* cfgloop.c (flow_loop_entry_edges_find): Fix typo.
[official-gcc.git] / gcc / unwind-dw2-fde.c
blob29d84cee6a56938484632fb09e152867e9faaa64
1 /* Subroutines needed for unwinding stack frames for exception handling. */
2 /* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Jason Merrill <jason@cygnus.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
22 WARRANTY; without even the implied warranty of MERCHANTABILITY or
23 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
24 for more details.
26 You should have received a copy of the GNU General Public License
27 along with GCC; see the file COPYING. If not, write to the Free
28 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
29 02111-1307, USA. */
31 #ifndef _Unwind_Find_FDE
32 #include "tconfig.h"
33 #include "tsystem.h"
34 #include "dwarf2.h"
35 #include "unwind.h"
36 #define NO_BASE_OF_ENCODED_VALUE
37 #include "unwind-pe.h"
38 #include "unwind-dw2-fde.h"
39 #include "gthr.h"
40 #endif
42 /* The unseen_objects list contains objects that have been registered
43 but not yet categorized in any way. The seen_objects list has had
44 it's pc_begin and count fields initialized at minimum, and is sorted
45 by decreasing value of pc_begin. */
46 static struct object *unseen_objects;
47 static struct object *seen_objects;
49 #ifdef __GTHREAD_MUTEX_INIT
50 static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
51 #else
52 static __gthread_mutex_t object_mutex;
53 #endif
55 #ifdef __GTHREAD_MUTEX_INIT_FUNCTION
56 static void
57 init_object_mutex (void)
59 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
62 static void
63 init_object_mutex_once (void)
65 static __gthread_once_t once = __GTHREAD_ONCE_INIT;
66 __gthread_once (&once, init_object_mutex);
68 #else
69 #define init_object_mutex_once()
70 #endif
72 /* Called from crtbegin.o to register the unwind info for an object. */
74 void
75 __register_frame_info_bases (void *begin, struct object *ob,
76 void *tbase, void *dbase)
78 /* If .eh_frame is empty, don't register at all. */
79 if (*(uword *)begin == 0)
80 return;
82 ob->pc_begin = (void *)-1;
83 ob->tbase = tbase;
84 ob->dbase = dbase;
85 ob->u.single = begin;
86 ob->s.i = 0;
87 ob->s.b.encoding = DW_EH_PE_omit;
89 init_object_mutex_once ();
90 __gthread_mutex_lock (&object_mutex);
92 ob->next = unseen_objects;
93 unseen_objects = ob;
95 __gthread_mutex_unlock (&object_mutex);
98 void
99 __register_frame_info (void *begin, struct object *ob)
101 __register_frame_info_bases (begin, ob, 0, 0);
104 void
105 __register_frame (void *begin)
107 struct object *ob;
109 /* If .eh_frame is empty, don't register at all. */
110 if (*(uword *)begin == 0)
111 return;
113 ob = (struct object *) malloc (sizeof (struct object));
114 __register_frame_info (begin, ob);
117 /* Similar, but BEGIN is actually a pointer to a table of unwind entries
118 for different translation units. Called from the file generated by
119 collect2. */
121 void
122 __register_frame_info_table_bases (void *begin, struct object *ob,
123 void *tbase, void *dbase)
125 ob->pc_begin = (void *)-1;
126 ob->tbase = tbase;
127 ob->dbase = dbase;
128 ob->u.array = begin;
129 ob->s.i = 0;
130 ob->s.b.from_array = 1;
131 ob->s.b.encoding = DW_EH_PE_omit;
133 init_object_mutex_once ();
134 __gthread_mutex_lock (&object_mutex);
136 ob->next = unseen_objects;
137 unseen_objects = ob;
139 __gthread_mutex_unlock (&object_mutex);
142 void
143 __register_frame_info_table (void *begin, struct object *ob)
145 __register_frame_info_table_bases (begin, ob, 0, 0);
148 void
149 __register_frame_table (void *begin)
151 struct object *ob = (struct object *) malloc (sizeof (struct object));
152 __register_frame_info_table (begin, ob);
155 /* Called from crtbegin.o to deregister the unwind info for an object. */
156 /* ??? Glibc has for a while now exported __register_frame_info and
157 __deregister_frame_info. If we call __register_frame_info_bases
158 from crtbegin (wherein it is declared weak), and this object does
159 not get pulled from libgcc.a for other reasons, then the
160 invocation of __deregister_frame_info will be resolved from glibc.
