return gen_int_mode (c, mode);
6084 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6085 whose value is a comparison can be replaced with a subreg if
6086 STORE_FLAG_VALUE permits. */
6087 if (HWI_COMPUTABLE_MODE_P (mode)
6088 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6089 && (temp = get_last_value (XEXP (x, 0)))
6090 && COMPARISON_P (temp))
6091 return gen_lowpart (mode, XEXP (x, 0));
6092 break;
6094 case CONST:
6095 /* (const (const X)) can become (const X). Do it this way rather than
6096 returning the inner CONST since CONST can be shared with a
6097 REG_EQUAL note. */
6098 if (GET_CODE (XEXP (x, 0)) == CONST)
6099 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6100 break;
6102 case LO_SUM:
6103 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6104 can add in an offset. find_split_point will split this address up
6105 again if it doesn't match. */
6106 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6107 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6108 return XEXP (x, 1);
6109 break;
6111 case PLUS:
6112 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6113 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6114 bit-field and can be replaced by either a sign_extend or a
6115 sign_extract. The `and' may be a zero_extend and the two
6116 <c>, -<c> constants may be reversed. */
6117 if (GET_CODE (XEXP (x, 0)) == XOR
6118 && is_a <scalar_int_mode> (mode, &int_mode)
6119 && CONST_INT_P (XEXP (x, 1))
6120 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6121 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6122 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6123 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6124 && HWI_COMPUTABLE_MODE_P (int_mode)
6125 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6126 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6127 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6128 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6129 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6130 && known_eq ((GET_MODE_PRECISION
6131 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6132 (unsigned int) i + 1))))
6133 return simplify_shift_const
6134 (NULL_RTX, ASHIFTRT, int_mode,
6135 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6136 XEXP (XEXP (XEXP (x, 0), 0), 0),
6137 GET_MODE_PRECISION (int_mode) - (i + 1)),
6138 GET_MODE_PRECISION (int_mode) - (i + 1));
6140 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6141 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6142 the bitsize of the mode - 1. This allows simplification of
6143 "a = (b & 8) == 0;" */
6144 if (XEXP (x, 1) == constm1_rtx
6145 && !REG_P (XEXP (x, 0))
6146 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6147 && REG_P (SUBREG_REG (XEXP (x, 0))))
6148 && is_a <scalar_int_mode> (mode, &int_mode)
6149 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6150 return simplify_shift_const
6151 (NULL_RTX, ASHIFTRT, int_mode,
6152 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6153 gen_rtx_XOR (int_mode, XEXP (x, 0),
6154 const1_rtx),
6155 GET_MODE_PRECISION (int_mode) - 1),
6156 GET_MODE_PRECISION (int_mode) - 1);
6158 /* If we are adding two things that have no bits in common, convert
6159 the addition into an IOR. This will often be further simplified,
6160 for example in cases like ((a & 1) + (a & 2)), which can
6161 become a & 3. */
6163 if (HWI_COMPUTABLE_MODE_P (mode)
6164 && (nonzero_bits (XEXP (x, 0), mode)
6165 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6167 /* Try to simplify the expression further. */
6168 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6169 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6171 /* If we could, great. If not, do not go ahead with the IOR
6172 replacement, since PLUS appears in many special purpose
6173 address arithmetic instructions. */
6174 if (GET_CODE (temp) != CLOBBER
6175 && (GET_CODE (temp) != IOR
6176 || ((XEXP (temp, 0) != XEXP (x, 0)
6177 || XEXP (temp, 1) != XEXP (x, 1))
6178 && (XEXP (temp, 0) != XEXP (x, 1)
6179 || XEXP (temp, 1) != XEXP (x, 0)))))
6180 return temp;
6183 /* Canonicalize x + x into x << 1. */
6184 if (GET_MODE_CLASS (mode) == MODE_INT
6185 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6186 && !side_effects_p (XEXP (x, 0)))
6187 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6189 break;
6191 case MINUS:
6192 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6193 (and <foo> (const_int pow2-1)) */
6194 if (is_a <scalar_int_mode> (mode, &int_mode)
6195 && GET_CODE (XEXP (x, 1)) == AND
6196 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6197 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6198 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6199 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6200 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6201 break;
6203 case MULT:
6204 /* If we have (mult (plus A B) C), apply the distributive law and then
6205 the inverse distributive law to see if things simplify. This
6206 occurs mostly in addresses, often when unrolling loops. */
6208 if (GET_CODE (XEXP (x, 0)) == PLUS)
6210 rtx result = distribute_and_simplify_rtx (x, 0);
6211 if (result)
6212 return result;
6215 /* Try simplify a*(b/c) as (a*b)/c. */
6216 if (FLOAT_MODE_P (mode) && flag_associative_math
6217 && GET_CODE (XEXP (x, 0)) == DIV)
6219 rtx tem = simplify_binary_operation (MULT, mode,
6220 XEXP (XEXP (x, 0), 0),
6221 XEXP (x, 1));
6222 if (tem)
6223 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6225 break;
6227 case UDIV:
6228 /* If this is a divide by a power of two, treat it as a shift if
6229 its first operand is a shift. */
6230 if (is_a <scalar_int_mode> (mode, &int_mode)
6231 && CONST_INT_P (XEXP (x, 1))
6232 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6233 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6234 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6235 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6236 || GET_CODE (XEXP (x, 0)) == ROTATE
6237 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6238 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6239 XEXP (x, 0), i);
6240 break;
6242 case EQ: case NE:
6243 case GT: case GTU: case GE: case GEU:
6244 case LT: case LTU: case LE: case LEU:
6245 case UNEQ: case LTGT:
6246 case UNGT: case UNGE:
6247 case UNLT: case UNLE:
6248 case UNORDERED: case ORDERED:
6249 /* If the first operand is a condition code, we can't do anything
6250 with it. */
6251 if (GET_CODE (XEXP (x, 0)) == COMPARE
6252 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6253 && ! CC0_P (XEXP (x, 0))))
6255 rtx op0 = XEXP (x, 0);
6256 rtx op1 = XEXP (x, 1);
6257 enum rtx_code new_code;
6259 if (GET_CODE (op0) == COMPARE)
6260 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6262 /* Simplify our comparison, if possible. */
6263 new_code = simplify_comparison (code, &op0, &op1);
6265 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6266 if only the low-order bit is possibly nonzero in X (such as when
6267 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6268 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6269 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6270 (plus X 1).
6272 Remove any ZERO_EXTRACT we made when thinking this was a
6273 comparison. It may now be simpler to use, e.g., an AND. If a
6274 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6275 the call to make_compound_operation in the SET case.
6277 Don't apply these optimizations if the caller would
6278 prefer a comparison rather than a value.
6279 E.g., for the condition in an IF_THEN_ELSE most targets need
6280 an explicit comparison. */
6282 if (in_cond)
6285 else if (STORE_FLAG_VALUE == 1
6286 && new_code == NE
6287 && is_int_mode (mode, &int_mode)
6288 && op1 == const0_rtx
6289 && int_mode == GET_MODE (op0)
6290 && nonzero_bits (op0, int_mode) == 1)
6291 return gen_lowpart (int_mode,
6292 expand_compound_operation (op0));
6294 else if (STORE_FLAG_VALUE == 1
6295 && new_code == NE
6296 && is_int_mode (mode, &int_mode)
6297 && op1 == const0_rtx
6298 && int_mode == GET_MODE (op0)
6299 && (num_sign_bit_copies (op0, int_mode)
6300 == GET_MODE_PRECISION (int_mode)))
6302 op0 = expand_compound_operation (op0);
6303 return simplify_gen_unary (NEG, int_mode,
6304 gen_lowpart (int_mode, op0),
6305 int_mode);
6308 else if (STORE_FLAG_VALUE == 1
6309 && new_code == EQ
6310 && is_int_mode (mode, &int_mode)
6311 && op1 == const0_rtx
6312 && int_mode == GET_MODE (op0)
6313 && nonzero_bits (op0, int_mode) == 1)
6315 op0 = expand_compound_operation (op0);
6316 return simplify_gen_binary (XOR, int_mode,
6317 gen_lowpart (int_mode, op0),
6318 const1_rtx);
6321 else if (STORE_FLAG_VALUE == 1
6322 && new_code == EQ
6323 && is_int_mode (mode, &int_mode)
6324 && op1 == const0_rtx
6325 && int_mode == GET_MODE (op0)
6326 && (num_sign_bit_copies (op0, int_mode)
6327 == GET_MODE_PRECISION (int_mode)))
6329 op0 = expand_compound_operation (op0);
6330 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6333 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6334 those above. */
6335 if (in_cond)
6338 else if (STORE_FLAG_VALUE == -1
6339 && new_code == NE
6340 && is_int_mode (mode, &int_mode)
6341 && op1 == const0_rtx
6342 && int_mode == GET_MODE (op0)
6343 && (num_sign_bit_copies (op0, int_mode)
6344 == GET_MODE_PRECISION (int_mode)))
6345 return gen_lowpart (int_mode, expand_compound_operation (op0));
6347 else if (STORE_FLAG_VALUE == -1
6348 && new_code == NE
6349 && is_int_mode (mode, &int_mode)
6350 && op1 == const0_rtx
6351 && int_mode == GET_MODE (op0)
6352 && nonzero_bits (op0, int_mode) == 1)
6354 op0 = expand_compound_operation (op0);
6355 return simplify_gen_unary (NEG, int_mode,
6356 gen_lowpart (int_mode, op0),
6357 int_mode);
6360 else if (STORE_FLAG_VALUE == -1
6361 && new_code == EQ
6362 && is_int_mode (mode, &int_mode)
6363 && op1 == const0_rtx
6364 && int_mode == GET_MODE (op0)
6365 && (num_sign_bit_copies (op0, int_mode)
6366 == GET_MODE_PRECISION (int_mode)))
6368 op0 = expand_compound_operation (op0);
6369 return simplify_gen_unary (NOT, int_mode,
6370 gen_lowpart (int_mode, op0),
6371 int_mode);
6374 /* If X is 0/1, (eq X 0) is X-1. */
6375 else if (STORE_FLAG_VALUE == -1
6376 && new_code == EQ
6377 && is_int_mode (mode, &int_mode)
6378 && op1 == const0_rtx
6379 && int_mode == GET_MODE (op0)
6380 && nonzero_bits (op0, int_mode) == 1)
6382 op0 = expand_compound_operation (op0);
6383 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6386 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6387 one bit that might be nonzero, we can convert (ne x 0) to
6388 (ashift x c) where C puts the bit in the sign bit. Remove any
6389 AND with STORE_FLAG_VALUE when we are done, since we are only
6390 going to test the sign bit. */
6391 if (new_code == NE
6392 && is_int_mode (mode, &int_mode)
6393 && HWI_COMPUTABLE_MODE_P (int_mode)
6394 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6395 && op1 == const0_rtx
6396 && int_mode == GET_MODE (op0)
6397 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6399 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6400 expand_compound_operation (op0),
6401 GET_MODE_PRECISION (int_mode) - 1 - i);
6402 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6403 return XEXP (x, 0);
6404 else
6405 return x;
6408 /* If the code changed, return a whole new comparison.
6409 We also need to avoid using SUBST in cases where
6410 simplify_comparison has widened a comparison with a CONST_INT,
6411 since in that case the wider CONST_INT may fail the sanity
6412 checks in do_SUBST. */
6413 if (new_code != code
6414 || (CONST_INT_P (op1)
6415 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6416 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6417 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6419 /* Otherwise, keep this operation, but maybe change its operands.
6420 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6421 SUBST (XEXP (x, 0), op0);
6422 SUBST (XEXP (x, 1), op1);
6424 break;
6426 case IF_THEN_ELSE:
6427 return simplify_if_then_else (x);
6429 case ZERO_EXTRACT:
6430 case SIGN_EXTRACT:
6431 case ZERO_EXTEND:
6432 case SIGN_EXTEND:
6433 /* If we are processing SET_DEST, we are done. */
6434 if (in_dest)
6435 return x;
6437 return expand_compound_operation (x);
6439 case SET:
6440 return simplify_set (x);
6442 case AND:
6443 case IOR:
6444 return simplify_logical (x);
6446 case ASHIFT:
6447 case LSHIFTRT:
6448 case ASHIFTRT:
6449 case ROTATE:
6450 case ROTATERT:
6451 /* If this is a shift by a constant amount, simplify it. */
6452 if (CONST_INT_P (XEXP (x, 1)))
6453 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6454 INTVAL (XEXP (x, 1)));
6456 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6457 SUBST (XEXP (x, 1),
6458 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6459 (HOST_WIDE_INT_1U
6460 << exact_log2 (GET_MODE_UNIT_BITSIZE
6461 (GET_MODE (x))))
6462 - 1,
6463 0));
6464 break;
6466 default:
6467 break;
6470 return x;
6473 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6475 static rtx
6476 simplify_if_then_else (rtx x)
6478 machine_mode mode = GET_MODE (x);
6479 rtx cond = XEXP (x, 0);
6480 rtx true_rtx = XEXP (x, 1);
6481 rtx false_rtx = XEXP (x, 2);
6482 enum rtx_code true_code = GET_CODE (cond);
6483 int comparison_p = COMPARISON_P (cond);
6484 rtx temp;
6485 int i;
6486 enum rtx_code false_code;
6487 rtx reversed;
6488 scalar_int_mode int_mode, inner_mode;
6490 /* Simplify storing of the truth value. */
6491 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6492 return simplify_gen_relational (true_code, mode, VOIDmode,
6493 XEXP (cond, 0), XEXP (cond, 1));
6495 /* Also when the truth value has to be reversed. */
6496 if (comparison_p
6497 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6498 && (reversed = reversed_comparison (cond, mode)))
6499 return reversed;
6501 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6502 in it is being compared against certain values. Get the true and false
6503 comparisons and see if that says anything about the value of each arm. */
6505 if (comparison_p
6506 && ((false_code = reversed_comparison_code (cond, NULL))
6507 != UNKNOWN)
6508 && REG_P (XEXP (cond, 0)))
6510 HOST_WIDE_INT nzb;
6511 rtx from = XEXP (cond, 0);
6512 rtx true_val = XEXP (cond, 1);
6513 rtx false_val = true_val;
6514 int swapped = 0;
6516 /* If FALSE_CODE is EQ, swap the codes and arms. */
6518 if (false_code == EQ)
6520 swapped = 1, true_code = EQ, false_code = NE;
6521 std::swap (true_rtx, false_rtx);
6524 scalar_int_mode from_mode;
6525 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6527 /* If we are comparing against zero and the expression being
6528 tested has only a single bit that might be nonzero, that is
6529 its value when it is not equal to zero. Similarly if it is
6530 known to be -1 or 0. */
6531 if (true_code == EQ
6532 && true_val == const0_rtx
6533 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6535 false_code = EQ;
6536 false_val = gen_int_mode (nzb, from_mode);
6538 else if (true_code == EQ
6539 && true_val == const0_rtx
6540 && (num_sign_bit_copies (from, from_mode)
6541 == GET_MODE_PRECISION (from_mode)))
6543 false_code = EQ;
6544 false_val = constm1_rtx;
6548 /* Now simplify an arm if we know the value of the register in the
6549 branch and it is used in the arm. Be careful due to the potential
6550 of locally-shared RTL. */
6552 if (reg_mentioned_p (from, true_rtx))
6553 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6554 from, true_val),
6555 pc_rtx, pc_rtx, 0, 0, 0);
6556 if (reg_mentioned_p (from, false_rtx))
6557 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6558 from, false_val),
6559 pc_rtx, pc_rtx, 0, 0, 0);
6561 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6562 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6564 true_rtx = XEXP (x, 1);
6565 false_rtx = XEXP (x, 2);
6566 true_code = GET_CODE (cond);
6569 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6570 reversed, do so to avoid needing two sets of patterns for
6571 subtract-and-branch insns. Similarly if we have a constant in the true
6572 arm, the false arm is the same as the first operand of the comparison, or
6573 the false arm is more complicated than the true arm. */
6575 if (comparison_p
6576 && reversed_comparison_code (cond, NULL) != UNKNOWN
6577 && (true_rtx == pc_rtx
6578 || (CONSTANT_P (true_rtx)
6579 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6580 || true_rtx == const0_rtx
6581 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6582 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6583 && !OBJECT_P (false_rtx))
6584 || reg_mentioned_p (true_rtx, false_rtx)
6585 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6587 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6588 SUBST (XEXP (x, 1), false_rtx);
6589 SUBST (XEXP (x, 2), true_rtx);
6591 std::swap (true_rtx, false_rtx);
6592 cond = XEXP (x, 0);
6594 /* It is possible that the conditional has been simplified out. */
6595 true_code = GET_CODE (cond);
6596 comparison_p = COMPARISON_P (cond);
6599 /* If the two arms are identical, we don't need the comparison. */
6601 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6602 return true_rtx;
6604 /* Convert a == b ? b : a to "a". */
6605 if (true_code == EQ && ! side_effects_p (cond)
6606 && !HONOR_NANS (mode)
6607 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6608 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6609 return false_rtx;
6610 else if (true_code == NE && ! side_effects_p (cond)
6611 && !HONOR_NANS (mode)
6612 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6613 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6614 return true_rtx;
6616 /* Look for cases where we have (abs x) or (neg (abs X)). */
6618 if (GET_MODE_CLASS (mode) == MODE_INT
6619 && comparison_p
6620 && XEXP (cond, 1) == const0_rtx
6621 && GET_CODE (false_rtx) == NEG
6622 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6623 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6624 && ! side_effects_p (true_rtx))
6625 switch (true_code)
6627 case GT:
6628 case GE:
6629 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6630 case LT:
6631 case LE:
6632 return
6633 simplify_gen_unary (NEG, mode,
6634 simplify_gen_unary (ABS, mode, true_rtx, mode),
6635 mode);
6636 default:
6637 break;
6640 /* Look for MIN or MAX. */
6642 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6643 && comparison_p
6644 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6645 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6646 && ! side_effects_p (cond))
6647 switch (true_code)
6649 case GE:
6650 case GT:
6651 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6652 case LE:
6653 case LT:
6654 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6655 case GEU:
6656 case GTU:
6657 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6658 case LEU:
6659 case LTU:
6660 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6661 default:
6662 break;
6665 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6666 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6667 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6668 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6669 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6670 neither 1 or -1, but it isn't worth checking for. */
6672 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6673 && comparison_p
6674 && is_int_mode (mode, &int_mode)
6675 && ! side_effects_p (x))
6677 rtx t = make_compound_operation (true_rtx, SET);
6678 rtx f = make_compound_operation (false_rtx, SET);
6679 rtx cond_op0 = XEXP (cond, 0);
6680 rtx cond_op1 = XEXP (cond, 1);
6681 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6682 scalar_int_mode m = int_mode;
6683 rtx z = 0, c1 = NULL_RTX;
6685 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6686 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6687 || GET_CODE (t) == ASHIFT
6688 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6689 && rtx_equal_p (XEXP (t, 0), f))
6690 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6692 /* If an identity-zero op is commutative, check whether there
6693 would be a match if we swapped the operands. */
6694 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6695 || GET_CODE (t) == XOR)
6696 && rtx_equal_p (XEXP (t, 1), f))
6697 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6698 else if (GET_CODE (t) == SIGN_EXTEND
6699 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6700 && (GET_CODE (XEXP (t, 0)) == PLUS
6701 || GET_CODE (XEXP (t, 0)) == MINUS
6702 || GET_CODE (XEXP (t, 0)) == IOR
6703 || GET_CODE (XEXP (t, 0)) == XOR
6704 || GET_CODE (XEXP (t, 0)) == ASHIFT
6705 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6706 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6707 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6708 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6709 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6710 && (num_sign_bit_copies (f, GET_MODE (f))
6711 > (unsigned int)
6712 (GET_MODE_PRECISION (int_mode)
6713 - GET_MODE_PRECISION (inner_mode))))
6715 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6716 extend_op = SIGN_EXTEND;
6717 m = inner_mode;
6719 else if (GET_CODE (t) == SIGN_EXTEND
6720 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6721 && (GET_CODE (XEXP (t, 0)) == PLUS
6722 || GET_CODE (XEXP (t, 0)) == IOR
6723 || GET_CODE (XEXP (t, 0)) == XOR)
6724 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6725 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6726 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6727 && (num_sign_bit_copies (f, GET_MODE (f))
6728 > (unsigned int)
6729 (GET_MODE_PRECISION (int_mode)
6730 - GET_MODE_PRECISION (inner_mode))))
6732 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6733 extend_op = SIGN_EXTEND;
6734 m = inner_mode;
6736 else if (GET_CODE (t) == ZERO_EXTEND
6737 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6738 && (GET_CODE (XEXP (t, 0)) == PLUS
6739 || GET_CODE (XEXP (t, 0)) == MINUS
6740 || GET_CODE (XEXP (t, 0)) == IOR
6741 || GET_CODE (XEXP (t, 0)) == XOR
6742 || GET_CODE (XEXP (t, 0)) == ASHIFT
6743 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6744 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6745 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6746 && HWI_COMPUTABLE_MODE_P (int_mode)
6747 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6748 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6749 && ((nonzero_bits (f, GET_MODE (f))
6750 & ~GET_MODE_MASK (inner_mode))
6751 == 0))
6753 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6754 extend_op = ZERO_EXTEND;
6755 m = inner_mode;
6757 else if (GET_CODE (t) == ZERO_EXTEND
6758 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6759 && (GET_CODE (XEXP (t, 0)) == PLUS
6760 || GET_CODE (XEXP (t, 0)) == IOR
6761 || GET_CODE (XEXP (t, 0)) == XOR)
6762 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6763 && HWI_COMPUTABLE_MODE_P (int_mode)
6764 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6765 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6766 && ((nonzero_bits (f, GET_MODE (f))
6767 & ~GET_MODE_MASK (inner_mode))
6768 == 0))
6770 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6771 extend_op = ZERO_EXTEND;
6772 m = inner_mode;
6775 if (z)
6777 machine_mode cm = m;
6778 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6779 && GET_MODE (c1) != VOIDmode)
6780 cm = GET_MODE (c1);
6781 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6782 cond_op0, cond_op1),
6783 pc_rtx, pc_rtx, 0, 0, 0);
6784 temp = simplify_gen_binary (MULT, cm, temp,
6785 simplify_gen_binary (MULT, cm, c1,
6786 const_true_rtx));
6787 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6788 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6790 if (extend_op != UNKNOWN)
6791 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6793 return temp;
6797 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6798 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6799 negation of a single bit, we can convert this operation to a shift. We
6800 can actually do this more generally, but it doesn't seem worth it. */
6802 if (true_code == NE
6803 && is_a <scalar_int_mode> (mode, &int_mode)
6804 && XEXP (cond, 1) == const0_rtx
6805 && false_rtx == const0_rtx
6806 && CONST_INT_P (true_rtx)
6807 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6808 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6809 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6810 == GET_MODE_PRECISION (int_mode))
6811 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6812 return
6813 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6814 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6816 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6817 non-zero bit in A is C1. */
6818 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6819 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6820 && is_a <scalar_int_mode> (mode, &int_mode)
6821 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6822 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6823 == nonzero_bits (XEXP (cond, 0), inner_mode)
6824 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6826 rtx val = XEXP (cond, 0);
6827 if (inner_mode == int_mode)
6828 return val;
6829 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6830 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6833 return x;
6836 /* Simplify X, a SET expression. Return the new expression. */
6838 static rtx
6839 simplify_set (rtx x)
6841 rtx src = SET_SRC (x);
6842 rtx dest = SET_DEST (x);
6843 machine_mode mode
6844 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6845 rtx_insn *other_insn;
6846 rtx *cc_use;
6847 scalar_int_mode int_mode;
6849 /* (set (pc) (return)) gets written as (return). */
6850 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6851 return src;
6853 /* Now that we know for sure which bits of SRC we are using, see if we can
6854 simplify the expression for the object knowing that we only need the
6855 low-order bits. */
6857 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6859 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6860 SUBST (SET_SRC (x), src);
6863 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6864 the comparison result and try to simplify it unless we already have used
6865 undobuf.other_insn. */
6866 if ((GET_MODE_CLASS (mode) == MODE_CC
6867 || GET_CODE (src) == COMPARE
6868 || CC0_P (dest))
6869 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6870 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6871 && COMPARISON_P (*cc_use)
6872 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6874 enum rtx_code old_code = GET_CODE (*cc_use);
6875 enum rtx_code new_code;
6876 rtx op0, op1, tmp;
6877 int other_changed = 0;
6878 rtx inner_compare = NULL_RTX;
6879 machine_mode compare_mode = GET_MODE (dest);
6881 if (GET_CODE (src) == COMPARE)
6883 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6884 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6886 inner_compare = op0;
6887 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6890 else
6891 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6893 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6894 op0, op1);
6895 if (!tmp)
6896 new_code = old_code;
6897 else if (!CONSTANT_P (tmp))
6899 new_code = GET_CODE (tmp);
6900 op0 = XEXP (tmp, 0);
6901 op1 = XEXP (tmp, 1);
6903 else
6905 rtx pat = PATTERN (other_insn);
6906 undobuf.other_insn = other_insn;
6907 SUBST (*cc_use, tmp);
6909 /* Attempt to simplify CC user. */
6910 if (GET_CODE (pat) == SET)
6912 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6913 if (new_rtx != NULL_RTX)
6914 SUBST (SET_SRC (pat), new_rtx);
6917 /* Convert X into a no-op move. */
6918 SUBST (SET_DEST (x), pc_rtx);
6919 SUBST (SET_SRC (x), pc_rtx);
6920 return x;
6923 /* Simplify our comparison, if possible. */
6924 new_code = simplify_comparison (new_code, &op0, &op1);
6926 #ifdef SELECT_CC_MODE
6927 /* If this machine has CC modes other than CCmode, check to see if we
6928 need to use a different CC mode here. */
6929 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6930 compare_mode = GET_MODE (op0);
6931 else if (inner_compare
6932 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6933 && new_code == old_code
6934 && op0 == XEXP (inner_compare, 0)
6935 && op1 == XEXP (inner_compare, 1))
6936 compare_mode = GET_MODE (inner_compare);
6937 else
6938 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6940 /* If the mode changed, we have to change SET_DEST, the mode in the
6941 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6942 a hard register, just build new versions with the proper mode. If it
6943 is a pseudo, we lose unless it is only time we set the pseudo, in
6944 which case we can safely change its mode. */
6945 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6947 if (can_change_dest_mode (dest, 0, compare_mode))
6949 unsigned int regno = REGNO (dest);
6950 rtx new_dest;
6952 if (regno < FIRST_PSEUDO_REGISTER)
6953 new_dest = gen_rtx_REG (compare_mode, regno);
6954 else
6956 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6957 new_dest = regno_reg_rtx[regno];
6960 SUBST (SET_DEST (x), new_dest);
6961 SUBST (XEXP (*cc_use, 0), new_dest);
6962 other_changed = 1;
6964 dest = new_dest;
6967 #endif /* SELECT_CC_MODE */
6969 /* If the code changed, we have to build a new comparison in
6970 undobuf.other_insn. */
6971 if (new_code != old_code)
6973 int other_changed_previously = other_changed;
6974 unsigned HOST_WIDE_INT mask;
6975 rtx old_cc_use = *cc_use;
6977 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6978 dest, const0_rtx));
6979 other_changed = 1;
6981 /* If the only change we made was to change an EQ into an NE or
6982 vice versa, OP0 has only one bit that might be nonzero, and OP1
6983 is zero, check if changing the user of the condition code will
6984 produce a valid insn. If it won't, we can keep the original code
6985 in that insn by surrounding our operation with an XOR. */
6987 if (((old_code == NE && new_code == EQ)
6988 || (old_code == EQ && new_code == NE))
6989 && ! other_changed_previously && op1 == const0_rtx
6990 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6991 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6993 rtx pat = PATTERN (other_insn), note = 0;
6995 if ((recog_for_combine (&pat, other_insn, &note) < 0
6996 && ! check_asm_operands (pat)))
6998 *cc_use = old_cc_use;
6999 other_changed = 0;
7001 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
7002 gen_int_mode (mask,
7003 GET_MODE (op0)));
7008 if (other_changed)
7009 undobuf.other_insn = other_insn;
7011 /* Don't generate a compare of a CC with 0, just use that CC. */
7012 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
7014 SUBST (SET_SRC (x), op0);
7015 src = SET_SRC (x);
7017 /* Otherwise, if we didn't previously have the same COMPARE we
7018 want, create it from scratch. */
7019 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
7020 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
7022 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
7023 src = SET_SRC (x);
7026 else
7028 /* Get SET_SRC in a form where we have placed back any
7029 compound expressions. Then do the checks below. */
7030 src = make_compound_operation (src, SET);
7031 SUBST (SET_SRC (x), src);
7034 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7035 and X being a REG or (subreg (reg)), we may be able to convert this to
7036 (set (subreg:m2 x) (op)).
7038 We can always do this if M1 is narrower than M2 because that means that
7039 we only care about the low bits of the result.
7041 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7042 perform a narrower operation than requested since the high-order bits will
7043 be undefined. On machine where it is defined, this transformation is safe
7044 as long as M1 and M2 have the same number of words. */
7046 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
7047 && !OBJECT_P (SUBREG_REG (src))
7048 && (known_equal_after_align_up
7049 (GET_MODE_SIZE (GET_MODE (src)),
7050 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
7051 UNITS_PER_WORD))
7052 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
7053 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
7054 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
7055 GET_MODE (SUBREG_REG (src)),
7056 GET_MODE (src)))
7057 && (REG_P (dest)
7058 || (GET_CODE (dest) == SUBREG
7059 && REG_P (SUBREG_REG (dest)))))
7061 SUBST (SET_DEST (x),
7062 gen_lowpart (GET_MODE (SUBREG_REG (src)),
7063 dest));
7064 SUBST (SET_SRC (x), SUBREG_REG (src));
7066 src = SET_SRC (x), dest = SET_DEST (x);
7069 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7070 in SRC. */
7071 if (dest == cc0_rtx
7072 && partial_subreg_p (src)
7073 && subreg_lowpart_p (src))
7075 rtx inner = SUBREG_REG (src);
7076 machine_mode inner_mode = GET_MODE (inner);
7078 /* Here we make sure that we don't have a sign bit on. */
7079 if (val_signbit_known_clear_p (GET_MODE (src),
7080 nonzero_bits (inner, inner_mode)))
7082 SUBST (SET_SRC (x), inner);
7083 src = SET_SRC (x);
7087 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7088 would require a paradoxical subreg. Replace the subreg with a
7089 zero_extend to avoid the reload that would otherwise be required.
7090 Don't do this unless we have a scalar integer mode, otherwise the
7091 transformation is incorrect. */
7093 enum rtx_code extend_op;
7094 if (paradoxical_subreg_p (src)
7095 && MEM_P (SUBREG_REG (src))
7096 && SCALAR_INT_MODE_P (GET_MODE (src))
7097 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7099 SUBST (SET_SRC (x),
7100 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7102 src = SET_SRC (x);
7105 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7106 are comparing an item known to be 0 or -1 against 0, use a logical
7107 operation instead. Check for one of the arms being an IOR of the other
7108 arm with some value. We compute three terms to be IOR'ed together. In
7109 practice, at most two will be nonzero. Then we do the IOR's. */
7111 if (GET_CODE (dest) != PC
7112 && GET_CODE (src) == IF_THEN_ELSE
7113 && is_int_mode (GET_MODE (src), &int_mode)
7114 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7115 && XEXP (XEXP (src, 0), 1) == const0_rtx
7116 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7117 && (!HAVE_conditional_move
7118 || ! can_conditionally_move_p (int_mode))
7119 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7120 == GET_MODE_PRECISION (int_mode))
7121 && ! side_effects_p (src))
7123 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7124 ? XEXP (src, 1) : XEXP (src, 2));
7125 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7126 ? XEXP (src, 2) : XEXP (src, 1));
7127 rtx term1 = const0_rtx, term2, term3;
7129 if (GET_CODE (true_rtx) == IOR
7130 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7131 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7132 else if (GET_CODE (true_rtx) == IOR
7133 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7134 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7135 else if (GET_CODE (false_rtx) == IOR
7136 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7137 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7138 else if (GET_CODE (false_rtx) == IOR
7139 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7140 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7142 term2 = simplify_gen_binary (AND, int_mode,
7143 XEXP (XEXP (src, 0), 0), true_rtx);
7144 term3 = simplify_gen_binary (AND, int_mode,
7145 simplify_gen_unary (NOT, int_mode,
7146 XEXP (XEXP (src, 0), 0),
7147 int_mode),
7148 false_rtx);
7150 SUBST (SET_SRC (x),
7151 simplify_gen_binary (IOR, int_mode,
7152 simplify_gen_binary (IOR, int_mode,
7153 term1, term2),
7154 term3));
7156 src = SET_SRC (x);
7159 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7160 whole thing fail. */
7161 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7162 return src;
7163 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7164 return dest;
7165 else
7166 /* Convert this into a field assignment operation, if possible. */
7167 return make_field_assignment (x);
7170 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7171 result. */
7173 static rtx
7174 simplify_logical (rtx x)
7176 rtx op0 = XEXP (x, 0);
7177 rtx op1 = XEXP (x, 1);
7178 scalar_int_mode mode;
7180 switch (GET_CODE (x))
7182 case AND:
7183 /* We can call simplify_and_const_int only if we don't lose
7184 any (sign) bits when converting INTVAL (op1) to
7185 "unsigned HOST_WIDE_INT". */
7186 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7187 && CONST_INT_P (op1)
7188 && (HWI_COMPUTABLE_MODE_P (mode)
7189 || INTVAL (op1) > 0))
7191 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7192 if (GET_CODE (x) != AND)
7193 return x;
7195 op0 = XEXP (x, 0);
7196 op1 = XEXP (x, 1);
7199 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7200 apply the distributive law and then the inverse distributive
7201 law to see if things simplify. */
7202 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7204 rtx result = distribute_and_simplify_rtx (x, 0);
7205 if (result)
7206 return result;
7208 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7210 rtx result = distribute_and_simplify_rtx (x, 1);
7211 if (result)
7212 return result;
7214 break;
7216 case IOR:
7217 /* If we have (ior (and A B) C), apply the distributive law and then
7218 the inverse distributive law to see if things simplify. */
7220 if (GET_CODE (op0) == AND)
7222 rtx result = distribute_and_simplify_rtx (x, 0);
7223 if (result)
7224 return result;
7227 if (GET_CODE (op1) == AND)
7229 rtx result = distribute_and_simplify_rtx (x, 1);
7230 if (result)
7231 return result;
7233 break;
7235 default:
7236 gcc_unreachable ();
7239 return x;
7242 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7243 operations" because they can be replaced with two more basic operations.
7244 ZERO_EXTEND is also considered "compound" because it can be replaced with
7245 an AND operation, which is simpler, though only one operation.
7247 The function expand_compound_operation is called with an rtx expression
7248 and will convert it to the appropriate shifts and AND operations,
7249 simplifying at each stage.
7251 The function make_compound_operation is called to convert an expression
7252 consisting of shifts and ANDs into the equivalent compound expression.
7253 It is the inverse of this function, loosely speaking. */
7255 static rtx
7256 expand_compound_operation (rtx x)
7258 unsigned HOST_WIDE_INT pos = 0, len;
7259 int unsignedp = 0;
7260 unsigned int modewidth;
7261 rtx tem;
7262 scalar_int_mode inner_mode;
7264 switch (GET_CODE (x))
7266 case ZERO_EXTEND:
7267 unsignedp = 1;
7268 /* FALLTHRU */
7269 case SIGN_EXTEND:
7270 /* We can't necessarily use a const_int for a multiword mode;
7271 it depends on implicitly extending the value.
7272 Since we don't know the right way to extend it,
7273 we can't tell whether the implicit way is right.
7275 Even for a mode that is no wider than a const_int,
7276 we can't win, because we need to sign extend one of its bits through
7277 the rest of it, and we don't know which bit. */
7278 if (CONST_INT_P (XEXP (x, 0)))
7279 return x;
7281 /* Reject modes that aren't scalar integers because turning vector
7282 or complex modes into shifts causes problems. */
7283 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7284 return x;
7286 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7287 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7288 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7289 reloaded. If not for that, MEM's would very rarely be safe.
7291 Reject modes bigger than a word, because we might not be able
7292 to reference a two-register group starting with an arbitrary register
7293 (and currently gen_lowpart might crash for a SUBREG). */
7295 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7296 return x;
7298 len = GET_MODE_PRECISION (inner_mode);
7299 /* If the inner object has VOIDmode (the only way this can happen
7300 is if it is an ASM_OPERANDS), we can't do anything since we don't
7301 know how much masking to do. */
7302 if (len == 0)
7303 return x;
7305 break;
7307 case ZERO_EXTRACT:
7308 unsignedp = 1;
7310 /* fall through */
7312 case SIGN_EXTRACT:
7313 /* If the operand is a CLOBBER, just return it. */
7314 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7315 return XEXP (x, 0);
7317 if (!CONST_INT_P (XEXP (x, 1))
7318 || !CONST_INT_P (XEXP (x, 2)))
7319 return x;
7321 /* Reject modes that aren't scalar integers because turning vector
7322 or complex modes into shifts causes problems. */
7323 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7324 return x;
7326 len = INTVAL (XEXP (x, 1));
7327 pos = INTVAL (XEXP (x, 2));
7329 /* This should stay within the object being extracted, fail otherwise. */
7330 if (len + pos > GET_MODE_PRECISION (inner_mode))
7331 return x;
7333 if (BITS_BIG_ENDIAN)
7334 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7336 break;
7338 default:
7339 return x;
7342 /* We've rejected non-scalar operations by now. */
7343 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7345 /* Convert sign extension to zero extension, if we know that the high
7346 bit is not set, as this is easier to optimize. It will be converted
7347 back to cheaper alternative in make_extraction. */
7348 if (GET_CODE (x) == SIGN_EXTEND
7349 && HWI_COMPUTABLE_MODE_P (mode)
7350 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7351 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7352 == 0))
7354 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7355 rtx temp2 = expand_compound_operation (temp);
7357 /* Make sure this is a profitable operation. */
7358 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7359 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7360 return temp2;
7361 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7362 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7363 return temp;
7364 else
7365 return x;
7368 /* We can optimize some special cases of ZERO_EXTEND. */
7369 if (GET_CODE (x) == ZERO_EXTEND)
7371 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7372 know that the last value didn't have any inappropriate bits
7373 set. */
7374 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7375 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7376 && HWI_COMPUTABLE_MODE_P (mode)
7377 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7378 & ~GET_MODE_MASK (inner_mode)) == 0)
7379 return XEXP (XEXP (x, 0), 0);
7381 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7382 if (GET_CODE (XEXP (x, 0)) == SUBREG
7383 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7384 && subreg_lowpart_p (XEXP (x, 0))
7385 && HWI_COMPUTABLE_MODE_P (mode)
7386 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7387 & ~GET_MODE_MASK (inner_mode)) == 0)
7388 return SUBREG_REG (XEXP (x, 0));
7390 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7391 is a comparison and STORE_FLAG_VALUE permits. This is like
7392 the first case, but it works even when MODE is larger
7393 than HOST_WIDE_INT. */
7394 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7395 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7396 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7397 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7398 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7399 return XEXP (XEXP (x, 0), 0);
7401 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7402 if (GET_CODE (XEXP (x, 0)) == SUBREG
7403 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7404 && subreg_lowpart_p (XEXP (x, 0))
7405 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7406 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7407 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7408 return SUBREG_REG (XEXP (x, 0));
7412 /* If we reach here, we want to return a pair of shifts. The inner
7413 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7414 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7415 logical depending on the value of UNSIGNEDP.
7417 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7418 converted into an AND of a shift.
7420 We must check for the case where the left shift would have a negative
7421 count. This can happen in a case like (x >> 31) & 255 on machines
7422 that can't shift by a constant. On those machines, we would first
7423 combine the shift with the AND to produce a variable-position
7424 extraction. Then the constant of 31 would be substituted in
7425 to produce such a position. */
7427 modewidth = GET_MODE_PRECISION (mode);
7428 if (modewidth >= pos + len)
7430 tem = gen_lowpart (mode, XEXP (x, 0));
7431 if (!tem || GET_CODE (tem) == CLOBBER)
7432 return x;
7433 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7434 tem, modewidth - pos - len);
7435 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7436 mode, tem, modewidth - len);
7438 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7439 tem = simplify_and_const_int (NULL_RTX, mode,
7440 simplify_shift_const (NULL_RTX, LSHIFTRT,
7441 mode, XEXP (x, 0),
7442 pos),
7443 (HOST_WIDE_INT_1U << len) - 1);
7444 else
7445 /* Any other cases we can't handle. */
7446 return x;
7448 /* If we couldn't do this for some reason, return the original
7449 expression. */
7450 if (GET_CODE (tem) == CLOBBER)
7451 return x;
7453 return tem;
7456 /* X is a SET which contains an assignment of one object into
7457 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7458 or certain SUBREGS). If possible, convert it into a series of
7459 logical operations.
7461 We half-heartedly support variable positions, but do not at all
7462 support variable lengths. */
7464 static const_rtx
7465 expand_field_assignment (const_rtx x)
7467 rtx inner;
7468 rtx pos; /* Always counts from low bit. */
7469 int len, inner_len;
7470 rtx mask, cleared, masked;
7471 scalar_int_mode compute_mode;
7473 /* Loop until we find something we can't simplify. */
7474 while (1)
7476 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7477 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7479 rtx x0 = XEXP (SET_DEST (x), 0);
7480 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7481 break;
7482 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7483 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7484 MAX_MODE_INT);
7486 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7487 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7489 inner = XEXP (SET_DEST (x), 0);
7490 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7491 break;
7493 len = INTVAL (XEXP (SET_DEST (x), 1));
7494 pos = XEXP (SET_DEST (x), 2);
7496 /* A constant position should stay within the width of INNER. */
7497 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7498 break;
7500 if (BITS_BIG_ENDIAN)
7502 if (CONST_INT_P (pos))
7503 pos = GEN_INT (inner_len - len - INTVAL (pos));
7504 else if (GET_CODE (pos) == MINUS
7505 && CONST_INT_P (XEXP (pos, 1))
7506 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7507 /* If position is ADJUST - X, new position is X. */
7508 pos = XEXP (pos, 0);
7509 else
7510 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7511 gen_int_mode (inner_len - len,
7512 GET_MODE (pos)),
7513 pos);
7517 /* If the destination is a subreg that overwrites the whole of the inner
7518 register, we can move the subreg to the source. */
7519 else if (GET_CODE (SET_DEST (x)) == SUBREG
7520 /* We need SUBREGs to compute nonzero_bits properly. */
7521 && nonzero_sign_valid
7522 && !read_modify_subreg_p (SET_DEST (x)))
7524 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7525 gen_lowpart
7526 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7527 SET_SRC (x)));
7528 continue;
7530 else
7531 break;
7533 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7534 inner = SUBREG_REG (inner);
7536 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7537 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7539 /* Don't do anything for vector or complex integral types. */
7540 if (! FLOAT_MODE_P (GET_MODE (inner)))
7541 break;
7543 /* Try to find an integral mode to pun with. */
7544 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7545 .exists (&compute_mode))
7546 break;
7548 inner = gen_lowpart (compute_mode, inner);
7551 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7552 if (len >= HOST_BITS_PER_WIDE_INT)
7553 break;
7555 /* Don't try to compute in too wide unsupported modes. */
7556 if (!targetm.scalar_mode_supported_p (compute_mode))
7557 break;
7559 /* Now compute the equivalent expression. Make a copy of INNER
7560 for the SET_DEST in case it is a MEM into which we will substitute;
7561 we don't want shared RTL in that case. */
7562 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7563 compute_mode);
7564 cleared = simplify_gen_binary (AND, compute_mode,
7565 simplify_gen_unary (NOT, compute_mode,
7566 simplify_gen_binary (ASHIFT,
7567 compute_mode,
7568 mask, pos),
7569 compute_mode),
7570 inner);
7571 masked = simplify_gen_binary (ASHIFT, compute_mode,
7572 simplify_gen_binary (
7573 AND, compute_mode,
7574 gen_lowpart (compute_mode, SET_SRC (x)),
7575 mask),
7576 pos);
7578 x = gen_rtx_SET (copy_rtx (inner),
7579 simplify_gen_binary (IOR, compute_mode,
7580 cleared, masked));
7583 return x;
7586 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7587 it is an RTX that represents the (variable) starting position; otherwise,
7588 POS is the (constant) starting bit position. Both are counted from the LSB.
7590 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7592 IN_DEST is nonzero if this is a reference in the destination of a SET.
7593 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7594 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7595 be used.
7597 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7598 ZERO_EXTRACT should be built even for bits starting at bit 0.
7600 MODE is the desired mode of the result (if IN_DEST == 0).
7602 The result is an RTX for the extraction or NULL_RTX if the target
7603 can't handle it. */
7605 static rtx
7606 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7607 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7608 int in_dest, int in_compare)
7610 /* This mode describes the size of the storage area
7611 to fetch the overall value from. Within that, we
7612 ignore the POS lowest bits, etc. */
7613 machine_mode is_mode = GET_MODE (inner);
7614 machine_mode inner_mode;
7615 scalar_int_mode wanted_inner_mode;
7616 scalar_int_mode wanted_inner_reg_mode = word_mode;
7617 scalar_int_mode pos_mode = word_mode;
7618 machine_mode extraction_mode = word_mode;
7619 rtx new_rtx = 0;
7620 rtx orig_pos_rtx = pos_rtx;
7621 HOST_WIDE_INT orig_pos;
7623 if (pos_rtx && CONST_INT_P (pos_rtx))
7624 pos = INTVAL (pos_rtx), pos_rtx = 0;
7626 if (GET_CODE (inner) == SUBREG
7627 && subreg_lowpart_p (inner)
7628 && (paradoxical_subreg_p (inner)
7629 /* If trying or potentionally trying to extract
7630 bits outside of is_mode, don't look through
7631 non-paradoxical SUBREGs. See PR82192. */
7632 || (pos_rtx == NULL_RTX
7633 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7635 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7636 consider just the QI as the memory to extract from.
7637 The subreg adds or removes high bits; its mode is
7638 irrelevant to the meaning of this extraction,
7639 since POS and LEN count from the lsb. */
7640 if (MEM_P (SUBREG_REG (inner)))
7641 is_mode = GET_MODE (SUBREG_REG (inner));
7642 inner = SUBREG_REG (inner);
7644 else if (GET_CODE (inner) == ASHIFT
7645 && CONST_INT_P (XEXP (inner, 1))
7646 && pos_rtx == 0 && pos == 0
7647 && len > UINTVAL (XEXP (inner, 1)))
7649 /* We're extracting the least significant bits of an rtx
7650 (ashift X (const_int C)), where LEN > C. Extract the
7651 least significant (LEN - C) bits of X, giving an rtx
7652 whose mode is MODE, then shift it left C times. */
7653 new_rtx = make_extraction (mode, XEXP (inner, 0),
7654 0, 0, len - INTVAL (XEXP (inner, 1)),
7655 unsignedp, in_dest, in_compare);
7656 if (new_rtx != 0)
7657 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7659 else if (GET_CODE (inner) == TRUNCATE
7660 /* If trying or potentionally trying to extract
7661 bits outside of is_mode, don't look through
7662 TRUNCATE. See PR82192. */
7663 && pos_rtx == NULL_RTX
7664 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7665 inner = XEXP (inner, 0);
7667 inner_mode = GET_MODE (inner);
7669 /* See if this can be done without an extraction. We never can if the
7670 width of the field is not the same as that of some integer mode. For
7671 registers, we can only avoid the extraction if the position is at the
7672 low-order bit and this is either not in the destination or we have the
7673 appropriate STRICT_LOW_PART operation available.
7675 For MEM, we can avoid an extract if the field starts on an appropriate
7676 boundary and we can change the mode of the memory reference. */
7678 scalar_int_mode tmode;
7679 if (int_mode_for_size (len, 1).exists (&tmode)
7680 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7681 && !MEM_P (inner)
7682 && (pos == 0 || REG_P (inner))
7683 && (inner_mode == tmode
7684 || !REG_P (inner)
7685 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7686 || reg_truncated_to_mode (tmode, inner))
7687 && (! in_dest
7688 || (REG_P (inner)
7689 && have_insn_for (STRICT_LOW_PART, tmode))))
7690 || (MEM_P (inner) && pos_rtx == 0
7691 && (pos
7692 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7693 : BITS_PER_UNIT)) == 0
7694 /* We can't do this if we are widening INNER_MODE (it
7695 may not be aligned, for one thing). */
7696 && !paradoxical_subreg_p (tmode, inner_mode)
7697 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7698 && (inner_mode == tmode
7699 || (! mode_dependent_address_p (XEXP (inner, 0),
7700 MEM_ADDR_SPACE (inner))
7701 && ! MEM_VOLATILE_P (inner))))))
7703 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7704 field. If the original and current mode are the same, we need not
7705 adjust the offset. Otherwise, we do if bytes big endian.
7707 If INNER is not a MEM, get a piece consisting of just the field
7708 of interest (in this case POS % BITS_PER_WORD must be 0). */
7710 if (MEM_P (inner))
7712 poly_int64 offset;
7714 /* POS counts from lsb, but make OFFSET count in memory order. */
7715 if (BYTES_BIG_ENDIAN)
7716 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7717 - len - pos);
7718 else
7719 offset = pos / BITS_PER_UNIT;
7721 new_rtx = adjust_address_nv (inner, tmode, offset);
7723 else if (REG_P (inner))
7725 if (tmode != inner_mode)
7727 /* We can't call gen_lowpart in a DEST since we
7728 always want a SUBREG (see below) and it would sometimes
7729 return a new hard register. */
7730 if (pos || in_dest)
7732 poly_uint64 offset
7733 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7735 /* Avoid creating invalid subregs, for example when
7736 simplifying (x>>32)&255. */
7737 if (!validate_subreg (tmode, inner_mode, inner, offset))
7738 return NULL_RTX;
7740 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7742 else
7743 new_rtx = gen_lowpart (tmode, inner);
7745 else
7746 new_rtx = inner;
7748 else
7749 new_rtx = force_to_mode (inner, tmode,
7750 len >= HOST_BITS_PER_WIDE_INT
7751 ? HOST_WIDE_INT_M1U
7752 : (HOST_WIDE_INT_1U << len) - 1, 0);
7754 /* If this extraction is going into the destination of a SET,
7755 make a STRICT_LOW_PART unless we made a MEM. */
7757 if (in_dest)
7758 return (MEM_P (new_rtx) ? new_rtx
7759 : (GET_CODE (new_rtx) != SUBREG
7760 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7761 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7763 if (mode == tmode)
7764 return new_rtx;
7766 if (CONST_SCALAR_INT_P (new_rtx))
7767 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7768 mode, new_rtx, tmode);
7770 /* If we know that no extraneous bits are set, and that the high
7771 bit is not set, convert the extraction to the cheaper of
7772 sign and zero extension, that are equivalent in these cases. */
7773 if (flag_expensive_optimizations
7774 && (HWI_COMPUTABLE_MODE_P (tmode)
7775 && ((nonzero_bits (new_rtx, tmode)
7776 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7777 == 0)))
7779 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7780 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7782 /* Prefer ZERO_EXTENSION, since it gives more information to
7783 backends. */
7784 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7785 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7786 return temp;
7787 return temp1;
7790 /* Otherwise, sign- or zero-extend unless we already are in the
7791 proper mode. */
7793 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7794 mode, new_rtx));
7797 /* Unless this is a COMPARE or we have a funny memory reference,
7798 don't do anything with zero-extending field extracts starting at
7799 the low-order bit since they are simple AND operations. */
7800 if (pos_rtx == 0 && pos == 0 && ! in_dest
7801 && ! in_compare && unsignedp)
7802 return 0;
7804 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7805 if the position is not a constant and the length is not 1. In all
7806 other cases, we would only be going outside our object in cases when
7807 an original shift would have been undefined. */
7808 if (MEM_P (inner)
7809 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7810 || (pos_rtx != 0 && len != 1)))
7811 return 0;
7813 enum extraction_pattern pattern = (in_dest ? EP_insv
7814 : unsignedp ? EP_extzv : EP_extv);
7816 /* If INNER is not from memory, we want it to have the mode of a register
7817 extraction pattern's structure operand, or word_mode if there is no
7818 such pattern. The same applies to extraction_mode and pos_mode
7819 and their respective operands.
7821 For memory, assume that the desired extraction_mode and pos_mode
7822 are the same as for a register operation, since at present we don't
7823 have named patterns for aligned memory structures. */
7824 class extraction_insn insn;
7825 unsigned int inner_size;
7826 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7827 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7829 wanted_inner_reg_mode = insn.struct_mode.require ();
7830 pos_mode = insn.pos_mode;
7831 extraction_mode = insn.field_mode;
7834 /* Never narrow an object, since that might not be safe. */
7836 if (mode != VOIDmode
7837 && partial_subreg_p (extraction_mode, mode))
7838 extraction_mode = mode;
7840 /* Punt if len is too large for extraction_mode. */
7841 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7842 return NULL_RTX;
7844 if (!MEM_P (inner))
7845 wanted_inner_mode = wanted_inner_reg_mode;
7846 else
7848 /* Be careful not to go beyond the extracted object and maintain the
7849 natural alignment of the memory. */
7850 wanted_inner_mode = smallest_int_mode_for_size (len);
7851 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7852 > GET_MODE_BITSIZE (wanted_inner_mode))
7853 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7856 orig_pos = pos;
7858 if (BITS_BIG_ENDIAN)
7860 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7861 BITS_BIG_ENDIAN style. If position is constant, compute new
7862 position. Otherwise, build subtraction.
7863 Note that POS is relative to the mode of the original argument.
7864 If it's a MEM we need to recompute POS relative to that.
7865 However, if we're extracting from (or inserting into) a register,
7866 we want to recompute POS relative to wanted_inner_mode. */
7867 int width;
7868 if (!MEM_P (inner))
7869 width = GET_MODE_BITSIZE (wanted_inner_mode);
7870 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7871 return NULL_RTX;
7873 if (pos_rtx == 0)
7874 pos = width - len - pos;
7875 else
7876 pos_rtx
7877 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7878 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7879 pos_rtx);
7880 /* POS may be less than 0 now, but we check for that below.
7881 Note that it can only be less than 0 if !MEM_P (inner). */
7884 /* If INNER has a wider mode, and this is a constant extraction, try to
7885 make it smaller and adjust the byte to point to the byte containing
7886 the value. */
7887 if (wanted_inner_mode != VOIDmode
7888 && inner_mode != wanted_inner_mode
7889 && ! pos_rtx
7890 && partial_subreg_p (wanted_inner_mode, is_mode)
7891 && MEM_P (inner)
7892 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7893 && ! MEM_VOLATILE_P (inner))
7895 poly_int64 offset = 0;
7897 /* The computations below will be correct if the machine is big
7898 endian in both bits and bytes or little endian in bits and bytes.
7899 If it is mixed, we must adjust. */
7901 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7902 adjust OFFSET to compensate. */
7903 if (BYTES_BIG_ENDIAN
7904 && paradoxical_subreg_p (is_mode, inner_mode))
7905 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7907 /* We can now move to the desired byte. */
7908 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7909 * GET_MODE_SIZE (wanted_inner_mode);
7910 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7912 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7913 && is_mode != wanted_inner_mode)
7914 offset = (GET_MODE_SIZE (is_mode)
7915 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7917 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7920 /* If INNER is not memory, get it into the proper mode. If we are changing
7921 its mode, POS must be a constant and smaller than the size of the new
7922 mode. */
7923 else if (!MEM_P (inner))
7925 /* On the LHS, don't create paradoxical subregs implicitely truncating
7926 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7927 if (in_dest
7928 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7929 wanted_inner_mode))
7930 return NULL_RTX;
7932 if (GET_MODE (inner) != wanted_inner_mode
7933 && (pos_rtx != 0
7934 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7935 return NULL_RTX;
7937 if (orig_pos < 0)
7938 return NULL_RTX;
7940 inner = force_to_mode (inner, wanted_inner_mode,
7941 pos_rtx
7942 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7943 ? HOST_WIDE_INT_M1U
7944 : (((HOST_WIDE_INT_1U << len) - 1)
7945 << orig_pos),
7949 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7950 have to zero extend. Otherwise, we can just use a SUBREG.
7952 We dealt with constant rtxes earlier, so pos_rtx cannot
7953 have VOIDmode at this point. */
7954 if (pos_rtx != 0
7955 && (GET_MODE_SIZE (pos_mode)
7956 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7958 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7959 GET_MODE (pos_rtx));
7961 /* If we know that no extraneous bits are set, and that the high
7962 bit is not set, convert extraction to cheaper one - either
7963 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7964 cases. */
7965 if (flag_expensive_optimizations
7966 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7967 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7968 & ~(((unsigned HOST_WIDE_INT)
7969 GET_MODE_MASK (GET_MODE (pos_rtx)))
7970 >> 1))
7971 == 0)))
7973 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7974 GET_MODE (pos_rtx));
7976 /* Prefer ZERO_EXTENSION, since it gives more information to
7977 backends. */
7978 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7979 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7980 temp = temp1;
7982 pos_rtx = temp;
7985 /* Make POS_RTX unless we already have it and it is correct. If we don't
7986 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7987 be a CONST_INT. */
7988 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7989 pos_rtx = orig_pos_rtx;
7991 else if (pos_rtx == 0)
7992 pos_rtx = GEN_INT (pos);
7994 /* Make the required operation. See if we can use existing rtx. */
7995 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7996 extraction_mode, inner, GEN_INT (len), pos_rtx);
7997 if (! in_dest)
7998 new_rtx = gen_lowpart (mode, new_rtx);
8000 return new_rtx;
8003 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
8004 can be commuted with any other operations in X. Return X without
8005 that shift if so. */
8007 static rtx
8008 extract_left_shift (scalar_int_mode mode, rtx x, int count)
8010 enum rtx_code code = GET_CODE (x);
8011 rtx tem;
8013 switch (code)
8015 case ASHIFT:
8016 /* This is the shift itself. If it is wide enough, we will return
8017 either the value being shifted if the shift count is equal to
8018 COUNT or a shift for the difference. */
8019 if (CONST_INT_P (XEXP (x, 1))
8020 && INTVAL (XEXP (x, 1)) >= count)
8021 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
8022 INTVAL (XEXP (x, 1)) - count);
8023 break;
8025 case NEG: case NOT:
8026 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8027 return simplify_gen_unary (code, mode, tem, mode);
8029 break;
8031 case PLUS: case IOR: case XOR: case AND:
8032 /* If we can safely shift this constant and we find the inner shift,
8033 make a new operation. */
8034 if (CONST_INT_P (XEXP (x, 1))
8035 && (UINTVAL (XEXP (x, 1))
8036 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
8037 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8039 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
8040 return simplify_gen_binary (code, mode, tem,
8041 gen_int_mode (val, mode));
8043 break;
8045 default:
8046 break;
8049 return 0;
8052 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8053 level of the expression and MODE is its mode. IN_CODE is as for
8054 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8055 that should be used when recursing on operands of *X_PTR.
8057 There are two possible actions:
8059 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8060 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8062 - Return a new rtx, which the caller returns directly. */
8064 static rtx
8065 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8066 enum rtx_code in_code,
8067 enum rtx_code *next_code_ptr)
8069 rtx x = *x_ptr;
8070 enum rtx_code next_code = *next_code_ptr;
8071 enum rtx_code code = GET_CODE (x);
8072 int mode_width = GET_MODE_PRECISION (mode);
8073 rtx rhs, lhs;
8074 rtx new_rtx = 0;
8075 int i;
8076 rtx tem;
8077 scalar_int_mode inner_mode;
8078 bool equality_comparison = false;
8080 if (in_code == EQ)
8082 equality_comparison = true;
8083 in_code = COMPARE;
8086 /* Process depending on the code of this operation. If NEW is set
8087 nonzero, it will be returned. */
8089 switch (code)
8091 case ASHIFT:
8092 /* Convert shifts by constants into multiplications if inside
8093 an address. */
8094 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8095 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8096 && INTVAL (XEXP (x, 1)) >= 0)
8098 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8099 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8101 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8102 if (GET_CODE (new_rtx) == NEG)
8104 new_rtx = XEXP (new_rtx, 0);
8105 multval = -multval;
8107 multval = trunc_int_for_mode (multval, mode);
8108 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8110 break;
8112 case PLUS:
8113 lhs = XEXP (x, 0);
8114 rhs = XEXP (x, 1);
8115 lhs = make_compound_operation (lhs, next_code);
8116 rhs = make_compound_operation (rhs, next_code);
8117 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8119 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8120 XEXP (lhs, 1));
8121 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8123 else if (GET_CODE (lhs) == MULT
8124 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8126 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8127 simplify_gen_unary (NEG, mode,
8128 XEXP (lhs, 1),
8129 mode));
8130 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8132 else
8134 SUBST (XEXP (x, 0), lhs);
8135 SUBST (XEXP (x, 1), rhs);
8137 maybe_swap_commutative_operands (x);
8138 return x;
8140 case MINUS:
8141 lhs = XEXP (x, 0);
8142 rhs = XEXP (x, 1);
8143 lhs = make_compound_operation (lhs, next_code);
8144 rhs = make_compound_operation (rhs, next_code);
8145 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8147 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8148 XEXP (rhs, 1));
8149 return simplify_gen_binary (PLUS, mode, tem, lhs);
8151 else if (GET_CODE (rhs) == MULT
8152 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8154 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8155 simplify_gen_unary (NEG, mode,
8156 XEXP (rhs, 1),
8157 mode));
8158 return simplify_gen_binary (PLUS, mode, tem, lhs);
8160 else
8162 SUBST (XEXP (x, 0), lhs);
8163 SUBST (XEXP (x, 1), rhs);
8164 return x;
8167 case AND:
8168 /* If the second operand is not a constant, we can't do anything
8169 with it. */
8170 if (!CONST_INT_P (XEXP (x, 1)))
8171 break;
8173 /* If the constant is a power of two minus one and the first operand
8174 is a logical right shift, make an extraction. */
8175 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8176 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8178 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8179 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8180 i, 1, 0, in_code == COMPARE);
8183 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8184 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8185 && subreg_lowpart_p (XEXP (x, 0))
8186 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8187 &inner_mode)
8188 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8189 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8191 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8192 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8193 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8194 XEXP (inner_x0, 1),
8195 i, 1, 0, in_code == COMPARE);
8197 /* If we narrowed the mode when dropping the subreg, then we lose. */
8198 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8199 new_rtx = NULL;
8201 /* If that didn't give anything, see if the AND simplifies on
8202 its own. */
8203 if (!new_rtx && i >= 0)
8205 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8206 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8207 0, in_code == COMPARE);
8210 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8211 else if ((GET_CODE (XEXP (x, 0)) == XOR
8212 || GET_CODE (XEXP (x, 0)) == IOR)
8213 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8214 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8215 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8217 /* Apply the distributive law, and then try to make extractions. */
8218 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8219 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8220 XEXP (x, 1)),
8221 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8222 XEXP (x, 1)));
8223 new_rtx = make_compound_operation (new_rtx, in_code);
8226 /* If we are have (and (rotate X C) M) and C is larger than the number
8227 of bits in M, this is an extraction. */
8229 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8230 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8231 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8232 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8234 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8235 new_rtx = make_extraction (mode, new_rtx,
8236 (GET_MODE_PRECISION (mode)
8237 - INTVAL (XEXP (XEXP (x, 0), 1))),
8238 NULL_RTX, i, 1, 0, in_code == COMPARE);
8241 /* On machines without logical shifts, if the operand of the AND is
8242 a logical shift and our mask turns off all the propagated sign
8243 bits, we can replace the logical shift with an arithmetic shift. */
8244 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8245 && !have_insn_for (LSHIFTRT, mode)
8246 && have_insn_for (ASHIFTRT, mode)
8247 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8248 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8249 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8250 && mode_width <= HOST_BITS_PER_WIDE_INT)
8252 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8254 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8255 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8256 SUBST (XEXP (x, 0),
8257 gen_rtx_ASHIFTRT (mode,
8258 make_compound_operation (XEXP (XEXP (x,
8261 next_code),
8262 XEXP (XEXP (x, 0), 1)));
8265 /* If the constant is one less than a power of two, this might be
8266 representable by an extraction even if no shift is present.