161 Since the registration did not happen there, we'll abort.
163 Therefore, declare a new deregistration entry point that does the
164 exact same thing, but will resolve to the same library as
165 implements __register_frame_info_bases. */
167 void *
168 __deregister_frame_info_bases (void *begin)
170 struct object **p;
171 struct object *ob = 0;
173 /* If .eh_frame is empty, we haven't registered. */
174 if (*(uword *)begin == 0)
175 return ob;
177 init_object_mutex_once ();
178 __gthread_mutex_lock (&object_mutex);
180 for (p = &unseen_objects; *p ; p = &(*p)->next)
181 if ((*p)->u.single == begin)
183 ob = *p;
184 *p = ob->next;
185 goto out;
188 for (p = &seen_objects; *p ; p = &(*p)->next)
189 if ((*p)->s.b.sorted)
191 if ((*p)->u.sort->orig_data == begin)
193 ob = *p;
194 *p = ob->next;
195 free (ob->u.sort);
196 goto out;
199 else
201 if ((*p)->u.single == begin)
203 ob = *p;
204 *p = ob->next;
205 goto out;
209 __gthread_mutex_unlock (&object_mutex);
210 abort ();
212 out:
213 __gthread_mutex_unlock (&object_mutex);
214 return (void *) ob;
217 void *
218 __deregister_frame_info (void *begin)
220 return __deregister_frame_info_bases (begin);
223 void
224 __deregister_frame (void *begin)
226 /* If .eh_frame is empty, we haven't registered. */
227 if (*(uword *)begin != 0)
228 free (__deregister_frame_info (begin));
232 /* Like base_of_encoded_value, but take the base from a struct object
233 instead of an _Unwind_Context. */
235 static _Unwind_Ptr
236 base_from_object (unsigned char encoding, struct object *ob)
238 if (encoding == DW_EH_PE_omit)
239 return 0;
241 switch (encoding & 0x70)
243 case DW_EH_PE_absptr:
244 case DW_EH_PE_pcrel:
245 case DW_EH_PE_aligned:
246 return 0;
248 case DW_EH_PE_textrel:
249 return (_Unwind_Ptr) ob->tbase;
250 case DW_EH_PE_datarel:
251 return (_Unwind_Ptr) ob->dbase;
253 abort ();
256 /* Return the FDE pointer encoding from the CIE. */
257 /* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
259 static int
260 get_cie_encoding (struct dwarf_cie *cie)
262 const unsigned char *aug, *p;
263 _Unwind_Ptr dummy;
264 _Unwind_Word utmp;
265 _Unwind_Sword stmp;
267 aug = cie->augmentation;
268 if (aug[0] != 'z')
269 return DW_EH_PE_absptr;
271 p = aug + strlen (aug) + 1; /* Skip the augmentation string. */
272 p = read_uleb128 (p, &utmp); /* Skip code alignment. */
273 p = read_sleb128 (p, &stmp); /* Skip data alignment. */
274 p++; /* Skip return address column. */
276 aug++; /* Skip 'z' */
277 p = read_uleb128 (p, &utmp); /* Skip augmentation length. */
278 while (1)
280 /* This is what we're looking for. */
281 if (*aug == 'R')
282 return *p;
283 /* Personality encoding and pointer. */
284 else if (*aug == 'P')
286 /* ??? Avoid dereferencing indirect pointers, since we're
287 faking the base address. Gotta keep DW_EH_PE_aligned
288 intact, however. */
289 p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
291 /* LSDA encoding. */
292 else if (*aug == 'L')
293 p++;
294 /* Otherwise end of string, or unknown augmentation. */
295 else
296 return DW_EH_PE_absptr;
297 aug++;
301 static inline int
302 get_fde_encoding (struct dwarf_fde *f)
304 return get_cie_encoding (get_cie (f));
308 /* Sorting an array of FDEs by address.