8267 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8268 we are in a COMPARE. */
8269 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8270 new_rtx = make_extraction (mode,
8271 make_compound_operation (XEXP (x, 0),
8272 next_code),
8273 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8275 /* If we are in a comparison and this is an AND with a power of two,
8276 convert this into the appropriate bit extract. */
8277 else if (in_code == COMPARE
8278 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8279 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8280 new_rtx = make_extraction (mode,
8281 make_compound_operation (XEXP (x, 0),
8282 next_code),
8283 i, NULL_RTX, 1, 1, 0, 1);
8285 /* If the one operand is a paradoxical subreg of a register or memory and
8286 the constant (limited to the smaller mode) has only zero bits where
8287 the sub expression has known zero bits, this can be expressed as
8288 a zero_extend. */
8289 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8291 rtx sub;
8293 sub = XEXP (XEXP (x, 0), 0);
8294 machine_mode sub_mode = GET_MODE (sub);
8295 int sub_width;
8296 if ((REG_P (sub) || MEM_P (sub))
8297 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8298 && sub_width < mode_width)
8300 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8301 unsigned HOST_WIDE_INT mask;
8303 /* original AND constant with all the known zero bits set */
8304 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8305 if ((mask & mode_mask) == mode_mask)
8307 new_rtx = make_compound_operation (sub, next_code);
8308 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8309 1, 0, in_code == COMPARE);
8314 break;
8316 case LSHIFTRT:
8317 /* If the sign bit is known to be zero, replace this with an
8318 arithmetic shift. */
8319 if (have_insn_for (ASHIFTRT, mode)
8320 && ! have_insn_for (LSHIFTRT, mode)
8321 && mode_width <= HOST_BITS_PER_WIDE_INT
8322 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8324 new_rtx = gen_rtx_ASHIFTRT (mode,
8325 make_compound_operation (XEXP (x, 0),
8326 next_code),
8327 XEXP (x, 1));
8328 break;
8331 /* fall through */
8333 case ASHIFTRT:
8334 lhs = XEXP (x, 0);
8335 rhs = XEXP (x, 1);
8337 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8338 this is a SIGN_EXTRACT. */
8339 if (CONST_INT_P (rhs)
8340 && GET_CODE (lhs) == ASHIFT
8341 && CONST_INT_P (XEXP (lhs, 1))
8342 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8343 && INTVAL (XEXP (lhs, 1)) >= 0
8344 && INTVAL (rhs) < mode_width)
8346 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8347 new_rtx = make_extraction (mode, new_rtx,
8348 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8349 NULL_RTX, mode_width - INTVAL (rhs),
8350 code == LSHIFTRT, 0, in_code == COMPARE);
8351 break;
8354 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8355 If so, try to merge the shifts into a SIGN_EXTEND. We could
8356 also do this for some cases of SIGN_EXTRACT, but it doesn't
8357 seem worth the effort; the case checked for occurs on Alpha. */
8359 if (!OBJECT_P (lhs)
8360 && ! (GET_CODE (lhs) == SUBREG
8361 && (OBJECT_P (SUBREG_REG (lhs))))
8362 && CONST_INT_P (rhs)
8363 && INTVAL (rhs) >= 0
8364 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8365 && INTVAL (rhs) < mode_width
8366 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8367 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8368 next_code),
8369 0, NULL_RTX, mode_width - INTVAL (rhs),
8370 code == LSHIFTRT, 0, in_code == COMPARE);
8372 break;
8374 case SUBREG:
8375 /* Call ourselves recursively on the inner expression. If we are
8376 narrowing the object and it has a different RTL code from
8377 what it originally did, do this SUBREG as a force_to_mode. */
8379 rtx inner = SUBREG_REG (x), simplified;
8380 enum rtx_code subreg_code = in_code;
8382 /* If the SUBREG is masking of a logical right shift,
8383 make an extraction. */
8384 if (GET_CODE (inner) == LSHIFTRT
8385 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8386 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8387 && CONST_INT_P (XEXP (inner, 1))
8388 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8389 && subreg_lowpart_p (x))
8391 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8392 int width = GET_MODE_PRECISION (inner_mode)
8393 - INTVAL (XEXP (inner, 1));
8394 if (width > mode_width)
8395 width = mode_width;
8396 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8397 width, 1, 0, in_code == COMPARE);
8398 break;
8401 /* If in_code is COMPARE, it isn't always safe to pass it through
8402 to the recursive make_compound_operation call. */
8403 if (subreg_code == COMPARE
8404 && (!subreg_lowpart_p (x)
8405 || GET_CODE (inner) == SUBREG
8406 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8407 is (const_int 0), rather than
8408 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8409 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8410 for non-equality comparisons against 0 is not equivalent
8411 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8412 || (GET_CODE (inner) == AND
8413 && CONST_INT_P (XEXP (inner, 1))
8414 && partial_subreg_p (x)
8415 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8416 >= GET_MODE_BITSIZE (mode) - 1)))
8417 subreg_code = SET;
8419 tem = make_compound_operation (inner, subreg_code);
8421 simplified
8422 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8423 if (simplified)
8424 tem = simplified;
8426 if (GET_CODE (tem) != GET_CODE (inner)
8427 && partial_subreg_p (x)
8428 && subreg_lowpart_p (x))
8430 rtx newer
8431 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8433 /* If we have something other than a SUBREG, we might have
8434 done an expansion, so rerun ourselves. */
8435 if (GET_CODE (newer) != SUBREG)
8436 newer = make_compound_operation (newer, in_code);
8438 /* force_to_mode can expand compounds. If it just re-expanded
8439 the compound, use gen_lowpart to convert to the desired
8440 mode. */
8441 if (rtx_equal_p (newer, x)
8442 /* Likewise if it re-expanded the compound only partially.
8443 This happens for SUBREG of ZERO_EXTRACT if they extract
8444 the same number of bits. */
8445 || (GET_CODE (newer) == SUBREG
8446 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8447 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8448 && GET_CODE (inner) == AND
8449 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8450 return gen_lowpart (GET_MODE (x), tem);
8452 return newer;
8455 if (simplified)
8456 return tem;
8458 break;
8460 default:
8461 break;
8464 if (new_rtx)
8465 *x_ptr = gen_lowpart (mode, new_rtx);
8466 *next_code_ptr = next_code;
8467 return NULL_RTX;
8470 /* Look at the expression rooted at X. Look for expressions
8471 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8472 Form these expressions.
8474 Return the new rtx, usually just X.
8476 Also, for machines like the VAX that don't have logical shift insns,
8477 try to convert logical to arithmetic shift operations in cases where
8478 they are equivalent. This undoes the canonicalizations to logical
8479 shifts done elsewhere.
8481 We try, as much as possible, to re-use rtl expressions to save memory.
8483 IN_CODE says what kind of expression we are processing. Normally, it is
8484 SET. In a memory address it is MEM. When processing the arguments of
8485 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8486 precisely it is an equality comparison against zero. */
8489 make_compound_operation (rtx x, enum rtx_code in_code)
8491 enum rtx_code code = GET_CODE (x);
8492 const char *fmt;
8493 int i, j;
8494 enum rtx_code next_code;
8495 rtx new_rtx, tem;
8497 /* Select the code to be used in recursive calls. Once we are inside an
8498 address, we stay there. If we have a comparison, set to COMPARE,
8499 but once inside, go back to our default of SET. */
8501 next_code = (code == MEM ? MEM
8502 : ((code == COMPARE || COMPARISON_P (x))
8503 && XEXP (x, 1) == const0_rtx) ? COMPARE
8504 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8506 scalar_int_mode mode;
8507 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8509 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8510 &next_code);
8511 if (new_rtx)
8512 return new_rtx;
8513 code = GET_CODE (x);
8516 /* Now recursively process each operand of this operation. We need to
8517 handle ZERO_EXTEND specially so that we don't lose track of the
8518 inner mode. */
8519 if (code == ZERO_EXTEND)
8521 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8522 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8523 new_rtx, GET_MODE (XEXP (x, 0)));
8524 if (tem)
8525 return tem;
8526 SUBST (XEXP (x, 0), new_rtx);
8527 return x;
8530 fmt = GET_RTX_FORMAT (code);
8531 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8532 if (fmt[i] == 'e')
8534 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8535 SUBST (XEXP (x, i), new_rtx);
8537 else if (fmt[i] == 'E')
8538 for (j = 0; j < XVECLEN (x, i); j++)
8540 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8541 SUBST (XVECEXP (x, i, j), new_rtx);
8544 maybe_swap_commutative_operands (x);
8545 return x;
8548 /* Given M see if it is a value that would select a field of bits
8549 within an item, but not the entire word. Return -1 if not.
8550 Otherwise, return the starting position of the field, where 0 is the
8551 low-order bit.
8553 *PLEN is set to the length of the field. */
8555 static int
8556 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8558 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8559 int pos = m ? ctz_hwi (m) : -1;
8560 int len = 0;
8562 if (pos >= 0)
8563 /* Now shift off the low-order zero bits and see if we have a
8564 power of two minus 1. */
8565 len = exact_log2 ((m >> pos) + 1);
8567 if (len <= 0)
8568 pos = -1;
8570 *plen = len;
8571 return pos;
8574 /* If X refers to a register that equals REG in value, replace these
8575 references with REG. */
8576 static rtx
8577 canon_reg_for_combine (rtx x, rtx reg)
8579 rtx op0, op1, op2;
8580 const char *fmt;
8581 int i;
8582 bool copied;
8584 enum rtx_code code = GET_CODE (x);
8585 switch (GET_RTX_CLASS (code))
8587 case RTX_UNARY:
8588 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8589 if (op0 != XEXP (x, 0))
8590 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8591 GET_MODE (reg));
8592 break;
8594 case RTX_BIN_ARITH:
8595 case RTX_COMM_ARITH:
8596 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8597 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8598 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8599 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8600 break;
8602 case RTX_COMPARE:
8603 case RTX_COMM_COMPARE:
8604 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8605 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8606 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8607 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8608 GET_MODE (op0), op0, op1);
8609 break;
8611 case RTX_TERNARY:
8612 case RTX_BITFIELD_OPS:
8613 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8614 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8615 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8616 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8617 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8618 GET_MODE (op0), op0, op1, op2);
8619 /* FALLTHRU */
8621 case RTX_OBJ:
8622 if (REG_P (x))
8624 if (rtx_equal_p (get_last_value (reg), x)
8625 || rtx_equal_p (reg, get_last_value (x)))
8626 return reg;
8627 else
8628 break;
8631 /* fall through */
8633 default:
8634 fmt = GET_RTX_FORMAT (code);
8635 copied = false;
8636 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8637 if (fmt[i] == 'e')
8639 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8640 if (op != XEXP (x, i))
8642 if (!copied)
8644 copied = true;
8645 x = copy_rtx (x);
8647 XEXP (x, i) = op;
8650 else if (fmt[i] == 'E')
8652 int j;
8653 for (j = 0; j < XVECLEN (x, i); j++)
8655 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8656 if (op != XVECEXP (x, i, j))
8658 if (!copied)
8660 copied = true;
8661 x = copy_rtx (x);
8663 XVECEXP (x, i, j) = op;
8668 break;
8671 return x;
8674 /* Return X converted to MODE. If the value is already truncated to
8675 MODE we can just return a subreg even though in the general case we
8676 would need an explicit truncation. */
8678 static rtx
8679 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8681 if (!CONST_INT_P (x)
8682 && partial_subreg_p (mode, GET_MODE (x))
8683 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8684 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8686 /* Bit-cast X into an integer mode. */
8687 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8688 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8689 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8690 x, GET_MODE (x));
8693 return gen_lowpart (mode, x);
8696 /* See if X can be simplified knowing that we will only refer to it in
8697 MODE and will only refer to those bits that are nonzero in MASK.
8698 If other bits are being computed or if masking operations are done
8699 that select a superset of the bits in MASK, they can sometimes be
8700 ignored.
8702 Return a possibly simplified expression, but always convert X to
8703 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8705 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8706 are all off in X. This is used when X will be complemented, by either
8707 NOT, NEG, or XOR. */
8709 static rtx
8710 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8711 int just_select)
8713 enum rtx_code code = GET_CODE (x);
8714 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8715 machine_mode op_mode;
8716 unsigned HOST_WIDE_INT nonzero;
8718 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8719 code below will do the wrong thing since the mode of such an
8720 expression is VOIDmode.
8722 Also do nothing if X is a CLOBBER; this can happen if X was
8723 the return value from a call to gen_lowpart. */
8724 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8725 return x;
8727 /* We want to perform the operation in its present mode unless we know
8728 that the operation is valid in MODE, in which case we do the operation
8729 in MODE. */
8730 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8731 && have_insn_for (code, mode))
8732 ? mode : GET_MODE (x));
8734 /* It is not valid to do a right-shift in a narrower mode
8735 than the one it came in with. */
8736 if ((code == LSHIFTRT || code == ASHIFTRT)
8737 && partial_subreg_p (mode, GET_MODE (x)))
8738 op_mode = GET_MODE (x);
8740 /* Truncate MASK to fit OP_MODE. */
8741 if (op_mode)
8742 mask &= GET_MODE_MASK (op_mode);
8744 /* Determine what bits of X are guaranteed to be (non)zero. */
8745 nonzero = nonzero_bits (x, mode);
8747 /* If none of the bits in X are needed, return a zero. */
8748 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8749 x = const0_rtx;
8751 /* If X is a CONST_INT, return a new one. Do this here since the
8752 test below will fail. */
8753 if (CONST_INT_P (x))
8755 if (SCALAR_INT_MODE_P (mode))
8756 return gen_int_mode (INTVAL (x) & mask, mode);
8757 else
8759 x = GEN_INT (INTVAL (x) & mask);
8760 return gen_lowpart_common (mode, x);
8764 /* If X is narrower than MODE and we want all the bits in X's mode, just
8765 get X in the proper mode. */
8766 if (paradoxical_subreg_p (mode, GET_MODE (x))
8767 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8768 return gen_lowpart (mode, x);
8770 /* We can ignore the effect of a SUBREG if it narrows the mode or
8771 if the constant masks to zero all the bits the mode doesn't have. */
8772 if (GET_CODE (x) == SUBREG
8773 && subreg_lowpart_p (x)
8774 && (partial_subreg_p (x)
8775 || (mask
8776 & GET_MODE_MASK (GET_MODE (x))
8777 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8778 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8780 scalar_int_mode int_mode, xmode;
8781 if (is_a <scalar_int_mode> (mode, &int_mode)
8782 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8783 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8784 integer too. */
8785 return force_int_to_mode (x, int_mode, xmode,
8786 as_a <scalar_int_mode> (op_mode),
8787 mask, just_select);
8789 return gen_lowpart_or_truncate (mode, x);
8792 /* Subroutine of force_to_mode that handles cases in which both X and
8793 the result are scalar integers. MODE is the mode of the result,
8794 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8795 is preferred for simplified versions of X. The other arguments
8796 are as for force_to_mode. */
8798 static rtx
8799 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8800 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8801 int just_select)
8803 enum rtx_code code = GET_CODE (x);
8804 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8805 unsigned HOST_WIDE_INT fuller_mask;
8806 rtx op0, op1, temp;
8807 poly_int64 const_op0;
8809 /* When we have an arithmetic operation, or a shift whose count we
8810 do not know, we need to assume that all bits up to the highest-order
8811 bit in MASK will be needed. This is how we form such a mask. */
8812 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8813 fuller_mask = HOST_WIDE_INT_M1U;
8814 else
8815 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8816 - 1);
8818 switch (code)
8820 case CLOBBER:
8821 /* If X is a (clobber (const_int)), return it since we know we are
8822 generating something that won't match. */
8823 return x;
8825 case SIGN_EXTEND:
8826 case ZERO_EXTEND:
8827 case ZERO_EXTRACT:
8828 case SIGN_EXTRACT:
8829 x = expand_compound_operation (x);
8830 if (GET_CODE (x) != code)
8831 return force_to_mode (x, mode, mask, next_select);
8832 break;
8834 case TRUNCATE:
8835 /* Similarly for a truncate. */
8836 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8838 case AND:
8839 /* If this is an AND with a constant, convert it into an AND
8840 whose constant is the AND of that constant with MASK. If it
8841 remains an AND of MASK, delete it since it is redundant. */
8843 if (CONST_INT_P (XEXP (x, 1)))
8845 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8846 mask & INTVAL (XEXP (x, 1)));
8847 xmode = op_mode;
8849 /* If X is still an AND, see if it is an AND with a mask that
8850 is just some low-order bits. If so, and it is MASK, we don't
8851 need it. */
8853 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8854 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8855 x = XEXP (x, 0);
8857 /* If it remains an AND, try making another AND with the bits
8858 in the mode mask that aren't in MASK turned on. If the
8859 constant in the AND is wide enough, this might make a
8860 cheaper constant. */
8862 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8863 && GET_MODE_MASK (xmode) != mask
8864 && HWI_COMPUTABLE_MODE_P (xmode))
8866 unsigned HOST_WIDE_INT cval
8867 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8868 rtx y;
8870 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8871 gen_int_mode (cval, xmode));
8872 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8873 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8874 x = y;
8877 break;
8880 goto binop;
8882 case PLUS:
8883 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8884 low-order bits (as in an alignment operation) and FOO is already
8885 aligned to that boundary, mask C1 to that boundary as well.
8886 This may eliminate that PLUS and, later, the AND. */
8889 unsigned int width = GET_MODE_PRECISION (mode);
8890 unsigned HOST_WIDE_INT smask = mask;
8892 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8893 number, sign extend it. */
8895 if (width < HOST_BITS_PER_WIDE_INT
8896 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8897 smask |= HOST_WIDE_INT_M1U << width;
8899 if (CONST_INT_P (XEXP (x, 1))
8900 && pow2p_hwi (- smask)
8901 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8902 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8903 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8904 (INTVAL (XEXP (x, 1)) & smask)),
8905 mode, smask, next_select);
8908 /* fall through */
8910 case MULT:
8911 /* Substituting into the operands of a widening MULT is not likely to
8912 create RTL matching a machine insn. */
8913 if (code == MULT
8914 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8915 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8916 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8917 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8918 && REG_P (XEXP (XEXP (x, 0), 0))
8919 && REG_P (XEXP (XEXP (x, 1), 0)))
8920 return gen_lowpart_or_truncate (mode, x);
8922 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8923 most significant bit in MASK since carries from those bits will
8924 affect the bits we are interested in. */
8925 mask = fuller_mask;
8926 goto binop;
8928 case MINUS:
8929 /* If X is (minus C Y) where C's least set bit is larger than any bit
8930 in the mask, then we may replace with (neg Y). */
8931 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8932 && known_alignment (poly_uint64 (const_op0)) > mask)
8934 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8935 return force_to_mode (x, mode, mask, next_select);
8938 /* Similarly, if C contains every bit in the fuller_mask, then we may
8939 replace with (not Y). */
8940 if (CONST_INT_P (XEXP (x, 0))
8941 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8943 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8944 return force_to_mode (x, mode, mask, next_select);
8947 mask = fuller_mask;
8948 goto binop;
8950 case IOR:
8951 case XOR:
8952 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8953 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8954 operation which may be a bitfield extraction. Ensure that the
8955 constant we form is not wider than the mode of X. */
8957 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8958 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8959 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8960 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8961 && CONST_INT_P (XEXP (x, 1))
8962 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8963 + floor_log2 (INTVAL (XEXP (x, 1))))
8964 < GET_MODE_PRECISION (xmode))
8965 && (UINTVAL (XEXP (x, 1))
8966 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8968 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8969 << INTVAL (XEXP (XEXP (x, 0), 1)),
8970 xmode);
8971 temp = simplify_gen_binary (GET_CODE (x), xmode,
8972 XEXP (XEXP (x, 0), 0), temp);
8973 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8974 XEXP (XEXP (x, 0), 1));
8975 return force_to_mode (x, mode, mask, next_select);
8978 binop:
8979 /* For most binary operations, just propagate into the operation and
8980 change the mode if we have an operation of that mode. */
8982 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8983 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8985 /* If we ended up truncating both operands, truncate the result of the
8986 operation instead. */
8987 if (GET_CODE (op0) == TRUNCATE
8988 && GET_CODE (op1) == TRUNCATE)
8990 op0 = XEXP (op0, 0);
8991 op1 = XEXP (op1, 0);
8994 op0 = gen_lowpart_or_truncate (op_mode, op0);
8995 op1 = gen_lowpart_or_truncate (op_mode, op1);
8997 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8999 x = simplify_gen_binary (code, op_mode, op0, op1);
9000 xmode = op_mode;
9002 break;
9004 case ASHIFT:
9005 /* For left shifts, do the same, but just for the first operand.
9006 However, we cannot do anything with shifts where we cannot
9007 guarantee that the counts are smaller than the size of the mode
9008 because such a count will have a different meaning in a
9009 wider mode. */
9011 if (! (CONST_INT_P (XEXP (x, 1))
9012 && INTVAL (XEXP (x, 1)) >= 0
9013 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
9014 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
9015 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
9016 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
9017 break;
9019 /* If the shift count is a constant and we can do arithmetic in
9020 the mode of the shift, refine which bits we need. Otherwise, use the
9021 conservative form of the mask. */
9022 if (CONST_INT_P (XEXP (x, 1))
9023 && INTVAL (XEXP (x, 1)) >= 0
9024 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
9025 && HWI_COMPUTABLE_MODE_P (op_mode))
9026 mask >>= INTVAL (XEXP (x, 1));
9027 else
9028 mask = fuller_mask;
9030 op0 = gen_lowpart_or_truncate (op_mode,
9031 force_to_mode (XEXP (x, 0), mode,
9032 mask, next_select));
9034 if (op_mode != xmode || op0 != XEXP (x, 0))
9036 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
9037 xmode = op_mode;
9039 break;
9041 case LSHIFTRT:
9042 /* Here we can only do something if the shift count is a constant,
9043 this shift constant is valid for the host, and we can do arithmetic
9044 in OP_MODE. */
9046 if (CONST_INT_P (XEXP (x, 1))
9047 && INTVAL (XEXP (x, 1)) >= 0
9048 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9049 && HWI_COMPUTABLE_MODE_P (op_mode))
9051 rtx inner = XEXP (x, 0);
9052 unsigned HOST_WIDE_INT inner_mask;
9054 /* Select the mask of the bits we need for the shift operand. */
9055 inner_mask = mask << INTVAL (XEXP (x, 1));
9057 /* We can only change the mode of the shift if we can do arithmetic
9058 in the mode of the shift and INNER_MASK is no wider than the
9059 width of X's mode. */
9060 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9061 op_mode = xmode;
9063 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9065 if (xmode != op_mode || inner != XEXP (x, 0))
9067 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9068 xmode = op_mode;
9072 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9073 shift and AND produces only copies of the sign bit (C2 is one less
9074 than a power of two), we can do this with just a shift. */
9076 if (GET_CODE (x) == LSHIFTRT
9077 && CONST_INT_P (XEXP (x, 1))
9078 /* The shift puts one of the sign bit copies in the least significant
9079 bit. */
9080 && ((INTVAL (XEXP (x, 1))
9081 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9082 >= GET_MODE_PRECISION (xmode))
9083 && pow2p_hwi (mask + 1)
9084 /* Number of bits left after the shift must be more than the mask
9085 needs. */
9086 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9087 <= GET_MODE_PRECISION (xmode))
9088 /* Must be more sign bit copies than the mask needs. */
9089 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9090 >= exact_log2 (mask + 1)))
9092 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9093 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9094 gen_int_shift_amount (xmode, nbits));
9096 goto shiftrt;
9098 case ASHIFTRT:
9099 /* If we are just looking for the sign bit, we don't need this shift at
9100 all, even if it has a variable count. */
9101 if (val_signbit_p (xmode, mask))
9102 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9104 /* If this is a shift by a constant, get a mask that contains those bits
9105 that are not copies of the sign bit. We then have two cases: If
9106 MASK only includes those bits, this can be a logical shift, which may
9107 allow simplifications. If MASK is a single-bit field not within
9108 those bits, we are requesting a copy of the sign bit and hence can
9109 shift the sign bit to the appropriate location. */
9111 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9112 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9114 unsigned HOST_WIDE_INT nonzero;
9115 int i;
9117 /* If the considered data is wider than HOST_WIDE_INT, we can't
9118 represent a mask for all its bits in a single scalar.
9119 But we only care about the lower bits, so calculate these. */
9121 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9123 nonzero = HOST_WIDE_INT_M1U;
9125 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9126 is the number of bits a full-width mask would have set.
9127 We need only shift if these are fewer than nonzero can
9128 hold. If not, we must keep all bits set in nonzero. */
9130 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9131 < HOST_BITS_PER_WIDE_INT)
9132 nonzero >>= INTVAL (XEXP (x, 1))
9133 + HOST_BITS_PER_WIDE_INT
9134 - GET_MODE_PRECISION (xmode);
9136 else
9138 nonzero = GET_MODE_MASK (xmode);
9139 nonzero >>= INTVAL (XEXP (x, 1));
9142 if ((mask & ~nonzero) == 0)
9144 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9145 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9146 if (GET_CODE (x) != ASHIFTRT)
9147 return force_to_mode (x, mode, mask, next_select);
9150 else if ((i = exact_log2 (mask)) >= 0)
9152 x = simplify_shift_const
9153 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9154 GET_MODE_PRECISION (xmode) - 1 - i);
9156 if (GET_CODE (x) != ASHIFTRT)
9157 return force_to_mode (x, mode, mask, next_select);
9161 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9162 even if the shift count isn't a constant. */
9163 if (mask == 1)
9164 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9166 shiftrt:
9168 /* If this is a zero- or sign-extension operation that just affects bits
9169 we don't care about, remove it. Be sure the call above returned
9170 something that is still a shift. */
9172 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9173 && CONST_INT_P (XEXP (x, 1))
9174 && INTVAL (XEXP (x, 1)) >= 0
9175 && (INTVAL (XEXP (x, 1))
9176 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9177 && GET_CODE (XEXP (x, 0)) == ASHIFT
9178 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9179 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9180 next_select);
9182 break;
9184 case ROTATE:
9185 case ROTATERT:
9186 /* If the shift count is constant and we can do computations
9187 in the mode of X, compute where the bits we care about are.
9188 Otherwise, we can't do anything. Don't change the mode of
9189 the shift or propagate MODE into the shift, though. */
9190 if (CONST_INT_P (XEXP (x, 1))
9191 && INTVAL (XEXP (x, 1)) >= 0)
9193 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9194 xmode, gen_int_mode (mask, xmode),
9195 XEXP (x, 1));
9196 if (temp && CONST_INT_P (temp))
9197 x = simplify_gen_binary (code, xmode,
9198 force_to_mode (XEXP (x, 0), xmode,
9199 INTVAL (temp), next_select),
9200 XEXP (x, 1));
9202 break;
9204 case NEG:
9205 /* If we just want the low-order bit, the NEG isn't needed since it
9206 won't change the low-order bit. */
9207 if (mask == 1)
9208 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9210 /* We need any bits less significant than the most significant bit in
9211 MASK since carries from those bits will affect the bits we are
9212 interested in. */
9213 mask = fuller_mask;
9214 goto unop;
9216 case NOT:
9217 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9218 same as the XOR case above. Ensure that the constant we form is not
9219 wider than the mode of X. */
9221 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9222 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9223 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9224 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9225 < GET_MODE_PRECISION (xmode))
9226 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9228 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9229 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9230 x = simplify_gen_binary (LSHIFTRT, xmode,
9231 temp, XEXP (XEXP (x, 0), 1));
9233 return force_to_mode (x, mode, mask, next_select);
9236 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9237 use the full mask inside the NOT. */
9238 mask = fuller_mask;
9240 unop:
9241 op0 = gen_lowpart_or_truncate (op_mode,
9242 force_to_mode (XEXP (x, 0), mode, mask,
9243 next_select));
9244 if (op_mode != xmode || op0 != XEXP (x, 0))
9246 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9247 xmode = op_mode;
9249 break;
9251 case NE:
9252 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9253 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9254 which is equal to STORE_FLAG_VALUE. */
9255 if ((mask & ~STORE_FLAG_VALUE) == 0
9256 && XEXP (x, 1) == const0_rtx
9257 && GET_MODE (XEXP (x, 0)) == mode
9258 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9259 && (nonzero_bits (XEXP (x, 0), mode)
9260 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9261 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9263 break;
9265 case IF_THEN_ELSE:
9266 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9267 written in a narrower mode. We play it safe and do not do so. */
9269 op0 = gen_lowpart_or_truncate (xmode,
9270 force_to_mode (XEXP (x, 1), mode,
9271 mask, next_select));
9272 op1 = gen_lowpart_or_truncate (xmode,
9273 force_to_mode (XEXP (x, 2), mode,
9274 mask, next_select));
9275 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9276 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9277 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9278 op0, op1);
9279 break;
9281 default:
9282 break;
9285 /* Ensure we return a value of the proper mode. */
9286 return gen_lowpart_or_truncate (mode, x);
9289 /* Return nonzero if X is an expression that has one of two values depending on
9290 whether some other value is zero or nonzero. In that case, we return the
9291 value that is being tested, *PTRUE is set to the value if the rtx being
9292 returned has a nonzero value, and *PFALSE is set to the other alternative.