309 (Ideally we would have the linker sort the FDEs so we don't have to do
310 it at run time. But the linkers are not yet prepared for this.) */
312 /* Comparison routines. Three variants of increasing complexity. */
314 static int
315 fde_unencoded_compare (struct object *ob __attribute__((unused)),
316 fde *x, fde *y)
318 _Unwind_Ptr x_ptr = *(_Unwind_Ptr *) x->pc_begin;
319 _Unwind_Ptr y_ptr = *(_Unwind_Ptr *) y->pc_begin;
321 if (x_ptr > y_ptr)
322 return 1;
323 if (x_ptr < y_ptr)
324 return -1;
325 return 0;
328 static int
329 fde_single_encoding_compare (struct object *ob, fde *x, fde *y)
331 _Unwind_Ptr base, x_ptr, y_ptr;
333 base = base_from_object (ob->s.b.encoding, ob);
334 read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
335 read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
337 if (x_ptr > y_ptr)
338 return 1;
339 if (x_ptr < y_ptr)
340 return -1;
341 return 0;
344 static int
345 fde_mixed_encoding_compare (struct object *ob, fde *x, fde *y)
347 int x_encoding, y_encoding;
348 _Unwind_Ptr x_ptr, y_ptr;
350 x_encoding = get_fde_encoding (x);
351 read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
352 x->pc_begin, &x_ptr);
354 y_encoding = get_fde_encoding (y);
355 read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
356 y->pc_begin, &y_ptr);
358 if (x_ptr > y_ptr)
359 return 1;
360 if (x_ptr < y_ptr)
361 return -1;
362 return 0;
365 typedef int (*fde_compare_t) (struct object *, fde *, fde *);
368 /* This is a special mix of insertion sort and heap sort, optimized for
369 the data sets that actually occur. They look like
370 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
371 I.e. a linearly increasing sequence (coming from functions in the text
372 section), with additionally a few unordered elements (coming from functions
373 in gnu_linkonce sections) whose values are higher than the values in the
374 surrounding linear sequence (but not necessarily higher than the values
375 at the end of the linear sequence!).
376 The worst-case total run time is O(N) + O(n log (n)), where N is the
377 total number of FDEs and n is the number of erratic ones. */
379 struct fde_accumulator
381 struct fde_vector *linear;
382 struct fde_vector *erratic;
385 static inline int
386 start_fde_sort (struct fde_accumulator *accu, size_t count)
388 size_t size;
389 if (! count)
390 return 0;
392 size = sizeof (struct fde_vector) + sizeof (fde *) * count;
393 if ((accu->linear = (struct fde_vector *) malloc (size)))
395 accu->linear->count = 0;
396 if ((accu->erratic = (struct fde_vector *) malloc (size)))
397 accu->erratic->count = 0;
398 return 1;
400 else
401 return 0;
404 static inline void
405 fde_insert (struct fde_accumulator *accu, fde *this_fde)
407 if (accu->linear)
408 accu->linear->array[accu->linear->count++] = this_fde;
411 /* Split LINEAR into a linear sequence with low values and an erratic
412 sequence with high values, put the linear one (of longest possible
413 length) into LINEAR and the erratic one into ERRATIC. This is O(N).
415 Because the longest linear sequence we are trying to locate within the
416 incoming LINEAR array can be interspersed with (high valued) erratic
417 entries. We construct a chain indicating the sequenced entries.