9294 If we return zero, we set *PTRUE and *PFALSE to X. */
9296 static rtx
9297 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9299 machine_mode mode = GET_MODE (x);
9300 enum rtx_code code = GET_CODE (x);
9301 rtx cond0, cond1, true0, true1, false0, false1;
9302 unsigned HOST_WIDE_INT nz;
9303 scalar_int_mode int_mode;
9305 /* If we are comparing a value against zero, we are done. */
9306 if ((code == NE || code == EQ)
9307 && XEXP (x, 1) == const0_rtx)
9309 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9310 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9311 return XEXP (x, 0);
9314 /* If this is a unary operation whose operand has one of two values, apply
9315 our opcode to compute those values. */
9316 else if (UNARY_P (x)
9317 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9319 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9320 *pfalse = simplify_gen_unary (code, mode, false0,
9321 GET_MODE (XEXP (x, 0)));
9322 return cond0;
9325 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9326 make can't possibly match and would suppress other optimizations. */
9327 else if (code == COMPARE)
9330 /* If this is a binary operation, see if either side has only one of two
9331 values. If either one does or if both do and they are conditional on
9332 the same value, compute the new true and false values. */
9333 else if (BINARY_P (x))
9335 rtx op0 = XEXP (x, 0);
9336 rtx op1 = XEXP (x, 1);
9337 cond0 = if_then_else_cond (op0, &true0, &false0);
9338 cond1 = if_then_else_cond (op1, &true1, &false1);
9340 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9341 && (REG_P (op0) || REG_P (op1)))
9343 /* Try to enable a simplification by undoing work done by
9344 if_then_else_cond if it converted a REG into something more
9345 complex. */
9346 if (REG_P (op0))
9348 cond0 = 0;
9349 true0 = false0 = op0;
9351 else
9353 cond1 = 0;
9354 true1 = false1 = op1;
9358 if ((cond0 != 0 || cond1 != 0)
9359 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9361 /* If if_then_else_cond returned zero, then true/false are the
9362 same rtl. We must copy one of them to prevent invalid rtl
9363 sharing. */
9364 if (cond0 == 0)
9365 true0 = copy_rtx (true0);
9366 else if (cond1 == 0)
9367 true1 = copy_rtx (true1);
9369 if (COMPARISON_P (x))
9371 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9372 true0, true1);
9373 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9374 false0, false1);
9376 else
9378 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9379 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9382 return cond0 ? cond0 : cond1;
9385 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9386 operands is zero when the other is nonzero, and vice-versa,
9387 and STORE_FLAG_VALUE is 1 or -1. */
9389 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9390 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9391 || code == UMAX)
9392 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9394 rtx op0 = XEXP (XEXP (x, 0), 1);
9395 rtx op1 = XEXP (XEXP (x, 1), 1);
9397 cond0 = XEXP (XEXP (x, 0), 0);
9398 cond1 = XEXP (XEXP (x, 1), 0);
9400 if (COMPARISON_P (cond0)
9401 && COMPARISON_P (cond1)
9402 && SCALAR_INT_MODE_P (mode)
9403 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9404 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9405 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9406 || ((swap_condition (GET_CODE (cond0))
9407 == reversed_comparison_code (cond1, NULL))
9408 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9409 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9410 && ! side_effects_p (x))
9412 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9413 *pfalse = simplify_gen_binary (MULT, mode,
9414 (code == MINUS
9415 ? simplify_gen_unary (NEG, mode,
9416 op1, mode)
9417 : op1),
9418 const_true_rtx);
9419 return cond0;
9423 /* Similarly for MULT, AND and UMIN, except that for these the result
9424 is always zero. */
9425 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9426 && (code == MULT || code == AND || code == UMIN)
9427 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9429 cond0 = XEXP (XEXP (x, 0), 0);
9430 cond1 = XEXP (XEXP (x, 1), 0);
9432 if (COMPARISON_P (cond0)
9433 && COMPARISON_P (cond1)
9434 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9435 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9436 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9437 || ((swap_condition (GET_CODE (cond0))
9438 == reversed_comparison_code (cond1, NULL))
9439 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9440 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9441 && ! side_effects_p (x))
9443 *ptrue = *pfalse = const0_rtx;
9444 return cond0;
9449 else if (code == IF_THEN_ELSE)
9451 /* If we have IF_THEN_ELSE already, extract the condition and
9452 canonicalize it if it is NE or EQ. */
9453 cond0 = XEXP (x, 0);
9454 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9455 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9456 return XEXP (cond0, 0);
9457 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9459 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9460 return XEXP (cond0, 0);
9462 else
9463 return cond0;
9466 /* If X is a SUBREG, we can narrow both the true and false values
9467 if the inner expression, if there is a condition. */
9468 else if (code == SUBREG
9469 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9470 &false0)) != 0)
9472 true0 = simplify_gen_subreg (mode, true0,
9473 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9474 false0 = simplify_gen_subreg (mode, false0,
9475 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9476 if (true0 && false0)
9478 *ptrue = true0;
9479 *pfalse = false0;
9480 return cond0;
9484 /* If X is a constant, this isn't special and will cause confusions
9485 if we treat it as such. Likewise if it is equivalent to a constant. */
9486 else if (CONSTANT_P (x)
9487 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9490 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9491 will be least confusing to the rest of the compiler. */
9492 else if (mode == BImode)
9494 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9495 return x;
9498 /* If X is known to be either 0 or -1, those are the true and
9499 false values when testing X. */
9500 else if (x == constm1_rtx || x == const0_rtx
9501 || (is_a <scalar_int_mode> (mode, &int_mode)
9502 && (num_sign_bit_copies (x, int_mode)
9503 == GET_MODE_PRECISION (int_mode))))
9505 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9506 return x;
9509 /* Likewise for 0 or a single bit. */
9510 else if (HWI_COMPUTABLE_MODE_P (mode)
9511 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9513 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9514 return x;
9517 /* Otherwise fail; show no condition with true and false values the same. */
9518 *ptrue = *pfalse = x;
9519 return 0;
9522 /* Return the value of expression X given the fact that condition COND
9523 is known to be true when applied to REG as its first operand and VAL
9524 as its second. X is known to not be shared and so can be modified in
9525 place.
9527 We only handle the simplest cases, and specifically those cases that
9528 arise with IF_THEN_ELSE expressions. */
9530 static rtx
9531 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9533 enum rtx_code code = GET_CODE (x);
9534 const char *fmt;
9535 int i, j;
9537 if (side_effects_p (x))
9538 return x;
9540 /* If either operand of the condition is a floating point value,
9541 then we have to avoid collapsing an EQ comparison. */
9542 if (cond == EQ
9543 && rtx_equal_p (x, reg)
9544 && ! FLOAT_MODE_P (GET_MODE (x))
9545 && ! FLOAT_MODE_P (GET_MODE (val)))
9546 return val;
9548 if (cond == UNEQ && rtx_equal_p (x, reg))
9549 return val;
9551 /* If X is (abs REG) and we know something about REG's relationship
9552 with zero, we may be able to simplify this. */
9554 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9555 switch (cond)
9557 case GE: case GT: case EQ:
9558 return XEXP (x, 0);
9559 case LT: case LE:
9560 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9561 XEXP (x, 0),
9562 GET_MODE (XEXP (x, 0)));
9563 default:
9564 break;
9567 /* The only other cases we handle are MIN, MAX, and comparisons if the
9568 operands are the same as REG and VAL. */
9570 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9572 if (rtx_equal_p (XEXP (x, 0), val))
9574 std::swap (val, reg);
9575 cond = swap_condition (cond);
9578 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9580 if (COMPARISON_P (x))
9582 if (comparison_dominates_p (cond, code))
9583 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9585 code = reversed_comparison_code (x, NULL);
9586 if (code != UNKNOWN
9587 && comparison_dominates_p (cond, code))
9588 return CONST0_RTX (GET_MODE (x));
9589 else
9590 return x;
9592 else if (code == SMAX || code == SMIN
9593 || code == UMIN || code == UMAX)
9595 int unsignedp = (code == UMIN || code == UMAX);
9597 /* Do not reverse the condition when it is NE or EQ.
9598 This is because we cannot conclude anything about
9599 the value of 'SMAX (x, y)' when x is not equal to y,
9600 but we can when x equals y. */
9601 if ((code == SMAX || code == UMAX)
9602 && ! (cond == EQ || cond == NE))
9603 cond = reverse_condition (cond);
9605 switch (cond)
9607 case GE: case GT:
9608 return unsignedp ? x : XEXP (x, 1);
9609 case LE: case LT:
9610 return unsignedp ? x : XEXP (x, 0);
9611 case GEU: case GTU:
9612 return unsignedp ? XEXP (x, 1) : x;
9613 case LEU: case LTU:
9614 return unsignedp ? XEXP (x, 0) : x;
9615 default:
9616 break;
9621 else if (code == SUBREG)
9623 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9624 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9626 if (SUBREG_REG (x) != r)
9628 /* We must simplify subreg here, before we lose track of the
9629 original inner_mode. */
9630 new_rtx = simplify_subreg (GET_MODE (x), r,
9631 inner_mode, SUBREG_BYTE (x));
9632 if (new_rtx)
9633 return new_rtx;
9634 else
9635 SUBST (SUBREG_REG (x), r);
9638 return x;
9640 /* We don't have to handle SIGN_EXTEND here, because even in the
9641 case of replacing something with a modeless CONST_INT, a
9642 CONST_INT is already (supposed to be) a valid sign extension for
9643 its narrower mode, which implies it's already properly
9644 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9645 story is different. */
9646 else if (code == ZERO_EXTEND)
9648 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9649 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9651 if (XEXP (x, 0) != r)
9653 /* We must simplify the zero_extend here, before we lose
9654 track of the original inner_mode. */
9655 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9656 r, inner_mode);
9657 if (new_rtx)
9658 return new_rtx;
9659 else
9660 SUBST (XEXP (x, 0), r);
9663 return x;
9666 fmt = GET_RTX_FORMAT (code);
9667 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9669 if (fmt[i] == 'e')
9670 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9671 else if (fmt[i] == 'E')
9672 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9673 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9674 cond, reg, val));
9677 return x;
9680 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9681 assignment as a field assignment. */
9683 static int
9684 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9686 if (widen_x && GET_MODE (x) != GET_MODE (y))
9688 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9689 return 0;
9690 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9691 return 0;
9692 x = adjust_address_nv (x, GET_MODE (y),
9693 byte_lowpart_offset (GET_MODE (y),
9694 GET_MODE (x)));
9697 if (x == y || rtx_equal_p (x, y))
9698 return 1;
9700 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9701 return 0;
9703 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9704 Note that all SUBREGs of MEM are paradoxical; otherwise they
9705 would have been rewritten. */
9706 if (MEM_P (x) && GET_CODE (y) == SUBREG
9707 && MEM_P (SUBREG_REG (y))
9708 && rtx_equal_p (SUBREG_REG (y),
9709 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9710 return 1;
9712 if (MEM_P (y) && GET_CODE (x) == SUBREG
9713 && MEM_P (SUBREG_REG (x))
9714 && rtx_equal_p (SUBREG_REG (x),
9715 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9716 return 1;
9718 /* We used to see if get_last_value of X and Y were the same but that's
9719 not correct. In one direction, we'll cause the assignment to have
9720 the wrong destination and in the case, we'll import a register into this
9721 insn that might have already have been dead. So fail if none of the
9722 above cases are true. */
9723 return 0;
9726 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9727 Return that assignment if so.
9729 We only handle the most common cases. */
9731 static rtx
9732 make_field_assignment (rtx x)
9734 rtx dest = SET_DEST (x);
9735 rtx src = SET_SRC (x);
9736 rtx assign;
9737 rtx rhs, lhs;
9738 HOST_WIDE_INT c1;
9739 HOST_WIDE_INT pos;
9740 unsigned HOST_WIDE_INT len;
9741 rtx other;
9743 /* All the rules in this function are specific to scalar integers. */
9744 scalar_int_mode mode;
9745 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9746 return x;
9748 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9749 a clear of a one-bit field. We will have changed it to
9750 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9751 for a SUBREG. */
9753 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9754 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9755 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9756 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9758 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9759 1, 1, 1, 0);
9760 if (assign != 0)
9761 return gen_rtx_SET (assign, const0_rtx);
9762 return x;
9765 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9766 && subreg_lowpart_p (XEXP (src, 0))
9767 && partial_subreg_p (XEXP (src, 0))
9768 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9769 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9770 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9771 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9773 assign = make_extraction (VOIDmode, dest, 0,
9774 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9775 1, 1, 1, 0);
9776 if (assign != 0)
9777 return gen_rtx_SET (assign, const0_rtx);
9778 return x;
9781 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9782 one-bit field. */
9783 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9784 && XEXP (XEXP (src, 0), 0) == const1_rtx
9785 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9787 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9788 1, 1, 1, 0);
9789 if (assign != 0)
9790 return gen_rtx_SET (assign, const1_rtx);
9791 return x;
9794 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9795 SRC is an AND with all bits of that field set, then we can discard
9796 the AND. */
9797 if (GET_CODE (dest) == ZERO_EXTRACT
9798 && CONST_INT_P (XEXP (dest, 1))
9799 && GET_CODE (src) == AND
9800 && CONST_INT_P (XEXP (src, 1)))
9802 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9803 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9804 unsigned HOST_WIDE_INT ze_mask;
9806 if (width >= HOST_BITS_PER_WIDE_INT)
9807 ze_mask = -1;
9808 else
9809 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9811 /* Complete overlap. We can remove the source AND. */
9812 if ((and_mask & ze_mask) == ze_mask)
9813 return gen_rtx_SET (dest, XEXP (src, 0));
9815 /* Partial overlap. We can reduce the source AND. */
9816 if ((and_mask & ze_mask) != and_mask)
9818 src = gen_rtx_AND (mode, XEXP (src, 0),
9819 gen_int_mode (and_mask & ze_mask, mode));
9820 return gen_rtx_SET (dest, src);
9824 /* The other case we handle is assignments into a constant-position
9825 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9826 a mask that has all one bits except for a group of zero bits and
9827 OTHER is known to have zeros where C1 has ones, this is such an
9828 assignment. Compute the position and length from C1. Shift OTHER
9829 to the appropriate position, force it to the required mode, and
9830 make the extraction. Check for the AND in both operands. */
9832 /* One or more SUBREGs might obscure the constant-position field
9833 assignment. The first one we are likely to encounter is an outer
9834 narrowing SUBREG, which we can just strip for the purposes of
9835 identifying the constant-field assignment. */
9836 scalar_int_mode src_mode = mode;
9837 if (GET_CODE (src) == SUBREG
9838 && subreg_lowpart_p (src)
9839 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9840 src = SUBREG_REG (src);
9842 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9843 return x;
9845 rhs = expand_compound_operation (XEXP (src, 0));
9846 lhs = expand_compound_operation (XEXP (src, 1));
9848 if (GET_CODE (rhs) == AND
9849 && CONST_INT_P (XEXP (rhs, 1))
9850 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9851 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9852 /* The second SUBREG that might get in the way is a paradoxical
9853 SUBREG around the first operand of the AND. We want to
9854 pretend the operand is as wide as the destination here. We
9855 do this by adjusting the MEM to wider mode for the sole
9856 purpose of the call to rtx_equal_for_field_assignment_p. Also
9857 note this trick only works for MEMs. */
9858 else if (GET_CODE (rhs) == AND
9859 && paradoxical_subreg_p (XEXP (rhs, 0))
9860 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9861 && CONST_INT_P (XEXP (rhs, 1))
9862 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9863 dest, true))
9864 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9865 else if (GET_CODE (lhs) == AND
9866 && CONST_INT_P (XEXP (lhs, 1))
9867 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9868 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9869 /* The second SUBREG that might get in the way is a paradoxical
9870 SUBREG around the first operand of the AND. We want to
9871 pretend the operand is as wide as the destination here. We
9872 do this by adjusting the MEM to wider mode for the sole
9873 purpose of the call to rtx_equal_for_field_assignment_p. Also
9874 note this trick only works for MEMs. */
9875 else if (GET_CODE (lhs) == AND
9876 && paradoxical_subreg_p (XEXP (lhs, 0))
9877 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9878 && CONST_INT_P (XEXP (lhs, 1))
9879 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9880 dest, true))
9881 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9882 else
9883 return x;
9885 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9886 if (pos < 0
9887 || pos + len > GET_MODE_PRECISION (mode)
9888 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9889 || (c1 & nonzero_bits (other, mode)) != 0)
9890 return x;
9892 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9893 if (assign == 0)
9894 return x;
9896 /* The mode to use for the source is the mode of the assignment, or of
9897 what is inside a possible STRICT_LOW_PART. */
9898 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9899 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9901 /* Shift OTHER right POS places and make it the source, restricting it
9902 to the proper length and mode. */
9904 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9905 src_mode, other, pos),
9906 dest);
9907 src = force_to_mode (src, new_mode,
9908 len >= HOST_BITS_PER_WIDE_INT
9909 ? HOST_WIDE_INT_M1U
9910 : (HOST_WIDE_INT_1U << len) - 1,
9913 /* If SRC is masked by an AND that does not make a difference in
9914 the value being stored, strip it. */
9915 if (GET_CODE (assign) == ZERO_EXTRACT
9916 && CONST_INT_P (XEXP (assign, 1))
9917 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9918 && GET_CODE (src) == AND
9919 && CONST_INT_P (XEXP (src, 1))
9920 && UINTVAL (XEXP (src, 1))
9921 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9922 src = XEXP (src, 0);
9924 return gen_rtx_SET (assign, src);
9927 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9928 if so. */
9930 static rtx
9931 apply_distributive_law (rtx x)
9933 enum rtx_code code = GET_CODE (x);
9934 enum rtx_code inner_code;
9935 rtx lhs, rhs, other;
9936 rtx tem;
9938 /* Distributivity is not true for floating point as it can change the
9939 value. So we don't do it unless -funsafe-math-optimizations. */
9940 if (FLOAT_MODE_P (GET_MODE (x))
9941 && ! flag_unsafe_math_optimizations)
9942 return x;
9944 /* The outer operation can only be one of the following: */
9945 if (code != IOR && code != AND && code != XOR
9946 && code != PLUS && code != MINUS)
9947 return x;
9949 lhs = XEXP (x, 0);
9950 rhs = XEXP (x, 1);
9952 /* If either operand is a primitive we can't do anything, so get out
9953 fast. */
9954 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9955 return x;
9957 lhs = expand_compound_operation (lhs);
9958 rhs = expand_compound_operation (rhs);
9959 inner_code = GET_CODE (lhs);
9960 if (inner_code != GET_CODE (rhs))
9961 return x;
9963 /* See if the inner and outer operations distribute. */
9964 switch (inner_code)
9966 case LSHIFTRT:
9967 case ASHIFTRT:
9968 case AND:
9969 case IOR:
9970 /* These all distribute except over PLUS. */
9971 if (code == PLUS || code == MINUS)
9972 return x;
9973 break;
9975 case MULT:
9976 if (code != PLUS && code != MINUS)
9977 return x;
9978 break;
9980 case ASHIFT:
9981 /* This is also a multiply, so it distributes over everything. */
9982 break;
9984 /* This used to handle SUBREG, but this turned out to be counter-
9985 productive, since (subreg (op ...)) usually is not handled by
9986 insn patterns, and this "optimization" therefore transformed
9987 recognizable patterns into unrecognizable ones. Therefore the
9988 SUBREG case was removed from here.
9990 It is possible that distributing SUBREG over arithmetic operations
9991 leads to an intermediate result than can then be optimized further,
9992 e.g. by moving the outer SUBREG to the other side of a SET as done
9993 in simplify_set. This seems to have been the original intent of
9994 handling SUBREGs here.
9996 However, with current GCC this does not appear to actually happen,
9997 at least on major platforms. If some case is found where removing
9998 the SUBREG case here prevents follow-on optimizations, distributing
9999 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
10001 default:
10002 return x;
10005 /* Set LHS and RHS to the inner operands (A and B in the example
10006 above) and set OTHER to the common operand (C in the example).
10007 There is only one way to do this unless the inner operation is
10008 commutative. */
10009 if (COMMUTATIVE_ARITH_P (lhs)
10010 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
10011 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
10012 else if (COMMUTATIVE_ARITH_P (lhs)
10013 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
10014 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
10015 else if (COMMUTATIVE_ARITH_P (lhs)
10016 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
10017 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
10018 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
10019 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
10020 else
10021 return x;
10023 /* Form the new inner operation, seeing if it simplifies first. */
10024 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
10026 /* There is one exception to the general way of distributing:
10027 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10028 if (code == XOR && inner_code == IOR)
10030 inner_code = AND;
10031 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
10034 /* We may be able to continuing distributing the result, so call
10035 ourselves recursively on the inner operation before forming the
10036 outer operation, which we return. */
10037 return simplify_gen_binary (inner_code, GET_MODE (x),
10038 apply_distributive_law (tem), other);
10041 /* See if X is of the form (* (+ A B) C), and if so convert to
10042 (+ (* A C) (* B C)) and try to simplify.
10044 Most of the time, this results in no change. However, if some of
10045 the operands are the same or inverses of each other, simplifications
10046 will result.
10048 For example, (and (ior A B) (not B)) can occur as the result of
10049 expanding a bit field assignment. When we apply the distributive
10050 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10051 which then simplifies to (and (A (not B))).
10053 Note that no checks happen on the validity of applying the inverse
10054 distributive law. This is pointless since we can do it in the
10055 few places where this routine is called.
10057 N is the index of the term that is decomposed (the arithmetic operation,
10058 i.e. (+ A B) in the first example above). !N is the index of the term that
10059 is distributed, i.e. of C in the first example above. */
10060 static rtx
10061 distribute_and_simplify_rtx (rtx x, int n)
10063 machine_mode mode;
10064 enum rtx_code outer_code, inner_code;
10065 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10067 /* Distributivity is not true for floating point as it can change the
10068 value. So we don't do it unless -funsafe-math-optimizations. */
10069 if (FLOAT_MODE_P (GET_MODE (x))
10070 && ! flag_unsafe_math_optimizations)
10071 return NULL_RTX;
10073 decomposed = XEXP (x, n);
10074 if (!ARITHMETIC_P (decomposed))
10075 return NULL_RTX;
10077 mode = GET_MODE (x);
10078 outer_code = GET_CODE (x);
10079 distributed = XEXP (x, !n);
10081 inner_code = GET_CODE (decomposed);
10082 inner_op0 = XEXP (decomposed, 0);
10083 inner_op1 = XEXP (decomposed, 1);
10085 /* Special case (and (xor B C) (not A)), which is equivalent to
10086 (xor (ior A B) (ior A C)) */
10087 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10089 distributed = XEXP (distributed, 0);
10090 outer_code = IOR;
10093 if (n == 0)
10095 /* Distribute the second term. */
10096 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10097 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10099 else
10101 /* Distribute the first term. */
10102 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10103 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10106 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10107 new_op0, new_op1));
10108 if (GET_CODE (tmp) != outer_code
10109 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10110 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10111 return tmp;
10113 return NULL_RTX;
10116 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10117 in MODE. Return an equivalent form, if different from (and VAROP
10118 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10120 static rtx
10121 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10122 unsigned HOST_WIDE_INT constop)
10124 unsigned HOST_WIDE_INT nonzero;
10125 unsigned HOST_WIDE_INT orig_constop;
10126 rtx orig_varop;
10127 int i;
10129 orig_varop = varop;
10130 orig_constop = constop;
10131 if (GET_CODE (varop) == CLOBBER)
10132 return NULL_RTX;
10134 /* Simplify VAROP knowing that we will be only looking at some of the
10135 bits in it.
10137 Note by passing in CONSTOP, we guarantee that the bits not set in
10138 CONSTOP are not significant and will never be examined. We must
10139 ensure that is the case by explicitly masking out those bits
10140 before returning. */
10141 varop = force_to_mode (varop, mode, constop, 0);
10143 /* If VAROP is a CLOBBER, we will fail so return it. */
10144 if (GET_CODE (varop) == CLOBBER)
10145 return varop;
10147 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10148 to VAROP and return the new constant. */
10149 if (CONST_INT_P (varop))
10150 return gen_int_mode (INTVAL (varop) & constop, mode);
10152 /* See what bits may be nonzero in VAROP. Unlike the general case of
10153 a call to nonzero_bits, here we don't care about bits outside
10154 MODE. */
10156 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10158 /* Turn off all bits in the constant that are known to already be zero.
10159 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10160 which is tested below. */
10162 constop &= nonzero;
10164 /* If we don't have any bits left, return zero. */
10165 if (constop == 0)
10166 return const0_rtx;
10168 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10169 a power of two, we can replace this with an ASHIFT. */
10170 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10171 && (i = exact_log2 (constop)) >= 0)
10172 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10174 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10175 or XOR, then try to apply the distributive law. This may eliminate
10176 operations if either branch can be simplified because of the AND.
10177 It may also make some cases more complex, but those cases probably
10178 won't match a pattern either with or without this. */
10180 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10182 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10183 return
10184 gen_lowpart
10185 (mode,
10186 apply_distributive_law
10187 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10188 simplify_and_const_int (NULL_RTX, varop_mode,
10189 XEXP (varop, 0),
10190 constop),
10191 simplify_and_const_int (NULL_RTX, varop_mode,
10192 XEXP (varop, 1),
10193 constop))));
10196 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10197 the AND and see if one of the operands simplifies to zero. If so, we
10198 may eliminate it. */
10200 if (GET_CODE (varop) == PLUS
10201 && pow2p_hwi (constop + 1))
10203 rtx o0, o1;
10205 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10206 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10207 if (o0 == const0_rtx)
10208 return o1;
10209 if (o1 == const0_rtx)
10210 return o0;
10213 /* Make a SUBREG if necessary. If we can't make it, fail. */
10214 varop = gen_lowpart (mode, varop);
10215 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10216 return NULL_RTX;
10218 /* If we are only masking insignificant bits, return VAROP. */
10219 if (constop == nonzero)
10220 return varop;
10222 if (varop == orig_varop && constop == orig_constop)
10223 return NULL_RTX;
10225 /* Otherwise, return an AND. */
10226 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10230 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10231 in MODE.
10233 Return an equivalent form, if different from X. Otherwise, return X. If
10234 X is zero, we are to always construct the equivalent form. */
10236 static rtx
10237 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10238 unsigned HOST_WIDE_INT constop)
10240 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10241 if (tem)
10242 return tem;
10244 if (!x)
10245 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10246 gen_int_mode (constop, mode));
10247 if (GET_MODE (x) != mode)
10248 x = gen_lowpart (mode, x);
10249 return x;
10252 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10253 We don't care about bits outside of those defined in MODE.
10254 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10256 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10257 a shift, AND, or zero_extract, we can do better. */
10259 static rtx
10260 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10261 scalar_int_mode mode,
10262 unsigned HOST_WIDE_INT *nonzero)
10264 rtx tem;
10265 reg_stat_type *rsp;
10267 /* If X is a register whose nonzero bits value is current, use it.
10268 Otherwise, if X is a register whose value we can find, use that
10269 value. Otherwise, use the previously-computed global nonzero bits
10270 for this register. */
10272 rsp = &reg_stat[REGNO (x)];
10273 if (rsp->last_set_value != 0
10274 && (rsp->last_set_mode == mode
10275 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10276 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10277 && GET_MODE_CLASS (mode) == MODE_INT))
10278 && ((rsp->last_set_label >= label_tick_ebb_start
10279 && rsp->last_set_label < label_tick)
10280 || (rsp->last_set_label == label_tick
10281 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10282 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10283 && REGNO (x) < reg_n_sets_max
10284 && REG_N_SETS (REGNO (x)) == 1
10285 && !REGNO_REG_SET_P
10286 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10287 REGNO (x)))))
10289 /* Note that, even if the precision of last_set_mode is lower than that
10290 of mode, record_value_for_reg invoked nonzero_bits on the register
10291 with nonzero_bits_mode (because last_set_mode is necessarily integral
10292 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10293 are all valid, hence in mode too since nonzero_bits_mode is defined
10294 to the largest HWI_COMPUTABLE_MODE_P mode. */
10295 *nonzero &= rsp->last_set_nonzero_bits;
10296 return NULL;
10299 tem = get_last_value (x);
10300 if (tem)
10302 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10303 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10305 return tem;
10308 if (nonzero_sign_valid && rsp->nonzero_bits)
10310 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10312 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10313 /* We don't know anything about the upper bits. */
10314 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10316 *nonzero &= mask;
10319 return NULL;
10322 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10323 end of X that are known to be equal to the sign bit. X will be used
10324 in mode MODE; the returned value will always be between 1 and the
10325 number of bits in MODE. */
10327 static rtx
10328 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10329 scalar_int_mode mode,
10330 unsigned int *result)
10332 rtx tem;
10333 reg_stat_type *rsp;
10335 rsp = &reg_stat[REGNO (x)];
10336 if (rsp->last_set_value != 0
10337 && rsp->last_set_mode == mode
10338 && ((rsp->last_set_label >= label_tick_ebb_start
10339 && rsp->last_set_label < label_tick)
10340 || (rsp->last_set_label == label_tick
10341 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10342 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10343 && REGNO (x) < reg_n_sets_max
10344 && REG_N_SETS (REGNO (x)) == 1
10345 && !REGNO_REG_SET_P
10346 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10347 REGNO (x)))))
10349 *result = rsp->last_set_sign_bit_copies;
10350 return NULL;
10353 tem = get_last_value (x);
10354 if (tem != 0)
10355 return tem;
10357 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10358 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10359 *result = rsp->sign_bit_copies;
10361 return NULL;
10364 /* Return the number of "extended" bits there are in X, when interpreted
10365 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10366 unsigned quantities, this is the number of high-order zero bits.
10367 For signed quantities, this is the number of copies of the sign bit
10368 minus 1. In both case, this function returns the number of "spare"
10369 bits. For example, if two quantities for which this function returns
10370 at least 1 are added, the addition is known not to overflow.
10372 This function will always return 0 unless called during combine, which
10373 implies that it must be called from a define_split. */
10375 unsigned int
10376 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10378 if (nonzero_sign_valid == 0)
10379 return 0;
10381 scalar_int_mode int_mode;
10382 return (unsignedp
10383 ? (is_a <scalar_int_mode> (mode, &int_mode)
10384 && HWI_COMPUTABLE_MODE_P (int_mode)
10385 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10386 - floor_log2 (nonzero_bits (x, int_mode)))
10387 : 0)
10388 : num_sign_bit_copies (x, mode) - 1);
10391 /* This function is called from `simplify_shift_const' to merge two
10392 outer operations. Specifically, we have already found that we need
10393 to perform operation *POP0 with constant *PCONST0 at the outermost
10394 position. We would now like to also perform OP1 with constant CONST1
10395 (with *POP0 being done last).
10397 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10398 the resulting operation. *PCOMP_P is set to 1 if we would need to
10399 complement the innermost operand, otherwise it is unchanged.
10401 MODE is the mode in which the operation will be done. No bits outside
10402 the width of this mode matter. It is assumed that the width of this mode
10403 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10405 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10406 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10407 result is simply *PCONST0.
10409 If the resulting operation cannot be expressed as one operation, we
10410 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10412 static int
10413 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10415 enum rtx_code op0 = *pop0;
10416 HOST_WIDE_INT const0 = *pconst0;
10418 const0 &= GET_MODE_MASK (mode);
10419 const1 &= GET_MODE_MASK (mode);
10421 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10422 if (op0 == AND)
10423 const1 &= const0;
10425 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10426 if OP0 is SET. */
10428 if (op1 == UNKNOWN || op0 == SET)
10429 return 1;
10431 else if (op0 == UNKNOWN)
10432 op0 = op1, const0 = const1;
10434 else if (op0 == op1)
10436 switch (op0)
10438 case AND:
10439 const0 &= const1;
10440 break;
10441 case IOR:
10442 const0 |= const1;
10443 break;
10444 case XOR:
10445 const0 ^= const1;
10446 break;
10447 case PLUS:
10448 const0 += const1;
10449 break;
10450 case NEG:
10451 op0 = UNKNOWN;
10452 break;
10453 default:
10454 break;
10458 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10459 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10460 return 0;
10462 /* If the two constants aren't the same, we can't do anything. The
10463 remaining six cases can all be done. */
10464 else if (const0 != const1)
10465 return 0;
10467 else
10468 switch (op0)
10470 case IOR:
10471 if (op1 == AND)
10472 /* (a & b) | b == b */
10473 op0 = SET;
10474 else /* op1 == XOR */
10475 /* (a ^ b) | b == a | b */
10477 break;
10479 case XOR:
10480 if (op1 == AND)
10481 /* (a & b) ^ b == (~a) & b */
10482 op0 = AND, *pcomp_p = 1;
10483 else /* op1 == IOR */
10484 /* (a | b) ^ b == a & ~b */
10485 op0 = AND, const0 = ~const0;
10486 break;
10488 case AND:
10489 if (op1 == IOR)
10490 /* (a | b) & b == b */
10491 op0 = SET;
10492 else /* op1 == XOR */
10493 /* (a ^ b) & b) == (~a) & b */
10494 *pcomp_p = 1;
10495 break;
10496 default:
10497 break;
10500 /* Check for NO-OP cases. */
10501 const0 &= GET_MODE_MASK (mode);
10502 if (const0 == 0
10503 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10504 op0 = UNKNOWN;
10505 else if (const0 == 0 && op0 == AND)
10506 op0 = SET;
10507 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10508 && op0 == AND)
10509 op0 = UNKNOWN;
10511 *pop0 = op0;
10513 /* ??? Slightly redundant with the above mask, but not entirely.
10514 Moving this above means we'd have to sign-extend the mode mask
10515 for the final test. */
10516 if (op0 != UNKNOWN && op0 != NEG)
10517 *pconst0 = trunc_int_for_mode (const0, mode);
10519 return 1;
10522 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10523 the shift in. The original shift operation CODE is performed on OP in
10524 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10525 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10526 result of the shift is subject to operation OUTER_CODE with operand
10527 OUTER_CONST. */
10529 static scalar_int_mode
10530 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10531 scalar_int_mode orig_mode, scalar_int_mode mode,
10532 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10534 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10536 /* In general we can't perform in wider mode for right shift and rotate. */
10537 switch (code)
10539 case ASHIFTRT:
10540 /* We can still widen if the bits brought in from the left are identical
10541 to the sign bit of ORIG_MODE. */
10542 if (num_sign_bit_copies (op, mode)
10543 > (unsigned) (GET_MODE_PRECISION (mode)
10544 - GET_MODE_PRECISION (orig_mode)))
10545 return mode;
10546 return orig_mode;
10548 case LSHIFTRT:
10549 /* Similarly here but with zero bits. */
10550 if (HWI_COMPUTABLE_MODE_P (mode)
10551 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10552 return mode;
10554 /* We can also widen if the bits brought in will be masked off. This
10555 operation is performed in ORIG_MODE. */
10556 if (outer_code == AND)
10558 int care_bits = low_bitmask_len (orig_mode, outer_const);
10560 if (care_bits >= 0
10561 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10562 return mode;
10564 /* fall through */
10566 case ROTATE:
10567 return orig_mode;
10569 case ROTATERT:
10570 gcc_unreachable ();
10572 default:
10573 return mode;
10577 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10578 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10579 if we cannot simplify it. Otherwise, return a simplified value.
10581 The shift is normally computed in the widest mode we find in VAROP, as
10582 long as it isn't a different number of words than RESULT_MODE. Exceptions
10583 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10585 static rtx
10586 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10587 rtx varop, int orig_count)
10589 enum rtx_code orig_code = code;
10590 rtx orig_varop = varop;
10591 int count, log2;
10592 machine_mode mode = result_mode;
10593 machine_mode shift_mode;
10594 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10595 /* We form (outer_op (code varop count) (outer_const)). */
10596 enum rtx_code outer_op = UNKNOWN;
10597 HOST_WIDE_INT outer_const = 0;
10598 int complement_p = 0;
10599 rtx new_rtx, x;
10601 /* Make sure and truncate the "natural" shift on the way in. We don't
10602 want to do this inside the loop as it makes it more difficult to
10603 combine shifts. */
10604 if (SHIFT_COUNT_TRUNCATED)
10605 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10607 /* If we were given an invalid count, don't do anything except exactly
10608 what was requested. */
10610 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10611 return NULL_RTX;
10613 count = orig_count;
10615 /* Unless one of the branches of the `if' in this loop does a `continue',
10616 we will `break' the loop after the `if'. */
10618 while (count != 0)
10620 /* If we have an operand of (clobber (const_int 0)), fail. */
10621 if (GET_CODE (varop) == CLOBBER)
10622 return NULL_RTX;
10624 /* Convert ROTATERT to ROTATE. */
10625 if (code == ROTATERT)
10627 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10628 code = ROTATE;
10629 count = bitsize - count;
10632 shift_mode = result_mode;
10633 if (shift_mode != mode)
10635 /* We only change the modes of scalar shifts. */
10636 int_mode = as_a <scalar_int_mode> (mode);
10637 int_result_mode = as_a <scalar_int_mode> (result_mode);
10638 shift_mode = try_widen_shift_mode (code, varop, count,
10639 int_result_mode, int_mode,
10640 outer_op, outer_const);
10643 scalar_int_mode shift_unit_mode
10644 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10646 /* Handle cases where the count is greater than the size of the mode
10647 minus 1. For ASHIFT, use the size minus one as the count (this can
10648 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10649 take the count modulo the size. For other shifts, the result is
10650 zero.
10652 Since these shifts are being produced by the compiler by combining
10653 multiple operations, each of which are defined, we know what the
10654 result is supposed to be. */
10656 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10658 if (code == ASHIFTRT)
10659 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10660 else if (code == ROTATE || code == ROTATERT)
10661 count %= GET_MODE_PRECISION (shift_unit_mode);
10662 else
10664 /* We can't simply return zero because there may be an
10665 outer op. */
10666 varop = const0_rtx;
10667 count = 0;
10668 break;
10672 /* If we discovered we had to complement VAROP, leave. Making a NOT
10673 here would cause an infinite loop. */
10674 if (complement_p)
10675 break;
10677 if (shift_mode == shift_unit_mode)
10679 /* An arithmetic right shift of a quantity known to be -1 or 0
10680 is a no-op. */
10681 if (code == ASHIFTRT
10682 && (num_sign_bit_copies (varop, shift_unit_mode)
10683 == GET_MODE_PRECISION (shift_unit_mode)))
10685 count = 0;
10686 break;
10689 /* If we are doing an arithmetic right shift and discarding all but
10690 the sign bit copies, this is equivalent to doing a shift by the
10691 bitsize minus one. Convert it into that shift because it will
10692 often allow other simplifications. */
10694 if (code == ASHIFTRT
10695 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10696 >= GET_MODE_PRECISION (shift_unit_mode)))
10697 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10699 /* We simplify the tests below and elsewhere by converting
10700 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10701 `make_compound_operation' will convert it to an ASHIFTRT for
10702 those machines (such as VAX) that don't have an LSHIFTRT. */
10703 if (code == ASHIFTRT
10704 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10705 && val_signbit_known_clear_p (shift_unit_mode,
10706 nonzero_bits (varop,
10707 shift_unit_mode)))
10708 code = LSHIFTRT;
10710 if (((code == LSHIFTRT
10711 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10712 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10713 || (code == ASHIFT
10714 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10715 && !((nonzero_bits (varop, shift_unit_mode) << count)
10716 & GET_MODE_MASK (shift_unit_mode))))
10717 && !side_effects_p (varop))
10718 varop = const0_rtx;
10721 switch (GET_CODE (varop))
10723 case SIGN_EXTEND:
10724 case ZERO_EXTEND:
10725 case SIGN_EXTRACT:
10726 case ZERO_EXTRACT:
10727 new_rtx = expand_compound_operation (varop);
10728 if (new_rtx != varop)
10730 varop = new_rtx;
10731 continue;
10733 break;
10735 case MEM:
10736 /* The following rules apply only to scalars. */
10737 if (shift_mode != shift_unit_mode)
10738 break;
10739 int_mode = as_a <scalar_int_mode> (mode);
10741 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10742 minus the width of a smaller mode, we can do this with a
10743 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10744 if ((code == ASHIFTRT || code == LSHIFTRT)
10745 && ! mode_dependent_address_p (XEXP (varop, 0),
10746 MEM_ADDR_SPACE (varop))
10747 && ! MEM_VOLATILE_P (varop)
10748 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10749 .exists (&tmode)))
10751 new_rtx = adjust_address_nv (varop, tmode,
10752 BYTES_BIG_ENDIAN ? 0
10753 : count / BITS_PER_UNIT);
10755 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10756 : ZERO_EXTEND, int_mode, new_rtx);
10757 count = 0;
10758 continue;
10760 break;
10762 case SUBREG:
10763 /* The following rules apply only to scalars. */
10764 if (shift_mode != shift_unit_mode)
10765 break;
10766 int_mode = as_a <scalar_int_mode> (mode);
10767 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10769 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10770 the same number of words as what we've seen so far. Then store
10771 the widest mode in MODE. */
10772 if (subreg_lowpart_p (varop)
10773 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10774 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10775 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10776 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10777 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10779 varop = SUBREG_REG (varop);
10780 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10781 mode = inner_mode;
10782 continue;
10784 break;
10786 case MULT:
10787 /* Some machines use MULT instead of ASHIFT because MULT
10788 is cheaper. But it is still better on those machines to
10789 merge two shifts into one. */
10790 if (CONST_INT_P (XEXP (varop, 1))
10791 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10793 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10794 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10795 XEXP (varop, 0), log2_rtx);
10796 continue;
10798 break;
10800 case UDIV:
10801 /* Similar, for when divides are cheaper. */
10802 if (CONST_INT_P (XEXP (varop, 1))
10803 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10805 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10806 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10807 XEXP (varop, 0), log2_rtx);
10808 continue;
10810 break;
10812 case ASHIFTRT:
10813 /* If we are extracting just the sign bit of an arithmetic
10814 right shift, that shift is not needed. However, the sign
10815 bit of a wider mode may be different from what would be
10816 interpreted as the sign bit in a narrower mode, so, if
10817 the result is narrower, don't discard the shift. */
10818 if (code == LSHIFTRT
10819 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10820 && (GET_MODE_UNIT_BITSIZE (result_mode)
10821 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10823 varop = XEXP (varop, 0);
10824 continue;
10827 /* fall through */
10829 case LSHIFTRT:
10830 case ASHIFT:
10831 case ROTATE:
10832 /* The following rules apply only to scalars. */
10833 if (shift_mode != shift_unit_mode)
10834 break;
10835 int_mode = as_a <scalar_int_mode> (mode);
10836 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10837 int_result_mode = as_a <scalar_int_mode> (result_mode);
10839 /* Here we have two nested shifts. The result is usually the
10840 AND of a new shift with a mask. We compute the result below. */
10841 if (CONST_INT_P (XEXP (varop, 1))
10842 && INTVAL (XEXP (varop, 1)) >= 0
10843 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10844 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10845 && HWI_COMPUTABLE_MODE_P (int_mode))
10847 enum rtx_code first_code = GET_CODE (varop);
10848 unsigned int first_count = INTVAL (XEXP (varop, 1));
10849 unsigned HOST_WIDE_INT mask;
10850 rtx mask_rtx;
10852 /* We have one common special case. We can't do any merging if
10853 the inner code is an ASHIFTRT of a smaller mode. However, if
10854 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10855 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10856 we can convert it to
10857 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10858 This simplifies certain SIGN_EXTEND operations. */
10859 if (code == ASHIFT && first_code == ASHIFTRT
10860 && count == (GET_MODE_PRECISION (int_result_mode)
10861 - GET_MODE_PRECISION (int_varop_mode)))
10863 /* C3 has the low-order C1 bits zero. */
10865 mask = GET_MODE_MASK (int_mode)
10866 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10868 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10869 XEXP (varop, 0), mask);
10870 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10871 int_result_mode, varop, count);
10872 count = first_count;
10873 code = ASHIFTRT;
10874 continue;
10877 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10878 than C1 high-order bits equal to the sign bit, we can convert
10879 this to either an ASHIFT or an ASHIFTRT depending on the
10880 two counts.
10882 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10884 if (code == ASHIFTRT && first_code == ASHIFT
10885 && int_varop_mode == shift_unit_mode
10886 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10887 > first_count))
10889 varop = XEXP (varop, 0);
10890 count -= first_count;
10891 if (count < 0)
10893 count = -count;
10894 code = ASHIFT;
10897 continue;
10900 /* There are some cases we can't do. If CODE is ASHIFTRT,
10901 we can only do this if FIRST_CODE is also ASHIFTRT.
10903 We can't do the case when CODE is ROTATE and FIRST_CODE is
10904 ASHIFTRT.
10906 If the mode of this shift is not the mode of the outer shift,
10907 we can't do this if either shift is a right shift or ROTATE.
10909 Finally, we can't do any of these if the mode is too wide
10910 unless the codes are the same.
10912 Handle the case where the shift codes are the same
10913 first. */
10915 if (code == first_code)
10917 if (int_varop_mode != int_result_mode
10918 && (code == ASHIFTRT || code == LSHIFTRT
10919 || code == ROTATE))
10920 break;
10922 count += first_count;
10923 varop = XEXP (varop, 0);
10924 continue;
10927 if (code == ASHIFTRT
10928 || (code == ROTATE && first_code == ASHIFTRT)
10929 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10930 || (int_varop_mode != int_result_mode
10931 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10932 || first_code == ROTATE
10933 || code == ROTATE)))
10934 break;
10936 /* To compute the mask to apply after the shift, shift the
10937 nonzero bits of the inner shift the same way the
10938 outer shift will. */
10940 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10941 int_result_mode);
10942 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10943 mask_rtx
10944 = simplify_const_binary_operation (code, int_result_mode,
10945 mask_rtx, count_rtx);
10947 /* Give up if we can't compute an outer operation to use. */
10948 if (mask_rtx == 0
10949 || !CONST_INT_P (mask_rtx)
10950 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10951 INTVAL (mask_rtx),
10952 int_result_mode, &complement_p))
10953 break;
10955 /* If the shifts are in the same direction, we add the
10956 counts. Otherwise, we subtract them. */
10957 if ((code == ASHIFTRT || code == LSHIFTRT)
10958 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10959 count += first_count;
10960 else
10961 count -= first_count;
10963 /* If COUNT is positive, the new shift is usually CODE,
10964 except for the two exceptions below, in which case it is
10965 FIRST_CODE. If the count is negative, FIRST_CODE should
10966 always be used */
10967 if (count > 0
10968 && ((first_code == ROTATE && code == ASHIFT)
10969 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10970 code = first_code;
10971 else if (count < 0)
10972 code = first_code, count = -count;
10974 varop = XEXP (varop, 0);
10975 continue;
10978 /* If we have (A << B << C) for any shift, we can convert this to
10979 (A << C << B). This wins if A is a constant. Only try this if
10980 B is not a constant. */
10982 else if (GET_CODE (varop) == code
10983 && CONST_INT_P (XEXP (varop, 0))
10984 && !CONST_INT_P (XEXP (varop, 1)))
10986 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10987 sure the result will be masked. See PR70222. */
10988 if (code == LSHIFTRT
10989 && int_mode != int_result_mode
10990 && !merge_outer_ops (&outer_op, &outer_const, AND,
10991 GET_MODE_MASK (int_result_mode)
10992 >> orig_count, int_result_mode,
10993 &complement_p))
10994 break;
10995 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10996 up outer sign extension (often left and right shift) is
10997 hardly more efficient than the original. See PR70429. */
10998 if (code == ASHIFTRT && int_mode != int_result_mode)
10999 break;
11001 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
11002 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
11003 XEXP (varop, 0),
11004 count_rtx);
11005 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
11006 count = 0;
11007 continue;
11009 break;
11011 case NOT:
11012 /* The following rules apply only to scalars. */
11013 if (shift_mode != shift_unit_mode)
11014 break;
11016 /* Make this fit the case below. */
11017 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
11018 continue;
11020 case IOR:
11021 case AND:
11022 case XOR:
11023 /* The following rules apply only to scalars. */
11024 if (shift_mode != shift_unit_mode)
11025 break;
11026 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11027 int_result_mode = as_a <scalar_int_mode> (result_mode);
11029 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11030 with C the size of VAROP - 1 and the shift is logical if
11031 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11032 we have an (le X 0) operation. If we have an arithmetic shift
11033 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11034 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11036 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
11037 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
11038 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11039 && (code == LSHIFTRT || code == ASHIFTRT)
11040 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11041 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11043 count = 0;
11044 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11045 const0_rtx);
11047 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11048 varop = gen_rtx_NEG (int_varop_mode, varop);
11050 continue;
11053 /* If we have (shift (logical)), move the logical to the outside
11054 to allow it to possibly combine with another logical and the
11055 shift to combine with another shift. This also canonicalizes to
11056 what a ZERO_EXTRACT looks like. Also, some machines have
11057 (and (shift)) insns. */
11059 if (CONST_INT_P (XEXP (varop, 1))
11060 /* We can't do this if we have (ashiftrt (xor)) and the
11061 constant has its sign bit set in shift_unit_mode with
11062 shift_unit_mode wider than result_mode. */
11063 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11064 && int_result_mode != shift_unit_mode
11065 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11066 shift_unit_mode) < 0)
11067 && (new_rtx = simplify_const_binary_operation
11068 (code, int_result_mode,
11069 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11070 gen_int_shift_amount (int_result_mode, count))) != 0
11071 && CONST_INT_P (new_rtx)
11072 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11073 INTVAL (new_rtx), int_result_mode,
11074 &complement_p))
11076 varop = XEXP (varop, 0);
11077 continue;
11080 /* If we can't do that, try to simplify the shift in each arm of the
11081 logical expression, make a new logical expression, and apply
11082 the inverse distributive law. This also can't be done for
11083 (ashiftrt (xor)) where we've widened the shift and the constant
11084 changes the sign bit. */
11085 if (CONST_INT_P (XEXP (varop, 1))
11086 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11087 && int_result_mode != shift_unit_mode
11088 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11089 shift_unit_mode) < 0))
11091 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11092 XEXP (varop, 0), count);
11093 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11094 XEXP (varop, 1), count);
11096 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11097 lhs, rhs);
11098 varop = apply_distributive_law (varop);
11100 count = 0;
11101 continue;
11103 break;
11105 case EQ:
11106 /* The following rules apply only to scalars. */
11107 if (shift_mode != shift_unit_mode)
11108 break;
11109 int_result_mode = as_a <scalar_int_mode> (result_mode);
11111 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11112 says that the sign bit can be tested, FOO has mode MODE, C is
11113 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11114 that may be nonzero. */
11115 if (code == LSHIFTRT
11116 && XEXP (varop, 1) == const0_rtx
11117 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11118 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11119 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11120 && STORE_FLAG_VALUE == -1
11121 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11122 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11123 int_result_mode, &complement_p))
11125 varop = XEXP (varop, 0);
11126 count = 0;
11127 continue;
11129 break;
11131 case NEG:
11132 /* The following rules apply only to scalars. */
11133 if (shift_mode != shift_unit_mode)
11134 break;
11135 int_result_mode = as_a <scalar_int_mode> (result_mode);
11137 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11138 than the number of bits in the mode is equivalent to A. */
11139 if (code == LSHIFTRT
11140 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11141 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11143 varop = XEXP (varop, 0);
11144 count = 0;
11145 continue;
11148 /* NEG commutes with ASHIFT since it is multiplication. Move the
11149 NEG outside to allow shifts to combine. */
11150 if (code == ASHIFT
11151 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11152 int_result_mode, &complement_p))
11154 varop = XEXP (varop, 0);
11155 continue;
11157 break;
11159 case PLUS:
11160 /* The following rules apply only to scalars. */
11161 if (shift_mode != shift_unit_mode)
11162 break;
11163 int_result_mode = as_a <scalar_int_mode> (result_mode);
11165 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11166 is one less than the number of bits in the mode is
11167 equivalent to (xor A 1). */
11168 if (code == LSHIFTRT
11169 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11170 && XEXP (varop, 1) == constm1_rtx
11171 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11172 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11173 int_result_mode, &complement_p))
11175 count = 0;
11176 varop = XEXP (varop, 0);
11177 continue;
11180 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11181 that might be nonzero in BAR are those being shifted out and those
11182 bits are known zero in FOO, we can replace the PLUS with FOO.
11183 Similarly in the other operand order. This code occurs when
11184 we are computing the size of a variable-size array. */
11186 if ((code == ASHIFTRT || code == LSHIFTRT)
11187 && count < HOST_BITS_PER_WIDE_INT
11188 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11189 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11190 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11192 varop = XEXP (varop, 0);
11193 continue;
11195 else if ((code == ASHIFTRT || code == LSHIFTRT)
11196 && count < HOST_BITS_PER_WIDE_INT
11197 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11198 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11199 >> count) == 0
11200 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11201 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11203 varop = XEXP (varop, 1);
11204 continue;
11207 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11208 if (code == ASHIFT
11209 && CONST_INT_P (XEXP (varop, 1))
11210 && (new_rtx = simplify_const_binary_operation
11211 (ASHIFT, int_result_mode,
11212 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11213 gen_int_shift_amount (int_result_mode, count))) != 0
11214 && CONST_INT_P (new_rtx)
11215 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11216 INTVAL (new_rtx), int_result_mode,
11217 &complement_p))
11219 varop = XEXP (varop, 0);
11220 continue;
11223 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11224 signbit', and attempt to change the PLUS to an XOR and move it to
11225 the outer operation as is done above in the AND/IOR/XOR case
11226 leg for shift(logical). See details in logical handling above
11227 for reasoning in doing so. */
11228 if (code == LSHIFTRT
11229 && CONST_INT_P (XEXP (varop, 1))
11230 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11231 && (new_rtx = simplify_const_binary_operation
11232 (code, int_result_mode,
11233 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11234 gen_int_shift_amount (int_result_mode, count))) != 0
11235 && CONST_INT_P (new_rtx)
11236 && merge_outer_ops (&outer_op, &outer_const, XOR,
11237 INTVAL (new_rtx), int_result_mode,
11238 &complement_p))
11240 varop = XEXP (varop, 0);
11241 continue;
11244 break;
11246 case MINUS:
11247 /* The following rules apply only to scalars. */
11248 if (shift_mode != shift_unit_mode)
11249 break;
11250 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11252 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11253 with C the size of VAROP - 1 and the shift is logical if
11254 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11255 we have a (gt X 0) operation. If the shift is arithmetic with
11256 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11257 we have a (neg (gt X 0)) operation. */
11259 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11260 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11261 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11262 && (code == LSHIFTRT || code == ASHIFTRT)
11263 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11264 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11265 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11267 count = 0;
11268 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11269 const0_rtx);
11271 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11272 varop = gen_rtx_NEG (int_varop_mode, varop);
11274 continue;
11276 break;
11278 case TRUNCATE:
11279 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11280 if the truncate does not affect the value. */
11281 if (code == LSHIFTRT
11282 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11283 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11284 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11285 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11286 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11288 rtx varop_inner = XEXP (varop, 0);
11289 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11290 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11291 new_count);
11292 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11293 XEXP (varop_inner, 0),
11294 new_count_rtx);
11295 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11296 count = 0;
11297 continue;
11299 break;
11301 default:
11302 break;
11305 break;
11308 shift_mode = result_mode;
11309 if (shift_mode != mode)
11311 /* We only change the modes of scalar shifts. */
11312 int_mode = as_a <scalar_int_mode> (mode);
11313 int_result_mode = as_a <scalar_int_mode> (result_mode);
11314 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11315 int_mode, outer_op, outer_const);
11318 /* We have now finished analyzing the shift. The result should be
11319 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11320 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11321 to the result of the shift. OUTER_CONST is the relevant constant,
11322 but we must turn off all bits turned off in the shift. */
11324 if (outer_op == UNKNOWN
11325 && orig_code == code && orig_count == count
11326 && varop == orig_varop
11327 && shift_mode == GET_MODE (varop))
11328 return NULL_RTX;
11330 /* Make a SUBREG if necessary. If we can't make it, fail. */
11331 varop = gen_lowpart (shift_mode, varop);
11332 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11333 return NULL_RTX;
11335 /* If we have an outer operation and we just made a shift, it is
11336 possible that we could have simplified the shift were it not
11337 for the outer operation. So try to do the simplification
11338 recursively. */
11340 if (outer_op != UNKNOWN)
11341 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11342 else
11343 x = NULL_RTX;
11345 if (x == NULL_RTX)
11346 x = simplify_gen_binary (code, shift_mode, varop,
11347 gen_int_shift_amount (shift_mode, count));
11349 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11350 turn off all the bits that the shift would have turned off. */
11351 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11352 /* We only change the modes of scalar shifts. */
11353 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11354 x, GET_MODE_MASK (result_mode) >> orig_count);
11356 /* Do the remainder of the processing in RESULT_MODE. */
11357 x = gen_lowpart_or_truncate (result_mode, x);
11359 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11360 operation. */
11361 if (complement_p)
11362 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11364 if (outer_op != UNKNOWN)
11366 int_result_mode = as_a <scalar_int_mode> (result_mode);
11368 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11369 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11370 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11372 if (outer_op == AND)
11373 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11374 else if (outer_op == SET)
11376 /* This means that we have determined that the result is
11377 equivalent to a constant. This should be rare. */
11378 if (!side_effects_p (x))
11379 x = GEN_INT (outer_const);
11381 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11382 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11383 else
11384 x = simplify_gen_binary (outer_op, int_result_mode, x,
11385 GEN_INT (outer_const));
11388 return x;
11391 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11392 The result of the shift is RESULT_MODE. If we cannot simplify it,
11393 return X or, if it is NULL, synthesize the expression with
11394 simplify_gen_binary. Otherwise, return a simplified value.
11396 The shift is normally computed in the widest mode we find in VAROP, as
11397 long as it isn't a different number of words than RESULT_MODE. Exceptions
11398 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11400 static rtx
11401 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11402 rtx varop, int count)
11404 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11405 if (tem)
11406 return tem;
11408 if (!x)
11409 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11410 gen_int_shift_amount (GET_MODE (varop), count));
11411 if (GET_MODE (x) != result_mode)
11412 x = gen_lowpart (result_mode, x);
11413 return x;
11417 /* A subroutine of recog_for_combine. See there for arguments and
11418 return value. */
11420 static int
11421 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11423 rtx pat = *pnewpat;
11424 rtx pat_without_clobbers;
11425 int insn_code_number;
11426 int num_clobbers_to_add = 0;
11427 int i;
11428 rtx notes = NULL_RTX;
11429 rtx old_notes, old_pat;
11430 int old_icode;
11432 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11433 we use to indicate that something didn't match. If we find such a
11434 thing, force rejection. */
11435 if (GET_CODE (pat) == PARALLEL)
11436 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11437 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11438 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11439 return -1;
11441 old_pat = PATTERN (insn);
11442 old_notes = REG_NOTES (insn);
11443 PATTERN (insn) = pat;
11444 REG_NOTES (insn) = NULL_RTX;
11446 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11447 if (dump_file && (dump_flags & TDF_DETAILS))
11449 if (insn_code_number < 0)
11450 fputs ("Failed to match this instruction:\n", dump_file);
11451 else
11452 fputs ("Successfully matched this instruction:\n", dump_file);
11453 print_rtl_single (dump_file, pat);
11456 /* If it isn't, there is the possibility that we previously had an insn
11457 that clobbered some register as a side effect, but the combined
11458 insn doesn't need to do that. So try once more without the clobbers
11459 unless this represents an ASM insn. */
11461 if (insn_code_number < 0 && ! check_asm_operands (pat)
11462 && GET_CODE (pat) == PARALLEL)
11464 int pos;
11466 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11467 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11469 if (i != pos)
11470 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11471 pos++;
11474 SUBST_INT (XVECLEN (pat, 0), pos);
11476 if (pos == 1)
11477 pat = XVECEXP (pat, 0, 0);
11479 PATTERN (insn) = pat;
11480 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11481 if (dump_file && (dump_flags & TDF_DETAILS))
11483 if (insn_code_number < 0)
11484 fputs ("Failed to match this instruction:\n", dump_file);
11485 else
11486 fputs ("Successfully matched this instruction:\n", dump_file);
11487 print_rtl_single (dump_file, pat);
11491 pat_without_clobbers = pat;
11493 PATTERN (insn) = old_pat;
11494 REG_NOTES (insn) = old_notes;
11496 /* Recognize all noop sets, these will be killed by followup pass. */
11497 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11498 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11500 /* If we had any clobbers to add, make a new pattern than contains
11501 them. Then check to make sure that all of them are dead. */
11502 if (num_clobbers_to_add)
11504 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11505 rtvec_alloc (GET_CODE (pat) == PARALLEL
11506 ? (XVECLEN (pat, 0)
11507 + num_clobbers_to_add)
11508 : num_clobbers_to_add + 1));
11510 if (GET_CODE (pat) == PARALLEL)
11511 for (i = 0; i < XVECLEN (pat, 0); i++)
11512 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11513 else
11514 XVECEXP (newpat, 0, 0) = pat;
11516 add_clobbers (newpat, insn_code_number);
11518 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11519 i < XVECLEN (newpat, 0); i++)
11521 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11522 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11523 return -1;
11524 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11526 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11527 notes = alloc_reg_note (REG_UNUSED,
11528 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11531 pat = newpat;
11534 if (insn_code_number >= 0
11535 && insn_code_number != NOOP_MOVE_INSN_CODE)
11537 old_pat = PATTERN (insn);
11538 old_notes = REG_NOTES (insn);
11539 old_icode = INSN_CODE (insn);
11540 PATTERN (insn) = pat;
11541 REG_NOTES (insn) = notes;
11542 INSN_CODE (insn) = insn_code_number;
11544 /* Allow targets to reject combined insn. */
11545 if (!targetm.legitimate_combined_insn (insn))
11547 if (dump_file && (dump_flags & TDF_DETAILS))
11548 fputs ("Instruction not appropriate for target.",
11549 dump_file);
11551 /* Callers expect recog_for_combine to strip
11552 clobbers from the pattern on failure. */
11553 pat = pat_without_clobbers;
11554 notes = NULL_RTX;
11556 insn_code_number = -1;
11559 PATTERN (insn) = old_pat;
11560 REG_NOTES (insn) = old_notes;
11561 INSN_CODE (insn) = old_icode;
11564 *pnewpat = pat;
11565 *pnotes = notes;
11567 return insn_code_number;
11570 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11571 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11572 Return whether anything was so changed. */
11574 static bool
11575 change_zero_ext (rtx pat)
11577 bool changed = false;
11578 rtx *src = &SET_SRC (pat);
11580 subrtx_ptr_iterator::array_type array;
11581 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11583 rtx x = **iter;
11584 scalar_int_mode mode, inner_mode;
11585 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11586 continue;
11587 int size;
11589 if (GET_CODE (x) == ZERO_EXTRACT
11590 && CONST_INT_P (XEXP (x, 1))
11591 && CONST_INT_P (XEXP (x, 2))
11592 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11593 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11595 size = INTVAL (XEXP (x, 1));
11597 int start = INTVAL (XEXP (x, 2));
11598 if (BITS_BIG_ENDIAN)
11599 start = GET_MODE_PRECISION (inner_mode) - size - start;
11601 if (start != 0)
11602 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11603 gen_int_shift_amount (inner_mode, start));
11604 else
11605 x = XEXP (x, 0);
11607 if (mode != inner_mode)
11609 if (REG_P (x) && HARD_REGISTER_P (x)
11610 && !can_change_dest_mode (x, 0, mode))
11611 continue;
11613 x = gen_lowpart_SUBREG (mode, x);
11616 else if (GET_CODE (x) == ZERO_EXTEND
11617 && GET_CODE (XEXP (x, 0)) == SUBREG
11618 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11619 && !paradoxical_subreg_p (XEXP (x, 0))
11620 && subreg_lowpart_p (XEXP (x, 0)))
11622 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11623 size = GET_MODE_PRECISION (inner_mode);
11624 x = SUBREG_REG (XEXP (x, 0));
11625 if (GET_MODE (x) != mode)
11627 if (REG_P (x) && HARD_REGISTER_P (x)
11628 && !can_change_dest_mode (x, 0, mode))
11629 continue;
11631 x = gen_lowpart_SUBREG (mode, x);
11634 else if (GET_CODE (x) == ZERO_EXTEND
11635 && REG_P (XEXP (x, 0))
11636 && HARD_REGISTER_P (XEXP (x, 0))
11637 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11639 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11640 size = GET_MODE_PRECISION (inner_mode);
11641 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11643 else
11644 continue;
11646 if (!(GET_CODE (x) == LSHIFTRT
11647 && CONST_INT_P (XEXP (x, 1))
11648 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11650 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11651 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11654 SUBST (**iter, x);
11655 changed = true;
11658 if (changed)
11659 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11660 maybe_swap_commutative_operands (**iter);
11662 rtx *dst = &SET_DEST (pat);
11663 scalar_int_mode mode;
11664 if (GET_CODE (*dst) == ZERO_EXTRACT
11665 && REG_P (XEXP (*dst, 0))
11666 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11667 && CONST_INT_P (XEXP (*dst, 1))
11668 && CONST_INT_P (XEXP (*dst, 2)))
11670 rtx reg = XEXP (*dst, 0);
11671 int width = INTVAL (XEXP (*dst, 1));
11672 int offset = INTVAL (XEXP (*dst, 2));
11673 int reg_width = GET_MODE_PRECISION (mode);
11674 if (BITS_BIG_ENDIAN)
11675 offset = reg_width - width - offset;
11677 rtx x, y, z, w;
11678 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11679 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11680 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11681 if (offset)
11682 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11683 else
11684 y = SET_SRC (pat);
11685 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11686 w = gen_rtx_IOR (mode, x, z);
11687 SUBST (SET_DEST (pat), reg);
11688 SUBST (SET_SRC (pat), w);
11690 changed = true;
11693 return changed;
11696 /* Like recog, but we receive the address of a pointer to a new pattern.
11697 We try to match the rtx that the pointer points to.
11698 If that fails, we may try to modify or replace the pattern,
11699 storing the replacement into the same pointer object.
11701 Modifications include deletion or addition of CLOBBERs. If the
11702 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11703 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11704 (and undo if that fails).
11706 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11707 the CLOBBERs are placed.