418 To avoid having to allocate this chain, we overlay it onto the space of
419 the ERRATIC array during construction. A final pass iterates over the
420 chain to determine what should be placed in the ERRATIC array, and
421 what is the linear sequence. This overlay is safe from aliasing. */
423 static inline void
424 fde_split (struct object *ob, fde_compare_t fde_compare,
425 struct fde_vector *linear, struct fde_vector *erratic)
427 static fde *marker;
428 size_t count = linear->count;
429 fde **chain_end = &marker;
430 size_t i, j, k;
432 /* This should optimize out, but it is wise to make sure this assumption
433 is correct. Should these have different sizes, we cannot cast between
434 them and the overlaying onto ERRATIC will not work. */
435 if (sizeof (fde *) != sizeof (fde **))
436 abort ();
438 for (i = 0; i < count; i++)
440 fde **probe;
442 for (probe = chain_end;
443 probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0;
444 probe = chain_end)
446 chain_end = (fde **)erratic->array[probe - linear->array];
447 erratic->array[probe - linear->array] = NULL;
449 erratic->array[i] = (fde *)chain_end;
450 chain_end = &linear->array[i];
453 /* Each entry in LINEAR which is part of the linear sequence we have
454 discovered will correspond to a non-NULL entry in the chain we built in
455 the ERRATIC array. */
456 for (i = j = k = 0; i < count; i++)
457 if (erratic->array[i])
458 linear->array[j++] = linear->array[i];
459 else
460 erratic->array[k++] = linear->array[i];
461 linear->count = j;
462 erratic->count = k;
465 /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
466 use a name that does not conflict. */
468 static void
469 frame_heapsort (struct object *ob, fde_compare_t fde_compare,
470 struct fde_vector *erratic)
472 /* For a description of this algorithm, see:
473 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
474 p. 60-61. */
475 fde ** a = erratic->array;
476 /* A portion of the array is called a "heap" if for all i>=0:
477 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
478 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
479 #define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0)
480 size_t n = erratic->count;
481 size_t m = n;
482 size_t i;
484 while (m > 0)
486 /* Invariant: a[m..n-1] is a heap. */
487 m--;
488 for (i = m; 2*i+1 < n; )
490 if (2*i+2 < n
491 && fde_compare (ob, a[2*i+2], a[2*i+1]) > 0
492 && fde_compare (ob, a[2*i+2], a[i]) > 0)
494 SWAP (a[i], a[2*i+2]);
495 i = 2*i+2;
497 else if (fde_compare (ob, a[2*i+1], a[i]) > 0)
499 SWAP (a[i], a[2*i+1]);
500 i = 2*i+1;
502 else
503 break;
506 while (n > 1)
508 /* Invariant: a[0..n-1] is a heap. */
509 n--;
510 SWAP (a[0], a[n]);
511 for (i = 0; 2*i+1 < n; )
513 if (2*i+2 < n
514 && fde_compare (ob, a[2*i+2], a[2*i+1]) > 0
515 && fde_compare (ob, a[2*i+2], a[i]) > 0)
517 SWAP (a[i], a[2*i+2]);
518 i = 2*i+2;
520 else if (fde_compare (ob, a[2*i+1], a[i]) > 0)
522 SWAP (a[i], a[2*i+1]);
523 i = 2*i+1;
525 else
526 break;
529 #undef SWAP
532 /* Merge V1 and V2, both sorted, and put the result into V1. */
533 static inline void
534 fde_merge (struct object *ob, fde_compare_t fde_compare,
535 struct fde_vector *v1, struct fde_vector *v2)
537 size_t i1, i2;
538 fde * fde2;
540 i2 = v2->count;
541 if (i2 > 0)
543 i1 = v1->count;
544 do {
545 i2--;
546 fde2 = v2->array[i2];
547 while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0)
549 v1->array[i1+i2] = v1->array[i1-1];
550 i1--;
552 v1->array[i1+i2] = fde2;