11709 The value is the final insn code from the pattern ultimately matched,
11710 or -1. */
11712 static int
11713 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11715 rtx pat = *pnewpat;
11716 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11717 if (insn_code_number >= 0 || check_asm_operands (pat))
11718 return insn_code_number;
11720 void *marker = get_undo_marker ();
11721 bool changed = false;
11723 if (GET_CODE (pat) == SET)
11724 changed = change_zero_ext (pat);
11725 else if (GET_CODE (pat) == PARALLEL)
11727 int i;
11728 for (i = 0; i < XVECLEN (pat, 0); i++)
11730 rtx set = XVECEXP (pat, 0, i);
11731 if (GET_CODE (set) == SET)
11732 changed |= change_zero_ext (set);
11736 if (changed)
11738 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11740 if (insn_code_number < 0)
11741 undo_to_marker (marker);
11744 return insn_code_number;
11747 /* Like gen_lowpart_general but for use by combine. In combine it
11748 is not possible to create any new pseudoregs. However, it is
11749 safe to create invalid memory addresses, because combine will
11750 try to recognize them and all they will do is make the combine
11751 attempt fail.
11753 If for some reason this cannot do its job, an rtx
11754 (clobber (const_int 0)) is returned.
11755 An insn containing that will not be recognized. */
11757 static rtx
11758 gen_lowpart_for_combine (machine_mode omode, rtx x)
11760 machine_mode imode = GET_MODE (x);
11761 rtx result;
11763 if (omode == imode)
11764 return x;
11766 /* We can only support MODE being wider than a word if X is a
11767 constant integer or has a mode the same size. */
11768 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11769 && ! (CONST_SCALAR_INT_P (x)
11770 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11771 goto fail;
11773 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11774 won't know what to do. So we will strip off the SUBREG here and
11775 process normally. */
11776 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11778 x = SUBREG_REG (x);
11780 /* For use in case we fall down into the address adjustments
11781 further below, we need to adjust the known mode and size of
11782 x; imode and isize, since we just adjusted x. */
11783 imode = GET_MODE (x);
11785 if (imode == omode)
11786 return x;
11789 result = gen_lowpart_common (omode, x);
11791 if (result)
11792 return result;
11794 if (MEM_P (x))
11796 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11797 address. */
11798 if (MEM_VOLATILE_P (x)
11799 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11800 goto fail;
11802 /* If we want to refer to something bigger than the original memref,
11803 generate a paradoxical subreg instead. That will force a reload
11804 of the original memref X. */
11805 if (paradoxical_subreg_p (omode, imode))
11806 return gen_rtx_SUBREG (omode, x, 0);
11808 poly_int64 offset = byte_lowpart_offset (omode, imode);
11809 return adjust_address_nv (x, omode, offset);
11812 /* If X is a comparison operator, rewrite it in a new mode. This
11813 probably won't match, but may allow further simplifications. */
11814 else if (COMPARISON_P (x)
11815 && SCALAR_INT_MODE_P (imode)
11816 && SCALAR_INT_MODE_P (omode))
11817 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11819 /* If we couldn't simplify X any other way, just enclose it in a
11820 SUBREG. Normally, this SUBREG won't match, but some patterns may
11821 include an explicit SUBREG or we may simplify it further in combine. */
11822 else
11824 rtx res;
11826 if (imode == VOIDmode)
11828 imode = int_mode_for_mode (omode).require ();
11829 x = gen_lowpart_common (imode, x);
11830 if (x == NULL)
11831 goto fail;
11833 res = lowpart_subreg (omode, x, imode);
11834 if (res)
11835 return res;
11838 fail:
11839 return gen_rtx_CLOBBER (omode, const0_rtx);
11842 /* Try to simplify a comparison between OP0 and a constant OP1,
11843 where CODE is the comparison code that will be tested, into a
11844 (CODE OP0 const0_rtx) form.
11846 The result is a possibly different comparison code to use.
11847 *POP1 may be updated. */
11849 static enum rtx_code
11850 simplify_compare_const (enum rtx_code code, machine_mode mode,
11851 rtx op0, rtx *pop1)
11853 scalar_int_mode int_mode;
11854 HOST_WIDE_INT const_op = INTVAL (*pop1);
11856 /* Get the constant we are comparing against and turn off all bits
11857 not on in our mode. */
11858 if (mode != VOIDmode)
11859 const_op = trunc_int_for_mode (const_op, mode);
11861 /* If we are comparing against a constant power of two and the value
11862 being compared can only have that single bit nonzero (e.g., it was
11863 `and'ed with that bit), we can replace this with a comparison
11864 with zero. */
11865 if (const_op
11866 && (code == EQ || code == NE || code == GE || code == GEU
11867 || code == LT || code == LTU)
11868 && is_a <scalar_int_mode> (mode, &int_mode)
11869 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11870 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11871 && (nonzero_bits (op0, int_mode)
11872 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11874 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11875 const_op = 0;
11878 /* Similarly, if we are comparing a value known to be either -1 or
11879 0 with -1, change it to the opposite comparison against zero. */
11880 if (const_op == -1
11881 && (code == EQ || code == NE || code == GT || code == LE
11882 || code == GEU || code == LTU)
11883 && is_a <scalar_int_mode> (mode, &int_mode)
11884 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11886 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11887 const_op = 0;
11890 /* Do some canonicalizations based on the comparison code. We prefer
11891 comparisons against zero and then prefer equality comparisons.
11892 If we can reduce the size of a constant, we will do that too. */
11893 switch (code)
11895 case LT:
11896 /* < C is equivalent to <= (C - 1) */
11897 if (const_op > 0)
11899 const_op -= 1;
11900 code = LE;
11901 /* ... fall through to LE case below. */
11902 gcc_fallthrough ();
11904 else
11905 break;
11907 case LE:
11908 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11909 if (const_op < 0)
11911 const_op += 1;
11912 code = LT;
11915 /* If we are doing a <= 0 comparison on a value known to have
11916 a zero sign bit, we can replace this with == 0. */
11917 else if (const_op == 0
11918 && is_a <scalar_int_mode> (mode, &int_mode)
11919 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11920 && (nonzero_bits (op0, int_mode)
11921 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11922 == 0)
11923 code = EQ;
11924 break;
11926 case GE:
11927 /* >= C is equivalent to > (C - 1). */
11928 if (const_op > 0)
11930 const_op -= 1;
11931 code = GT;
11932 /* ... fall through to GT below. */
11933 gcc_fallthrough ();
11935 else
11936 break;
11938 case GT:
11939 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11940 if (const_op < 0)
11942 const_op += 1;
11943 code = GE;
11946 /* If we are doing a > 0 comparison on a value known to have
11947 a zero sign bit, we can replace this with != 0. */
11948 else if (const_op == 0
11949 && is_a <scalar_int_mode> (mode, &int_mode)
11950 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11951 && (nonzero_bits (op0, int_mode)
11952 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11953 == 0)
11954 code = NE;
11955 break;
11957 case LTU:
11958 /* < C is equivalent to <= (C - 1). */
11959 if (const_op > 0)
11961 const_op -= 1;
11962 code = LEU;
11963 /* ... fall through ... */
11964 gcc_fallthrough ();
11966 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11967 else if (is_a <scalar_int_mode> (mode, &int_mode)
11968 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11969 && ((unsigned HOST_WIDE_INT) const_op
11970 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11972 const_op = 0;
11973 code = GE;
11974 break;
11976 else
11977 break;
11979 case LEU:
11980 /* unsigned <= 0 is equivalent to == 0 */
11981 if (const_op == 0)
11982 code = EQ;
11983 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11984 else if (is_a <scalar_int_mode> (mode, &int_mode)
11985 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11986 && ((unsigned HOST_WIDE_INT) const_op
11987 == ((HOST_WIDE_INT_1U
11988 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11990 const_op = 0;
11991 code = GE;
11993 break;
11995 case GEU:
11996 /* >= C is equivalent to > (C - 1). */
11997 if (const_op > 1)
11999 const_op -= 1;
12000 code = GTU;
12001 /* ... fall through ... */
12002 gcc_fallthrough ();
12005 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
12006 else if (is_a <scalar_int_mode> (mode, &int_mode)
12007 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12008 && ((unsigned HOST_WIDE_INT) const_op
12009 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
12011 const_op = 0;
12012 code = LT;
12013 break;
12015 else
12016 break;
12018 case GTU:
12019 /* unsigned > 0 is equivalent to != 0 */
12020 if (const_op == 0)
12021 code = NE;
12022 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12023 else if (is_a <scalar_int_mode> (mode, &int_mode)
12024 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12025 && ((unsigned HOST_WIDE_INT) const_op
12026 == (HOST_WIDE_INT_1U
12027 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12029 const_op = 0;
12030 code = LT;
12032 break;
12034 default:
12035 break;
12038 *pop1 = GEN_INT (const_op);
12039 return code;
12042 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12043 comparison code that will be tested.
12045 The result is a possibly different comparison code to use. *POP0 and
12046 *POP1 may be updated.
12048 It is possible that we might detect that a comparison is either always
12049 true or always false. However, we do not perform general constant
12050 folding in combine, so this knowledge isn't useful. Such tautologies
12051 should have been detected earlier. Hence we ignore all such cases. */
12053 static enum rtx_code
12054 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12056 rtx op0 = *pop0;
12057 rtx op1 = *pop1;
12058 rtx tem, tem1;
12059 int i;
12060 scalar_int_mode mode, inner_mode, tmode;
12061 opt_scalar_int_mode tmode_iter;
12063 /* Try a few ways of applying the same transformation to both operands. */
12064 while (1)
12066 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12067 so check specially. */
12068 if (!WORD_REGISTER_OPERATIONS
12069 && code != GTU && code != GEU && code != LTU && code != LEU
12070 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12071 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12072 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12073 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12074 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12075 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12076 && (is_a <scalar_int_mode>
12077 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12078 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12079 && CONST_INT_P (XEXP (op0, 1))
12080 && XEXP (op0, 1) == XEXP (op1, 1)
12081 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12082 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12083 && (INTVAL (XEXP (op0, 1))
12084 == (GET_MODE_PRECISION (mode)
12085 - GET_MODE_PRECISION (inner_mode))))
12087 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12088 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12091 /* If both operands are the same constant shift, see if we can ignore the
12092 shift. We can if the shift is a rotate or if the bits shifted out of
12093 this shift are known to be zero for both inputs and if the type of
12094 comparison is compatible with the shift. */
12095 if (GET_CODE (op0) == GET_CODE (op1)
12096 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12097 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12098 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12099 && (code != GT && code != LT && code != GE && code != LE))
12100 || (GET_CODE (op0) == ASHIFTRT
12101 && (code != GTU && code != LTU
12102 && code != GEU && code != LEU)))
12103 && CONST_INT_P (XEXP (op0, 1))
12104 && INTVAL (XEXP (op0, 1)) >= 0
12105 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12106 && XEXP (op0, 1) == XEXP (op1, 1))
12108 machine_mode mode = GET_MODE (op0);
12109 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12110 int shift_count = INTVAL (XEXP (op0, 1));
12112 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12113 mask &= (mask >> shift_count) << shift_count;
12114 else if (GET_CODE (op0) == ASHIFT)
12115 mask = (mask & (mask << shift_count)) >> shift_count;
12117 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12118 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12119 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12120 else
12121 break;
12124 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12125 SUBREGs are of the same mode, and, in both cases, the AND would
12126 be redundant if the comparison was done in the narrower mode,
12127 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12128 and the operand's possibly nonzero bits are 0xffffff01; in that case
12129 if we only care about QImode, we don't need the AND). This case
12130 occurs if the output mode of an scc insn is not SImode and
12131 STORE_FLAG_VALUE == 1 (e.g., the 386).
12133 Similarly, check for a case where the AND's are ZERO_EXTEND
12134 operations from some narrower mode even though a SUBREG is not
12135 present. */
12137 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12138 && CONST_INT_P (XEXP (op0, 1))
12139 && CONST_INT_P (XEXP (op1, 1)))
12141 rtx inner_op0 = XEXP (op0, 0);
12142 rtx inner_op1 = XEXP (op1, 0);
12143 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12144 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12145 int changed = 0;
12147 if (paradoxical_subreg_p (inner_op0)
12148 && GET_CODE (inner_op1) == SUBREG
12149 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12150 && (GET_MODE (SUBREG_REG (inner_op0))
12151 == GET_MODE (SUBREG_REG (inner_op1)))
12152 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12153 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12154 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12155 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12157 op0 = SUBREG_REG (inner_op0);
12158 op1 = SUBREG_REG (inner_op1);
12160 /* The resulting comparison is always unsigned since we masked
12161 off the original sign bit. */
12162 code = unsigned_condition (code);
12164 changed = 1;
12167 else if (c0 == c1)
12168 FOR_EACH_MODE_UNTIL (tmode,
12169 as_a <scalar_int_mode> (GET_MODE (op0)))
12170 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12172 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12173 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12174 code = unsigned_condition (code);
12175 changed = 1;
12176 break;
12179 if (! changed)
12180 break;
12183 /* If both operands are NOT, we can strip off the outer operation
12184 and adjust the comparison code for swapped operands; similarly for
12185 NEG, except that this must be an equality comparison. */
12186 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12187 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12188 && (code == EQ || code == NE)))
12189 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12191 else
12192 break;
12195 /* If the first operand is a constant, swap the operands and adjust the
12196 comparison code appropriately, but don't do this if the second operand
12197 is already a constant integer. */
12198 if (swap_commutative_operands_p (op0, op1))
12200 std::swap (op0, op1);
12201 code = swap_condition (code);
12204 /* We now enter a loop during which we will try to simplify the comparison.
12205 For the most part, we only are concerned with comparisons with zero,
12206 but some things may really be comparisons with zero but not start
12207 out looking that way. */
12209 while (CONST_INT_P (op1))
12211 machine_mode raw_mode = GET_MODE (op0);
12212 scalar_int_mode int_mode;
12213 int equality_comparison_p;
12214 int sign_bit_comparison_p;
12215 int unsigned_comparison_p;
12216 HOST_WIDE_INT const_op;
12218 /* We only want to handle integral modes. This catches VOIDmode,
12219 CCmode, and the floating-point modes. An exception is that we
12220 can handle VOIDmode if OP0 is a COMPARE or a comparison
12221 operation. */
12223 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12224 && ! (raw_mode == VOIDmode
12225 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12226 break;
12228 /* Try to simplify the compare to constant, possibly changing the
12229 comparison op, and/or changing op1 to zero. */
12230 code = simplify_compare_const (code, raw_mode, op0, &op1);
12231 const_op = INTVAL (op1);
12233 /* Compute some predicates to simplify code below. */
12235 equality_comparison_p = (code == EQ || code == NE);
12236 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12237 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12238 || code == GEU);
12240 /* If this is a sign bit comparison and we can do arithmetic in
12241 MODE, say that we will only be needing the sign bit of OP0. */
12242 if (sign_bit_comparison_p
12243 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12244 && HWI_COMPUTABLE_MODE_P (int_mode))
12245 op0 = force_to_mode (op0, int_mode,
12246 HOST_WIDE_INT_1U
12247 << (GET_MODE_PRECISION (int_mode) - 1),
12250 if (COMPARISON_P (op0))
12252 /* We can't do anything if OP0 is a condition code value, rather
12253 than an actual data value. */
12254 if (const_op != 0
12255 || CC0_P (XEXP (op0, 0))
12256 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12257 break;
12259 /* Get the two operands being compared. */
12260 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12261 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12262 else
12263 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12265 /* Check for the cases where we simply want the result of the
12266 earlier test or the opposite of that result. */
12267 if (code == NE || code == EQ
12268 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12269 && (code == LT || code == GE)))
12271 enum rtx_code new_code;
12272 if (code == LT || code == NE)
12273 new_code = GET_CODE (op0);
12274 else
12275 new_code = reversed_comparison_code (op0, NULL);
12277 if (new_code != UNKNOWN)
12279 code = new_code;
12280 op0 = tem;
12281 op1 = tem1;
12282 continue;
12285 break;
12288 if (raw_mode == VOIDmode)
12289 break;
12290 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12292 /* Now try cases based on the opcode of OP0. If none of the cases
12293 does a "continue", we exit this loop immediately after the
12294 switch. */
12296 unsigned int mode_width = GET_MODE_PRECISION (mode);
12297 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12298 switch (GET_CODE (op0))
12300 case ZERO_EXTRACT:
12301 /* If we are extracting a single bit from a variable position in
12302 a constant that has only a single bit set and are comparing it
12303 with zero, we can convert this into an equality comparison
12304 between the position and the location of the single bit. */
12305 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12306 have already reduced the shift count modulo the word size. */
12307 if (!SHIFT_COUNT_TRUNCATED
12308 && CONST_INT_P (XEXP (op0, 0))
12309 && XEXP (op0, 1) == const1_rtx
12310 && equality_comparison_p && const_op == 0
12311 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12313 if (BITS_BIG_ENDIAN)
12314 i = BITS_PER_WORD - 1 - i;
12316 op0 = XEXP (op0, 2);
12317 op1 = GEN_INT (i);
12318 const_op = i;
12320 /* Result is nonzero iff shift count is equal to I. */
12321 code = reverse_condition (code);
12322 continue;
12325 /* fall through */
12327 case SIGN_EXTRACT:
12328 tem = expand_compound_operation (op0);
12329 if (tem != op0)
12331 op0 = tem;
12332 continue;
12334 break;
12336 case NOT:
12337 /* If testing for equality, we can take the NOT of the constant. */
12338 if (equality_comparison_p
12339 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12341 op0 = XEXP (op0, 0);
12342 op1 = tem;
12343 continue;
12346 /* If just looking at the sign bit, reverse the sense of the
12347 comparison. */
12348 if (sign_bit_comparison_p)
12350 op0 = XEXP (op0, 0);
12351 code = (code == GE ? LT : GE);
12352 continue;
12354 break;
12356 case NEG:
12357 /* If testing for equality, we can take the NEG of the constant. */
12358 if (equality_comparison_p
12359 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12361 op0 = XEXP (op0, 0);
12362 op1 = tem;
12363 continue;
12366 /* The remaining cases only apply to comparisons with zero. */
12367 if (const_op != 0)
12368 break;
12370 /* When X is ABS or is known positive,
12371 (neg X) is < 0 if and only if X != 0. */
12373 if (sign_bit_comparison_p
12374 && (GET_CODE (XEXP (op0, 0)) == ABS
12375 || (mode_width <= HOST_BITS_PER_WIDE_INT
12376 && (nonzero_bits (XEXP (op0, 0), mode)
12377 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12378 == 0)))
12380 op0 = XEXP (op0, 0);
12381 code = (code == LT ? NE : EQ);
12382 continue;
12385 /* If we have NEG of something whose two high-order bits are the
12386 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12387 if (num_sign_bit_copies (op0, mode) >= 2)
12389 op0 = XEXP (op0, 0);
12390 code = swap_condition (code);
12391 continue;
12393 break;
12395 case ROTATE:
12396 /* If we are testing equality and our count is a constant, we
12397 can perform the inverse operation on our RHS. */
12398 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12399 && (tem = simplify_binary_operation (ROTATERT, mode,
12400 op1, XEXP (op0, 1))) != 0)
12402 op0 = XEXP (op0, 0);
12403 op1 = tem;
12404 continue;
12407 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12408 a particular bit. Convert it to an AND of a constant of that
12409 bit. This will be converted into a ZERO_EXTRACT. */
12410 if (const_op == 0 && sign_bit_comparison_p
12411 && CONST_INT_P (XEXP (op0, 1))
12412 && mode_width <= HOST_BITS_PER_WIDE_INT
12413 && UINTVAL (XEXP (op0, 1)) < mode_width)
12415 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12416 (HOST_WIDE_INT_1U
12417 << (mode_width - 1
12418 - INTVAL (XEXP (op0, 1)))));
12419 code = (code == LT ? NE : EQ);
12420 continue;
12423 /* Fall through. */
12425 case ABS:
12426 /* ABS is ignorable inside an equality comparison with zero. */
12427 if (const_op == 0 && equality_comparison_p)
12429 op0 = XEXP (op0, 0);
12430 continue;
12432 break;
12434 case SIGN_EXTEND:
12435 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12436 (compare FOO CONST) if CONST fits in FOO's mode and we
12437 are either testing inequality or have an unsigned
12438 comparison with ZERO_EXTEND or a signed comparison with
12439 SIGN_EXTEND. But don't do it if we don't have a compare
12440 insn of the given mode, since we'd have to revert it
12441 later on, and then we wouldn't know whether to sign- or
12442 zero-extend. */
12443 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12444 && ! unsigned_comparison_p
12445 && HWI_COMPUTABLE_MODE_P (mode)
12446 && trunc_int_for_mode (const_op, mode) == const_op
12447 && have_insn_for (COMPARE, mode))
12449 op0 = XEXP (op0, 0);
12450 continue;
12452 break;
12454 case SUBREG:
12455 /* Check for the case where we are comparing A - C1 with C2, that is
12457 (subreg:MODE (plus (A) (-C1))) op (C2)
12459 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12460 comparison in the wider mode. One of the following two conditions
12461 must be true in order for this to be valid:
12463 1. The mode extension results in the same bit pattern being added
12464 on both sides and the comparison is equality or unsigned. As
12465 C2 has been truncated to fit in MODE, the pattern can only be
12466 all 0s or all 1s.
12468 2. The mode extension results in the sign bit being copied on
12469 each side.
12471 The difficulty here is that we have predicates for A but not for
12472 (A - C1) so we need to check that C1 is within proper bounds so
12473 as to perturbate A as little as possible. */
12475 if (mode_width <= HOST_BITS_PER_WIDE_INT
12476 && subreg_lowpart_p (op0)
12477 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12478 &inner_mode)
12479 && GET_MODE_PRECISION (inner_mode) > mode_width
12480 && GET_CODE (SUBREG_REG (op0)) == PLUS
12481 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12483 rtx a = XEXP (SUBREG_REG (op0), 0);
12484 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12486 if ((c1 > 0
12487 && (unsigned HOST_WIDE_INT) c1
12488 < HOST_WIDE_INT_1U << (mode_width - 1)
12489 && (equality_comparison_p || unsigned_comparison_p)
12490 /* (A - C1) zero-extends if it is positive and sign-extends
12491 if it is negative, C2 both zero- and sign-extends. */
12492 && (((nonzero_bits (a, inner_mode)
12493 & ~GET_MODE_MASK (mode)) == 0
12494 && const_op >= 0)
12495 /* (A - C1) sign-extends if it is positive and 1-extends
12496 if it is negative, C2 both sign- and 1-extends. */
12497 || (num_sign_bit_copies (a, inner_mode)
12498 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12499 - mode_width)
12500 && const_op < 0)))
12501 || ((unsigned HOST_WIDE_INT) c1
12502 < HOST_WIDE_INT_1U << (mode_width - 2)
12503 /* (A - C1) always sign-extends, like C2. */
12504 && num_sign_bit_copies (a, inner_mode)
12505 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12506 - (mode_width - 1))))
12508 op0 = SUBREG_REG (op0);
12509 continue;
12513 /* If the inner mode is narrower and we are extracting the low part,
12514 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12515 if (paradoxical_subreg_p (op0))
12517 else if (subreg_lowpart_p (op0)
12518 && GET_MODE_CLASS (mode) == MODE_INT
12519 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12520 && (code == NE || code == EQ)
12521 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12522 && !paradoxical_subreg_p (op0)
12523 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12524 & ~GET_MODE_MASK (mode)) == 0)
12526 /* Remove outer subregs that don't do anything. */
12527 tem = gen_lowpart (inner_mode, op1);
12529 if ((nonzero_bits (tem, inner_mode)
12530 & ~GET_MODE_MASK (mode)) == 0)
12532 op0 = SUBREG_REG (op0);
12533 op1 = tem;
12534 continue;
12536 break;
12538 else
12539 break;
12541 /* FALLTHROUGH */
12543 case ZERO_EXTEND:
12544 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12545 && (unsigned_comparison_p || equality_comparison_p)
12546 && HWI_COMPUTABLE_MODE_P (mode)
12547 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12548 && const_op >= 0
12549 && have_insn_for (COMPARE, mode))
12551 op0 = XEXP (op0, 0);
12552 continue;
12554 break;
12556 case PLUS:
12557 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12558 this for equality comparisons due to pathological cases involving
12559 overflows. */
12560 if (equality_comparison_p
12561 && (tem = simplify_binary_operation (MINUS, mode,
12562 op1, XEXP (op0, 1))) != 0)
12564 op0 = XEXP (op0, 0);
12565 op1 = tem;
12566 continue;
12569 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12570 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12571 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12573 op0 = XEXP (XEXP (op0, 0), 0);
12574 code = (code == LT ? EQ : NE);
12575 continue;
12577 break;
12579 case MINUS:
12580 /* We used to optimize signed comparisons against zero, but that
12581 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12582 arrive here as equality comparisons, or (GEU, LTU) are
12583 optimized away. No need to special-case them. */
12585 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12586 (eq B (minus A C)), whichever simplifies. We can only do
12587 this for equality comparisons due to pathological cases involving
12588 overflows. */
12589 if (equality_comparison_p
12590 && (tem = simplify_binary_operation (PLUS, mode,
12591 XEXP (op0, 1), op1)) != 0)
12593 op0 = XEXP (op0, 0);
12594 op1 = tem;
12595 continue;
12598 if (equality_comparison_p
12599 && (tem = simplify_binary_operation (MINUS, mode,
12600 XEXP (op0, 0), op1)) != 0)
12602 op0 = XEXP (op0, 1);
12603 op1 = tem;
12604 continue;
12607 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12608 of bits in X minus 1, is one iff X > 0. */
12609 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12610 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12611 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12612 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12614 op0 = XEXP (op0, 1);
12615 code = (code == GE ? LE : GT);
12616 continue;
12618 break;
12620 case XOR:
12621 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12622 if C is zero or B is a constant. */
12623 if (equality_comparison_p
12624 && (tem = simplify_binary_operation (XOR, mode,
12625 XEXP (op0, 1), op1)) != 0)
12627 op0 = XEXP (op0, 0);
12628 op1 = tem;
12629 continue;
12631 break;
12634 case IOR:
12635 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12636 iff X <= 0. */
12637 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12638 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12639 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12641 op0 = XEXP (op0, 1);
12642 code = (code == GE ? GT : LE);
12643 continue;
12645 break;
12647 case AND:
12648 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12649 will be converted to a ZERO_EXTRACT later. */
12650 if (const_op == 0 && equality_comparison_p
12651 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12652 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12654 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12655 XEXP (XEXP (op0, 0), 1));
12656 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12657 continue;
12660 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12661 zero and X is a comparison and C1 and C2 describe only bits set
12662 in STORE_FLAG_VALUE, we can compare with X. */
12663 if (const_op == 0 && equality_comparison_p
12664 && mode_width <= HOST_BITS_PER_WIDE_INT
12665 && CONST_INT_P (XEXP (op0, 1))
12666 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12667 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12668 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12669 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12671 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12672 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12673 if ((~STORE_FLAG_VALUE & mask) == 0
12674 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12675 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12676 && COMPARISON_P (tem))))
12678 op0 = XEXP (XEXP (op0, 0), 0);
12679 continue;
12683 /* If we are doing an equality comparison of an AND of a bit equal
12684 to the sign bit, replace this with a LT or GE comparison of
12685 the underlying value. */
12686 if (equality_comparison_p
12687 && const_op == 0
12688 && CONST_INT_P (XEXP (op0, 1))
12689 && mode_width <= HOST_BITS_PER_WIDE_INT
12690 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12691 == HOST_WIDE_INT_1U << (mode_width - 1)))
12693 op0 = XEXP (op0, 0);
12694 code = (code == EQ ? GE : LT);
12695 continue;
12698 /* If this AND operation is really a ZERO_EXTEND from a narrower
12699 mode, the constant fits within that mode, and this is either an
12700 equality or unsigned comparison, try to do this comparison in
12701 the narrower mode.
12703 Note that in:
12705 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12706 -> (ne:DI (reg:SI 4) (const_int 0))
12708 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12709 known to hold a value of the required mode the
12710 transformation is invalid. */
12711 if ((equality_comparison_p || unsigned_comparison_p)
12712 && CONST_INT_P (XEXP (op0, 1))
12713 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12714 & GET_MODE_MASK (mode))
12715 + 1)) >= 0
12716 && const_op >> i == 0
12717 && int_mode_for_size (i, 1).exists (&tmode))
12719 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12720 continue;
12723 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12724 fits in both M1 and M2 and the SUBREG is either paradoxical
12725 or represents the low part, permute the SUBREG and the AND
12726 and try again. */
12727 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12728 && CONST_INT_P (XEXP (op0, 1)))
12730 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12731 /* Require an integral mode, to avoid creating something like
12732 (AND:SF ...). */
12733 if ((is_a <scalar_int_mode>
12734 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12735 /* It is unsafe to commute the AND into the SUBREG if the
12736 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12737 not defined. As originally written the upper bits
12738 have a defined value due to the AND operation.
12739 However, if we commute the AND inside the SUBREG then
12740 they no longer have defined values and the meaning of
12741 the code has been changed.
12742 Also C1 should not change value in the smaller mode,
12743 see PR67028 (a positive C1 can become negative in the
12744 smaller mode, so that the AND does no longer mask the
12745 upper bits). */
12746 && ((WORD_REGISTER_OPERATIONS
12747 && mode_width > GET_MODE_PRECISION (tmode)
12748 && mode_width <= BITS_PER_WORD
12749 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12750 || (mode_width <= GET_MODE_PRECISION (tmode)
12751 && subreg_lowpart_p (XEXP (op0, 0))))
12752 && mode_width <= HOST_BITS_PER_WIDE_INT
12753 && HWI_COMPUTABLE_MODE_P (tmode)
12754 && (c1 & ~mask) == 0
12755 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12756 && c1 != mask
12757 && c1 != GET_MODE_MASK (tmode))
12759 op0 = simplify_gen_binary (AND, tmode,
12760 SUBREG_REG (XEXP (op0, 0)),
12761 gen_int_mode (c1, tmode));
12762 op0 = gen_lowpart (mode, op0);
12763 continue;
12767 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12768 if (const_op == 0 && equality_comparison_p
12769 && XEXP (op0, 1) == const1_rtx
12770 && GET_CODE (XEXP (op0, 0)) == NOT)
12772 op0 = simplify_and_const_int (NULL_RTX, mode,
12773 XEXP (XEXP (op0, 0), 0), 1);
12774 code = (code == NE ? EQ : NE);
12775 continue;
12778 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12779 (eq (and (lshiftrt X) 1) 0).