553 } while (i2 > 0);
554 v1->count += v2->count;
558 static inline void
559 end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
561 fde_compare_t fde_compare;
563 if (accu->linear && accu->linear->count != count)
564 abort ();
566 if (ob->s.b.mixed_encoding)
567 fde_compare = fde_mixed_encoding_compare;
568 else if (ob->s.b.encoding == DW_EH_PE_absptr)
569 fde_compare = fde_unencoded_compare;
570 else
571 fde_compare = fde_single_encoding_compare;
573 if (accu->erratic)
575 fde_split (ob, fde_compare, accu->linear, accu->erratic);
576 if (accu->linear->count + accu->erratic->count != count)
577 abort ();
578 frame_heapsort (ob, fde_compare, accu->erratic);
579 fde_merge (ob, fde_compare, accu->linear, accu->erratic);
580 free (accu->erratic);
582 else
584 /* We've not managed to malloc an erratic array,
585 so heap sort in the linear one. */
586 frame_heapsort (ob, fde_compare, accu->linear);
591 /* Update encoding, mixed_encoding, and pc_begin for OB for the
592 fde array beginning at THIS_FDE. Return the number of fdes
593 encountered along the way. */
595 static size_t
596 classify_object_over_fdes (struct object *ob, fde *this_fde)
598 struct dwarf_cie *last_cie = 0;
599 size_t count = 0;
600 int encoding = DW_EH_PE_absptr;
601 _Unwind_Ptr base = 0;
603 for (; this_fde->length != 0; this_fde = next_fde (this_fde))
605 struct dwarf_cie *this_cie;
606 _Unwind_Ptr mask, pc_begin;
608 /* Skip CIEs. */
609 if (this_fde->CIE_delta == 0)
610 continue;
612 /* Determine the encoding for this FDE. Note mixed encoded
613 objects for later. */
614 this_cie = get_cie (this_fde);
615 if (this_cie != last_cie)
617 last_cie = this_cie;
618 encoding = get_cie_encoding (this_cie);
619 base = base_from_object (encoding, ob);
620 if (ob->s.b.encoding == DW_EH_PE_omit)
621 ob->s.b.encoding = encoding;
622 else if (ob->s.b.encoding != encoding)
623 ob->s.b.mixed_encoding = 1;
626 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
627 &pc_begin);
629 /* Take care to ignore link-once functions that were removed.
630 In these cases, the function address will be NULL, but if
631 the encoding is smaller than a pointer a true NULL may not
632 be representable. Assume 0 in the representable bits is NULL. */
633 mask = size_of_encoded_value (encoding);
634 if (mask < sizeof (void *))
635 mask = (1L << (mask << 3)) - 1;
636 else
637 mask = -1;
639 if ((pc_begin & mask) == 0)
640 continue;
642 count += 1;
643 if ((void *)pc_begin < ob->pc_begin)
644 ob->pc_begin = (void *)pc_begin;
647 return count;
650 static void
651 add_fdes (struct object *ob, struct fde_accumulator *accu, fde *this_fde)
653 struct dwarf_cie *last_cie = 0;
654 int encoding = ob->s.b.encoding;
655 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
657 for (; this_fde->length != 0; this_fde = next_fde (this_fde))
659 struct dwarf_cie *this_cie;
661 /* Skip CIEs. */
662 if (this_fde->CIE_delta == 0)
663 continue;
665 if (ob->s.b.mixed_encoding)
667 /* Determine the encoding for this FDE. Note mixed encoded
668 objects for later. */
669 this_cie = get_cie (this_fde);
670 if (this_cie != last_cie)
672 last_cie = this_cie;
673 encoding = get_cie_encoding (this_cie);
674 base = base_from_object (encoding, ob);
678 if (encoding == DW_EH_PE_absptr)
680 if (*(_Unwind_Ptr *)this_fde->pc_begin == 0)
681 continue;
683 else
685 _Unwind_Ptr pc_begin, mask;
687 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
688 &pc_begin);
690 /* Take care to ignore link-once functions that were removed.
691 In these cases, the function address will be NULL, but if
692 the encoding is smaller than a pointer a true NULL may not
693 be representable. Assume 0 in the representable bits is NULL. */
694 mask = size_of_encoded_value (encoding);
695 if (mask < sizeof (void *))
696 mask = (1L << (mask << 3)) - 1;
697 else
698 mask = -1;
700 if ((pc_begin & mask) == 0)
701 continue;
704 fde_insert (accu, this_fde);
708 /* Set up a sorted array of pointers to FDEs for a loaded object. We
709 count up the entries before allocating the array because it's likely to
710 be faster. We can be called multiple times, should we have failed to
711 allocate a sorted fde array on a previous occasion. */
713 static inline void
714 init_object (struct object* ob)
716 struct fde_accumulator accu;
717 size_t count;
719 count = ob->s.b.count;
720 if (count == 0)
722 if (ob->s.b.from_array)
724 fde **p = ob->u.array;
725 for (count = 0; *p; ++p)
726 count += classify_object_over_fdes (ob, *p);
728 else
729 count = classify_object_over_fdes (ob, ob->u.single);
731 /* The count field we have in the main struct object is somewhat
732 limited, but should suffice for virtually all cases. If the
733 counted value doesn't fit, re-write a zero. The worst that
734 happens is that we re-count next time -- admittedly non-trivial
735 in that this implies some 2M fdes, but at least we function. */
736 ob->s.b.count = count;
737 if (ob->s.b.count != count)
738 ob->s.b.count = 0;
741 if (!start_fde_sort (&accu, count))
742 return;
744 if (ob->s.b.from_array)
746 fde **p;
747 for (p = ob->u.array; *p; ++p)
748 add_fdes (ob, &accu, *p);
750 else
751 add_fdes (ob, &accu, ob->u.single);
753 end_fde_sort (ob, &accu, count);
755 /* Save the original fde pointer, since this is the key by which the
756 DSO will deregister the object. */
757 accu.linear->orig_data = ob->u.single;
758 ob->u.sort = accu.linear;
760 ob->s.b.sorted = 1;
763 /* A linear search through a set of FDEs for the given PC. This is
764 used when there was insufficient memory to allocate and sort an
765 array. */
767 static fde *
768 linear_search_fdes (struct object *ob, fde *this_fde, void *pc)
770 struct dwarf_cie *last_cie = 0;
771 int encoding = ob->s.b.encoding;
772 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
774 for (; this_fde->length != 0; this_fde = next_fde (this_fde))
776 struct dwarf_cie *this_cie;
777 _Unwind_Ptr pc_begin, pc_range;
779 /* Skip CIEs. */
780 if (this_fde->CIE_delta == 0)
781 continue;
783 if (ob->s.b.mixed_encoding)
785 /* Determine the encoding for this FDE. Note mixed encoded
786 objects for later. */
787 this_cie = get_cie (this_fde);
788 if (this_cie != last_cie)
790 last_cie = this_cie;
791 encoding = get_cie_encoding (this_cie);
792 base = base_from_object (encoding, ob);
796 if (encoding == DW_EH_PE_absptr)
798 pc_begin = ((_Unwind_Ptr *)this_fde->pc_begin)[0];
799 pc_range = ((_Unwind_Ptr *)this_fde->pc_begin)[1];
800 if (pc_begin == 0)
801 continue;
803 else
805 _Unwind_Ptr mask;
806 const char *p;
808 p = read_encoded_value_with_base (encoding, base,
809 this_fde->pc_begin, &pc_begin);
810 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
812 /* Take care to ignore link-once functions that were removed.
813 In these cases, the function address will be NULL, but if
814 the encoding is smaller than a pointer a true NULL may not
815 be representable. Assume 0 in the representable bits is NULL. */
816 mask = size_of_encoded_value (encoding);
817 if (mask < sizeof (void *))
818 mask = (1L << (mask << 3)) - 1;
819 else
820 mask = -1;
822 if ((pc_begin & mask) == 0)
823 continue;
826 if ((_Unwind_Ptr)pc - pc_begin < pc_range)
827 return this_fde;
830 return NULL;
833 /* Binary search for an FDE containing the given PC. Here are three
834 implementations of increasing complexity. */
836 static inline fde *
837 binary_search_unencoded_fdes (struct object *ob, void *pc)
839 struct fde_vector *vec = ob->u.sort;
840 size_t lo, hi;
842 for (lo = 0, hi = vec->count; lo < hi; )