12780 Also handle the case where (not X) is expressed using xor. */
12781 if (const_op == 0 && equality_comparison_p
12782 && XEXP (op0, 1) == const1_rtx
12783 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12785 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12786 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12788 if (GET_CODE (shift_op) == NOT
12789 || (GET_CODE (shift_op) == XOR
12790 && CONST_INT_P (XEXP (shift_op, 1))
12791 && CONST_INT_P (shift_count)
12792 && HWI_COMPUTABLE_MODE_P (mode)
12793 && (UINTVAL (XEXP (shift_op, 1))
12794 == HOST_WIDE_INT_1U
12795 << INTVAL (shift_count))))
12798 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12799 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12800 code = (code == NE ? EQ : NE);
12801 continue;
12804 break;
12806 case ASHIFT:
12807 /* If we have (compare (ashift FOO N) (const_int C)) and
12808 the high order N bits of FOO (N+1 if an inequality comparison)
12809 are known to be zero, we can do this by comparing FOO with C
12810 shifted right N bits so long as the low-order N bits of C are
12811 zero. */
12812 if (CONST_INT_P (XEXP (op0, 1))
12813 && INTVAL (XEXP (op0, 1)) >= 0
12814 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12815 < HOST_BITS_PER_WIDE_INT)
12816 && (((unsigned HOST_WIDE_INT) const_op
12817 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12818 - 1)) == 0)
12819 && mode_width <= HOST_BITS_PER_WIDE_INT
12820 && (nonzero_bits (XEXP (op0, 0), mode)
12821 & ~(mask >> (INTVAL (XEXP (op0, 1))
12822 + ! equality_comparison_p))) == 0)
12824 /* We must perform a logical shift, not an arithmetic one,
12825 as we want the top N bits of C to be zero. */
12826 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12828 temp >>= INTVAL (XEXP (op0, 1));
12829 op1 = gen_int_mode (temp, mode);
12830 op0 = XEXP (op0, 0);
12831 continue;
12834 /* If we are doing a sign bit comparison, it means we are testing
12835 a particular bit. Convert it to the appropriate AND. */
12836 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12837 && mode_width <= HOST_BITS_PER_WIDE_INT)
12839 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12840 (HOST_WIDE_INT_1U
12841 << (mode_width - 1
12842 - INTVAL (XEXP (op0, 1)))));
12843 code = (code == LT ? NE : EQ);
12844 continue;
12847 /* If this an equality comparison with zero and we are shifting
12848 the low bit to the sign bit, we can convert this to an AND of the
12849 low-order bit. */
12850 if (const_op == 0 && equality_comparison_p
12851 && CONST_INT_P (XEXP (op0, 1))
12852 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12854 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12855 continue;
12857 break;
12859 case ASHIFTRT:
12860 /* If this is an equality comparison with zero, we can do this
12861 as a logical shift, which might be much simpler. */
12862 if (equality_comparison_p && const_op == 0
12863 && CONST_INT_P (XEXP (op0, 1)))
12865 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12866 XEXP (op0, 0),
12867 INTVAL (XEXP (op0, 1)));
12868 continue;
12871 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12872 do the comparison in a narrower mode. */
12873 if (! unsigned_comparison_p
12874 && CONST_INT_P (XEXP (op0, 1))
12875 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12876 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12877 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12878 .exists (&tmode))
12879 && (((unsigned HOST_WIDE_INT) const_op
12880 + (GET_MODE_MASK (tmode) >> 1) + 1)
12881 <= GET_MODE_MASK (tmode)))
12883 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12884 continue;
12887 /* Likewise if OP0 is a PLUS of a sign extension with a
12888 constant, which is usually represented with the PLUS
12889 between the shifts. */
12890 if (! unsigned_comparison_p
12891 && CONST_INT_P (XEXP (op0, 1))
12892 && GET_CODE (XEXP (op0, 0)) == PLUS
12893 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12894 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12895 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12896 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12897 .exists (&tmode))
12898 && (((unsigned HOST_WIDE_INT) const_op
12899 + (GET_MODE_MASK (tmode) >> 1) + 1)
12900 <= GET_MODE_MASK (tmode)))
12902 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12903 rtx add_const = XEXP (XEXP (op0, 0), 1);
12904 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12905 add_const, XEXP (op0, 1));
12907 op0 = simplify_gen_binary (PLUS, tmode,
12908 gen_lowpart (tmode, inner),
12909 new_const);
12910 continue;
12913 /* FALLTHROUGH */
12914 case LSHIFTRT:
12915 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12916 the low order N bits of FOO are known to be zero, we can do this
12917 by comparing FOO with C shifted left N bits so long as no
12918 overflow occurs. Even if the low order N bits of FOO aren't known
12919 to be zero, if the comparison is >= or < we can use the same
12920 optimization and for > or <= by setting all the low
12921 order N bits in the comparison constant. */
12922 if (CONST_INT_P (XEXP (op0, 1))
12923 && INTVAL (XEXP (op0, 1)) > 0
12924 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12925 && mode_width <= HOST_BITS_PER_WIDE_INT
12926 && (((unsigned HOST_WIDE_INT) const_op
12927 + (GET_CODE (op0) != LSHIFTRT
12928 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12929 + 1)
12930 : 0))
12931 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12933 unsigned HOST_WIDE_INT low_bits
12934 = (nonzero_bits (XEXP (op0, 0), mode)
12935 & ((HOST_WIDE_INT_1U
12936 << INTVAL (XEXP (op0, 1))) - 1));
12937 if (low_bits == 0 || !equality_comparison_p)
12939 /* If the shift was logical, then we must make the condition
12940 unsigned. */
12941 if (GET_CODE (op0) == LSHIFTRT)
12942 code = unsigned_condition (code);
12944 const_op = (unsigned HOST_WIDE_INT) const_op
12945 << INTVAL (XEXP (op0, 1));
12946 if (low_bits != 0
12947 && (code == GT || code == GTU
12948 || code == LE || code == LEU))
12949 const_op
12950 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12951 op1 = GEN_INT (const_op);
12952 op0 = XEXP (op0, 0);
12953 continue;
12957 /* If we are using this shift to extract just the sign bit, we
12958 can replace this with an LT or GE comparison. */
12959 if (const_op == 0
12960 && (equality_comparison_p || sign_bit_comparison_p)
12961 && CONST_INT_P (XEXP (op0, 1))
12962 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12964 op0 = XEXP (op0, 0);
12965 code = (code == NE || code == GT ? LT : GE);
12966 continue;
12968 break;
12970 default:
12971 break;
12974 break;
12977 /* Now make any compound operations involved in this comparison. Then,
12978 check for an outmost SUBREG on OP0 that is not doing anything or is
12979 paradoxical. The latter transformation must only be performed when
12980 it is known that the "extra" bits will be the same in op0 and op1 or
12981 that they don't matter. There are three cases to consider:
12983 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12984 care bits and we can assume they have any convenient value. So
12985 making the transformation is safe.
12987 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12988 In this case the upper bits of op0 are undefined. We should not make
12989 the simplification in that case as we do not know the contents of
12990 those bits.
12992 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12993 In that case we know those bits are zeros or ones. We must also be
12994 sure that they are the same as the upper bits of op1.
12996 We can never remove a SUBREG for a non-equality comparison because
12997 the sign bit is in a different place in the underlying object. */
12999 rtx_code op0_mco_code = SET;
13000 if (op1 == const0_rtx)
13001 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13003 op0 = make_compound_operation (op0, op0_mco_code);
13004 op1 = make_compound_operation (op1, SET);
13006 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13007 && is_int_mode (GET_MODE (op0), &mode)
13008 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
13009 && (code == NE || code == EQ))
13011 if (paradoxical_subreg_p (op0))
13013 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13014 implemented. */
13015 if (REG_P (SUBREG_REG (op0)))
13017 op0 = SUBREG_REG (op0);
13018 op1 = gen_lowpart (inner_mode, op1);
13021 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13022 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13023 & ~GET_MODE_MASK (mode)) == 0)
13025 tem = gen_lowpart (inner_mode, op1);
13027 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13028 op0 = SUBREG_REG (op0), op1 = tem;
13032 /* We now do the opposite procedure: Some machines don't have compare
13033 insns in all modes. If OP0's mode is an integer mode smaller than a
13034 word and we can't do a compare in that mode, see if there is a larger
13035 mode for which we can do the compare. There are a number of cases in
13036 which we can use the wider mode. */
13038 if (is_int_mode (GET_MODE (op0), &mode)
13039 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13040 && ! have_insn_for (COMPARE, mode))
13041 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13043 tmode = tmode_iter.require ();
13044 if (!HWI_COMPUTABLE_MODE_P (tmode))
13045 break;
13046 if (have_insn_for (COMPARE, tmode))
13048 int zero_extended;
13050 /* If this is a test for negative, we can make an explicit
13051 test of the sign bit. Test this first so we can use
13052 a paradoxical subreg to extend OP0. */
13054 if (op1 == const0_rtx && (code == LT || code == GE)
13055 && HWI_COMPUTABLE_MODE_P (mode))
13057 unsigned HOST_WIDE_INT sign
13058 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13059 op0 = simplify_gen_binary (AND, tmode,
13060 gen_lowpart (tmode, op0),
13061 gen_int_mode (sign, tmode));
13062 code = (code == LT) ? NE : EQ;
13063 break;
13066 /* If the only nonzero bits in OP0 and OP1 are those in the
13067 narrower mode and this is an equality or unsigned comparison,
13068 we can use the wider mode. Similarly for sign-extended
13069 values, in which case it is true for all comparisons. */
13070 zero_extended = ((code == EQ || code == NE
13071 || code == GEU || code == GTU
13072 || code == LEU || code == LTU)
13073 && (nonzero_bits (op0, tmode)
13074 & ~GET_MODE_MASK (mode)) == 0
13075 && ((CONST_INT_P (op1)
13076 || (nonzero_bits (op1, tmode)
13077 & ~GET_MODE_MASK (mode)) == 0)));
13079 if (zero_extended
13080 || ((num_sign_bit_copies (op0, tmode)
13081 > (unsigned int) (GET_MODE_PRECISION (tmode)
13082 - GET_MODE_PRECISION (mode)))
13083 && (num_sign_bit_copies (op1, tmode)
13084 > (unsigned int) (GET_MODE_PRECISION (tmode)
13085 - GET_MODE_PRECISION (mode)))))
13087 /* If OP0 is an AND and we don't have an AND in MODE either,
13088 make a new AND in the proper mode. */
13089 if (GET_CODE (op0) == AND
13090 && !have_insn_for (AND, mode))
13091 op0 = simplify_gen_binary (AND, tmode,
13092 gen_lowpart (tmode,
13093 XEXP (op0, 0)),
13094 gen_lowpart (tmode,
13095 XEXP (op0, 1)));
13096 else
13098 if (zero_extended)
13100 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13101 op0, mode);
13102 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13103 op1, mode);
13105 else
13107 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13108 op0, mode);
13109 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13110 op1, mode);
13112 break;
13118 /* We may have changed the comparison operands. Re-canonicalize. */
13119 if (swap_commutative_operands_p (op0, op1))
13121 std::swap (op0, op1);
13122 code = swap_condition (code);
13125 /* If this machine only supports a subset of valid comparisons, see if we
13126 can convert an unsupported one into a supported one. */
13127 target_canonicalize_comparison (&code, &op0, &op1, 0);
13129 *pop0 = op0;
13130 *pop1 = op1;
13132 return code;
13135 /* Utility function for record_value_for_reg. Count number of
13136 rtxs in X. */
13137 static int
13138 count_rtxs (rtx x)
13140 enum rtx_code code = GET_CODE (x);
13141 const char *fmt;
13142 int i, j, ret = 1;
13144 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13145 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13147 rtx x0 = XEXP (x, 0);
13148 rtx x1 = XEXP (x, 1);
13150 if (x0 == x1)
13151 return 1 + 2 * count_rtxs (x0);
13153 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13154 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13155 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13156 return 2 + 2 * count_rtxs (x0)
13157 + count_rtxs (x == XEXP (x1, 0)
13158 ? XEXP (x1, 1) : XEXP (x1, 0));
13160 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13161 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13162 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13163 return 2 + 2 * count_rtxs (x1)
13164 + count_rtxs (x == XEXP (x0, 0)
13165 ? XEXP (x0, 1) : XEXP (x0, 0));
13168 fmt = GET_RTX_FORMAT (code);
13169 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13170 if (fmt[i] == 'e')
13171 ret += count_rtxs (XEXP (x, i));
13172 else if (fmt[i] == 'E')
13173 for (j = 0; j < XVECLEN (x, i); j++)
13174 ret += count_rtxs (XVECEXP (x, i, j));
13176 return ret;
13179 /* Utility function for following routine. Called when X is part of a value
13180 being stored into last_set_value. Sets last_set_table_tick
13181 for each register mentioned. Similar to mention_regs in cse.c */
13183 static void
13184 update_table_tick (rtx x)
13186 enum rtx_code code = GET_CODE (x);
13187 const char *fmt = GET_RTX_FORMAT (code);
13188 int i, j;
13190 if (code == REG)
13192 unsigned int regno = REGNO (x);
13193 unsigned int endregno = END_REGNO (x);
13194 unsigned int r;
13196 for (r = regno; r < endregno; r++)
13198 reg_stat_type *rsp = &reg_stat[r];
13199 rsp->last_set_table_tick = label_tick;
13202 return;
13205 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13206 if (fmt[i] == 'e')
13208 /* Check for identical subexpressions. If x contains
13209 identical subexpression we only have to traverse one of
13210 them. */
13211 if (i == 0 && ARITHMETIC_P (x))
13213 /* Note that at this point x1 has already been
13214 processed. */
13215 rtx x0 = XEXP (x, 0);
13216 rtx x1 = XEXP (x, 1);
13218 /* If x0 and x1 are identical then there is no need to
13219 process x0. */
13220 if (x0 == x1)
13221 break;
13223 /* If x0 is identical to a subexpression of x1 then while
13224 processing x1, x0 has already been processed. Thus we
13225 are done with x. */
13226 if (ARITHMETIC_P (x1)
13227 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13228 break;
13230 /* If x1 is identical to a subexpression of x0 then we
13231 still have to process the rest of x0. */
13232 if (ARITHMETIC_P (x0)
13233 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13235 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13236 break;
13240 update_table_tick (XEXP (x, i));
13242 else if (fmt[i] == 'E')
13243 for (j = 0; j < XVECLEN (x, i); j++)
13244 update_table_tick (XVECEXP (x, i, j));
13247 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13248 are saying that the register is clobbered and we no longer know its
13249 value. If INSN is zero, don't update reg_stat[].last_set; this is
13250 only permitted with VALUE also zero and is used to invalidate the
13251 register. */
13253 static void
13254 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13256 unsigned int regno = REGNO (reg);
13257 unsigned int endregno = END_REGNO (reg);
13258 unsigned int i;
13259 reg_stat_type *rsp;
13261 /* If VALUE contains REG and we have a previous value for REG, substitute
13262 the previous value. */
13263 if (value && insn && reg_overlap_mentioned_p (reg, value))
13265 rtx tem;
13267 /* Set things up so get_last_value is allowed to see anything set up to
13268 our insn. */
13269 subst_low_luid = DF_INSN_LUID (insn);
13270 tem = get_last_value (reg);
13272 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13273 it isn't going to be useful and will take a lot of time to process,
13274 so just use the CLOBBER. */
13276 if (tem)
13278 if (ARITHMETIC_P (tem)
13279 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13280 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13281 tem = XEXP (tem, 0);
13282 else if (count_occurrences (value, reg, 1) >= 2)
13284 /* If there are two or more occurrences of REG in VALUE,
13285 prevent the value from growing too much. */
13286 if (count_rtxs (tem) > param_max_last_value_rtl)
13287 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13290 value = replace_rtx (copy_rtx (value), reg, tem);
13294 /* For each register modified, show we don't know its value, that
13295 we don't know about its bitwise content, that its value has been
13296 updated, and that we don't know the location of the death of the
13297 register. */
13298 for (i = regno; i < endregno; i++)
13300 rsp = &reg_stat[i];
13302 if (insn)
13303 rsp->last_set = insn;
13305 rsp->last_set_value = 0;
13306 rsp->last_set_mode = VOIDmode;
13307 rsp->last_set_nonzero_bits = 0;
13308 rsp->last_set_sign_bit_copies = 0;
13309 rsp->last_death = 0;
13310 rsp->truncated_to_mode = VOIDmode;
13313 /* Mark registers that are being referenced in this value. */
13314 if (value)
13315 update_table_tick (value);
13317 /* Now update the status of each register being set.
13318 If someone is using this register in this block, set this register
13319 to invalid since we will get confused between the two lives in this
13320 basic block. This makes using this register always invalid. In cse, we
13321 scan the table to invalidate all entries using this register, but this
13322 is too much work for us. */
13324 for (i = regno; i < endregno; i++)
13326 rsp = &reg_stat[i];
13327 rsp->last_set_label = label_tick;
13328 if (!insn
13329 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13330 rsp->last_set_invalid = 1;
13331 else
13332 rsp->last_set_invalid = 0;
13335 /* The value being assigned might refer to X (like in "x++;"). In that
13336 case, we must replace it with (clobber (const_int 0)) to prevent
13337 infinite loops. */
13338 rsp = &reg_stat[regno];
13339 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13341 value = copy_rtx (value);
13342 if (!get_last_value_validate (&value, insn, label_tick, 1))
13343 value = 0;
13346 /* For the main register being modified, update the value, the mode, the
13347 nonzero bits, and the number of sign bit copies. */
13349 rsp->last_set_value = value;
13351 if (value)
13353 machine_mode mode = GET_MODE (reg);
13354 subst_low_luid = DF_INSN_LUID (insn);
13355 rsp->last_set_mode = mode;
13356 if (GET_MODE_CLASS (mode) == MODE_INT
13357 && HWI_COMPUTABLE_MODE_P (mode))
13358 mode = nonzero_bits_mode;
13359 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13360 rsp->last_set_sign_bit_copies
13361 = num_sign_bit_copies (value, GET_MODE (reg));
13365 /* Called via note_stores from record_dead_and_set_regs to handle one
13366 SET or CLOBBER in an insn. DATA is the instruction in which the
13367 set is occurring. */
13369 static void
13370 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13372 rtx_insn *record_dead_insn = (rtx_insn *) data;
13374 if (GET_CODE (dest) == SUBREG)
13375 dest = SUBREG_REG (dest);
13377 if (!record_dead_insn)
13379 if (REG_P (dest))
13380 record_value_for_reg (dest, NULL, NULL_RTX);
13381 return;
13384 if (REG_P (dest))
13386 /* If we are setting the whole register, we know its value. Otherwise
13387 show that we don't know the value. We can handle a SUBREG if it's
13388 the low part, but we must be careful with paradoxical SUBREGs on
13389 RISC architectures because we cannot strip e.g. an extension around
13390 a load and record the naked load since the RTL middle-end considers
13391 that the upper bits are defined according to LOAD_EXTEND_OP. */
13392 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13393 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13394 else if (GET_CODE (setter) == SET
13395 && GET_CODE (SET_DEST (setter)) == SUBREG
13396 && SUBREG_REG (SET_DEST (setter)) == dest
13397 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13398 BITS_PER_WORD)
13399 && subreg_lowpart_p (SET_DEST (setter)))
13400 record_value_for_reg (dest, record_dead_insn,
13401 WORD_REGISTER_OPERATIONS
13402 && word_register_operation_p (SET_SRC (setter))
13403 && paradoxical_subreg_p (SET_DEST (setter))
13404 ? SET_SRC (setter)
13405 : gen_lowpart (GET_MODE (dest),
13406 SET_SRC (setter)));
13407 else
13408 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13410 else if (MEM_P (dest)
13411 /* Ignore pushes, they clobber nothing. */
13412 && ! push_operand (dest, GET_MODE (dest)))
13413 mem_last_set = DF_INSN_LUID (record_dead_insn);
13416 /* Update the records of when each REG was most recently set or killed
13417 for the things done by INSN. This is the last thing done in processing
13418 INSN in the combiner loop.
13420 We update reg_stat[], in particular fields last_set, last_set_value,
13421 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13422 last_death, and also the similar information mem_last_set (which insn
13423 most recently modified memory) and last_call_luid (which insn was the
13424 most recent subroutine call). */
13426 static void
13427 record_dead_and_set_regs (rtx_insn *insn)
13429 rtx link;
13430 unsigned int i;
13432 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13434 if (REG_NOTE_KIND (link) == REG_DEAD
13435 && REG_P (XEXP (link, 0)))
13437 unsigned int regno = REGNO (XEXP (link, 0));
13438 unsigned int endregno = END_REGNO (XEXP (link, 0));
13440 for (i = regno; i < endregno; i++)
13442 reg_stat_type *rsp;
13444 rsp = &reg_stat[i];
13445 rsp->last_death = insn;
13448 else if (REG_NOTE_KIND (link) == REG_INC)
13449 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13452 if (CALL_P (insn))
13454 HARD_REG_SET callee_clobbers
13455 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13456 hard_reg_set_iterator hrsi;
13457 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13459 reg_stat_type *rsp;
13461 /* ??? We could try to preserve some information from the last
13462 set of register I if the call doesn't actually clobber
13463 (reg:last_set_mode I), which might be true for ABIs with
13464 partial clobbers. However, it would be difficult to
13465 update last_set_nonzero_bits and last_sign_bit_copies
13466 to account for the part of I that actually was clobbered.
13467 It wouldn't help much anyway, since we rarely see this
13468 situation before RA. */
13469 rsp = &reg_stat[i];
13470 rsp->last_set_invalid = 1;
13471 rsp->last_set = insn;
13472 rsp->last_set_value = 0;
13473 rsp->last_set_mode = VOIDmode;
13474 rsp->last_set_nonzero_bits = 0;
13475 rsp->last_set_sign_bit_copies = 0;
13476 rsp->last_death = 0;
13477 rsp->truncated_to_mode = VOIDmode;
13480 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13482 /* We can't combine into a call pattern. Remember, though, that
13483 the return value register is set at this LUID. We could
13484 still replace a register with the return value from the
13485 wrong subroutine call! */
13486 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13488 else
13489 note_stores (insn, record_dead_and_set_regs_1, insn);
13492 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13493 register present in the SUBREG, so for each such SUBREG go back and
13494 adjust nonzero and sign bit information of the registers that are
13495 known to have some zero/sign bits set.
13497 This is needed because when combine blows the SUBREGs away, the
13498 information on zero/sign bits is lost and further combines can be
13499 missed because of that. */
13501 static void
13502 record_promoted_value (rtx_insn *insn, rtx subreg)
13504 struct insn_link *links;
13505 rtx set;
13506 unsigned int regno = REGNO (SUBREG_REG (subreg));
13507 machine_mode mode = GET_MODE (subreg);
13509 if (!HWI_COMPUTABLE_MODE_P (mode))
13510 return;
13512 for (links = LOG_LINKS (insn); links;)
13514 reg_stat_type *rsp;
13516 insn = links->insn;
13517 set = single_set (insn);
13519 if (! set || !REG_P (SET_DEST (set))
13520 || REGNO (SET_DEST (set)) != regno
13521 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13523 links = links->next;
13524 continue;
13527 rsp = &reg_stat[regno];
13528 if (rsp->last_set == insn)
13530 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13531 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13534 if (REG_P (SET_SRC (set)))
13536 regno = REGNO (SET_SRC (set));
13537 links = LOG_LINKS (insn);
13539 else
13540 break;
13544 /* Check if X, a register, is known to contain a value already
13545 truncated to MODE. In this case we can use a subreg to refer to
13546 the truncated value even though in the generic case we would need
13547 an explicit truncation. */
13549 static bool
13550 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13552 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13553 machine_mode truncated = rsp->truncated_to_mode;
13555 if (truncated == 0
13556 || rsp->truncation_label < label_tick_ebb_start)
13557 return false;
13558 if (!partial_subreg_p (mode, truncated))
13559 return true;
13560 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13561 return true;
13562 return false;
13565 /* If X is a hard reg or a subreg record the mode that the register is
13566 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13567 able to turn a truncate into a subreg using this information. Return true
13568 if traversing X is complete. */
13570 static bool
13571 record_truncated_value (rtx x)
13573 machine_mode truncated_mode;
13574 reg_stat_type *rsp;
13576 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13578 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13579 truncated_mode = GET_MODE (x);
13581 if (!partial_subreg_p (truncated_mode, original_mode))
13582 return true;
13584 truncated_mode = GET_MODE (x);
13585 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13586 return true;
13588 x = SUBREG_REG (x);
13590 /* ??? For hard-regs we now record everything. We might be able to
13591 optimize this using last_set_mode. */
13592 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13593 truncated_mode = GET_MODE (x);
13594 else
13595 return false;
13597 rsp = &reg_stat[REGNO (x)];
13598 if (rsp->truncated_to_mode == 0
13599 || rsp->truncation_label < label_tick_ebb_start
13600 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13602 rsp->truncated_to_mode = truncated_mode;
13603 rsp->truncation_label = label_tick;
13606 return true;
13609 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13610 the modes they are used in. This can help truning TRUNCATEs into
13611 SUBREGs. */
13613 static void
13614 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13616 subrtx_var_iterator::array_type array;
13617 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13618 if (record_truncated_value (*iter))
13619 iter.skip_subrtxes ();
13622 /* Scan X for promoted SUBREGs. For each one found,
13623 note what it implies to the registers used in it. */
13625 static void
13626 check_promoted_subreg (rtx_insn *insn, rtx x)
13628 if (GET_CODE (x) == SUBREG
13629 && SUBREG_PROMOTED_VAR_P (x)
13630 && REG_P (SUBREG_REG (x)))
13631 record_promoted_value (insn, x);
13632 else
13634 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13635 int i, j;
13637 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13638 switch (format[i])
13640 case 'e':
13641 check_promoted_subreg (insn, XEXP (x, i));
13642 break;
13643 case 'V':
13644 case 'E':
13645 if (XVEC (x, i) != 0)
13646 for (j = 0; j < XVECLEN (x, i); j++)
13647 check_promoted_subreg (insn, XVECEXP (x, i, j));
13648 break;
13653 /* Verify that all the registers and memory references mentioned in *LOC are
13654 still valid. *LOC was part of a value set in INSN when label_tick was
13655 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13656 the invalid references with (clobber (const_int 0)) and return 1. This
13657 replacement is useful because we often can get useful information about
13658 the form of a value (e.g., if it was produced by a shift that always
13659 produces -1 or 0) even though we don't know exactly what registers it
13660 was produced from. */
13662 static int
13663 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13665 rtx x = *loc;
13666 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13667 int len = GET_RTX_LENGTH (GET_CODE (x));
13668 int i, j;
13670 if (REG_P (x))
13672 unsigned int regno = REGNO (x);
13673 unsigned int endregno = END_REGNO (x);
13674 unsigned int j;
13676 for (j = regno; j < endregno; j++)
13678 reg_stat_type *rsp = &reg_stat[j];
13679 if (rsp->last_set_invalid
13680 /* If this is a pseudo-register that was only set once and not
13681 live at the beginning of the function, it is always valid. */
13682 || (! (regno >= FIRST_PSEUDO_REGISTER
13683 && regno < reg_n_sets_max
13684 && REG_N_SETS (regno) == 1
13685 && (!REGNO_REG_SET_P
13686 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13687 regno)))
13688 && rsp->last_set_label > tick))
13690 if (replace)
13691 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13692 return replace;
13696 return 1;
13698 /* If this is a memory reference, make sure that there were no stores after
13699 it that might have clobbered the value. We don't have alias info, so we
13700 assume any store invalidates it. Moreover, we only have local UIDs, so
13701 we also assume that there were stores in the intervening basic blocks. */
13702 else if (MEM_P (x) && !MEM_READONLY_P (x)
13703 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13705 if (replace)
13706 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13707 return replace;
13710 for (i = 0; i < len; i++)
13712 if (fmt[i] == 'e')
13714 /* Check for identical subexpressions. If x contains
13715 identical subexpression we only have to traverse one of
13716 them. */
13717 if (i == 1 && ARITHMETIC_P (x))
13719 /* Note that at this point x0 has already been checked
13720 and found valid. */
13721 rtx x0 = XEXP (x, 0);
13722 rtx x1 = XEXP (x, 1);
13724 /* If x0 and x1 are identical then x is also valid. */
13725 if (x0 == x1)
13726 return 1;
13728 /* If x1 is identical to a subexpression of x0 then
13729 while checking x0, x1 has already been checked. Thus
13730 it is valid and so as x. */
13731 if (ARITHMETIC_P (x0)
13732 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13733 return 1;
13735 /* If x0 is identical to a subexpression of x1 then x is
13736 valid iff the rest of x1 is valid. */
13737 if (ARITHMETIC_P (x1)
13738 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13739 return
13740 get_last_value_validate (&XEXP (x1,
13741 x0 == XEXP (x1, 0) ? 1 : 0),
13742 insn, tick, replace);
13745 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13746 replace) == 0)
13747 return 0;
13749 else if (fmt[i] == 'E')
13750 for (j = 0; j < XVECLEN (x, i); j++)
13751 if (get_last_value_validate (&XVECEXP (x, i, j),
13752 insn, tick, replace) == 0)
13753 return 0;
13756 /* If we haven't found a reason for it to be invalid, it is valid. */
13757 return 1;
13760 /* Get the last value assigned to X, if known. Some registers
13761 in the value may be replaced with (clobber (const_int 0)) if their value
13762 is known longer known reliably. */
13764 static rtx
13765 get_last_value (const_rtx x)
13767 unsigned int regno;
13768 rtx value;
13769 reg_stat_type *rsp;
13771 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13772 then convert it to the desired mode. If this is a paradoxical SUBREG,
13773 we cannot predict what values the "extra" bits might have. */
13774 if (GET_CODE (x) == SUBREG
13775 && subreg_lowpart_p (x)
13776 && !paradoxical_subreg_p (x)
13777 && (value = get_last_value (SUBREG_REG (x))) != 0)
13778 return gen_lowpart (GET_MODE (x), value);
13780 if (!REG_P (x))
13781 return 0;
13783 regno = REGNO (x);
13784 rsp = &reg_stat[regno];
13785 value = rsp->last_set_value;
13787 /* If we don't have a value, or if it isn't for this basic block and
13788 it's either a hard register, set more than once, or it's a live
13789 at the beginning of the function, return 0.
13791 Because if it's not live at the beginning of the function then the reg
13792 is always set before being used (is never used without being set).
13793 And, if it's set only once, and it's always set before use, then all
13794 uses must have the same last value, even if it's not from this basic
13795 block. */
13797 if (value == 0
13798 || (rsp->last_set_label < label_tick_ebb_start
13799 && (regno < FIRST_PSEUDO_REGISTER
13800 || regno >= reg_n_sets_max
13801 || REG_N_SETS (regno) != 1
13802 || REGNO_REG_SET_P
13803 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13804 return 0;
13806 /* If the value was set in a later insn than the ones we are processing,
13807 we can't use it even if the register was only set once. */
13808 if (rsp->last_set_label == label_tick
13809 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13810 return 0;
13812 /* If fewer bits were set than what we are asked for now, we cannot use
13813 the value. */
13814 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13815 GET_MODE_PRECISION (GET_MODE (x))))
13816 return 0;
13818 /* If the value has all its registers valid, return it. */
13819 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13820 return value;
13822 /* Otherwise, make a copy and replace any invalid register with
13823 (clobber (const_int 0)). If that fails for some reason, return 0. */
13825 value = copy_rtx (value);
13826 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13827 return value;
13829 return 0;
13832 /* Define three variables used for communication between the following
13833 routines. */
13835 static unsigned int reg_dead_regno, reg_dead_endregno;
13836 static int reg_dead_flag;
13837 rtx reg_dead_reg;
13839 /* Function called via note_stores from reg_dead_at_p.
13841 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13842 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13844 static void
13845 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13847 unsigned int regno, endregno;
13849 if (!REG_P (dest))
13850 return;
13852 regno = REGNO (dest);
13853 endregno = END_REGNO (dest);
13854 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13855 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13858 /* Return nonzero if REG is known to be dead at INSN.
13860 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13861 referencing REG, it is dead. If we hit a SET referencing REG, it is
13862 live. Otherwise, see if it is live or dead at the start of the basic
13863 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13864 must be assumed to be always live. */
13866 static int
13867 reg_dead_at_p (rtx reg, rtx_insn *insn)
13869 basic_block block;
13870 unsigned int i;
13872 /* Set variables for reg_dead_at_p_1. */
13873 reg_dead_regno = REGNO (reg);
13874 reg_dead_endregno = END_REGNO (reg);
13875 reg_dead_reg = reg;
13877 reg_dead_flag = 0;
13879 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13880 we allow the machine description to decide whether use-and-clobber
13881 patterns are OK. */
13882 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13884 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13885 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13886 return 0;
13889 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13890 beginning of basic block. */
13891 block = BLOCK_FOR_INSN (insn);
13892 for (;;)
13894 if (INSN_P (insn))
13896 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13897 return 1;
13899 note_stores (insn, reg_dead_at_p_1, NULL);
13900 if (reg_dead_flag)
13901 return reg_dead_flag == 1 ? 1 : 0;
13903 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13904 return 1;
13907 if (insn == BB_HEAD (block))
13908 break;
13910 insn = PREV_INSN (insn);
13913 /* Look at live-in sets for the basic block that we were in. */
13914 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13915 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13916 return 0;
13918 return 1;
13921 /* Note hard registers in X that are used. */
13923 static void
13924 mark_used_regs_combine (rtx x)
13926 RTX_CODE code = GET_CODE (x);
13927 unsigned int regno;
13928 int i;
13930 switch (code)
13932 case LABEL_REF:
13933 case SYMBOL_REF:
13934 case CONST:
13935 CASE_CONST_ANY:
13936 case PC:
13937 case ADDR_VEC:
13938 case ADDR_DIFF_VEC:
13939 case ASM_INPUT:
13940 /* CC0 must die in the insn after it is set, so we don't need to take
13941 special note of it here. */
13942 case CC0:
13943 return;
13945 case CLOBBER:
13946 /* If we are clobbering a MEM, mark any hard registers inside the
13947 address as used. */
13948 if (MEM_P (XEXP (x, 0)))
13949 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13950 return;
13952 case REG:
13953 regno = REGNO (x);
13954 /* A hard reg in a wide mode may really be multiple registers.
13955 If so, mark all of them just like the first. */
13956 if (regno < FIRST_PSEUDO_REGISTER)
13958 /* None of this applies to the stack, frame or arg pointers. */
13959 if (regno == STACK_POINTER_REGNUM
13960 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13961 && regno == HARD_FRAME_POINTER_REGNUM)
13962 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13963 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13964 || regno == FRAME_POINTER_REGNUM)
13965 return;
13967 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13969 return;
13971 case SET:
13973 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13974 the address. */
13975 rtx testreg = SET_DEST (x);
13977 while (GET_CODE (testreg) == SUBREG
13978 || GET_CODE (testreg) == ZERO_EXTRACT
13979 || GET_CODE (testreg) == STRICT_LOW_PART)
13980 testreg = XEXP (testreg, 0);
13982 if (MEM_P (testreg))
13983 mark_used_regs_combine (XEXP (testreg, 0));
13985 mark_used_regs_combine (SET_SRC (x));
13987 return;
13989 default:
13990 break;
13993 /* Recursively scan the operands of this expression. */
13996 const char *fmt = GET_RTX_FORMAT (code);
13998 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
14000 if (fmt[i] == 'e')
14001 mark_used_regs_combine (XEXP (x, i));
14002 else if (fmt[i] == 'E')
14004 int j;
14006 for (j = 0; j < XVECLEN (x, i); j++)
14007 mark_used_regs_combine (XVECEXP (x, i, j));
14013 /* Remove register number REGNO from the dead registers list of INSN.
14015 Return the note used to record the death, if there was one. */
14018 remove_death (unsigned int regno, rtx_insn *insn)
14020 rtx note = find_regno_note (insn, REG_DEAD, regno);
14022 if (note)
14023 remove_note (insn, note);
14025 return note;
14028 /* For each register (hardware or pseudo) used within expression X, if its
14029 death is in an instruction with luid between FROM_LUID (inclusive) and
14030 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14031 list headed by PNOTES.
14033 That said, don't move registers killed by maybe_kill_insn.
14035 This is done when X is being merged by combination into TO_INSN. These
14036 notes will then be distributed as needed. */
14038 static void
14039 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14040 rtx *pnotes)
14042 const char *fmt;
14043 int len, i;
14044 enum rtx_code code = GET_CODE (x);
14046 if (code == REG)
14048 unsigned int regno = REGNO (x);
14049 rtx_insn *where_dead = reg_stat[regno].last_death;
14051 /* If we do not know where the register died, it may still die between
14052 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14053 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14055 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14056 while (insn
14057 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14058 && DF_INSN_LUID (insn) >= from_luid)
14060 if (dead_or_set_regno_p (insn, regno))
14062 if (find_regno_note (insn, REG_DEAD, regno))
14063 where_dead = insn;
14064 break;
14067 insn = prev_real_nondebug_insn (insn);
14071 /* Don't move the register if it gets killed in between from and to. */
14072 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14073 && ! reg_referenced_p (x, maybe_kill_insn))
14074 return;
14076 if (where_dead
14077 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14078 && DF_INSN_LUID (where_dead) >= from_luid
14079 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14081 rtx note = remove_death (regno, where_dead);
14083 /* It is possible for the call above to return 0. This can occur
14084 when last_death points to I2 or I1 that we combined with.
14085 In that case make a new note.
14087 We must also check for the case where X is a hard register
14088 and NOTE is a death note for a range of hard registers
14089 including X. In that case, we must put REG_DEAD notes for
14090 the remaining registers in place of NOTE. */
14092 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14093 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14095 unsigned int deadregno = REGNO (XEXP (note, 0));
14096 unsigned int deadend = END_REGNO (XEXP (note, 0));
14097 unsigned int ourend = END_REGNO (x);
14098 unsigned int i;
14100 for (i = deadregno; i < deadend; i++)
14101 if (i < regno || i >= ourend)
14102 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14105 /* If we didn't find any note, or if we found a REG_DEAD note that
14106 covers only part of the given reg, and we have a multi-reg hard
14107 register, then to be safe we must check for REG_DEAD notes
14108 for each register other than the first. They could have
14109 their own REG_DEAD notes lying around. */
14110 else if ((note == 0
14111 || (note != 0
14112 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14113 GET_MODE (x))))
14114 && regno < FIRST_PSEUDO_REGISTER
14115 && REG_NREGS (x) > 1)
14117 unsigned int ourend = END_REGNO (x);
14118 unsigned int i, offset;
14119 rtx oldnotes = 0;
14121 if (note)
14122 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14123 else
14124 offset = 1;
14126 for (i = regno + offset; i < ourend; i++)
14127 move_deaths (regno_reg_rtx[i],
14128 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14131 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14133 XEXP (note, 1) = *pnotes;
14134 *pnotes = note;
14136 else
14137 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14140 return;
14143 else if (GET_CODE (x) == SET)
14145 rtx dest = SET_DEST (x);
14147 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14149 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14150 that accesses one word of a multi-word item, some
14151 piece of everything register in the expression is used by
14152 this insn, so remove any old death. */
14153 /* ??? So why do we test for equality of the sizes? */
14155 if (GET_CODE (dest) == ZERO_EXTRACT
14156 || GET_CODE (dest) == STRICT_LOW_PART
14157 || (GET_CODE (dest) == SUBREG
14158 && !read_modify_subreg_p (dest)))
14160 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14161 return;
14164 /* If this is some other SUBREG, we know it replaces the entire
14165 value, so use that as the destination. */
14166 if (GET_CODE (dest) == SUBREG)
14167 dest = SUBREG_REG (dest);
14169 /* If this is a MEM, adjust deaths of anything used in the address.
14170 For a REG (the only other possibility), the entire value is
14171 being replaced so the old value is not used in this insn. */
14173 if (MEM_P (dest))
14174 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14175 to_insn, pnotes);
14176 return;
14179 else if (GET_CODE (x) == CLOBBER)
14180 return;
14182 len = GET_RTX_LENGTH (code);
14183 fmt = GET_RTX_FORMAT (code);
14185 for (i = 0; i < len; i++)
14187 if (fmt[i] == 'E')
14189 int j;
14190 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14191 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14192 to_insn, pnotes);
14194 else if (fmt[i] == 'e')
14195 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14199 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14200 pattern of an insn. X must be a REG. */
14202 static int
14203 reg_bitfield_target_p (rtx x, rtx body)
14205 int i;
14207 if (GET_CODE (body) == SET)
14209 rtx dest = SET_DEST (body);
14210 rtx target;
14211 unsigned int regno, tregno, endregno, endtregno;
14213 if (GET_CODE (dest) == ZERO_EXTRACT)
14214 target = XEXP (dest, 0);
14215 else if (GET_CODE (dest) == STRICT_LOW_PART)
14216 target = SUBREG_REG (XEXP (dest, 0));
14217 else
14218 return 0;
14220 if (GET_CODE (target) == SUBREG)
14221 target = SUBREG_REG (target);
14223 if (!REG_P (target))
14224 return 0;
14226 tregno = REGNO (target), regno = REGNO (x);
14227 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14228 return target == x;
14230 endtregno = end_hard_regno (GET_MODE (target), tregno);
14231 endregno = end_hard_regno (GET_MODE (x), regno);
14233 return endregno > tregno && regno < endtregno;
14236 else if (GET_CODE (body) == PARALLEL)
14237 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14238 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14239 return 1;
14241 return 0;
14244 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14245 as appropriate. I3 and I2 are the insns resulting from the combination
14246 insns including FROM (I2 may be zero).
14248 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14249 not need REG_DEAD notes because they are being substituted for. This
14250 saves searching in the most common cases.
14252 Each note in the list is either ignored or placed on some insns, depending
14253 on the type of note. */
14255 static void
14256 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14257 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14259 rtx note, next_note;
14260 rtx tem_note;
14261 rtx_insn *tem_insn;
14263 for (note = notes; note; note = next_note)
14265 rtx_insn *place = 0, *place2 = 0;
14267 next_note = XEXP (note, 1);
14268 switch (REG_NOTE_KIND (note))
14270 case REG_BR_PROB:
14271 case REG_BR_PRED:
14272 /* Doesn't matter much where we put this, as long as it's somewhere.
14273 It is preferable to keep these notes on branches, which is most
14274 likely to be i3. */
14275 place = i3;
14276 break;
14278 case REG_NON_LOCAL_GOTO:
14279 if (JUMP_P (i3))
14280 place = i3;
14281 else
14283 gcc_assert (i2 && JUMP_P (i2));
14284 place = i2;
14286 break;
14288 case REG_EH_REGION:
14289 /* These notes must remain with the call or trapping instruction. */
14290 if (CALL_P (i3))
14291 place = i3;
14292 else if (i2 && CALL_P (i2))
14293 place = i2;
14294 else
14296 gcc_assert (cfun->can_throw_non_call_exceptions);
14297 if (may_trap_p (i3))
14298 place = i3;
14299 else if (i2 && may_trap_p (i2))
14300 place = i2;
14301 /* ??? Otherwise assume we've combined things such that we
14302 can now prove that the instructions can't trap. Drop the
14303 note in this case. */
14305 break;
14307 case REG_ARGS_SIZE:
14308 /* ??? How to distribute between i3-i1. Assume i3 contains the
14309 entire adjustment. Assert i3 contains at least some adjust. */
14310 if (!noop_move_p (i3))
14312 poly_int64 old_size, args_size = get_args_size (note);
14313 /* fixup_args_size_notes looks at REG_NORETURN note,
14314 so ensure the note is placed there first. */
14315 if (CALL_P (i3))
14317 rtx *np;
14318 for (np = &next_note; *np; np = &XEXP (*np, 1))
14319 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14321 rtx n = *np;
14322 *np = XEXP (n, 1);
14323 XEXP (n, 1) = REG_NOTES (i3);
14324 REG_NOTES (i3) = n;
14325 break;
14328 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14329 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14330 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14331 gcc_assert (maybe_ne (old_size, args_size)
14332 || (CALL_P (i3)
14333 && !ACCUMULATE_OUTGOING_ARGS
14334 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14336 break;
14338 case REG_NORETURN:
14339 case REG_SETJMP:
14340 case REG_TM:
14341 case REG_CALL_DECL:
14342 case REG_CALL_NOCF_CHECK:
14343 /* These notes must remain with the call. It should not be
14344 possible for both I2 and I3 to be a call. */
14345 if (CALL_P (i3))
14346 place = i3;
14347 else
14349 gcc_assert (i2 && CALL_P (i2));
14350 place = i2;
14352 break;
14354 case REG_UNUSED:
14355 /* Any clobbers for i3 may still exist, and so we must process
14356 REG_UNUSED notes from that insn.
14358 Any clobbers from i2 or i1 can only exist if they were added by
14359 recog_for_combine. In that case, recog_for_combine created the
14360 necessary REG_UNUSED notes. Trying to keep any original
14361 REG_UNUSED notes from these insns can cause incorrect output
14362 if it is for the same register as the original i3 dest.
14363 In that case, we will notice that the register is set in i3,
14364 and then add a REG_UNUSED note for the destination of i3, which
14365 is wrong. However, it is possible to have REG_UNUSED notes from
14366 i2 or i1 for register which were both used and clobbered, so
14367 we keep notes from i2 or i1 if they will turn into REG_DEAD
14368 notes. */
14370 /* If this register is set or clobbered in I3, put the note there
14371 unless there is one already. */
14372 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14374 if (from_insn != i3)
14375 break;
14377 if (! (REG_P (XEXP (note, 0))
14378 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14379 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14380 place = i3;
14382 /* Otherwise, if this register is used by I3, then this register
14383 now dies here, so we must put a REG_DEAD note here unless there
14384 is one already. */
14385 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14386 && ! (REG_P (XEXP (note, 0))
14387 ? find_regno_note (i3, REG_DEAD,
14388 REGNO (XEXP (note, 0)))
14389 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14391 PUT_REG_NOTE_KIND (note, REG_DEAD);
14392 place = i3;
14395 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14396 but we can't tell which at this point. We must reset any
14397 expectations we had about the value that was previously
14398 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14399 and, if appropriate, restore its previous value, but we
14400 don't have enough information for that at this point. */
14401 else
14403 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14405 /* Otherwise, if this register is now referenced in i2
14406 then the register used to be modified in one of the
14407 original insns. If it was i3 (say, in an unused
14408 parallel), it's now completely gone, so the note can
14409 be discarded. But if it was modified in i2, i1 or i0
14410 and we still reference it in i2, then we're
14411 referencing the previous value, and since the
14412 register was modified and REG_UNUSED, we know that
14413 the previous value is now dead. So, if we only
14414 reference the register in i2, we change the note to
14415 REG_DEAD, to reflect the previous value. However, if
14416 we're also setting or clobbering the register as
14417 scratch, we know (because the register was not
14418 referenced in i3) that it's unused, just as it was
14419 unused before, and we place the note in i2. */
14420 if (from_insn != i3 && i2 && INSN_P (i2)
14421 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14423 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14424 PUT_REG_NOTE_KIND (note, REG_DEAD);
14425 if (! (REG_P (XEXP (note, 0))
14426 ? find_regno_note (i2, REG_NOTE_KIND (note),
14427 REGNO (XEXP (note, 0)))
14428 : find_reg_note (i2, REG_NOTE_KIND (note),
14429 XEXP (note, 0))))
14430 place = i2;
14434 break;
14436 case REG_EQUAL:
14437 case REG_EQUIV:
14438 case REG_NOALIAS:
14439 /* These notes say something about results of an insn. We can
14440 only support them if they used to be on I3 in which case they
14441 remain on I3. Otherwise they are ignored.
14443 If the note refers to an expression that is not a constant, we
14444 must also ignore the note since we cannot tell whether the
14445 equivalence is still true. It might be possible to do
14446 slightly better than this (we only have a problem if I2DEST
14447 or I1DEST is present in the expression), but it doesn't
14448 seem worth the trouble. */
14450 if (from_insn == i3
14451 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14452 place = i3;
14453 break;
14455 case REG_INC:
14456 /* These notes say something about how a register is used. They must
14457 be present on any use of the register in I2 or I3. */
14458 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14459 place = i3;
14461 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14463 if (place)
14464 place2 = i2;
14465 else
14466 place = i2;
14468 break;
14470 case REG_LABEL_TARGET:
14471 case REG_LABEL_OPERAND:
14472 /* This can show up in several ways -- either directly in the
14473 pattern, or hidden off in the constant pool with (or without?)
14474 a REG_EQUAL note. */
14475 /* ??? Ignore the without-reg_equal-note problem for now. */
14476 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14477 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14478 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14479 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14480 place = i3;
14482 if (i2
14483 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14484 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14485 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14486 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14488 if (place)
14489 place2 = i2;
14490 else
14491 place = i2;
14494 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14495 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14496 there. */
14497 if (place && JUMP_P (place)
14498 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14499 && (JUMP_LABEL (place) == NULL
14500 || JUMP_LABEL (place) == XEXP (note, 0)))
14502 rtx label = JUMP_LABEL (place);
14504 if (!label)
14505 JUMP_LABEL (place) = XEXP (note, 0);
14506 else if (LABEL_P (label))
14507 LABEL_NUSES (label)--;
14510 if (place2 && JUMP_P (place2)
14511 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14512 && (JUMP_LABEL (place2) == NULL
14513 || JUMP_LABEL (place2) == XEXP (note, 0)))
14515 rtx label = JUMP_LABEL (place2);
14517 if (!label)
14518 JUMP_LABEL (place2) = XEXP (note, 0);
14519 else if (LABEL_P (label))
14520 LABEL_NUSES (label)--;
14521 place2 = 0;
14523 break;
14525 case REG_NONNEG:
14526 /* This note says something about the value of a register prior
14527 to the execution of an insn. It is too much trouble to see
14528 if the note is still correct in all situations. It is better
14529 to simply delete it. */
14530 break;
14532 case REG_DEAD:
14533 /* If we replaced the right hand side of FROM_INSN with a
14534 REG_EQUAL note, the original use of the dying register
14535 will not have been combined into I3 and I2. In such cases,
14536 FROM_INSN is guaranteed to be the first of the combined
14537 instructions, so we simply need to search back before
14538 FROM_INSN for the previous use or set of this register,
14539 then alter the notes there appropriately.
14541 If the register is used as an input in I3, it dies there.
14542 Similarly for I2, if it is nonzero and adjacent to I3.
14544 If the register is not used as an input in either I3 or I2
14545 and it is not one of the registers we were supposed to eliminate,
14546 there are two possibilities. We might have a non-adjacent I2
14547 or we might have somehow eliminated an additional register
14548 from a computation. For example, we might have had A & B where
14549 we discover that B will always be zero. In this case we will
14550 eliminate the reference to A.
14552 In both cases, we must search to see if we can find a previous
14553 use of A and put the death note there. */
14555 if (from_insn
14556 && from_insn == i2mod
14557 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14558 tem_insn = from_insn;
14559 else
14561 if (from_insn
14562 && CALL_P (from_insn)
14563 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14564 place = from_insn;
14565 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14567 /* If the new I2 sets the same register that is marked
14568 dead in the note, we do not in general know where to
14569 put the note. One important case we _can_ handle is
14570 when the note comes from I3. */
14571 if (from_insn == i3)
14572 place = i3;
14573 else
14574 break;
14576 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14577 place = i3;
14578 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14579 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14580 place = i2;
14581 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14582 && !(i2mod
14583 && reg_overlap_mentioned_p (XEXP (note, 0),
14584 i2mod_old_rhs)))
14585 || rtx_equal_p (XEXP (note, 0), elim_i1)
14586 || rtx_equal_p (XEXP (note, 0), elim_i0))
14587 break;
14588 tem_insn = i3;
14591 if (place == 0)
14593 basic_block bb = this_basic_block;
14595 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14597 if (!NONDEBUG_INSN_P (tem_insn))
14599 if (tem_insn == BB_HEAD (bb))
14600 break;
14601 continue;
14604 /* If the register is being set at TEM_INSN, see if that is all
14605 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14606 into a REG_UNUSED note instead. Don't delete sets to
14607 global register vars. */
14608 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14609 || !global_regs[REGNO (XEXP (note, 0))])
14610 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14612 rtx set = single_set (tem_insn);
14613 rtx inner_dest = 0;
14614 rtx_insn *cc0_setter = NULL;
14616 if (set != 0)
14617 for (inner_dest = SET_DEST (set);
14618 (GET_CODE (inner_dest) == STRICT_LOW_PART
14619 || GET_CODE (inner_dest) == SUBREG
14620 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14621 inner_dest = XEXP (inner_dest, 0))
14624 /* Verify that it was the set, and not a clobber that
14625 modified the register.
14627 CC0 targets must be careful to maintain setter/user
14628 pairs. If we cannot delete the setter due to side
14629 effects, mark the user with an UNUSED note instead
14630 of deleting it. */
14632 if (set != 0 && ! side_effects_p (SET_SRC (set))
14633 && rtx_equal_p (XEXP (note, 0), inner_dest)
14634 && (!HAVE_cc0
14635 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14636 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14637 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14639 /* Move the notes and links of TEM_INSN elsewhere.
14640 This might delete other dead insns recursively.
14641 First set the pattern to something that won't use
14642 any register. */
14643 rtx old_notes = REG_NOTES (tem_insn);
14645 PATTERN (tem_insn) = pc_rtx;
14646 REG_NOTES (tem_insn) = NULL;
14648 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14649 NULL_RTX, NULL_RTX, NULL_RTX);
14650 distribute_links (LOG_LINKS (tem_insn));
14652 unsigned int regno = REGNO (XEXP (note, 0));
14653 reg_stat_type *rsp = &reg_stat[regno];
14654 if (rsp->last_set == tem_insn)
14655 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14657 SET_INSN_DELETED (tem_insn);
14658 if (tem_insn == i2)
14659 i2 = NULL;
14661 /* Delete the setter too. */
14662 if (cc0_setter)
14664 PATTERN (cc0_setter) = pc_rtx;
14665 old_notes = REG_NOTES (cc0_setter);
14666 REG_NOTES (cc0_setter) = NULL;
14668 distribute_notes (old_notes, cc0_setter,
14669 cc0_setter, NULL,
14670 NULL_RTX, NULL_RTX, NULL_RTX);
14671 distribute_links (LOG_LINKS (cc0_setter));
14673 SET_INSN_DELETED (cc0_setter);
14674 if (cc0_setter == i2)
14675 i2 = NULL;
14678 else
14680 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14682 /* If there isn't already a REG_UNUSED note, put one
14683 here. Do not place a REG_DEAD note, even if
14684 the register is also used here; that would not
14685 match the algorithm used in lifetime analysis
14686 and can cause the consistency check in the
14687 scheduler to fail. */
14688 if (! find_regno_note (tem_insn, REG_UNUSED,
14689 REGNO (XEXP (note, 0))))
14690 place = tem_insn;
14691 break;
14694 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14695 || (CALL_P (tem_insn)
14696 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14698 place = tem_insn;
14700 /* If we are doing a 3->2 combination, and we have a
14701 register which formerly died in i3 and was not used
14702 by i2, which now no longer dies in i3 and is used in
14703 i2 but does not die in i2, and place is between i2
14704 and i3, then we may need to move a link from place to
14705 i2. */
14706 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14707 && from_insn
14708 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14709 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14711 struct insn_link *links = LOG_LINKS (place);
14712 LOG_LINKS (place) = NULL;
14713 distribute_links (links);
14715 break;
14718 if (tem_insn == BB_HEAD (bb))
14719 break;
14724 /* If the register is set or already dead at PLACE, we needn't do
14725 anything with this note if it is still a REG_DEAD note.
14726 We check here if it is set at all, not if is it totally replaced,
14727 which is what `dead_or_set_p' checks, so also check for it being
14728 set partially. */
14730 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14732 unsigned int regno = REGNO (XEXP (note, 0));
14733 reg_stat_type *rsp = &reg_stat[regno];
14735 if (dead_or_set_p (place, XEXP (note, 0))
14736 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14738 /* Unless the register previously died in PLACE, clear
14739 last_death. [I no longer understand why this is
14740 being done.] */
14741 if (rsp->last_death != place)
14742 rsp->last_death = 0;
14743 place = 0;
14745 else
14746 rsp->last_death = place;
14748 /* If this is a death note for a hard reg that is occupying
14749 multiple registers, ensure that we are still using all
14750 parts of the object. If we find a piece of the object
14751 that is unused, we must arrange for an appropriate REG_DEAD
14752 note to be added for it. However, we can't just emit a USE
14753 and tag the note to it, since the register might actually
14754 be dead; so we recourse, and the recursive call then finds
14755 the previous insn that used this register. */
14757 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14759 unsigned int endregno = END_REGNO (XEXP (note, 0));
14760 bool all_used = true;
14761 unsigned int i;
14763 for (i = regno; i < endregno; i++)
14764 if ((! refers_to_regno_p (i, PATTERN (place))
14765 && ! find_regno_fusage (place, USE, i))
14766 || dead_or_set_regno_p (place, i))
14768 all_used = false;
14769 break;
14772 if (! all_used)
14774 /* Put only REG_DEAD notes for pieces that are
14775 not already dead or set. */
14777 for (i = regno; i < endregno;
14778 i += hard_regno_nregs (i, reg_raw_mode[i]))
14780 rtx piece = regno_reg_rtx[i];
14781 basic_block bb = this_basic_block;
14783 if (! dead_or_set_p (place, piece)
14784 && ! reg_bitfield_target_p (piece,
14785 PATTERN (place)))
14787 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14788 NULL_RTX);
14790 distribute_notes (new_note, place, place,
14791 NULL, NULL_RTX, NULL_RTX,
14792 NULL_RTX);
14794 else if (! refers_to_regno_p (i, PATTERN (place))
14795 && ! find_regno_fusage (place, USE, i))
14796 for (tem_insn = PREV_INSN (place); ;
14797 tem_insn = PREV_INSN (tem_insn))
14799 if (!NONDEBUG_INSN_P (tem_insn))
14801 if (tem_insn == BB_HEAD (bb))
14802 break;
14803 continue;
14805 if (dead_or_set_p (tem_insn, piece)
14806 || reg_bitfield_target_p (piece,
14807 PATTERN (tem_insn)))
14809 add_reg_note (tem_insn, REG_UNUSED, piece);
14810 break;
14815 place = 0;
14819 break;
14821 default:
14822 /* Any other notes should not be present at this point in the
14823 compilation. */
14824 gcc_unreachable ();
14827 if (place)
14829 XEXP (note, 1) = REG_NOTES (place);
14830 REG_NOTES (place) = note;
14832 /* Set added_notes_insn to the earliest insn we added a note to. */
14833 if (added_notes_insn == 0
14834 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14835 added_notes_insn = place;
14838 if (place2)
14840 add_shallow_copy_of_reg_note (place2, note);
14842 /* Set added_notes_insn to the earliest insn we added a note to. */
14843 if (added_notes_insn == 0
14844 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14845 added_notes_insn = place2;
14850 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14851 I3, I2, and I1 to new locations. This is also called to add a link
14852 pointing at I3 when I3's destination is changed. */
14854 static void
14855 distribute_links (struct insn_link *links)
14857 struct insn_link *link, *next_link;
14859 for (link = links; link; link = next_link)
14861 rtx_insn *place = 0;
14862 rtx_insn *insn;
14863 rtx set, reg;
14865 next_link = link->next;
14867 /* If the insn that this link points to is a NOTE, ignore it. */
14868 if (NOTE_P (link->insn))
14869 continue;
14871 set = 0;
14872 rtx pat = PATTERN (link->insn);
14873 if (GET_CODE (pat) == SET)
14874 set = pat;
14875 else if (GET_CODE (pat) == PARALLEL)
14877 int i;
14878 for (i = 0; i < XVECLEN (pat, 0); i++)
14880 set = XVECEXP (pat, 0, i);
14881 if (GET_CODE (set) != SET)
14882 continue;
14884 reg = SET_DEST (set);
14885 while (GET_CODE (reg) == ZERO_EXTRACT
14886 || GET_CODE (reg) == STRICT_LOW_PART
14887 || GET_CODE (reg) == SUBREG)
14888 reg = XEXP (reg, 0);
14890 if (!REG_P (reg))
14891 continue;
14893 if (REGNO (reg) == link->regno)
14894 break;
14896 if (i == XVECLEN (pat, 0))
14897 continue;
14899 else
14900 continue;
14902 reg = SET_DEST (set);
14904 while (GET_CODE (reg) == ZERO_EXTRACT
14905 || GET_CODE (reg) == STRICT_LOW_PART
14906 || GET_CODE (reg) == SUBREG)
14907 reg = XEXP (reg, 0);
14909 if (reg == pc_rtx)
14910 continue;
14912 /* A LOG_LINK is defined as being placed on the first insn that uses
14913 a register and points to the insn that sets the register. Start
14914 searching at the next insn after the target of the link and stop
14915 when we reach a set of the register or the end of the basic block.
14917 Note that this correctly handles the link that used to point from
14918 I3 to I2. Also note that not much searching is typically done here
14919 since most links don't point very far away. */
14921 for (insn = NEXT_INSN (link->insn);
14922 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14923 || BB_HEAD (this_basic_block->next_bb) != insn));
14924 insn = NEXT_INSN (insn))
14925 if (DEBUG_INSN_P (insn))
14926 continue;
14927 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14929 if (reg_referenced_p (reg, PATTERN (insn)))
14930 place = insn;
14931 break;
14933 else if (CALL_P (insn)
14934 && find_reg_fusage (insn, USE, reg))
14936 place = insn;
14937 break;
14939 else if (INSN_P (insn) && reg_set_p (reg, insn))
14940 break;
14942 /* If we found a place to put the link, place it there unless there
14943 is already a link to the same insn as LINK at that point. */
14945 if (place)
14947 struct insn_link *link2;
14949 FOR_EACH_LOG_LINK (link2, place)
14950 if (link2->insn == link->insn && link2->regno == link->regno)
14951 break;
14953 if (link2 == NULL)
14955 link->next = LOG_LINKS (place);
14956 LOG_LINKS (place) = link;
14958 /* Set added_links_insn to the earliest insn we added a
14959 link to. */
14960 if (added_links_insn == 0
14961 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14962 added_links_insn = place;
14968 /* Check for any register or memory mentioned in EQUIV that is not
14969 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14970 of EXPR where some registers may have been replaced by constants. */
14972 static bool
14973 unmentioned_reg_p (rtx equiv, rtx expr)
14975 subrtx_iterator::array_type array;
14976 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14978 const_rtx x = *iter;
14979 if ((REG_P (x) || MEM_P (x))
14980 && !reg_mentioned_p (x, expr))
14981 return true;
14983 return false;
14986 DEBUG_FUNCTION void
14987 dump_combine_stats (FILE *file)
14989 fprintf
14990 (file,
14991 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14992 combine_attempts, combine_merges, combine_extras, combine_successes);
14995 void
14996 dump_combine_total_stats (FILE *file)
14998 fprintf
14999 (file,
15000 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
15001 total_attempts, total_merges, total_extras, total_successes);
15004 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15005 the reg-to-reg copy can usefully combine with later instructions, but we
15006 do not want to combine the hard reg into later instructions, for that
15007 restricts register allocation. */
15008 static void
15009 make_more_copies (void)
15011 basic_block bb;
15013 FOR_EACH_BB_FN (bb, cfun)
15015 rtx_insn *insn;
15017 FOR_BB_INSNS (bb, insn)
15019 if (!NONDEBUG_INSN_P (insn))
15020 continue;
15022 rtx set = single_set (insn);
15023 if (!set)
15024 continue;
15026 rtx dest = SET_DEST (set);
15027 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15028 continue;
15030 rtx src = SET_SRC (set);
15031 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15032 continue;
15033 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15034 continue;
15036 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15037 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15038 SET_SRC (set) = new_reg;
15039 emit_insn_before (new_insn, insn);
15040 df_insn_rescan (insn);
15045 /* Try combining insns through substitution. */
15046 static unsigned int
15047 rest_of_handle_combine (void)
15049 make_more_copies ();
15051 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15052 df_note_add_problem ();
15053 df_analyze ();
15055 regstat_init_n_sets_and_refs ();
15056 reg_n_sets_max = max_reg_num ();
15058 int rebuild_jump_labels_after_combine
15059 = combine_instructions (get_insns (), max_reg_num ());
15061 /* Combining insns may have turned an indirect jump into a
15062 direct jump. Rebuild the JUMP_LABEL fields of jumping
15063 instructions. */
15064 if (rebuild_jump_labels_after_combine)
15066 if (dom_info_available_p (CDI_DOMINATORS))
15067 free_dominance_info (CDI_DOMINATORS);
15068 timevar_push (TV_JUMP);
15069 rebuild_jump_labels (get_insns ());
15070 cleanup_cfg (0);
15071 timevar_pop (TV_JUMP);
15074 regstat_free_n_sets_and_refs ();
15075 return 0;
15078 namespace {
15080 const pass_data pass_data_combine =
15082 RTL_PASS, /* type */
15083 "combine", /* name */
15084 OPTGROUP_NONE, /* optinfo_flags */
15085 TV_COMBINE, /* tv_id */
15086 PROP_cfglayout, /* properties_required */
15087 0, /* properties_provided */
15088 0, /* properties_destroyed */
15089 0, /* todo_flags_start */
15090 TODO_df_finish, /* todo_flags_finish */
15093 class pass_combine : public rtl_opt_pass
15095 public:
15096 pass_combine (gcc::context *ctxt)
15097 : rtl_opt_pass (pass_data_combine, ctxt)
15100 /* opt_pass methods: */
15101 virtual bool gate (function *) { return (optimize > 0); }
15102 virtual unsigned int execute (function *)
15104 return rest_of_handle_combine ();
15107 }; // class pass_combine
15109 } // anon namespace
15111 rtl_opt_pass *
15112 make_pass_combine (gcc::context *ctxt)
15114 return new pass_combine (ctxt);