844 size_t i = (lo + hi) / 2;
845 fde *f = vec->array[i];
846 void *pc_begin;
847 uaddr pc_range;
849 pc_begin = ((void **)f->pc_begin)[0];
850 pc_range = ((uaddr *)f->pc_begin)[1];
852 if (pc < pc_begin)
853 hi = i;
854 else if (pc >= pc_begin + pc_range)
855 lo = i + 1;
856 else
857 return f;
860 return NULL;
863 static inline fde *
864 binary_search_single_encoding_fdes (struct object *ob, void *pc)
866 struct fde_vector *vec = ob->u.sort;
867 int encoding = ob->s.b.encoding;
868 _Unwind_Ptr base = base_from_object (encoding, ob);
869 size_t lo, hi;
871 for (lo = 0, hi = vec->count; lo < hi; )
873 size_t i = (lo + hi) / 2;
874 fde *f = vec->array[i];
875 _Unwind_Ptr pc_begin, pc_range;
876 const char *p;
878 p = read_encoded_value_with_base (encoding, base, f->pc_begin,
879 &pc_begin);
880 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
882 if ((_Unwind_Ptr)pc < pc_begin)
883 hi = i;
884 else if ((_Unwind_Ptr)pc >= pc_begin + pc_range)
885 lo = i + 1;
886 else
887 return f;
890 return NULL;
893 static inline fde *
894 binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
896 struct fde_vector *vec = ob->u.sort;
897 size_t lo, hi;
899 for (lo = 0, hi = vec->count; lo < hi; )
901 size_t i = (lo + hi) / 2;
902 fde *f = vec->array[i];
903 _Unwind_Ptr pc_begin, pc_range;
904 const char *p;
905 int encoding;
907 encoding = get_fde_encoding (f);
908 p = read_encoded_value_with_base (encoding,
909 base_from_object (encoding, ob),
910 f->pc_begin, &pc_begin);
911 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
913 if ((_Unwind_Ptr)pc < pc_begin)
914 hi = i;
915 else if ((_Unwind_Ptr)pc >= pc_begin + pc_range)
916 lo = i + 1;
917 else
918 return f;
921 return NULL;
924 static fde *
925 search_object (struct object* ob, void *pc)
927 /* If the data hasn't been sorted, try to do this now. We may have
928 more memory available than last time we tried. */
929 if (! ob->s.b.sorted)
931 init_object (ob);
933 /* Despite the above comment, the normal reason to get here is
934 that we've not processed this object before. A quick range
935 check is in order. */
936 if (pc < ob->pc_begin)
937 return NULL;
940 if (ob->s.b.sorted)
942 if (ob->s.b.mixed_encoding)
943 return binary_search_mixed_encoding_fdes (ob, pc);
944 else if (ob->s.b.encoding == DW_EH_PE_absptr)
945 return binary_search_unencoded_fdes (ob, pc);
946 else
947 return binary_search_single_encoding_fdes (ob, pc);
949 else
951 /* Long slow labourious linear search, cos we've no memory. */
952 if (ob->s.b.from_array)
954 fde **p;
955 for (p = ob->u.array; *p ; p++)
957 fde *f = linear_search_fdes (ob, *p, pc);
958 if (f)
959 return f;
961 return NULL;
963 else
964 return linear_search_fdes (ob, ob->u.single, pc);
968 fde *
969 _Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
971 struct object *ob;
972 fde *f = NULL;
974 init_object_mutex_once ();
975 __gthread_mutex_lock (&object_mutex);
977 /* Linear search through the classified objects, to find the one
978 containing the pc. Note that pc_begin is sorted descending, and
979 we expect objects to be non-overlapping. */
980 for (ob = seen_objects; ob; ob = ob->next)
981 if (pc >= ob->pc_begin)
983 f = search_object (ob, pc);
984 if (f)
985 goto fini;
986 break;
989 /* Classify and search the objects we've not yet processed. */
990 while ((ob = unseen_objects))
992 struct object **p;
994 unseen_objects = ob->next;
995 f = search_object (ob, pc);
997 /* Insert the object into the classified list. */
998 for (p = &seen_objects; *p ; p = &(*p)->next)
999 if ((*p)->pc_begin < ob->pc_begin)
1000 break;
1001 ob->next = *p;
1002 *p = ob;
1004 if (f)
1005 goto fini;
1008 fini:
1009 __gthread_mutex_unlock (&object_mutex);
1011 if (f)
1013 int encoding;
1015 bases->tbase = ob->tbase;
1016 bases->dbase = ob->dbase;
1018 encoding = ob->s.b.encoding;
1019 if (ob->s.b.mixed_encoding)
1020 encoding = get_fde_encoding (f);
1021 read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
1022 f->pc_begin, (_Unwind_Ptr *)&bases->func);
1025 return f;